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ABSTRACT

Extending the context window in large language models (LLMs) is essential for
applications involving long-form content generation. However, the quadratic com-
plexity of self-attention and the linear increase in key-value (KV) cache memory
requirements with respect to sequence length present significant challenges dur-
ing fine-tuning and inference. Although LongLoRA achieves efficient fine-tuning
by employing shifted sparse attention, inference remains inefficient due to the re-
quirement for dense global attention. In this work, we introduce a novel context
extension method that optimizes both fine-tuning and inference efficiency. Our
method exploits a key observation: in the frequency domain, the energy distri-
bution of the KV cache is primarily concentrated in low-frequency components.
By filtering out the high-frequency components, the KV cache can be effectively
compressed with minimal information loss. Building on this insight, we propose
an efficient compression technique, FreqKV, that iteratively reduces the increasing
KV cache to a fixed size in the frequency domain, applicable to both fine-tuning
and inference. With minimal fine-tuning, LLMs can learn to leverage the lim-
ited cache that is compressed in the frequency domain and extend the context
window efficiently. FreqKV introduces no additional parameters or architectural
modifications, ensuring compatibility with the original full attention post-training.
Experiments on long context language modeling and understanding demonstrate
the efficiency and efficacy of the proposed method.

1 INTRODUCTION

Large language models (LLMs) typically have a limited size of context window, which is pre-defined
during the pre-training process. However, it is inevitable for LLMs to process sequences that exceed
the preset context size. LLMs struggle to maintain their performance when generalized to longer
contexts. Additionally, the computation cost of the self-attention mechanism (Vaswani et al., 2023)
grows quadratically with the context length, meaning that doubling the context window results in a
fourfold increase in the computational cost of attention modules.

For efficiency, existing efforts aim to compress the key-value (KV) cache for long contexts dur-
ing inference. They evict (Xiao et al., 2024; Li et al., 2024) or merge (Zhang et al., 2024b; Wan
et al., 2024) KV states of less important tokens following certain rules. They use attention scores to
measure the importance and approximate the original full attention. However, while these methods
provide an approximation of full computation on existing tokens through different strategies, they
can not fully prevent performance degradation when decoding future tokens.

Recent studies propose to fine-tune LLMs to longer contexts to extend the context window. Lon-
gLoRA (Chen et al., 2024) trains LLMs using shifted sparse attention. Despite training efficiency,
their sparse attention fails to be applied during inference, and they still require the original atten-
tion on the full sequence. Concurrently, LoCoCo (Cai et al., 2024a) and Activation Beacon (Zhang
et al., 2024a) introduce additional modules to compress KV states. They incorporate the fine-tuned
compressing pattern into the decoding procedure of LLMs.

In the field of computer vision, studies have shown that low-frequency channels are more important
for convolutional neural networks (CNNs) (Xu et al., 2020). Moreover, Fourier Transformer (He
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et al., 2023) discards the high-frequency parts of the contexts and downsample the hidden states
in the encoders. Inspired by these work, we seek to compress KV states in the frequency domain
without the need for additional compression modules in decoder-only LLMs. We transform key
states and value states in LLaMA-2-7b (Touvron et al., 2023) from the time domain to the frequency
domain for power spectrum analysis. As shown in Figure 1, the energy distribution increasingly
concentrates on low-frequency components as the computation process progresses inside the model.
This suggests that high-frequency components, which contribute less to the overall information,
can be discarded without a significant impact on performance, thereby enhancing computational
efficiency.

In this paper, we introduce FreqKV, an efficient context extension method that iteratively com-
presses key-value states in the frequency domain. Compression is triggered only when the KV cache
reaches the predefined context window size. We keep the first few tokens uncompressed due to the
attention sinks of LLMs (Xiao et al., 2024; Han et al., 2024). During each compression step, the
low-frequency components of the KV states are preserved at a specified retaining ratio. Subsequent
tokens are appended to the compressed cache until it is filled again. This ensures that the maximum
number of cached KV states that each query token can attend to is limited below the context window
size. To reduce memory and computational costs, the compressed cache will be further compressed
together with the incoming tokens. This iterative compression mechanism leads to an increased
compression level of the earlier contexts as the sequence length grows. Without introducing ad-
ditional compression modules, LLMs could learn to utilize the compressed cache efficiently when
extending to longer contexts. FreqKV demonstrates comparable performance to other methods that
employ full KV cache or additional compressors in long context language modeling. Furthermore,
experiments on LongBench (Bai et al., 2024) indicate that FreqKV surpasses recently studied KV
compression methods in long-context understanding, achieving higher scores on open-ended text
generation tasks.

2 RELATED WORK

KV Compression for LLMs. To extend the context window of LLMs efficiently, researchers
attempt to compress the KV cache as more tokens are fed into the model. One common approach is
selective token eviction (Xiao et al., 2024; Li et al., 2024; Cai. et al., 2024b), where less significant
tokens are discarded. Although the eviction strategies ensure that the size of KV cache involved
in each decoding step does not exceed the pre-defined context window size, LLMs suffer from
the permanent loss of the information associated with evicted tokens. To address this limitation,
some researchers introduce cache merging techniques to approximate the original full attention of
the existing contexts (Zhang et al., 2024b; Wan et al., 2024; Wang et al., 2024). However, these
inference methods often sacrifice performance for efficiency.

Context Extension for LLMs. Recent advancements in context extension for LLMs have fo-
cused on efficiently scaling models to handle longer input sequences without significantly increas-
ing computational costs. LongLoRA (Chen et al., 2024) employs shifted sparse attention during
the parameter-efficient fine-tuning. However, this sparse attention mechanism is not applicable dur-
ing inference, necessitating a return to the original full attention post-training. Other techniques,
such as LoCoCo (Cai et al., 2024a), integrate convolutional operations into LLMs for compressing
long contexts. They fine-tune the compression modules together with LLMs. Landmark attention
(Mohtashami & Jaggi, 2023) uses landmark tokens to retrieve previous input blocks. Similarly, Ac-
tivation Beacon (Zhang et al., 2024a) proposes the use of a special token to represent the previous
context for compression. However, they introduce a copy of multi-head attention parameters, which
can amount to approximately 2 billion for 7 billion parameter models. In contrast, our proposed
method achieves context extension without introducing any additional parameters.

Learning in the Frequency Domain. Learning in the frequency domain is a well-established
technique to compress images and accelerate CNNs (Gueguen et al., 2018). It has been observed
that CNNs are more sensitive to low-frequency channels than high-frequency channels (Xu et al.,
2020). These works have inspired efforts to process natural language. FNet (Lee-Thorp et al., 2022)
enhances the efficiency of Transformer encoder architectures by replacing the self-attention layers
with the Fourier transform to serve the purpose of mixing tokens. Additionally, Fourier Transformer
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(He et al., 2023) eliminates redundancies in the context through frequency domain processing within
encoder architectures.

However, because of the auto-regressive nature, it remains unclear how to leverage frequency com-
ponents for decoder-only Transformer, which is the main architecture of generative LLMs. To the
best of our knowledge, FreqKV is the first work that explores compressing key-value states in the
frequency domain for decoder-only LLMs.

3 PRELIMINARIES

3.1 DISCRETE COSINE TRANSFORM

The Discrete Cosine Transform (DCT) transforms a signal from the spatial domain (time or position)
into the frequency domain. Several variants of the DCT exist, with DCT-II being the most common.
For a real-value discrete signal X0:N−1 = [x0, . . . , xN−1] of length N , it is defined as:

yt = αt

N−1∑
n=0

xn · cos
[
πt(2n+ 1)

2N

]
, αt =


√

1
N if t = 0,√
2
N otherwise

(1)

where t = 0, 1, · · · , N − 1. αt is the normalization factor. The original signal X0:N−1 can be
recovered by applying the inverse DCT (IDCT) on the frequency components Y0:N−1:

xn =

N−1∑
t=0

αt · yt · cos
[
πt(2n+ 1)

2N

]
. (2)

The frequency components are expressed as a combination of the original signals. The values can be
computed using the Fast Fourier Transform (FFT) with a complexity of O(N logN). The amplitudes
of frequency components are utilized in the power spectrum analysis to represent the energy or
magnitude of components. The components of higher energy in the frequency domain indicate they
are more informative (He et al., 2023).

3.2 SELF-ATTENTION

For the incoming token xN , the prefilled N tokens X0:N−1 are utilized as the cache during de-
coding. Denote the hidden states of the N + 1 tokens input to a specific layer of LLMs as
H0:N = [h0, · · · ,hN ]. The query, key and value states of xN are are computed as follows::

qN = hNWQ, kN = hNWK , vN = hNW V , (3)

where WQ,WK ,W V are the projection matrices for the query, key and value states, respectively.
For simplicity, indices corresponding to layers and heads have been omitted.

The cached KV states for the previous N tokens X0:N−1 are:

K0:N−1 = H0:N−1W
K , V0:N−1 = H0:N−1W

V . (4)

When calculating attention scores, the incoming token xN attends to all cached KV states as well as
to itself:

A(N) = Softmax
(
qN [K0:N−1 ⊕ kN ]T√

d

)
· [V0:N−1 ⊕ vN ], (5)

where d is the hidden dimension. ⊕ means the concatenation of the KV cache and KV states of xN

4 FREQKV

4.1 ENERGY CONCENTRATION IN THE FREQUENCY DOMAIN

We transform key states and value states from the time domain, which is the sequence dimension,
to the frequency domain. The average power spectrums in different decoder layers of LLaMA-2-7b
are calculated and presented in Figure 1.
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layer 0 layer 4 layer 8 layer 16 layer 31

(a) The average power spectrums of key states.

layer 0 layer 4 layer 8 layer 16 layer 31

(b) The average power spectrums of value states.

Figure 1: The average power spectrums of key states and value states in different layers of LLaMA-
2-7b. 1000 documents are sampled from CNN/Daily Mail (Hermann et al., 2015). We use DCT to
transform key states and value states to the frequency domain, and average power spectrums over
these samples and hidden dimensions.

The figure shows that the energy of key states and value states is increasingly concentrated in the
low-frequency components. Although there is no obvious energy concentration in the frequency
domain for the initial embeddings of natural languages such as value states from layer 0, the model
tends to aggregate energy in the low-frequency components along the decoding procedure. The
observation of energy concentration suggests that we could maintain low-frequency components
and filter out high-frequency components which could be redundant. Head-wise analysis of the
power spectrum is provided in Appendix A.

4.2 KV COMPRESSION IN THE FREQUENCY DOMAIN

We conduct DCT along the sequence dimension to transfer the KV cache to the frequency domain:

Y K
0:N−1 = DCT(K0:N−1), Y V

0:N−1 = DCT(V0:N−1). (6)

As observed in Figure 1, since the lower-frequency components are of higher magnitude and carry
more information, we will retain them and remove higher-frequency components for compression.
Given the retaining ratio γ, the retaining size is L = γ ·N . N − L high-frequency components are
filtered out to reduce redundancy:

Ỹ
K

0:L−1 = Y K
0:N−1[0 : L− 1], Ỹ

V

0:L−1 = Y V
0:N−1[0 : L− 1]. (7)

Then we conduct IDCT along the frequency dimension to convert the compressed components back
to the time dimension. It should be noted that the time-domain signals are normalized by the square
root of the component number as shown in the formula of IDCT (Equation 2). Therefore, the

compressed signals should be rescaled with
√

L
N to restore the original amplitude:

K̃
0:N−1

0:L−1 =

√
L

N
IDCT(Ỹ

K

0:L−1), Ṽ
0:N−1

0:L−1 =

√
L

N
IDCT(Ỹ

V

0:L−1). (8)

K̃
0:N−1

0:L−1 and Ṽ
0:N−1

0:L−1 are the KV cache of size L in the time domain. The superscript “0:N − 1”

means that K̃
0:N−1

0:L−1 and Ṽ
0:N−1

0:L−1 are the compressed KV of the cached N tokens. The subscript
“0:L− 1” means the retaining size is L. The incoming token xN will attend to the compressed KV
cache:

Ã(N,L) = Softmax

qN [K̃
0:N−1

0:L−1 ⊕ kN ]T
√
d

 · [Ṽ
0:N−1

0:L−1 ⊕ vN ]. (9)
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KV Cache

Context Window

Compressing

Attention Mask

masked

unmasked

K
Q

sink tokens:

compressed tokens:

incoming tokens:

KV Cache

Context Window

Compressing

(a) First Compression (b) Iterative Compression

Figure 2: The illustration of our FreqKV. The KV cache will be compressed in an iterative manner
as the cache reaches the context window size. Sink tokens remain uncompressed throughout the
process. (a) The tokens after sink tokens will be compressed in the frequency domain and subsequent
tokens will continue to get into the cache. (b) When the cache is filled again, the compressed tokens
and incoming tokens will be compressed together. The compression is performed iteratively to
extend the context window.

4.3 CONTEXT EXTENSION WITH THE COMPRESSED KV

When extending the context window, the memory requirement of KV cache increases linearly and
the computation cost of the original full attention grows quadratically with the length. To limit the
size of KV cache for each query token to attend below the context window size, we will compress
KV cache in the frequency domain iteratively as the cache is filled. We illustrate our FreqKV in
Figure 2.

For tokens within the context window, the standard attention will be conducted. For tokens out of
the window, we will compress the cached KV states in the frequency domain. Because the retaining
size L is smaller than the cache size N , subsequent tokens could get in and fill the cache. We discard
the original KV states of the prefilling tokens and maintain the compressed KV states. They will be
concatenated with the KV states of the incoming tokens and compressed together when the cache
is filled again. Tokens that appear earlier in the sequence undergo more iterations of compression
as the context window expands, whereas less compression will be performed on the more recent
tokens. With the iterative FreqKV, the KV cache size is not fixed and is reduced below the context
window size during decoding. Since the compression is only performed when the sum of cached KV
and incoming tokens reaches the preset size, the computation overhead of the compression could be
negligible. For example, with the context size of 4096 and the retaining size of 2048, compression
is performed every 2048 tokens for contexts exceeding the original window.

Recent work has found the phenomenon of attention sinks that LLMs tend to assign high attention
scores to initial tokens (Xiao et al., 2024; Han et al., 2024). Therefore, we maintain these initial
tokens uncompressed in the cache and only compress tokens that come after them.

During training and the prefilling stage of inference, the whole sentence is tokenized and fed into
the model. The attention is computed chunk-wise interleaved with the compression operation. After
each compression, N − L − S incoming tokens are regarded as a chunk and fill the cache, with
S sink tokens uncompressed. As shown in Figure 2 (b), the incoming tokens in each chunk can
not attend to the subsequent tokens. The newly incoming token xM will attend to S sink tokens, L
compressed “tokens”, M −N previous incoming tokens, and xM itself. The calculation of attention
in Equation 9 can be reformulated as follows:

Ã(S,N,L,M) = Softmax

(
qM [K0:S−1 ⊕ K̃

S:N−1

0:L−1 ⊕KN :M ]T
√
d

)
· [V0:S−1 ⊕ Ṽ

S:N−1

0:L−1 ⊕ VN :M ]. (10)
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Table 1: Perplexity evaluation on the test sets of PG-19 and Proof-pile. The superscript “*” means
that we reproduce LoCoCo following their official code for evaluation. The results of full fine-tuning
and LongLoRA are reported from Chen et al. (2024).

Training
Length

Method Inference
Cache

Evaluation Context Length
2048 4096 8192 16384 32768

PG-19

8192

Full FT Full 7.55 7.21 6.98 - -
LongLoRA Full 7.70 7.35 7.14 - -
LoCoCo* Compressed 8.15 8.08 7.27 - -
FreqKV Compressed 7.53 7.19 7.13 - -

16384 LongLoRA Full 7.65 7.28 7.02 6.86 -
FreqKV Compressed 7.77 7.40 7.32 7.29 -

32768 LongLoRA Full 8.29 7.83 7.54 7.35 7.22
FreqKV Compressed 8.14 7.73 7.61 7.56 7.54

Proof-pile

8192

Full FT Full 3.14 2.85 2.66 - -
LongLoRA Full 3.20 2.91 2.72 - -
LoCoCo* Compressed 3.40 3.20 2.88 - -
FreqKV Compressed 3.16 2.88 2.80 - -

16384 LongLoRA Full 3.17 2.87 2.66 2.51 -
FreqKV Compressed 3.22 2.93 2.84 2.80 -

32768 LongLoRA Full 3.35 3.01 2.78 2.61 2.50
FreqKV Compressed 3.34 3.03 2.93 2.88 2.86

5 EXPERIMENTS

5.1 IMPLEMENTATION

We conduct experiments on long context language modeling and understanding tasks with LLaMA-
2-7b (Touvron et al., 2023) base and chat models. Minimal training is introduced to adapt the model
to this frequency-domain compression method. For long context language modeling, we fine-tune
LLaMA-2-7b on the RedPajama (Computer, 2023) pre-training dataset for 1000 steps, extending
the context window size from 4K to 8K, 16K, and 32K. Perplexity (PPL) evaluation is conducted on
PG-19 (Rae et al., 2019) and Proof-pile (Azerbayev et al., 2022). For long context understanding,
the instruction following dataset LongAlpaca (Chen et al., 2024) is used for the supervised fine-
tuning (SFT) of the chat model. The context window size is extended from 4K to 8K. The model
is trained on 6.28K long-context QA samples for 5 epochs and evaluated on LongBench (Bai et al.,
2024).

The total batch size (GPU number×Batch size per device×Gradient accumulation steps)
is 64. The learning rate increases linearly from 1e-6 to 2e-5 with 20 warm-up steps and remains
constant in the following steps. The rank used in the LoRA (Hu et al., 2021) fine-tuning is set to
8. Following LongLoRA (Chen et al., 2024), the embedding and normalization layers are learnable
during training.

The preset context window size of LLaMA-2 is 4096, which is also the maximum KV cache size
N . We maintain S = 4 sink tokens uncompressed. The retaining ratio γ in compression is set to
0.5. Therefore, the retaining size during each compression is L = γ · (N − S) = 2046. As long
as the cache size reaches its capacity of 4096, the 4092 states since the 5-th state in the cache will
be compressed into 2046 states. All the experiments are conducted on ADA6000 and RTX4090
GPUs. Moreover, we equip our method with FlashAttention-2 (Dao, 2023) for further acceleration
and memory saving.
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Table 2: Training time and memory usage of
FreqKV when extending to 8K, 16K and 32K.
All the statistics are collected with the same ex-
perimental settings.

Training Training Memory
Length Time (hours) Usage (GB)

8K 17.61 25.08
16K 39.40 33.07
32K 89.99 44.90

1K 4K 8K 12K 16K 20K 24K 28K 32K
Sequence Length

0

500

1000

1500

2000

De
co

di
ng

 T
im

e 
(s

)

Full Cache
FreqKV

Figure 3: Decoding time with the full cache and
FreqKV on the increasing sequence length.

5.2 LONG CONTEXT LANGUAGE MODELING

We use FreqKV to train the model on RedPajama (Computer, 2023) with lengths of 8192, 16384,
and 32768. Perplexity is measured on test sets of the book corpus dataset PG-19 (Rae et al., 2019)
and the Arxiv math dataset Proof-pile (Azerbayev et al., 2022) with the evaluation sliding window of
256. We compare our method with other baselines including full fine-tuning (Full FT), LongLoRA
(Chen et al., 2024), and LoCoCo (Cai et al., 2024a). While Full FT and LongLoRA leverage full
KV cache during inference, LoCoCo, and our FreqKV use compressed cache.

PPL scores on different evaluation context lengths are reported in Table 1. Although FreqKV em-
ploys an iterative compression manner, its performance does not deteriorate on extended context
length. When compared to Full FT and LongLoRA, our compressed cache method effectively
extends the context window without sacrificing much performance. Moreover, our method out-
performs LoCoCo on the extended context length (8192) as well as the shorter lengths (2048 and
4096).

5.3 MEMORY AND COMPUTATIONAL COST

In Table 2, we present the training time and memory usage of FreqKV when extending to different
context lengths. All statistics are collected under the condition that Batch size per device = 1
and Gradient accumulation steps = 8 with 8 ADA6000 GPUs.

With FreqKV, we can conduct training to extend the context window size of LLaMA2-7b from 4K
to 32K. While 49GB memory is required by LongLoRA and 50GB for LoCoCo when extending to
16K (Cai et al., 2024a).

Furthermore, we compare the decoding time required by the full cache and our FreqKV when the
sequence length increases. As shown in Figure 3, the decoding time starts to diverge at the length
of 4K. While the full cache utilization leads to a quadratic growth in decoding time, the decod-
ing time of FreqKV increases approximately linearly with a negligible time spent on compression,
showcasing its efficiency.

5.4 LONG CONTEXT UNDERSTANDING

To further validate the performance of FreqKV on downstream tasks, we SFT LLaMA-2-chat-7b
on LongAlpaca (Chen et al., 2024) to extend the context window size from 4K to 8K, and evaluate
it on the long context understanding benchmark LongBench (Bai et al., 2024). Scores on the 6
categories of LongBench are reported in Table 3. Detailed results on the 16 tasks can be referred to
in Appendix B.

We compare our method with different KV compression strategies, including LM-Infinite (Han et al.,
2024), LongHeads (Lu et al., 2024), SnapKV (Li et al., 2024) and PyramidKV (Cai. et al., 2024b).
Since the KV cache size of our FreqKV is not fixed and ranges between 2K and 4K during decoding,
the cache size used in these baseline methods is set to 4K for comparison. FreqKV achieves SOTA

7
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Table 3: Scores of different KV compression methods on LongBench. The superscript “*” means
that we reproduce SanpKV and PyramidKV following their official code for evaluation. The results
of LM-Infinite and LongHeads are reported from Lu et al. (2024). The above four methods are
evaluated with a cache size of 4K.

Method Single- Multi- Summarization Few-shot Code Synthetic Avg.Doc QA Doc QA Learning
llama2-chat 24.90 22.60 24.70 60.00 48.10 5.90 31.0

LM-Infinite 14.63 7.36 7.67 25.18 29.37 5.41 14.94
LongHeads 19.45 21.42 20.59 55.80 49.04 8.03 29.06
SnapKV* 25.39 22.52 24.62 62.92 57.70 5.34 33.08
PyramidKV* 25.98 22.48 24.62 62.90 57.71 4.14 32.87
FreqKV 26.70 27.10 25.54 59.97 56.02 6.66 33.67

Table 4: FLOPs (TFLOPs) with input sequences of different lengths. We calculate FLOPs for
Llama-2-7b with the original attention which leverages full KV states, and with FreqKV with re-
taining ratios of 0.1, 0.25, 0.5, and 0.75. Experiments are conducted on the ADA6000 GPU of
48GB, where full KV of 10k tokens with float16 will cause an OOM (Out-of-Memory) issue.

Models Retaining Ratio 4K 6K 8K 10K 12K
Full KV - 62.93 101.00 143.46 OOM OOM

FreqKV

0.1 62.93 92.65 125.17 155.77 187.58
0.25 62.93 93.31 124.79 157.35 187.73
0.5 62.93 94.42 125.90 157.38 188.85

0.75 62.93 94.45 125.94 157.44 188.94

(state-of-the-art) on the single-document QA, multi-document QA, and summarization tracks. Our
method is also comparable on the other three tracks and obtains the highest average score across all
six tracks.

6 ABLATION STUDY

6.1 RETAINING RATIO

We conduct further studies on the computation cost and performance regarding different retaining
ratios. As introduced in Section 4.3, chunk-wise attention is performed for the prefilling tokens. The
size of the attention matrix in each chunk is (N−L−S)·N except for the last few tokens. Therefore,
the computational cost of self-attention grows approximately linearly with the input length like
sliding window attention (Beltagy et al., 2020).

We use torchprofile1 to count the number of Floating Point Operations (FLOPs) with input sequences
of different lengths for LLaMA-2-7b. The statistics given in Table 4 show that FreqKV reduces more
FLOPs as the input length grows from 4K to 12K. Despite more compressions will be performed
with the retaining ratio ranging from 0.1 to 0.75, the growth in FLOPs is minimal. This is because
the compression is performed every N − L − S tokens with the complexity of O(N logN), which
is negligible compared to the quadratic self-attention.

Moreover, we use the validation set of PG-19 to measure the performance and inference overhead of
FreqKV with different retaining ratios. The evaluation context length is 8192. Results are shown in
Figure 4. While the model performs better in long context language modeling as the retaining ratio
increases, the total inference time grows significantly. Although the difference of FLOPs presented
in Table 4 is minimal, larger retaining ratios lead to smaller chunk sizes, which determines how

1https://github.com/zhijian-liu/torchprofile
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Figure 4: Perplexity evaluation and total infer-
ence time on the validation set of PG-19 with
different retaining ratios. The evaluation con-
text length is 8192.
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Figure 5: Perplexity evaluation on the test set of
Proof-pile for FreqKV with full KV cache and
compressed cache. The context window of the
model is extended to 32K by FreqKV.
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Figure 6: Curves of training loss for FreqKV with and without rescaling.

many attention scores will be masked. As a result, the attention matrix becomes denser and costs an
increase in inference overhead. This study justifies our choice of setting a 0.5 retaining ratio as the
default for effectiveness and efficiency.

6.2 USING FULL KV CACHE DURING INFERENCE

With the model trained with FreqKV, we also evaluate its performance on the test set of Proof-pile
when enabling full KV cache during inference. As shown in Figure 5, despite training with the
compressed KV on longer contexts, the model achieves better performance when leveraging full
KV. It demonstrates that learning the iterative compression of KV states in the frequency domain
does not conflict with the original context information.

6.3 EFFECT OF RESCALING

In Equation 8,
√

L
N =

√
γ works as a rescaling factor for the compressed signals to restore the orig-

inal amplitude when conducting IDCT (the factor is
√

L
N−S when S sink tokens are uncompressed).

To investigate the effect of the rescaling factor, we also use FreqKV to train LLaMA-2-7b without
rescaling for comparison. The training curves for FreqKV with and without rescaling are presented
in Figure 6.

It can be learned from the figure that, the training loss is significantly higher at the early stages when
the compressed signals are not rescaled. This is because IDCT amplifies the compressed states

with the normalization factor
√

1
L progressively in each compression iteration. By rescaling the

compressed signals, the training process becomes more stable in its initial phases.

9
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7 CONCLUSION

In this paper, we introduce FreqKV to compress KV states iteratively in the frequency domain for
LLMs. We exploit the energy concentration of KV states in the frequency domain within the de-
coder layers. Specifically, we filter out the high-frequency components that are of low magnitude
and retain the low-frequency components for compression. The KV cache is compressed in the fre-
quency domain without introducing additional compression modules. Iteratively compressing the
KV cache, FreqKV could extend the context window efficiently for LLMs. With minimal training
of low-rank adaption, LLMs learn to leverage the compressed KV cache. Through extensive experi-
ments and analysis on long context modeling and understanding, FreqKV demonstrates its efficiency
and effectiveness in context extension.
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A HEAD-WISE ANALYSIS OF POWER SPECTRUMS

We also explore the power spectrum distribution of key states and value states in different attention
heads of LLaMA-2-7b as shown in Figure 7. Although values of power spectrums vary in different
heads, their distribution exhibits similar patterns. They have a consistent tendency to aggregate
energy in the low-frequency components along the decoding procedure. It could be promising to
study specific differences and associations in different heads or other modules.

B DETAILED RESULTS ON LONGBENCH

Table 5: Scores of different KV compression methods on LongBench.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Code Synthetic

NtrvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum

LCC
RB-P

PCount
PRe

llama2-chat 18.7 19.2 36.8 25.4 32.8 9.4 27.3 20.8 25.8 61.5 77.8 40.7 52.4 43.8 2.1 9.8

LM-Infinite 0.00 18.57 25.33 27.34 31.96 7.76 11.30 2.99 8.72 32.50 29.22 13.82 34.19 24.55 5.61 5.20
LongHeads 11.61 22.98 23.76 31.28 24.10 8.87 25.36 20.24 16.18 50.67 79.98 36.74 53.85 44.22 6.39 9.67
SnapKV 18.78 20.68 36.70 27.83 31.51 8.21 26.92 20.68 26.25 64.00 83.26 41.49 60.70 54.69 2.92 7.75
PyramidKV 18.44 23.09 36.41 27.43 32.11 7.90 26.83 21.02 26.02 64.00 83.26 41.45 60.58 54.83 2.03 6.25
FreqKV 17.96 27.69 34.44 35.52 34.06 11.91 26.63 22.31 27.69 55.50 83.95 40.45 56.99 55.05 2.81 10.50

Detailed results on the 16 tasks of LongBench are reported in Table 5. FreqKV achieves SOTA on 9
of the 16 long context understanding tasks.

C RUSULTS ON NEEDLE-IN-A-HAYSTACK

We report Needle-in-a-Haystack results on LLaMA-2-Chat-7B with an extended context window
from 4k to 8k using FreqKV. We also implement the “Local Attention” (Xiong et al., 2022) to
extend the context window of LLaMA-2-Chat-7B, which keeps sink tokens and the latest tokens in
the cache. It shares the same sink size and retaining size as FreqKV. Results are shown in Figure 8
and Figure 9. They demonstrate that FreqKV performs better than using a simple local window
attention when extending the context window from 4k to 8k.

Moreover, our method achieves an average accuracy of 86.8%, significantly outperforming the KV
compression method SnapKV, which achieves only 49.6% (Figure 10) and fails beyond 4k tokens.

D COMPRESSION OVERHEAD

To quantify the compression overhead, we have measured FLOPs (TFLOPs) of the “Local Atten-
tion”. It shares the same sink size and retaining size as FreqKV. The difference in FLOPs between
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layer 0 layer 4 layer 8 layer 16 layer 31

head 0

head 1

head 2

(a) The average power spectrums of key states.

layer 0 layer 4 layer 8 layer 16 layer 31

head 0

head 1

head 2

(b) The average power spectrums of value states.

Figure 7: The average power spectrums of key states and value states in different heads of Llama-2-
7b.

the two methods shows the overhead of compression. The statistics are given in Table 6. The re-
taining ratio is set to 0.5. The compression times of FreqKV with different context lengths are also
reported in the table. It shows that the computation overhead of our compression process grows less
than 0.5% even with a length of 16K, which could be negligible.
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Figure 8: The Needle-in-a-Haystack results of FreqKV, with the x-axis representing the document
length (“haystack”) ranging from 1K to 8K tokens, and the y-axis showing the position of the “nee-
dle” (a short sentence) within the document.
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Figure 9: The Needle-in-a-Haystack results for keeping sink tokens and the latest tokens in the
cache. The average accuracy is 75.5%
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Figure 10: The Needle-in-a-Haystack results for SnapKV show an average accuracy of 49.6%,
which drops sharply when the context length exceeds LLaMA2’s 4k token window.

Table 6: FLOPs (TFLOPs) with input sequences of different lengths. The difference between Fre-
qKV and “Local Attention” shows the computation overhead of compression.

Models 4K 8K 12K 16K
Full KV 62.93 143.46 OOM OOM
Local Attention 62.93 125.86 188.79 251.72
FreqKV 62.93 125.90 188.85 251.81

Compression Times 0 3 5 7
Compression Overhead 0 (0%) 0.039 (0.031%) 0.064 (0.034%) 0.090 (0.036%)
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