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ABSTRACT

Foundation models, such as Large Language Models (LLMs) or Large Vision
Models (LVMs), have emerged as one of the most powerful tools in the respective
fields. However, unlike text and image data, graph data do not have a definitive
structure, posing great challenges to developing a Graph Foundation Model (GFM).
For example, current attempts at designing general graph models either transform
graph data into a language format for LLM-based prediction or still train a GNN
model with LLM as an assistant. The former can handle unlimited tasks, while
the latter captures graph structure much better—yet, no existing work can achieve
both simultaneously. In this paper, we first identify three key desirable properties
of a GFM: self-supervised pretraining, fluidity in tasks, and graph awareness. To
account for these properties, we extend the conventional language modeling to the
graph domain and propose a novel generative graph language model GOFA. The
model interleaves randomly initialized GNN layers into a frozen pre-trained LLM
so that the semantic and structural modeling abilities are organically combined.
GOFA is pre-trained on newly proposed graph-level next-word prediction, question-
answering, structural understanding, and information retrieval tasks to obtain the
above GFM properties. The pre-trained model is further instruction fine-tuned to
obtain the task-solving ability. Our GOFA model is evaluated on various down-
stream tasks unseen during the pre-training and fine-tuning phases, demonstrating
a strong ability to solve structural and contextual problems in zero-shot scenarios.

1 INTRODUCTION

With the emergence of Large Language Models (LLMs), the field of artificial intelligence is undergo-
ing a profound transformation, shifting from specialized, fragmented models to universal foundation
models. A foundation model is pre-trained on large-scale datasets and can be further adapted to
diverse downstream tasks using fine-tuning (Hu et al., 2022) or in-context learning (Bommasani et al.,
2021; Touvron et al., 2023). Foundation models have been developed in different domains to handle
text (Brown et al., 2020; Touvron et al., 2023), image (Kirillov et al., 2023; Bai et al., 2023), and
even multi-modal data (Zhang et al., 2023c; Li et al., 2023; Alayrac et al., 2022). Because of their
versatility and generalizability, foundation models have become prevalent in these domains.

However, despite preliminary efforts, a foundation model in the graph domain has arguably yet to be
proposed. In the graph domain, data are highly flexible and dynamic. For example, social networks
receive millions of new connections daily (Hardiman & Katzir, 2013), and novel molecules and
protein structures are frequently discovered (Abramson et al., 2024; Gilmer et al., 2017). While
past researchers have proposed specialized models to learn graph data (Ying et al., 2021; Kipf &
Welling, 2017), the models require retraining to accommodate new graphs (Dai et al., 2022; Mo et al.,
2022). Moreover, trained models are usually tied to specific applications and cannot be generalized
to new domains and tasks. It becomes increasingly difficult for models to adjust to the ever-evolving
nature of graph data. Hence, a graph foundation model (GFM) applicable to new domains/tasks
with minimal or no adaptation costs is urgently needed, spurring recent endeavors to study general
graph models. In particular, a strong zero-shot ability is both challenging and fascinating for GFM
researchers.

The success of LLMs inspired a series of preliminary attempts which use LLMs to develop general
graph models. They can be roughly divided into two categories: LLM as a predictor and LLM
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Which type of Rock is commonly 
used for construction and why?

Sedimentary rock. It is easy 
to extract, cut, and shape.

Are there any other types of rocks 
used for construction?

Yes. Igneous rocks like granite 
are used for their durability.

Q A Q A

P

A B
C

B

A C

D P

A

B

C

This is [Node D]. Wikipedia entry: 
quickdraw. A graphics software …D

This is [Node C]. Wikipedia entry: 
system_7. Seventh major release of …A This is [Node A].  Product: Wireless 

Controller for Switch or OLED… 

D This is [Node D]. Product: Amazon 
Fire TV, 4-series 4K UHD smart TV…

Q

A
Q

A

This is [Node B]. Title: Attention is all 
you need. Abstract: The dominant 
sequence transduction models …

Abstract: We present graph attention 
networks (GATs), novel neural network 
architectures that operate on graph …

P Do certain regions or cultures 
have preference of rocks?

Yes, limestone is commonly used in 
UK because it can withstand high 
levels of rainfall and humidity.

P
Compute the shortest path 
between [Node A] and [Node D] 
and generate all shortest paths 
from [Node A] to [Node D].

The shortest path distance is 2. 
Shortest path: [Node A] -> [Node B] 
-> [Node D] .

P

A
TAG 
Raw 
Text

Prompt

Answer

TAG

Task

B

This is [Node A]. Title: Graph Attention 
Networks.

C
This is [Node C]. Title: Adam: A method 
for stochastic optimization. Abstract: 
We introduce Adam, an algorithm for …

Please output the 
content of [Node D] .

Wikipedia entry: system_7. Seventh 
major release of the classic Mac 
OS operating system for Macintosh …

This is [Node A]. Wikipedia entry: unix. 
Unix is a family of multitasking…

This is [Node B]. Product: Nintendo 
Switch with Blue and Red Joy-Con…

A

PD

C B

📄D

No prompt for sentence 
completion task.

Figure 1: Examples of our pre-training tasks.

as an enhancer (Chen et al., 2023). The LLM as a predictor approach transforms graph data
into representations that LLMs can understand and use LLMs to generate predictions (Tang et al.,
2023). However, as suggested by a recent study (Wang et al., 2023), such an approach falls short of
understanding graph structures. This inspired the LLM as an enhancer approach, which adopts
LLM to process and unify diverse graph data and feeds them to a GNN to train general graph
models (Liu et al., 2023a; Huang et al., 2023a). Nevertheless, because GNN outputs fixed-sized
representations/predictions, they can only handle specific tasks such as classification, and cannot
generalize to arbitrary, new tasks due to the lack of generation ability. In summary, the current two
approaches cannot fully utilize structural information and be generative simultaneously. We discuss
the pros and cons of existing approaches in detail in Section 2.

In this paper, we first identify three desirable properties of a graph foundation model (GFM), namely
large-scale self-supervised pre-training, fluidity in tasks, and graph understanding. To achieve the
first property, we propose a generic graph self-supervised learning problem similar to the next-
token prediction problem in LLMs, allowing label-agnostic and continual training on highly diverse
graph data. We then propose a generative model termed Generative One-For-All (GOFA) that
interleaves GNN layers into an LLM to achieve the second and third properties. Such a novel design
systematically integrates GNN into an LLM, granting the LLM graph structural learning ability
while keeping LLM’s original free-form text generation ability. Meanwhile, this design allows the
pipeline of the original LLM to remain intact, giving GOFA a close-to-LLM level of task fluidity. We
pre-train the model with large-scale real-world graph data, Question-Answer (QA) chain data adopted
from the NLP domain, and graph structural data to empower the model with the aforementioned
foundational abilities in the graph domain (Examples in Figure 1). After pre-training, we further
instruction fine-tune the model on a small amount of data (relative to the pre-training data) to make it
understand task formats. The fine-tuned model is finally evaluated on various downstream datasets
unseen during pre-training and fine-tuning. GOFA achieved impressive results on the zero-shot
scenario, which demonstrates the strong potential of GOFA to serve as a graph foundation model.

2 A DESIRED FOUNDATION MODEL FOR GRAPH

In this section, we elaborate on three crucial properties a true graph foundation model should possess
to motivate our GOFA model design. We note that many contemporary works (partly) propose similar
ideas to ours and thus we do not claim the credit. We kindly refer readers to the latest surveys (Liu
et al., 2023b; Jin et al., 2023; Zhang et al., 2023d) for more discussions on GFMs.

Large-Scale Self-Supervised Pre-training: One fundamental design of LLM is that it unifies all
NLP tasks into a single next-token-prediction paradigm, which enables self-supervised pre-training
on a large corpus collected from different sources. For pre-training graph models, while numerous
efforts have been made from both the LLM as a predictor and LLM as an enhancer approaches,
these attempts usually require the learning target to be labeled (Liu et al., 2023a; Chen et al., 2023).
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However, a graph foundation model should have no constraint on the input graph (has labels or not)
and can learn cross-domain knowledge from large-scale graph data in a self-supervised fashion.

Fluidity in Tasks: A graph foundation model should also possess the same level of versatility and
fluidity in handling different tasks as an LLM. Specifically, such ability can be broken down into
three levels: (a) The graph foundation model can naturally respond appropriately to different graph
tasks based on user instructions without requiring task-specific adjustment (e.g., the same model
performs classification and question-answering tasks without any modification.) (b) With appropriate
instruction-tuning, the model should have in-context learning ability on unseen tasks (e.g., a model
tuned on citation network also performs well on knowledge graphs with proper instructions). (c) Users
should be able to define new, previously unseen tasks by modifying the graph structure and features
in a way that aligns with the universal input representation of the model. They can continuously train
the model on new data without special adaptation. Existing approaches that use GNN models as the
predictors are usually either restricted in the output format (Liu et al., 2023a; Xia et al., 2024; He
et al., 2024a) or need additional fine-tuning on the task head (Sun et al., 2023; Wang et al., 2022).
Consequently, despite having better structural modeling ability, such models cannot accommodate
task changes or deal with novel tasks, e.g., shifting from a classification task to a question-answering
task that requires outputting all shortest paths between two nodes.

Graph Understanding: Since the LLM as a predictor approach uses a generative LLM to take
text input and produce text output, it naturally has the fluidity to accept varied prompts to tackle
different tasks. However, such an approach processes the structural information poorly (Wang et al.,
2023), making the utility of these models limited on many graph tasks. More importantly, even
though some recent variants can use auxiliary graph models (such as GNNs) to incorporate structural
information (Tang et al., 2023; He & Hooi, 2024; Zhang et al., 2024), the graph models are frozen
and not responsive to different prompts, and the output from the graph models may not be the most
relevant to the input prompt. On the contrary, a graph foundation model should account for the
unique structural information of graphs such as node degrees, shortest paths, common neighbors,
etc., and generate graph representations dependent on the input prompt. It should not only have
LLM’s prompt learning capability but also learn graph structure and semantic information jointly.

3 METHOD

In this section, we first propose a generative modeling framework for graphs, serving as the graph
counterpart of traditional language modeling. Next, we introduce a novel GNN-LLM architecture for
the proposed graph generative modeling problem. Finally, we describe the unified pre-training tasks
to train GOFA towards the proposed GFM properties.

3.1 GENERATIVE MODELING FOR GRAPH

Unifed task formats. A generative model usually takes existing contexts, such as user prompts
and passages, as input to generate conditional output related to the contexts, such as answers and
completed sentences. Defining unified input and output formats for tasks in language applications
is easy, as they are purely text-based. Further, because both the pre-training and downstream tasks
are constructed in the same format (i.e., next-token-prediction), the downstream tasks conveniently
adapt the knowledge from pre-training tasks, resulting in surprising capabilities, such as zero-shot
learning. However, graph data from different domains vary significantly by input feature (e.g., nodes
in a citation network have completely different vector representations as nodes in a knowledge graph)
and output target, preventing direct knowledge transfer between tasks. Hence, the first challenge is
to define a unified format for graph tasks, such that the model can do large-scale self-supervised
pre-training on arbitrary graphs and transfer to downstream tasks seamlessly.

To unify graph task input, we follow the previous work OFA (Liu et al., 2023a) and extend the
definition of Text-Attribute Graph (TAG) beyond graphs with text features such as citation and product
networks. In fact, any node and edge features can be represented by texts. For example, textual
attributes of metabolites and metabolic reactions replace the node and edge features in metabolic
networks. Similarly, in airline networks, airport and flight route details can be converted into textual
descriptions for nodes and edges. Non-textural features, like numerical data, can also be transformed
into text strings, as in LLMs. Even for graphs without any features, we can still attach sentences like
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"The degree of this node is 3" to nodes. Formally, a TAG is a graph G = {V,E,XV , XE} where
V and E are the sets of nodes and edges. Each node v ∈ V (edge e ∈ E) corresponds to a text
description x(v) ∈ XV (x(e) ∈ XE). Such a format encodes almost all existing graph data and
serves well as a general input representation.

For self-supervised language modeling, the generated output essentially completes the input sentence.
Such a task requires the model to have a deep semantic and logical understanding of the provided
contexts, which is crucial for downstream applications. Similarly, in graph modeling, we aim to
achieve the same level of understanding through graph completion tasks. Given a TAG, the output
should complete the graph conditioned on its semantic and structural information. We choose to
use natural language as the most tangible output format to complete a TAG. Succinctly, all natural
language tasks can be modeled as sentence completion, and similarly, we aim to model all graph
tasks with graph completion.

Generative Graph Modeling. We then formally define the generative graph modeling framework
for graph completion. This framework supports various graph-related tasks, including classification
and free-form question answering. An LLM starts generating only from the end of the input sentence.
However, in a TAG, every end of a sentence on a node is a potential generation starting point, but
users might only be interested in generating output for specific nodes. To accommodate this, we
introduce Nodes of Generation (NOG), allowing users to specify starting points for generation. The
modeling task is to take a TAG as input and complete the TAG logically and sensibly by completing
the sentences on the potentially user-specified nodes.

We define graph generative modeling as the likelihood of the text y associated with the NOG v:

p(y|v,G) =

L∏
l=1

p(yl|y<l, v,G), (1)

NOG text:

v

Jason has 4 apples.

Kim has 3 apples.

Alfred has 5 bananas.

In my neighbor, bananas are …

more popular than apples.
Target:

Sentence Completion

Jason has 3 apples.

Alfred has 4 bananas.

Kim has 5 apples.

NOG text:
In my neighbor, bananas are …

more popular than apples.

Sentence Completion

Target:

Figure 2: Task examples in TAG. Sen-
tence completion/Next-word prediction.
Orange node v represents NOG.

where yl is the l-th token of y, and y<l is its preceding
tokens. The NOG v is a completion target node with initial
corresponding text x(v), and x(v) can be empty. G con-
tains structural and textual information of neighbor nodes
to help the model generate y. Under this framework, we
can design a range of self-supervised learning tasks. For
example, the graph completion task is shown on Figure 2,
where the text on the NOG v is incomplete, and the goal
is to complete the sentence on it using the existing text
and the neighbor information. This task is covered by
Equation (1), which encourages the model to have a strong
graph structure and feature comprehension ability. Thus,
the importance of the framework is that a model properly
solves such modeling problems can possess the three prop-
erties of GFM discussed in Section 2, thus can benefit
diverse downstream tasks, even in the zero-shot fashion.
Section F.2 discusses how the proposed framework applies
to various tasks related to the three properties.

3.2 GOFA : GENERATIVE ONE-FOR-ALL MODEL

To solve the generative graph modeling problem proposed in Equation (1), we design the GOFA
architecture shown in Figure 3. Overall, GOFA consists of a graph language encoder and an LLM
decoder. The graph language encoder interleaves GNN layers with LLM compressor layers to learn
node representations containing joint structural and semantic information. The LLM decoder is then
used to generate texts from the NOG representation. The LLM compressor and decoders are all
pre-trained decoder-only transformers. We describe each component in detail as follows.

LLM compressor: Because GNNs require node and edge representations to have the same input
dimension, many previous works propose to pool all tokens’ output embeddings from the LLM as
the node and edge vector representations and feed them to a GNN (Liu et al., 2023a; Huang et al.,
2023a; He & Hooi, 2024). While this approach shows effectiveness in tasks of fixed form, such as
classification and regression, it is insufficient in more complex tasks such as generation, as 1) the
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in citation graph. 
Title: LLaMA: Open and 
Efficient Foundation 
Language Models. GNN 

Layer 
L

❄ ! !

Graph Language EncoderTAG Raw Text

We introduce LLaMA, a   collection  of   foundation language

LLM Decoder

Text Tokens

Memory Tokens

Completion Target:
Abstract: We introduce 
LLaMA, a collection of 
foundation language 
models ranging from 7B to 
65B parameters.

Teacher Forcing

Memory Embedding

Edge
V

Cross Attention

+

Feed-forw
ard

Tanh

+TanhK

Q!!

!"
Token-level Message Passing

Node 

LLM
Compressor

Layer1

❄

LLM
Compressor

Layer k

❄

LLM
Compressor

Layer L

We introduce LLaMA, a collection of   foundation language models

Figure 3: GOFA Architecture. Text tokens of TAG’s node/edges are concatenated with memory
tokens to be input to Graph Language Encoder. GNN layers are interleaved into LLM Compressor
layers, where memory embeddings from LLM Compressor Layer are used as node/edge features for
token-level GNN message passing. Memory embedding will be used for teacher-forcing training.

pooling process inevitably loses semantic information, 2) standard LLMs are not trained in a way
such that the pooled output embedding is a summarization of the input sentence, and 3) the pooled
representation space is no longer compatible with the space of the downstream LLM decoder. Hence,
we adopt a pre-trained sentence compressor (Ge et al., 2023) that preserves as much information as
possible from the original sentence in fixed-size multi-token embeddings. The core idea is to compress
a sentence into K embeddings instead of one embedding. Specifically, the sentence compressor
has the same architecture as a decoder-only LLM, but the sentence to be compressed {q(xi)}li=1 is
appended by a sequence of K memory tokens {q(mj)}Kj=1, and the t-th layer of the LLM is:

{Qt+1
x , Qt+1

m,x} ={qt+1(x1), ..., q
t+1(xl), q

t+1(m1), ..., q
t+1(mK)}

=LLM t({qt(x1), ..., q
t(xl), h

t(m1), ..., h
t(mK)}) = LLM t({Qt

x, H
t
x}).

(2)

We use Qt
x and Qt

m,x to represent the t-th LLM layer outputs corresponding to actual text tokens in
sentence x and the K memory tokens appended at the end of text tokens, respectively. We use Ht

x to
represent the t-th GNN layer output, which will be explained later. In Equation (2), the text tokens
(Qt

x) and memory tokens (Ht
x, processed by the previous GNN layer) are concatenated as a single

sequence of embeddings, which are fed to the current LLM layer. Because the last K tokens attend to
all previous tokens, they can compress all information in the sentence into the output embeddings of
the K tokens. This compressor architecture is inspired by ICAE (Ge et al., 2023). The compression
ability is obtained through auto-encoder-style fine-tuning, as discussed in Appendix A.1.

Token-level GNN: Conventional GNNs take one embedding vector for each node/edge. However,
now each node/edge sentence is compressed into K memory token embeddings Qm,x. Hence, we
propose a simple extension of GNNs to the token level. For node v ∈ V , the t-th GNN layer is

Ht
x(v)[k] = GNN(Qt

m,x(v)[k], {(Q
t
m,x(u)[k], Q

t
m,x(euv)

[k])|u ∈ N (v)}), k = 1...K. (3)

In the GNN layer, tokens at different indices do not communicate. If we directly stack these GNN
layers, they degenerate into multiple isolated GNNs for each token. Nevertheless, because we
interleave the GNN layers into the LLM layers, as shown in Figure 3, the isolated tokens exchange
information in the subsequent self-attention layers of the LLM. This approach significantly reduces
memory usage because we do not allow cross-token attention between different nodes. While edge
memory tokens Qt

m,x(e) are passed into GNN to assist message passing, their representations are not
updated in the GNN layer but directly passed to the next LLM layer, hence Ht

x(e) = Qt
m,x(e). In
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GOFA, we use a modified Transformer Convolutional GNN (Shi et al., 2021) to be consistent with
the transformer architecture of LLM (see Appendix A.3 for details).

We insert one GNN layer between two transformer layers, while the first and the last layer are always
transformer layers. In GOFA, we only insert GNN between the last few transformer layers, but
this can be flexible depending on the computational resources. Following previous practice, we
incorporate feed-forward (FF) layers into the GNN to increase expressivity and residual connections
to stabilize training. Moreover, GOFA should maintain the functions of an LLM on plain texts, hence,
inspired by the gating mechanism in earlier works (Hochreiter & Schmidhuber, 1997; Alayrac et al.,
2022), we apply a tanh gate, initialized at 0, to the GNN and FF layer outputs so that the initial model
ignores the information from GNN layers and is equivalent to the pre-trained LLM. We introduce
weight decay in the gating module to promote gate value staying in large non-zero values only when
graph information helps generate more accurate final text outputs.

LLM decoder: After applying the model to the textual graph, the memory tokens Qm,x of every node
contain information about the text on the node, the surrounding node text, and the graph structure
due to the message-passing process in the GNN layers. Then, for the NOG v and its corresponding
target text y, we insert Qm,x at the front of the token embeddings of the target text to generate and
use teacher-forcing to maximize the standard log-likelihood of y using the next-token-prediction
objective. In this way, we have modeled the problem in Equation (1). The compressor, decoder,
and GNN parameters can be jointly or separately optimized, potentially with PEFT methods like
LoRA (Hu et al., 2022). In this paper, we use ICAE (Ge et al., 2023) as our backbone LLM, but the
GOFA architecture is not tied to any specific LLM. More details are discussed in Appendix A.2.

Discussion. Our proposed graph language encoder has several advantages over existing methods.
Suppose a graph has V nodes, E edges, and the average number of tokens for all nodes is k. The
complexity of one GOFA layer is O(V k2), as the self-attention only happens within each node. Note
that we have omitted the extra computation complexity of message-passing because it only happens
at individual indices with O(E) ≪ O(V k2) in practical graphs. Instead, if we concatenate texts
in all nodes and input them to a regular LLM, the complexity of one layer is O((V k)2), which is
significantly larger than GOFA. Further, introducing GNN layers in LLMs is theoretically more
powerful than pure LLMs for modeling graph structures, which is discussed in Appendix E.2.

3.3 UNIFIED TASK REPRESENTATION IN GOFA

The formulation in Equation (1) provides a natural way for users to query the graph by selecting a
NOG. Users can combine NOG with graph prompting techniques on subgraphs to solve tasks unique
to the graph domain, such as node-, link-, and graph-level tasks. Following OFA (Liu et al., 2023a),
we convert all tasks into tasks on k-hop rooted subgraphs extracted around the target nodes. For
node-level tasks, the target node is a single node in the graph. For link-level tasks, the target nodes
are the node pair. If the target node is not specified (e.g., the task is a graph task), we set the default
target nodes to all nodes in the graph. We connect a prompt node with the user query as NOG to all
target nodes. GOFA completes the prompted input TAG by answering the query on the NOG, which
still aligns with the proposed generative modeling framework. This design has several advantages: (1)
All tasks are represented by a NOG, so the distribution of all tasks can be unified into a single space,
helping the model generalize to unseen tasks from learned task representations; (2) The text feature
for the prompt node describes the task details. Connecting the prompt node to target nodes enables
the prompt node to query the most important knowledge from the input graph through attention. This
ensures the output embedding for NOG is conditionally learned from the GNN process subject to the
different prompts. Conversely, most of the previous works (He & Hooi, 2024; Tang et al., 2023; 2024;
Zhang et al., 2024) only computed a fixed embedding for each node before any prompt is introduced.

3.4 LARGE-SCALE PRE-TRAINING

As discussed in Section 2 and Section 3.1, we design self-supervised pre-training tasks based on the
three GFM properties to train GOFA. The training datasets include MAG240M (Hu et al., 2021a) to
upscale the model’s text understanding ability, Pubmed and Arxiv (Hu et al., 2021b) for academic
knowledge, Wikikg90mv2 (Hu et al., 2021a) and WikiGraph (proposed by us) for semantic diversity,
and Ultrachat200k (Ding et al., 2023) dataset for question-answering ability. Details about the
datasets can be found in Appendix C. Each node is assigned a unique ID (e.g., [Node A]) to enable
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node querying in the graph. We design four pre-training tasks as shown in Figure 1. We describe
the rationale of each task below and leave some implementation details and additional discussion in
Appendix F and Appendix E.3.

Sentence Completion Task. This task aims for large-scale pre-training (GFM property one) by
training GOFA to predict the remaining text in a node based on both the existing node text and
the surrounding graph information. Such a task can be applied to any TAG without labeling, thus
facilitating large-scale pre-training for GOFA to acquire diverse knowledge.

Structural Understanding Task. This task aims to provide structural modeling ability for GOFA
(GFM property three). The structural task connects NOG randomly selected node pairs to generate
the actual shortest path or common neighbors between them. Through these two tasks, the model is
expected to gain the ability to identify basic graph structures fundamental for graph-related problems.

Question Answering Task. This task aims to ensure fluidity in generation for GOFA (GFM property
two). Unlike language corpus, which naturally contains many question-and-answer (QA) pairs, graph
data usually only contain objective descriptions of entities. Hence, we convert natural language
Question-Answer sequences into chain graphs and connect a NOG with a question to the chain graph
for open-ended answer generation. This essential task enables GOFA to be responsive to arbitrary
downstream applications expressed in free-form text questions.

Information Retrieval Task. In most downstream tasks, GOFA links a prompt node to target nodes
in the graph to address related problems. To facilitate effective information extraction, we design
an information retrieval task where a NOG queries a target node using its node ID. The model
must retrieve and isolate information specific to the queried node from the remaining target nodes,
encouraging a message-passing process conditioned on the input, as discussed in Section 3.2.

4 RELATED WORK

Here we mainly discuss the two tracks of general graph models, and leave discussion about graph
prompt learning and graph neural networks to Appendix D.

LLMs as enhancers: One direction uses LLMs to convert the text features of graphs to unified
representations (Liu et al., 2023a; Chen et al., 2023; Li et al., 2024; He et al., 2024a; Plenz & Frank,
2024) for downstream graph models to distinguish and transfer knowledge between different domains.
For example, OFA (Liu et al., 2023a) uses LLM to unify the input features in different datasets and
transforms multiple types of graph classification tasks into a unified binary classification format.
TAPE (He et al., 2024a) utilizes LLM to generate question answers and explanations as enhanced
node features. Such approaches have good structural modeling ability, but they usually cannot
generate free-form output to handle arbitrary tasks.

LLMs as predictors: Another line of research proposes using LLMs as predictors and aligning
graph representation with LLM inputs. Preliminary attempts flatten graphs into text representations
and feed them into LLM (Chen et al., 2023; Zhao et al., 2023b; Guo et al., 2023; Zhao et al., 2023a;
Qian et al., 2023). These approaches can benefit from LLM for task fluidity but fail to model
structural information unique to graph data properly (Zhao et al., 2023b; Mao et al., 2024; Ye et al.,
2023). Realizing this problem, follow-up work extends methods in vision-language domain (Alayrac
et al., 2022; Li et al., 2023) to the graph domain and train adapters to link graph model outputs
to LLM (Tang et al., 2023; 2024; Huang et al., 2024; Zhang et al., 2024; He & Hooi, 2024). For
example, GraphGPT (Tang et al., 2023) first implements a text-structure alignment between graph
representation and text embedding to pretrain a GNN. LLaGA (Chen et al., 2024) creatively uses
a template to represent a subgraph with pooled node embeddings for LLM input. Inspired by
Q-former (Li et al., 2023), GraphTranslator (Zhang et al., 2024) aligns node and text tokens from pre-
trained GNN and LLM. UniGraph (He & Hooi, 2024) pretrains GNN using masked word prediction
and then tuning a projector to map graph embedding to language space and enable zero-shot learning.
However, the GNN and LLM parts of these methods are usually detached, meaning the prompt
information can not attend to the message-passing process.
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Table 2: Zero-shot experiment results with instruction tuning (Accuracy).
Task Cora-Node WikiCS Products ExplaGraphs Cora-Link

Way 7 2 10 5 47 10 5 2 2

LLama2-7B 47.92 73.45 40.10 58.77 27.65 58.71 64.33 57.76 48.15
Mistral-7B 60.54 88.39 63.63 71.90 43.99 70.16 74.94 68.77 49.43

OFA-Llama2 28.65 56.92 21.20 35.15 19.37 30.43 39.31 51.36 52.22
GraphGPT 44.65 - - - 18.84 - - - 50.74
UniGraph 69.53 89.74 43.45 60.23 38.45 66.07 75.73 - -

ZeroG 64.21 87.83 31.26 48.25 31.24 51.24 71.29 - -
LLaGA 51.85 62.73 - - 23.10 34.15 39.72 - 88.09

GOFA-T 70.81 85.73 71.17 80.93 54.60 79.33 87.13 79.49 85.10
GOFA-F 69.41 87.52 68.84 80.62 56.13 80.03 88.34 71.34 86.31

5 EXPERIMENT

This section evaluates the proposed methods by answering the following four questions: Q1: Are the
pre-training tasks in GOFA effective for graph-language modeling and structure understanding? Q2:
Does the pre-trained GOFA help with critical general graph model application, zero-shot learning?
Q3: Is using GOFA more advantageous than LLMs in graph tasks? Q4: Does GOFA have the fluidity
to handle open-ended graph-related tasks? Additionally, we also include supervised experiments in
Appendix F.5.

5.1 GOFA PRE-TRAINING

Table 1: Evaluation for pre-
trained GOFA . (RMSE for SPD
and CN)

Perplexity ↓ SPD ↓ CN ↓
Mistral-7B 30.12 1.254 1.035

GOFA-SN 26.20 - -
GOFA 21.34 0.634 0.326

To answer Q1, we pre-train the GOFA model using ICAE
models on Mistral-7B (Jiang et al., 2023), optimizing the ob-
jective in Equation (1) using the proposed tasks. The training
details can be found in Appendix F.3. After training, we eval-
uate the perplexity of both GOFA and base LLM on Cora,
Product, and Wikics datasets (all three are not included in the
pre-training). We report the perplexity in Table 1. Note that
during pre-training, we only update the weight of the GNN
layers, and GOFA ’s lower perplexity shows that the structural
and semantic information in the node’s neighbor can effectively help complete the sentence with
more relevance than the original LLM. Further, to validate that training of GOFA will not affect the
original LLMs’ ability, we input GOFA with single node graphs without any connections (denoted
as GOFA-SN) to evaluate the perplexity, as shown in Table 1. We can see that without connection
information around the center node, generation on a single node graph remains comparable to LLM
and even better due to the pre-training process, showing that GOFA training does not destroy the
desirable property of a pre-trained LLM. Besides sentence completion, another important GOFA
pre-training objective is the structure learning ability. We report shortest path distance and common
neighbor count prediction results in Table 1, compared with LLM models whose inputs are textualized
graphs, with descriptions of edge connections. The datasets we used are Cora and Product. We see a
significant performance improvement of GOFA over base LLM, showing that a difficult graph task
for LLM can be well solved by the GNN layers with better structure modeling ability.

5.2 ZERO-SHOT LEARNING WITH GOFA

To answer Q2, we performed zero-shot experiments on various graph tasks. Despite using QA-chain
data in the pre-training stage, the graph data does not include knowledge about task formats like
classification and does not output exact matches to the answers. Hence, we first instruction-tuned
the pre-trained GOFA in Section 5.1 on a small amount of data. We report the zero-shot results
of two GOFA instruction tuning settings named GOFA-T and GOFA-F, as shown in Table 2 and
Table 3. GOFA-T includes node and link classification tasks from Arxiv and Pubmed and GOFA-F
addtionally adds MAG240M and Wiki90mv2 datasets. The instruction-tuning details can be found in
Appendix F.4. Note that the zero-shot datasets are unseen during both pre-training and instruction

8
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Table 3: Zero-shot experiment re-
sults with instruction tuning on
FB15K237 and Scene Graphs.

Task FB15K237 SceneGraphs
Format 10-Way QA

Llama2-7B 48.32 38.62
Mistral-7B 62.48 45.95
GOFA-T 73.59 34.06
GOFA-F 80.69 31.36
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Figure 4: Performance vs
pre-training sample size.
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Figure 5: Pre-training Tasks
Ablation Study.

Table 4: Comparison between GOFA and LLM with the same input.

Task ExplaGraphs Time WikiCS Time Cora-Link Time FB15k237 Time
Metric Acc ↑ sec/sample ↓ Acc ↑ sec/sample ↓ Acc ↑ sec/sample ↓ Acc ↑ sec/sample ↓

LLM-N 74.13 1.50 OOM OOM 50.36 3.84 51.25 3.92
GOFA-F 79.49 0.48 71.17 2.43 85.10 1.67 73.49 3.37

Improvement 7.23% 68.00% NA NA 68.98% 56.51% 43.40% 14.03%

finetuning. The goal of instruction fine-tuning is not to let the model learn particular knowledge from
these datasets but to make the model understand the task format described in Appendix F.4.

While the instruction-tuning dataset only covers the relatively small spectrum of the graph datasets,
we observe that GOFA achieves very non-trivial performance on all node-level (Cora-Node, WikiCS,
Products), link-level (FB15K237, Cora-Link), and graph-level (ExplaGraphs, SceneGraphs) tasks.
GOFA also generalizes to different ways and even question-answering (SceneGraphs) tasks, showing
its desirable fluidity. GOFA outperforms LLM and graph foundation model baselines on most
datasets and exceeds best baselines by a large margin (> 10%) on WikiCS, Products, FB15K237 and
ExplaGraphs, showing GOFA’s ability to combine the advantage of both LLM and graph models.
GOFA not only achieves remarkable results on the knowledge graph and academic graph, which
are proximal to the trained data but also excels in Products and ExplaGraphs whose distribution
shifts significantly from training data, which further highlights GOFA ’s substantial generalizability.
Meanwhile, we observe that GOFA is only achieving comparable performance to LLM on the
SceneGraph dataset. We suspect that the instruct-tuning data contains information-dense texts,
reducing the model’s ability on common sense questions that this dataset requires. In the future, we
plan to diversify instruction-tuning datasets with common sense knowledge to enhance such ability.

We further conducted the same experiments on intermediate pre-training checkpoints, and show
results in Figure 4. We observe that as the model witnesses more pre-training samples/tokens, the
downstream task performance also increases significantly, confirming the importance of large-scale
pre-training on graph data. The performance continues to improve, meaning that the model can
potentially scale to higher capability with more samples; we leave this to future work. In Figure 5,
we plot the instruction-tuning performance when we remove the Wikipedia datasets and information
retrieval task (w/o R+W), only remove the retrieval task, (w/o R), and full tasks. We can see that
Wikipedia datasets improve the model performance of all the datasets for the diverse corpus it
introduced. The retrieval tasks particularly improve the knowledge graph performance due to the
improved ability to retrieve key correlations between target entities. These show the necessity and
effectiveness of the overall pre-training task selection and design.

5.3 COMPARING GOFA WITH LLMS

Answering Q3 is critical to understanding the necessity of the GNN layers and the effectiveness of
GOFA as a general graph model. We compare GOFA to LLM whose textual prompt contains the
same information as the input graph to GOFA. Specifically, for a GOFA input graph, we concatenate
all node texts as the prompt and append the connection information to it, as in "Node A connects
to Node B". The text is then combined with task and question descriptions as input to an LLM for
classification tasks. Approaches similar to this are widely adopted and acknowledged (Chen et al.,

9
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Given these connected 
papers, please creatively think 
about some research ideas.

Please summarize the core 
concept of these papers.

Please output the shortest path 
distance between [NODE.F] and 
[NODE.H] and all shortest paths.

P

P

P

P

vP

F

H

P

Answer: 
Based on the papers you have provided, here are some potential research ideas: 
1. Adversarial attacks on generative models: The paper "Adversarial Examples in 
the Physical World" demonstrates that adversarial examples can be crafted in 
real-world settings. We could extend it to GANs to create adversarial examples 
capable of deceiving these models…  2. Generative models for drug discovery ...

Answer: 
The core concept of these papers is the application of GANs to generate realistic 
images. The first paper introduces a new loss function for GANs that incentivizes 
the generator to create images that closely resemble real ones, rather than 
merely aligning with those judged as similar by the discriminator. The second 
paper...

Answer:

The shortest path distance is 3. 
The shortest paths between [NODE.F] and [NODE.H] are: 
[NODE.F] → [NODE.X] → [NODE.K] → [NODE.H] 
and [NODE.F] → [NODE.Z] → [NODE.S] → [NODE.H].

Input Graph GOFA Generated Answer

Figure 6: GOFA diverse responses to open-ended questions.

2023; Fatemi et al.). We present both the classification performance and per sample inference time in
Table 4 and denote the LLM method as LLM-N. We observe impressive performance improvement
of GOFA on all datasets, even when the LLM is prompted with the same information, showing that
GOFA, with the help of the GNN and interleaving design, utilizes the graph information much more
effectively. Moreover, we also observe a fundamental reduction in inference costs, confirming our
analysis in Section 3.2 that, with the same input, GOFA is more efficient than LLMs. Note that when
the input size is large, such as in WikiCS, LLM struggles with high memory consumption of the long
sequence, whereas the GOFA avoids that by leveraging the sparsity of graph data and using edge
information to compute the most important attention information.

5.4 GOFA RESPONSES ON DIVERSE TASKS

Finally, we answer Q4 by providing generation examples of GOFA in Figure 6, where we prompt
the same citation graph differently and achieved corresponding and high-quality responses. The top
and middle examples have the same connection for their NOGs (both connected to the same five
nodes), but when we change the prompt text on the NOGs, the generated texts also adjust accordingly,
utilizing the neighbor node information, validating that the message-passing is conditioned on the
prompt. As in the bottom example, we can also prompt the graph differently by connecting the NOG
to two target nodes and querying about the shortest path distance. In this case, the model successfully
generates actual paths between the two nodes, which is an ability not seen in traditional graph models
that can only output numerical predictions about the path length. These examples demonstrate
GOFA’s outstanding ability to answer open-ended questions. More examples are provided in B.2.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

We introduce GOFA, a generative One-for-All graph foundation model. GOFA is pre-trained
under graph completion framework to enable large-scale self-supervised learning. By integrating
GNN layers with LLM layers, GOFA combines the generative capabilities of LLMs for free-form
output with the structural learning strengths of GNNs for understanding complex graph connections.
Our experiments demonstrate that GOFA, when fine-tuned with a small number of data, achieves
impressive zero-shot performance, highlighting its potential as a robust graph foundation model.
One limitation of our work is the extensive training time required due to the use of abundant graph
data. Additionally, we employ a frozen LLM compressor in our architecture; hence, the compression
capability is not dynamically integrated with the graph data, potentially impacting the efficiency and
adaptability of the model. We believe finetuning a graph language compressor can further enhance
the performance of GOFA and will explore it in the future.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 IN-CONTEXT AUTOENCODER (ICAE)

This section briefly introduces ICAE and how it helps build the GOFA model; please refer to ICAE
paper (Ge et al., 2023) for the specifics of the model. ICAE contains two decoder-only LLMs. One
serves as a language compressor that compresses sentences into a fixed-length sequence of vectors,
and the other serves as a language decoder that decodes or queries into the compressed sentence
representations. Specifically, during training, an input token sequence x = {x1, ..., xl} is appended
by a K memory tokens {m1, ...,mk} with trainable embeddings. The concatenated sequence is fed
to the LLM compressor with a LoRA adapter (Hu et al., 2022).

{h(x1), ..., h(xl), h(m1), ..., h(mK)} = LLMcomp({e(x1), ..., e(xl), e(m1), ..., e(mK)}), (4)

where e(·) and h(·) are the token embeddings and LLM outputs. Then, the decoder LLM only attends
to the memory token outputs and tries to decode the original sentence from the memory tokens.

{l(m1), ..., l(mK), l(x1), ..., l(xl)} = LLMdec({h(m1), ..., h(mK), e(x1), ..., e(xl)}),
min
Θcomp

CrossEntropy({l(mK), l(x1), ..., l(xl−1)}, {x1, ..., xl}). (5)

The ICAE model is also trained on QA and Language modeling tasks to have more diverse embed-
dings.

By training this auto-encoder objective on a large-scale, the compressor model learns to compress
all information about a sentence to the memory token outputs like in a conventional auto-encoder
model. In Table 5, we provide a few examples of the comparison between the original text and the
text decoded from the compressed memory tokens by ICAE’s decoder. Because the compressed
representation contains as much information as possible, GNN can pass messages between nodes
with minimal information loss.

Table 5: Comparison between original texts and decoded text from the compressed representation.

Original Text Decoded Text

Actress Halle Berry has been sharing a number
of stunning photos from the time she has spent
in Morocco and she just posted a new one to her
Instagram page that fans will not want to miss.

Halle Berry has been sharing a number of stun-
ning photos from the time she has spent in Mo-
rocco and just posted a new one on her Instagram
page that fans won’t want to miss.

Utah avoided the turnover bug on Saturday for the
first time since its season opener. In addition, the
running game was clicking and the defense was
dominant as the Utes snapped a two-game win-
ning streak on the road, beating Pittsburgh 26-14.
Five keys to Utah’s victory: 1. Utah running back
John White IV: Running strong and with purpose
from the beginning, White was a big reason why
the Utes were within striking distance at halftime.
White, who took a couple pops that dislodged his
helmet and caused a cut below his ear, seemed to
get stronger as the game wore on. He finished the
afternoon with 171 yards on 36 carries.

Utah avoided the turnover bug on Saturday for the
first time since its season opener. In addition, the
running game was clicking and the defense was
dominant as the Utes snapped a two-game win-
ning streak on the road, beating Pittsburgh 26-14.
Five keys to Utah’s victory: 1. 2. 3. 4. 5. Utah
running back John John White IV IV ran strong
and with purpose from the beginning, being a big
reason why the Utes were within striking distance
at halftime. He took a couple of shots that dis-
lodged his helmet and caused a cut below his ear,
but seemed to get stronger as the game went on.
He finished the afternoon with 171 yards on 36
carries.

A.2 LLM CHOICES OF GOFA

Because ICAE preserves as much information in a sentence as possible, we can use it in the GOFA
model to comprehensively pass information between sentences, as shown in Section 3.2. However,
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the GOFA model is not limited to ICAE. Users can first train an ICAE-like objective on any existing
LLM and apply the GOFA model to the trained LLM. Or, users can apply the GOFA directly to
a pre-trained LLM and train the GOFA without the auto-encoder training. Note that the ICAE
architecture has a function similar to an encoder-decoder LLM. We do not use an off-the-shelve
encoder-decoder LLM because its encoder output is still subject to the sentence length, which does
not fit GNN’s need for fixed-sized input.

The design of GOFA can be extended beyond a compressor-decoder architecture. For example, we
can have a decoder-only GOFA whose LLM layer is,

{Qt+1
x , Qt+1

m,x, Q
t+1
y } = LLM t({Qt

x, H
t
x, Q

t
y}), (6)

where the GNN is still applied on K memory tokens inserted between the node text x and target
text y. This allows the target text to attend to the node text, which may improve the performance of
GOFA. However, this formulation forces every node to have a target text, which is usually not what
users desire and poses extra computation costs. We will explore this architecture in our future work.

A.3 TRANSFORMER CONVOLUTIONAL GNN

As mentioned in Section 3.2, we customize a Transformer Convolutional GNN(TransConv) (Shi
et al., 2021) as the GNN used in Equation 3. Since GNN layers operate on token representations and
tokens at different indices do not communicate, we describe the GNN at one index for simplicity.
The t-th GNN layer on node i and its neighbors N (i) is:

ht+1(i) = Wo(
∑

j∈N (i)

αi,j(Wv,nodeh
t(j) +Wv,edgeh(ei,j))),

αi,j = Softmax(
Wqh

t(i) ∗ (Wk,nodeh
t(j) +Wk,edgeh(ei,j))√
d

),

(7)

h(·) represents input node and edge features. W represents query (q), key (k), value (v), output (o) lin-
ear projection for nodes and edges. The formulation closely follows the transformer design (Vaswani
et al., 2017) and its GNN adaptation (Shi et al., 2021). This formulation does not aggregate the last
layer embedding ht(i) into the next layer, because we already add residual to maintain the same
effect. We use pre-layer normalization following Llama (Touvron et al., 2023).

B ADDITIONAL EXPERIMENTS

B.1 SUPERVISED EXPERIMENT RESULTS

In this section, we conduct supervised learning experiment with the pre-trained GOFA . In the
supervised experiment, GOFA ’s prompt does not include class optional. We show the supervised
results in Table 6. Specifically, we compare the result of GOFA with the following baselines: 1.
basic GNNs, which are trained individually on each dataset, including GCN (Kipf & Welling, 2017)
and GAT (Veličković et al., 2018). 2. The contrastive learning methods, including DGI (Veličković
et al., 2018) and BGRL (Thakoor et al., 2021). For these methods, we directly report the best
result from (He & Hooi, 2024). 3. Graph foundation model, including OFA (Liu et al., 2023a)
and UniGraph (He & Hooi, 2024). GOFA achieved competitive performance on most datasets. In
particular, GOFA achieved SOTA performance on the Pubmed dataset, demonstrating that GOFA can
transfer pre-trained knowledge to downstream tasks. We also notice that GOFA is not performing
as well on some datasets, possibly because in a supervised setting, we only train a small portion of
the data for one epoch (specific numbers in the experimental details section in Appendix F.5), and
in the supervised setting, it is important to see training samples multiple times to ensure detailed
understanding of the distribution. As we pre-train the model with more diverse datasets, GOFA can
potentially obtain world knowledge as an LLM, which makes transfer learning in the supervised
setting more accurate.

B.2 EXAMPLE OF GOFA’S FREE-FORM ANSWER

Figure 6 in the main body illustrates GOFA’s capability to respond to various questions based on the
same graph from ogbn-arXiv. In this section, we provide additional examples in Figure 7 to further
show the ability of GOFA’s free-form text answer.
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Table 6: Experiment results in supervised learning. Bold and underlined shows best and runner-up
results.

Cora Cora PubMed PubMed Arxiv WikiCS WN FB Products
Task type Link Node Link Node Node Node Link Link Node

Metric Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑

GCN 78.9±0.6 82.3±1.1 77.5±0.4 77.8±0.7 73.9±0.6 77.0±0.6 82.7±0.4 90.1±0.3 80.0±0.7
GAT 80.1±0.3 80.4±0.4 80.5±0.2 76.6±0.5 75.8±0.3 79.8±0.5 88.8±0.3 93.6±0.1 81.4±0.2

DGI - 51.99±0.45 - 55.76±0.56 55.21±0.21 67.11±0.12 52.04±0.22 26.99±0.22 64.21±0.32
BGRL - 56.73±0.23 - 63.77±0.23 62.21±0.21 70.12±0.15 56.44±0.21 64.91±0.22 63.77±0.23

OFA 87.97 75.34 95.89 77.89 73.44 77.62 98.31 95.78 -
UniGraph - 81.43±0.55 - 74.33±0.23 72.91±0.42 79.98±1.21 85.45±0.34 94.81±1.32 80.11±0.23

GOFA 89.54 76.50 93.97 83.83 74.77 79.96 92.16 88.21 79.98

Given these products, please 
find the majority category 
among them.

Given these wikipedia page 
names, please generate more 
wikipedia page names that 
should be related to them.

P

P

P

A

B

P

B

Answer: 
The majority category for these 
products is phone accessories.

Answer:
Wikipedia: Linux kernel. Wikipedia: 
Open source software 3. Wikipedia: 
Free software. Wikipedia: Software 
development methodologies. 
Wikipedia: Software achietecture.

Input Graph GOFA Generated Answer
Text Feature of Nodes 
Connected with Prompt Node

Node.A: Tech Armor HD Clear Screen Protectors 
with Lifetime Warranty for Samsung Galaxy S3 S III. 
Node.B: Refill Band Value Packs - 600 Multicolored 
Polka Dot with 25 S Clips.
Node.C: DandyCase 2in1 Hybrid High Impact Hard 
Vintage Sea Green Floral Pattern + Pink Silicone 
Case Cover For Samsung Galaxy S3 i9300 + 
DandyCase Screen Cleaner.

A

C

Node.A: Wikipedia entry. Entry name: Linux. Entry 
content: linux linux family open source unix-like …
Node.B: Wikipedia entry. Entry name: 
Microsoft_Windows. Entry content: microsoft windows 
microsoft windows group several …
Node.C: Wikipedia entry. Entry name: 
ARM_architecture. Entry content: arm architecture arm 
previously advanced risc machine …
Node.D: Wikipedia entry. Entry name: PlayStation_2. 
Entry content: playstation 2 playstation 2 officially 
abbreviated ps2 …

C
D

Products

WikiCS

Figure 7: Demonstration of GOFA’s ability to respond to any question to the given graph. Above
is an example of the products dataset, where the model need to output the majority category of its
connected nodes. Below is another example on wikics dataset, GOFA is asked to generate Wikipedia
page named based on the graph information.

C DATASETS

Cora. The Cora dataset is a co-citation network, where nodes are papers related to artificial intelli-
gence. Edges mean the connected two papers are co-cited by other papers. The Cora dataset contains
2708 nodes and 10556 edges. We collect the Cora dataset and its raw text from OFA (Liu et al.,
2023a). We evaluate the performance of the baseline and our proposed model on Cora for both
node-level and link-level tasks. For the node-level task, the aim is to classify the node into the correct
paper category from 7 different categories. The split is obtained from OFA. It contains 140/500/2068
samples for train/val/test set respectively. For the link-level task, the object is to predict whether two
paper nodes are co-cited or not. We follow the setting of OFA (Liu et al., 2023a) and randomly split
all edges into train/val/test sets with a ratio of 0.85/0.05/0.1.

PubMed. The PubMed dataset is a co-citation network, where nodes are papers related to diabetes
mellitus. Edges mean the connected two papers are co-cited by other papers. The PubMed dataset
contains 19717 nodes and 88648 edges. We collect the PubMed dataset and its raw text from
OFA (Liu et al., 2023a). We evaluate the performance of the baseline and our proposed model on
PubMed for both node-level and link-level tasks. For the node-level task, papers have 3 different
categories. The goal is to classify the node into the correct paper category. We obtain the split directly
from original source. It contains 60/500/19157 samples for train/val/test set respectively. For the
link-level task, the object is to predict whether two paper nodes are co-cited or not. We follow the
setting of OFA (Liu et al., 2023a) and randomly split all edges into train/val/test sets with a ratio of
0.85/0.05/0.1.
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Arxiv. The Arxiv dataset is a citation network, where nodes are papers related to computer science
and edges mean two papers have a citation relationship. The Arxiv dataset contains 169343 nodes
and 1166243 edges. We collect the Arxiv dataset and its raw text from OGB (Hu et al., 2021b). We
evaluate the node classification on the Arxiv dataset. The goal is to classify the paper node into
the correct category from 40 possible categories. We obtain the split directly from OGB (Hu et al.,
2021b). It contains 90941/29799/48603 samples for train/val/test set, respectively.

WikiCS. The WikiCS dataset is a graph obtained from Wikipedia. The nodes in WikiCS are Wikipedia
terms and their descriptions. The edges mean there is a hyperlink between two terms. We collect
the WikiCS dataset and its raw text from (Mernyei & Cangea, 2020). There are 11701 nodes and
216123 edges in the graph. We evaluate the performance of WikiCS on the node classification task.
There are 10 different classes. We follow the same split as OFA (Liu et al., 2023a), which contains
580/1769/5847 samples for the train/val/test set, respectively.

Products. The Products dataset is a co-purchase graph. The nodes in the graph represent product
items from the Amazon platform, and the edges represent that two products are co-purchased together.
We obtain the Products and their raw texts from TAPE (He et al., 2024a), which is a subset from the
original ogbn-Products (Hu et al., 2021b) dataset. It contains 54025 nodes and 144638 edges. We
evaluate the node classification performance on Products. The data from the original source contains
47 different categories. However, we found that there are two classes with missing labels. To be
consistent with previous literature, we adopt the approach in LLaGA to replace the label name with
special symbols. There are 14708/1572/37745 samples for the train/val/test set, respectively.

FB15K237. The FB15K237 is a knowledge graph generated from Free Base. Nodes in the dataset
represent entities in the world and edges represent the relation between entities. We obtained the
dataset from OFA (Liu et al., 2023a). The FB15K237 is used to evaluate the link classification. The
dataset contains 237 unique classes. We follow the setting of OFA (Liu et al., 2023a) and split the
dataset with a ratio of 0.85/0.05/0.1, which results in a total of 272115/17535/20466 samples for
train/val/test set, respectively.

ExplaGraphs. The ExplaGraphs is a graph question answering dataset on commonsense concepts.
Nodes in the dataset represent a common sense concept and edges represent the relation between two
concepts. We obtain the dataset from G-retriever (He et al., 2024b) The ExplaGraphs can be used for
question-answering on graphs. We obtain the split directly from G-retriever (He et al., 2024b). It
contains 1659/553/554 graph samples from the train/val/test set.

SceneGraphs. The SceneGraphs is a graph question answering dataset on scene graphs. Nodes in
the dataset represent an object in an image and edges represent the relation between two objects. We
obtain the dataset from G-retriever (He et al., 2024b) The SceneGraphs can be used for question-
answering on graphs. We obtain the split directly from G-retriever (He et al., 2024b). It contains
59978/19997/20025 graph samples from the train/val/test set.

MAG240M. The MAG240M dataset is a citation network generated from Microsoft Academic
Graphs. The nodes represent academic papers and the links represent a citation relation between
two papers. We obtained the dataset and raw text from OGB-lsc (Hu et al., 2021a). However, the
original dataset is extremely large and contains nodes without text features (author and institution
nodes), since we mainly use the dataset for pre-training, we further downsample the original dataset.
Specifically, we only keep paper nodes and citation links between papers. Further, we downsample
the edges in the following ways. First, we selected all nodes in the train/val/test split provided by
OGB-lsc (Hu et al., 2021a). Next, we filter the edges through two rounds. In the first round, we
only keep the edge if either the source or the target is in the selected nodes. If any node in the added
edge is not in the selected nodes, we add it to the node set. Next, in the second round, we include
additional edges where both the source and target are in the selected nodes (additional nodes are
added in the first round). The procedure results in a total of 5875010 nodes and 26434726 edges.

Ultrachat200k. The Ultrachat200k is a question-answering dataset. each sample is a multi-round
conversation obtained from the web. We obtained the Ultrachat200k from (Ding et al., 2023).
However, the original dataset is not a network. To convert it to a graph dataset, we manually create
a graph structure for it. Specifically, if the original sample has k round of conversation, we will
generate k − 1 graph sample. The i-th graph will contain the first i round of conversation. Each node
in the graph is either a question or an answer. The question and answer are linked by a directed edge
indicating the order of the conversation. The conversation of i+ 1 round will be the question-answer
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pair for this graph. Since we mainly use the dataset for pre-training. We only include train-sft subset.
After the conversion, there are a total of 449929 graphs in total.

Wikikg90m. Wikikg90m is an encyclopedic knowledge graph dataset extracted from Wikidata
knowledge base. We obtain the original Wikikg90m from OGB-LSC (Hu et al., 2021a). It contains
91,230,610 entities, 1,387 relations, and 601,062,811 edges.

WikiGraph. The WikiGraph dataset is designed to increase the diversity of the training texts. Hence,
we use WikiText (Merity et al., 2022) dataset as the seed dataset. It contains plain sentences from
Wikipedia pages. We generate graphs for sentences with more than 500 characters. Specifically, we
first prompt an LLM to extract meaningful entities or concepts from a sentence, and these entities
become the nodes in the graph. We then randomly pair concepts to generate edges. Again, we use
LLM to generate a description of the relationship between the paired concepts and use the description
as the edge text.

D RELATED WORK EXTENDED

Prompt Learning in Graph: The success of foundation models inspired many works to adapt their
power to the graph domain. Earlier attempts designed a graph prompting mechanism such that a
trained model can adapt to new data by fine-tuning a soft prompting vector (Liu et al., 2023c; Yu
et al., 2023; Sun et al., 2023; Xia et al., 2024). GraphPrompt (Liu et al., 2023c; Yu et al., 2023)
pretrains on link prediction tasks, and then finetune a prompt matrix for each downstream node or
graph classification task. All in One (Sun et al., 2023) designs prompt tokens that are used to modify
node features and then take a meta-learning paradigm for multi-task learning. Subsequent works
extend graph prompts to allow in-context learning without weight update (Huang et al., 2023a; Galkin
et al., 2023). However, these works only tackle limited types of tasks and do not generalize to new
domains. Hence, researchers propose integrating LLM into the graph learning.

GNNs and Transformers: In recent years, GNNs have become the most popular method for dealing
with graph learning problems due to their extraordinary ability in structural learning. Particularly,
Previous works (Xu et al., 2018; Morris et al., 2019) show that the expressive power of message-
passing GNNs can be as powerful as the 1-dimensional Weisfeiler-Lehman test, a powerful algorithm
for graph isomorphism problems. Many recent works also try to design more powerful GNNs that
beyond the 1-WL test (Zhang & Li, 2021; Kong et al., 2022; Feng et al., 2022; Huang et al., 2023b;
Zhang et al., 2023b;a; Feng et al., 2023; Kong et al., 2023) for better structural ability like learning
distance between nodes or counting cycles in graph. Some works try to combine the GNN with
the transformer. particularly, GraphFormers (Yang et al., 2021) and GROVER (Rong et al., 2020)
also insert a GNN layer between consecutive transformer layers for modeling graph inductive bias.
Different from us, their transformer layers are randomly initialized and directly tuned on downstream
tasks without text.

E ADDITIONAL DISCUSSIONS

E.1 GRAPH STRUCTURE QUESTION EXAMPLE OF LLM

We assessed the ability of LLMs to respond to questions related to graph structures, including shortest
path distances and common neighbor counting. For this evaluation, graph edges were described using
plain text, and the LLM was tasked with generating the answers. The results of this evaluation are
presented in Table 1. These findings indicate that LLMs struggle to comprehend graph structures
effectively. We include examples of the questions posed and the corresponding answers generated by
the LLM in Table 7, to illustrate these challenges.

E.2 THEORETICAL ADVANTAGES OF GOFA’S GRAPH LANGUAGE ENCODER

In GOFA, we innovatively integrate GNN layers into LLMs to help LLMs understand graph structures.
This approach is theoretically more powerful and suitable for designing GFMs than using pure
LLMs. Graph data have unique properties, such as node permutation invariance without fixed
ordering (Keriven & Peyré, 2019), making sequential models like LLMs unsuitable for modeling
graphs. For a graph with n nodes, the number of possible orders is n!, which means sequential
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Table 7: Comparison of LLM-generated answers with correct answers for graph structure questions.

Question Answer Correct Answer

In the graph node 8 connects to
1, node 13 connects to 9, node 8
connects to 7, node 3 connects to
13, node 3 connects to 4, node 6
connects to 6, node 11 connects
to 8, node 12 connects to 11, node
2 connects to 12, node 14 con-
nects to 7, node 6 connects to 3,
node 6 connects to 9, node 2 con-
nects to 8, node 2 connects to 9,
node 5 connects to 8, node 3 con-
nects to 11, node 8 connects to
5, node 10 connects to 11, node
2 connects to 9, node 9 connects
to 10, what is a shortest path be-
tween node 8 and node 9?

To find the shortest path between
node 8 and node 9, we can use
Dijkstra’s algorithm or any other
shortest path algorithm. However,
since this graph is small, we can
find it manually. Here’s one of
the shortest paths between node 8
and node 9: Start at node 8. Move
from node 8 to node 5 (neigh-
bor). Move from node 5 to node
8 (neighbor). Move from node 8
to node 2 (neighbor). Move from
node 2 to node 9 (neighbor). So,
the shortest path between node 8
and node 9 is: 8 -> 5 -> 2 -> 9.

8 -> 2 -> 9

In the graph node 8 connects to
1, node 13 connects to 9, node 8
connects to 7, node 3 connects to
13, node 3 connects to 4, node 6
connects to 6, node 11 connects
to 8, node 12 connects to 11, node
2 connects to 12, node 14 con-
nects to 7, node 6 connects to 3,
node 6 connects to 9, node 2 con-
nects to 8, node 2 connects to 9,
node 5 connects to 8, node 3 con-
nects to 11, node 8 connects to 5,
node 10 connects to 11, node 2
connects to 9, node 9 connects to
10, what are common neighbors
between 13 and 5?

To find the common neighbors be-
tween nodes 13 and 5, we need to
identify all nodes that are neigh-
bors of both nodes 13 and 5.
From the provided connections:
Node 13 is connected to node 9
and node 3. Node 5 is connected
to node 8. Therefore, the com-
mon neighbor between node 13
and node 5 is node 8.

No common neighbors.

models like LLMs will need factorial sample complexity to learn that all of them correspond to the
same graph. Existing works therefore use random or heuristic order to represent a graph, resulting in
suboptimality and poor generalization on structure-related tasks. One empirical example from the task
planning experiments of LLM agents in (Wu et al., 2024) shows that LLMs can only perform well on
task graphs with a specific node ordering but cannot maintain this accuracy after nodes are reordered.
Methods like LLaGA (Chen et al., 2024) also fall into this category and are suboptimal if the task
requires deep structure understanding. Instead, GNNs are a powerful choice widely accepted by the
literature for encoding both features and the structure of graphs. They are permutation equivariant
to graph order and can learn invariant structure information. Our GOFA , interleaving GNN layers
into LLMs, naturally preserves this property. Specifically, for LLM layers, each node is processed
individually, which is obvious that we can keep the permutation invariance. As GNN layers are
permutation invariant, this conclude that the GOFA is permutation invariant to input graph.

E.3 ADVANTAGES OF GOFA’S SELF-SUPERVISED LEARNING TASKS

Our proposed self-supervised learning tasks are enlightened by existing graph and NLP SSL tasks.
However, our tasks are novel compared to existing methods from several perspectives.

In graph SSL, most prior work aims to recover original features or graph structure contrastively or
generatively (Liu et al., 2022), using learned embeddings for downstream classifiers. In contrast,
our tasks aim to learn embeddings that enable downstream natural language generation. Concretely,
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our SSL shortest path prediction task requires the model to output multiple actual paths (e.g., node
a→node b→node c) between two nodes in text format; this requires a more fine-grained and in-depth
model understanding of the graph structure. Regular graph SSL tasks such as link prediction and
shortest path distance prediction only cares about a simple objective (binary classification for link
and single number for distance). Conversely, our generation-oriented design allows a unified task
format to query into the graph from different aspects with different granularity (e.g. shortest path
and common neighbor can be incorporated under the same natural language generation framework),
whereas traditional SSL tasks inevitability lose much detailed information and may need artificial
complicated design to accommodate multiple SSL targets.

SSL in NLP (e.g. next-word-prediction) only takes texts as input. One may think of directly
converting graphs to text and doing a similar SSL. However, as many previous works show (Wang
et al., 2023), converting graphs directly to texts for LLM generation is ineffective. Hence, we design
the sentence completion task directly on the graph to use connection information to help the model
attend to correct nodes for subsequent generation.

In summary, our SSL design cares more about training the model to generate any answers in
natural language format so that it can accommodate arbitrary tasks, which differs from traditional
graph SSL that normally focuses on classification/regression (actually any graph SSL tasks can be
incorporated into our natural language generation framework). Compared to NLP SSL, our novel
SSL design focuses on sentence completion using neighboring sentence information rather than pure
auto-regression, strengthening the model’s power to leverage joint graph-text information.

F EXPERIMENTAL SETTINGS

F.1 GENERAL SETTINGS

Subgraph sampling: In the GOFA , for node/link/graph-level tasks, the input format is unified as a
subgraph task. Namely, for node/link-level tasks, we will select a k-hop subgraph surrounding the
target nodes as the input graph for the model. We follow a similar subgraph sampling strategy as
OFA (Liu et al., 2023a). Specifically, for node-level tasks, we directly sample the k-hop subgraph
rooted at the target node. Meanwhile, we set a threshold for maximum nodes per hop. If the nodes in
a certain hop exceed the threshold, we will randomly sample maximum nodes from all nodes. For
link-level tasks, we doing the sampling on both two nodes.

Implementations. Both the GOFA and all baselines are implemented using Python with Pytorch,
transformers, and PyG (Fey & Lenssen, 2019) packages.

F.2 DESIGN OF PRE-TRAINING TASKS

In this section, we describe the self-supervised pre-training of GOFA . The goal of the pre-training
is to let the GOFA model obtain the ability to query graph structure and context but retain the
ability to reason about plain text. Specifically, we perform the pre-training task using multiple
existing graph datasets, including MAG240M (Hu et al., 2021a), Arxiv (Hu et al., 2021b), Pubmed,
Wikikg90mv2 (Hu et al., 2021a), and Ultrachat200k (Ding et al., 2023) datasets. Further, we create
another graph dataset called WikiGraph, whose graphs are generated from sentences in the pure
textual WikiData dataset (Merity et al., 2022) using LLM. Details about the datasets can be found
in Appendix C. We randomly generate a unique node ID (such as [Node A]) for each node in the
training sample and append it to the original node text. This ID will serve as a basis for querying
nodes in the graph. We design four pre-training tasks: sentence completion, structural understanding,
question-answering, and information retrieval tasks. Figure 1 shows an example of each task. We
describe the rationale of each task below and leave some implementation details to Appendix F. We
also include an additional discussion of the advantages of our designed tasks in Appendix E.3.

Sentence completion task. The objective of the sentence completion task is to train GOFA to reason
about the rest of the text in a node given both the existing text and the information in the rest of the
graph. Given an input training sample, we randomly select n nodes in the graph as the target nodes.
All selected nodes’ texts are split into halves. The first half forms node text x(v), and the second
half becomes the target y to generate. The length of the first half will also be randomly determined.
Finally, the output representation of these n nodes will be directly input to the decoder (no prompt
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node will be connected) and we minimize the loss between model decoded text and target y. This
sentence-completion pre-training task adapts LLMs’ standard ability to the graph context.

Structural understanding tasks. The objective of the structural tasks is to pre-train GOFA to
understand basic graph structural properties. In light of this, we design the shortest paths and common
neighbors reasoning tasks between nodes. Specifically, For each training subgraph sample, we
randomly sample n node pairs as the selected targets. For each selected node pair, we ask the model
to compute the shortest path distance between two nodes and output all possible shortest paths
between them using the assigned node IDs. Meanwhile, we also ask the model to output the number
of common neighbors the two nodes have and the node IDs of their common neighbors. For the
structural understanding task, a prompt node vp will connect to both two nodes since our structural
tasks need the model to reason about two nodes simultaneously. The text in the prompt node will be
the corresponding question. Through these two tasks, the model is expected to gain the ability to
identify basic graph structures, which are critical to downstream tasks.

Question answering task. Unlike language corpus, which naturally contains many question-and-
answer (QA) pairs, graph data usually only contain objective descriptions of entities. Nevertheless,
for the model to be fluid in tasks, we need the model to understand user prompts and be sensitive to
different tasks. Hence, we synthesize a QA-chain dataset from Ultrachat200k, as shown in Figure 1.
A language QA sequence is converted to a chain graph where nodes with question texts alternate
with nodes with answer texts, which are connected by directed edges to represent the conversation
order. The last question becomes the text on prompt node vp, which is connected to every node in the
chain, and the last answer is the target text y (see Figure 1 QA-Chain Task for an example). This QA
task provides QA pseudo-graphs missing from the common graph corpus, and we found it critical for
enabling the model to be responsive to arbitrary tasks expressed in free-form text questions.

Information retrieval task. For most of the downstream tasks, GOFA requires a prompt node to link
to all target nodes in the graph to solve related problems. To enable the prompt node to effectively
maintain related information for solving the task in the decoding stage, we design an information
retrieval task to realize these goals. Specifically, for each input graph, we randomly select n nodes and
we connect a prompt node to these n nodes. Next, the information retrieval task is further divided into
two parts: key-to-content and content-to-key. For key-to-content, we provide a node ID (randomly
chosen from the selected n nodes) in the prompt node and ask the model to retrieve the text of that
node. For the content-to-key task, we provide the content of one node (selected the same as above) in
the prompt node and ask the model to return the correct node ID of that node. This task enhances the
ability of GOFA to utilize our provided node IDs to retrieve and maintain correct information in the
prompt node, which proves useful for many downstream tasks requiring information retrieval.

F.3 PRE-TRAIN IMPLEMENTATION DETAILS OF GOFA

Dataset and task construction. As we discussed, we designed four different pre-training tasks for
GOFA . Here we describe some implementation details about each task and then discuss how we
construct each task on each dataset.

For the sentence completion task, the node text is split by the following rule: for each node, if the
node text is less than 256 words, we set the maximum left-halve length to be the half of node sentence
length. Otherwise, we set it to 128. Next, we randomly choose a length from 0 to maximum left
length as the final cut point to cut the sentence into two pieces. For the shortest path task, we ask the
model to output both the shortest path distance and all possible shortest paths. Since there may be
multiple paths, to ensure the uniqueness of the answer, we first order all paths based on the node ID
(the ascending order of alphabets) for nodes in each path and ask the model to learn this order. The
construction of common neighbor task is similar. Finally, for information retrieval, given an input
graph sample, we randomly select 2 to the number of nodes in the graph to be the target nodes.

For pre-training datasets, we use multiple datasets including MAG240M, Arxiv, Pubmed,
Wikikg90mv2, Ultrachat200k, and WikiGraph. For MAG240M, Arxiv, and Pubmed datasets, each
training sample is a subgraph sampled around a node. Next, sentence completion, shortest path, and
common neighbor tasks are constructed. For each sample, there are 4 complete sentences, 3 shortest
path, and 3 common neighbor tasks. We will also construct information retrieval tasks on these
datasets. However, to ensure a moderated graph size, the information retrieval task will be constructed
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Table 8: Detailed question and answer example in pertaining task.

Task Question example Answer example

Sentence completion Complete the sentence of the tar-
get node.

The rest of the sentence in the tar-
get node.

Complete the sentence of the
node[NODE.A].

The rest of the sentence in node
[NODE.A].

Shortest paths Compute the shortest path dis-
tance between the target node
[NODE.L] and node [NODE.B]
and generate all shortest paths
from the target node to the
node [NODE.B]. Please separate
nodes in the path with ->. If mul-
tiple paths exist, generate all of
them with an ascending order of
node sequences and separate dif-
ferent paths with ;.

The shortest path distance is 2.
Shortest paths: [NODEID.L] ->
[NODEID.G] -> [NODEID.B].

Common Neighbors Is there any common neighbor be-
tween the target node [NODE.L]
and node [NODE.B]? If it exist,
please give the total number and
list all common neighbors in as-
cending order of node, separate
nodes with ;.

There is 1 common neighbor
between two nodes, including
[NODEID.G].

QA-Chain What are the rules and restric-
tions in place for COVID-19 in
the city?

I don’t have any live data regard-
ing the covid-19 rules and restric-
tions. Please check with the local
authorities or health department
for the latest guidelines and re-
strictions in your city.

Information Retrieval Please output the content of
[NODE.A].

Content on [NODE.A].

Given this node content: {node
content}, please output the node
id.

[NODEID].

separately from the above tasks and also for both key-to-content and content-to-key tasks. For each
information retrieval task sample, there will be only one task. For Wikikg90m, each training sample
is a subgraph sampled around an edge. In Wikikg90m, we additionally include a link prediction
task. That is, for each input graph, we randomly mask e edges and ask the model to recover the
content in the edge. For each sample, there are 4 complete sentences, 2 shortest paths, and 2 common
neighbor tasks, and 2 link prediction tasks. At the same time, the information retrieval task will also
be generated separately. For WikiGraph, each sample is itself a graph. Similar to Wikikg90mv2,
each sample consists of 4 complete sentences, 2 shortest paths, 2 common neighbor tasks, and 2
link prediction tasks and information retrieval task will also be generated separately. Finally, for
Ultracha200k, we only include question answer task and each sample only contains one task. The
detailed task prompts and answer examples are shown in Table 8.

Training details. The initial weight of the LLM compressor and decoder is obtained from ICAE (Ge
et al., 2023). The initial weight of all GNN layers is randomly initialized. The value of all gates in
the residual connection is set to 0 to ensure the initialized model performs the same as the original
language model. During the training, we only tune the GNN layers. For each training epoch, the
training corpus includes 500,000 MAG240M samples, 50,000 Arxiv samples, 5,000 PubMed samples,
100,000 Ultrachat200k samples, 80,000 WikiGraph samples, 100,000 Wikikg90mv2 samples. At
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the meantime, for MAG240M, Arxiv, Pubmed, WikiGraph, and Wikikg90mv2, we will include
10,000 key-to-content and 10,000 content-to-key information retrieval tasks. This resulted in 935,000
samples for each training epoch and we trained the model for 3 epochs. The training is conducted on
8 NVIDIAA100_SXM4_80GB GPUs with DeepSpeed stage 2 (Rajbhandari et al., 2020) parallelism.
The detailed training parameters are set the same for both two models and are listed in Table 9. We
use AdamW optimizer with β = (0.9, 0.95). We use a cosine annealing learning rate scheduler, and
the minimum learning rate is 10% of the initial learning rate. We restarted the learning rate 2 times
on one-third and two-thirds of the training.

Table 9: Hyper-parameters for pretraining.

lr weight_decay batch_size dropout grad_clip gradient_accum llm_max_length optimizer

0.0001 0.1 8 0.0 0.5 8 128 AdamW

F.4 ZERO-SHOT LEARNING

Setting. For the zero-shot learning, we select Cora-link, Cora-node, WikiCS, Products, ExplaGraphs,
and SceneGraphs as evaluation datasets. For all datasets, we directly evaluate baselines and GOFA
on the test set.

Baseline Details: We compare the performance of GOFA with two categories of baseline methods.
The first category includes models that directly utilize large language models (LLMs). For this, we
select Llama2-7B and Mistral-7B (Jiang et al., 2023) as baselines. We input the content of all target
nodes into these pre-trained models and concatenate the same prompt used in GOFA for evaluation.
The second category consists of Graph LLM models that have zero-shot ability. We include OFA (Liu
et al., 2023a), GraphGPT (Tang et al., 2023), UniGraph (He & Hooi, 2024), ZeroG (Li et al., 2024),
and LLaGA (Chen et al., 2024) as baselines. For OFA, we extend the datasets by adding Products
and ExplaGraphs and follow the original source code to train the model on Arxiv and FB15K237 for
30 epochs, using Llama2-7B as the embedding model. All other settings remain consistent with the
default OFA configuration, and we report the test performance accordingly. For GraphGPT, we use
the results reported in the LLaGA paper. For UniGraph, we use the results from the original paper.
For ZeroG, we use the results in UniGraph paper. For LLaGA, we rerun the source code, adapting
the settings of ways to align with our experimental setup.

Detail of GOFA. For the GOFA, we fine-tune the model from the pre-training checkpoint. In
fine-tuning, we will train the parameters of GNN and LoRA layers in the LLM decoder. To com-
prehensively evaluate the performance of GOFA, We separately fine-tune the GOFA on different
datasets. Specifically, we design two different settings. In the first setting, we fine-tune the model
using the Arxiv and Pubmed datasets with both the node classification and link prediction tasks. In
the second setting, we add mag240m and Wikikg90m additionally. We denote GOFA-T and GOFA-F,
respectively. For GOFA-T, we sample 40000, 80000, 10000, 10000 for Arxiv_link, Arxiv_node,
Pubmed_link, and Pubmed_node, respectively. For GOFA-F, we sample 10000, 10000, 40000,
50000, 10000, 10000 for MAG240M, Wikikg90m, Arxiv_link, Arxiv_node, Pubmed_node, and
Pubmed_link, respectively. For all evaluation and pre-training datasets, we design multiple prompt
templates with instructions to let the model select the correct label from the provided label list. For
each label in each dataset, we use the GPT-4 to generate a short description for the label. The detailed
prompt examples for all datasets are shown in Table 10 and Table 11. For all MAG240M, Wikikg90m,
and Arxiv, since it is hard to include all ways in the prompt, we randomly sampled 10 ways during
the training for each sample. For each pre-training dataset, we randomly sample a fixed number of
training samples in a random way. The detailed parameters for fine-tuning are listed in Table 12. All
parameters not listed in the table are the same as the pre-training setting. For all training versions, we
directly evaluate the model on the test set of all evaluation datasets. We evaluate the model on the test
set. For datasets with less than 15000 test samples, we evaluate on the whole set. Otherwise, we only
randomly select 15000 samples for evaluation, due to the time constraint. For evaluation, we will
match the text output generated by the GOFA with the ground true label to compute the accuracy of
the classification task. For the regression task, we will extract the number from the output text and
compute the metric with the correct value.
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Table 10: Prompt examples of GOFA for each training dataset in Zero-shot learning.

Dataset Prompt

MAG240M This is a citation network from microsoft academic graph platform. Nodes repre-
sent academic papers and edges represent citation relationship. You are an expert
in computer science. You need to choose the correct paper category based on the
paper content and its citation network. For example, if the paper [NODEID] {<la-
bel_description>, choose <label>;}. What is the most likely paper category for the
target paper? Choose from the following: {<label>}.

Pubmed-
link

This is a co-citation network from the Pubmed platform focusing on diabetes mellitus.
Nodes represent academic papers and edges represent two papers that are co-cited
by other papers. You are a diabetes mellitus expert tasked with determining whether
two given papers [NODEID1] and [NODEID2] are co-cited by another paper based
on their content and network characteristics. Evaluate the following criteria: assess
whether the topics of the two papers are similar, check if the shortest path distance
between the two papers is small, and verify whether the papers have a large number
of common neighbors in the citation network. If the answer to most of these questions
is Yes, choose Yes; if the answer to most of these questions is No, choose No.

PubMed-
node

This is a co-citation network from the Pubmed platform focusing on diabetes mellitus.
Nodes represent academic papers and edges represent two papers that are co-cited by
other papers. You are an expert on diabetes mellitus. You need to choose the correct
paper category based on the paper content and its co-citation network. For example,
if the paper [NODEID] {<label_description>, choose <label>;}. What is the most
likely paper category for the target paper? Choose from the following: {<label>}.

Wikikg90m This is a graph extracted from the entire Wikidata knowledge base. You are an expert
in knowledge graph reasoning. You need to choose the correct relation type between
two target entities based on their existing relations. For example, if two relations
involve {<label_description>, choose <label>;}. What is the relationship between
two target entities? Choose from the following list: {<label>}."

Arxiv_node This is a citation network from Arxiv platform focusing on the computer science area.
Nodes represent academic papers and edges represent citation relationships. You are
an expert in computer science. You need to choose the correct paper category based
on the paper content and its citation network. For example, if the paper [NODEID]
{<label_description>, choose <label>;}. What is the most likely paper category for
the target paper? Choose from the following: {<label>}.

Arxiv_link This is a citation network from Arxiv platform focusing on the computer science area.
Nodes represent academic papers and edges represent citation relationships. You
are a computer science expert tasked with determining whether two given papers
[NODEID1] and [NODEID2] are co-cited by another paper based on their content
and network characteristics. Evaluate the following criteria: assess whether the
topics of the two papers are similar, check if the shortest path distance between the
two papers is small, and verify whether the papers have a large number of common
neighbors in the citation network. If the answer to most of these questions is Yes,
choose Yes; if the answer to most of these questions is No, choose No.
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Table 11: Prompt examples of GOFA for each evaluation dataset in Zero-shot learning.

Dataset Prompt

Cora-node This is a co-citation network focusing on artificial intelligence, nodes represent aca-
demic papers and edges represent two papers that are co-cited by other papers. You
are an expert in computer science. You need to choose the correct paper category
based on the paper content and its co-citation network. For example, if the paper
[NODEID] {<label_description>, choose <label>;}. What is the most likely paper
category for the target paper? Choose from the following: {<label>}.

Cora-link This is a co-citation network focusing on artificial intelligence, nodes represent aca-
demic papers, and edges represent two papers that are co-cited by other papers. You
are a computer science expert tasked with determining whether two given papers
are co-cited by another paper based on their content and network characteristics.
Evaluate the following criteria: assess whether the topics of the two papers are similar,
check if the shortest path distance between the two papers is small, and verify whether
the papers have a large number of common neighbors in the citation network. If the
answer to most of these questions is Yes, choose Yes; if the answer to most of these
questions is No, choose No.

WikiCS This is a Wikipedia graph focusing on computer science. Nodes represent Wikipedia
terms and edges represent two terms that have hyperlinks. You are an expert in
computer science. You need to choose the correct category of Wikipedia term based on
the term content. For example, if the term [NODEID] {<label_description>, choose
<label>;}. What is the most like category for this Wikipedia entry? Choose from the
following: {<label>}.

Products This is a co-purchase network from the Amazon platform. Nodes represent the products
sold on Amazon and edges represent two products that are co-purchased together. For
example, if the product [NODEID] {<label_description>, choose <label>;}. What is
the most like category for this product? Choose from the following: {<label>}.

FB15K237 This is a knowledge graph from the FreeBase. Nodes represent knowledge entities and
edges represent relations between two entities. You are an expert in knowledge graph
reasoning. You need to choose the correct relation type between two target entities
based on their existing relations. For example, if two relations {<label_description>,
choose <label>;}. What is the relationship between two target entities? Choose from
the following list: {<label>}."

ExplaGraphs This is a graph constructed from commonsense logic. Nodes represent commonsense
objects and edges represent the relation between two objects. You are a logic expert
tasked with analyzing the logical relationship between two arguments related to
connected entities. Determine if the arguments support or counter each other based
on their logical coherence. If there is no logical conflict between the two arguments
and they are in agreement, choose Support; if the arguments exhibit a logical conflict
or contradiction, choose Counter.

SceneGraphs This is a scene graph generated from an image. Nodes represent an object in the image
and edges represent the relationship between two objects. <Question>
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Table 12: Hyper-parameters for zero-shot instruction fine-tuning.

lr weight_decay gradient_accum llm_max_length

0.0001 0.1 64 256

F.5 SUPERVISED-LEARNING

Table 13: Hyper-parameters for supervised fine-tuning.

lr weight_decay grad_clip gradient_accum llm_max_length

0.0001 0.1 0.5 32 256

Setting. For the supervised-learning setting, we select Cora (node/link), PubMed (node/link), Arxiv,
WikiCS, WN18RR, FB15K237, and Products datasets for the evaluation. For all datasets, we utilize
the default split described in Appendix C. To ensure a fair comparison, we employ subgraph sampling
for GOFA and all baseline methods. For all datasets, the sampling hop is 3 and the maximum nodes
per hop are 5.

Detail of baselines. For the traditional GNN methods, we include GCN (Kipf & Welling, 2017)
and GAT (Veličković et al., 2018). To ensure a fair comparison, we use Llama2-7B to convert raw
texts in all datasets to sentence embedding and use this as the model’s input node/edge features. We
re-implement both methods in order to adapt the original method with subgraph input. Specifically,
for but node/link-level tasks, we will add labeling trick (Zhang et al., 2021) to the target nodes at
the beginning. After message passing, we will use the summation pooling on all target nodes and
use the result embedding for the prediction. For traditional GNN methods, we train and evaluate
each dataset independently. For all datasets, we search the number of layers and dropout parameters.
For each parameter set, we repeat the experiment 4 times select the parameter set with the best
validation performance, and report the performance on the test set. For constrastive learning methods,
we include DGI (Veličković et al., 2018) and BGRL (Thakoor et al., 2021). We directly report
results from UniGraph (He & Hooi, 2024) . For the graph foundation model, we include OFA (Liu
et al., 2023a) and UniGraph (He & Hooi, 2024) as the baseline. The OFA is simultaneously trained
and evaluated on all datasets. To ensure a fair comparison, we get their code from the original
source and train the model on Cora (node/link), PubMed (node/link), Arxiv, WikiCS, WN18RR,
and FB15K237 dataset using the Llama2-7b as base LLM model. Similarly, for OFA, we use the
same subgraph sampling parameters as all other methods. For other parameters, we use the default
parameter provided in their code. We only run the model one time and report the final performance.
For UniGraph, we directly report results from their original paper.

Detail of GOFA. For the GOFA, we fine-tune the model from the pre-training checkpoint. In fine-
tuning, we will train the parameters of GNN and LoRA layers in the LLM decoder. We simultaneously
fine-tune the model on the train set of Cora-node, Cora-link, PubMed-node, PubMed-link, Arxiv,
WikiCS, WN18RR, FB15K237, and Products. For each dataset, we will randomly sample a fixed
number of training samples for each epoch with random sampling. The sample numbers for each
dataset is 3000, 40000, 3000, 80000, 105000, 12000, 60000, 120000, and 38000, respectively. We
fine-tune the model for 1 epochs. The detailed parameters for fine-tuning are listed in Table 13. For
each dataset, we create a prompt for the LLM decoder to generate the desired answer. In a supervised
setting, we ask the LLM model directly to generate the correct answer, instead of doing the selection
from the given list. The detailed prompt for each dataset is listed in Table 14. For evaluation, we will
match the text output generated by the GOFA with the ground true label to compute the accuracy
of the classification task. We evaluate the model on the test set. For datasets with less than 15000
test samples, we evaluate on the whole set. Otherwise, we only randomly select 15000 samples for
evaluation, due to the time constraint.
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Table 14: Detailed prompt of GOFA for each dataset in supervised learning.

Dataset Prompt

Cora-node This is a co-citation network focusing on artificial intelligence, nodes
represent academic papers and edges represent two papers are co-cited
by other papers. What is the most likely paper category for the target
paper? Please directly answer the category.

Cora-link This is a co-citation network focusing on artificial intelligence, nodes
represent academic papers and edges represent two papers are co-cited
by other papers. Is the two target papers co-cited or not? Please only
answer yes or no.

PubMed-node This is a co-citation network from Pubmed platform focusing on dia-
betes mellitus. Nodes represent academic papers and edges represent
two papers are co-cited by other papers. What is the most likely paper
category for the target paper? Please directly answer the category.

PubMed-link This is a co-citation network from Pubmed platform focusing on dia-
betes mellitus. Nodes represent academic papers and edges represent
two papers are co-cited by other papers. Is the two target papers
co-cited or not? Please only answer yes or no.

Arxiv This is a citation network from arxiv platform focusing on the computer
science area. Nodes represent academic papers and edges represent
citation relationships. What is the most likely paper category for the
target Arxiv paper? please directly answer the category.

WikiCS This is a Wikipedia graph focusing on computer science. Nodes rep-
resent Wikipedia terms and edges represent two terms have hyperlink.
What is the most likely category for this Wikipedia term? Please directly
answer the category.

WN18RR This is a knowledge graph from WordNet. Nodes represent an English
word and edges represent the relationship between two words. What is
the relationship between two target words? Please directly answer the
relationship.

FB15K237 This is a knowledge graph from freebase. Nodes represent knowledge
entities and edges represent relations between two entities. What is the
relationship between two target entities? Please directly answer the
relationship.

Products This is a co-purchase network from the Amazon platform. Nodes repre-
sent the products sold on Amazon and edges represent two products are
co-purchased together. What is the most like category for this product?
Please directly answer the category.
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