Under review as a conference paper at ICLR 2025

LARGE-SCALE DYNAMIC GRAPH GENERATION VIA
LLM-BASED AGENT SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph generation is a fundamental task that has been extensively studied in social,
technological, and scientific analysis. For modeling the dynamic graph evolu-
tion process, traditional rule-based methods struggle to capture community struc-
tures within graphs, while deep learning methods only focus on fitting training
graphs. This limits existing graph generators to producing graphs that adhere
to predefined rules or closely resemble training datasets, achieving poor perfor-
mance in dynamic graph generation. Given that graphs are abstract representations
arising from pairwise interactions in human activities, a realistic simulation of
human-wise interaction could provide deeper insights into the graph evolution
mechanism. With the increasing recognition of large language models (LLMs)
in simulating human behavior, we introduce GraphAgent-Generator (GAG), a
novel simulation-based framework for dynamic text-attributed graph generation.
Without training or fine-tuning process of LLM, our framework effectively repli-
cates seven macro-level structural characteristics in established network science
theories while surpassing existing baselines in graph expansion tasks by 11% on
specific evaluation metrics. Through node classification task, we validate GAG
effectively captures the intricate text-structure correlations in graph generation.
Furthermore, GAG supports generating graphs with up to nearly 100,000 nodes or
10 million edges through large-scale LLM-based agent simulation with parallel ac-
celeration, achieving a minimum speed-up of 90.4%. The source code is available
athhttps://anonymous.4open.science/r/GraphAgent-2206.

1 INTRODUCTION

Graphs are mathematical structures representing pairwise interactions between entities through
nodes and edges, serving as a fundamental concept in network science. They are widely used to
model interaction behaviors across various domains, including social analysis (Fan et al.| [2019)),
parallel computing (Hendrickson & Kolda, 2000), and program synthesis (Nguyen et al., [2012).
A longstanding task in network science is graph generation. Given an observed graph dataset,
researchers extract the underlying generative mechanisms to create models that can scale these
observations into larger graphs. Network science theories constitute macro properties such as power-
law degree distribution (Clauset et al.,2009). In contrast, micro properties include graph structure
metrics like degree distribution and clustering coefficient (Martinkus et al., 2022)). By comparing the
macro and micro properties of the generated and real-world graphs, researchers gain deeper insights
into graph evolution mechanisms.

Existing graph generation methods can be categorized into two types: (1) Rule-based methods, which
rely on preset rules to generate graphs (Erdos et al.,|1960; Barabasi & Albert, [1999). These methods
are designed to capture specific macro properties observed in real-world networks. However, the need
for tailored models to capture each property complicates the integration of these methods into a unified
framework. Additionally, they fall short in capturing micro-level properties in dynamic graph genera-
tion (Bergmeister et al., 2024). (2) Deep learning-based methods, which leverage self-supervised
learning to capture graph structures. These methods mainly include auto-regressive methods (You
et al., |2018) and one-shot methods (Vignac et al., 2023 [Bergmeister et al., 2024} Simonovsky &
Komodakis| [2018). While these techniques excel in fitting micro properties of observed graphs, they
face challenges when generating larger graphs beyond the size of the observed dataset (Bergmeister
et al.,[2024)) and struggle to capture macro properties in dynamic graph generation.

https://anonymous.4open.science/r/GraphAgent-2206

Under review as a conference paper at ICLR 2025

The limitations of previous methods stem from their attempts to use a single model to represent
all forms of entity-wise interaction process. Instead of merely adhering to preset rules or fitting
training data, a desirable graph generator understands how graphs are formed to generate structures
that align with the underlying physical interaction process. For instance, the dynamics of human
social interactions significantly influence the social network evolution [Fowler & Christakis|(2010).
Fortunately, the emergence of LLMs like LLaMA (Al@Meta, [2024)) and GPT-4 (OpenAl, [2023) has
opened new avenues for graph generation. With their ability for human-like reasoning, LLM-based
agents can effectively simulate complex interaction processes in human activities (Park et al., [2023).

In this work, we introduce GraphAgent-Generator (GAG), a novel human behavior simulation-
based framework via LLM-based agents for graph generation. We propose the S-RAG algorithm to
model the human interaction process with carefully designed LLM-based agents for human behavior
simulation. Through continuous simulations, we can extract diverse graphs as abstract representations
of collected interaction data. Furthermore, we propose N-ACTOR to accelerate the simulation process
by parallel processing. Through experiments conducted in GAG, our main contributions are:

(1) Graphs of Real-World Network Structures: The generated graphs exhibit seven essential
structural characteristics observed in real-world networks, including power-law degree distribution,
small-world, shrinking diameter and etc. Specifically, GAG surpasses the best-performing baseline
by 11% on specific evaluation metrics for graph expansion tasks.

(2) Interpretability in Graph Generation: To our knowledge, GAG is the first framework to
generate text-rich data for modeling graph evolution, offering clear process interpretability. In the
context of node classification using Graph Neural Networks (GNNs), the graph generated by GAG
retains accuracy comparable to that of the real-world graph. This demonstrates the capability of GAG
to produce effective text features for graphs.

(3) Graph Generation via Large-Scale LLM-based Agent Simulation: The framework supports
the generation of graphs across ten distinct types, accommodating up to 10 million edges or nearly
100,000 nodes through simulations with up to nearly 100,000 LLM-based agents. Additionally,
the N-ACTOR component accelerates the simulation process through parallel computing with a
minimum speed-up of 90.4%.

2 RELATED WORK

Graph Generation As an extensively explored foundational task, existing graph generation methods
mainly fall into two categories: (1) Rule-based methods, which gradually add nodes based on
random (Erdos et al., [1960) or preferential attachment (Barabasi & Albert, |[1999) rules; Though
(Barabasi & Albert,|1999) successfully models power-law degree distribution, they struggle to capture
the community structures prevalent in real-world networks (You et al., 2018)). (2) Deep Learning
based methods: In recent years, deep learning offer a new approach, aiming to capture the complex
and diverse structures of real-world networks, which mainly fall into two categories: Autoregressive
methods (You et al., 2018} [Dai et al.| 2020; Bergmeister et al.,[2024) predict edges incrementally for
each new node, while one-shot methods (Simonovsky & Komodakis, 2018; De Cao & Kipf, [2018;
Liu et al., 2019} |Vignac et al.|[2023) generate entire graphs in a single step. However, these methods
require large-scale training data and struggle to generate graphs outside the training distribution.
Although some progress is made with extrapolating to out-of-distribution graphs (Bergmeister et al.,
2024; Limnios et al., 2023), the maximum size of graph is limited to thousands of nodes.

LLM-based Human Behavior Simulation With LLMs demonstrating advanced capabilities in
human-like responses and autonomous planning (Gao et al.,|2023)), they are increasingly recognized
as a new paradigm for simulations across fields such as education (Chen et al.| 2024]), social dynam-
ics (Park et al., 2023)), and economics (Li et al.l 2024b). In graph generation, De Marzo et al.|(2023)
first explores the scale-free property of power-law distributions in LLM-based agent interactions.
Subsequently, [Papachristou & Yuan|(2024); |Chang et al.|(2024) examines additional social network
properties. However, these simulations often lack realism due to simplified modeling of human
behavior, such as name selection, and are typically constrained to fewer than 100 agents. Recently,
Pan et al.| (2024) introduced AgentScope, a framework enabling large-scale multi-agent simulations
for simplified human behavior, demonstrated through number-guessing games. Building on this, we
have enhanced AgentScope to simulate more complex human behaviors at a large scale.

Under review as a conference paper at ICLR 2025

3 THE GAG FRAMEWORK

In this section, we present GAG, a versatile LLM-simulation-based framework designed for large-
scale graph generation. GAG aims to eliminate preset rules and training processes in graph generation

through simulation-based methods.
@ Agent Formulation (@ Pairwise Interaction
__Rclr_ig\'c:_l

| ey N 1 | g @ Index g @ Query: Q; |
QRREERY T = 8"

— Round k2 a;i=Agent C:= Corpus Vector
Database

Kl

¢ = Tweets 4 3

1. #Retweet @Sarah o= ?UA 14 EQ] I

2. #Post: 1 think ... | @ Generate | Environment
e

3. Feedbacl

arallel Acceleration raph Extraction
Parallel Accelerati ® Graph E ti

Supjuesdy

Jake 37 Director 2021/4:1 follow Sarah | &
Interests: Movies 2021/6: 1 tweet about | =
Followers: 12038 Action movies

Twitter User

:C-V
Inter-Batch Parallel = Tweets g”—, Nodes: Jake, Bob, Sarah ...
e ittt . 1. @lake retweets @Sarah geiC—E
1 — —f — — 3. @)ake tweets “/ think ..."
@@ - PRCEY
P B EE 2 —
| N . W | G s - ! 1 Jake's tweet content
................ . = o
1 H 2
Vafen afen L [ee ||quu m.@- -@n -@- -@- =
] 1 .
1 1 o8 @ (U () (saan)---- » action
N ———————— 9 ~——— N
— friend
Intra-Batch Parallel C :=Corpus G(V,€) = Network —> foliow

Figure 1: An illustration of the GAG Framework for generating social networks: (1) Agent For-
mulation, where diverse agents are initialized; (2) Pairwise Interaction, where agents interact by
generating and retrieving content from a shared corpus; (3) Graph Extraction, where interactions
are translated into a dynamic network of nodes and edges; and (4) Parallel Acceleration, which
implements inter- and intra-batch parallelism to speed up the simulation process.

3.1 PROBLEM SETUP

Graphs serve as mathematical structures that represent relationships and interactions among en-
tities (Bergmeister et al., 2024-05). In this paper, we consider dynamic graph generation for
text-attributed graphs. In the graph generation task, we consider a seed graph G(V, &, X'), where
V = {v;}_, represents a set of nodes, £ = {e;; } denotes the set of edges connecting these nodes,
and X = {z1,...,2,} comprises the text attribute values associated with each vertex. Here, x;
indicates the text attribute linked to node v;. The graph generation model seeks to learn how G
evolves into a significantly larger graph G'(V’, &', X), where n’ > n and m’ > m, over time.
The objective is for the generated graph G’ to accurately mirror the macro patterns of the original
graph during evolution while maintaining its essential structural properties. In citation networks, for
example, graph evolution closely reflects the temporal interactions involved in paper-citing behavior
among authors. By simulating these interactions to capture the dynamics of graph evolution, we gain
a deeper understanding of how human behavior patterns drive changes in graph structure.

To design an effective dynamic graph generator, we develop the GAG framework to simulate pairwise
interactions in human activities, modeling graph evolution as a process of collecting interaction
data repeatedly. Leveraging the ability of LLMs to mimic human-like behaviors 2023}
Park et al,[2022;[2023)), we construct LLM-based agents for human behavior simulation, denoted
as A = {a1,aq,...,an}, where N is the number of agents. Each interaction process between A
corresponds to an update of the G. In the k-th simulation round, agent a; € A observes the data from
G and generate a subgraph G . Then, the subgraph produced by all agents is G, = GLUGZU. . .UGY.
Therefore, after k rounds of simulation, G gradually evolves into G': G/ = Go UG UG2 U - -UGy.
Specifically, the GAG framework employs a three-step simulation workflow, as illustrated in Figure
[T} (1) Agent Formulation: Diverse agents with unique profiles and memory capacities are initialized.
(2) Pairwise Interaction: Agents engage in pairwise interactions through a virtual environment. (3)
Graph Extraction: G is extracted as abstract representations of interaction data. Additionally, we
implement a Parallel Acceleration framework to enhance the efficiency of the simulation process.

Under review as a conference paper at ICLR 2025

3.2 AGENT FORMULATION

To achieve a credible simulation of human behaviors, we adhere to the general paradigm for con-
structing LLM-based Agents (Park et al.|[2023)), each agent a; is equipped with three key components:
Agent Profile, denoted as p;; Memory Stream, denoted as m;; and Action State, denoted as s;.

Agent Profile Previous research (Chan et al., [2024) has shown that persona-enhanced prompting
effectively guides LLMs in generating distinctive role-play synthetic data. To develop agents with
distinct roles, we create agent profiles p;, which store various aspects of human personal information
in textual format. Each agent a; is initialized using its corresponding profile. These profiles are
derived from both real and LLM-generated datasets, with the detailed information provided in
Appendix [A.T] We then construct heterogeneous agents with diverse profiles, enhancing the realism
and scope of our simulations.

Memory Stream Memory stream m; collects activity history of a; in the simulation environment.
The memory component acts as a vital reference, enabling the agent to make informed decisions
based on past actions and interactions within the simulation environment. We organize the memory
stream using reflection (Shinn et al., [2023)) and summarization techniques. This design allows the
agent to adaptively learn from past interactions.

Action State q; is equipped with action state s; its interaction with the environment, which consists
of two states: when s; = Sq¢t, @7 €ngages in interaction; when s; = S;,¢, a; doesn’t.

3.3 PAIRWISE INTERACTION

To construct the graph structure, we collect pairwise interaction data between agents and derive
the graph from it. The data corpus, denoted as C', consists of text outputs generated by the agents,
which also form the environment observed by all agents. For initialization of C, we first transfer seed
graph G into its textual form, denoted as C'. To achieve this, we utilize an environment template 7'
to convert the graph G(V, £, X) into its textual format. We map each vertex v; to a corresponding
real-world entity, creating a set of textual descriptions for each entity [Feng et al.| (2024), details
in Appendix For v;, we consider its neighboring edges E; = {(v;,v;) | v;,v; € V}, which
compasses all edges connecting v; to its neighbors; and the vertex’s text attribute ;. Consequently,
C is represented as:

C={c1,ca,...,cn} where c¢; =T(v;, E;,),

We define this graph-to-text transformation process as the function C = f(G). To model the
graph evolution, we continuously enrich C' by agent-wise interactions. Starting with the initial
corpus Cy = f(G). For the k-th simulation round, C is updated with additional textual-form
graph generated by agents, denoted as Cy. After k rounds, the corpus evolves from C to C”:
C'=CouUCyUCsU---UCy. At below, we illustrate the process of generating Cy. In the k-th
simulation round, two main operations are performed: State Planning and Act with S-RAG.

State Planning In real-world scenarios, human activity exhibits varying levels of frequency. For in-
stance, the user’s activity frequency on online social media typically follows a Pareto distribution (Guo
et al.| 2009). Consequently, we first label the top 20% agents as core, while the remaining agents as
regular based on action history m;. This label is stored in p; (see details in Appendix[A.2)). p; and
my serves as input to the LLM, and each agent determines its action state s; = LLM(a; | p;, m;).

Act with S-RAG To interact with other agents, a; ideally requires access to the complete C' and
choose subset 6; C C as desired environment feedback. However, since |C| scales with the number
of agents IV, which can be extremely large for large-scale interaction simulations, the computational
cost becomes prohibitive due to the context length limitations of LLMs. Fortunately, empirical studies
show that humans hold thresholds for both information processing (Yau et al.,[2020) and information
spreading (Singh et al.| 2013). Consequently, when agent a; decides to act, it is provided with only
partial environmental information, denoted as o; C C. Our objective is to ensure that o; determined
by S-RAG closely aligns with 0;. Following traditional RAG (Cuconasu et al.,|2024) framework,
S-RAG is divided into three processes as shown in Algorithm [T}

(1) Index Process: Given the environment data corpus C' = {¢1, ca, . . ., ¢, }, Where each ¢; is stored
as a text document. we first convert this corpus into a set of embedding vectors E using an embedding
model encoder(+). The process involves transforming each ¢; into d-dimensional vectors through

Under review as a conference paper at ICLR 2025

Algorithm 1 Process of S-RAG for the k-th simulation round.

Require: Interaction Data Corpus C, large language model LLM, Action Template T,
1: Step 1: Index Process
2: & = {encoder(c),c € C},
3. Cf =
4: for ! € [1, N] do

5: if s; == $4ct then Q; = LLM(a; | my, 81 = Sqct)
6: else continue

7: end if

8: Step 2: Query Process

9: o =10,

10: for ¢ € Q; do

11: o] = RECALL(q,O),

12: o] = RERANKING(0{, ay),
13: or.append(o}),

14: end for

15: Step 3: Generation Process

16: ' = LLM(a; £ si,01,my, Ty).
17: CkZCkU{Ck}

18: end for

19: C=CUCy

encoder(-) and subsequently storing these vectors in a vector database |[Douze et al.|(2024):
E= {617 €2,. .. en} where e; = encoder(ci) c Rd

This process constructs a database-based interaction environment for agents, thereby providing them
with environmental information.

(2) Query Process: For agents in an active state, they can freely access environmental information.
For agent a;, obtaining the most relevant information requires first reflecting on its memory m;. This
reflection serves as input to the LLM, for a; to create a query set: @; = LLM(a; | my, $i = Sact)-
For ¢ € @, we first convert ¢ into embedding vector e, = encoder (g). We retrieve the most relevant
information o? for each ¢. This collectively forms the environment feedback o; := {0;17 q € Q}.
The retrieving process of o] is divided into two stages: 1. In Recall stage, we filter out the top NN,
documents using the vector retriever, by measuring the embedding similarity between C and g:
€q " €c
llegll - llecll”

where o] represents the most relevant documents for q. We adopt cosine similarity to form the
similarity function Sim(-). 2. In ReRanking stage, we refine and organize o] according to the
personal preferences of agent a;, which is divided into two phases: (1) Coarse Ranking: we reorder
o/ based on the interaction data from agents labeled as core, which are are prioritized in o]. (2) Fine
Ranking: we reorder oj according to the agents’ personal preference information in p;. For example,
for a; with author role and expertise in Al, documents focused on Al-related topics are prioritized in
o] . Details are provided in Appendix

topk,cc Sim (¢,¢) — of where Sim (g, ¢)

(3) Generation Process: Based on action state s;, memory stream m;, environment feedback o;, the
agent generates textual entity descriptions within the environment. Specifically, we instruct a; to
generate coherent and logical response using LLM guided by an action template 7,. For the k-th
simulation round, the output generated by a; is denoted as ¢*!, which constitute a textual-form graph.
Thus the process can be expressed as c* = LLM(a; | 1,01, mq, Ty).

Finally, m, is updated with c*!, thereby refining a;’s perception of the environment. In summary,
for the k-th simulation round, the formulation process of C; can be mathematically formulated as:
Cy. = concat(ckt ck2 ... V).

3.4 GRAPH EXTRACTION

Through iterative rounds of interaction simulations, we progressively enhance C’ using synthetic
interaction data. Consequently, we can reverse mapping C’ into G’ through regex matching, which

Under review as a conference paper at ICLR 2025

can be formulated as G’ = g(C"). Specifically, for each ¢ € C, we establish three mapping functions
to extract the graph components: (1) corpus-to-node mapping function g, : C' — V. (2) corpus-to-
edge mapping function g. : C' — £. (3) corpus-to-text attribute mapping function g,, : C' — X.
The specific mapping functions are dependent on the target graph type, as detailed in Appendix [A.3]
For example, in a citation network where C' consists of research papers, g,, provides a one-to-one
mapping from each paper ¢ € C' to a node; g. maps all citations within each paper to edges; g, maps
all paper contents to node-wise text attributes. As a result, the subgraph G, generated in the k-th
round can be expressed as:

Gr=GLUGiU...UGY,
G = (9u(e™), 9e (™), 92 (™)), where 1€ [1,2,...,N].

3.5 PARALLEL ACCELERATION

The S-RAG allows us to significantly reduce the interaction rounds between agents. However,
there remains technical barriers in supporting agent interaction simulation at the scale of n = 1¢°.
Additionally, we note that the inference time of LLMs is substantial, leading to prolonged IO wait
times for idle LLM-based agents. Various solutions have been proposed to address this issue, such
as async mechanisms in Langchain (Kansal, 2024) and ACTOR architectures in Agentscope (Gao
et al.||2024). For further acceleration, we propose a Nested ACTOR Parallel Processing Schema (N-
ACTOR). As highlighted by (Clauset et al., 2004), network structures often display tightly connected
communities with loosely connected inter-community links. In the context of GAG, we categorize
agents into distinct groups marked by strong internal interactions and weaker intergroup interactions.
Agent groups can run in parallel on different CPU cores of a computation machine with P ports. The
specific algorithm of N-ACTOR is detailed in the Appendix [A.4]

4 EXPERIMENT

In network science, there has long been an interest in graph structures that emerge within scientific,
technological, and sociological contexts (Leskovec et al., 2007). To assess our framework, we
conduct scenario modeling of these representative domains for graph generation, each illustrating
different types of human activity: (1) Creative Activity (CA): This includes the creation of items
like academic papers. The agent acts as an author to interact with an academic paper database,
producing networks such as Citation, Bibliographic Coupling, Co-Citation, Author Citation, and
Co-Authorship networks (Garfield, 2000). Simulation stops at the citation network reaching le4
nodes. (2) Item Interaction Activity (IA): This includes user-item interactions, including rating
movies, purchasing products and etc. The agent acts as a user interacting with an item database,
producing networks such as the Movie Rating and User Projection networks (Zhou et al., 2007).
Simulation stops at the movie rating network reaching 1e5 edges. (3) Social Activity (SA): This
includes interaction and communication behavior. The agent acts as a user interacting with an online
social media platform database (e.g., Twitter), producing networks such as Follow, Friend, and Action
networks (De Domenico et al.| [2013). The simulation stops after 5 simulation rounds. For each
simulation scenario, we extract corresponding networks from each simulation scenario.

Evaluation Protocol To evaluate the effectiveness of the GAG, we assess three key aspects: First, we
compare the generated graph structures with real-world networks at both macro and micro scales
to verify the similarity between the generated and real-world graph evolution. Next, we evaluate
the effectiveness of text features for the generated graph using a node classification task. Finally,
we assess the scalability of GAG in terms of graph size and generation efficiency. Details on the
evaluation hyperparameters and metrics are provided in Appendix [B.T]

4.1 EVALUATION OF STRUCTURE ALIGNMENT

Unlike traditional and deep learning-based graph generation methods, GAG does not rely on pre-
defined rules or structural distributions from training datasets. Instead, graph structures naturally
emerge from interactions between agents, making the evaluation of these generated structures crucial
for assessing interaction rationality. In this paper, we investigate the generated graph structures from
both macro and micro perspectives: At the macro level, we examine the graph structure dynamics in

Under review as a conference paper at ICLR 2025

the graph evolution, and align our observations with established network science theories. At the
micro level, we use existing graph generation models as baselines to evaluate the effectiveness of
GAG in capturing micro structural metrics of graph evolution.

Macro-Level Evaluation For macro-level structural characteristic alignment, we examine three
structural characteristic observed in real-world networks (Albert & Barabasi,2002): Power-law Distri-
bution, Small-world Phenomenon and Shrinking Diameter. Four additional structural characteristics
are detailed in Appendix [B.2]

(1) Power-law Distribution: The degree distribution of scale-free networks often follows power-law
distribution (Barabasi & Albert, |1999), which is commonly observed in citation networks and social
networks. In simulations with GAG, the generated citation, author-citation, and action networks also
exhibit this characteristic. We adhere to the established criteria for evaluating whether the graph’s
degree distribution follows a power law: Dy < 0.1 (Alstott et al.l [2014). As shown in Figure @,
the degree distribution of these networks follow a Power-law distribution with exponent parameter
a € [1.90, 2.16], closely aligned with « € [2, 3] from empirical studies (Clauset et al.,2009).

Citation Network Author-Citation Network Action Network
1071
10—3 1
Py
10—5 1
10! 102 103 102 103 102 103 10*
Degree k
Log-binned Degree —— Linearly-binned Degree —— Power Law Fit

Figure 2: The Power-law Distribution of degrees in scale-free networks. The degree k is plotted
against the probability density function p; on a log-log scale. o denotes the exponent parameter,
kmin represents the minimum cut-off & (Alstott et al., 2014).

(2) Small World Phenomenon:

Table 1: ¢c of the generated networks, and the ratio to Erdos-Rényi and Barabasi-Albert graph model.
A dash (—) signifies that ¢c = 0 for the graph model.

Ratio to Random Graphs

Citation Bib-Coupling Co-Citation Author Citation Co-Authorship

Erdos-Rényi 301.08 7.46 275.97 39.82 234.81
Barabési-Albert — 4.40 44.87 11.19 17.59

Action Follow Friend Movie Rating User Projection
Erdos-Rényi 78493 3961.83 19768.58 0.00 5.78
Barabdsi-Albert 73.97 443.80 1391.47 0.00 2.82

Real-world networks exhibit a small world phenomenon (Mislove et al., |2007; Watts & Strogatz,
1998)), characterized by a small diameter and a high clustering coefficient. Based on the structure
of the generated graphs, we construct two types of random graphs with consistent average degree:
Erd6s-Rényi (ER) (Erdos et al., |1960) and Barabasi-Albert (BA) graphs (Barabasi & Albert, [1999).
Table |1| compares the average clustering coefficient (¢c) of the generated graphs with that of the
random graphs. The results indicate that generated social networks (i.e., follow, friend, and action
networks), exhibit a significantly higher ¢c than those of the random graphs. Additionally, as shown
in Table the generated networks exhibit a small diameter, D, € [1.17, 11.66], consistent with the
six degrees of separation phenomenon observed in real-world networks (Leskovec et al.,2007; Broder
et al.,[2000). The high ¢éc, combined with small D., confirms these networks exhibit small-world
characteristics.

Under review as a conference paper at ICLR 2025

(3) Shrinking Diameter: The shrinking diameter is a notable phenomenon in social net-
works (Leskovec et al., 2007), with D, decreases as the network evolves over time. We construct SA
with N = 7000, and investigate the graph evolution processes of follow, friend, and action networks
for 30 simulation rounds. We calculate the D, metric for both the generated graphs and real-world
network datasets: CAIDA[H As shown in Figure D, decreases at a slow pace, identical to the
trend observed in (Leskovec et al.,[2007) and CAIDA. To explain shrinking diameter, models such as
the Forest Fire model (Leskovec et al2007) utilize a modified preferential attachment mechanism,
known as community-guided attachment. In GAG, the ReRanking process enhances personalized
recommendations. To assess its impact on graph structure, we conduct an ablation experiment. As
shown in Figure [3b] we observe an initial increase in D, followed by a rapid decline within friend
networks. Notably, upon removing the ReRanking, the D, trends upwards from 2.6 to 2.96, indicating
that ReRanking fosters community-guided attachment and shrinking diameter.

4.51 X\k 20
1
4.0 >

Qm Q1o
3.51
5
3.0
\
| |] 0= | |
0 10 20 0 10 20
Time Time
—— Action Net. Follow Net. =~ —— CAIDA —— w.0. ReRanking w. ReRanking
(a) S-RAG With ReRanking (b) S-RAG Without ReRanking

Figure 3: The Shrinking Diameter phenomenon simulated by GAG; The left figure demonstrates
that as the graph evolves, D, gradually decreases in action and follows networks; The right figure
presents an ablation experiment of the ReRanking, demonstrating its effect on D, in friend network.

Micro-Level Evaluation For micro-level structural characteristic alignment, we examine structural
characteristics of generated graphs. For baselines, we select the efficient graph generation model
for large-scale graph generation. Specifically, we partition the Citeseer network (Sen et al., 2008))
into G« and G based on time ¢t. We then expand the small subgraphs of G; and compare the
generated graphs to the large subgraphs of G';. Details in Appendix [B.3]

Table 2: Comparison with existing graph generation models for graph expansion task. For GRAN
and GraphMaker, the generated graphs fail to converge to a power-law distribution.

MMD.D, MMD.C, MMD.S, MMD.O} Dy a Validt GEM
CiteSeer - - - - 0.0640.0 2.3810.0 1.0 -
Erdos-Rényi 0.26 1.41 0.56 141 0li001 3724013 00 034
Barabdsi-Albert 0.20 1.41 0.26 1.02 0.0410.01 2.38+0.04 1.0 042
Small-World 0.72 1.36 0.59 141 0424001 2.03400 00 032
BiGG 0.63 113 0.65 123 0271001 1.6940.01 00 033
GRAN 0.36 0.55 0.72 1.41 = 416030 00 036
BwR 0.49 1.41 0.66 141 0.0710.09 4.4610.02 00 032
GraphMaker 0.47 1.41 0.83 1.41 - - 0.0 022
L-PPGN 0.76 1.19 0.78 105 0.39:10.05 1.3640.02 00 033
GAG 0.16 0.19 0.32 1.02 0.0840.01 2.37+0.03 1.0 047

We define the Valid metric to measure the proportion of valid power-law expanded graphs and the
GEM metric to evaluate the overall effectiveness of structure alignment in expanded graphs, details in
Appendix [B.3] As shown in Table 2] the expanded graphs by GAG adhere to a power law distribution,
with o = 2.39 close to the seed graph. In contrast, deep-learning-based models tend to overfit
the training graph and fail to generate graphs that follow the power-law distribution effectively.
Surprisingly, GAG outperforms most baseline models in MMD metrics, which is notable given that
no explicit graph structure constraints are provided to the agents. Regarding GEM, GAG surpasses

'https://sparse.tamu.edu/SNAP/as-caida

Under review as a conference paper at ICLR 2025

the best performing baseline by 11%. This suggests that GAG effectively simulates human behavior
patterns, generating graphs that closely resemble structural characteristics of real-world networks.

4.2 EVALUATION OF TEXTUAL-ATTRIBUTE ALIGNMENT

GAG generates text-rich dynamic graphs by collecting interaction data among various agents, sim-
ulating the process of gathering textual features for real-world networks. To evaluate whether the
generated graphs preserve the text-structure correlations of the seed graph, we adopt Graph Neural
Networks (GNNs) benchmarking tasks of node classification |Yoon et al.| (2023). Specifically, we
employ different Graph Neural Networks (GNNs) to train on both G’ and G for the node classification
task, measuring the accuracy gap between the two. We denote the accuracy of the GNN on G as
Accyp, and the accuracy on G’ as Acc. The accuracy gap is calculated as AAce = |Ace — Aceyl,
which measures the fidelity of GAG in preserving the text-structure of G; a smaller A Acc indicates
better preservation. For benchmarking, we select four representative GNN architectures and construct
graphs with eight distinct relationships between graph structures and textual features. Details of the
experimental setup are provided in Appendix [C]

Table 3: Benchmarking different graph generation models on node classification task.

AACC |
GAT GCN GCN2 GraphSage

SF.random 13.413.52 15-04i1.99 9-58i0.88 7-0i0492

F.random 24-11:|:2.84 23-2:t2.25 9~33:t1.36 7.13;&1_73
S.random 18.85i2.55 21-77i2.04 2-24i1.58 3~15i1.84
BiGG+LLM 39.394451 34-0616.62 4.73i4_43 3.3843.54
GRAN+LLM 5.3113.63 6.0845.12 3.464339 4.3549.47
BwR+LLM 35.28i2.91 38-52i4.68 4.83i4,47 7~59i4.30
GraphMaker+LLM 4.0413.49 2.83i4_02 3.5914_24 4-17i4.03
L-PPGN+LLM 38.3946.39 32.644346 3.964362 3.85+3.75
GAG 2.26i1,19 3.6141 32 0-49i1.50 0-09i1.74

As shown in Table[3] the random baselines perform the worst, highlighting the importance of the
tight coupling between graph text attributes and graph structure. Existing models such as GRAN
and GraphMaker demonstrate strong performance in GNN benchmarking tasks, consistent with the
findings in|Li et al|(2024a)). However, GAG consistently outperforms these baselines, achieving an
average improvement of 1.45 in A Acc across GNNs, with A Acc values ranging from 0.09 to 3.61.
These results demonstrate GAG’s effectiveness in capturing intricate teFor the LLM backbone, we
have chosen the open-source model of xt-structure correlations.

4.3 SCALABILITY OF GAG

GAG excels at generating graphs that closely resemble real-world network characteristics, while
maintaining high efficiency throughout the generation process. Here, we verify its efficiency by
examining both the scale of the graph generated and the running time.

Graph Generation Scale In addition to expanding seed graphs, GAG can generate graphs from
scratch using LLM-generated agent profiles, eliminating the need for external data collection. We
employ this method to generate social networks and produce networks with nearly 100,000 nodes
while expanding bibliographic coupling networks to 12.2 million edges. While existing models
typically limit graph generation to a maximum of 5,000 nodes (Bergmeister et al., 2024} |Liao et al.,
2019)), specialized models designed for sparse large graphs can only generate simple grid-structure
graphs with up to 100,000 nodes (Dai et al.,[2020). This highlights the capability of GAG to support
large-scale agent interaction simulation so as to model large-scale graph evolution. E] As shown

’To intuitively illustrate the graph evolution process modeled by GAG, we choose the SA simulation
scenario and visualization in https://anonymous.4open.science/r/GraphAgent-2206/visualization/
social_network.mp4

https://anonymous.4open.science/r/GraphAgent-2206/visualization/social_network.mp4
https://anonymous.4open.science/r/GraphAgent-2206/visualization/social_network.mp4

Under review as a conference paper at ICLR 2025

Table 4: The structural metrics for graphs generated by GAG.

Citation Bib-Coupling Co-Citation Author Citation Co-Authorship

[V| 1.14e+04 1.09¢e+04 3.93e+03 5.01e+03 5.01e+03
€] 3.63e+04 1.22e+07 3.27e+04 2.41e+05 2.08e+04
cc 0.08 0.77 0.59 0.38 0.20
r -0.10 0.09 -0.10 -0.18 0.32
D, 5.19 2.94 3.89 3.44 5.77
Action Follow Friend Movie Rating User Projection
[V| 9.97e+04 9.96e+04 9.96e+04 4.17e+03 3.91e+03
€] 9.07e+05 1.53e+06 5.01e+05 3.25e+04 9.04e+05
ce 0.07 0.61 1.00 0.00 0.34
r -0.03 0.06 0.59 -0.54 -0.11
D. 279 2.85 11.66 2.98 1.17

in Table[d] we calculate the structural metrics of all generated networks. Similar to the assortative-
mixing patterns discovered in real-world networks (Newman, [2002), the citation network exhibits
negative assortativity, whereas the co-authorship network displays positive assortativity.

Graph Generation Efficiency We evaluate efficiency by measuring the impact of the number of
agents (/NV) and the number of ports (P) on the runtime of the framework, specifically the time
required to generate a single interaction. Tests are conducted on a machine with 96 CPU cores and
376GB of memory. As shown in Table[5] when P is held constant, the time to generate one interaction
data decreases as N increases. The most significant time reduction observed in the CA simulation,
where agents are grouped by paper authorship, which maximizes the efficiency of the N-ACTOR
component. Conversely, as shown in Table[6] when N remains constant, the time to generate a single
c decreases as P increases. Notably, the time decreases by 90.4% when P > 1 compared to P = 1
at least, demonstrating the acceleration effectiveness of N-ACTOR component.

Table 5: The time cost (min) of agents for gener- Table 6: The time cost (min) of 40 agents for

ating one interaction data with P = 24. generating one interaction data with different P.
N CA IA SA P CA IA SA
5 02700 0.0150 0.0120 1 3.6250 0.0683 0.0623
10 0.2300 0.0112 0.0119 4 0.1470 0.0068 0.0112
20 0.1700 0.0052 0.0119 16 0.1160 0.0053 0.0109
40 0.0910 0.0054 0.0060 24 0.0910 0.0054 0.0060
5—40 1663% |64.0% |50.0% 1—24 197.5% 1921% [90.4%

5 CONCLUSION

In this study, we present GAG, a novel and general framework designed for generating large-scale
graphs with human behavior simulation. Our comprehensive experiments show that GAG can
generate large-scale graphs with high quality and efficiency, with specified focus on graphs arise from
scientific, technological and sociological context. The generated graphs exhibit seven macro-level
characteristics of real-world networks, including power law, small world and shrinking diameter. In
the citation network expansion task, GAG demonstrates superior performance compared to existing
deep-learning-based graph generation methods in accurately capturing the power-law distribution
property. Furthermore, we present the S-RAG algorithm for simulating diverse human interaction
processes at scale, complemented by the N-ACTOR for parallel acceleration, achieving a speed-up of
at least 90.4%. Our framework successfully produces high-quality graphs with up to nearly 100,000
nodes or 10 million edges. Overall, GAG serves as a promising step towards efficient large-scale
human interaction simulation and graph generation.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-1lama/llama3/blob/
main/MODEL_CARD.md.

Réka Albert and Albert-Laszl6 Barabasi. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Jeff Alstott, Ed Bullmore, and Dietmar Plenz. powerlaw: a python package for analysis of heavy-tailed
distributions. PloS one, 9(1):e85777, 2014.

Albert-Laszl6 Barabési and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509-512, 1999.

Andreas Bergmeister, Karolis Martinkus, Nathanaél Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
2XkTz7gdpc.

Andreas Bergmeister, Karolis Martinkus, Nathanaél Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. s.l., 2024-05. OpenReview. 12th
International Conference on Learning Representations (ICLR 2024); Conference Location: Vienna,
Austria; Conference Date: May 7-11, 2024; Poster presentation.

Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie
Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the web. Computer Networks, 33(1):
309-320, 2000. ISSN 1389-1286. doi: https://doi.org/10.1016/S1389-1286(00)00083-9. URL
https://www.sciencedirect.com/science/article/pii/S1389128600000839.

Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation with
1,000,000,000 personas, 2024. URL https://arxiv.org/abs/2406.20094.

Serina Chang, Alicja Chaszczewicz, Emma Wang, Maya Josifovska, Emma Pierson, and Jure
Leskovec. Llms generate structurally realistic social networks but overestimate political homophily,
2024. URL https://arxiv.org/abs/2408.16629.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=EHg5GDnyql.

Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure in very
large networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 70(6):066111,
2004.

Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in empirical
data. SIAM review, 51(4):661-703, 2009.

Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campagnano,
Yoelle Maarek, Nicola Tonellotto, and Fabrizio Silvestri. The power of noise: Redefining retrieval
for rag systems. In Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2024. ACM, July 2024. doi: 10.1145/3626772.
3657834. URL http://dx.doi.org/10.1145/3626772.3657834.

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative modeling
for sparse graphs. In International conference on machine learning, pp. 2302-2312. PMLR, 2020.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. The anatomy of a scientific
rumor. Scientific reports, 3(1):2980, 2013.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://openreview.net/forum?id=2XkTz7gdpc
https://openreview.net/forum?id=2XkTz7gdpc
https://www.sciencedirect.com/science/article/pii/S1389128600000839
https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2408.16629
https://openreview.net/forum?id=EHg5GDnyq1
http://dx.doi.org/10.1145/3626772.3657834

Under review as a conference paper at ICLR 2025

Giordano De Marzo, Luciano Pietronero, and David Garcia. Emergence of scale-free networks in
social interactions among large language models. arXiv preprint arXiv:2312.06619, 2023.

Nathaniel Lee Diamant, Alex M Tseng, Kangway V Chuang, Tommaso Biancalani, and Gabriele
Scalia. Improving graph generation by restricting graph bandwidth. In International Conference
on Machine Learning, pp. 7939-7959. PMLR, 2023.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library, 2024. URL https:
//arxiv.org/abs/2401.08281.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17-60, 1960.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, WWW 19, pp. 417-426,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366748. doi:
10.1145/3308558.3313488. URL https://doi.org/10.1145/3308558.3313488|

Jiarui Feng, Hao Liu, Lecheng Kong, Yixin Chen, and Muhan Zhang. Taglas: An atlas of text-
attributed graph datasets in the era of large graph and language models, 2024. URL https:
//arxiv.org/abs/2406.14683.

James H. Fowler and Nicholas A. Christakis. Cooperative behavior cascades in human social
networks. Proceedings of the National Academy of Sciences, 107(12):5334-5338, 2010. doi: 10.
1073/pnas.0913149107. URL https://www.pnas.org/doi/abs/10.1073/pnas.@913149107.

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and Yong
Li. Large language models empowered agent-based modeling and simulation: A survey and
perspectives. arXiv preprint arXiv:2312.11970, 2023.

Dawei Gao, Zitao Li, Weirui Kuang, Xuchen Pan, Daoyuan Chen, Zhijian Ma, Bingchen Qian, Liuyi
Yao, Lin Zhu, Chen Cheng, et al. Agentscope: A flexible yet robust multi-agent platform. arXiv
preprint arXiv:2402.14034, 2024.

Eugene Garfield. The web of knowledge: a festschrift in honor of Eugene Garfield. Information
Today, Inc., 2000.

Lei Guo, Enhua Tan, Songqing Chen, Xiaodong Zhang, and Yihong Zhao. Analyzing patterns of
user content generation in online social networks. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 369-378, 2009.

F. Maxwell Harper, Joseph A. Konstan, and Joseph A. The movielens datasets: History and context.
ACM Trans. Interact. Intell. Syst., 5:19:1-19:19, 2016. URL https://api.semanticscholar,
org/CorpusID:16619709.

Bruce Hendrickson and Tamara G Kolda. Graph partitioning models for parallel computing. Parallel
computing, 26(12):1519-1534, 2000.

Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for artificial
intelligence. In Proceedings of the 3rd International Joint Conference on Artificial Intelligence,
ICAT’ 73, pp. 235-245, San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

Nathan O. Hodas, Farshad Kooti, and Kristina Lerman. Friendship paradox redux: Your friends are
more interesting than you, 2013. URL |https://arxiv.org/abs/1304.3480.

Don H Johnson. Signal-to-noise ratio. Scholarpedia, 1(12):2088, 2006.
Aarushi Kansal. LangChain: Your Swiss Army Knife, pp. 17-40. Apress, Berkeley, CA, 2024. ISBN

979-8-8688-0205-8. doi: 10.1007/979-8-8688-0205-8_2. URL https://doi.org/10.1007/
979-8-8688-0205-8_2,

12

https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2401.08281
https://doi.org/10.1145/3308558.3313488
https://arxiv.org/abs/2406.14683
https://arxiv.org/abs/2406.14683
https://www.pnas.org/doi/abs/10.1073/pnas.0913149107
https://api.semanticscholar.org/CorpusID:16619709
https://api.semanticscholar.org/CorpusID:16619709
https://arxiv.org/abs/1304.3480
https://doi.org/10.1007/979-8-8688-0205-8_2
https://doi.org/10.1007/979-8-8688-0205-8_2

Under review as a conference paper at ICLR 2025

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Trans. Knowl. Discov. Data, 1(1):2—es, mar 2007. ISSN 1556-4681. doi:
10.1145/1217299.1217301. URL https://doi.org/10.1145/1217299.1217301,

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for “mind” exploration of large language model society. NIPS °23,
2023.

Mufei Li, Eleonora Kreaci¢, Vamsi K. Potluru, and Pan Li. Graphmaker: Can diffusion models
generate large attributed graphs? Transactions on Machine Learning Research, 2024a.

Nian Li, Chen Gao, Mingyu Li, Yong Li, and Qingmin Liao. EconAgent: Large language model-
empowered agents for simulating macroeconomic activities. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 15523—15536, Bangkok, Thailand,
August 2024b. Association for Computational Linguistics. URL https://aclanthology.org/
2024 .acl-1long.829.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32, 2019.

Stratis Limnios, Praveen Selvaraj, Mihai Cucuringu, Carsten Maple, Gesine Reinert, and Andrew
Elliott. Sagess: Sampling graph denoising diffusion model for scalable graph generation, 2023.
URL https://arxiv.org/abs/2306.16827.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows.
Advances in Neural Information Processing Systems, 32, 2019.

Karolis Martinkus, Andreas Loukas, Nathanaé&l Perraudin, and Roger Wattenhofer. Spectre: Spec-
tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
International Conference on Machine Learning, pp. 15159-15179. PMLR, 2022.

Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby Bhattacharjee.
Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pp. 29—-42, 2007.

Xinyi Mou, Zhongyu Wei, and Xuanjing Huang. Unveiling the truth and facilitating change: Towards
agent-based large-scale social movement simulation. arXiv preprint arXiv:2402.16333, 2024.

M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, Oct 2002. doi:
10.1103/PhysRevLett.89.208701. URL https://link.aps.org/doi/10.1103/PhysRevLett.
89.208701.

Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi, Hung Viet Nguyen,
Jafar Al-Kofahi, and Tien N Nguyen. Graph-based pattern-oriented, context-sensitive source code
completion. In 2012 34th International Conference on Software Engineering (ICSE), pp. 69-79.
IEEE, 2012.

OpenAl. Gpt-4 technical report, 2023.

Xuchen Pan, Dawei Gao, Yuexiang Xie, Zhewei Wei, Yaliang Li, Bolin Ding, Ji-Rong Wen,
and Jingren Zhou. Very large-scale multi-agent simulation in agentscope. arXiv preprint
arXiv:2407.17789, 2024.

Marios Papachristou and Yuan Yuan. Network formation and dynamics among multi-llms. arXiv
preprint arXiv:2402.10659, 2024.

13

https://doi.org/10.1145/1217299.1217301
https://aclanthology.org/2024.acl-long.829
https://aclanthology.org/2024.acl-long.829
https://arxiv.org/abs/2306.16827
https://link.aps.org/doi/10.1103/PhysRevLett.89.208701
https://link.aps.org/doi/10.1103/PhysRevLett.89.208701

Under review as a conference paper at ICLR 2025

Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. Social simulacra: Creating populated prototypes for social computing systems. In
Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST
’22, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393201.
doi: 10.1145/3526113.3545616. URL https://doi.org/10.1145/3526113.3545616.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the
36th Annual ACM Symposium on User Interface Software and Technology, UIST ’23, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701320. doi:
10.1145/3586183.3606763. URL https://doi.org/10.1145/3586183.3606763.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.10084.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. Al Mag., 29(3):93-106, 2008.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 2023.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning—ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part 127, pp. 412-422. Springer, 2018.

P. Singh, S. Sreenivasan, B. K. Szymanski, and G. Korniss. Threshold-limited spreading in social
networks with multiple initiators. Scientific Reports, 3(1), July 2013. ISSN 2045-2322. doi:
10.1038/srep02330. URL |http://dx.doi.org/10.1038/srepd2330.

Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The anatomy of the facebook
social graph. arXiv preprint arXiv:1111.4503,2011.

Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In Proceedings of the 11th International
Conference on Learning Representations, 2023.

Duncan J Watts and Steven H Strogatz. Collective dynamics of small-world’ networks. nature, 393
(6684):440-442, 1998.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
NIPS 22, 2022.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu,
Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin
Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Yang Yao, Xin Wang, Zeyang Zhang, Yijian Qin, Ziwei Zhang, Xu Chu, Yuekui Yang, Wenwu Zhu,

and Hong Mei. Exploring the potential of large language models in graph generation. arXiv
preprint arXiv:2403.14358, 2024.

14

https://doi.org/10.1145/3526113.3545616
https://doi.org/10.1145/3586183.3606763
https://arxiv.org/abs/1908.10084
http://dx.doi.org/10.1038/srep02330
https://arxiv.org/abs/2407.10671

Under review as a conference paper at ICLR 2025

Y Yau, M Dadar, M Taylor, Y Zeighami, L K Fellows, P Cisek, and A Dagher. Neural Correlates
of Evidence and Urgency During Human Perceptual Decision-Making in Dynamically Changing
Conditions. Cerebral Cortex, 30(10):5471-5483, 06 2020. ISSN 1047-3211. doi: 10.1093/cercor/
bhaal29. URL https://doi.org/10.1093/cercor/bhaal29.

Minji Yoon, Yue Wu, John Palowitch, Bryan Perozzi, and Russ Salakhutdinov. Graph genera-
tive model for benchmarking graph neural networks. In Proceedings of the 40th International
Conference on Machine Learning, pp. 40175-40198, 2023.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating

realistic graphs with deep auto-regressive models. In International conference on machine learning,
pp- 5708-5717. PMLR, 2018.

Tao Zhou, Jie Ren, Matiis Medo, and Yi-Cheng Zhang. Bipartite network projection and personal

recommendation. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 76(4):
046115, 2007.

15

https://doi.org/10.1093/cercor/bhaa129

Under review as a conference paper at ICLR 2025

A DETAILS OF GAG

A.1 AGENT FORMULATION

To demonstrate the versatility of the GAG Framework, we build three graph generation tasks for
different human activities in our experiments, the concrete settings are as follows: (1) CA: In this
scenario, agents act as authors interacting with a paper database and generate the following networks:
Citation, Bibliographic Coupling (Bib-Coupling), Co-Citation, Author Citation, and Co-Authorship
networks (Garfield, 2000). (2) TA: In this scenario, agents act as reviewers interacting with both
online movie databases and offline movie databases and generate the following networks: the Movie
Rating and the User Projection networks (Zhou et al.,[2007). (3) SA: In this scenario, agents act as
users interacting with a Twitter-like online social media database and generate the following networks:
Follow, Friend, and Action networks (De Domenico et al.,[2013)).

For agent construction, we use both real and LLM-craft data for agent profiles. Since the original
datasets lack certain node attributes (e.g., Citeseer is missing author information and article content),
we crawl for the necessary node attributes to enrich text attributes for Citeseer [Sen et al.| (2008)).
In addition, we use handcraft instruction and COT (Wei et al., [2022)) to guild LLM in generating
synthetic agent profiles.

For various simulation scenarios, we develop agents assigned distinct roles, including paper authors,
movie watchers, and Twitter users. These agents interact with an environment modeled on historical
interaction data. Specific details of the settings are provided in Table

For the LLM backbone, we have chosen the open-source model of Llama-3-70BAI@Meta) (2024)) for
the large-scale graph generation in macro-level structure alignment and textual-attribute alignment
experiments. For micro-level structure alignment, we select the closed-source model of GPT-3.5-turbo
for a more accurate simulation of human behaviors. Additionally, we selectReimers & Gurevych
(2019)[|as the encoder in S-RAG.

Table 7: The Agent Settings and Interaction Data Types for Different Simulation Scenarios.

Scenario | Agent Profile Agent Role Environment Data Action Type

Citeseer (Sen et al.|[2008), Paper Author Papers Paper Writing
Cora (Sen et al.|[2008)
LLM-Generated

CA
‘ Movielens (Harper et al.|[2016), Movie Watcher Movies Movie Rating

1A LLM-Generated
SA LLM-Generated Twitter User Tweets Tweet Sending

A.2 PAIRWISE INTERACTION

State Planning In online social media, there is a significant difference in the influence of content
shared by core users versus general users (Mislove et al.,[2007; |Mou et al., [2024)). According to the
Pareto distribution, core users should constitute approximately 20% of the total users in the current
social network. We denote the agents labeled as core as HU B, as a result, the proportion of these
agents is |[HU B|/|V|. To investigate this, we adjust the proportion of agents labeled as core. Details
in Appendix

Act with S-RAG We define the environment template 7" to transform each node in text-attributed
graph into a natural language representation. For instance, in a citation network, graph nodes represent
academic papers, whereas in a movie-rating network, they represent movies. This graph-to-text
transformation process leverages the node features and optionally considers edge features to enhance
the representation. To better illustrate this process, we present the environment template 7" for various
simulation scenarios below:

3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

16

Under review as a conference paper at ICLR 2025

Table 8: The environment prompt template for CA

Node Feature (v;, z;): Academic paper.

Title: <Title>

Topic: <Topic>

Abstract: <Abstract>

Author: <Author>.

Edge Feature (F;): The citation papers of paper v;.

Table 9: The environment prompt template of movies for RA

Node Feature (v;, z;): Movie.
Title: <Title>

Genres: <Genres>

Content: <Movie Abstract>
Movie Rating: <Movie Rating>
Edge Feature (F;): NULL.

Table 10: The environment prompt template of movies for SA

Node Feature (v;, z;): Tweets.
Tweet ID: <Tweet ID>

User: <Tweet User>

Tweet: <Tweet Content>
Edge Feature (F;): NULL.

17

Under review as a conference paper at ICLR 2025

To identify the most relevant information to a;, we propose the S-RAG algorithm. For detailed
explanation of the query process in S-RAG:

In the recall stage, we initially retrieve o? as the candidate documents for a;, which serves as the
initial environmental feedback. This step we filter out N,. candidate documents.

In order to align o] with agent’s personal preference more accurately, we adopt the reranking stage
for post-processing of of, which is divided into two phases: (1) Coarse Ranking: We reorder o]
based on whether the interaction data was generated by agents labeled as core. Candidate documents
originating from core agents are positioned at the forefront of o}, while those from non-core agents
are placed towards the end. (2) Fine Ranking: We further reorganize o] based on the personal
preferences of the agents, as represented by p;. For CA simulation, the filter items include topics of
the academic papers; for RA simulation, the filter items include movie genres; and for SA simulation,
the filter items include attributes of posted tweets, such as friends, topics, and follows. Ablation study
on the filter items is detailed in Appendix.

Assuming we add k agents to the GAG framework per round and aim to ultimately include N agents,
it would require % simulation rounds. In the j-th round, the number of agents within GAG would
be N’ = k x j. Without S-RAG, if we assume each of these N’ agents needs to interact pairwise,
the interaction number for one agent to interact with all others is O(N'). Thus, the total interaction
number for N’ agents interacting pairwise is O(N'?). Therefore, the total pairwise interaction number
can be expressed as:

O(k* + (2k)? + ...+ (Zk)) = O(N?)

sy rl Y el QL I

0.8

1] J 1 |
IIIII III mi . _ N RN BN]
1 []
-0.6
| DO | | I n
i :
3
1 M | £
>
[I 1 [| | 1 1 04
mana ‘I]
1 1 1 S
|
1 III- g 1 IIII i m 1 II mnn
0.2
I 1 1B | 1 | 1
11n nj | | 1
1 1
1 T 1
| IIH 11 1 n 1
0.0
1 || II 1
m e | | [|

Figure 4: The cosine similarity between the embedding vectors of ¥ and V', where V' represents the
embedding vectors of queries from different agents and F represents the embedding vectors of texts
within the database.

As illustrated in FigH] the agents’ queries are only relevant to a small subset of C, i.e. each agent
interacts with only a limited number of other agents. S-RAG filters out a subset C C C of agents,
where |C| = N,.. Hence, the interaction number of one agent is reduced to O(N,.), for N’ agents
to interact pairwise is O(N’ x N,.). Consequently, the general interaction number in the whole
simulation process is:

N
O(kxNT+2k><NT—|—...+?k><NT):O(NQ)

Thus, the incorporation of S-RAG significantly reduces the pairwise interaction number from O(N?3)
to O(N?) during the complete simulation process.

18

Under review as a conference paper at ICLR 2025

A.3 GRAPH EXTRACTION

In each simulation scenario, agents are exposed to different types of environmental information,
which subsequently influences their activities. Prompted by 7,, agents are instruct to generate textual
representations of graphs.

By employing reverse regular matching, we can extract the corresponding node and edge information.
Depending on the specific simulation scenario, the Action Template T, are defined as follows:

Table 11: The process of Paper Writing for a; in CA

Action Template (7,)

Agent Profile: <Agent Profile>

Agent Memory: <Agent Memory >

Environment Observation: Partial Environmental Feedback provided by S-RAG, denoted
as o0;. Abstract information for searched papers.

Human Instruction: A papar should include the following attributes:

title: The title should be concise yet descriptive, providing a clear indication of the paper’s
topic and scope. This can be different from your topic, It is relatively accurate and clear.
keywords: These are specific terms or phrases that encapsulate the core topics of your paper.
Keywords make your paper searchable within academic databases and help readers quickly
understand the paper’s focus areas.

abstract: The abstract is a brief summary of your research paper. It should provide an
overview of the research question, methodology, results, and conclusions.

citations: A list of the paper names you want to cite.

Now write a version of your paper and cite the papers you need to cite.

Respond Example
Node Features: Academic paper. Title, Keywords, Abstract.
Edge Features: Citation papers.

Table 12: The process of Movie Rating in IA

Action Template (7},)

Agent Profile: <Agent Profile>

Agent Memory: <Agent Memory>

Environment Observation: Partial Environmental Feedback provided by S-RAG, denoted
as o;. Abstract information for searched movies.

Human Instruction: You should give your rating scores to the movies ...

Respond Example
Node Features: NULL.
Edge Features: Movie ratings.

In various simulation scenarios, we progressively enrich the set C' and subsequently extract different
graph structures from it. This results in the mapping functions g, : C' — V, g, : C — &, and
gz 1 C — X.

In the context of CA, following action template 7, defined in Table [T} each time the agent generates
a paper. The LLM-based agents act as authors and C' stores the papers. To fold graphs from the
pair-wise interaction process, we define the following mapping functions:

19

Under review as a conference paper at ICLR 2025

Table 13: The process of Tiveet Sending in SA

Action Template (7,)

Agent Profile: <Agent Profile>

Agent Memory: <Agent Memory>

Environment Observation: Partial Environmental Feedback provided by S-RAG, denoted
as 0;. Abstract information for searched tweets.

Human Instruction:

You can perform [Retweet/Reply/Tweet] action on these tweets. Additionally, you can follow
the bloggers of these tweets:

Retweet: Retweet the tweet

Reply: Reply to the tweet

Tweet: Send a tweet

Respond Example
Node Features: Tweets. Tweet contents. Tweet Topics.
Edge Features: Actions to other tweets (retweet, reply, follow).

1. Citation Network: Let V represent the set of papers, E denote the citation relationships
between papers, and X signify the attributes of each paper.

2. Bib Coupling: Let V represent the set of papers, E represents the relationships where two
papers cite the same reference, and X encompasses the attributes of the papers.

3. Co-citation: Let V represent the set of papers, E indicates the relationships where two
papers are cited by the same paper, and X includes the attributes of the respective papers.

4. Author Citation: Let V represent the set of authors, E depicts the citation relationships
among authors, and X refers to the attributes of each author.

5. Co-Authorship: Let V' represent the set of authors, E illustrates the collaborative relation-
ships between authors, and X characterizes the attributes of each author.

In the context of RA, following action template 7T}, defined in Table |12} each time the agent generates
a movie rating. The LLM-based agents act as movie watchers and C stores the movies. To fold
graphs from the pair-wise interaction process, we define the following mapping functions:

1. Movie Rating: Let V represent the watchers and the movies, E denote the movie ratings.
For movie watchers, X correspond to the attributes of movie watchers; for movies, X
correspond to the attributes of movies.

2. User Projection: In this setup, V' consists of movie watchers, E refers to the number of
movies rated jointly by two movie watchers, and X encompasses the attributes of the movie
watchers.

In the context of RA, following action template 7, defined in Table [I3] each time the agent generates
a tweet. The LLM-based agents act as tweet users and C stores the tweets. To fold graphs from the
pair-wise interaction process, we define the following mapping functions:

1. Action: Let V represent users, E denote the edges indicating tweets exchanged between
two users, and X represent user attributes.

2. Follow: Let V represent users, I2 denote the edges indicating tweets that establish a follow
relationship between two users, and X represent user attributes.

3. Friend: Let V represent users, &/ denote the edges indicating tweets that establish a friend
relationship between two users, and X represent user attributes.

20

Under review as a conference paper at ICLR 2025

A.4 PARALLEL ACCELERATION

In order to further speed up the simulation process of GAG, we propose a Nested ACTOR Parallel
Processing Schema for Agents (N-ACTOR) based on traditional ACTOR architecture (Hewitt et al.,
1973). (Clauset et al.l |2004) highlights that network structure often exhibits tightly connected
communities with loose inter-community connections, so we decompose the agents into different
groups and run them in parallel.

Algorithm 2 Nested ACTOR Parallel Processing Schema for Agents

Require: a; € {a1,aq,...,an}, Batch size B

1: Initialization:

2: g < ay,

3: INITIALIZE message queues MY for g,

4: Number of batches K = [¥],

5: 8 Uf:19kb for k € {1,...,K},

6: INITIALIZE message queues M, for sy,

7: Message Handling:

8: for each supervisor actor s in parallel do

9: for each general actor gy, under sy, in parallel do
10: Process messages in MY,
11: Update state of gxp,
12: Send messages to other general actors gy, via MY,
13: end for
14: Process messages in M?®,
15: Update state of s,

16: Send messages to other supervisor actor via M ?®,
17: end for

N-ACTOR Architecture The objective of N-ACTOR is to divide [V agents into % batches of size
B, allowing for parallel execution between batches. As illustrated in Algorithm 2] the process includes
two steps: (1) Initialization: Following ACTOR, we define actor as the instantiated encapsulation
of an agent. To facilitate batch parallelization of agents, we introduce two types of actors: general
actor, denoted as g € GG, and supervisor actor, denoted as s € S. Different actors leverage different
CPU cores of the computational machine. Let P denote the number of ports. Each supervisor actor
s manages B number of g, thus|S| = %. (2) Message Handling: Traditional ACTOR employs a
message queue for agents’ execution of message processing, state updating, and message sending
in parallel. (Clauset et al.,2004) highlights that network structure often exhibits tightly connected
communities with loose inter-community connections, N-ACTOR introduces two levels of parallel
message processing: Within each batch, s can perform parallel message processing through M?;
Between different batches, g first aggregates messages for all g within the batch and performs inter-
batch parallel message processing through M9. As shown in Figure[5] ¢ only needs to wait for the
IO time of B general actors instead of N.

B EVALUATION OF STRUCTURE ALIGNMENT

B.1 GRAPH STRUCTURE METRICS

To measure the structural characteristics of graph, we use the following structural metrics:
(1) |V|: measures the node number of graph G.
(2) |€]: measures the edge number of graph G.

(3) cc: average clustering coefficient, quantifies the degree to which nodes in a graph tend to cluster
together[]

*https://en.wikipedia.org/wiki/Clustering_coefficient.

21

Under review as a conference paper at ICLR 2025

f \
1 1
1 1
Superviso 1 ! o(C
L s M) «©
L7 N D4 N g
{/ """""""""""""" \:
General ! ! oD
Actors || | 8 812 S | &n 22 Bi1 82 Eib D)
1 1
\]
N, 4

Intra-Batch Parallel

— 5 ——

Figure 5: N-ACTOR Network Topology

(4) r: assortativity, measures the similarity of connections in the graph concerning the node degree. E|

(8) D,: effective diameter, defined as the minimum number of hops in which a certain percentage
(typically 90% or 95%) of all connected node pairs can be reached.

B.2 MACRO-LEVEL EVALUATION

Periodic Variation of Degree In the simulation scenario of A, we filter the review data from
the Movielens-25M dataset based on the movies listed in the Movielens-1M dataset. We select
the top 10 ratings for each user and discover a noteworthy phenomenon: the number of reviews
in the rating network exhibits periodic fluctuations over time. By scraping the release dates of the
movies and plotting their release frequency, we observe that the periodicity in the release frequency is
consistent with the fluctuations in the number of reviews. To quantify the periodicity, we selected the
signal-to-noise ratio (SNR) (Johnson, 2006) as our metric, considering an SNR greater than 10 dB to
indicate strong periodicity and reliability. Furthermore, we observe that the degree of the generated
rating graph also exhibits periodic variations consistent with the release dates of the movies. As
illustrated in Figure [} the SNR of the degree of the rating graph is 12.79 dB, surpassing the 10 dB
threshold, thus demonstrating significant periodic fluctuations.

Emergent of GCC In online social networks, nodes with higher degrees grow larger over time and
eventually manifest a giant connected component (GCC) (Mislove et al., 2007). As illustrated in
Figure[7] the proportion of the largest connected component rows steadily over time, indicating the
emergence of a giant community within the social network. The network is generated by with 7000
agents.

Friendship Paradox An interesting and somewhat counterintuitive phenomenon in real-world
social networks is that everyone you follow or who follows you tends to have more friends and
followers than you do. This phenomenon has been observed in both Twitter (Hodas et al.,[2013)) and
the social network of Facebook (Ugander et al., 2011), applying to more than 98% of the nodes. As
shown in Figure[§] the friendship paradox is most evident in the friend network, with over 90% of the
nodes lying above the y = x line, indicating that most users have fewer friends than their friends do.
The network is generated by 5 rounds of simulation with 1e5 agents.

>https://en.wikipedia.org/wiki/Assortativity

22

Under review as a conference paper at ICLR 2025

10 , 1.0
Los i Ho.8
x X
k) 5
L0.6 S 062
2 S
b= b=
o o
¢ §
toa g 0.4 £
- | ‘ I ‘ -
b i il S | Ll 1]
Time Time
Frequency Spectrum for k Frequency Spectrum for k
1 Degree Distribution (k), SNR = 15.89 dB 351 —1 Degree Distribution (k), SNR = 12.79 dB
3.0 1 ’
3.0
2.5 1
2.5
v 2.0 o
E 5 2.0
a3 -
15
£ £1s
1.0 104
ool [JUHRAmnY ool |
0.0 0.1 0.2 03 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
(a) Movielens Rating Network (b) Generated Rating Network

Figure 6: Periodic Variation of Degree in Movie Rating Network; Figure @ shows the number of
released movies over time and the degree of the movie rating network over time in MovieLens dataset;
Figure [6b] also shows the number of released movies and the degree of the movie rating network over
time in GAG.

Relative Size of Connected Component

1.0
0.8

[}

N

» 0,64

[}

2

<

< 0.4

~ —e— Action Network
0.2 Follow Network

4 b —o— Friend Network

0.0

Time

Figure 7: The proportion of the largest connected component grows steadily over time.

23

Under review as a conference paper at ICLR 2025

30

E : 1

H "t
: ’
:
: L
: '
H]1:
e

ot

[3 o I 5 £] 50 100 %0 20 [R A L)

200 200

egree

£ 150

ighbor De

Average N
‘ '-Iv"i
2
o8
LN
PN

2100 2

20

Average Neighbor Degree
Average Neighbor Degree

.
HE
[itii
0

5
Node Degree Node Degree Node Degree

(a) Action Network (b) Follow Network (c) Friend Network

Figure 8: The Friendship Paradox phenomenon in online social networks; The figures show the
average degree of node neighbors v.s. the average degree of node itself in social networks.

0.7
7.0

0.6
6.5

0.5
6.0

0.4

w55 1S}
O
e 0.3
5.0
0.2
45
0.1
4.0
0.0
0.025 0050 0075 0100 0125 0150 0.175 0.200 10 20 30 40 50 60
Fraction of Nodes Outdegree
(a) Effective Diameter of DCC (b) Outdegree v.s. Clustering coefficient

Figure 9: The stucture of the DCC in follow network. Figure [9b| plots the out-degree against cc;
Figure D2 shows D, of the DCC in follow network, the network is divided by the fractions of the
total number of nodes.

Densely Connected Core In real-world online social networks, there exists a densely connected
core (DCC) comprising between 1% and 10% of the highest degree nodes, such that removing this
core completely disconnects the graph (Mislove et al.,|2007). These high-degree nodes serve as hubs
of the network, causing the network to become increasingly compact through the hub structure. As
shown in Figure[9b] the nodes with higher degrees have significantly higher ¢c compared to other
nodes. For these densely connected components, D, grows at a slow rate. In Figure [Da] we observe
that the D, among the DCC of follow network is grows sublognitively. The network is generated by
5 rounds of simulation with 1e5 agents.

B.3 MICRO-LEVEL EVALUATION

Evaluation Metrics In accordance with established evaluation metrics for graph generation
Bergmeister et al.| (2024), we report the maximum mean discrepancy (MMD) between the generated
graphs and the test graphs, specifically focusing on degree distribution and clustering coefficient.
Furthermore, we place particular emphasis on evaluating whether the degree distribution of the
generated graphs conforms to a power law after expanding the graph to out-of-distribution sizes
Clauset et al.| (2009)). To this end, we employ six key metrics in all:

(1) MMD.D: maximum mean discrepancy (MMD) of degree distribution between the generated
graphs and the test graphs.

(2) MMD.C: maximum mean discrepancy (MMD) of clustering coefficient between the generated
graphs and the test graphs.

(3) MMD.S: maximum mean discrepancy (MMD) of spectrum between the generated graphs and the
test graphs [Liao et al.[(2019).

24

Under review as a conference paper at ICLR 2025

(4) MMD.O: maximum mean discrepancy (MMD) of node orbit counts between the generated graphs
and the test graphs|You et al.[(2018)).

(5) a: The power-law exponent of the graph degree distribution.

(6) Dy: The Kolmogorov-Smirnov distance between the degree distributions of the generated and
test graphs.

(7) Valid: Research demonstrates that degree distributions in complex networks are typically charac-
terized by a power-law exponent « € [2, 3] (Clauset et al.,[2009). Accordingly, we define the validity
measure for a graph as the proportion of graphs meeting the criteria Dy, < 0.1 and « € [2, 3]. Set
kmin = 2 for the uniform calculation of the power-law fitness of both undirected and directed graphs.

(8) GEM: To quantify the level of structural alignment for the expanded graph, we establish the
Graph Expansion Metric (GEM). Firstly, for the negative indicator MMD metrics, we utilize the
transformation 1 — W, which maps the metrics to a range between 0 and 1. We then calculate
the average of MMD and Valid metrics as GEM.

Experiment Settings Specifically, we sample a network dataset based on publication timelines to
create our evaluation dataset. Since we only crawl for timestamp information of the CiteSeer and
Cora datasets, these two datasets are used for our experimental evaluation. Following the timeline of
graph evolution, we partition the network dataset into training and testing sets.

At a designated time point ¢, we filter the citation network using node timestamp information to
obtain G-, which includes all nodes and edges prior to ¢. We sample small subgraphs from G _; to
create a training set for deep learning methods and to generate the seed graph for GAG. The training
set consists of sampled subgraphs with sizes ranging from 64 to 512 nodes, resulting in a train set
comprising 160 subgraphs and validation sets comprising 32 subgraphs. For the test set, we filter the
citation network for nodes and edges after ¢, denoted as G~;. From G+, we sample large subgraphs
of 1,000 nodes, resulting in a test set comprising 20 subgraphs.

The existing graph generation methods have demonstrated promising results in generating small
graphs, including works such as [Vignac et al.|(2023), Martinkus et al.| (2022)), and [You et al.| (2018).
However, they have not explored the generation of out-of-distribution graph sizes, and the generated
graph sizes are limited. To compare with traditional graph generation models, we need to select those
methods that can expand beyond the training set graph sizes and efficiently generate large graphs. For
rule-based graph generation methods, we set hyperparameters to ensure that the average degree of the
expanded graph matches that of the seed graph. For deep learning-based graph generation methods,
we adhere to the hyperparameters specified in the original papers. All hyperparameter details are
provided in Table[T4]

Ablation on Seed Graph Size GAG distinguishes itself from traditional graph generation methods
by generating graph data without requiring prior training. It achieves this through the simulation of
human behavior, leading to the emergence of various structural features characteristic of real-world
networks. Consequently, conventional graph evaluation methods cannot be applied. To address this,
we design comparative experiments against existing graph generation models.

For this purpose, we select the Citeseer network as the seed graph and the training graph dataset for
existing methods. We expand it to generate 20 distinct graphs with an additional 1000 nodes. We
subsequently compare the structural metrics of these expanded graphs to those of subgraphs sampled
from the Citeseer network of equivalent size. Specifically, we focus on whether the expanded graph
structure exhibit power law characteristics typical of real-world network structures.

Additionally, we aim to investigate whether the size of the seed graph affects the validity of the final
generated graph structure. To this end, we utilize the GAG to perform graph expansion on seed graphs
of varying sizes. We plot the number of nodes in the expanded graphs against the corresponding
values of . As shown in Figure[I0} it is evident that larger seed graphs result in expanded graphs
exhibiting higher values of «. Furthermore, as the size of the expanded graphs increases, the « values
gradually stabilize. This indicates that the GAG is capable of effectively and reasonably expanding
graphs across different seed graph sizes.

25

Under review as a conference paper at ICLR 2025

Table 14: Training hyperparameters of baseline models. All unspecified hyperparameters default to
their standard values.

Model Hyperparameter Experiment
Erdos-Rényi (Erdos et al.|{1960) Linking propoblity E/(V] - 1)
Barabdsi-Albert (Barabdsi & Albert||1999) Number of linking edges k/2
Small-World (Watts & Strogatz||1998) Number of linking nodes kEx2
BiGG (Dai et al..[2020) Ordering DFS
Accumulated gradients 1
Batch size 32
GRAN (Liao et al.; 2019) Hidden size 512
Embedding size 512
Number of layers 7
Number of mixtures 20
Batch size 16
BwR (Diamant et al.|[2023) Model GraphRNN (You et al.}2018)
bw 8
Hidden size 128
Ordering BFS
Batch size 32
L-PPGN (Bergmeister et al.|[2024) Hidden embedding size 256
PPGN embedding size 128
Input embedding size 32
Number of layers 10
Number of denoising steps 1024
Batch size 32
EMA coefficient 0.99
Number of spectral features 0
GraphMaker (Li et al.|[2024a) Variant Sync
Hidden size for timestep 32
Hidden size for node 512
Hidden size for node label 64
NumberofMPNNIlayers 2
Learning rate 0.001
Optimizer AMSGrad
28{ —$— 100
445
—4— 2840
2.6
S
2.2 1
400 600 800 1000 1200 1400

Expanded Graph Size
Figure 10: We present the results for seed graph sizes of 100, 445, and 2840, with the sizes of the

expanded graphs plotted against their corresponding « values. Note that we only plot valid data
Dy <0.1.

26

Under review as a conference paper at ICLR 2025

Supplementary Experiments To further demonstrate the reliability of the GAG framework, in
addition to supplementing data from CiteSeer, we crawl for the necessary node attributes to enrich
text attributes for Cora[Sen et al.| (2008). Following the experimental setup outlined in the paper, we
designate Cora as the Seed Network and similarly compared it with existing graph generation models.

Table 15: Comparison with existing expansion-based graph generation models. For GRAN, generated
graph degree distribution fails to converge when fitting a power-law distribution.

MMD.D, MMD.C{ MMD.S, MMD.O} Dy, o Validt GEM
Cora - - - - 0'07i0.0 2.59:‘:0'01 1.00 -
Erdos-Rényi 0.25 1.41 0.54 027 0.1340.02 4.0140.17 0.00 0.29
Barabdsi-Albert 0.09 1.41 0.44 111 0.0410.01 2.4+0.05 1.00 046
Small-World 0.60 141 0.50 020 0.14100 4.051002 0.00 0.8
BiGG 0.14 0.51 0.48 0.27 0.08+0.01 3.1940.11 0.05 0.34
GRAN 0.15 0.50 0.55 0.28 - - 035 040
BwR 0.32 0.23 0.34 0.19 0.li001 3.58400s 0.00 0.35
GraphMaker 0.37 1.41 0.75 0.28 - - 0.00 0.27
L-PPGN 0.15 0.92 0.32 0.59 0.06+0.01 2.77+0.04 1.00 0.50
GAG 0.35 0.84 0.41 121 0.09100 2lioom 1.00 047

As shown in Table[I5] the expanded graphs generated by GAG adhere to a power-law distribution,
with o = 2.1. For MMD metrics, since GAG doesn’t strictly enforce explicit graph structure
constraints on the agents, its performance is not significantly better than other models, but it achieves
comparable results. For the Valid metric, apart from GAG and the Barabasi-Albert Model, the only
existing deep-learning graph generation model capable of capturing the power-law distribution is
L-PPGN. This demonstrates that L-PPGN is indeed capable of extrapolating to out-of-distribution
graphs when trained on graphs that encompass the power-law distribution property. However, the
unstable performance of L-PPGN across different datasets also highlights its sensitivity to the quality
of the training dataset. In contrast, GAG, through human behavior simulation, can reliably generate
graph structures that adhere to real-world network characteristics from seed graph of varying sizes and
quality. This illustrates not only the potential of LLM-based Agents in simulating human behavior
but also underscores the reliability of the GAG framework.

C EVALUATION OF TEXTUAL-ATTRIBUTE ALIGNMENT

C.1 EXPERIMENT SETTINGS

We configure the complete Citeseer graph as G and expand it to G’ with 5000 nodes. The processes
involved are as follows:

(1) F.shuffle: This process randomly selects node-wise textual features from G to create the node
features of G'.

(2) S.shuffle: In this step, we randomly redefine the edges of G’, thereby disrupting the graph
structure while maintaining the number of edges consistent with 1’.

(3) SE.shuffle: This refers to a combination of both F.shuffle and S.shuffle.

(4) BWR+LLM: Graph strcuture generated by Diamant et al.| (2023). We give the LLM Citeseer as
corpus and use it to generate textual features.

(5) L-PPGN+LLM: Graph strcuture generated by Bergmeister et al|(2024). We give the LLM
Citeseer as corpus and use it to generate textual features.

(6) BiGG+LLM: Graph strcuture generated by |Dai et al.| (2020). We give the LLM Citeseer as
corpus and use it to generate textual features.

(7) BiGG+LLM: Graph strcuture generated by Dai et al.[|(2020). We give the LLM Citeseer as
corpus and use it to generate textual features.

(8) GraphMaker+LLM: Graph strcuture generated by |L1 et al.| (2024a). We give the LLM Citeseer
as corpus and use it to generate textual features.

27

Under review as a conference paper at ICLR 2025

(9) GAG: Graphs that are generated by the GAG framework.

C.2 ABLATION STUDY OF LLM

To further illustrate the effectiveness of the generated graphs, we conduct an ablation study on the
LLM for agent setup. We select four LLMs for this study: GPT-3.5-turbo, GPT-40-mini |OpenAl
(2023) as top-ranking closed-source LLMs, and Llama-3-70BAl@Meta| (2024) and Qwen2-72B Yang
et al.| (2024) as top-ranking open-source LLMs.

Table 16: Ablation Study of LLM in GAG. Performance Comparison for Node Classification

AACC |
GNN LLM SFrandom F.random S.random GAG

GAT LLAMA. 1340435 241141081 18.854055 2264119
GPT-3. 12.304047 22241085 16.694045 2294154

GPT-40. 12.031117 21.734291 15.5712384 2.80.10 58
QWGHZ. 11.12:|:2_53 15.84:|:3_34 24~51:|:2.28 10.50i1,94

GCN LLAMA. 15.0d4199 23201995 21.77T4904 3.6111 3>
GPT-3. 13.554919 23.081139 20.581144 4341201

GPT-40. 14564184 22.071905 20.821045 40941 75
QWCI‘]Z. 12-56i1,65 15-37i2.69 26-95i2.16 10-05i1.87

GCN2 LLAMA. 9.58.0ss 9.331136 2244158 0.49.1 50
GPT-3. 9.071110 9.041150 1434167 039167

GPT-4o0. 8.89i1,44 9.64i1,10 1-19i1.64 0-50i1.36
Qwen2. 9-78j:1.48 9-19j:1.44 11-40:|:1.78 9.39:|:0_93
GraphSage LLAMA. 7.0010.92 7.134173 3.154184 0.094174
GPT-3. 6.72i1,41 6.39i0,92 2-35i1.60 0-81i1.67

GPT-4o. 6.9710.92 6.46+1.61 2.0542.31 1.7015 08
QWCH2. 6.45:|:1_33 7~14:|:1.68 12~73:|:2.26 9.72:|:2,43

As shown in Table the LL.M-based agents built on LLaMA?2, GPT-3.5-turbo, and GPT-40-mini
are capable of generating networks that maintain the node and structural characteristics of the seed
graph, thus ensuring effective performance transfer in downstream tasks. In contrast, Qwen-2 based
agents do not guarantee performance transfer. We believe this is related to the ability of LLMs to
emulate human behavior; Qwen-2 based agents fail to exhibit human-like creative behavior, resulting
in less coherent generated graphs.

D SCALABILITY OF GAG

To further demonstrate the excellent scalability of the GAG framework, we conduct time measure-
ments across various simulation scenarios. The tests are carried out on a computing machine equipped
with 96 CPU cores and 376 GB of memory. For model inference, we utilized LLAMA-3-70B as the
backbone LLM and employed the vLLM framework Kwon et al.| (2023, running on a setup of four
A-800 GPUs.

Table 17: The time cost (hour) of agents for one round of simulation.

N P T

CA 5.01e+03 10 0.46h
RA 391e+03 10 0.30h
SA 9.97e+04 48 11h

In accordance with the graphs generated for macro-level graph structure alignment experiments, we
carry out CA simulation experiments for 200 rounds, RA simulation experiments for 33 rounds,
and SA simulation experiments for 5 rounds. For each scenario, we measured the total simulation
time and computed the average simulation time per round. These multi-round simulations provide

28

Under review as a conference paper at ICLR 2025

a robust measure of the computational efficiency of the GAG framework. The results, summarized
in Table[T7] demonstrate GAG’s capability to handle simulations with varying scales of agents. For
simulation experiments with Thousands of agents, the average simulation time per round is 0.46
hours for CA experiments and 0.30 hours for RA experiments; For simulation experiments with
Hundreds of thousands of agents, the average simulation time per round is 11 hours for SA.

E ABLATION STUDY OF S-RAG

To investigate whether the hyperparameter settings of S-RAG affect the generated network structure.
We conduct ablation experiments on these hyperparameters. Given the variations in graph generation
scenarios, we conduct the ablation experiments under the SA simulation. We run equal number of
simulation rounds within the GAG to generate graphs.

In this section, we add a graph structure metric for measuring the proportion of the largest connect
component within the network. We define the largest connect component of graph as LCC, so the
proportion of LCC within the network is |[LCC|/|V'|. This aids us in comprehending the graph
evolution progress.

E.1 RECALL STAGE
In recall stage, the only hyperparameter is the number of searched items: N,.. Since the final number
of documents interacting with the LLM is limited to /V,., we change /N, and evaluate its impact on

network structure.

Table 18: Ablation Study of N,.. The value of N, is proportional to k of the generated network.

Network N, | [V| £ @ r \LCC|/|V]
3 9.47e+02 1.92¢+03 0.07 0.10 0.03
Action 5 9.36e+02 2.20e+03 0.09 -0.05 0.02
10 | 9.58e+02 2.63e+03 0.09 0.02 0.05
20 | 1.03e+03 3.03e+03 0.11 -0.08 0.16
3 7.42e+02 1.27¢+04 0.83 -0.08 0.29
Follow 5 7.39e+02 1.24e+04 0.81 -0.06 0.44
10 | 7.39e+02 1.29e+04 0.80 -0.06 0.51
20 | 891e+02 3.83e+04 0.82 -0.18 1.00
3 7.42e+02 5.96e+03 0.88 -0.13 0.25
Friend 5 7.39e+02 5.76e+03 0.87 -0.10 0.22
10 | 7.39e+02 5.94e+03 0.89 -0.10 0.24
20 | 891e+02 1.83e+04 0.87 -0.10 045

As shown in Table[I8] we keep all other search parameters constant while varying the size of N,. It
can be observed that as IV, increases, k of generated network also exhibits an upward trend. This
trend is particularly pronounced in the follow network.

E.2 RERANKING STAGE

To maximum the effectiveness of searched items, we implement the ReRanking stage in S-RAG.
Initially, coarse ranking is performed to sort the searched items by their creator agent. Focusing on
the core lable of creator. Subsequently, fine ranking is conducted based on the agent’s individual
preferences. We conduct an ablation study to explore the impact of different levels of personalization
in ReRanking stage. And eventually its impact on the network structure.

We focus on the hyperparameters in the ReRanking stage, which mainly include: (1) Hub rate:
|[HUB|/|V]. (2) Attributes of a;.

29

Under review as a conference paper at ICLR 2025

Table 19: Ablation Study of the hub rate (|HU B|/|V|). Higher hub rate contributes to the emergence
of a large connected component.

Network |[HUB|/|V] | |V| I€] éc r |LCC|/|V|

0.00 9.78e+02 2.64e+03 0.09 -0.05 0.13
Action 0.10 1.02e+03 2.58e+03 0.09 -0.07 0.10

0.20 1.03e+03 3.03e+03 0.11 -0.08 0.16

0.00 7.79¢+02 3.00e+04 0.84 0.02 0.63
Follow 0.10 7.82e+02 3.04e+04 0.84 0.05 0.63

0.20 891le+02 3.83e+04 0.82 -0.18 1.00

0.00 7.79e+02 1.45e+04 0.89 0.21 0.27
Friend 0.10 7.82e+02 1.47e+04 088 0.29 043

0.20 891e+02 1.83e+04 0.87 -0.10 0.45

Coarse Ranking As shown in Table[I9] an increase in the proportion of core users correlates with
an upward trend in the proportion of the largest connected component within the network. Since the
proportion of core users is increased, the likelihood of core users being searchable by general users is
also increased, thereby fostering preferential attachment in the network. eventually, the proportion of
the largest connected component within the network is increased.

Fine Ranking To improving search algorithms based on personal preferences of agents, we design
various filter items in fine ranking process, which are tailored to different simulation scenarios. The
number of filter items is N ;. Within the SA simulation, filter items include: (1) Follow: Determines
whether the content of the document is posted by an agent that the current agent follows. (2) Friend:
Identifies whether the content of the document is was sent by an agent that is a friend of the current
agent. (3) Topic: Assesses whether the content of the document is related to a topic that the current
agent is interested in.

As illustrated in Table @], cc of network increases as IV increases. Additionally, the impact level of
different filter items is as follows: friend > topic > follow.

Table 20: Ablation Study of the fillter items used in fine ranking process.

Fillter Items Network Structural Characteristics

Network ~follow topic friend | |V| €] éc T |LCC|/|V]
v - - 6.51e+02 1.88¢+03 0.11 0.01 0.19
Acti - v - 6.32e+02 1.82e+03 0.09 -0.01 0.15
chon - v 1.02¢+03 2.78¢+03 0.09 -0.05 0.12
v v v 1.03e+03 3.03¢e+03 0.11 -0.08 0.16
v - - 6.51e+02 2.65¢+04 0.78 -0.19 0.92
Follow - v - 5.63e+02 2.03e+04 0.79 0.16 0.64
- - v 7.70e+02 2.97e+04 0.84 0.19 0.69
v v v 8.91e+02 3.83e+04 0.82 -0.18 1.00
v - - 6.51e+02 1.26e+04 0.83 -0.13 0.46
Friend - 5.63e+02 9.74e+03 0.83 0.52 0.28
- - v 7.70e+02 1.44e+04 0.89 0.21 0.31
v v v 8.91e+02 1.83e+04 0.87 -0.10 0.45

30

Under review as a conference paper at ICLR 2025

F CASE STUDY

Since GAG employs human behavior simulation for network generation, the process of connecting
each network node to others closely mirrors real-world scenarios. This alignment enables a clear and
interpretable understanding of the network evolution process.

/2. Search Paper

Paper 1: About Social Reasoning

1. Draft Pap st _’ Paper 2: About Al,

Title: Al for Social... Paper 3: About Social, 1000 cites

Keywords: Al, Social Reasoning,

. T . Paper 10: About GNN

Abstract: This paper aims to /

investigate how artificial intelligence v

technologies influence social

reasoning and decision-making / 3. Cite Paper

processes. .. o

R itations:

SR Paper 1, Paper 2, Paper 3
Reason: Paper 1, 2 is more relevant to
my research.., while Paper 3 is a highly-
cited paper...

4

Figure 11: An illustration of the citation network evolution with LLM-based Agents.

To demonstrate the interpretability of our graph generation method, we present a case study using the
CA simulation scenario. As illustrated in Figure[TT] the formation of a citation network involves three
primary steps. First, LLM-based agents collaboratively generate a paper draft through interaction and
cooperation. Next, the agents search the corpus of stored papers within the environment to identify
literature relevant to their research interests. For instance, query terms may correspond to research
domains such as Al or social sciences.

Finally, after completing the search, the agents select and cite papers pertinent to their draft, providing
explicit justifications for each citation. As illustrated in Figure[TT] examples of such justifications
include citing a paper due to its high citation count or its direct relevance to the research topic.
Each citation edge in the network thus directly corresponds to an agent’s citation action, offering a
behavior-driven perspective on the graph construction process. This approach ensures that the graph
generation process is inherently interpretable.

G HUMAN INTERFACE CONTROL

Previous work on employing LLMs for graph generation typically relied on predefined network
structure features or a set of example networks Yao et al.|(2024). Similarly, after understanding the
reasons behind different structural characteristics of networks within GAG, we aim to enable users to
control the entire simulation process by inputting prompts. This will guide and influence the various
structural features of the final network.

To achieve this, we establish a control agent that accepts instruction frm users. Control agent transfers
the instruction to a control profile for managing the simulation process of GAG.

As shown in Fig. [I2]specifically, the hub rate controls the proportion of recommended core users,
subsequently affecting the ratio of hub nodes in the network. The parameter N, determines the
number of items recommended by the system, influencing the overall degree distribution. Additionally,
parameter N dictate the number of filter items in the ReRanking stage, impacting the network’s
clustering coefficient. Furthermore, the overall simulation time is adjusted by the number of agents
N per simulation round.

31

Under review as a conference paper at ICLR 2025

high average degree, with many well-known authors

User
@ [N,) o)y V|]
Nr

Human Instructlon I want to generate a highly- clus’rered|cn’ra’non neTwor‘k|erh]

N VY
Writing Simulation 00
J [HUB|/V|) == |LCCI/|V|
K:)
e Control Agent [HUBI/[V| lLecl/vl
Movie Rating Control Profile

Simulation [Nf 3 —_— \]

@ Generated Graph

Social Simulation

Ny) c
Simulation Scenario Control Args Graph Structure

Figure 12: An illustration of the Control Agent in GAG Framework.

H PROMPTS

32

Under review as a conference paper at ICLR 2025

Table 21: The prompt template of generating agent profiles for CA

I would like you to generate a series of random author’s personal information.
These authors are interested in computer science, they are experts in various fields of CS.
I need you to give a list of author infos with the constraints for each attribute as follows:
(1) Name: Author’s name
(2) Expertises: a list, The author’s areas of expertises can be selected from the following
areas:{expertises list}
(3) Institution: The author’s institution, you can choose whatever institution you want, just
give me one institution name
(4) Country: The author’s country, you can choose whatever institution you want,just give me
one country name corresponding to the institution
(5) Topics: a list, The topics this author is interested in, can be selected from the following
topics:{topics list}
Here’s some common used countrys you can infer to:
{countrys}
Please generate me a list of {author num} different authors, which can be loaded by eval
function in python:
5SS
name”:””,
“expertises”:[],

99,999

“institution’:””,
”Country”:””’
“topics”:[]

]

[
“expertises’:[],

99,9999

“institution”:””,
“country”:™”,
’topics”:[]

1

Now please generate:

Table 22: The prompt template of generating agent profiles for /A

Your task is to give me a list of watcher’s profiles. Respond in this format:
[{

“gender”: (F/M)

”age”:(the age of the watcher)

’job”:(the job of the watcher)

)]

Respond:

Now please generate:

33

Under review as a conference paper at ICLR 2025

Table 23: The prompt template of generating agent profiles for SA

Your task is to give me a list of {num added} person’s profiles for twitter users . Respond in
this format: [{{ “user name”: ”(str;The name of this user)”, “user description”:”(str;short
and concise, a general description of this user, ordinary users or super large users and the
topics this person interested in)” }}]

Now please generate:

34

	Introduction
	Related Work
	The GAG Framework
	Problem Setup
	Agent Formulation
	Pairwise Interaction
	Graph Extraction
	Parallel Acceleration

	Experiment
	Evaluation of Structure Alignment
	Evaluation of Textual-Attribute Alignment
	Scalability of GAG

	Conclusion
	Details of GAG
	Agent Formulation
	Pairwise Interaction
	Graph Extraction
	Parallel Acceleration

	Evaluation of Structure Alignment
	Graph Structure Metrics
	Macro-Level Evaluation
	Micro-Level Evaluation

	Evaluation of Textual-Attribute Alignment
	Experiment Settings
	Ablation Study of LLM

	Scalability of GAG
	Ablation Study of S-RAG
	Recall Stage
	Reranking stage

	Case Study
	Human Interface Control
	Prompts

