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Abstract

In online convex optimization, some efficient algorithms have been designed for each of the
individual classes of objective functions, e.g., convex, strongly convex, and exp-concave.
However, existing regret analyses, including those of universal algorithms, are limited to
cases in which the objective functions in all rounds belong to the same class and cannot be
applied to cases in which the property of objective functions may change in each time step.
This paper introduces a novel approach to address such cases, proposing a new regime we
term as contaminated online convex optimization. For the contaminated case, we demon-
strate that the regret is bounded by O(log T +

√
k log T ) when universal algorithms are used.

Here, k signifies the level of contamination in the objective functions. When our proposed
algorithms are employed, the regret is bounded by O(log T +

√
k). We also present a match-

ing lower bound of Ω(log T +
√

k). These are intermediate bounds between a convex case
and a strongly convex or exp-concave case.

1 Introduction

Online convex optimization (OCO) is an optimization framework in which convex objective function changes
for each time step t ∈ {1, 2, . . . , T}. OCO has a lot of applications such as prediction from expert advice
(Littlestone & Warmuth, 1994; Arora et al., 2012), spam filtering (Hazan, 2016), shortest paths (Awerbuch &
Kleinberg, 2004), portfolio selection (Cover, 1991; Hazan et al., 2006), and recommendation systems (Hazan
& Kale, 2012). The performance of the OCO algorithm is compared by regret (defined in Section 3). As
shown in Table 1, it is already known that sublinear regret can be achieved for each function class, such
as convex, strongly convex, and exp-concave, and the bound depends on the function class. In addition,
these upper bounds coincide with lower bounds, so these are optimal. However, these optimal algorithms
are applicable to one specific function class. Therefore, we need prior knowledge about the function class to
which the objective functions belong.

To solve this problem, many universal algorithms that work well for multiple function classes by one algorithm
have been proposed (Hazan et al., 2007; Van Erven & Koolen, 2016; Wang et al., 2020; Zhang et al., 2022;
Yan et al., 2023). For example, the MetaGrad algorithm proposed by Van Erven & Koolen (2016) achieves
an O(

√
T )-regret for any sequence of convex objective functions and an O(log T )-regret if all the objective

functions are exp-concave. Universal algorithms are useful in that they can be used without prior knowledge
about the objective functions. Some universal algorithms are introduced in Appendix A.3.

A significant limitation of the previous regret analyses about universal algorithms is that they apply only
to cases where all the objective functions f1, f2, . . . , fT belong to the same function class. Therefore, for
example, if some objective functions in a limited number of rounds are not strongly convex and if the other
objective functions are strongly convex, regret bounds for strongly convex functions in previous studies are
not always valid. This study aims to remove this limitation.

1.1 Our Contribution

In this study, we consider the situation in which the function class of the objective ft may change in each time
step t. We call this situation contaminated OCO. More specifically, in k-contaminated OCO with a function
class F , we suppose that the objective function ft does not necessarily belong to the desired function class F
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Table 1: Comparison of regret bounds.

FUNCTION CLASS UPPER BOUNDS LOWER BOUNDS

Convex O(
√

T ) Ω(
√

T )
(Zinkevich, 2003) (Abernethy et al., 2008)

α-exp-concave O((d/α) log T ) Ω((d/α) log T )
(Hazan et al., 2006) (Ordentlich & Cover, 1998)

k-contaminated α-exp-concave O((d/α) log T +
√

kd log T ) Ω((d/α) log T +
√

k)
(This work, Corollary 5.4) (This work, Corollary 7.1)

k-contaminated α-exp-concave O((d/α) log T +
√

k) Ω((d/α) log T +
√

k)
(with additional information) (This work, Theorem 6.2) (This work, Corollary 7.1)

λ-strongly convex O((1/λ) log T ) Ω((1/λ) log T )
(Hazan et al., 2006) (Abernethy et al., 2008)

k-contaminated λ-strongly convex O((1/λ) log T +
√

k log T ) Ω((1/λ) log T +
√

k)
(This work, Corollary 5.6) (This work, Corollary 7.2)

k-contaminated λ-strongly convex O((1/λ) log T +
√

k) Ω((1/λ) log T +
√

k)
(with additional information) (This work, Theorem 6.2) (This work, Corollary 7.2)

(e.g., exp-concave or strongly convex functions) in k rounds out of the total T rounds. Section 3 introduces
its formal definition and examples. This class of OCO problems can be interpreted as an intermediate setting
between general OCO problems and restricted OCO problems with F (F-OCOs). Intuitively, the parameter
k ∈ [0, T ] represents the magnitude of the impurity in the sequence of the objective functions, and measures
how close the problems are to F-OCOs; k = 0 and k = T respectively correspond to F-OCO and general
OCO.

The contribution of this study can be summarized as follows: (i) We introduce contaminated OCO, which
captures the situations in which the class of the objective functions may change over different rounds. (ii)
We find that the Online Newton Step, one of the optimal algorithms for exp-concave functions, does not
always work well in contaminated OCO, as discussed in Section 4. (iii) We show that some existing universal
algorithms achieve better regret bounds for contaminated OCO, of which details are given in Section 5.
(iv) We propose an algorithm that attains the optimal regret bounds under the additional assumption that
information of the class of the previous objective function is accessible in Section 6. (v) We present regret
lower bounds for contaminated OCO, which suggests that some universal algorithms achieve nearly optimal
regret bounds, as shown in Section 7.

Regret bounds of contaminated cases compared to existing bounds are shown in Table 1. The new upper
bounds contain bounds in existing studies for exp-concave functions and strongly convex functions as a
particular case (k = 0). Additionally, the new lower bounds generalize bounds in existing studies for convex
functions, exp-concave functions, and strongly convex functions. In cases where only gradient information is
available, there is a multiplicative gap of O(

√
log T ) between the second terms of the upper bounds and the

lower bounds. This gap is eliminated when the information of the class of the previous objective function is
available.

To derive novel regret upper bounds without additional information in Table 1, we exploit regret upper
bounds expressed using some problem-dependent values such as a measure of variance (Van Erven & Koolen,
2016). By combining such regret upper bounds and inequalities derived from the definition of k-contaminated
OCO, we obtain regret upper bounds, including the regret itself, which can be interpreted as quadratic
inequalities in regret. Solving these inequalities leads to regret upper bounds in Table 1.

We develop algorithms that can achieve optimal regret upper bounds, taking into account the function class
information of the previous function. To accomplish this, we modified two existing OCO algorithms: the
Online Newton Step (ONS), as introduced by Hazan et al. (2006), and the Online Gradient Descent (OGD),
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presented by Zinkevich (2003). The modification is changing the update process depending on the function
class of the last revealed objective function.

To prove regret lower bounds, we construct distributions of problem instances of contaminated OCO for which
any algorithm suffers a certain amount of regret in expected values. Such distributions are constructed by
combining suitably designed problem instances of F-OCO and general OCO.

2 Related Work

In the context of online learning, adaptive algorithms or parameter-free algorithms (Orabona, 2019) have
been extensively studied due to their practical usefulness. These algorithms work well by automatically
exploiting the intrinsic properties of the sequence of objective functions and do not require parameter tuning
based on prior knowledge of the objective function. For example, AdaGrad (McMahan & Streeter, 2010;
Duchi et al., 2011) is probably one of the best-known adaptive algorithms, which automatically adapts to
the magnitude of the gradients. Studies on universal algorithms (Hazan et al., 2007; Van Erven & Koolen,
2016; Wang et al., 2020; Zhang et al., 2022; Yan et al., 2023), which work well for several different function
classes, can also be positioned within these research trends. Our study shows that some of these universal
algorithms have further adaptability, i.e., nearly tight regret bounds for contaminated settings.

Though there is no existing work considering contaminated settings we propose as far as we know, van Erven
et al. (2021) has explored similar settings named robust online convex optimization. They regard rounds
with larger gradient norms than some threshold as outliers and denote the number of outliers as k, whose
definition differs from ours. They have defined regret only on rounds that are not outliers as robust regret
and shown that the additional O(k) term is unimprovable.

Studies on best-of-both-worlds (BOBW) bandit algorithms (Bubeck & Slivkins, 2012) and on stochastic
bandits with adversarial corruptions (Lykouris et al., 2018; Gupta et al., 2019) are also related to our
study. BOBW algorithms are designed to achieve (nearly) optimal performance both for stochastic and
adversarial environments, e.g., O(log T )-regret for stochastic and O(

√
T )-regret for adversarial environments,

respectively. Stochastic bandits with adversarial corruptions are problems for intermediate environments
between stochastic and adversarial ones, in which the magnitude of adversarial components is measured by
means of the corruption level parameter C ≥ 0. A BOBW algorithm by Bubeck & Slivkins (2012) has
shown to have a regret bound of O(log T +

√
C log T ) as well for stochastic environments with adversarial

corruptions, which is also nearly tight (Ito, 2021). In the proof of such an upper bound, an approach referred
to as the self-bounding technique (Gaillard et al., 2014; Wei & Luo, 2018) is used, which leads to improved
guarantees via some regret upper bounds that include the regret itself. Similar proof techniques are used in
our study as well.

3 Problem Setting

In this section, we explain the problem setting we consider. Throughout this paper, we assume functions
f1, f2, . . . , fT are differentiable and convex.

3.1 OCO Framework and Assumptions

First of all, the mathematical formulation of OCO is as follows. At each time step t ∈ [T ](:= {1, 2, . . . , T}),
a convex nonempty set X ⊂ Rd and convex objective functions f1, f2, . . . , ft−1 : X → R are known and ft

is not known. A learner chooses an action xt ∈ X and incurs a loss ft(xt) after the choice. Since ft is
unknown when choosing xt, it is impossible to minimize the cumulative loss

∑T
t=1 ft(xt) for all sequences of

ft. Instead, the goal of OCO is to minimize regret:

RT :=
T∑

t=1
ft(xt) − min

x∈X

T∑
t=1

ft(x).
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Regret is the difference between the cumulative loss of the learner and that of the best choice in hindsight. The
regret can be logarithmic if the objective functions are λ-strongly convex, i.e., f(y) ≥ f(x)+⟨∇f(x), y − x⟩+
λ
2 ∥x − y∥2 for all x, y ∈ X , or α-exp-concave, i.e., exp(−αf(x)) is concave on X .
Remark 3.1. The type of information about ft that needs to be accessed varies depending on the algorithm.
Universal algorithms only utilize gradient information, while the algorithm presented in Section 6 requires
additional information besides the gradient, such as strong convexity and exp-concavity. The lower bounds
discussed in Section 7 are applicable to arbitrary algorithms with complete access to full information about
the objective functions.

Next, we introduce the following two assumptions. These assumptions are very standard in OCO and
frequently used in regret analysis. We assume them throughout this paper without mentioning them.
Assumption 3.2. There exists a constant D > 0 such that ∥x − y∥ ≤ D holds for all x, y ∈ X .
Assumption 3.3. There exists a constant G > 0 such that ∥∇ft(x)∥ ≤ G holds for all x ∈ X and t ∈ [T ].

These assumptions are important, not only because we can bound ∥x − y∥ and ∥∇ft(x)∥, but also because
we can use the following two lemmas:
Lemma 3.4. (Hazan, 2016) Let f : X → R be an α-exp-concave function. Assume that there exist constants
D, G > 0 such that ∥x − y∥ ≤ D and ∥∇f(x)∥ ≤ G hold for all x, y ∈ X . The following holds for all
γ ≤ (1/2) min{1/(GD), α} and all x, y ∈ X :

f(x) ≥ f(y) + ⟨∇f(y), x − y⟩ + γ

2 (⟨∇f(y), x − y⟩)2.

Lemma 3.5. (Hazan, 2016) If f : X → R is a twice differentiable λ-strongly convex function satisfying
∥∇f(x)∥ ≤ G for all x ∈ X , then it is λ/G2-exp-concave.

Lemma 3.5 means that exp-concavity is a milder condition than strong convexity, combining with the fact
that − log ⟨a, x⟩ is not strongly convex but 1-exp-concave.

3.2 Contaminated Case

In this subsection, we define contaminated OCO and introduce examples that belong to this problem class.
The definition is below.
Definition 3.6. For some function class F , a sequence of convex functions (f1, f2, . . . , fT ) belongs to k-
contaminated F if there exists a set of indices I ⊂ [T ] such that |I| = k and ft ∈ F holds for all t ∈ [T ]\I.

For example, if functions other than k functions of them are α-exp-concave, we call the functions k-
contaminated α-exp-concave. And especially for OCO problems, if the objective functions are contaminated,
we call them contaminated OCO.

The following two examples are functions whose function class varies with time step. These examples
motivate this study.
Example 3.7. (Mini-batch least mean square regressions) ft(x) := (1/n)

∑n
i=1(⟨at,i, x⟩ − bt,i)2 ((at,i, bt,i) ∈

Rd × R) is λt-strongly convex, where λt is the minimum eigenvalue of the matrix (2/n)
∑n

i=1 at,ia
⊤
t,i. Let

k(λ) := |{t ∈ [T ] | λt < λ}| for any λ > 0. Then (f1, f2, . . . , fT ) is k(λ)-contaminated λ-strongly convex.
Example 3.8. (Online classification by using logistic regression) Exp-concavity of

ft(x) := 1
n

n∑
i=1

log(1 + exp(−bt,i ⟨at,i, x⟩)) ((at,i, bt,i) ∈ Rd × {±1})

on {x ∈ Rd | ∥x∥ ≤ 1} changes with time step. Especially, in the case at,i = at, bt,i = bt, ft is exp(−∥at∥)-
exp-concave. Let k(α) := |{t ∈ [T ] | αt < α}| for any α > 0, where αt is defined so that ft is αt-exp-concave.
Then (f1, f2, . . . , fT ) is k(α)-contaminated α-exp-concave.
Remark 3.9. In the two examples above, constants λ and α in the definition of λ-strong convexity and α-
exp-concavity can be strictly positive for all time steps. However, since the regret bounds are O((1/λ) log T )
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and O((d/α) log T ) for λ-strongly convex functions and α-exp-concave functions respectively, if λ and α are
O(1/T ), then the regret bounds become trivial. Analyses in this paper give a nontrivial regret bound to
such a case.

4 Vulnerability of ONS

This section explains how Online Newton Step (ONS) works for contaminated exp-concave functions. ONS
is an algorithm for online exp-concave learning. Details of ONS are in Appendix A.2. The upper bound is
as follows.
Proposition 4.1. If a sequence of objective functions (f1, f2, . . . , fT ) is k-contaminated α-exp-concave, the
regret upper bound of ONS with γ = (1/2) min{1/(GD), α} and ε = 1/(γ2D2) is O((d/γ) log T + k).

This proposition is proved by using the proof for noncontaminated cases by Hazan (2016). A detailed proof
is in Appendix B.2. This upper bound seems trivial, but the bound is tight because of the lower bound
stated in Corollary 4.6.

Before stating the lower bound, we introduce the following theorem, essential in deriving some lower bounds
of contaminated cases.
Theorem 4.2. Let F be an arbitrary function class. Suppose that functions g1, g2 are the functions such
that Ω(g1(T )) and Ω(g2(T )) are lower bounds for function class F and convex functions, respectively, for
some OCO algorithm. If a sequence of objective functions belongs to k-contaminated F , then regret in the
worst case is Ω(g1(T ) + g2(k)) for the OCO algorithms.
Remark 4.3. In Theorem 4.2, if the lower bounds Ω(g1(T )) and Ω(g2(T )) are for all OCO algorithms, then
the lower bound Ω(g1(T ) + g2(k)) is also for all OCO algorithms.

To derive this lower bound, we use the following two instances; one is the instance used to prove lower bound
RT = Ω(g1(T )) for function class F , and the other is the instance used to prove Rk = Ω(g2(k)) for convex
objective functions. By considering the instance that these instances realize with probability 1/2, we can
construct an instance that satisfies

E[RT ] = Ω(g1(T ) + g2(k)),
for all OCO algorithms. A detailed proof of this proposition is postponed to Appendix B.3.

Theorem 4.2 implies that, in contaminated cases, we can derive interpolating lower bounds of regret. The
lower bound obtained from this theorem is Ω(g1(T )) if k ≪ T , and Ω(g2(T )) if k = T . Since the contaminated
case can be interpreted as an intermediate regime between restricted F-OCO and general OCO, this result
would seen as reasonable. This lower bound applies not only to ONS but also to arbitrary algorithms.

To apply Theorem 4.2 to ONS, we show the following lower bound in the case of convex functions. This
lower bound shows that ONS is not suitable for convex objective functions.
Proposition 4.4. For any positive parameters γ and ε, ONS incurs Ω(T ) regret in the worst case.

To prove this proposition, consider the instance as follows:

ft(x) = vtx, x ∈ X = [−D/2, D/2], x1 = −G,

where

vt =


(−1)tG t < t1,

G t ≥ t1, xt1 ≥ 0,

−G t ≥ t1, xt1 < 0,

and t1 is a minimum natural number which satisfies t1 ≥ (1 + γG2D/2)−1T . Then, we can get

RT ≥ γG2D/2
2(1 + γG2D/2)2 T − 1

γ
log
(

1 + G2

ε
T

)
− 2

γG
− G2D

2 .

A detailed proof of this proposition is postponed to Appendix B.4.

5



Under review as submission to TMLR

Remark 4.5. Corollary 4.4 states the lower bound that holds only for ONS. However, if some better algorithms
are used, the lower bound can be improved. Therefore, it is not a contradiction that the general lower bound
in Table 1 is better than that of ONS. This is also true for Corollary 4.6, which is about the contaminated
case.

The lower bound of α-exp-concave functions can be derived as follows. The lower bound of 1-exp-concave
functions is Ω(d log T ) (Ordentlich & Cover, 1998). Here, when divided by α, 1-exp-concave functions turn
into α-exp-concave functions, and regret is also divided by α. Hence, the lower bound of α-exp-concave
functions is Ω((d/α) log T ).

We get the following from this lower bound for exp-concave functions, Proposition 4.4, and Theorem 4.2.
Corollary 4.6. If a sequence of objective functions (f1, f2, . . . , fT ) is k-contaminated α-exp-concave, regret
in worst case is Ω((d/α) log T + k), for ONS.

This proposition shows that the regret analysis in Proposition 4.1 is strict. While ONS does not work well for
contaminated OCO, universal algorithms exhibit more robust performance. In the next section, we analyze
some universal algorithms on this point.

5 Regret Upper Bounds by Universal Algorithms

In this section, we explain the regret upper bounds of some universal algorithms when the objective functions
are contaminated. The algorithms we analyze in this paper are multiple eta gradient algorithm (MetaGrad)
(Van Erven & Koolen, 2016), multiple sub-algorithms and learning rates (Maler) (Wang et al., 2020), and
universal strategy for online convex optimization (USC) (Zhang et al., 2022). Though there are two variations
of MetaGrad; full MetaGrad and diag MetaGrad, in this paper, MetaGrad means full MetaGrad. We
denote Rx

T :=
∑T

t=1(ft(xt) − ft(x)), R̃x
T :=

∑T
t=1 ⟨∇ft(xt), xt − x⟩, V x

T :=
∑T

t=1(⟨∇ft(xt), xt − x⟩)2 and
W x

T := G2∑T
t=1 ∥xt − x∥2.

Concerning MetaGrad and Maler, following regret bounds hold without assuming exp-concavity or strong
convexity:
Theorem 5.1. (Van Erven & Koolen, 2016) For MetaGrad, Rx

T is simultaneously bounded by
O(GD

√
T log log T ), and by

Rx
T ≤ R̃x

T = O(
√

V x
T d log T + GDd log T ),

for any x ∈ X .
Theorem 5.2. (Wang et al., 2020) For Maler, Rx

T is simultaneously bounded by O(GD
√

T ),

Rx
T ≤ R̃x

T = O(
√

V x
T d log T ) and

Rx
T ≤ R̃x

T = O(
√

W x
T log T ),

for any x ∈ X .

Though Theorem 5.2 is derived only for x ∈ argminx∈X
∑T

t=1 ft(x) in the original paper by Wang et al.
(2020), the proof is also valid even when x is any vector in X , so we rewrite the statement in this form.
Further explanations of universal algorithms are in Appendix A.3.

Concerning the regret bound of contaminated exp-concavity, the following theorem holds. This theorem’s
assumption is satisfied when using MetaGrad or Maler, and the result for them is described after the proof
of this theorem.
Theorem 5.3. Let αt be a constant such that ft is αt-exp-concave (if ft is not exp-concave, then αt is 0)
for each t. Suppose that

Rx
T ≤ R̃x

T = O

(√
V x

T r1(T ) + r2(T )
)

(1)
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holds for some functions r1, r2, and point x ∈ X . Then, it holds for any γ > 0 that

Rx
T = O

(
1
γ

r1(T ) + GD
√

kγr1(T ) + r2(T )
)

,

where kγ :=
∑T

t=1 max{1 − γt/γ, 0}, γt := (1/2) min{1/(GD), αt}.

Proof. From Lemma 3.4, we have

Rx
T =

T∑
t=1

(ft(xt) − ft(x))

≤
T∑

t=1

(
⟨∇ft(xt), xt − x⟩ − γ

2 (⟨∇ft(xt), x − xt⟩)2
)

+
T∑

t=1

γ

2 max
{

1 − γt

γ
, 0
}

(⟨∇ft(xt), xt − x⟩)2

≤ R̃x
T − γ

2 V x
T + γ

2 kγG2D2.

If Rx
T < 0, 0 is an upper bound, so it is sufficient to think of the case Rx

T ≥ 0. In this case, we have

V x
T ≤ 2

γ
R̃x

T + kγG2D2. (2)

From equation 1, there exists a positive constant C > 0 such that

R̃x
T ≤ C

(√
V x

T r1(T ) + r2(T )
)

≤ C

(√(
2
γ

R̃x
T + kγG2D2

)
r1(T ) + r2(T )

)

≤
√

2
γ

C2r1(T )R̃x
T + CGD

√
kγr1(T ) + Cr2(T ). (3)

The second inequality holds from the inequality 2, and the last inequality holds from the inequality
√

x + y ≤√
x + √

y for x, y > 0.

From Lemma B.2 given in Appendix B.5 with a = (2/γ)C2r1(T ) and b = CGD
√

kγr1(T )+Cr2(T ), we have

R̃x
T ≤ 3

2

(
2
γ

C2r1(T ) + CGD
√

kγr1(T ) + Cr2(T )
)

.

From this inequality and Rx
T ≤ R̃x

T , Theorem 5.3 follows.

The core of this proof is inequality 3, which can be regarded as a quadratic inequality. Solving this inequality
enables us to obtain a regret upper bound for contaminated cases from a regret upper bound for non-
contaminated cases.

Theorem 5.3 combined with Theorem 5.1, Theorem 5.2, and Theorem A.1 in the appendix gives upper bounds
for universal algorithms; MetaGrad, Maler, and USC. The following corollary shows that, even if exp-concave
objective functions are k-contaminated, regret can be bounded by an additional term of O(

√
kd log T ). This

regret bound is better than ONS’s in the parameter k.
Corollary 5.4. If a sequence of objective functions (f1, f2, . . . , fT ) is k-contaminated α-exp-concave, the
regret bound of MetaGrad, Maler, and USC with MetaGrad or Maler as an expert algorithm is

RT = O

(
d

γ
log T + GD

√
kd log T

)
, (4)

where γ := (1/2) min{1/(GD), α}.
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We only give proof for MetaGrad and Maler here, and the proof for USC will be given in Appendix B.6.

Proof. As for MetaGrad and Maler, from Theorem 5.1 and Theorem 5.2,

R̃x
T = O(

√
V x

T d log T + GDd log T )

holds for any x ∈ X . Therefore, by Theorem 5.3, we have

Rx
T = O

(
d

γ
log T + GD

√
kγd log T

)
.

Here, let γ := (1/2) min{1/(GD), α}, then kγ satisfies

kγ =
T∑

t=1
max

{
1 − γt

γ
, 0
}

=
∑

t : γt<γ

(
1 − γt

γ

)
≤ k.

The inequality follows from the fact that if γt < γ, then αt < α holds. Hence, we have

Rx
T = O

(
d

γ
log T + GD

√
kd log T

)
,

especially, we get the regret upper bound 4.

As for strongly convex functions, we can get a similar result as Theorem 5.3.
Theorem 5.5. Let λt be a constant such that ft is λt-strongly convex (if ft is not strongly convex, then λt

is 0) for each t. Suppose that

Rx
T ≤ R̃x

T = O

(√
W x

T r1(T ) + r2(T )
)

holds for some functions r1, r2, and point x ∈ X . Then, it holds for any λ > 0 that

Rx
T = O

(
G2

λ
r1(T ) + GD

√
kλr1(T ) + r2(T )

)
,

where kλ :=
∑T

t=1 max{1 − λt/λ, 0}.

This theorem can be derived in almost the same manner as the proof of Theorem 5.3, other than using the
definition of strong convexity and kλ. A more detailed proof is in Appendix B.7.

Theorem 5.5 combined with Theorem 5.1, Theorem 5.2, and Theorem A.1 in the appendix gives upper
bounds for universal algorithms; MetaGrad, Maler, and USC. This corollary shows that, even if strongly
convex objective functions are k-contaminated, regret can be bounded by an additional term of O(

√
k log T )

if Maler or USC with Maler as an expert algorithm is used.
Corollary 5.6. If a sequence of objective functions (f1, f2, . . . , fT ) is k-contaminated λ-strongly convex, the
regret bound of MetaGrad, Maler, and USC with Maler as an expert algorithm is

RT = O

((
G2

λ
+ GD

)
d̃ log T + GD

√
kd̃ log T

)
,

where d̃ is d in the case of MetaGrad and 1 in the case of the other two algorithms.

This corollary can be derived from Theorem 5.5 in almost the same manner as the proof of Corollary 5.4. A
more detailed proof is in Appendix B.8 and Appendix B.9.
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Algorithm 1 Proposed Method
Input: convex set X ⊂ Rd, x1 ∈ X , T , D, G, α

1: Set γ := (1/2) min{1/(GD), α}, ε :=
√

2G/D, A0 := εId.
2: for t = 1 to T do
3: Play xt and observe cost ft(xt).
4: Update:

At = At−1 +


λId, t ∈ S1

γ∇ft(xt)∇ft(xt)⊤, t ∈ S2

G

D
√

2|[t] ∩ U |
Id, t ∈ U,

5: Newton step and generalized projection:

yt+1 = xt − A−1
t ∇ft(xt),

xt+1 = ΠAt

X (yt+1) := arg min
x∈X

{∥yt+1 − x∥2
At

}.

6: end for

Remark 5.7. If (f1, f2, . . . , fT ) is k1-contaminated α-exp-concave and k2-contaminated λ-strongly convex,
then we have two regret upper bounds:

RT = O

(
d

γ
log T + GD

√
k1d log T

)
,

from Corollary 5.4 and

RT = O

((
G2

λ
+ GD

)
d̃ log T + GD

√
k2d̃ log T

)
,

from Corollary 5.6. Here, strongly convex functions are also exp-concave functions from Lemma 3.5. There-
fore, if λ/G2 ≥ α, then k1 ≤ k2.
Remark 5.8. Note that the universal algorithms analyzed in this section do not require additional information
other than the gradient, which is a valuable property in practical use. It is also worth noting that it is possible
to improve regret bounds using algorithms that utilize additional information, though it is only sometimes
available in real-world applications. We discuss this case in the next section.

6 Regret Upper Bounds Given Additional Information

In this section, we propose a method that achieves better bounds than those of universal algorithms discussed
in the previous section under the condition that the information of the class of the last objective function is
revealed. The experimental performances of these proposed methods are shown in Appendix C.

We denote S1 := {t ∈ [T ] | ft is λ-strongly convex}, S2 := {t ∈ [T ]\S1 | ft is α-exp-concave}, U :=
[T ]\(S1 ∪ S2), and k := |U |. Proposed method is shown in Algorithm 1 (Id is d dimensional identity matrix,
and ∥·∥2

A means ⟨A·, ·⟩). This algorithm is a generalization of OGD and ONS. Indeed, (S1, S2, U) = ([T ], ∅, ∅)
gives normal OGD and (S1, S2, U) = (∅, [T ], ∅) gives normal ONS.

Before stating the regret upper bounds of the proposed method, we prepare the following lemma:

9
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Lemma 6.1. Let {xt}t be the sequence generated by Algorithm 1. The following inequalities hold:∑
t∈S1

∥∇ft(xt)∥2
A−1

t

≤ G2

λ
log
(

1 + λD√
2G

|S1|
)

, (5)

∑
t∈S2

∥∇ft(xt)∥2
A−1

t

≤ d

γ
log
(

1 + λD√
2G

|S1| + γGD√
2

|S2| +
√

k

)
, (6)

∑
t∈U

∥∇ft(xt)∥2
A−1

t

≤
√

2GD(
√

k + 1 − 1). (7)

Proof. For the inequality (5), we can get as follows:

∑
t∈S1

∥∇ft(xt)∥2
A−1

t

≤ G2
∑
t∈S1

1
λmin(At)

≤ G2
|S1|∑
i=1

1
ε + λi

≤ G2
∫ |S1|

0

ds

ε + λs
= G2

λ
log
(

1 + λD√
2G

|S1|
)

,

where λmin(At) is the minimum eigenvalue of the matrix At, which at least increases by λ when t ∈ S1.

For the left-hand side of the inequality (6), we can bound as follows:∑
t∈S2

∥∇ft(xt)∥2
A−1

t

=
∑
t∈S2

tr
(
A−1

t ∇ft(xt)(∇ft(xt))⊤)
= 1

γ

∑
t∈S2

tr
(
A−1

t (At − At−1)
)

≤ 1
γ

∑
t∈S2

log |At|
|At−1|

.

The first inequality is from Lemma B.3 in Appendix B.10. Since |At| ≥ |At−1| (∀t ∈ S1 ∪ U),

1
γ

∑
t∈S2

log |At|
|At−1|

≤ 1
γ

T∑
t=1

log |At|
|At−1|

= 1
γ

log |AT |
|A0|

≤ d

γ
log
(

1 + λD√
2G

|S1| + γGD√
2

|S2| +
√

k

)
.

The last inequality is from the fact that the largest eigenvalue of AT is at most
√

2G/D + λ|S1| + γG2|S2| +
(G/D)

√
2k.

For the inequality (7), we can get as follows:∑
t∈U

∥∇ft(xt)∥2
A−1

t

≤ G2
∑
t∈U

1
λmin(At)

≤ G2
∑
t∈U

1
ε +

∑|[t]∩U |
i=1

G
D

√
2i

≤ G2
∑
t∈U

1
ε +

√
2 G

D (
√

|[t] ∩ U | + 1 − 1)

= GD√
2

k∑
i=1

1√
i + 1

≤
√

2GD(
√

k + 1 − 1).

10
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Using this lemma, we can bound the regret of the proposed algorithm as follows:
Theorem 6.2. Algorithm 1 guarantees

RT = O

((
G2

λ
+ d

γ

)
log T + GD

√
k

)
.

Proof. Let x∗ ∈ arg minx∈X
∑T

t=1 ft(x). From Lemma 3.4 and the definition of strong convexity, we have

2(ft(xt) − ft(x∗)) ≤ 2 ⟨∇ft(xt), xt − x∗⟩ − ⟨(At − At−1)(xt − x∗), xt − x∗⟩ + G1U (t)
D
√

2|[t] ∩ U |
∥xt − x∗∥2

= 2 ⟨At(yt+1 − xt), x∗ − xt⟩ − ∥xt − x∗∥2
At

+ ∥xt − x∗∥2
At−1

+ G1U (t)
D
√

2|[t] ∩ U |
∥xt − x∗∥2

= ∥yt+1 − xt∥2
At

− ∥yt+1 − x∗∥2
At

+ ∥xt − x∗∥2
At−1

+ G1U (t)
D
√

2|[t] ∩ U |
∥xt − x∗∥2

≤ ∥yt+1 − xt∥2
At

− ∥xt+1 − x∗∥2
At

+ ∥xt − x∗∥2
At−1

+ G1U (t)
D
√

2|[t] ∩ U |
∥xt − x∗∥2,

where 1U is the indicator function, i.e., 1U (t) = 1 if t ∈ U , and 1U (t) = 0 otherwise. The first equality
is from the algorithm, the second equality is from the low of cosines, and the last inequality is from the
nonexpansiveness of projection. By summing up from t = 1 to T , we can bound regret as follows:

2RT ≤
T∑

t=1
∥yt+1 − xt∥2

At
+ ∥x1 − x∗∥2

A0
+
∑
t∈U

G

D
√

2|[t] ∩ U |
∥xt − x∗∥2

≤
T∑

t=1
∥∇ft(xt)∥2

A−1
t

+ D2ε + GD√
2

k∑
i=1

1√
i

≤
∑
t∈S1

∥∇ft(xt)∥2
A−1

t

+
∑
t∈S2

∥∇ft(xt)∥2
A−1

t

+
∑
t∈U

∥∇ft(xt)∥2
A−1

t

+
√

2GD(
√

k + 1).

From Lemma 6.1, we can get

2RT ≤ G2

λ
log
(

1 + λD√
2G

|S1|
)

+ d

γ
log
(

1 + λD√
2G

|S1| + γGD√
2

|S2| +
√

k

)
+ 2

√
2GD

√
k + 1

= O

((
G2

λ
+ d

γ

)
log T + GD

√
k

)
.

The key point of Theorem 6.2 is that the second term of the regret upper bound is proportional to
√

k.
Compared with Corollary 5.4, we can see that additional information improves the regret upper bound.
Remark 6.3. Algorithm 1 is written in a general form, and it is better to set S2 = ∅ in the contaminated
strongly convex case. This is because Algorithm 1 needs O(d3) computation to calculate A−1

t if S2 is
nonempty. When S1 = ∅ or S2 = ∅, the regret bound in Theorem 6.2 is reduced to O((d/γ) log T + GD

√
k)

or O((G2/λ) log T + GD
√

k) respectively.
Remark 6.4. As mentioned in Remark 5.8, the algorithms analyzed in this section need information that is
not always available in the real world. Therefore, the improved regret bound in Theorem 6.2 is theoretical,
and regret bounds for universal algorithms explained in Section 5 are more critical in real applications.
However, the regret analyses in this section are insightful because the upper bound with additional O(

√
k)

term implies that the regret upper bounds of universal algorithms in Section 5 can be improved.
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7 Regret Lower Bounds

In the previous sections, we have confirmed that the universal algorithms and the proposed methods perform
better than ONS. In this section, we consider how tight their regret bounds are.

Using Theorem 4.2 in Section 4, we can get a lower bound of k-contaminated exp-concave functions. As
mentioned in Section 4, regret lower bound of α-exp-concave functions is Ω((d/α) log T ). From this lower
bound and that of convex functions is Ω(GD

√
T ) (Abernethy et al., 2008), we can derive the following lower

bound. This corollary shows that k-contamination of exp-concave functions worsens regret lower bound at
least Ω(GD

√
k).

Corollary 7.1. If (f1, f2, . . . , fT ) is k-contaminated α-exp-concave, regret in worst case is Ω((d/α) log T +
GD

√
k), for all OCO algorithms.

According to Abernethy et al. (2008), the regret lower bound in the case of λ-strongly convex functions is
Ω((G2/λ) log T ). Therefore, following a similar corollary is derived in the same way.
Corollary 7.2. If a sequence of objective functions (f1, f2, . . . , fT ) is k-contaminated λ-strongly convex,
regret in worst case is Ω((G2/λ) log T + GD

√
k), for all OCO algorithms.

Comparing lower bounds in Corollary 7.1 and Corollary 7.2 with upper bounds in Corollary 5.4 and Corollary
5.6 respectively, there are gaps between them. This implies that our upper bounds in Section 5 or lower
bounds might not be tight. If additional information regarding function classes is available, the upper bounds
discussed in Section 6 coincide with the lower bounds.

8 Conclusion

In this paper, we proposed a problem class for OCO, namely contaminated OCO, the property whose
objective functions change in time steps. On this regime, we derived some upper bounds for existing and
proposed algorithms and some lower bounds of regret. While we successfully obtained optimal upper bounds
with additional information of the function class of the last revealed objective function, there are still gaps
of O(

√
d log T ) or O(

√
log T ) between the upper bound and the lower bound without additional information.

One natural future research direction is to fill these gaps. We believe there is room for improvement in the
upper bounds as the lower bounds seem tight. Indeed, lower bounds in this study interpolate well between
tight bounds for general OCO and for (restricted) F-OCO.
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Algorithm 2 Online Gradient Descent (Zinkevich, 2003)
Input: convex set X ⊂ Rd, T , x1 ∈ X , parameters ηt

1: for t = 1 to T do
2: Play xt and observe cost ft(xt).
3: Gradient step and projection:

yt+1 = xt − ηt∇ft(xt),

xt+1 = ΠX (yt+1) := arg min
x∈X

{∥yt+1 − x∥2}.

4: end for

Algorithm 3 Online Newton step (Hazan et al., 2006)
Input: convex set X ⊂ Rd, T , x1 ∈ X , parameters γ, ε > 0, A0 = εId

1: for t = 1 to T do
2: Play xt and observe cost ft(xt).
3: Rank-1 update: At = At−1 + ∇ft(xt)(∇ft(xt))⊤.
4: Newton step and generalized projection:

yt+1 = xt − γ−1A−1
t ∇ft(xt),

xt+1 = ΠAt

X (yt+1).

5: end for

A.1 OGD Algorithm

In OCO, one of the most fundamental algorithms is online gradient descent (OGD), which is shown in
Algorithm 2. An action xt is updated by using the gradient of the point and projected onto the feasible
region X in each step. If all the objective functions are convex and learning rates are set Θ(1/

√
t), the regret

is bounded by O(
√

T ) (Zinkevich, 2003), and if all the objective functions are λ-strongly convex and learning
rates are set Θ(1/t), the regret is bounded by O((1/λ) log T ) (Hazan et al., 2006).

A.2 ONS Algorithm

If all the objective functions are α-exp-concave, ONS, shown in Algorithm 3, works well. This is an algorithm
proposed by Hazan et al. (2006) as an online version of the offline Newton method. This algorithm needs
parameters γ, ε > 0, and if γ = (1/2) min{1/(GD), α} and ε = 1/(γ2D2), then the regret is bounded by
O((d/γ) log T ).

A.3 Universal Algorithms

In real-world applications, it may be unknown which function class the objective functions belong to. To
cope with such cases, many universal algorithms have been developed. Most universal algorithms are con-
structed with two types of algorithms: a meta-algorithm and expert algorithms. Each expert algorithm is
an online learning algorithm and not always universal. In each time step, expert algorithms update xi

t, and
a meta-algorithm integrates these outputs in some way, such as a convex combination. In the following,
we explain three universal algorithms: multiple eta gradient algorithm (MetaGrad) (Van Erven & Koolen,
2016), multiple sub-algorithms and learning rates (Maler) (Wang et al., 2020), and universal strategy for
online convex optimization (USC) (Zhang et al., 2022).

First, MetaGrad is an algorithm with multiple experts, each with a different parameter η as shown in
Algorithm 4 and 5. In contrast to nonuniversal algorithms that need to set parameters beforehand depending
on the property of objective functions, MetaGrad sets multiple η so that users do not need prior knowledge.
It is known that MetaGrad achieves O(

√
T log log T ), O((d/λ) log T ) and O((d/α) log T ) regret bounds for

convex, λ-strongly convex and α-exp-concave objective functions respectively.
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Algorithm 4 MetaGrad Master (Van Erven & Koolen, 2016)
Input: T , G, D, C = 1 + 1/(1 + ⌈(1/2) log2 T ⌉)

1: Set ηi = 2−i/(5GD), πηi

1 = C/((i + 1)(i + 2)) for i = 0, 1, . . . , ⌈(1/2) log2 T ⌉.
2: for t = 1 to T do
3: Get prediction xη

t of slave for each η.
4: Play xt:

xt =
∑

η πη
t ηxη

t∑
η πη

t η
.

5: Update:
ℓη

t (xη
t ) = −η⟨xt − xη

t , ∇ft(xt)⟩ + η2⟨xt − xη
t , ∇ft(xt)⟩2,

πη
t+1 = πη

t eℓη
t (xη

t )∑
η πη

t eℓη
t (xη

t ) .

6: end for

Algorithm 5 MetaGrad Slave (Van Erven & Koolen, 2016)
Input: convex set X ⊂ Rd, T , η, D

1: Set xη
1 = 0, Ση

1 = D2Id

2: for t = 1 to T do
3: Issue xη

t to master.
4: Update:

Ση
t+1 =

(
1

D2 Id + 2η2
t∑

s=1
∇ft(xt)(∇ft(xt))⊤

)−1

,

x̃η
t+1 = xη

t − ηΣη
t+1(1 + 2η2⟨∇ft(xt), xη

t − xt⟩)∇ft(xt),

xη
t+1 = Π(Ση

t+1)−1

X (x̃η
t+1).

5: end for

Second, Maler is an algorithm with three types of expert algorithms: a convex expert algorithm, strongly
convex expert algorithms, and exp-concave expert algorithms, as shown in Algorithm 6 to 9. They are
similar to OGD with Θ(1/

√
t) stepsize, OGD with Θ(1/t) stepsize, and ONS, respectively. Expert algorithms

contain multiple strongly convex expert algorithms and multiple exp-concave expert algorithms with multiple
parameters η like MetaGrad. It is known that Maler achieves O(

√
T ), O((1/λ) log T ) and O((d/α) log T )

regret bounds for convex, λ-strongly convex and α-exp-concave objective functions respectively.

Finally, USC is an algorithm with many expert algorithms, as shown in Algorithm 10. In contrast to Maler,
which contains OGD and ONS as expert algorithms, USC contains more expert algorithms. To integrate
many experts, USC utilizes Adapt-ML-Prod (Gaillard et al., 2014) as a meta-algorithm, which realizes
universal regret bound. Concerning the regret bound of USC, there is a theorem as follows.
Theorem A.1. (Zhang et al., 2022) Let E be a set of expert algorithms and xi

t be an output of ith algorithm
in t time step. Then,

T∑
t=1

(ft(xt) − ft(xi
t)) ≤

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
≤ 4ΓGD + Γ√

log |E|

√√√√4G2D2 +
T∑

t=1
(
〈
∇ft(xt), xt − xi

t

〉
)2,

where Γ = O(log log T ).

In USC, expert algorithms are chosen so that |E| = O(log T ) holds. This theorem holds without assuming
exp-concavity or strong convexity. In addition, it is known that USC achieves O(

√
LT log log T ), O((1/λ) ·

(min{log LT , log VT } + log log T )) and O((1/α)(d min{log LT , log VT } + log log T )) regret bounds for convex,
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Algorithm 6 Maler Meta (Wang et al., 2020)
Input: T , G, D, C = 1 + 1/(1 + ⌈(1/2) log2 T ⌉)

1: Set ηc = 1/(2GD
√

T ), ηi = 2−i/(5GD).
2: Set πc = 1/3, πηi,ℓ

1 = πηi,s
1 = C/(3(i + 1)(i + 2)) for i = 0, 1, . . . , ⌈(1/2) log2 T ⌉.

3: for t = 1 to T do
4: Get predictions xc

T from Algorithm 7 and xη,ℓ
t , xη,s

t from Algorithms 8 and 9 for all η.

5: Play xt =
πc

t ηcxc
t +
∑

η
(πη,s

t ηxη,s
t +πη,ℓ

t ηxη,ℓ
t )

πc
t ηc+

∑
η

(πη,s
t η+πη,ℓ

t η)
.

6: Observe gradient ∇ft(xt) and send it to all experts.
7: Update weights:

πc
t+1 = πc

t e−ct(xc
t )

Φt
,

πη,s
t+1 = πη,s

t e−sη
t (xη,s

t )

Φt
for all η,

πη,ℓ
t+1 = πη,ℓ

t e−ℓη
t (xη,ℓ

t )

Φt
for all η,

where
Φt =

∑
η

(πη,s
1 e−

∑t

τ=1
sη

τ (xη,s
τ ) + πη,ℓ

1 e−
∑t

τ=1
ℓη

τ (xη,ℓ
τ )) + πc

1e−
∑t

τ=1
cτ (xc

τ )

ct(x) = −ηc ⟨∇ft(xt), xt − x⟩ + (ηcGD)2,

sη
t (x) = −η ⟨∇ft(xt), xt − x⟩ + η2G2∥xt − x∥2,

ℓη
t (x) = −η ⟨∇ft(xt), xt − x⟩ + η2(⟨∇ft(xt), xt − x⟩)2,

8: end for

Algorithm 7 Maler Convex Expert (Wang et al., 2020)
Input: convex set X ⊂ Rd, T , G, D, ηc

1: Set xc
t = 0.

2: for t = 1 to T do
3: Send xc

t to Algorithm 6.
4: Receive gradient ∇ft(xt) from Algorithm 6.
5: Update:

xc
t+1 = ΠX

(
xc

t − D

ηcG
√

t
∇ct(xc

t)
)

.

6: end for

λ-strongly convex and α-exp-concave objective functions respectively, where LT := minx∈X
∑T

t=1 ft(x) =
O(T ), VT :=

∑T
t=1 maxx∈X ∥∇ft(x) − ∇ft−1(x)∥2

2 = O(T ).

B MISSING PROOFS

In this section, we explain missing proofs.

B.1 Proof of the Exp-Concavity of the Function in Example 3.8

In this subsection, we present the proof of the exp-concavity of the functionft in Example 3.8 in the case
at,i = at, bt,i = bt. Before the proof, we introduce the following lemma.
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Algorithm 8 Maler Exp-concave Expert (Wang et al., 2020)
Input: convex set X ⊂ Rd, T , D, η

1: Set xη,ℓ
t = 0, β = 1/2, Σ1 = (1/(β2D2))Id.

2: for t = 1 to T do
3: Send xη,ℓ

t to Algorithm 6.
4: Receive gradient ∇ft(xt) from Algorithm 6.
5: Update:

Σt+1 = Σt + ∇ℓη
t (xη,ℓ

t )(∇ℓη
t (xη,ℓ

t ))⊤,

xη,ℓ
t+1 = ΠΣt+1

X

(
xη,ℓ

t − 1
β

Σ−1
t+1∇ℓη

t (xη,ℓ
t )
)

.

6: end for

Algorithm 9 Maler Strongly Convex Expert (Wang et al., 2020)
Input: convex set X ⊂ Rd, T , G, η

1: Set xη,s
t = 0.

2: for t = 1 to T do
3: Send xη,s

t to Algorithm 6.
4: Receive gradient ∇ft(xt) from Algorithm 6.
5: Update:

xη,s
t+1 = ΠX

(
xη,s

t − 1
2η2G2t

∇sη
t (xη,s

t )
)

.

6: end for

Lemma B.1. (Hazan, 2016) A twice-differentiable function f : Rd → R is α-exp-concave at x if and only if

∇2f(x) ⪰ α∇f(x)∇f(x)⊤.

Using this lemma, we can check the exp-concavity of the function ft.

Proof. By differentiating ft, we have

∇ft(x) = − btat

1 + exp(bt ⟨at, x⟩) , ∇2ft(x) = b2
t ata

⊤
t exp(bt ⟨at, x⟩)

(1 + exp(bt ⟨at, x⟩))2 .

For all v ∈ Rd,

v⊤(∇2ft(x) − α∇ft(x)∇ft(x)⊤)v = b2
t ⟨at, v⟩2 exp(bt ⟨at, x⟩) − α

(1 + exp(bt ⟨at, x⟩))2

holds, and combined with Lemma B.1, ft is exp(−∥at∥)-exp-concave.

B.2 Proof of Proposition 4.1

This subsection presents the proof of Proposition 4.1.
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Algorithm 10 Universal Strategy for Online Convex Optimization (USC) (Zhang et al., 2022)
Input: Astr, Aexp, and Acon, which are sets of algorithms designed for strongly convex functions, exp-

concave functions and general convex functions respectively; Pstr and Pexp, which are sets of parameters
of strong convexity and exp-concavity respectively.

1: Initialize E = ∅.
2: for each algorithm A ∈ Astr do
3: for each λ ∈ Pstr do
4: Create an expert E(A, λ).
5: Update E = E ∪ E(A, λ).
6: end for
7: end for
8: for each algorithm A ∈ Aexp do
9: for each α ∈ Pexp do

10: Create an expert E(A, α).
11: Update E = E ∪ E(A, α).
12: end for
13: end for
14: for each algorithm A ∈ Acon do
15: Create an expert E(A).
16: Update E = E ∪ E(A).
17: end for
18: for t = 1 to T do
19: Calculate the weight pi

t of each expert Ei by

pi
t =

ηi
t−1wi

t−1∑|E|
j=1 ηj

t−1wj
t−1

.

20: Receive xi
t from each expert Ei ∈ E .

21: Output the weighted average xt =
∑|E|

i=1 pi
tx

i
t.

22: Observe the loss function ft(·).
23: Send the function ft(·) to each expert Ei ∈ E .
24: end for

Proof. Let x∗ ∈ arg minx∈X
∑T

t=1 ft(x). We can bound regret as follows:

RT =
T∑

t=1
(ft(xt) − ft(x∗))

≤
T∑

t=1

(
⟨∇ft(xt), xt − x∗⟩ − γ

2 (⟨∇ft(xt), xt − x∗⟩)2
)

+
T∑

t=1

γ

2 max
{

1 − γt

γ
, 0
}

(⟨∇ft(xt), xt − x∗⟩)2

≤ 2d

γ
log T + 1

4kGD,

where γt is defined in the same way as defined in Theorem 5.3. The first inequality is from Lemma 3.4. In the
second inequality, the first term is bounded by (2d/γ) log T because of the proof of ONS’s regret bound by
Hazan (2016). The second term is bounded by (1/4)kGD from the same argument as the proof of Corollary
5.4, and from γ ≤ 1/(2GD) by definition of γ.

B.3 Proof of Theorem 4.2

This subsection presents the proof of Theorem 4.2.
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Proof. Let I1 and I2 be instances used to prove lower bound RT = Ω(g1(T )) for function class F and
Rk = Ω(g2(k)) for convex objective functions, respectively, and fi,t (i = 1, 2) be objective functions of Ii at
time step t, and Xi be sets which decision variables of Ii belong to. Here, take a set X so that there exist
surjections ϕi : X → Xi. For this X , let Ĩ1 be an instance whose objective function at time step t is f1,t ◦ ϕ1
and Ĩ2 be an instance whose objective function at time step t is f2,t ◦ ϕ2 if t ≤ k, and some function in F
whose minimizer is the same as the minimizer of

∑k
t=1 f2,t otherwise. For these instances, consider the case

that instances Ĩ1 and Ĩ2 realize with probability 1/2. In this case, the expectation of regret satisfies

E[RT ] = 1
2Ω(g1(T )) + 1

2Ω(g2(k))

= Ω(g1(T ) + g2(k)),

for all OCO algorithms. Therefore, Theorem 4.2 follows.

B.4 Proof of Proposition 4.4

This subsection presents the proof of Proposition 4.4.

Proof. Consider the instance as follows:

ft(x) = vtx, x ∈ X = [−D/2, D/2], x1 = −D/2,

where

vt =


(−1)tG t < t1,

G t ≥ t1, xt1 ≥ 0,

−G t ≥ t1, xt1 < 0,

and t1 is a minimum natural number which satisfies t1 ≥ (1 + γG2D/2)−1T . Then,

min
x∈X

T∑
t=1

ft(x) ≤ (−T + t1)GD

2 ≤
(

− γG2D/2
1 + γG2D/2T + 1

)
GD

2 . (8)

The second inequality is from t1 ≤ (1 + γG2D/2)−1T + 1. If xt1 ≥ 0,

T∑
t=1

ft(xt) = G

t1−1∑
t=1

(−1)txt + G

T∑
t=t1

xt. (9)

For the first term, since
At = ε + G2t,

for all t ∈ [T ], and if t < t1, we have

yt+1 = xt − γ−1(ε + G2t)−1(−1)tG.

Now, xt+1 is defined as

xt+1 =



D

2 yt+1 >
D

2 ,

yt+1 −D

2 ≤ yt+1 ≤ D

2 ,

−D

2 yt+1 < −D

2 ,

and therefore, we get

xt =


(−1)t D

2 t ≤ t2,

(−1)t2
D

2 −
t−1∑
s=t2

(−1)sG

γ(ε + G2s) t > t2,
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where t2 is a minimum time step t which satisfies Gγ−1(ε + G2t)−1 < D, i.e., t > 1/(γGD) − ε/G2. From
this, for sufficiently large T so that t2 ≤ t1 − 2, we can bound

G

t1−1∑
t=1

(−1)txt = G

t2∑
t=1

(−1)t(−1)t D

2 +
t1−1∑

t=t2+1
(−1)t

(
(−1)t2

D

2 −
t−1∑
s=t2

(−1)sG

γ(ε + G2s)

)

≥ t2 − 1
2 GD + G2

γ

t1−1∑
t=t2+1

t−1∑
s=t2

(−1)s+t+1

ε + G2s

= t2 − 1
2 GD + G2

γ

t1−2∑
s=t2

t1−1∑
t=s+1

(−1)s+t+1

ε + G2s

≥ t2 − 1
2 GD − G2

γ

t1−2∑
s=t2

1
ε + G2s

≥ t2 − 1
2 GD − G2

γ

∫ t1−2

t2−1

ds

ε + G2s

= t2 − 1
2 GD − 1

γ
log ε + (t1 − 2)G2

ε + (t2 − 1)G2

≥ − 1
γ

log
(

1 + G2

ε
T

)
. (10)

Next, for the second term of equation 9, if xt1 ≥ 0 and t ≥ t1, then

yt+1 = xt − γ−1(ε + G2t)−1 ≥ xt − γ−1G−2t−1
1

and since xt+1 ≥ yt+1 holds from yt+1 ≤ xt ≤ D/2,

yt+1 ≥ xt1 − (t − t1)γ−1G−2t−1
1

≥ −(T − t1)γ−1G−2t−1
1

= −
(

T

t1
− 1
)

G−2γ−1

≥ −
(

T

(1 + γG2D/2)−1T
− 1
)

G−2γ−1

= −D

2 .

Therefore, from

xt = xt1 −
t−1∑
s=t1

γ−1(ε + G2s)−1,
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we can bound as follows:

G

T∑
t=t1

xt = G

T∑
t=t1

(
xt1 −

t−1∑
s=t1

γ−1(ε + G2s)−1

)

≥ − 1
γG

T∑
t=t1

t−1∑
s=t1

s−1

= − 1
γG

T −1∑
s=t1

T∑
t=s+1

s−1

= − 1
γG

T −1∑
s=t1

(
−1 + T

s

)
≥ T − t1 − 1

γG
− T

γG
log T

t1

≥ T − (1 + γG2D/2)−1T − 2
γG

− T

γG
log T

(1 + γG2D/2)−1T

= T

G

(
G2D/2

1 + γG2D/2 − γ−1 log
(
1 + γG2D/2

))
− 2

γG
. (11)

We can derive the same bound similarly in the case of xt1 < 0.

From inequality 8, equality 9, inequality 10 and inequality 11, we complete the proof:

RT ≥ − 1
γ

log
(

1 + G2

ε
T

)
+ T

G

(
G2D/2

1 + γG2D/2 − γ−1 log
(
1 + γG2D/2

))
− 2

γG

−
(

− γG2D/2
1 + γG2D/2T + 1

)
GD

2

≥ T

(
G2D

2 − γ−1
(

γ
G2D

2 − (γG2D/2)2

2(1 + γG2D/2)2

))
− 1

γ
log
(

1 + G2

ε
T

)
− 2

γG
− GD

2

= γG2D/2
2(1 + γG2D/2)2 T − 1

γ
log
(

1 + G2

ε
T

)
− 2

γG
− G2D

2
= Ω(T ).

The second inequality follows from the inequality log
(
1 + γG2D/2

)
≤ γG2D/2 − (γG2D/2)2

2(1+γG2D/2)2 for any γ > 0
by Taylor’s theorem.

B.5 The Lemma in the Proof of Theorem 5.3

In this subsection, we introduce the following lemma used in the proofs of Theorem 5.3.
Lemma B.2. For all a, b, x > 0, if x ≤

√
ax + b, then x ≤ 3

2 (a + b).

Proof. If x ≤
√

ax + b and a, b, x > 0, then we have

x2 − (a + 2b)x + b2 ≤ 0.

By solving this, we have

x ≤ a + 2b +
√

a2 + 4ab

2 ≤ a + b +
√

ab ≤ 3
2(a + b).

The second inequality holds from the inequality
√

x + y ≤
√

x + √
y for x, y > 0, and the last inequality

holds from the inequality of arithmetic and geometric means.
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B.6 Proof of Corollary 5.4 for USC

This subsection presents the proof of Corollary 5.4 for USC.

Proof. The regret satisfies

RT =
T∑

t=1
ft(xt) −

T∑
t=1

ft(xi
t) +

T∑
t=1

ft(xi
t) − min

x∈X

T∑
t=1

ft(x)

= Rmeta
T + Rexpert

T ,

where Rmeta
T :=

∑T
t=1 ft(xt)−

∑T
t=1 ft(xi

t) and Rexpert
T :=

∑T
t=1 ft(xi

t)−minx∈X
∑T

t=1 ft(x). From Theorem
A.1,

Rmeta
T ≤

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉

≤ 4ΓGD + Γ√
log |E|

√√√√4G2D2 +
T∑

t=1
(
〈
∇ft(xt), xt − xi

t

〉
)2

≤ 2ΓGD

(
2 + 1√

log |E|

)
+

√√√√ Γ2

log |E|

T∑
t=1

(
〈
∇ft(xt), xt − xi

t

〉
)2.

Last inequality holds from the inequality
√

x + y ≤
√

x + √
y for x, y > 0.

Similar to equation 2, if Rmeta
T > 0, inequality

T∑
t=1

(
〈
∇ft(xt), xt − xi

t

〉
)2 ≤ 2

γ

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
+ kγG2D2

holds. By combining these inequalities, we have

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
≤ 2ΓGD

(
2 + 1√

log |E|

)
+

√√√√ Γ2

log |E|

(
2
γ

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
+ kγG2D2

)

≤ ΓGD

(
4 +

2 +
√

kγ√
log |E|

)
+

√√√√ 2Γ2

γ log |E|

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
.

From Lemma B.2 given in Appendix B.5 with a = 2Γ2/(γ log |E|) and b = ΓGD(4 + (2 +
√

kγ)/
√

log |E|),
we have

Rmeta
T ≤

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
≤ 3

2

(
ΓGD

(
4 +

2 +
√

kγ√
log |E|

)
+ 2Γ2

γ log |E|

)
.

Since |E| = O(log T ) in USC, we obtain the following loose upper bound:

Rmeta
T = O

(
d

γ
log T + GD

√
kd log T

)
.

On the other hand, by thinking of the case that ith expert is MetaGrad or Maler, from Corollary 5.4 for
MetaGrad and Maler,

Rexpert
T = O

(
d

γ
log T + GD

√
kd log T

)
.
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Combining these bounds, we get

RT = O

(
d

γ
log T + GD

√
kd log T

)
.

B.7 Proof of Theorem 5.5

This subsection presents the proof of Theorem 5.5.

Proof. From the definition of strong convexity, we have

Rx
T =

T∑
t=1

(ft(xt) − ft(x))

≤
T∑

t=1

(
⟨∇ft(xt), xt − x⟩ − λ

2 ∥xt − x∥2
)

+
T∑

t=1

λ

2 max
{

1 − λt

λ
, 0
}

∥xt − x∥2

≤ R̃x
T − λ

2G2 W x
T + λ

2 kλD2.

If Rx
T < 0, 0 is the upper bound, so it is sufficient to think of the case Rx

T ≥ 0. In this case, we have

W x
T ≤ 2G2

λ
R̃x

T + kλG2D2.

From the assumption of Theorem 5.5, there exists a positive constant C > 0 such that

R̃x
T ≤ C

(√
W x

T r1(T ) + r2(T )
)

≤ C

(√(
2G2

λ
R̃x

T + kλG2D2
)

r1(T ) + r2(T )
)

≤
√

2G2

λ
C2r1(T )R̃x

T + CGD
√

kλr1(T ) + Cr2(T )

Last inequality holds from the inequality
√

x + y ≤
√

x + √
y for x, y > 0. Here, we use Lemma B.2 with

a = (2G2/λ)C2r1(T ) and b = CGD
√

kλr1(T ) + Cr2(T ),

R̃x
T ≤ 3

2

(
2G2

λ
C2r1(T ) + CGD

√
kλr1(T ) + Cr2(T )

)
.

From this inequality and Rx
T ≤ R̃x

T , Theorem 5.5 follows.

B.8 Proof of Corollary 5.6 for MetaGrad and Maler

This subsection presents the proof of Corollary 5.6 for MetaGrad and Maler.

Proof. As for MetaGrad and Maler, from Theorem 5.1 and Theorem 5.2,

R̃x
T = O(

√
W x

T d̃ log T + GDd̃ log T )

holds for any x ∈ X , where d̃ is d and 1 in the case of MetaGrad and Maler, respectively. Therefore, by
Theorem 5.5, we have

Rx
T = O

((
G2

λ
+ GD

)
d̃ log T + GD

√
kλd̃ log T

)
.
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Here, kλ satisfies

kλ =
T∑

t=1
max

{
1 − λt

λ
, 0
}

=
∑

t : λt<λ

(
1 − λt

λ

)
≤ k.

Hence, we have

Rx
T = O

((
G2

λ
+ GD

)
d̃ log T + GD

√
kd̃ log T

)
,

especially,

RT = O

((
G2

λ
+ GD

)
d̃ log T + GD

√
kd̃ log T

)
.

B.9 Proof of Corollary 5.6 for USC

This subsection presents the proof of Corollary 5.6 for USC.

Proof. The same as the proof of Corollary 5.4, we have

RT = Rmeta
T + Rexpert

T .

From Theorem A.1, we have

Rmeta
T ≤

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉

≤ 2ΓGD

(
2 + 1√

log |E|

)
+

√√√√ Γ2

log |E|

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉2

≤ 2ΓGD

(
2 + 1√

log |E|

)
+

√√√√ Γ2G2

log |E|

T∑
t=1

∥xt − xi
t∥2.

From the definition of strong convexity, we have

Rmeta
T =

T∑
t=1

(ft(xt) − ft(xi
t))

≤
T∑

t=1

(〈
∇ft(xt), xt − xi

t

〉
− λ

2 ∥xt − xi
t∥2
)

+
T∑

t=1

λ

2 max
{

1 − λt

λ
, 0
}

∥xt − xi
t∥2

≤
T∑

t=1

〈
∇ft(xt), xt − xi

t

〉
− λ

2

T∑
t=1

∥xt − xi
t∥2 + λ

2 kλD2.

If Rmeta
T < 0, 0 is the upper bound, so it is sufficient to think of the case Rmeta

T ≥ 0. In this case, we have
T∑

t=1
∥xt − xi

t∥2 ≤ 2
λ

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
+ kλD2.

By combining these inequalities, we have

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
≤ 2ΓGD

(
2 + 1√

log |E|

)
+

√√√√ Γ2G2

log |E|

(
2
λ

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
+ kλD2

)

≤ ΓGD

(
4 + 2 +

√
kλ√

log |E|

)
+

√√√√ 2Γ2G2

λ log |E|

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
.
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From Lemma B.2 with a = 2Γ2G2/(λ log |E|) and b = ΓGD(4 + (2 +
√

kλ)/
√

log |E|), we have

Rmeta
T ≤

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
≤ 3

2

(
ΓGD

(
4 + 2 +

√
kλ√

log |E|

)
+ 2Γ2G2

λ log |E|

)
Since |E| = O(log T ) in USC, we obtain the following loose upper bound:

Rmeta
T = O

((
G2

λ
+ GD

)
log T + GD

√
k log T

)
.

On the other hand, by thinking of the case that ith expert is Maler, from Corollary 5.6 for Maler, we have

Rexpert
T = O

((
G2

λ
+ GD

)
log T + GD

√
k log T

)
.

Combining these bounds, we get

RT = O

((
G2

λ
+ GD

)
log T + GD

√
k log T

)
.

B.10 The Lemma in the Proof of Theorem 6.2

In this subsection, we introduce the following lemma used in the proof of Theorem 6.2.
Lemma B.3. (Hazan, 2016) Let A ⪰ B ≻ O be positive definite matrices. Then

tr
(
A−1(A − B)

)
≤ log |A|

|B|
.

C Numerical Experiments

In this section, we explain experimental results. We compare the performances of 5 OCO algorithms; OGD
with stepsizes ηt = 1/

√
t, ONS, MetaGrad, Algorithm 1 with S1 = ∅ (Con-ONS), and Algorithm 1 with

S2 = ∅ (Con-OGD). We include OGD, ONS, and MetaGrad because OGD and ONS are famous OCO
algorithms, and MetaGrad is one of the universal algorithms. All the experiments are implemented in
Python 3.9.2 on a MacBook Air whose processor is 1.8 GHz dual-core Intel Core i5 and memory is 8GB.

C.1 Experiment 1: Contaminated Exp-Concave

In this experiment, d = 1, X = [0, 1] and the objective function is as follows:

ft(x) :=


Tx − T

k
+ 2 t ∈ I,

− log x + T −1

k−1 − T −1 otherwise,

where I ⊂ [T ] is chosen uniformly at random under the condition that |I| = k. (f1, f2, . . . , fT ) is k-
contaminated 1-exp-concave and the minimum value of

∑T
t=1 ft is 0 if 2k < T . We repeat this numerical

experiment in 100 different random seeds and calculate their mean and standard deviation. Other parameters
are shown in Table 2.

We compare the performances of 4 OCO algorithms: OGD, ONS, MetaGrad, and Con-ONS. The parameters
of ONS are set as γ = 1 and ε = 1/(γ2D2) = 1.

The time variation of regret and xt is shown in Figure 1. In the graphs presented in this paper, the error
bars represent the magnitude of the standard deviation. Only points where t is a multiple of 5 are plotted to
view the graph easily. The left graph shows that ONS’s, MetaGrad’s, and Con-ONS’s regrets are sublinear.
This is consistent with the theoretical result. The regret of OGD is linear, and this trend does not change
with T = 10000 and k = 2500. From the right graph, we can confirm that xt of three methods other than
OGD converge to the optimal solution quickly. However, OGD is strongly influenced by contamination.
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Table 2: Parameter settings in Experiment 1.

x1 x∗ T k D G α

0 0.01 200 50 1 200 1

Figure 1: The comparison of the time variation of regret (left) and xt (right) in Experiment 1.

C.2 Experiment 2: Contaminated Strongly Convex

In this experiment, d = 1, X = [0, 1] and the objective function is as follows:

ft(x) :=


x − T − 2k

T − k
t ∈ I,

1
2(x − 1)2 − 1

2

(
k

T − k

)2
otherwise,

where I ⊂ [T ] is chosen uniformly at random under the condition that |I| = k. (f1, f2, . . . , fT ) is k-
contaminated 1-strongly convex and the minimum value of

∑T
t=1 ft is 0 if 2k < T . We repeat this numerical

experiment in 100 different random seeds and calculate their mean and standard deviation. Other parameters
are shown in Table 3.

We compare the performances of 3 OCO algorithms: OGD, MetaGrad, and Con-OGD.

The time variation of regret and xt is shown in Figure 2. Only points where t is a multiple of 5 are plotted to
view the graph easily. The left graph shows that OGD’s, MetaGrad’s, and Con-OGD’s regrets are sublinear.
This is consistent with the theoretical results. From the right graph, we can confirm that xt of all methods
converge to the optimal solution quickly.

Figure 2: The comparison of the time variation of regret (left) and xt (right) in Experiment 1.
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Table 3: Parameter settings in Experiment 2.

x1 x∗ T k D G λ

0 2/3 200 50 1 1 1

Table 4: Parameter settings in Experiment 3.

x1 n T d k D

0 10 50 5 10
√

5

C.3 Experiment 3: Mini-Batch Least Mean Square Regressions

Experimental settings are as follows. As an objective function, we use the squared loss:

ft(x) := 1
n

n∑
i=1

(⟨at,i, x⟩ − bt,i)2,

which is exemplified in Example 3.7. In this experiment, each component of the vector at,i is taken from a
uniform distribution on [1, 2] independently. We set X = [0, 1]d and assume there exists an optimal solution
x∗ which is taken from a uniform distribution on X , i.e., we take bt,i = ⟨at,i, x∗⟩. Parameters G, λ, α are
calcurated for each at,i and bt,i, e.g., G ≃ 429, λ ≃ 0.0969, and α ≃ 5.28 × 10−7 for some sequence. The
parameters of ONS are set as described in Subsection A.2. Other parameters are shown in Table 4.

The time variation of regret and ∥xt∥ is shown in Figure 3. From the left graph, we can see that MetaGrad’s
and our proposed method’s regrets are sublinear, which is consistent with the theoretical results. Though
this is out of the graph, OGD’s regret becomes sublinear if we take T = 200, and ONS’s regret is almost
linear even if we take T = 10000. From the right graph, we can confirm that ∥xt∥ of MetaGrad and proposed
methods converge to some point quickly, that of ODG fructuates in this time range, and that of ONS does
not change so much. The poor performance of ONS is because γ is too small to take large enough stepsizes.
This result shows that universal algorithms and our algorithms are more suitable for contaminated settings
than other methods.

Figure 3: The comparison of the time variation of regret (left) and ∥xt∥ (right).

27


	Introduction
	Our Contribution

	Related Work
	Problem Setting
	OCO Framework and Assumptions
	Contaminated Case

	Vulnerability of ONS
	Regret Upper Bounds by Universal Algorithms
	Regret Upper Bounds Given Additional Information
	Regret Lower Bounds
	Conclusion
	Existing Algorithms and Known Regret Bounds
	OGD Algorithm
	ONS Algorithm
	Universal Algorithms

	MISSING PROOFS
	Proof of the Exp-Concavity of the Function in Example 3.8
	Proof of Proposition 4.1
	Proof of Theorem 4.2
	Proof of Proposition 4.4
	The Lemma in the Proof of Theorem 5.3
	Proof of Corollary 5.4 for USC
	Proof of Theorem 5.5
	Proof of Corollary 5.6 for MetaGrad and Maler
	Proof of Corollary 5.6 for USC
	The Lemma in the Proof of Theorem 6.2

	Numerical Experiments
	Experiment 1: Contaminated Exp-Concave
	Experiment 2: Contaminated Strongly Convex
	Experiment 3: Mini-Batch Least Mean Square Regressions


