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Abstract
It is a common practice in natural language pro-
cessing to pre-train a single model on a general
domain and then fine-tune it for downstream tasks.
However, when it comes to Large Language Mod-
els, fine-tuning the entire model can be compu-
tationally expensive, resulting in very intensive
energy consumption. As a result, several Parame-
ter Efficient Fine-Tuning (PEFT) approaches were
recently proposed. One of the most popular ap-
proaches is low-rank adaptation (LoRA), where
the key insight is decomposing the update weights
of the pre-trained model into two low-rank matri-
ces. However, the proposed approaches either use
the same rank value across all different weight
matrices or do not use any quantization technique,
which has been shown to be one of the most im-
portant factors when it comes to a model’s energy
consumption. In this work, we propose Bayesian-
LoRA which approaches low-rank adaptation and
quantization from a Bayesian perspective by em-
ploying a prior distribution on both quantization
levels and rank values. As a result, B-LoRA is
able to fine-tune a pre-trained model on a spe-
cific downstream task, finding the optimal rank
values and quantization levels for every low-rank
matrix. We validate the proposed model by fine-
tuning a pre-trained DeBERTaV3 on the GLUE
benchmark. Moreover, we compare it to rele-
vant baselines and present both qualitative and
quantitative results, showing how the proposed
approach is able to learn optimal-rank quantized
matrices. B-LoRA performs on par with or better
than the baselines while reducing the total number
of bit operations by roughly 70% compared to the
baseline methods.
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1. Introduction
Pre-trained language models (PLMs) have become the de-
facto models in various natural language processing tasks
(Devlin et al., 2019; Liu et al., 2019; He et al., 2021b; Rad-
ford et al., 2019; Brown et al., 2020b). Although full fine-
tuning (FT) has been the most common way to adapt pre-
trained models to downstream tasks Qiu et al. (2020); Raffel
et al. (2020), with the rise of large pre-trained models full FT
is becoming unfeasible. For instance, while BERT (Devlin
et al., 2019) consisted of up to 300 M parameters, GPT-
3 (Brown et al., 2020b) contains up to 175 B parameters,
making full FT extremely computationally and energy de-
manding. The main lines of research to address this issue
focus on reducing the fine-tuning parameters while main-
taining or even improving the downstream performance of
PLMs. One approach is to mitigate such a problem by
adapting only some parameters or learning external mod-
ules for new tasks, while keeping the base model frozen
and shared across tasks. As a result, only a small number
of task-specific parameters need to be stored and loaded,
greatly boosting the operational efficiency when deployed.
For example, Adapter Tuning approaches (Houlsby et al.,
2019; Rebuffi et al., 2017; Pfeiffer et al., 2020; He et al.,
2022) employ small neural modules called adapters within
the layers of the pre-trained model. Prefix tuning (Li &
Liang, 2021) and Prompt tuning (Lester et al., 2021) attach
additional trainable prefix tokens to the input or hidden lay-
ers of the base model. These methods have been shown to
achieve comparable performance to full fine-tuning, while
only updating less than 1% of the original model parameters,
significantly releasing the memory consumption.

Another Parameter Efficient Fine-Tuning (PEFT) line of
research proposes to model the incremental update of the
pre-trained weights in a parameter-efficient way, without
modifying the model architecture (Zaken et al., 2021; Guo
et al., 2020; Hu et al., 2022; Zhang et al., 2023; Valipour
et al., 2022). Among this family of methods, the most
widely used is LoRA (Hu et al., 2022), which parameterizes
weight updates ∆ as a low-rank matrix by the product of
two much smaller matrices:

W = W0 +∆ = W0 +BA, (1)
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Figure 1. (Left) B-LoRA Scheme: As mentioned in Sec. 1, every weight W can be decomposed as W = W0 +BEA.
(Right) Rank Adaptation and Quantization techniques are visually represented, following equation 13 for Rank Adaption and equations 7
and 8 for Quantization, respectively. Visual Representation of quantization technique is taken from (Van Baalen et al., 2020).

where W0,∆ ∈ Rd×d, A ∈ Rr×d and B ∈ Rd×r with
r ≪ d. During fine-tuning, only A and B are updated.
The rank r is chosen to be much smaller than the dimension
of W (e.g., r = 8 when d = 1024). With less than 0.5%
additional trainable parameters, training overhead can be
reduced up to 70%, achieving comparable or even better per-
formance than full fine-tuning (Hu et al., 2022). However,
LoRA still has limitations since searching the optimal rank
value requires re-running the entire fine-tuning for each new
value (Valipour et al., 2022) and it sets the same rank r of
each incremental matrix ∆ across different LoRA blocks
(Zhang et al., 2023). The latter, as pointed out by Zhang
et al. (2023), does not take into account that the impact of
the weight matrices on downstream performances varies
significantly across modules and layers when fine-tuning
pre-trained models.

While PEFT approaches are proved to be very successful
in reducing the number of parameters needed for specific
downstream tasks, the LoRA-based approaches, proposed
in the literature, either use the same rank value across all
different weight matrices or do not use any quantization
technique. However, to reduce the computational cost of
neural network inference and the related energy consump-
tion, quantization and compression techniques are often
applied before deploying a model in real life (Van Baalen
et al., 2020; Xu et al., 2024). Indeed, the former reduces
the bit width of weight and activation tensors by quantizing
floating-point values onto a regular grid, allowing the use

of cheap integer arithmetic, while the latter aims to reduce
the total number of multiply-accumulate (MAC) operations
required (Kuzmin et al., 2019; Krishnamoorthi, 2018).

Recently, Van Baalen et al. (2020) proposed the Bayesian-
Bits approach, which introduces a novel and hardware-
friendly decomposition of the quantization operation and
allows for adaptable and optimal quantization levels, re-
sulting in optimal quantization levels and, therefore, lower
model energy consumption. Inspired by BayesianBits (Van
Baalen et al., 2020), we propose Bayesian-LoRA which
approaches LoRA matrix decomposition and quantization
from a Bayesian perspective. Indeed, by positioning a prior
distribution on both quantization levels and rank values
of the low-rank matrices weights, the optimal rank values
and quantization levels for each individual LoRA block
are learned. We validate the proposed approach, using the
GLUE (Wang et al., 2019) benchmark, and compare it with
state-of-the-art baselines, such as LoRA (Hu et al., 2022),
DyLoRA (Valipour et al., 2022), and AdaLoRA (Zhang
et al., 2023). Moreover, we perform a qualitative analysis
of quantization levels and rank values across the fine-tuned
quantized LoRA blocks, which shows how B-LoRA is able
to reduce the total amount of bit operations of roughly 70%,
while performing on par or better than the related SOTA
baselines.
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2. Related Work
2.1. Transformer-based Language Model

Pre-trained language models have gained significant atten-
tion in the field of natural language processing (NLP), due
to their impressive capabilities in language generation, in-
context learning, world knowledge, and reasoning.

The GPT family, including GPT-3 (Brown et al., 2020a),
ChatGPT (OpenAI, 2022), GPT-4 (OpenAI, 2023), and
InstructGPT (Ouyang et al., 2022) are some of the repre-
sentative works on autoregressive LLMs. A second fam-
ily of language models are bi-directional models, like De-
BERTa (He et al., 2021b), DeBERTa-v3 (He et al., 2021a),
RoBERTa (Liu et al., 2019), T5 (Raffel et al., 2020). It is a
common practice to train transformer models on Language
Modelling or Masked Language Modelling task in an un-
supervised manner, which does not require annotated data,
and adapt it for multiple downstream applications. Such
adaptation can be done via fine-tuning, which updates all
parameters of a model (Hu et al., 2022). Since transformer
models often have billions of parameters, computing gradi-
ent updates for the entire model can be infeasible without
appropriate hardware. This gave motivation for research
work on parameter-efficient variations of fine-tuning (Hu
et al., 2022; Zaken et al., 2021).

Low-Rank Adaptation. LoRA (Hu et al., 2022) is an
approach that allows training model for a downstream task
while updating only a small subset of weights. It models
incremental updates of the weights being fine-tuned as a
product of two matrices that have much fewer parameters.
This results in the following forward pass:

Wx = W0x+∆x = W0x+BAx (2)

where W0,∆ ∈ Rd×d, A ∈ Rr×d and B ∈ Rd×r with
r ≪ d. Typically, A is initialized from a Gaussian distri-
bution and all entries of B are set to 0. In transformers,
LoRA is usually applied to weights in attention modules.
Most of the experiments described by Hu et al. (2022) used
queries and values only. He et al. (2022) extend it to weight
matrices of FFNs (i.e., Wf1 and Wf2), leading to perfor-
mance improvement. Meanwhile, they propose a unified
view of various efficient tuning methods, including adapter
tuning, prefix tuning, and LoRA. While LoRA (Hu et al.,
2022) requires an expensive hyperparameter search to find
the optimal rank values, DyLoRA (Valipour et al., 2022)
proposes to fine-tune the model’s weights for multiple rank
values simultaneously. Inspired by Nested Dropout (Rip-
pel et al., 2014), Valipour et al. (2022) truncates matrices
A,B to Ab ∈ Rb×d and Bb ∈ Rd×b, sampling different
rank values b per iteration. In contrast to DyLoRA, which
aims to optimize matrices for as many ranks as possible,
AdaLoRA (Zhang et al., 2023) searches for optimal rank val-
ues. Given parameter budget, it is allocated among weights

according to their importance score. They reparameterize
LoRA modules using SVD decomposition and during train-
ing diagonal values can be truncated or returned. Recntly,
it was proven that a nearly linear time approximation exists
for LoRA (Hu et al., 2024).

Quantization of LLMs. Quantization is a compression
technique that reduces the bit width of the parameters and/or
activations of LLMs to improve their efficiency and scalabil-
ity (Xiao et al., 2023; Dettmers et al., 2022; 2023). Existing
methods mostly focused on preserving or restoring the ac-
curacy of quantized LLMs during the inference stage (Zhu
et al., 2023), where the key is to reduce the memory footprint
and computational costs without re-training the LLMs. In
the context of low-rank adaptation, QLoRA (Dettmers et al.,
2023) uses a novel high-precision technique to quantize a
pre-trained model to 4-bit, and adds a small set of learnable
low-rank Adapter weights that are tuned by backpropagat-
ing gradients through the quantized weights. Moreover,
QA-LoRA (Xu et al., 2024) quantizes the weights of the pre-
trained language model during fine-tuning to reduce time
and memory usage. However, both QLoRA and QA-LoRA
use vanilla LoRA blocks, inheriting their limitations related
to rank values. In this work, we jointly optimize quanti-
zation levels and rank values to reduce the complexity of
the model, while fine-tuning LoRA blocks to achieve better
downstream performances.

3. Method
Our method searches for optimal precision and rank alloca-
tion in transformer models. In this section, we discuss these
components separately.

3.1. Learnable Quantization

Following BayesianBits (Van Baalen et al., 2020), for a
given weight x with values in the range [α, β] we apply
uniform quantization with different bitwidth bn = n, n ∈
N , whereN = {2, 4, 8, 16, 32}. For bitwidth bn, quantized
weights are computed as:

xq = s⌊x/s⌉ , s =
β − α

2bn − 1
, (3)

where s is the step size of the quantized value and ⌊·⌉ rep-
resents the round-to-nearest-integer function. Van Baalen
et al. (2020) derive an expression for a residual error be-
tween consecutive quantization levels, using bitwidth bn
and bn+1 = 2 ∗ bn:

ϵbn+1
= sbn+1

⌊
x− xbn

sbn+1

⌉
, sbn+1

=
sbn

2b + 1
(4)

Given this expression, weight x can be reconstructed from
its quantized version by adding error terms:

xq = x2 + ϵ4 + ϵ8 + ϵ16 + ϵ32 (5)
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Algorithm 1 B-LoRA block. Individual quantizer module
parameters ϕ are not indicated for the sake of clarity.
Require: Input x, rank r, pre-trained matrix W ∈ Rd1×d2 ,

LoRA matrices A ∈ Rr×d2 and B ∈ Rd1×r, vector with
diagonal entries E ∈ Rr, rank distribution parameters
ξ2 . . . ξr, quantizers Qw, Qa, Qe, Qb, used for weight ma-
trices, and QA, QE , Qout, used for output variables.

# quantize all weights
W̄ , Ā, Ē, B̄ = Qw(W ), Qa(A), Qe(E), Qb(B)
# compute rank gates

g1 = 1, g2 =

⌊
σ(ξ2)

⌉
, gi =

⌊∏i
j=1 σ(ξj)

⌉
# apply gates on diagonal entries
Ēi = Ēi ∗ gi
# compute output
return Qout(W̄x+ B̄ ·QE(Ē ·QA(Āx)))

To make weight precision controllable, gating variables
zi, i ∈ {4, 8, 16, 32} are introduced:

xq = x2 + z4(ϵ4 + z8(ϵ8 + z16(ϵ16 + z32ϵ32))) (6)

Reinterpreting the model from a Bayesian perspective, we
can introduce a prior distribution on gates zi. The prior can
be described with the following equations:

p(zm|zn = 1) = Bern(e−λ),

{m,n|m = 2× n, n ∈ N \ {32}}
(7)

that represent consecutive active gates, and

p(zm|zn = 0) = Bern(0) = 0,

{m,n|m = 2× n, n ∈ N \ {2, 32}}
(8)

which are used for inactive gates. Notably, using this nota-
tion, whenever gate n is inactive, all the consecutive ones
will be inactive as well. Then, we can define the posterior
distribution of gates qϕ as:

qϕ(zm|zn = 1) = Bern(σ(ϕm))

qϕ(zm|zn = 0) = Bern(0)
(9)

where ϕi are used to parameterize the defined Bernoulli
distributions and σ(·) is a sigmoid function. Van Baalen
et al. (2020) provide results for convolutional models like
LeNet (Simonyan & Zisserman, 2014) and VGG (Lecun
et al., 1998). In our work, we apply learnable quantization
to transformers. We limit our experiments by applying the
method discussed above only to attention modules.

Consider an attention module, parameterized by matrices
Wk,Wq,Wv corresponding to keys, queries, and values,
respectively. Following Van Baalen et al. (2020), we ap-
ply the learnable quantization approach to both weights

Algorithm 2 Quantizer Module (Q); Hyperparameters ζ1, ζ2
and t are fixed and defined in Appendix B
Require: Input x; Quantizer parameters ϕ

clip(x, min = α, max = β)
s2 ← β−α

22−1 , x2 ← s2⌊ x
s2
⌉

xq ← x2

for b in {4, 8, 16, 32} do
if training then
u ∼ U [0, 1], g ← log u

1−u , s← σ((g + ϕ)/b)
zb ← min(1,max(0, s(ζ1 − ζ2) + ζ2))

else
zb ← I

[
σ
(
β log

(
− ζ2

ζ1

)
− ϕ

)
< t

]
end if
sb ←

sb/2
2b/2+1

ϵb ← sb

⌊
x−(x2+

∑
j<b ϵj)

sb

⌉
xq ← xq + zb

(∏
j<b zj

)
ϵb

end for
return xq

and variables defined within the attention module. During
fine-tuning, we define Wk,Wq,Wv as LoRA blocks and
optimize quantization levels of each weight and variable
within the attention module. Specifically, we use a different
quantizer for every matrix of each LoRA block W0, A,B,
and the related output variables.

3.2. Bayesian Rank Adaptation

In this section, we formalize the LoRA parametrization
as in Zhang et al. (2023) and apply the gating mechanism
defined in equation 6 to optimize the rank value of each
LoRA block. We follow Zhang et al. (2023) and extend
LoRA parameterization to have an SVD structure. As a
result, LoRA blocks are modified to include the diagonal
matrix E. Following Zhang et al. (2023), we store diagonal
entries in a vector, therefore E ∈ Rr. Hence, the forward
pass in equation 2 can be expressed as:

Wx = W0x+BEAx (10)

In order to control and optimize rank values during training,
the entries of the vector E are multiplied by gating variables
as follows:

Ê =




g1
g1 · g2

...
g1 · g2 · · · gN

×
e1...
en


 (11)
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As for zi priors defined in equations 7 and 8, we define the
gi priors as follows:

p(gn+1|gn = 1) = Bern(e−λ),

{n|n ∈ 1, 2, · · · , r − 1} ,
p(g1) = Bern(1)

(12)

where p(g1) is always 1 because all LoRA matrices should
have at least rank 1. Such parametrization ensures that every
diagonal entry ej is inactive if ei, j > i is not active. Consis-
tently to equation 9, we can model the posterior distribution
of gates rξ as:

rξ(gi|gi−1 = 1) = Bern(σ(ξi)),
rξ(gi|gi−1 = 0) = Bern(0),

rξ(g1) = Bern(1),
(13)

The pseudocode for our method is provided in Algorithm 1.
An algorithm for a forward pass of weight and activation
quantizers can be found in Algorithm 2.

3.3. Training

As LoRA (Hu et al., 2022), our proposed approach is agnos-
tic to any training objective. Consistently to prior works (Hu
et al., 2022; Valipour et al., 2022; Zhang et al., 2023), we
focus on language modeling as our motivating use case.

Suppose we are given a pre-trained autoregressive lan-
guage model PΦ(y|x) parametrized by Φ. Consider adapt-
ing this pre-trained model to a given downstream task,
represented by a training dataset of context-target pairs:
Z = {(xi, yi)}i=1,..,N , where both xi and yi are sequences
of tokens.

Following Hu et al. (2022), we can define the LoRA objec-
tive function as:

LLoRA(Θ) =
∑

(x,y)∈Z

|y|∑
t=1

log
(
pΦ0+∆Φ(Θ)(yt|x, y<t)

)
, (14)

where Φ0 represents the initial set of parameters of the
pre-trained model and ∆Φ(Θ) represents the set of LoRA
parameters that are optimized during the fine-tuning.

In order to optimize the proposed B-LoRA blocks, we follow
the optimization scheme defined by Van Baalen et al. (2020).
Since the gating variables are sampled from Bernoulli dis-
tributions, we use an approximation of the KL divergence

term, which results in the following objective:

F(θ, ϕ, ξ) = LLoRA(Θ)− λq

∑
k

∑
i∈B

j≤i∏
j∈B

qϕ(zjk|zik = 1)︸ ︷︷ ︸
Quantization

−

λr

∑
k

r∑
i=1

i∏
j=1

rξ(gjk|gik = 1)︸ ︷︷ ︸
Rank Adaptation

(15)
where B is a set of available bitwidth, k denotes the index
of the quantizer, λq and λr are hyperparameters that weight
quantization and rank adaptation regularizers, respectively.
In all our experiments, we set λr = λq = 1. We follow Van
Baalen et al. (2020) and employ straight-through estimator
(STE) (Bengio et al., 2013) for rounding operation, perform-
ing rounding in the forward pass, while using identity in the
backward pass.

4. Experiments
In this section, we design empirical experiments to under-
stand the performance of B-LoRA and its potential lim-
itations by exploring the following questions: (1) How
does optimizing quantization levels and rank values affects
the downstream usefulness of LoRA-based fine-tuning ap-
proaches? (2) Can we observe consistent patterns of quanti-
zation levels and rank values across different tasks? (3) How
many bit operations (BOPs) can we save by using adaptive
quantization levels and rank values?

4.1. Experimental Setup

Following AdaLoRA (Zhang et al., 2023), B-LoRA is imple-
mented for fine-tuning DeBERTaV3-base (He et al., 2020)
on natural language understanding using the GLUE bench-
mark (Wang et al., 2018). We set the number of training
epochs and scaling parameter alpha (Hu et al., 2022) accord-
ing to AdaLoRA. However, while AdaLoRA uses specific
hyperparameters for each different GLUE dataset, we use
the same set for the whole benchmark, showing the robust-
ness of the proposed method. Contrary to AdaLoRA, our
method is applied to Wk,Wq, and Wv while Wo,Wf1 and
Wf2 are kept frozen. More details on hyperparameters are
stated in Appendix B. The only layers that are fine-tuned
with Wq,Wk,Wv are two linear layers in the task-specific
head. We provide the results for the full method B-LoRA(q
+ ra) and an ablation of it that uses only adaptive quantiza-
tion B-LoRA(q). We can compute the number of training
parameters for the proposed approach as follow:

#params = 6× r × l × d (16)

where l represents the base model layers and d is the hid-
den model’s sizes, respectively. Number of parameters
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Table 1. GLUE Benchmark. Here, r parameter in LoRA and b parameter in AdaLoRA correspond to rank value and parameter budget,
respectively. We evaluate B-LoRA on two configuration: using quantization + rank adaptation (q+ ra) and using quantization only (q).
Best results for each dataset are shown in bold, while second best ones are underlined. # of parameters refers to the number of trainable
parameters of encoder (excluding classification head).

Method # Params BOPs MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B
Acc Acc Acc Acc/F1 Acc Acc Acc Corr

Full FT 184M 90.12 95.63 69.19 92.40/89.80 94.03 83.75 89.46 91.60
DyLoRA 0.29M 98.31 87.17 94.72 63.32 90.17 93.56 80.14 - 91.36
LoRA (r=8) 1.33M 98.31 90.67 94.95 69.82 91.99/89.38 93.87 85.20 89.95 91.60
AdaLoRA (b=576) 1.99M 95.32 90.77 96.10 71.45 92.23/89.74 94.55 88.09 90.69 91.84
LoRA (r=2) 0.33M 97.44 90.34 94.95 68.71 91.61/88.91 94.03 85.56 89.71 91.68
AdaLoRA (b=144) 0.49M 95.32 90.68 95.80 70.04 91.78/89.16 94.49 87.36 90.44 91.63
B-LoRA (q) 0.44M 32.85 90.17 96.44 70.22 91.26/88.38 94.25 86.52 90.20 91.64
B-LoRA (q + ra) 0.44M 32.91 90.27 96.33 69.63 90.75/87.79 94.2 88.33 90.03 91.76
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Figure 2. Rank distribution for GLUE benchmark. The last layers have larger rank values, compared to the first layers. Ranks of values
Wv are larger than ranks of keys Wk and queries Wq .

in the classification head is not included in the parame-
ter count, since it is fixed for all methods. A full description
of B-LoRA and related baselines number of parameters
computation can be found in Appendix D. B-LoRA is im-
plemented using PyTorch (Paszke et al., 2019), publicly
available HuggingFace Transformers weights (Wolf et al.,
2019), BayesianBits1 and AdaLoRA2 repositories.

1https://github.com/Qualcomm-AI-research/
BayesianBits

2https://github.com/QingruZhang/AdaLoRA/

Baselines. In order to assess the capabilities of the pro-
posed method with respect to the current state of the art, we
consider the following related baselines.

Full Fine-tuning (FT): In this setup, the model is initial-
ized with pre-trained weights and during training gradient
updates are computed for all weights.

LoRA (Hu et al., 2022). It is a widely used method for
parameter-efficient fine-tuning. Instead of fine-tuning the
entire model, LoRA updates a subset of weights by rep-
resenting the update matrices as a product of two matri-

6
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Figure 3. Quantization levels for GLUE benchmark. For each type of weight/activation, we compute median value of its bitwidth across
the encoder. LoRA modules are kept in lower precision of 2, 4 bits. Values Wv are kept in higher precision than keys Wk and queries Wq .

ces with intrinsic dimensions much lower than the weight
dimension, reducing the number of optimized parameters
which can be controlled with intrinsic dimension. We use
the same setup, used in (Zhang et al., 2023), for LoRA and
AdaLoRA, which use DeBERTaV3 (He et al., 2021a) as
pre-trained model and employ LoRA blocks in the follow-
ing weights: Wq,Wk,Wv,Wo,Wf1 ,Wf2 . We compute the
number of parameters trained by LoRA as:

#params = 2× r × l × (d× 5 + di) (17)

where di is the dimension related to the weight matrix Wf1 .

AdaLoRA (Zhang et al., 2023). It is an extension of LoRA
that aims to limit the total sum of rank values used in differ-
ent LoRA blocks. They define a computational budget and
prune rank values according to an importance score (Zhang
et al., 2023). We compute number of training parameters
in AdaLoRA using Eq. 17 with r which corresponds to the
maximum rank value. According to Zhang et al. (2023),
r = bT

n where n is the number of adapted weights and bT is
the target budget. We report the number of parameters for
bT ∈ {144, 576}, which results in r ∈ {3, 12}.

DyLoRA (Valipour et al., 2022): DyLoRA is another exten-
sion of LoRA, that enables adapting rank values dynami-
cally. However, the goal of this method is to optimize the
model fine-tuning for a range of ranks, in such a way that
different versions of the fine-tuned model can be used if
needed. Number of parameters for DyLoRA can be com-
puted with Equation 17 with r set to maximum rank.

Metrics. To assess the proposed approach and compare
it to the related baselines we use two sets of metrics; down-
stream metrics, related to the GLUE (Wang et al., 2019)
benchmark datasets, #params, and # Bit Operations (BOPs)
to evaluate the efficiency of each method. Intuitively, the
BOP count measures the number of multiplication opera-
tions multiplied by the bit width of the operands according
to BOPs impact on the energy consumption of a model. To
compute the BOP count we follow Van Baalen et al. (2020),
which uses # Bit Operations as a hardware-agnostic proxy
to model complexity and have an impact on energy level and
device lifetime. According to Yang et al. (2017) and Van
Baalen et al. (2020), BOPs impact the energy consumption
of the deployed model. Moreover, Yang et al. (2017) points
out how the number of bits accessed scales linearly with
the corresponding bitwidth and that most of the energy is
consumed by the multiplication operations, which scales
linearly with the used variables bitwidth. Therefore, we
use BOPs as a proxy measure to show how the proposed
approach affects the energy consumption with respect to the
related baselines. A list of the downstream metrics used for
the GLUE benchmark can be found in Appendix E.

4.2. Results

Quantitative Results. Table 1 presents the comparison
between the proposed model and the related baselines de-
scribed in Section 4.1. On all datasets, B-LoRA achieves
on-par performance with all other baselines, while present-
ing a much lower BOPs. Specifically, our method shows

7
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slightly worse results for MNLI and QQP, but performs bet-
ter than baselines on SST-2 and RTE (B-LoRA(q): 96.44→
AdaLoRA: 96.10 and B-LoRA(q+ra): 88.33→ AdaLoRA:
88.09, respectively). Interestingly, we can see that opti-
mizing quantization levels and rank values results in better
performances for RTE and STS-B datasets than using only
quantization (B-LoRA(q+ra): 88.33→ B-LoRA(q): 86.52
and B-LoRA(q+ra): 91.76 → B-LoRA(q): 91.64, respec-
tively). Moreover, Table 2, presented in Appendix A, reports
B-LoRA BOPs for every dataset within the GLUE bench-
mark, showing how quantization levels and amount of BOPs
are correlated.

Qualitative Results: Task-Specific Head Quantization
Levels. We examine precision levels of task-specific head
layers after fine-tuning. In all experiments layers of the
task-specific head remained at the highest possible precision
(32 bit). This result aligns with findings reported by Van
Baalen et al. (2020), where they observed that the first and
last layers were kept in higher precision in most of their
experiments, however, we only observed higher precision
in the last layers. Since Task-Specific Heads plays a central
role when fine-tuning a pre-trained model, quantizying their
weights has a big impact on downstream performances.

LoRA blocks quantization levels and rank value pat-
terns. We analyzed the distribution of quantization levels
and rank values after fine-tuning. Figure 3 shows that B-
LoRA matrices are often kept with low precision of 2 or 4
bits, while pre-trained weights are usually kept with higher
precision. A correlation between the quantization level of
pre-trained weights and final output and the dataset size is
present: the newer data the model observes during training,
the less precision of pre-trained weights is needed. Indeed,
datasets with a training set size below 10k (RTE, MRPC,
STS-B, CoLA) present a median number of bits used above
8, while the remain ones (SST-2, MNLI, QNLI, QQP) use a
median number of bits below 8. We hypothesized that there
might be a correlation between specific attention weights
(i.e., Wk, Wq , and Wk), optimal precision level, and related
rank value. In accordance to our hypothesis, Figure 2 shows
that Wv has on average larger rank values, compared to
Wk,Wq, which indicates that most of the information is
retained within attention values. On the other hand, queries
and keys can discard most of the information, since they
are only used to compute attention weights and highlight
the information retained within attention values. A similar
pattern can be observed in Figure 3, where B-LoRA blocks
used for values use more bits on average. In Appendix F,
AdaLoRA rank values are provided for budget b = 576.
The overall pattern observed in Zhang et al. (2023) aligns
with our results, however, for B-LoRA rank reduction is
more significant, since many LoRA modules are truncated
to rank value 1.

5. Discussion
In this work we present B-LoRA, a parameter-efficient
fine-tuning approach based on LoRA that allows to opti-
mize quantization levels and rank values using Bayesian
gating mechanisms proposed by Van Baalen et al. (2020).
While works such as DyLoRA (Valipour et al., 2022) and
AdaLoRA (Zhang et al., 2023) propose different approaches
for optimizing rank values, they do not quantize variables
and weights. Moreover, while our approach does not require
any hyperparameter search, AdaLoRA requires specifying
several hyperparameters for every dataset (i.e., computa-
tional budget, scheduler hyperparameters, learning rate).
The main limitation of this work is that B-LoRA is only
evaluated on the GLUE benchmark, while both LoRA and
AdaLoRA provide results for natural language generation
(Narayan et al., 2018; Hermann et al., 2015). In future works
we will validate the model on the two question answering
(QA) benchmarks SQuADv1.1 (Rajpurkar et al., 2016a) and
SQuADv2.0 (Rajpurkar et al., 2018a), as well as the E2E
benchmark (Novikova et al., 2017), using GPT-3 (Brown
et al., 2020a) as pre-trained model.

6. Conclusion
In this study, we introduced Bayesian-LoRA (B-LoRA),
a novel approach for optimizing quantization levels and
rank values in model parameters, using Bayesian techniques.
Our method extends the BayesianBits framework by Van
Baalen et al. (2020), enabling a hardware-friendly and adap-
tive quantization that significantly reduces computational
demands without sacrificing model performance. We em-
pirically demonstrated that B-LoRA achieves competitive
results on the GLUE benchmark, matching or even surpass-
ing state-of-the-art methods such as LoRA, DyLoRA, and
AdaLoRA, while also reducing bit operations by approxi-
mately 70%. This efficiency is achieved without the need for
extensive hyperparameter tuning, contrasting sharply with
approaches like AdaLoRA that require detailed configura-
tion, tailored to each dataset. However, our evaluation was
limited to the GLUE benchmark. Future work will aim to
validate B-LoRA across a broader range of tasks, including
question answering and natural language generation, us-
ing benchmarks like SQuAD v1.1 (Rajpurkar et al., 2016b)
and 2.0 (Rajpurkar et al., 2018b), and the E2E generation
benchmark (Novikova et al., 2017). Additionally, applying
B-LoRA to other pre-trained models like GPT-3 (Brown
et al., 2020a) will help establish its utility and robustness in
diverse natural language processing contexts.

Overall, B-LoRA presents a promising direction for energy
efficient, scalable, and effective model fine-tuning, making
a step to bridge the gap between computational efficiency
and performance.
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A. Additional Results
Table 2 illustrates how B-LoRA amount of BOPs varies across every GLUE dataset. As expected, datasets, showing the
highest levels of quantizations, presented in Fig. 3, have the lowest amount of BOPs.

Table 2. GLUE Benchmark: BOPs. BOPs values for each dataset. Each value represents percentage w.r.t. BOPs of encoder and attention
layers of LoRA with rank 16 applied on Wq,Wk,Wv (BOPs of LoRAr=16 = 100%, LoRAr=2 = 97.04%), AdaLoRArmax=16 =
97.44%.

Relative BOPs in encoder
Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B
B-LoRA (q) 28.05 25.08 34.70 27.66 34.12 35.58 37.50 40.17
B-LoRA (q + ra) 26.67 24.38 34.19 25.04 30.87 35.21 36.99 42.08

Relative BOPs in Attention Layers
B-LoRA (q) 16.63 13.19 24.34 16.18 23.66 25.36 27.58 30.68
B-LoRA (q + ra) 15.48 12.84 24.15 13.60 20.32 25.32 27.32 33.24

B. Training Details
In contrast to AdaLoRA, where different set of hyperparameters is used for every dataset as shown in Table 4, most of the
hyperparameters in our experiments are the same for all datasets. The only value that is changed is number of training
epochs, which can be found in Table 3. Table 5 reports hyperparameters used by DyLoRA and all hyperparameters that
were fixed in B-LoRA experiments. Here ζ1ζ2 are hyperparameters that ensure that z has support for exact 0, 1 and t is a
threshold used during inference for binarizing gates.

Table 3. Hyper-parameter setup of B-LoRA for GLUE benchmark.
Dataset # epochs

MNLI 7
RTE 50
QNLI 5
MRPC 30
QQP 5
SST-2 24
CoLA 25
STS-B 25

Table 4. Hyper-parameter setup of AdaLoRA for GLUE benchmark. Reported from (Zhang et al., 2023).
Dataset learning rate batch size # epochs γ ti ∆T tf

MNLI 5× 10−4 32 7 0.1 8000 100 50000
RTE 1.2× 10−3 32 50 0.3 600 1 1800
QNLI 1.2× 10−3 32 5 0.1 2000 100 8000
MRPC 1× 10−3 32 30 0.1 600 1 1800
QQP 5× 10−4 32 5 0.1 8000 100 25000
SST-2 8× 10−4 32 24 0.1 6000 100 22000
CoLA 5× 10−4 32 25 0.5 800 10 3500
STS-B 2.2× 10−3 32 25 0.1 800 10 2000
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Model Parameter Value

Optimizer AdamW
Warmup Ratio 0.0
LR Scheduler Linear

Batch Size 8
Learning Rate (LR) 5e-4

Weight Decay 0
DeBERTa-Base-v3 LoRA Config rq = rv = rk = 8

LoRA α 16
ζ1 -0.1
ζ2 1.1

Threshold t 0.34
Max Sequence Length 256

Seeds 0, 1, 2

Optimizer AdamW
Warmup Ratio 0.06
LR Scheduler Linear

Batch Size 32
Epochs 30

RoBERTa-Base Learning Rate (LR) 4e-4
Weight Decay 0.1
LoRA Config rq = rv = 8 (unless otherwise mentioned)

LoRA α 16
Max Sequence Length 512

Seeds 10, 42, 4242, 10, 1010

Table 5. The hyperparameters that have been used in DyLoRA experiments with GPT-Medium and RoBERTa-Base and in B-LoRA
experiments with DeBERTa-Base-v3.

C. MACs and BOPs for LoRA
C.1. MACs and BOPs

A MAC (Multiply-ACcumulate operation) is a multiplication followed by addition. This metric can be used to estimate
complexity of the model and often dictate the memory usage of a network. It can be related to FLOPs as

FLOPs = 2 ∗MACs

MAC count of a common layers:

• linear: MACs(l) = ni ∗ no, where ni - number of input features, no - number of output features

• convolution: MACs(l) = Co ∗W ∗H ∗Wi ∗Wf ∗Hf , where Co - number of output channels, Wi - number of input
channels, W,H - dimensions of output map, Wf , Hf - dimensions of filter

A BOP corresponds to Bit OPerations, as defined in (Van Baalen et al., 2020). BOP count measures multiplication operations,
multiplied by bit width of the corresponding components, which makes this metric a hardware-agnostic estimate of the
complexity of a model. BOP count is computed the following way:

BOPs(l) = MACs(l) ∗ bw ∗ ba

where bw, ba are weight and input activation bit width, respectively. BayesainLoRA method is additionally compared to
AdaLoRA in terms of BOP count. Below derivation of BOP and MAC for self-attention mechanism is provided.
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C.2. Self-Attention MACs

Self-attention is a basic block of transformer models (Vaswani et al., 2017). For evaluating B-LoRA, BOP is computed for
self-attention blocks of DeBERTa-v3 and compared to BOP of the same blocks with all weights and activation set to highest
possible precision (32 bits).

Self-attention module is parameterized with 3 matrices Wk,Wq,Wv ∈ R× where d is a hidden size of a model. Define
maximum length of an input sequence as l, then

MACs(q) = MACs(k) = MACs(v) = d2 ∗ l

Other operation that increases MAC count for self-attention is dot product between keys and queries (attention scores).
Assuming that number of attention heads is h, MACs of attention scores can be computed as

MACs(attention scores) = l2 ∗
[
d

h

]
∗ h

Finally, values are weighted by attention probabilities, which gives

MACs(attention scores) = l2 ∗
[
d

h

]
∗ h

Therefore, MAC count for a self-attention model can be computed as

MACs(self attention) = 3 ∗ d2 ∗ l + 2 ∗ l2 ∗
[
d

h

]
∗ h+ 1

where last term corresponds to a scaling factor.

C.3. Disentangled Self-Attention MACs

Since in all experiments DeBERTa-v3 was used, MAC calculations need to be extended to attention variant proposed by
(He et al., 2020). Disentangled attention utilizes positional information by introducing two extra matrices for keys and
queries that are applied on positional embeddings. Then scores between positional keys and queries (context to position)
and positional queries and keys (position to context) are computed and added to the attention scores.

Computations described above have components for which MAC need to be calculated. Assuming that positional embeddings
size is e:

MACs(posk) = MACs(posq) = d2 ∗ e

For Context-to-Position and Position-to-Context dot product:

MACs(p2c) = MACs(c2p) = l ∗ e ∗
[
d

h

]
∗ h

Each of them has a scaling factor. This results in

MACs(dis self attention)
= MACs(self attention) + 2 ∗MACs(posk) + 2 ∗MACs(p2c)

= 3 ∗ d2 ∗ l + 2 ∗ l2 ∗
[
d

h

]
∗ h+ 2 ∗ d2 ∗ e+ 2 ∗ l ∗ e ∗

[
d

h

]
∗ h+ 3

C.4. LoRA MACs

LoRA (Hu et al., 2022) parameterizes linear layer in the following way:

Wx = W0x+BAx

where A ∈ R∖×, B ∈ R×∖. MAC count for LoRA linear layer can be expressed as

MACs(LoRA) = MACs(linear) + (2 ∗ r + 1) ∗ d
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D. Number of Parameters
D.1. LoRA

Number of parameters in one LoRA module with matrices W ∈ Rd1×d2 , A ∈ Rr×d2 , B ∈ Rd1×r is computed with the
following equation:

#params = #A+#B = (r × d2) + (d1 × r) (18)

LoRA is applied to 6 matrices in attention layer. Wq,Wk,Wv,Wo have d1 = d2 = d, therefore, number of parameters in
each of them is

(r × d) + (d× r) = 2× r × d (19)

Additionally, it is used in intermediate and output layers of attention, Wf1 ∈ Rd×di , Wf2 ∈ Rdi×d. Number of trainable
parameters in each of these layers is:

(r × d) + (di × r) (20)

Summing parameters for all weights in attention layer results in:

4× (2× r × d) + 2× ((r × d) + (di × r)) = 2× r × (5× d+ di) (21)

For a model with l layers, number of trainable parameters in the encoder is:

#params = 2× l × r × (5× d+ di) (22)

D.2. B-LoRA

B-LoRA is applied for Wq,Wk,Wv ∈ Rd×d. In total, it gives

#params = 2× l × r × (3× d) = 6× l × r × d (23)

parameters.

E. GLUE Datasets Downstream Metrics
Table 6 provides details about GLUE datasets, such as task, number of examples in train/dev/test splits and metrics, used for
evaluation.

F. AdaLoRA Rank Distribution
Figure 4 shows the distribution of rank values in different layers in model, trained with AdaLoRA.
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Corpus |Train| |Test| Task Metrics Domain

Single-Sentence Tasks

CoLA 8.5k 1k acceptability Matthews corr. misc.
SST-2 67k 1.8k sentiment acc. movie reviews

Similarity and Paraphrase Tasks

MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B 7k 1.4k sentence similarity Pearson/Spearman corr. misc.
QQP 364k 391k paraphrase acc./F1 social QA questions

Inference Tasks

MNLI 393k 20k NLI matched acc./mismatched acc. misc.
QNLI 108k 5.7k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. misc.

Table 6. Task descriptions and statistics. All tasks are single sentence or sentence pair classification, except STS-B, which is a regression
task. MNLI has three classes; all other classification tasks have two. Test sets, shown in bold, use labels that have never been made public
in any form. Image is taken from Wang et al. (2019).
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Figure 4. Rank Distribution for AdaLoRA on MNLI dataset.
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