
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RASA: RANK-SHARING LOW-RANK ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank adaptation (LoRA) has been prominently employed for parameter-
efficient fine-tuning of large language models (LLMs). However, the limited
expressive capacity of LoRA, stemming from the low-rank constraint, has been
recognized as a bottleneck, particularly in rigorous tasks like code generation and
mathematical reasoning. To address this limitation, we introduce Rank-Sharing
Low-Rank Adaptation (RaSA), an innovative extension that enhances the ex-
pressive capacity of LoRA by leveraging partial rank sharing across layers. By
forming a shared rank pool and applying layer-specific weighting, RaSA effec-
tively increases the number of ranks without augmenting parameter overhead. Our
theoretically grounded and empirically validated approach demonstrates that RaSA
not only maintains the core advantages of LoRA but also significantly boosts per-
formance in challenging code and math tasks. Code, data and scripts are available
at: https://anonymous.4open.science/r/RaSA-ICLR-0E25.

1 INTRODUCTION

Low-rank adaptation (LoRA, Hu et al. (2022)) has become a de facto parameter-efficient fine-tuning
(PEFT) method for adapting large language models (LLMs) to specific downstream tasks. Its core
idea is to constrain the parameter updates to be low-rank, which significantly reduces the number of
trainable parameters and allows them to be merged back into the original model, thereby avoiding
additional inference latency. Despite its advantages, recent studies have shown that LoRA still
lags behind full fine-tuning (FFT), particularly in scenarios involving large training datasets and
complex tasks such as mathematical reasoning and code generation (Jiang et al., 2024; Biderman
et al., 2024). A plausible explanation for this performance gap is that the low-rank constraint limits
the expressive capacity of LoRA. For instance, Biderman et al. (2024) empirically found that the
effective rank required for FFT is 10-100× higher than typical LoRA configuration, and Zeng & Lee
(2024) theoretically demonstrated that a Transformer network (Vaswani et al., 2017) requires a rank
at least half the size of the model dimension to approximate another model of similar size.

Although the limited number of trainable parameters results in limited expressive capacity, recent
studies still indicate redundancy in LoRA’s parameters. For example, Kopiczko et al. (2024); Song
et al. (2024); Renduchintala et al. (2024); Li et al. (2024) further reduced the number of LoRA’s
parameters by sharing them across layers and modules with only slight performance loss. Brüel-
Gabrielsson et al. (2024) compressed 1,000 LoRAs trained from different tasks by sharing their
parameter spaces. This contradiction suggests that LoRA’s parameters are still not being fully utilized.

Combining the above two observations, we propose Rank-Sharing Low-Rank Adaptation (RaSA), an
approach that boosts the expressive capacity of LoRA by enabling partial rank sharing across layers.
Specifically, given an LLM with L layers, RaSA extracts k ranks from each layer’s LoRA update
to form a rank pool of L× k ranks, which is shared across all layers with layer-specific weighting.
RaSA retains the core advantages of LoRA – keeping the same parameter overhead and allowing for
easy merging back into the model. Moreover, since modern LLMs typically have deep architectures
(i.e., large L), RaSA greatly increase the effective rank of the parameter update by (L− 1)× k.

However, a higher rank does not necessarily lead to better expressive capacity. To rigorously
assess the benefits of RaSA, we analyze its capacity to reconstruct high-rank matrices compared
to LoRA. Theoretically, we prove that RaSA’s minimum reconstruction error is bounded by that
of LoRA. Empirically, we show that when k is relatively small, RaSA can be easily optimized to
achieve a significantly lower reconstruction error than LoRA. Finally, we conducted experiments

1

https://anonymous.4open.science/r/RaSA-ICLR-0E25


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

on mathematical reasoning and code generation, demonstrating that the lower reconstruction error
translates to improved downstream task performance.

Our contributions are summarized as follows:

• We propose RaSA, a novel extension of LoRA by by allowing partial rank sharing across
layers, which significantly improves the method’s efficiency and expressiveness (§ 2).

• We provide a comprehensive analysis – both theoretical and empirical – showcasing RaSA’s
superior capacity for matrix reconstruction (§ 3) and its resultant improved performance on
rigorous downstream tasks (e.g. code and math) (§ 4).

2 METHOD

×Bi Ai B̃i BS

Ãi

AS

Di

× ×

(a) LoRA (b) RaSA

layer-specific shared across layers

r r − k Lk

Figure 1: Decomposition of the update matrix ∆Wi in LoRA and RaSA, where i is the layer index.

2.1 FORMULATION

Given a pre-trained weight matrix W ∈ Rb×a, LoRA constrains its update to a low-rank form by
decomposing the update matrix ∆W ∈ Rb×a into a product of two rank-r matrices:

W +∆W = W +
α

r
BA (B ∈ Rb×r,A ∈ Rr×a), (1)

where rank r ≪ min(b, a) serves as a bottleneck dimension, reducing the number of trainable
parameters, and α is a scaling factor. In an LLM with L layers, LoRA assigns distinct trainable
matrices to each layer-i: {BiAi}i∈[L] (Figure 1(a)). RaSA, on the other hand, mitigates the low-rank
bottleneck of LoRA through rank sharing. Specifically, RaSA takes out k ranks in each layer and
shares them across all layers. This process can be conceptualized as follows:

1. Split the matrices Bi and Ai into layer-specific parts (B̃i, Ãi) and layer-shared parts (B̂i, Âi):

Bi = [ B̃i︸︷︷︸
Rb×(r−k)

B̂i︸︷︷︸
Rb×k

], Ai = [ ÃT
i︸︷︷︸

Ra×(r−k)

ÂT
i︸︷︷︸

Ra×k

]T . (2)

2. Concatenate the layer-shared parts across all layers to form shared rank pools (BS and AS):

BS =
[
B̂1 B̂2 · · · B̂L

]
∈ Rb×(L×k), AS =

[
ÂT

1 ÂT
2 · · · ÂT

L

]T ∈ R(L×k)×a.
(3)

Therefore, the update for layer-i is given by:

Wi +∆Wi = Wi +
α

r
(B̃iÃi +BSAS)

= Wi +
[
B̃i BS

]
diag(

α

r
)

[
Ãi

AS

]
.

(4)

To enable layer-specific weighting, we replace the constant diagonal matrix with a trainable diagonal
matrix Di = diag(d1, d2, · · · , dj , · · · , dr−k+Lk), yielding the final RaSA update (Figure 1(b)):

Wi +∆Wi = Wi +
[
B̃i BS

]︸ ︷︷ ︸
Rb×(r−k+Lk)

Di

[
Ãi

AS

]
︸ ︷︷ ︸

R(r−k+Lk)×a

.
(5)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 ANALYSIS & IMPLEMENTATION DETAILS

Rank of ∆W Comparing Equations (1) and (5), RaSA increases the rank of ∆W from r to
r−k+Lk. Since modern LLMs are deep, RaSA significantly boosts the model’s expressive capacity
by enabling a higher effective rank, on which we have a detailed discussion in § 3. Each layer in
RaSA maintains the same rank for ∆W , which sets it apart from methods that dynamically assign
ranks across layers, such as AdaLoRA (Zhang et al., 2023) and PriLoRA (Benedek & Wolf, 2024).
Additional Parameters RaSA introduces the diagonal matrix Di as additional parameters. Since
Di is diagonal and operates only at the bottleneck dimension, the added parameters are negligible. In
practice, Di contributes to less than 0.001% of the total model parameters.

Initialization Following LoRA, we use Kaiming initialization (He et al., 2015) for Ãi and AS , and
initialize B̃i and BS to zero. For Di, we differentiate between the layer-specific and layer-shared
parts by scaling α proportionally by their respective ranks:

dj =

{
1
2 × α

r−k if j ≤ r − k,
1
2 × α

Lk if j > r − k.
(6)

Same Dimension Assumption RaSA assumes that all layers share the same dimensionality. This
holds for the vast majority of models (e.g. Llama (Dubey et al., 2024), Mistral (Jiang et al., 2023).

3 RECONSTRUCTION ERROR ANALYSIS

While RaSA increases the effective rank of ∆W , a higher rank does not necessarily guarantee
improved expressive capacity. For instance, a full-rank identity matrix can only perform the identity
transformation. To assess the expressive capacity of LoRA and RaSA, we compare their abilities to
reconstruct a set of high-rank matrices {Mi}i∈[L], where rank(Mi) = R > r. Under the Frobenius
norm, the minimum reconstruction error (MRE) of LoRA is defined as:

elora = min
Bi,Ai

L∑
i=1

∥Mi −BiAi∥2F . (7)

According to the Eckart–Young–Mirsky theorem (Eckart & Young, 1936), we can perform singular
value decomposition (SVD) on Mi:

SVD(Mi) =

R∑
j=1

σ
(i)
j u

(i)
j v

(i)
j

T
(σ

(i)
1 ≥ σ

(i)
2 ≥ · · · ≥ σ

(i)
R ). (8)

LoRA’s optimal approximation is given by the first r components of SVD(Mi), and elora becomes
the sum of squares of the discarded singular values (those beyond the r-th one):

elora =

L∑
i=1

∥Mi −
r∑

j=1

σ
(i)
j u

(i)
j v

(i)
j

T
∥2F =

L∑
i=1

R∑
j=r+1

σ
(i)
j

2
. (9)

Similarly, when each layer shares k ranks out, we can define the MRE of RaSA as:

erasa(k) = min
B̃i,Ãi,BS ,AS ,Di

L∑
i=1

∥Mi −
[
B̃i BS

]
Di

[
Ãi

AS

]
∥2F . (10)

For simplicity, in this section we consider that Di operates only on the shared matrices BS and AS ,
which does not affect the value of erasa(k):

erasa(k) = min
B̃i,Ãi,BS ,AS ,Di

L∑
i=1

∥Mi − (B̃iÃi +BSDiAS)∥2F . (11)

3.1 THEORETICAL ANALYSIS

Theorem 3.1. erasa(k) ≤ elora

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Proof. To prove this, we construct a feasible solution for RaSA that achieves the same reconstruction
error as LoRA’s minimum error. This is done by distributing the ranks shared across layers in RaSA
such that they cover the same rank range as the optimal LoRA solution.

For each layer-i, we take the last k components (corresponding to the indices r − k + 1 through r)
from the LoRA’s optimal approximation (Equation (9)), forming the following matrices:

U (i) =
[
u
(i)
r−k+1 u

(i)
r−k+2 · · · u

(i)
r

]
,

V (i) =
[
v
(i)
r−k+1 v

(i)
r−k+2 · · · v

(i)
r

]
,

Σ(i) =
[
σ
(i)
r−k+1 σ

(i)
r−k+2 · · · σ

(i)
r

]
.

(12)

The shared matrices BS and AS are constructed by stacking U (i) and V (i) from each layer:

BS =
[
U (1) · · · U (i) · · · U (L)

]
, AS =

[
V (1) · · · V (i) · · · V (L)

]T
. (13)

Similarly, we define the diagonal matrix Di for each layer-i by placing the corresponding singular
values Σ(i) in their appropriate positions:

Di = diag(
[
0 · · · Σ(i) · · · 0

]
). (14)

Finally, the matrices B̃i and Ãi are formed from the first r − k components of SVD(Mi):

B̃iÃi =

r−k∑
j=1

σ
(i)
j u

(i)
j v

(i)
j

T
. (15)

Substituting Equations (13) to (15) into Equation (11), we derive the following:

erasa(k) ≤
L∑
i

∥Mi − (B̃iÃi +BSDiAS)∥2F

=

L∑
i=1

∥
R∑

j=1

σ
(i)
j u

(i)
j v

(i)
j

T
− (

r−k∑
j=1

σ
(i)
j u

(i)
j v

(i)
j

T
+

r∑
j=r−k+1

σ
(i)
j u

(i)
j v

(i)
j

T
)∥2F

=

L∑
i=1

∥
R∑

j=1

σ
(i)
j u

(i)
j v

(i)
j

T
−

r∑
j=1

σ
(i)
j u

(i)
j v

(i)
j

T
∥2F

=

L∑
i=1

R∑
j=r+1

σ
(i)
j

2

= elora.

(16)

Thus, we conclude that erasa(k) ≤ elora, proving that RaSA can achieve equal or lower minimum
reconstruction error compared to LoRA.

3.2 EMPIRICAL ANALYSIS

While the previous theoretical analysis guarantees that RaSA can at least match the MRE of LoRA, it
does not quantify how much RaSA improves upon LoRA. To provide a more intuitive understanding
of how RaSA achieves lower reconstruction error, we turn to an optimization-based analysis using
coordinate descent.

Empirical Validation Specifically, we instantiate the set of high-rank matrices {Mi}i∈[L] with
the actual weight updates from model fine-tuning: {∆Wi}i∈[L], and iteratively minimize the recon-
struction error in Equation (11) by adjusting the parameters of RaSA (r = 8, k = 1), namely the B̃i,
Ãi, BS , AS , and Di (details can be found in appendix A). We apply this procedure to various kinds
of linear modules within Llama-3.1-8B until convergence, and compute elora using Equation (9) as
baseline values.

Figure 2 shows that RaSA requires ∼10 iterations to achieve a significantly lower reconstruction
error than LoRA’s minimum. This pattern is consistent across all linear modules in the model,
demonstrating the enhanced expressive capacity of RaSA.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

R
ec

on
st

ur
ct

io
n 

Er
ro

r

290000

297500

305000

312500

320000

Iteration

0 10 20 30 40 50

RaSA LoRA

(a) Wup

R
ec

on
st

ur
ct

io
n 

Er
ro

r

190000

200000

210000

220000

230000

Iteration
0 10 20 30 40 50

(b) Wdown

R
ec

on
st

ur
ct

io
n 

Er
ro

r

360000

370000

380000

390000

400000

Iteration

0 10 20 30 40 50

(c) Wgate

R
ec

on
st

ur
ct

io
n 

Er
ro

r

54000

56500

59000

61500

64000

Iteration

0 10 20 30 40 50

(d) Wq

R
ec

on
st

ur
ct

io
n 

Er
ro

r
6500

7250

8000

8750

9500

Iteration

0 10 20 30 40 50

(e) Wk

R
ec

on
st

ur
ct

io
n 

Er
ro

r

8000

8500

9000

9500

10000

Iteration

0 10 20 30 40 50

(f) Wv

Figure 2: Reconstruction error curves of RaSA (r = 8, k = 1) during coordinate descent. We also
plot the minimum reconstruction error of LoRA (Equation (9)) for comparison.

Selection of k RaSA introduces only one additional hyper-parameter, k, which controls how many
ranks are taken from each layer to be shared across all layers. When k = 0, RaSA reduces to LoRA,
where no ranks are shared. On the other hand, when k = r, RaSA shares all ranks across layers,
eliminating layer-specific low-rank updates and making the adaptation fully shared. While this
maximizes the effective rank of update, it may diminish layer diversity and the ability to capture
layer-specific nuances. We traversed k from 0 to 8, and presents the converged reconstruction error
from the previous coordinate descent experiment in Figure 3. The results indicate that a small value of
k, around r/8, achieves the minimum error. Further increasing k can lead to a rise in reconstruction
error, even exceeding that of LoRA. This finding also indicates that some current methods that share
all ranks across all layers, such as VeRA (Kopiczko et al., 2024) and Tied-LoRA (Renduchintala
et al., 2024), might be sub-optimal and challenging to be optimized. It is worth noting that k = r/8
is still an empirical result. We leave the theoretically optimal k to future work, which might also be
related the model dimension and number of layers.

R
ec

on
st

ru
ct

io
n 

Er
ro

r

140000

145000

150000

155000

0 1 2 4 6 8

RaSA LoRA

 
(a) 

k
r = 8

R
ec

on
st

ru
ct

io
n 

Er
ro

r

75000

78000

81000

84000

0 1 2 4 6 8

 
(b) 

k
r = 16

R
ec

on
st

ru
ct

io
n 

Er
ro

r

30000

30300

30600

30900

0 1 2 4 6 8

 
(a) 

k
r = 32

Figure 3: Reconstruction error comparison between RaSA and LoRA as a function of the shared rank
parameter k. We also plot the minimum reconstruction error of LoRA (Equation (9)) for comparison.
The results are average across all linear modules in the model.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENT

4.1 SETUP

Tasks Our experiments generally align with those reported by Biderman et al. (2024). We applied
all the methods to instruction fine-tuning and evaluated their performance on challenging tasks: code
generation and mathematical reasoning. While Biderman et al. (2024) use Humaneval (Chen et al.,
2021) and GSM8K (Cobbe et al., 2021) as test sets, these two benchmarks have become saturated with
the rapid growth of LLMs. To provide a more rigorous evaluation, we adopted two more challenging
benchmarks as test sets. Since these two benchmarks lack validation sets, in addition to reporting the
results from the last checkpoint, we also report the best results as a reference for the upper bound of
each method. Prompt templates for evaluation are provided in appendix B.

• Code Generation: We used Magicoder-Evol-Instruct-110k (Wei et al., 2024) as the training data, a
collection of programming question-answer (QA) pairs, which is a reproduced and decontaminated
version of WizardCoder (Luo et al., 2024). We used Humaneval+ (Liu et al., 2023) as the test
set, an extension of the Humaneval benchmark that scales the number of test cases by 80×. We
used the Bigcode Evaluation Harness (Ben Allal et al., 2022) as the evaluation tool, sampling 50
solutions per problem with a temperature of 0.2, and report both Pass@1 and Pass@10.

• Mathematical Reasoning: We used MetaMathQA (Yu et al., 2024) as the training data, which
comprises 395K QA pairs derived from the training sets of GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), rewritten by GPT-3.5. We used MATH (Hendrycks et al., 2021)
as the test set, which consists of 5K competition-level mathematics problems covering 7 subjects
and 5 difficulty levels. We followed the evaluation protocol from LLMs Evaluation Harness (Gao
et al., 2024), using sympy to verify correctness and employing greedy search for generation.

Baselines We compare RaSA to the several representative PEFT methods:

• LoRA (Hu et al., 2022) that learns only a low-rank perturbation to the pretrained weight matrix.
• MoRA (Jiang et al., 2024) that uses block diagonal matrices instead of low-rank matrices.
• VeRA (Kopiczko et al., 2024) that fully shares the low-rank matrices across all layers with layer-

specific weighting, and freeze the low-rank matrices during training to achieve extreme parameter
efficient fine-tuning. Therefore, VeRA can set a higher rank-r than LoRA.

LLMs & Training Details We conducted experiments on two open-sourced LLMs: Llama-3.1-
8B (Dubey et al., 2024) and Mistral-0.3-7B (Jiang et al., 2023). Following common practice (Kopiczko
et al., 2024; Jiang et al., 2024), we used pre-trained models rather than instruction-tuned ones. We
applied PEFTs on all linear modules from attention (Wq,Wk,Wv,Wo) and feed-forward networks
(Wup,Wdown,Wgate). We set the model hyper-parameters based on the optimal configurations from
Biderman et al. (2024), employing the decoupled LionW optimizer with a batch size of 192, and
training for 8 epochs with a learning rate of 5e-4 by default. For RaSA, we set k = max(r/8, 1)
based on the analysis in § 3.2. More details are provided in appendix C.

4.2 MAIN RESULTS

In this section, we compare RaSA and baselines on two challenging domains – code and math.

Code Generation Table 1 presents the results on the Humaneval+ test set. We compare RaSA and
prior LoRA variants in terms of both efficiency and effectiveness. Although VeRA adds only 1.6M
extra parameters for r = 1024, it results in a training time increase of between 13% and 16% over
LoRA with r = 32. VeRA, however, is the least effective among all the variants due to its extreme
strategy for parameter efficiency. Both MoRA and RaSA add a comparable number of additional
parameters as LoRA, yet MoRA requires more time due to the use of block diagonal matrices.

In terms of model performance, MoRA shows performance on par with LoRA, aligning with the
findings reported in the original paper (Jiang et al., 2024). Our proposed RaSA surpasses all baseline
models in nearly all scenarios. Like LoRA, RaSA’s performance improves with rank, and at rank 32,
RaSA typically delivers the strongest performance for both the Llama and Mistral models. RaSA
achieves maximum Humaneval+ of 59.5% PASS@1 with Llama-3.1-8B.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance on the code generation task (i.e. Humaneval+). Note that for MoRA and RaSA,
r does not correspond to the effective rank of the update matrix.

r Method # Param.
Llama-3.1-8B Mistral-0.3-7B

Time PASS@1 PASS@10 Time PASS@1 PASS@10
BEST LAST BEST LAST BEST LAST BEST LAST

1024 VeRA 1.6M 11.3h 48.8 48.8 66.5 64.2 12.5h 42.5 39.5 57.3 54.4

8
LoRA 21.0M 9.6h 56.1 53.0 71.2 68.5 10.7h 42.6 39.7 57.7 54.8
MoRA 21.0M 12.0h 54.6 52.1 68.4 66.9 13.4h 45.2 38.6 64.4 48.6
RaSA 21.0M 11.2h 57.9 56.9 72.6 69.6 12.1h 50.0 49.0 66.0 64.2

16
LoRA 41.9M 9.8h 54.5 53.4 68.9 67.6 10.7h 46.0 40.6 61.2 54.9
MoRA 41.9M 12.7h 56.3 52.9 69.5 65.6 14.0h 43.4 41.0 59.4 56.0
RaSA 42.0M 11.2h 57.3 56.4 72.1 68.1 12.1h 53.6 51.3 68.5 63.7

32
LoRA 83.9M 10.0h 57.9 56.9 69.8 69.2 10.8h 50.2 44.4 64.4 57.0
MoRA 83.9M 12.4h 55.6 53.0 69.0 68.3 14.0h 42.2 42.2 56.4 56.0
RaSA 83.9M 11.5h 59.5 56.2 72.5 71.4 12.5h 55.7 55.7 70.0 65.7

Table 2: Performance on MATH.

r Method Llama-3.1-8B Mistral-0.3-7B
BEST LAST BEST LAST

1024 VeRA 27.4 25.6 19.9 19.4

8
LoRA 28.3 26.7 20.1 19.2
MoRA 29.2 28.9 21.4 21.4
RaSA 30.3 29.1 24.3 23.8

16
LoRA 28.8 27.1 20.9 19.5
MoRA 30.2 26.5 20.5 19.4
RaSA 31.4 29.8 25.9 25.1

32
LoRA 28.9 27.2 21.8 20.4
MoRA 28.6 25.8 18.4 18.4
RaSA 31.7 29.6 26.1 25.1

Mathematical Reasoning The math results
presented in Table 2 are in close alignment with
the those of code results. RaSA demonstrates
consistent superiority over all baseline models
across various configurations. Mistral notably
falls short of its Llama counterpart, exhibiting a
performance deficit of approximately 8%, which
RaSA is capable of narrowing down to 5%. We
also observe that directly increasing the hyper-
parameter r yields only marginal performance
gains, but at the cost of doubling the number
of training parameters (see # Param. in Ta-
ble 1). In contrast, RaSA greatly outperforms
LoRA with the same or even fewer parameters
(RaSAr=8 > LoRAr=32). This supports the
notion introduced in § 1 that LoRA’s parame-
ters are underutilized. RaSA, on the other hand,
improves the utilization of parameters by sharing them across layers.

4.3 RASA LEARNS MORE AND FORGETS LESS THAN LORA

Epoch

1 2 3 4 5 6 7 8

(b) Mistral-0.3-7B | Code

Tr
ai

ni
ng

  L
os

s

0.3

0.5

0.6

0.8

1.0

Epoch

1 2 3 4 5 6 7 8

LoRA (r=8) LoRA (r=16) LoRA (r=32) RaSA (r=8) RaSA (r=16) RaSA (r=32)

(a) Llama-3.1-8B | Code
Epoch

1 2 3 4 5 6 7 8

(d) Mistral-0.3-7B | Math

Tr
ai

ni
ng

  L
os

s

0.04

0.08

0.12

0.16

0.20

Epoch

1 2 3 4 5 6 7 8

(c) Llama-3.1-8B | Math

Figure 4: RaSA learns more and faster than LoRA. Training curves of LoRA and RaSA with
different ranks. RaSA consistently outperforms LoRA with the same rank across models and tasks.

RaSA learns more and faster than LoRA Figure 4 illustrates the training curves of the fine-tuning
process. Generally, the training losses for both RaSA and LoRA decrease as the rank increases.
Notably, RaSA consistently outperforms its LoRA counterpart in terms of both learning effectiveness

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

and efficiency across all cases, aligning with our empirical analysis presented in Section 3.2. These
results collectively underscore the efficacy and universal applicability of the proposed RaSA method.
One interesting finding is that RaSA is specifically effective for Mistral: RaSA achieves comparable
or potentially superior training outcomes to LoRA with a significantly lower rank requirement of 8,
compared to LoRA’s rank of 32.

Epoch

1 2 3 4 5 6 7 8

(b) Mistral-0.3-7B | Code

Tr
ai

ni
ng

  L
os

s

50.0

55.0

60.0

65.0

70.0

Epoch

1 2 3 4 5 6 7 8

LoRA (r=8) RaSA (r=8) LoRA (r=16) RaSA (r=16) LoRA (r=32) RaSA (r=32)

(a) Llama-3.1-8B | Code
Epoch

1 2 3 4 5 6 7 8

(d) Mistral-0.3-7B | Math

Tr
ai

ni
ng

  L
os

s

50.0

55.0

60.0

65.0

70.0

Epoch

1 2 3 4 5 6 7 8

(c) Llama-3.1-8B | Math

Figure 5: RaSA forgets less than LoRA. Y-axis shows the average of prediction accuracy on three
benchmarks to evaluate model’s forgetting. Higher prediction accuracy denotes less forgetting.

RaSA forgets less than LoRA We follow Biderman et al. (2024) to investigate the extent of
forgetting as degradation of base model capabilities. Specifically, we calculate prediction accuracies
on the following three benchmarks: (1) HellaSwag (Zellers et al., 2019): inference the most plausible
continuation for daily events (70K problems); (2) WinoGrande (Sakaguchi et al., 2019): assesses
commonsense reasoning (44K problems); (3) ARC-Challenge (Clark et al., 2018): complex reasoning
and understanding of scientific concepts (7.8K problems).

Figure 5 presents the averaged forgetting curves of the three benchmarks, clearly showing that RaSA
experiences less forgetting than LoRA, with RaSA’s forgetting levels being less affected by rank
changes compared to LoRA. The difference in performance between r = 8 and r = 32 at epoch
8 stands at an average of 2.83% for LoRA and 0.75% for RaSA, indicating a smaller performance
variation for RaSA. LoRA is more prone to forgetting in math than code, while RaSA displays greater
domain robustness. Specifically, with r = 32, Mistral scores 58.7% in code and 52.8% in math using
LoRA, whereas RaSA shows a reduced performance difference between code (64.6%) and math
(66.5%) domains, underscoring RaSA’s robustness.

4.4 SCALING PERFORMANCE ANALYSIS

This section investigates the scaling characteristics of the RaSA approach by varying both the model
size and the dataset size to assess its robustness.

Tr
ai

ni
ng

 ti
m

e 
(s

)

18500

27000

35500

44000

LoRA RaSA
MoRA VeRA

M
AT

H
 A

cc
ur

ac
y

15

25

35

45

Llama-8B

Llama-70B

Mistra
l-7B

Mixtral-8x7B

34.8

23.1

42.4

28.9

32.6

18.5

40.4

27.8

LoRA
RaSA

M
AT

H
 A

cc
ur

ac
y

27

28

29

30

31

Training Data

25% 50% 100%

30.3

29.1

27.8
28.3

28.0

27.3

LoRA
RaSA

Figure 6: MATH performance of
scaled models.

Model Scaling Initially, we evaluate RaSA’s performance on
an expanded scale by examining larger-scale models, including
Llama-3.1-70B and Mixtral-8×7B. Due to computational con-
straints, we employ a rank of r = 4 for both models specifically
in the domain of mathematical reasoning. For an equitable com-
parison, we present results for smaller models configured with
r = 4. Each model is trained over 2 epochs using both LoRA and
RaSA techniques, with performance measured in terms of LAST
accuracy. The results in Figure 6 reveal that increasing the model
size substantially enhances performance for both LoRA and RaSA,
across all model types. Noteworthy is the performance of larger
Llama and Mistral models using LoRA, achieving MATH accura-
cies of 40.4% and 32.6%, respectively. These results significantly
exceed those of their smaller counterparts under identical configurations and even surpass outcomes
from variants with extended training (i.e., 8 epochs). Notably, RaSA consistently outperforms LoRA
on these larger-scale models, underscoring RaSA’s robustness in handling models of increased scale.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

M
AT

H
 A

cc
ur

ac
y

24

26

28

30

Training Data
25% 50% 100%

29.1

28.1
27.4

26.7

24.924.9

LoRA
RaSA

Figure 7: MATH perfor-
mance of scaled data.

Data Scaling Subsequently, we explore the influence of training data
size on RaSA’s performance. We experiment with the Llama-3.1-8B
model, applying a rank of r = 8 to facilitate efficient training. The
examination involves random sampling of 25% and 50% instances from
the SFT data for the mathematics reasoning task. Each model is trained
over 8 epochs, with performance assessed through the LAST accuracy.
As illustrated in Figure 7, LoRA’s performance seems contingent on the
volume of training data, with no noticeable improvement when data is
increased from 25% to 50%. This finding is consistent with the results
in Biderman et al. (2024). In contrast, RaSA demonstrates a remarkable
ability to enhance performance with an increase in training data volume.
Impressively, with just 25% of the training data, RaSA outperforms
LaSA even when the latter utilizes the entire dataset, highlighting
RaSA’s exceptional efficiency in leveraging training data for performance improvement.

5 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT) PEFT methods aim to minimize the number of trainable
parameters needed for fine-tuning large models, thus reducing memory and computational require-
ments. Pioneering methods include adapter-based (Houlsby et al., 2019) and prompt-based (Lester
et al., 2021; Li & Liang, 2021) that introduce additional tunable adapter or prefix tokens to enable
efficient fine-tuning while keeping the original model parameters fixed. However, these approaches
can slow down inference speed due to the extra components introduced. LoRA overcomes this
drawback by introducing low-rank matrices directly into the weight update process during fine-tuning,
effectively reducing trainable parameters without increasing inference latency. Due to its robust
performance, LoRA and its variants have been widely used to adapt LLMs for specific tasks (Yu
et al., 2024; Xu et al., 2023; Biderman et al., 2024; Chen et al., 2024; Meng et al., 2024; yang Liu
et al., 2024). Benedek & Wolf (2024) and Zhang et al. (2023) show that the number of ranks required
for each parameter matrix across the model’s layers is not uniform. Therefore, they propose dynami-
cally assigning ranks based on the importance of parameters during training. These rank-allocating
approaches typically involve real-time estimation of parameter importance and pruning during the
training process. In contrast, RaSA uses a shared rank pool combined with layer-specific weighting,
eliminating the need for complex importance estimation or pruning. Biderman et al. (2024) conduct
a comprehensive empirical study on LoRA, and reveal that while LoRA still lags behind FFT, it
exhibits less catastrophic forgetting. We show that our proposed RaSA forgets even less than LoRA,
and learns more and faster.

Parameter Redundancy of LoRA Although LoRA has significantly reduced the number of
trainable parameters, recent research suggest that it is possible to further minimize these parameters
without compromising performance. Kopiczko et al. (2024) achieve a 99% reduction in LoRA
parameters by fully sharing a pair of low-rank, frozen random matrices across all layers, adjusted with
learnable scaling vectors. Koohpayegani et al. (2024) propose learning linear combinations of a set
of random matrix bases, while Li et al. (2024) push this further by replacing the matrix bases with a
vector bank. Song et al. (2024) and Renduchintala et al. (2024) explore the effects of different sharing
and selective fine-tuning strategies. By sharing parameter spaces, Brüel-Gabrielsson et al. (2024)
compress 1,000 LoRAs trained from different task, enabling more efficient serving. These findings
collectively suggest that LoRA’s parameter has not been fully utilized and that different LoRAs
exhibit similarities across layers, modules, and even different tasks. Rather than focusing on extreme
parameter reduction, this work aims to maintain the same parameter count while exploring how inter-
layer sharing can enhance parameter utilization. We theoretically and empirically demonstrate that
sharing ranks across layers leads to lower reconstruction error and thus better expressive capacity.

6 CONCLUSION

In this study, we introduced RaSA, a novel extension to LoRA through an innovative partial rank
sharing across layers. RaSA maintains the parameter efficiency and seamless integration into existing
models characteristic of LoRA while substantially increasing the model’s expressiveness. Through

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

theoretical analysis, we established RaSA’s superior capability in matrix reconstruction compared
to traditional LoRA, underpinning its improved performance in downstream tasks. Empirical re-
sults on complex tasks such as code generation and mathematical reasoning have demonstrated its
effectiveness over LoRA in high-demand scenarios. Future research directions may explore further
optimization of rank-sharing schemes and the potential of RaSA in a broader range of applications,
paving the way for the development of even more powerful and efficient PEFT strategies.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All code, data, and scripts used for
our experiments are available at https://anonymous.4open.science/r/RaSA-ICLR-0E25. All
datasets and models used in our work are publicly accessible. Detailed training and data details are
provided in appendix C.

REFERENCES

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro von
Werra. A framework for the evaluation of code generation models. https://github.com/
bigcode-project/bigcode-evaluation-harness, 2022.

Nadav Benedek and Lior Wolf. PRILoRA: Pruned and rank-increasing low-rank adaptation. In
Yvette Graham and Matthew Purver (eds.), Findings of the Association for Computational Linguis-
tics: EACL 2024, pp. 252–263, St. Julian’s, Malta, March 2024. Association for Computational
Linguistics. URL https://aclanthology.org/2024.findings-eacl.18.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and forgets less.
arXiv preprint arXiv:2405.09673, 2024.

Rickard Brüel-Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald,
Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of lora adapters
with little overhead, 2024. URL https://arxiv.org/abs/2407.00066.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
gloRA: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
6PmJoRfdaK.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

10

https://anonymous.4open.science/r/RaSA-ICLR-0E25
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://aclanthology.org/2024.findings-eacl.18
https://arxiv.org/abs/2407.00066
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://zenodo.org/records/12608602


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/
v97/houlsby19a.html.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-efficient
fine-tuning. arXiv preprint arXiv:2405.12130, 2024.

Soroush Abbasi Koohpayegani, Navaneet K L, Parsa Nooralinejad, Soheil Kolouri, and Hamed
Pirsiavash. NOLA: Compressing lora using linear combination of random basis. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=TjfXcDgvzk.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NjNfLdxr3A.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
URL https://aclanthology.org/2021.acl-long.353.

Yang Li, Shaobo Han, and Shihao Ji. Vb-lora: Extreme parameter efficient fine-tuning with vector
banks. arXiv preprint arXiv:2405.15179, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=UnUwSIgK5W.

11

https://openreview.net/forum?id=7Bywt2mQsCe
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=NjNfLdxr3A
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=UnUwSIgK5W


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-LoRA: Enhancing parameter
efficiency of LoRA with weight tying. In Kevin Duh, Helena Gomez, and Steven Bethard
(eds.), Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
8694–8705, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.naacl-long.481. URL https://aclanthology.org/2024.naacl-long.481.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Yurun Song, Junchen Zhao, Ian G Harris, and Sangeetha Abdu Jyothi. Sharelora: Parameter efficient
and robust large language model fine-tuning via shared low-rank adaptation. arXiv preprint
arXiv:2406.10785, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with OSS-instruct. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 52632–52657. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/
v235/wei24h.html.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Hassan Awadalla. A paradigm shift in machine
translation: Boosting translation performance of large language models, 2023.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=3d5CIRG1n2.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1472. URL https://aclanthology.org/P19-1472.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=likXVjmh3E.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=lq62uWRJjiY.

12

https://aclanthology.org/2024.naacl-long.481
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=N8N0hgNDRt
https://aclanthology.org/P19-1472
https://openreview.net/forum?id=likXVjmh3E
https://openreview.net/forum?id=likXVjmh3E
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A COORDINATE DESCENT EXPERIMENT

This section details the derivation of the coordinate descent experiment discussed in § 3.2, inspired
by Brüel-Gabrielsson et al. (2024).

Given the parameters of RaSA: {B̃i, Ãi,BS , D̃i,AS}i∈[L], the reconstruction error of RaSA is
defined as:

E =

L∑
i=1

∥Mi − (B̃iÃi +BSDiAS)∥2F . (17)

Clearly, B̃i and Ãi are independent across layers. By applying the Eckart–Young–Mirsky theo-
rem (Eckart & Young, 1936), we first compute the SVD of the residual matrix:

SVD(Mi −BSDiAS) = UΣV T . (18)

Therefore, the update rules for B̃i and Ãi are:

B̃i = U[:,:r−k]Σ
1
2

[:r−k,:r−k],

Ãi = Σ
1
2

[:r−k,:r−k]V[:,:r−k]
T .

(19)

Let the low-rank decomposition of Mi be: Mi = B̂iÂi, where B̂i ∈ Rb×R and Âi ∈ RR×a. Next,
we compute the following gradients:

∇BS
E =

L∑
i=1

−2
(
B̂iÂi −

(
B̃iÃi +BSDiAS

))
AT

SD
T
i , (20)

∇AS
E =

L∑
i=1

−2
(
B̂iÂi −

(
B̃iÃi +BSDiAS

))
BSDi, (21)

∇DiE = −2BT
S

(
B̂iÂi −

(
B̃iÃi +BSDiAS

))
AT

S , (22)

∇diag(Di)E = diag(∇DiE). (23)

By setting these gradients to zeros, we obtain the following update rules:

BS =

(
L∑

i=1

[
B̂i −B̃i

] [Âi

Ãi

]
AT

SD
T
i

)(
L∑

i=1

DiASA
T
SD

T
i

)−1

, (24)

AS =

( L∑
i=1

([
B̂i −B̃i

] [Âi

Ãi

])T

BSDi

)(
L∑

i=1

DT
i B

T
SBSDi

)−1
T

, (25)

diag(Di) =
(
BT

SBS ◦ASA
T
S

)−1

(
BT

S

[
B̂i −B̃i

]
◦AS

[
Âi

Ãi

]T)
1. (26)

In coordinate descent, we iteratively apply Equations (19) and (24) to (26) until convergence.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B PROMPT TEMPLATES

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

### Instruction:
{QUESTION}

### Response:
Let's think step by step.

Figure 8: Evaluation prompt for mathematical reasoning.

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

### Instruction:
{QUESTION}

### Response:
{IMPORT SECTION}

{FUNCTION SIGNATURE}
{DOCSTRING}

Figure 9: Evaluation prompt for code generation.

C TRAINING AND DATA DETAILS

Training We mostly aligned our training configurations with the optimal configurations from
Biderman et al. (2024). For LoRA, we used the decoupled LionW optimizer with a batch size of 192,
training for 8 epochs with a learning rate of 5e-4. A cosine learning rate scheduler was applied, with
the first 10% of training steps used for warmup, and weight decay set to zero. Training and evaluation
were conducted using bfloat16 precision. While Biderman et al. (2024) set α = 32 for both math and
code tasks, we reduced α to 8 for the math task due to convergence issues observed with the Mistral
model when using α = 32. RaSA training fully inherits all hyper-parameters from LoRA training.
For MoRA, we used a learning rate of 3e-4, as reported in the original work (Jiang et al., 2024). For
VeRA, following the original paper, we set the learning rate to 10 times that of LoRA, resulting in
5e-3 (Kopiczko et al., 2024). All experiments for the 7-8B models were conducted on 1 node × 8 ×
A100-40G GPUs. For the 70B and MoE models, we used 8 nodes.

Data During training, we grouped data by length, which significantly accelerated the training
process. All math training data ends with “The answer is: {ANSWER}”, helping answer extraction
during evaluation.

D ADDING MORE BASELINES

Table 3 is adding more baseline in Table 2. We only present partial results since time constraint and
will complete full results in the final version.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: Performance on MATH (adding more baselines in Table 2).

r Method # Trainable
Param.

# Extra
Param.

Llama-3.1-8B Mistral-0.3-7B
BEST LAST BEST LAST

– FFT 7-8B 00.0M xx.x xx.x 28.1 26.6

1024 VeRA 1.6M 00.0M 27.4 25.6 19.9 19.4

8
LoRA 21.0M 00.0M 28.3 26.7 20.1 19.2

MoRA 21.0M 00.0M 29.2 28.9 21.4 21.4
OLoRA 21.0M 00.0M xx.x xx.x 22.5 22.5

AdaLoRA 31.5M 63.0M xx.x xx.x 22.5 21.6
PriLoRA 21.3M 10.7M xx.x xx.x 22.3 22.3

RaSA 21.0M 00.0M 30.3 29.1 24.3 23.8

16
LoRA 41.9M 00.0M 28.8 27.1 20.9 19.5

MoRA 41.9M 00.0M 30.2 26.5 20.5 19.4
OLoRA 41.9M 00.0M xx.x xx.x 22.5 22.2

AdaLoRA 62.9M 125.8M xx.x xx.x 23.5 23.2
PriLoRA 42.6M 21.3M xx.x xx.x 22.7 21.6

RaSA 42.0M 00.0M 31.4 29.8 25.9 25.1

32
LoRA 83.9M 00.0M 28.9 27.2 21.8 20.4

MoRA 83.9M 00.0M 28.6 25.8 18.4 18.4
OLoRA 83.9M 00.0M xx.x xx.x xx.x xx.x

AdaLoRA 125.9M 251.8M xx.x xx.x xx.x xx.x
PriLoRA 85.2M 42.6M xx.x xx.x xx.x xx.x

RaSA 83.9M 00.0M 31.7 29.6 26.1 25.1

15


	Introduction
	Method
	Formulation
	Analysis & Implementation Details

	Reconstruction Error Analysis
	Theoretical Analysis
	Empirical Analysis

	Experiment
	Setup
	Main Results
	RaSA Learns More and Forgets Less than LoRA
	Scaling Performance Analysis

	Related Work
	Conclusion
	Coordinate Descent Experiment
	Prompt Templates
	Training and Data Details
	Adding more baselines

