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ABSTRACT

Low-rank adaptation (LoRA) has been prominently employed for parameter-
efficient fine-tuning of large language models (LLMs). However, the limited
expressive capacity of LoRA, stemming from the low-rank constraint, has been
recognized as a bottleneck, particularly in rigorous tasks like code generation and
mathematical reasoning. To address this limitation, we introduce Rank-Sharing
Low-Rank Adaptation (RaSA), an innovative extension that enhances the ex-
pressive capacity of LoRA by leveraging partial rank sharing across layers. By
forming a shared rank pool and applying layer-specific weighting, RaSA effec-
tively increases the number of ranks without augmenting parameter overhead. Our
theoretically grounded and empirically validated approach demonstrates that RaSA
not only maintains the core advantages of LoRA but also significantly boosts per-
formance in challenging code and math tasks. Code, data and scripts are available
at: https://anonymous.4open.science/r/RaSA-ICLR-0E25.

1 INTRODUCTION

Low-rank adaptation (LoRA, Hu et al. (2022)) has become a de facto parameter-efficient fine-tuning
(PEFT) method for adapting large language models (LLMs) to specific downstream tasks. Its core
idea is to constrain the parameter updates to be low-rank, which significantly reduces the number of
trainable parameters and allows them to be merged back into the original model, thereby avoiding
additional inference latency. Despite its advantages, recent studies have shown that LoRA still
lags behind full fine-tuning (FFT), particularly in scenarios involving large training datasets and
complex tasks such as mathematical reasoning and code generation (Jiang et al., 2024; Biderman
et al., 2024). A plausible explanation for this performance gap is that the low-rank constraint limits
the expressive capacity of LoRA. For instance, Biderman et al. (2024) empirically found that the
effective rank required for FFT is 10-100× higher than typical LoRA configuration, and Zeng & Lee
(2024) theoretically demonstrated that a Transformer network (Vaswani et al., 2017) requires a rank
at least half the size of the model dimension to approximate another model of similar size.

Although the limited number of trainable parameters results in limited expressive capacity, recent
studies still indicate redundancy in LoRA’s parameters. For example, Kopiczko et al. (2024); Song
et al. (2024); Renduchintala et al. (2024); Li et al. (2024) further reduced the number of LoRA’s
parameters by sharing them across layers and modules with only slight performance loss. Brüel-
Gabrielsson et al. (2024) compressed 1,000 LoRAs trained from different tasks by sharing their
parameter spaces. This contradiction suggests that LoRA’s parameters are still not being fully utilized.

Combining the above two observations, we propose Rank-Sharing Low-Rank Adaptation (RaSA), an
approach that boosts the expressive capacity of LoRA by enabling partial rank sharing across layers.
Specifically, given an LLM with L layers, RaSA extracts k ranks from each layer’s LoRA update
to form a rank pool of L× k ranks, which is shared across all layers with layer-specific weighting.
RaSA retains the core advantages of LoRA – keeping the same parameter overhead and allowing for
easy merging back into the model. Moreover, since modern LLMs typically have deep architectures
(i.e., large L), RaSA greatly increase the effective rank of the parameter update by (L− 1)× k.

However, a higher rank does not necessarily lead to better expressive capacity. To rigorously
assess the benefits of RaSA, we analyze its capacity to reconstruct high-rank matrices compared
to LoRA. Theoretically, we prove that RaSA’s minimum reconstruction error is bounded by that
of LoRA. Empirically, we show that when k is relatively small, RaSA can be easily optimized to
achieve a significantly lower reconstruction error than LoRA. Finally, we conducted experiments
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on mathematical reasoning and code generation, demonstrating that the lower reconstruction error
translates to improved downstream task performance.

Our contributions are summarized as follows:

• We propose RaSA, a novel extension of LoRA by by allowing partial rank sharing across
layers, which significantly improves the method’s efficiency and expressiveness (§ 2).

• We provide a comprehensive analysis – both theoretical and empirical – showcasing RaSA’s
superior capacity for matrix reconstruction (§ 3) and its resultant improved performance on
rigorous downstream tasks (e.g. code and math) (§ 4).

2 METHOD

×Bi Ai B̃i BS

Ãi

AS

Di

× ×

(a) LoRA (b) RaSA

layer-specific shared across layers

r r − k Lk

Figure 1: Decomposition of the update matrix ∆Wi in LoRA and RaSA, where i is the layer index.

2.1 FORMULATION

Given a pre-trained weight matrix W ∈ Rb×a, LoRA constrains its update to a low-rank form by
decomposing the update matrix ∆W ∈ Rb×a into a product of two rank-r matrices:

W +∆W = W +
α

r
BA (B ∈ Rb×r,A ∈ Rr×a), (1)

where rank r ≪ min(b, a) serves as a bottleneck dimension, reducing the number of trainable
parameters, and α is a scaling factor. In an LLM with L layers, LoRA assigns distinct trainable
matrices to each layer-i: {BiAi}i∈[L] (Figure 1(a)). RaSA, on the other hand, mitigates the low-rank
bottleneck of LoRA through rank sharing. Specifically, RaSA takes out k ranks in each layer and
shares them across all layers. This process can be conceptualized as follows:

1. Split the matrices Bi and Ai into layer-specific parts (B̃i, Ãi) and layer-shared parts (B̂i, Âi):

Bi = [ B̃i︸︷︷︸
Rb×(r−k)

B̂i︸︷︷︸
Rb×k

], Ai = [ ÃT
i︸︷︷︸

Ra×(r−k)

ÂT
i︸︷︷︸

Ra×k

]T . (2)

2. Concatenate the layer-shared parts across all layers to form shared rank pools (BS and AS):

BS =
[
B̂1 B̂2 · · · B̂L

]
∈ Rb×(L×k), AS =

[
ÂT

1 ÂT
2 · · · ÂT

L

]T ∈ R(L×k)×a.
(3)

Therefore, the update for layer-i is given by:

Wi +∆Wi = Wi +
α

r
(B̃iÃi +BSAS)

= Wi +
[
B̃i BS

]
diag(

α

r
)

[
Ãi

AS

]
.

(4)

To enable layer-specific weighting, we replace the constant diagonal matrix with a trainable diagonal
matrix Di = diag(d1, d2, · · · , dj , · · · , dr−k+Lk), yielding the final RaSA update (Figure 1(b)):

Wi +∆Wi = Wi +
[
B̃i BS

]︸ ︷︷ ︸
Rb×(r−k+Lk)

Di

[
Ãi

AS

]
︸ ︷︷ ︸

R(r−k+Lk)×a

.
(5)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 ANALYSIS & IMPLEMENTATION DETAILS

Rank of ∆W Comparing Equations (1) and (5), RaSA increases the rank of ∆W from r to
r−k+Lk. Since modern LLMs are deep, RaSA significantly boosts the model’s expressive capacity
by enabling a higher effective rank, on which we have a detailed discussion in § 3. Each layer in
RaSA maintains the same rank for ∆W , which sets it apart from methods that dynamically assign
ranks across layers, such as AdaLoRA (Zhang et al., 2023) and PriLoRA (Benedek & Wolf, 2024).
Additional Parameters RaSA introduces the diagonal matrix Di as additional parameters. Since
Di is diagonal and operates only at the bottleneck dimension, the added parameters are negligible. In
practice, Di contributes to less than 0.001% of the total model parameters.

Initialization Following LoRA, we use Kaiming initialization (He et al., 2015) for Ãi and AS , and
initialize B̃i and BS to zero. For Di, we differentiate between the layer-specific and layer-shared
parts by scaling α proportionally by their respective ranks:

dj =

{
1
2 × α

r−k if j ≤ r − k,
1
2 × α

Lk if j > r − k.
(6)

Same Dimension Assumption RaSA assumes that all layers share the same dimensionality. This
holds for the vast majority of models (e.g. Llama (Dubey et al., 2024), Mistral (Jiang et al., 2023).

3 RECONSTRUCTION ERROR ANALYSIS

While RaSA increases the effective rank of ∆W , a higher rank does not necessarily guarantee
improved expressive capacity. For instance, a full-rank identity matrix can only perform the identity
transformation. To assess the expressive capacity of LoRA and RaSA, we compare their abilities to
reconstruct a set of high-rank matrices {Mi}i∈[L], where rank(Mi) = R > r. Under the Frobenius
norm, the minimum reconstruction error (MRE) of LoRA is defined as:

elora = min
Bi,Ai

L∑
i=1

∥Mi −BiAi∥2F . (7)

According to the Eckart–Young–Mirsky theorem (Eckart & Young, 1936), we can perform singular
value decomposition (SVD) on Mi:

SVD(Mi) =

R∑
j=1

σ
(i)
j u

(i)
j v

(i)
j

T
(σ

(i)
1 ≥ σ

(i)
2 ≥ · · · ≥ σ

(i)
R ). (8)

LoRA’s optimal approximation is given by the first r components of SVD(Mi), and elora becomes
the sum of squares of the discarded singular values (those beyond the r-th one):

elora =

L∑
i=1

∥Mi −
r∑

j=1

σ
(i)
j u

(i)
j v

(i)
j

T
∥2F =

L∑
i=1

R∑
j=r+1

σ
(i)
j

2
. (9)

Similarly, when each layer shares k ranks out, we can define the MRE of RaSA as:

erasa(k) = min
B̃i,Ãi,BS ,AS ,Di

L∑
i=1

∥Mi −
[
B̃i BS

]
Di

[
Ãi

AS

]
∥2F . (10)

For simplicity, in this section we consider that Di operates only on the shared matrices BS and AS ,
which does not affect the value of erasa(k):

erasa(k) = min
B̃i,Ãi,BS ,AS ,Di

L∑
i=1

∥Mi − (B̃iÃi +BSDiAS)∥2F . (11)

3.1 THEORETICAL ANALYSIS

Theorem 3.1. erasa(k) ≤ elora

3
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Proof. To prove this, we construct a feasible solution for RaSA that achieves the same reconstruction
error as LoRA’s minimum error. This is done by distributing the ranks shared across layers in RaSA
such that they cover the same rank range as the optimal LoRA solution.

For each layer-i, we take the last k components (corresponding to the indices r − k + 1 through r)
from the LoRA’s optimal approximation (Equation (9)), forming the following matrices:

U (i) =
[
u
(i)
r−k+1 u

(i)
r−k+2 · · · u

(i)
r

]
,

V (i) =
[
v
(i)
r−k+1 v

(i)
r−k+2 · · · v

(i)
r

]
,

Σ(i) =
[
σ
(i)
r−k+1 σ

(i)
r−k+2 · · · σ

(i)
r

]
.

(12)

The shared matrices BS and AS are constructed by stacking U (i) and V (i) from each layer:

BS =
[
U (1) · · · U (i) · · · U (L)

]
, AS =

[
V (1) · · · V (i) · · · V (L)

]T
. (13)

Similarly, we define the diagonal matrix Di for each layer-i by placing the corresponding singular
values Σ(i) in their appropriate positions:

Di = diag(
[
0 · · · Σ(i) · · · 0

]
). (14)

Finally, the matrices B̃i and Ãi are formed from the first r − k components of SVD(Mi):

B̃iÃi =

r−k∑
j=1

σ
(i)
j u

(i)
j v

(i)
j

T
. (15)

Substituting Equations (13) to (15) into Equation (11), we derive the following:

erasa(k) ≤
L∑
i

∥Mi − (B̃iÃi +BSDiAS)∥2F

=

L∑
i=1

∥
R∑

j=1

σ
(i)
j u

(i)
j v

(i)
j

T
− (

r−k∑
j=1

σ
(i)
j u

(i)
j v

(i)
j

T
+

r∑
j=r−k+1

σ
(i)
j u

(i)
j v

(i)
j

T
)∥2F

=

L∑
i=1

∥
R∑

j=1

σ
(i)
j u

(i)
j v

(i)
j

T
−

r∑
j=1

σ
(i)
j u

(i)
j v

(i)
j

T
∥2F

=

L∑
i=1

R∑
j=r+1

σ
(i)
j

2

= elora.

(16)

Thus, we conclude that erasa(k) ≤ elora, proving that RaSA can achieve equal or lower minimum
reconstruction error compared to LoRA.

3.2 EMPIRICAL ANALYSIS

While the previous theoretical analysis guarantees that RaSA can at least match the MRE of LoRA, it
does not quantify how much RaSA improves upon LoRA. To provide a more intuitive understanding
of how RaSA achieves lower reconstruction error, we turn to an optimization-based analysis using
coordinate descent.

Empirical Validation Specifically, we instantiate the set of high-rank matrices {Mi}i∈[L] with
the actual weight updates from model fine-tuning: {∆Wi}i∈[L], and iteratively minimize the recon-
struction error in Equation (11) by adjusting the parameters of RaSA (r = 8, k = 1), namely the B̃i,
Ãi, BS , AS , and Di (details can be found in appendix A). We apply this procedure to various kinds
of linear modules within Llama-3.1-8B until convergence, and compute elora using Equation (9) as
baseline values.

Figure 2 shows that RaSA requires ∼10 iterations to achieve a significantly lower reconstruction
error than LoRA’s minimum. This pattern is consistent across all linear modules in the model,
demonstrating the enhanced expressive capacity of RaSA.

4
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Figure 2: Reconstruction error curves of RaSA (r = 8, k = 1) during coordinate descent. We also
plot the minimum reconstruction error of LoRA (Equation (9)) for comparison.

Selection of k RaSA introduces only one additional hyper-parameter, k, which controls how many
ranks are taken from each layer to be shared across all layers. When k = 0, RaSA reduces to LoRA,
where no ranks are shared. On the other hand, when k = r, RaSA shares all ranks across layers,
eliminating layer-specific low-rank updates and making the adaptation fully shared. While this
maximizes the effective rank of update, it may diminish layer diversity and the ability to capture
layer-specific nuances. We traversed k from 0 to 8, and presents the converged reconstruction error
from the previous coordinate descent experiment in Figure 3. The results indicate that a small value of
k, around r/8, achieves the minimum error. Further increasing k can lead to a rise in reconstruction
error, even exceeding that of LoRA. This finding also indicates that some current methods that share
all ranks across all layers, such as VeRA (Kopiczko et al., 2024) and Tied-LoRA (Renduchintala
et al., 2024), might be sub-optimal and challenging to be optimized. It is worth noting that k = r/8
is still an empirical result. We leave the theoretically optimal k to future work, which might also be
related the model dimension and number of layers.
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Figure 3: Reconstruction error comparison between RaSA and LoRA as a function of the shared rank
parameter k. We also plot the minimum reconstruction error of LoRA (Equation (9)) for comparison.
The results are average across all linear modules in the model.
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4 EXPERIMENT

4.1 SETUP

Tasks Our experiments generally align with those reported by Biderman et al. (2024). We applied
all the methods to instruction fine-tuning and evaluated their performance on challenging tasks: code
generation and mathematical reasoning. While Biderman et al. (2024) use Humaneval (Chen et al.,
2021) and GSM8K (Cobbe et al., 2021) as test sets, these two benchmarks have become saturated with
the rapid growth of LLMs. To provide a more rigorous evaluation, we adopted two more challenging
benchmarks as test sets. Since these two benchmarks lack validation sets, in addition to reporting the
results from the last checkpoint, we also report the best results as a reference for the upper bound of
each method. Prompt templates for evaluation are provided in appendix B.

• Code Generation: We used Magicoder-Evol-Instruct-110k (Wei et al., 2024) as the training data, a
collection of programming question-answer (QA) pairs, which is a reproduced and decontaminated
version of WizardCoder (Luo et al., 2024). We used Humaneval+ (Liu et al., 2023) as the test
set, an extension of the Humaneval benchmark that scales the number of test cases by 80×. We
used the Bigcode Evaluation Harness (Ben Allal et al., 2022) as the evaluation tool, sampling 50
solutions per problem with a temperature of 0.2, and report both Pass@1 and Pass@10.

• Mathematical Reasoning: We used MetaMathQA (Yu et al., 2024) as the training data, which
comprises 395K QA pairs derived from the training sets of GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), rewritten by GPT-3.5. We used MATH (Hendrycks et al., 2021)
as the test set, which consists of 5K competition-level mathematics problems covering 7 subjects
and 5 difficulty levels. We followed the evaluation protocol from LLMs Evaluation Harness (Gao
et al., 2024), using sympy to verify correctness and employing greedy search for generation.

Baselines We compare RaSA to the several representative PEFT methods:

• LoRA (Hu et al., 2022) that learns only a low-rank perturbation to the pretrained weight matrix.
• MoRA (Jiang et al., 2024) that uses block diagonal matrices instead of low-rank matrices.
• VeRA (Kopiczko et al., 2024) that fully shares the low-rank matrices across all layers with layer-

specific weighting, and freeze the low-rank matrices during training to achieve extreme parameter
efficient fine-tuning. Therefore, VeRA can set a higher rank-r than LoRA.

LLMs & Training Details We conducted experiments on two open-sourced LLMs: Llama-3.1-
8B (Dubey et al., 2024) and Mistral-0.3-7B (Jiang et al., 2023). Following common practice (Kopiczko
et al., 2024; Jiang et al., 2024), we used pre-trained models rather than instruction-tuned ones. We
applied PEFTs on all linear modules from attention (Wq,Wk,Wv,Wo) and feed-forward networks
(Wup,Wdown,Wgate). We set the model hyper-parameters based on the optimal configurations from
Biderman et al. (2024), employing the decoupled LionW optimizer with a batch size of 192, and
training for 8 epochs with a learning rate of 5e-4 by default. For RaSA, we set k = max(r/8, 1)
based on the analysis in § 3.2. More details are provided in appendix C.

4.2 MAIN RESULTS

In this section, we compare RaSA and baselines on two challenging domains – code and math.

Code Generation Table 1 presents the results on the Humaneval+ test set. We compare RaSA and
prior LoRA variants in terms of both efficiency and effectiveness. Although VeRA adds only 1.6M
extra parameters for r = 1024, it results in a training time increase of between 13% and 16% over
LoRA with r = 32. VeRA, however, is the least effective among all the variants due to its extreme
strategy for parameter efficiency. Both MoRA and RaSA add a comparable number of additional
parameters as LoRA, yet MoRA requires more time due to the use of block diagonal matrices.

In terms of model performance, MoRA shows performance on par with LoRA, aligning with the
findings reported in the original paper (Jiang et al., 2024). Our proposed RaSA surpasses all baseline
models in nearly all scenarios. Like LoRA, RaSA’s performance improves with rank, and at rank 32,
RaSA typically delivers the strongest performance for both the Llama and Mistral models. RaSA
achieves maximum Humaneval+ of 59.5% PASS@1 with Llama-3.1-8B.
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Table 1: Performance on the code generation task (i.e. Humaneval+). Note that for MoRA and RaSA,
r does not correspond to the effective rank of the update matrix.

r Method # Param.
Llama-3.1-8B Mistral-0.3-7B

Time PASS@1 PASS@10 Time PASS@1 PASS@10
BEST LAST BEST LAST BEST LAST BEST LAST

1024 VeRA 1.6M 11.3h 48.8 48.8 66.5 64.2 12.5h 42.5 39.5 57.3 54.4

8
LoRA 21.0M 9.6h 56.1 53.0 71.2 68.5 10.7h 42.6 39.7 57.7 54.8
MoRA 21.0M 12.0h 54.6 52.1 68.4 66.9 13.4h 45.2 38.6 64.4 48.6
RaSA 21.0M 11.2h 57.9 56.9 72.6 69.6 12.1h 50.0 49.0 66.0 64.2

16
LoRA 41.9M 9.8h 54.5 53.4 68.9 67.6 10.7h 46.0 40.6 61.2 54.9
MoRA 41.9M 12.7h 56.3 52.9 69.5 65.6 14.0h 43.4 41.0 59.4 56.0
RaSA 42.0M 11.2h 57.3 56.4 72.1 68.1 12.1h 53.6 51.3 68.5 63.7

32
LoRA 83.9M 10.0h 57.9 56.9 69.8 69.2 10.8h 50.2 44.4 64.4 57.0
MoRA 83.9M 12.4h 55.6 53.0 69.0 68.3 14.0h 42.2 42.2 56.4 56.0
RaSA 83.9M 11.5h 59.5 56.2 72.5 71.4 12.5h 55.7 55.7 70.0 65.7

Table 2: Performance on MATH.

r Method Llama-3.1-8B Mistral-0.3-7B
BEST LAST BEST LAST

1024 VeRA 27.4 25.6 19.9 19.4

8
LoRA 28.3 26.7 20.1 19.2
MoRA 29.2 28.9 21.4 21.4
RaSA 30.3 29.1 24.3 23.8

16
LoRA 28.8 27.1 20.9 19.5
MoRA 30.2 26.5 20.5 19.4
RaSA 31.4 29.8 25.9 25.1

32
LoRA 28.9 27.2 21.8 20.4
MoRA 28.6 25.8 18.4 18.4
RaSA 31.7 29.6 26.1 25.1

Mathematical Reasoning The math results
presented in Table 2 are in close alignment with
the those of code results. RaSA demonstrates
consistent superiority over all baseline models
across various configurations. Mistral notably
falls short of its Llama counterpart, exhibiting a
performance deficit of approximately 8%, which
RaSA is capable of narrowing down to 5%. We
also observe that directly increasing the hyper-
parameter r yields only marginal performance
gains, but at the cost of doubling the number
of training parameters (see # Param. in Ta-
ble 1). In contrast, RaSA greatly outperforms
LoRA with the same or even fewer parameters
(RaSAr=8 > LoRAr=32). This supports the
notion introduced in § 1 that LoRA’s parame-
ters are underutilized. RaSA, on the other hand,
improves the utilization of parameters by sharing them across layers.

4.3 RASA LEARNS MORE AND FORGETS LESS THAN LORA
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Figure 4: RaSA learns more and faster than LoRA. Training curves of LoRA and RaSA with
different ranks. RaSA consistently outperforms LoRA with the same rank across models and tasks.

RaSA learns more and faster than LoRA Figure 4 illustrates the training curves of the fine-tuning
process. Generally, the training losses for both RaSA and LoRA decrease as the rank increases.
Notably, RaSA consistently outperforms its LoRA counterpart in terms of both learning effectiveness
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and efficiency across all cases, aligning with our empirical analysis presented in Section 3.2. These
results collectively underscore the efficacy and universal applicability of the proposed RaSA method.
One interesting finding is that RaSA is specifically effective for Mistral: RaSA achieves comparable
or potentially superior training outcomes to LoRA with a significantly lower rank requirement of 8,
compared to LoRA’s rank of 32.
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Figure 5: RaSA forgets less than LoRA. Y-axis shows the average of prediction accuracy on three
benchmarks to evaluate model’s forgetting. Higher prediction accuracy denotes less forgetting.

RaSA forgets less than LoRA We follow Biderman et al. (2024) to investigate the extent of
forgetting as degradation of base model capabilities. Specifically, we calculate prediction accuracies
on the following three benchmarks: (1) HellaSwag (Zellers et al., 2019): inference the most plausible
continuation for daily events (70K problems); (2) WinoGrande (Sakaguchi et al., 2019): assesses
commonsense reasoning (44K problems); (3) ARC-Challenge (Clark et al., 2018): complex reasoning
and understanding of scientific concepts (7.8K problems).

Figure 5 presents the averaged forgetting curves of the three benchmarks, clearly showing that RaSA
experiences less forgetting than LoRA, with RaSA’s forgetting levels being less affected by rank
changes compared to LoRA. The difference in performance between r = 8 and r = 32 at epoch
8 stands at an average of 2.83% for LoRA and 0.75% for RaSA, indicating a smaller performance
variation for RaSA. LoRA is more prone to forgetting in math than code, while RaSA displays greater
domain robustness. Specifically, with r = 32, Mistral scores 58.7% in code and 52.8% in math using
LoRA, whereas RaSA shows a reduced performance difference between code (64.6%) and math
(66.5%) domains, underscoring RaSA’s robustness.

4.4 SCALING PERFORMANCE ANALYSIS

This section investigates the scaling characteristics of the RaSA approach by varying both the model
size and the dataset size to assess its robustness.
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Figure 6: MATH performance of
scaled models.

Model Scaling Initially, we evaluate RaSA’s performance on
an expanded scale by examining larger-scale models, including
Llama-3.1-70B and Mixtral-8×7B. Due to computational con-
straints, we employ a rank of r = 4 for both models specifically
in the domain of mathematical reasoning. For an equitable com-
parison, we present results for smaller models configured with
r = 4. Each model is trained over 2 epochs using both LoRA and
RaSA techniques, with performance measured in terms of LAST
accuracy. The results in Figure 6 reveal that increasing the model
size substantially enhances performance for both LoRA and RaSA,
across all model types. Noteworthy is the performance of larger
Llama and Mistral models using LoRA, achieving MATH accura-
cies of 40.4% and 32.6%, respectively. These results significantly
exceed those of their smaller counterparts under identical configurations and even surpass outcomes
from variants with extended training (i.e., 8 epochs). Notably, RaSA consistently outperforms LoRA
on these larger-scale models, underscoring RaSA’s robustness in handling models of increased scale.
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Figure 7: MATH perfor-
mance of scaled data.

Data Scaling Subsequently, we explore the influence of training data
size on RaSA’s performance. We experiment with the Llama-3.1-8B
model, applying a rank of r = 8 to facilitate efficient training. The
examination involves random sampling of 25% and 50% instances from
the SFT data for the mathematics reasoning task. Each model is trained
over 8 epochs, with performance assessed through the LAST accuracy.
As illustrated in Figure 7, LoRA’s performance seems contingent on the
volume of training data, with no noticeable improvement when data is
increased from 25% to 50%. This finding is consistent with the results
in Biderman et al. (2024). In contrast, RaSA demonstrates a remarkable
ability to enhance performance with an increase in training data volume.
Impressively, with just 25% of the training data, RaSA outperforms
LaSA even when the latter utilizes the entire dataset, highlighting
RaSA’s exceptional efficiency in leveraging training data for performance improvement.

5 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT) PEFT methods aim to minimize the number of trainable
parameters needed for fine-tuning large models, thus reducing memory and computational require-
ments. Pioneering methods include adapter-based (Houlsby et al., 2019) and prompt-based (Lester
et al., 2021; Li & Liang, 2021) that introduce additional tunable adapter or prefix tokens to enable
efficient fine-tuning while keeping the original model parameters fixed. However, these approaches
can slow down inference speed due to the extra components introduced. LoRA overcomes this
drawback by introducing low-rank matrices directly into the weight update process during fine-tuning,
effectively reducing trainable parameters without increasing inference latency. Due to its robust
performance, LoRA and its variants have been widely used to adapt LLMs for specific tasks (Yu
et al., 2024; Xu et al., 2023; Biderman et al., 2024; Chen et al., 2024; Meng et al., 2024; yang Liu
et al., 2024). Benedek & Wolf (2024) and Zhang et al. (2023) show that the number of ranks required
for each parameter matrix across the model’s layers is not uniform. Therefore, they propose dynami-
cally assigning ranks based on the importance of parameters during training. These rank-allocating
approaches typically involve real-time estimation of parameter importance and pruning during the
training process. In contrast, RaSA uses a shared rank pool combined with layer-specific weighting,
eliminating the need for complex importance estimation or pruning. Biderman et al. (2024) conduct
a comprehensive empirical study on LoRA, and reveal that while LoRA still lags behind FFT, it
exhibits less catastrophic forgetting. We show that our proposed RaSA forgets even less than LoRA,
and learns more and faster.

Parameter Redundancy of LoRA Although LoRA has significantly reduced the number of
trainable parameters, recent research suggest that it is possible to further minimize these parameters
without compromising performance. Kopiczko et al. (2024) achieve a 99% reduction in LoRA
parameters by fully sharing a pair of low-rank, frozen random matrices across all layers, adjusted with
learnable scaling vectors. Koohpayegani et al. (2024) propose learning linear combinations of a set
of random matrix bases, while Li et al. (2024) push this further by replacing the matrix bases with a
vector bank. Song et al. (2024) and Renduchintala et al. (2024) explore the effects of different sharing
and selective fine-tuning strategies. By sharing parameter spaces, Brüel-Gabrielsson et al. (2024)
compress 1,000 LoRAs trained from different task, enabling more efficient serving. These findings
collectively suggest that LoRA’s parameter has not been fully utilized and that different LoRAs
exhibit similarities across layers, modules, and even different tasks. Rather than focusing on extreme
parameter reduction, this work aims to maintain the same parameter count while exploring how inter-
layer sharing can enhance parameter utilization. We theoretically and empirically demonstrate that
sharing ranks across layers leads to lower reconstruction error and thus better expressive capacity.

6 CONCLUSION

In this study, we introduced RaSA, a novel extension to LoRA through an innovative partial rank
sharing across layers. RaSA maintains the parameter efficiency and seamless integration into existing
models characteristic of LoRA while substantially increasing the model’s expressiveness. Through
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theoretical analysis, we established RaSA’s superior capability in matrix reconstruction compared
to traditional LoRA, underpinning its improved performance in downstream tasks. Empirical re-
sults on complex tasks such as code generation and mathematical reasoning have demonstrated its
effectiveness over LoRA in high-demand scenarios. Future research directions may explore further
optimization of rank-sharing schemes and the potential of RaSA in a broader range of applications,
paving the way for the development of even more powerful and efficient PEFT strategies.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All code, data, and scripts used for
our experiments are available at https://anonymous.4open.science/r/RaSA-ICLR-0E25. All
datasets and models used in our work are publicly accessible. Detailed training and data details are
provided in appendix C.
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A COORDINATE DESCENT EXPERIMENT

This section details the derivation of the coordinate descent experiment discussed in § 3.2, inspired
by Brüel-Gabrielsson et al. (2024).

Given the parameters of RaSA: {B̃i, Ãi,BS , D̃i,AS}i∈[L], the reconstruction error of RaSA is
defined as:

E =

L∑
i=1

∥Mi − (B̃iÃi +BSDiAS)∥2F . (17)

Clearly, B̃i and Ãi are independent across layers. By applying the Eckart–Young–Mirsky theo-
rem (Eckart & Young, 1936), we first compute the SVD of the residual matrix:

SVD(Mi −BSDiAS) = UΣV T . (18)

Therefore, the update rules for B̃i and Ãi are:

B̃i = U[:,:r−k]Σ
1
2

[:r−k,:r−k],

Ãi = Σ
1
2

[:r−k,:r−k]V[:,:r−k]
T .

(19)

Let the low-rank decomposition of Mi be: Mi = B̂iÂi, where B̂i ∈ Rb×R and Âi ∈ RR×a. Next,
we compute the following gradients:

∇BS
E =

L∑
i=1

−2
(
B̂iÂi −

(
B̃iÃi +BSDiAS

))
AT

SD
T
i , (20)

∇AS
E =

L∑
i=1

−2
(
B̂iÂi −

(
B̃iÃi +BSDiAS

))
BSDi, (21)

∇DiE = −2BT
S

(
B̂iÂi −

(
B̃iÃi +BSDiAS

))
AT

S , (22)

∇diag(Di)E = diag(∇DiE). (23)

By setting these gradients to zeros, we obtain the following update rules:

BS =

(
L∑

i=1

[
B̂i −B̃i

] [Âi

Ãi

]
AT

SD
T
i

)(
L∑

i=1

DiASA
T
SD

T
i

)−1

, (24)

AS =

( L∑
i=1

([
B̂i −B̃i

] [Âi

Ãi

])T

BSDi

)(
L∑

i=1

DT
i B

T
SBSDi

)−1
T

, (25)

diag(Di) =
(
BT

SBS ◦ASA
T
S

)−1

(
BT

S

[
B̂i −B̃i

]
◦AS

[
Âi

Ãi

]T)
1. (26)

In coordinate descent, we iteratively apply Equations (19) and (24) to (26) until convergence.
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B PROMPT TEMPLATES

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

### Instruction:
{QUESTION}

### Response:
Let's think step by step.

Figure 8: Evaluation prompt for mathematical reasoning.

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

### Instruction:
{QUESTION}

### Response:
{IMPORT SECTION}

{FUNCTION SIGNATURE}
{DOCSTRING}

Figure 9: Evaluation prompt for code generation.

C TRAINING AND DATA DETAILS

Training We mostly aligned our training configurations with the optimal configurations from
Biderman et al. (2024). For LoRA, we used the decoupled LionW optimizer with a batch size of 192,
training for 8 epochs with a learning rate of 5e-4. A cosine learning rate scheduler was applied, with
the first 10% of training steps used for warmup, and weight decay set to zero. Training and evaluation
were conducted using bfloat16 precision. While Biderman et al. (2024) set α = 32 for both math and
code tasks, we reduced α to 8 for the math task due to convergence issues observed with the Mistral
model when using α = 32. RaSA training fully inherits all hyper-parameters from LoRA training.
For MoRA, we used a learning rate of 3e-4, as reported in the original work (Jiang et al., 2024). For
VeRA, following the original paper, we set the learning rate to 10 times that of LoRA, resulting in
5e-3 (Kopiczko et al., 2024). All experiments for the 7-8B models were conducted on 1 node × 8 ×
A100-40G GPUs. For the 70B and MoE models, we used 8 nodes.

Data During training, we grouped data by length, which significantly accelerated the training
process. All math training data ends with “The answer is: {ANSWER}”, helping answer extraction
during evaluation.

D ADDING MORE BASELINES

Table 3 is adding more baseline in Table 2. We only present partial results since time constraint and
will complete full results in the final version.
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Table 3: Performance on MATH (adding more baselines in Table 2).

r Method # Trainable
Param.

# Extra
Param.

Llama-3.1-8B Mistral-0.3-7B
BEST LAST BEST LAST

– FFT 7-8B 00.0M xx.x xx.x 28.1 26.6

1024 VeRA 1.6M 00.0M 27.4 25.6 19.9 19.4

8
LoRA 21.0M 00.0M 28.3 26.7 20.1 19.2

MoRA 21.0M 00.0M 29.2 28.9 21.4 21.4
OLoRA 21.0M 00.0M xx.x xx.x 22.5 22.5

AdaLoRA 31.5M 63.0M xx.x xx.x 22.5 21.6
PriLoRA 21.3M 10.7M xx.x xx.x 22.3 22.3

RaSA 21.0M 00.0M 30.3 29.1 24.3 23.8

16
LoRA 41.9M 00.0M 28.8 27.1 20.9 19.5

MoRA 41.9M 00.0M 30.2 26.5 20.5 19.4
OLoRA 41.9M 00.0M xx.x xx.x 22.5 22.2

AdaLoRA 62.9M 125.8M xx.x xx.x 23.5 23.2
PriLoRA 42.6M 21.3M xx.x xx.x 22.7 21.6

RaSA 42.0M 00.0M 31.4 29.8 25.9 25.1

32
LoRA 83.9M 00.0M 28.9 27.2 21.8 20.4

MoRA 83.9M 00.0M 28.6 25.8 18.4 18.4
OLoRA 83.9M 00.0M xx.x xx.x xx.x xx.x

AdaLoRA 125.9M 251.8M xx.x xx.x xx.x xx.x
PriLoRA 85.2M 42.6M xx.x xx.x xx.x xx.x

RaSA 83.9M 00.0M 31.7 29.6 26.1 25.1
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