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ABSTRACT

We study continual learning on multiple linear classification tasks by sequentially
running gradient descent (GD) for a fixed budget of iterations per task. When
all tasks are jointly linearly separable and are presented in a cyclic/random order,
we show the directional convergence of the trained linear classifier to the joint
(offline) max-margin solution. This is surprising because GD training on a single
task is implicitly biased towards the individual max-margin solution for the task,
and the direction of the joint max-margin solution can be largely different from
these individual solutions. Additionally, when tasks are given in a cyclic order,
we present a non-asymptotic analysis on cycle-averaged forgetting, revealing that
(1) alignment between tasks is indeed closely tied to catastrophic forgetting and
backward knowledge transfer and (2) the amount of forgetting vanishes to zero as
the cycle repeats. Lastly, we analyze the case where the tasks are no longer jointly
separable and show that the model trained in a cyclic order converges to the unique
minimum of the joint loss function.

1 INTRODUCTION

Continual learning (CL) aims to sequentially learn a model from a stream of tasks or datasets, to
extend its knowledge continuously. The main challenge in CL is catastrophic forgetting, meaning
that their performance on previous tasks degrades after learning new ones (McCloskey & Cohen,
1989; Goodfellow et al., 2013). It has led to a growing body of works focusing on heuristic methods
of mitigating forgetting, including regularization-based methods (Kirkpatrick et al., 2017; Aljundi
et al., 2018; Li & Hoiem, 2017), replay-based methods (Chaudhry et al., 2019; Lopez-Paz & Ranzato,
2017; Shin et al., 2017), and optimization-based methods (Farajtabar et al., 2020; Javed & White,
2019; Mirzadeh et al., 2020).

As CL is receiving significant attention in practice, it is also important to theoretically understand the
mechanism of continual learning. A vast amount of the theoretical works on CL so far has focused on
regression problems (Bennani et al., 2020; Doan et al., 2021; Asanuma et al., 2021; Lee et al., 2021;
Evron et al., 2022; Goldfarb & Hand, 2023; Li et al., 2023), whereas most of the practical application
of deep learning is based on classification. Thus, theoretical analysis of continual classification
methods and their learning dynamics is of significant interest and importance. Indeed, a few results
study continual classification (Raghavan & Balaprakash, 2021; Kim et al., 2022; 2023; Shi & Wang,
2023), albeit focusing on theoretical perspectives that are different from ours; we review these related
works in Appendix A.

This paper is mainly motivated by a recent result studying continual linear classification on a collection
of jointly separable datasets (Evron et al., 2023). The authors consider continual training of a linear
classifier under weak regularization, where the linear classifier is trained until convergence at every
given task. By taking the limit of the regularization coefficient λ → 0, this training procedure is
shown to be equivalent (in terms of the parameter direction as λ→ 0) to a projection-based scheme
called Sequential Max-Margin (SMM): every time we encounter a new binary classification task, we
project the current model parameter vector to a convex set defined by the margin conditions of the
given dataset. Then, under this framework of projection onto convex sets, the authors show linear
convergence of the iterates of SMM to an offline solution (i.e., a classifier that solves all tasks at once)
under cyclic/random ordering of the tasks. More details can be found in Appendix B.
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In light of the insightful analyses by Evron et al. (2023), we now highlight some aspects of their
work that motivate the setup of our interest. First of all, Evron et al. (2023) consider minimizing the
regularized training loss of each task until convergence; however, it is far more common to spend a
finite budget of iterations per task in practice (i.e., online one-pass setting, or fixed-epoch setting).
Training until convergence, combined with sending the regularization coefficient λ→ 0, also raises
an issue on the claimed equivalence of weakly regularized training and the projection-based scheme.
As λ→ 0, the solution of the training objective diverges to infinity, which does not match the fact
that the iterate of the SMM travels only for a finite distance at every stage.1 Another noteworthy
characteristic of the considered SMM scheme is that it does not always converge to the offline
max-margin solution, i.e., the hard-margin support vector machine solution that solves all tasks
jointly, which is known to be beneficial in terms of generalization (Vapnik, 2013). Lastly, in their
concluding section, Evron et al. (2023) also suggest studying unregularized continual training with
early stopping and highlight that the behavior may be different. These observations triggered our
investigation into a gradient-based algorithm for continual linear classification and its convergence
and algorithmic bias.

Task 0 datapoints
Task 1 datapoints
Task 0 Only
Task 1 Only
Joint Training
Continual (Cyclic)

Figure 1: Trajectory of sequential GD on
a two-task toy example (Appendix C.1) in
which the offline max-margin direction is not
on the subspace spanned by individual task
max-margin solutions. Sequential GD iterates
initially oscillate but quickly start to evolve
along the same direction as the offline max-
margin direction.

In this work, we theoretically study continual linear
classification via sequentially running gradient de-
scent (GD) on the unregularized logistic loss for a
fixed budget of iterations at every stage.2 When all
tasks are jointly separable and revealed in cyclic order
(as studied by Evron et al. (2023)), we show that se-
quential GD converges in the direction of the offline
max-margin solution, unlike SMM. We highlight that
this is an interesting result for at least two reasons:

• It reveals a clear difference between sequential GD
and the projection-based SMM algorithm in terms
of algorithmic bias.

• It is well-known that GD applied to an individ-
ual task has its implicit bias towards the task’s
own max-margin direction (Soudry et al., 2018).
However, the direction of the offline max-margin
solution can largely differ from the max-margin
directions of individual tasks, not even lying on
the subspace spanned by the individual directions
(see Figure 1 and Appendix C.1).

Therefore, the convergence of sequential GD to the
offline max-margin solution highlights that repeated
continual training eventually drives the model to learn all tasks well, overcoming the biases towards
individual tasks. In addition to the implicit bias result, we also characterize the convergence rate in
terms of total loss and the vanishing rate of the per-cycle forgetting. Our analysis reveals a surprising
but intuitive link between positive/negative task alignments and forgetting. Furthermore, we broaden
the scope of our analysis to the random task ordering case and a jointly non-separable case. We
summarize our main contributions below.

1.1 SUMMARY OF CONTRIBUTIONS

We study continual linear classification using sequential GD, where the model is updated by K
iterations of GD on the unregularized training loss of each given task.

• In Section 3, we study the scenario where the tasks are jointly separable and are given in
a cyclic order. We prove that the joint (full) training loss asymptotically converges to zero
(Theorem 3.1) and the sequential GD iterates in fact align with the joint (offline) max-margin
solution (Theorem 3.2). We also provide non-asymptotic analysis of cycle-averaged forgetting and

1Recall that Evron et al. (2023) show their equivalence in terms of parameter direction.
2We focus on this setup instead of early stopping because it is closer to common practice in deep learning.
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loss convergence and show that average forgetting per cycle J diminishes at the rate of O( ln
4 J
J2 )

(Theorem 3.4), which is faster than the convergence rate of the loss O( ln
2 J
J ) (Theorem 3.3). Our

forgetting analysis is closely aligned with the common intuition on how task alignment/conflict
impacts forgetting.

• Section 4 considers the same jointly separable setup, but the tasks given in a random order. In
Theorems 4.1 and 4.2, we show that asymptotic loss convergence and directional convergence to
the joint max-margin solution still happen, albeit almost surely.

• Lastly, in Section 5 we consider the case where the tasks are no longer jointly separable, which
admits a unique global minimum of the joint training loss. We derive a fast non-asymptotic
convergence rate ofO( ln

2 J
J2 ) towards the global minimum when the tasks are presented cyclically.

2 PROBLEM SETUP

In this section, we outline the problem setup considered throughout the paper.

2.1 SETUP: CONTINUAL LINEAR BINARY CLASSIFICATION

We consider binary classification, where each data point x ∈ Rd has its own label y ∈ {−1,+1}. We
assume that our learning algorithm encounters M different binary classification tasks in a sequential
manner, and our goal is to find an offline solution that jointly solves all the tasks. The total dataset
is denoted as D = {(xi, yi)}i∈I , where I := {0, . . . , N − 1} is the set of indices of data. Since
the dataset comprises all data pairs from M tasks, the index set I is partitioned into I =

⊎M−1
m=0 Im,

where Im is a set of indices for data points in task m ∈ {0, . . . ,M − 1}.
We consider a linear model f(x;w) = x⊤w, which is parameterized by a weight vector w ∈ Rd.
With a loss function ℓ(u) that decreases to zero as u→∞, the offline (joint) training loss is defined
as

L(w) :=
∑
i∈I

ℓ (yif(xi;w)) =
∑
i∈I

ℓ(yix
⊤
i w).

Likewise, loss of task m ∈ {0, . . . ,M − 1} is defined as

Lm(w) :=
∑
i∈Im

ℓ(yix
⊤
i w).

Notation. We denote the joint data matrix as X ∈ Rd×N , whose columns are the d-dimensional data
points xi’s. For a square matrix A, we denote the maximum/minimum eigenvalue of it by λmax(A)

and λmin(A), respectively. In particular, we write σmax =
√

λmax(XX⊤) as the maximum singular
value of X . The ℓ2 norm of a vector v is denoted as ∥v∥. Let RN

≥0 be the set of N dimensional
vectors whose elements are greater or equal to zero. Also, for a couple of integers K1 ≤ K2, we
write [K1 : K2] to denote a set of consecutive integers {K1,K1 + 1, . . . ,K2}.

2.2 ALGORITHM: SEQUENTIAL GRADIENT DESCENT

In continual learning, we can only see data in the current stage. For each stage t = 0, 1, . . . , the
index set I(t) of data that will be used comes from one of {Im}m∈[0:M−1]. Note that the learning
algorithm does not have the freedom to choose the next task; we assume that the task is presented to
the algorithm by the “environment.” During stage t, we minimize the corresponding training loss

L(t)(w) :=
∑
i∈I(t)

ℓ(yix
⊤
i w) (1)

using gradient descent (GD) with a fixed learning rate η as follows:

w
(t)
k+1 = w

(t)
k − η∇L(t)(w

(t)
k ) for k ∈ [0 : K − 1], w

(t+1)
0 = w

(t)
K . (2)

That is, for the task L(t) given at stage t, we run K steps of GD updates and move on to the next task
by setting the initial iterate of the next stage w

(t+1)
0 as the last iterate of the current stage w

(t)
K .
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There are two common schemes for deciding the order of the tasks to be learned.

Cyclic task ordering. The tasks are presented in a predefined cyclic order. That is, L(t) = Lt mod M .

Random task ordering. Every task is independently sampled uniformly at random. That is, for all
t ∈ N ∪ {0} and m ∈ [0 : M − 1], P(I(t) = Im) = 1/M holds.

Both ordering schemes have been studied theoretically and empirically (Evron et al., 2022; 2023;
Cossu et al., 2022; Houyon et al., 2023). Indeed, such schemes can naturally occur in real-world
scenarios. For instance, cyclic task ordering covers search engines influenced by periodic events3 and
seasonal financial data (Gultekin & Gultekin, 1983; Yang et al., 2022). Random task ordering bears a
resemblance to autonomous driving in randomly recurring environments (Verwimp et al., 2023).

3 CYCLIC LEARNING OF JOINTLY SEPARABLE TASKS

In this section, we focus on the jointly linearly separable datasets (Evron et al., 2023). We dive deep
into the case of cyclic task ordering and prove that sequential GD on separable linear classification
tasks converges in direction to the offline max-margin solution of the total dataset. Additionally,
through a non-asymptotic analysis on the loss convergence, we also characterize the average forgetting
within cycles, and show that the forgetting vanishes to zero at a faster rate than the loss convergence.

3.1 DEFINITIONS AND ASSUMPTIONS

To this end, we first state some necessary assumptions and additional notation. The first assumption
is that the joint dataset is linearly separable:
Assumption 3.1 (Joint Separability). There exists w ∈ Rd such that yix⊤

i w > 0 for ∀i ∈ I .

Under Assumption 3.1, we can state an important definition central to our analysis. We define the
joint (offline) ℓ2 max-margin solution (where we usually omit “ℓ2” for convenience)

ŵ := arg min
w∈Rd

∥w∥2 subject to yix
⊤
i w ≥ 1, ∀i ∈ I. (3)

It can be shown that the optimization problem in Equation (3) has a unique solution ŵ (Mohri
et al., 2018). Max-margin solutions are of key interest in the study of linear classification, because
it is well-known that they have good generalization guarantees (Vapnik, 2013) and GD applied
to a single separable binary classification problem has an implicit bias towards its ℓ2 max-margin
solution (Soudry et al., 2018). To be more specific, it is shown in Soudry et al. (2018) that the norm of
GD iterates diverges to infinity, but their direction converges to ŵ

∥ŵ∥ . In our CL setting, we consider
running multiple steps of GD on one task at a time and still aim to find the joint max-margin solution
that solves all tasks.

Given the definition of joint max-margin solution, we now define several key quantities. The
maximum margin of (normalized) ŵ is defined as

ϕ := min
i∈I

yix
⊤
i ŵ

∥ŵ∥
. (4)

In fact, it can be shown that ϕ = ∥ŵ∥. A support vector is a data point xi that attains this minimum
ϕ; we define the index set of support vectors as S := {i ∈ I : yix

⊤
i

ŵ
∥ŵ∥ = ϕ}, and define the index

sets of support vectors of each task Sm := S ∩ Im for ∀m ∈ [0 : M − 1]. Let the support vector
matrix be XS ∈ Rd×|S|, a submatrix of the data matrix X that only contains columns corresponding
to support vectors. Lastly, we define the second margin θ := mini∈I\S yix

⊤
i ŵ > 1, which will

appear in our non-asymptotic analysis.

To show directional convergence to the joint max-margin solution (Theorem 3.2), we pose an
additional assumption on the support vectors.
Assumption 3.2 (Non-degeneracy Condition). For all i ∈ S, there exists a unique αi > 0 such that
ŵ =

∑
i∈S αi · yixi.

3trends.google.com/trends/
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Assumption 3.2 is adopted from Soudry et al. (2018). According to their analysis, this holds for
almost all datasets sampled from a continuous distribution. Intuitively, for a general dataset, no more
than d support vectors can be on the same hyperplane.

In the upcoming sections, we present four theorems on the convergence, implicit bias, and forgetting
of sequential GD. The theorems rely on different assumptions on the loss ℓ(u); we collect them here.
It is noteworthy that the logistic loss ℓ(u) = ln(1 + e−u) satisfies all the assumptions listed below.
Assumption 3.3. The loss ℓ(u) is a positive, differentiable, β-smooth function, monotonically
decreasing to zero, and lim supu→−∞ ℓ′(u) < 0.
Assumption 3.4 (Tight Exponential Tail). The negative loss derivative −ℓ′(u) has a tight exponential
tail. i.e., there exist positive constants µ+, µ−, and ū such that ∀u > ū:

(1− exp(−µ−u))e
−u ≤ −ℓ′(u) ≤ (1 + exp(−µ+u))e

−u

Assumption 3.5 (Convexity). The loss ℓ(u) is a convex function.

3.2 ASYMPTOTIC RESULTS: LOSS CONVERGENCE & IMPLICIT BIAS TO JOINT MAX-MARGIN

Now, we analyze the asymptotic convergence of offline training loss and characterize the directional
convergence of sequential GD (2) on jointly separable cyclic tasks. We start by understanding the
asymptotic behavior of the joint task loss L(w).

Theorem 3.1. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given cyclically. Under Assumptions 3.1 and 3.3, if the learning rate satisfies

η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then

1. Loss converges to zero: limt→∞ L(w(t)
k ) = 0,∀k ∈ [0 : K − 1].

2. Every data point is eventually classified correctly: limt→∞ x⊤
i w

(t)
k =∞,∀k ∈ [0 : K−1], i ∈ I .

3. Square sum of the change of weight is finite:
∑∞

t=0

∑K−1
k=0 ∥w

(t)
k+1 −w

(t)
k ∥2 <∞.

Theorem 3.1 shows that cyclic continual learning on the jointly separable data will eventually learn all
tasks, or equivalently, find an offline solution without any additional techniques such as regularization.
This result matches the recent empirical findings that DNN can mitigate catastrophic forgetting when
tasks are given repetitively (Lesort et al., 2023). The last part on the square sum of the change is used
to prove the upcoming Theorem 3.2. We note that Theorem 3.1 does not require convexity of ℓ. The
proof can be found in Appendix D.1.

Theorem 3.1 shows that the joint loss converges to zero. However, due to the joint separability
(Assumption 3.1), there are multiple directions in which w

(t)
k could evolve to make the offline training

loss decay to zero. That is, the loss convergence only guarantees finding an offline solution, but does
not characterize which. Under additional assumptions of non-degeneracy and tight exponential tails,
we characterize which direction w

(t)
k diverges to, and show that the model parameter in fact aligns

with the joint ℓ2 max-margin solution ŵ (3).

Theorem 3.2. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given cyclically. Under Assumptions 3.1, 3.2, 3.3, and 3.4, if the learning rate

satisfies η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then w

(t)
k will behave as:

w
(t)
k = ln

(
K
M t
)
ŵ + ρ

(t)
k ,

where ∥ρ(t)
k ∥ stays bounded as t grows.

The proof is in Appendix D.2. The key implication of Theorem 3.2 is that the weight vector converges
in the direction of the joint max-margin solution, while diverging in magnitude in a rate O(ln t):

lim
t→∞

w
(t)
k

∥w(t)
k ∥

=
ŵ

∥ŵ∥
, ∀k ∈ [0 : K − 1]. (5)

It implies that standard gradient descent without any regularization not only learns every task but
also converges to the joint max-margin direction. This result suggests the potential benefits of naive
training methods without common CL techniques such as regularization.
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On Assumption 3.2. As noted earlier, the non-degeneracy assumption (Assumption 3.2) is bor-
rowed from Soudry et al. (2018); the purpose of adopting this assumption is to facilitate a more
complete analysis of the residual ρ(t)

k . In fact, in Soudry et al. (2018), the conclusion on the direc-
tional convergence (similar to (5), but for single-task GD training) continues to hold even without
Assumption 3.2. In light of this, we also believe that directional convergence of sequential GD (5)
will hold even without Assumption 3.2, but we did not pursue removing the assumption because it
does not offer substantial additional insights.

Joint Max-margin Direction
Joint Training trajectory
Continual Learning trajectory
Task 0 Data (y = + 1)
Task 0 Data (y = 1)
Task 1 Data (y = + 1)
Task 1 Data (y = 1)
Task 2 Data (y = + 1)
Task 2 Data (y = 1)

(a) 2D visualization of data points, the training trajec-
tory, and the decision boundaries (dashed).

100 101 102

Stage

10 2

10 1

Si
ne

 A
ng

le

Sine Angle( = (1 cossim2) )
between Linear Model vs. Joint Max-Margin

Continually learned model
Jointly trained model

(b) Sine angles, implying the implicit bias toward
joint max-margin direction.

Figure 2: Comparison between continually learned and jointly trained linear classifier. We
generate three jointly separable binary classification tasks (with 2D inputs) and run (1) sequential
GD in a cyclic task ordering and (2) full-batch GD. It is well-known that the offline full-batch GD
converges to the offline ℓ2 max-margin solution (Soudry et al., 2018). We verify a similar implicit
bias of sequential GD iterates (which we proved in Theorem 3.2) by observing the decrease in angle
between the model weight and the joint max-margin direction (set as (1, 1)). We also observe similar
phenomena for more general experimental setup (e.g., random task ordering): see Appendix C.2.

Beyond repetition of fixed datasets. Although we analyze continual learning in a setting where
each task has a fixed dataset, the insight of our analysis extends to general setups. To show this, we
conduct experiments in a setting where each task has its own (separable) data distribution and a dataset
is freshly sampled at every new stage. We observe the same directional convergence behavior of
sequential GD toward the true joint max-margin direction. The detailed results are in Appendix C.2.4.

Beyond linear model. We also provide experiments with shallow ReLU networks, verifying analo-
gous insights on implicit bias and loss convergence of continually learned models: see Appendix C.4.

3.3 NON-ASYMPTOTIC RESULTS: LOSS CONVERGENCE AND FORGETTING BOUNDS

In Section 3.2, we presented asymptotic results characterizing the convergence of total training loss to
zero and the directional convergence of sequential GD iterates to the max-margin solutions. We now
supplement these results with an additional non-asymptotic convergence analysis on total training
loss, which we can use to obtain a non-asymptotic analysis of cycle-averaged forgetting as well.

As aforementioned, the main challenge in CL is mitigating catastrophic forgetting. Analyses of
continual learning methods aim to show that methods decrease forgetting, theoretically or empirically.
In this paper, we are interested in how strong forgetting is in our continual linear classification setup.

We start by stating a common definition of forgetting, which quantifies the amount of loss increase at
the end of stage t compared to the end of K steps of GD on L(s) executed in stage s ≤ t.
Definition 3.6 (Forgetting). The forgetting at stage t of the task learned in stage s (≤ t) is the change
of the task loss L(s) from the moment the K GD steps were finished in stage s. That is,

F (s)(t) := L(s)(w
(t)
K )− L(s)(w

(s)
K ).

Notice that forgetting is zero by definition when t = s. While it is usually expected that forgetting is
a positive quantity, it could be also negative by definition. Such a case can happen when the tasks

6
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seen in stages between s and t are well-aligned with L(s), so that the model improves on the task
previously seen in stage s. This phenomenon is called backward knowledge transfer.

When CL tasks do not necessarily repeat, it is common to evaluate the average forgetting over all
past stages, namely 1

t

∑t−1
s=0 F (s)(t). However, since we consider the case where tasks are given

cyclically, it is natural to define our quantity of interest as below:
Definition 3.7 (Cycle-averaged Forgetting). The cycle-averaged forgetting at cycle j is the average
loss change of previous tasks from the stage in which it was learned. That is,

CF(j) := 1

M

M−1∑
m=0

F (Mj+m)(Mj +M − 1) =
1

M

M−1∑
m=0

Lm(w
(Mj+M)
0 )− Lm(w

(Mj+m)
K ).

By studying cycle-averaged forgetting, we would like to understand how much forgetting happens
during the cyclic learning process, and how the amount of forgetting changes as we repeat the cycles.

Although the asymptotic convergence to joint max-margin solution (Theorem 3.2) suggests that the
model will suffer a diminishing level of forgetting in the long run, characterizing the amount of
forgetting for a given cycle count J necessitates a more careful non-asymptotic analysis of the loss
convergence. For this purpose, we present an additional theorem characterizing the non-asymptotic
convergence of offline training loss L; we then build on this theorem to prove upper and lower bounds
on cycle-averaged forgetting. The new convergence theorem requires the same set of assumptions as
Theorem 3.1, except for an additional assumption of convex ℓ(u).
Theorem 3.3. Under the same setting as Theorem 3.1 with an additional Assumption 3.5, for any
m ∈ [0 : M − 1] and k ∈ [0 : K − 1], we have

L(w(MJ+m)
k ) ≤

(
|S|+

∑m−1
i=0 |Si|+ k

K |Sm|
J

)
ℓ(ln J) +

∥∥∥w(0)
0 − ŵ ln J

∥∥∥2
2ηKJ

+
D1

J

+

(
|I| − |S|+

∑m−1
i=0 (|Ii| − |Si|) + k

K (|Im| − |Sm|)
J

)
ℓ(θ ln J),

where θ > 1 is the second margin defined in Section 3.1, and

D1 :=
4σ2

max

ϕ2

(
L(w(0)

0 ) +

(
1 +

ηKσ3
maxβ

ϕ(1− ηMKσ2
maxβ)

)
ηKσmax

ϕ(1− ηMKσ2
maxβ)

∥∥∥∇L(w(0)
0 )
∥∥∥2) .

The proof can be found in Appendix D.3. One can revisit Section 3.1 to recall the definitions of
symbols such as σmax, ϕ, and β. The bound in Theorem 3.3 may be a bit difficult to parse. First of
all, notice that whenever ℓ(u) ≤ e−u, which is true for logistic loss ℓ(u) = ln(1 + e−u), we have
ℓ(ln J) ≤ 1

J and ℓ(θ ln J) ≤ 1
Jθ . Combined with other terms, this implies an overall O( ln

2 J
J ) upper

bound for the offline training loss.

Next, we can notice for any fixed J , the upper bound in fact grows with k and m. This unusual growth
of the upper bound reflects the effect of forgetting that can happen during cycles. Even though such
an increase in loss does not usually occur with a small learning rate, it is not impossible. For example,
when most of the tasks have individual max-margin directions different from the joint max-margin
direction, this situation can occur. We demonstrate this mid-cycle increase of joint loss using a toy
example in Appendix C.3.

The possible increase of loss due to forgetting becomes less of an issue as training proceeds since the
terms increasing in m and k are all divided by an additional factor of J and hence decay faster than
other terms. Therefore, the increase of loss bound becomes smaller for larger J , indicating smaller
forgetting during cycles. Despite the possible forgetting, Theorem 3.3 indicates that if tasks are given
cyclically, then the loss bound is guaranteed to decrease at the end of every cycle.

We can now use Theorem 3.3 to derive bounds on cycle-averaged forgetting we defined in Defini-
tion 3.7. We characterize how fast the cycle-averaged forgetting CF(J) converges to zero as the
cycles replay. For this theorem, we specifically consider the logistic loss, which satisfies all loss
assumptions in the paper.
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Theorem 3.4. Let ℓ(u) = ln(1 + e−u) be the logistic loss. If the learning rate satisfies

η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then the cycle-averaged forgetting CF(J) for cycle J

satisfies the following upper and lower bounds:

−ηK · L(J)2 ·
∑

p ̸=q Np,q

M
≤ CF(J) ≤ ηK · L(J)2 ·

−
∑

p ̸=q N̄p,q

M
,

where

L(J) :=
1

J

((
|S|+ |I| − |S|

Jθ−1

)(
1 +

1

J

)
+
∥w(0)

0 − ŵ ln J∥2

2ηK
+D1

)
= O

(
ln2 J

J

)
Np,q :=

∑
(i,j)∈Ip×Iq
x⊤

i xj>0

x⊤
i xj > 0, N̄p,q :=

∑
(i,j)∈Ip×Iq
x⊤

i xj<0

x⊤
i xj < 0.

The proof is in Appendix D.4. Theorem 3.4 shows a nonnegative upper bound and a nonpositive lower
bound on the cycle-averaged forgetting at cycle J . Note that both upper and lower bounds decay to
zero as J grows. Convergence of CF(J) is of rate O( ln

4 J
J2 ), which is faster than the convergence

rate O( ln
2 J
J ) of joint loss shown in Theorem 3.3.

The bounds in Theorem 3.4 reflect how positive/negative data alignment between different tasks
impact forgetting. The quantities Np,q and N̄p,q capture show how similar and different (respectively)
data points are, for a pair of tasks (p, q). In particular, when

∑
p ̸=q N̄p,q = 0, it is guaranteed

that average forgetting does not happen, regardless of J . Rather, training on a task will decrease
the loss for all previously learned tasks, which can be thought of as an extreme form of backward
knowledge transfer. On the other hand, when

∑
p ̸=q Np,q = 0, it is guaranteed that the model will

suffer forgetting at every cycle; however, even in this case, Theorem 3.4 implies that repeating tasks
over cycles mitigates catastrophic forgetting.

Even when the joint dataset D is the same, forgetting behavior can differ depending on how the data
points are distributed over different tasks. This matches the former theoretical explanation of how
distribution affects forgetting. For instance, Lin et al. (2023) show that a larger distance between each
task’s optimal solution leads to larger forgetting. For a straightforward interpretation, consider the
following example of two tasks: their cycle-averaged forgetting for two different decompositions
of D is plotted in Figure 3. We can observe that two tasks contradicting each other (i.e., large N̄1,2)
results in positive forgetting, whereas two tasks aligning better (i.e., large N1,2) exhibit negative
forgetting. Nevertheless, cycle-averaged forgetting converges to zero in both cases.

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

(a) Contradicting case

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

(b) Aligned case (c) Cycle-averaged Forgetting

Figure 3: We compare two continual learning scenarios with the same joint dataset D =
{(1, 2), (1.1, 1.8), (1.2, 1.9), (1,−2), (1.1,−1.8), (1.2,−1.9)}, where labels are all +1 and hence
omitted. We mark Task 1’s data as ‘o’ and Task 2’s data as ‘+’. We used M = 2 and K = 10.
Figure 3(a) displays a data composition that makes large N̄1,2, whereas Figure 3(b) displays a data
composition that makes relatively small N̄1,2 and large N1,2. Figure 3(c) is a plot of cycle-averaged
forgetting (CF), evolving over cycles. For “contradict” scenario (red), CF is always positive and
diminishing to 0. In contrast, for “aligned” scenario (blue), CF is always negative and rising to 0.
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4 RANDOM-ORDER LEARNING OF JOINTLY SEPARABLE TASKS

In this section, we consider the scenario where tasks are given in a random order, while still assuming
that the tasks are jointly separable. Formally, at the end of K-th GD iteration of stage t, the next task
is sampled independently and uniformly at random. Even in this case, our analysis reveals that the
asymptotic results shown in Section 3.2 continue to hold almost surely.

We first show that the offline training loss converges to zero almost surely, which is a random-order
counterpart of Theorem 3.1. The proof is in Appendix E.1.

Theorem 4.1. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given randomly. Under Assumptions 3.1 and 3.3, if the learning rate satisfies

η < 2ϕ2

βσ4
max

, then the following statements hold with probability 1:

1. Loss converges to zero: limt→∞ L(w(t)
k ) = 0,∀k ∈ [0 : K − 1].

2. Every data point is classified correctly: limt→∞ x⊤
i w

(t)
k = 0,∀k ∈ [0 : K − 1], i ∈ I .

3. Square sum of the change of weight is finite:
∑∞

t=0

∑K−1
k=0 ∥w

(t)
k+1 −w

(t)
k ∥2 <∞.

We derive the same asymptotic loss convergence result, with a minor difference that the learning rate
can be chosen independent of the number of tasks M and the iteration count K.

We now state the random-order counterpart of Theorem 3.2, which implies that the sequential GD
iterates converge to joint ℓ2 max-margin solution almost surely. The proof is in Appendix E.2.

Theorem 4.2. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given randomly. Under Assumptions 3.1, 3.2, 3.3, and 3.4, if the learning rate

satisfies η < 2ϕ2

βσ4
max

, then with probability 1, w(t)
k will behave as:

w
(t)
k = ln

(
K
M t
)
ŵ + ρ

(t)
k ,

where ∥ρ(t)
k ∥ stays bounded as t grows.

5 BEYOND JOINTLY SEPARABLE TASKS

Now we turn our attention to the CL on a strictly non-separable set of M tasks, where the tasks
are presented in a cyclic manner. In this section, we assume that the set of all data points spans the
whole space Rd without loss of generality. This is a mild assumption because every gradient update
happens in the span of data points. In this case, if we assume the strict non-separability on the full
dataset (see Assumption 5.1), the offline training loss L(w) =

∑M−1
m=0 Lm(w) defined with logistic

losses becomes strictly convex and coercive (i.e., lim∥w∥→∞ L(w) = +∞); thus, it has a unique
minimum w⋆ ∈ Rd. We show that, under cyclic task ordering, the iterates of sequential GD converge
to w⋆ at a rate O( ln

2 J
J2 ), which is faster than the loss convergence rate of the separable case.

The core idea of the analysis is to identify the local strong convexity of the offline training loss on a
compact set on which every end-of-cycle iterates lie (Freund et al., 2018). To this end, we require a
strict non-separability of the joint dataset as defined below.
Assumption 5.1 (Joint Strict Non-separability Condition (Freund et al., 2018)). Assume that the
whole collection of data points is of full rank: span({xi : i = 0, . . . , N − 1}) = Rd. Additionally,
assume that there exists b > 0 defined as

b := min
v∈Rd:∥v∥=1

∑N−1

i=0
[yix

⊤
i v]

−,

where [a]− := max{0,−a}.

Note that a large b means that the joint data points are highly non-separable: for any classifier vector
v, there exist some data points with the incorrect prediction of the label with a large margin. We also
remark that individual tasks are not necessarily strictly non-separable. Hence, our analysis covers the
case where all individual tasks are separable while the full dataset is not separable.

We additionally assume some mild properties of the loss function ℓ(·).
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Assumption 5.2. The loss function ℓ : R → R+ is a strictly convex, β-smooth function with a
positive second derivative such that ℓ(u) ≥ G · [u]− for some G > 0.

Note that the logistic loss ℓ(u) = ln(1 + e−u) satisfies the assumption above with β = 1/4 and
G = 1. From the assumptions, we have that (1) the risk of m-th task Lm(w) =

∑
i∈Im

ℓ(yix
⊤
i w) is

convex and βm-smooth for βm := βλmax

(
XmX⊤

m

)
where Xm ∈ Rd×|Im| is a data matrix of task

m consisting of columns {xi : i ∈ Im}; (2) due to the strict non-separability, the offline training loss
L(w) =

∑M−1
m=0 Lm(w) has a unique minimum w⋆. Furthermore, we can prove that the end-of-cycle

iterates of the sequential GD stay bounded in a compact setW around w⋆. Consequently, we have a
local strong convexity of the offline training loss onW . The proof is in Appendix F.1.
Lemma 5.1. Consider learning M linear classification tasks cyclically. Suppose that Assumptions 5.1
and 5.2 hold. Let B :=

∑M−1
m=0 βm and V⋆ :=

∑M−1
m=0

1
βm
∥∇Lm(w⋆)∥2. Take a step size η ≤

1
2
√
2KB

. Then, there exists a compact setW ⊂ Rd containing w⋆ and every w(jM)
0 (j = 0, 1, 2, . . .),

whose radius is independent of J (the number of cycles) but depends on other parameters like b, G,
B, and V⋆. Also, the offline training loss L is µ-strongly convex onW , where

µ :=
(
mini∈[0:N−1],w∈W ℓ′′

(
yix

⊤
i w
))
· λmin

(
XX⊤) > 0. (6)

We remark that the radius of the setW largely depends on the non-separability b (Assumption 5.1):
loosely speaking,W can be arbitrarily large if b goes to zero since ∥w −w⋆∥ = O(1/b) for any
w ∈ W . In particular, for the logistic loss ℓ, the local strong convexity coefficient µ can get small if b
is small, because of (possibly) a large radius ofW . With the local strong convexity, we finally have
a fast non-asymptotic convergence rate of Õ(J−2) towards the global minimum. The proof can be
found in Appendix F.2.
Theorem 5.2. Suppose we learn M tasks cyclically for J > 1 cycles. We adopt the notation from
Lemma 5.1. If we choose a step size

η = min

{
1

2
√
2KB

,
1 + 2

√
2

2
√
2KJ

ln

(
J2 ·max

{
1,
∥w(0)

0 −w⋆∥2µ3

B2V⋆

})}
,

then the final iterate of sequential GD satisfies∥∥∥w(MJ)
0 −w⋆

∥∥∥2 ≤ Õ(exp(− µJ

(1 + 2
√
2)B

)
·
∥∥∥w(0)

0 −w⋆

∥∥∥2 + B2V⋆ln
2 J

µ3J2

)
, (7)

where we hide a poly-logarithmic factor of J in Equation (7).

Remark on the loss convergence rate. Since the L(w) is B-smooth, it satisfies that

L(w)− L(w⋆) ≤ ⟨∇L(w⋆),w −w⋆⟩+
B

2
∥w −w⋆∥2 =

B

2
∥w −w⋆∥2. (8)

Thus, our Theorem 5.2 naturally implies the loss convergence at the same rate (in terms of J).

Experiments on a real-world dataset. For those interested, we also provide an experiments on
a real-world dataset CIFAR-10 (Krizhevsky et al., 2009), which is not guaranteed to be linearly
separable: see Appendix C.5.

6 CONCLUSION

We considered continual linear classification by running gradient descent for a fixed number of
iterations per task. When there exist solutions that can solve every task, we found that even without
any regularization or CL methods, the classifier eventually converges to the joint max-margin
direction. This implicit bias happens on both cyclic/random task ordering. We further presented a
non-asymptotic analysis on cycle-averaged forgetting with respect to positive/negative alignments
of tasks and the number of cycles. Lastly, we showed that if no linear classifier solves all tasks
simultaneously, the model converges to the unique minimum of the offline training loss. As for
future work, we believe the convergence on continual classification can be extended to other model
structures, bridging the gap between empirical findings and theoretical understanding of the impact
of task repetition. Also, our results are restricted to the “small learning rate” regime, and do not cover
larger learning rates or even the “edge of stability” regime (Wu et al., 2024); relaxing this restriction
is left for future work.
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A OTHER RELATED WORKS

Theoretical Results on Continual Learning. Several theoretical analyses have been proposed
on classification. Raghavan & Balaprakash (2021) examine the generalization-forgetting trade-off
by viewing it as a two-player sequential game, in which player 1 wants to maximize generalization,
whereas player 2 wants to minimize forgetting. They show the existence of a balanced point where
both players are satisfied with each new task and suggest a new algorithm to achieve the point. Kim
et al. (2022) consider Class-Incremental Learning, where the model can see a disjoint subset of the
total class at a time. They prove that good Within-task Prediction (WP) and good Task-id Prediction
(TP) are necessary and sufficient for good CIL. Furthermore, they relate TP with OOD detection.
Shi & Wang (2023) consider Domain-Incremental Learning, where the model can see the different
domains in a class over time. They especially suggest a framework with a memory buffer that unified
earlier methods.

Lin et al. (2023) distinguish empirical and population risks by drawing samples from Gaussian with
true linear regression solutions. Then, they investigate the impact of overparameterization and task
similarity over forgetting. Bennani et al. (2020); Doan et al. (2021); Karakida & Akaho (2022) study
forgetting in NTK regime. Specifically, Bennani et al. (2020); Doan et al. (2021) analyze forgetting
of orthogonal gradient descent (OGD, Farajtabar et al. (2020)), while Karakida & Akaho (2022)
study continual transfer learning. Other settings such as Teacher-Student setup (Lee et al., 2021), and
feature extraction (Peng & Risteski, 2022) have been considered in Task-Incremental Learing.

Implicit Bias of Gradient Descent for Linear Classification. Soudry et al. (2018) are the first to
show that if data is linearly separable, gradient descent with certain loss functions converges to the
max-margin direction. Nacson et al. (2019) prove the same result on the same condition but with
stochastic gradient descent. Ji & Telgarsky (2018) show the same result with a slower convergence
rate, resulting from the absence of degeneracy condition. They also consider cases where data is not
separable, yet weight diverges to infinity. Ji & Telgarsky (2021) show a faster convergence rate under
decreasing learning rate via a primal-dual analysis. While these findings require small learning rates,
Wu et al. (2024) prove that gradient descent with logistic loss converges to the max-margin direction
even when the learning rate is large.
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B BRIEF OVERVIEW OF EVRON ET AL. (2023) AND COMPARISONS

To highlight how our sequential GD algorithm differs from Evron et al. (2023), we briefly summarize
the Sequential Max-Margin (SMM) framework considered in the existing paper and its theoretical
results.

Evron et al. (2023) consider minimizing the regularized training loss of each task until convergence,
where the loss function is chosen to be the exponential loss ℓ(u) = exp(−u). Let

{
w

(t)
λ-Re

}
t

be the
iterates trained by regularized continual learning with regularization coefficient λ. The algorithm can
be written as follows:

w
(t+1)
λ-Re = arg min

w∈Rd

∑
i∈I(t)

exp
(
−yix⊤

i w
)
+

λ

2

∥∥∥w −w
(t)
λ-Re

∥∥∥2 . (9)

Also, let w(t)
SMM be the weight trained by the Sequential Max-Margin algorithm. The update rule is as

follows:

w
(t+1)
SMM = arg min

w∈Rd

∥∥∥w −w
(t)
SMM

∥∥∥2 subject to yix
⊤
i w ≥ 1,∀i ∈ I(t)

= P (t)(w
(t)
SMM).

(10)

Here, the operator P (t) can be thought of as the orthogonal projection onto a convex set{
w ∈ Rd : yix

⊤
i w ≥ 1,∀i ∈ I(t)

}
(11)

defined by the margin conditions on data points in I(t). That is, w(t)
SMM is the same as the sequential

projection onto such convex sets. Evron et al. (2023) showed the relation of w(t)
λ-Re and w

(t)
SMM, when

the regularization coefficient λ→ 0:

Theorem B.1 (Theorem 3.1 of Evron et al. (2023)). For almost all dataset, in the limit of λ→ 0, it

holds that w(t)
λ-Re → w

(t)
SMM with a residual of O(t log log

(
1
λ

)
). Therefore, at any t = o

(
log( 1

λ )
log log( 1

λ )

)
,

we get

lim
λ→0

w
(t)
λ-Re∥∥∥w(t)
λ-Re

∥∥∥ =
w

(t)
SMM∥∥∥w(t)
SMM

∥∥∥ .
Based on this equivalence in terms of parameter direction, Evron et al. (2023) expect that the behavior
of w(t)

λ-Re can be analyzed through the lens of w(t)
SMM as long as λ is close to 0, since Theorem B.1

holds for all t = o

(
log( 1

λ )
log log( 1

λ )

)
.

Given this background, we now highlight some differences between Evron et al. (2023) and our
analysis. First of all, as seen in (9), Evron et al. (2023) study regularized exponential loss trained until
convergence, whereas we study unregularized logistic loss trained for a fixed number of iterations.
Training the weakly regularized loss until convergence, in conjunction with limit λ→ 0, sends each
w

(t)
λ-Re to infinity. Hence, each stage requires a growing number of iterations, and the grounds for

the equivalence between (9) and (10) becomes weaker, since the solutions become vastly different in
terms of magnitude.

Second, thanks to the connection between weakly-regularized continual learning and SMM, Evron
et al. (2023) could obtain the exact trajectory of every stage via the projection method. On the
other hand, in our sequential GD setting, it is very difficult to keep track of the exact location of the
iterate after one task is trained, since the iterates are updated multiple times but training stops before
convergence. This makes it challenging to analyze implicit bias and forgetting via tracking the exact
trajectory stage by stage. We use different proof techniques from Evron et al. (2023) to overcome this
challenge. Rather than pinpointing the exact position of the iterate after each stage, we focus on the
direction that sequential GD eventually converges to.
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On top of that, importantly, our analysis of sequential GD reveals that training on unregularized loss
using a fixed number of GD iterations results in the joint/offline max-margin solution. In contrast,
although the convergence to some offline solutions is already shown for SMM (Evron et al., 2023),
the converged offline solution can be different from the offline max-margin solution. In fact, in the
next section (Appendix C.1), we demonstrate by a toy example that SMM can indeed converge to a
point other than the joint max-margin solution.
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C EXPERIMENT DETAILS & OMITTED EXPERIMENTAL RESULTS

C.1 EXPERIMENT DETAILS OF FIGURE 1

In this section, we present a simple toy example that demonstrates interesting facts about max-margin
solutions in continual linear classification:

• The joint max-margin direction of the joint dataset can be quite different from the max-margin
solutions of individual tasks. Specifically, the joint solution may not be on the subspace spanned
by the individual solutions.

• The limit of Sequantial Max-Margin (SMM) iterations can be different from the joint max-margin
solution, whereas the limit direction of sequential GD does align with it.

We consider the case of M = 2 tasks, where the input points come from R3. Without loss of
generality, we assume that all the labels are +1, and hence omit them. We let {(1, 1, 0), (1,−2, 1)}
be the dataset of task 1, and {(1, 0, 1), (1, 1,−2)} be the data of task 2. One can verify that:

• Their joint max-margin direction is (1, 0, 0).

• The max-margin direction for task 1 is ( 1011 ,
1
11 ,

3
11 ).

• The max-margin direction for task 2 is ( 1011 ,
3
11 ,

1
11 ).

Therefore, we can observe that the joint max-margin solution does not belong to the span of individual
max-margin solutions.

We ran numerical experiments running the SMM iterations, which is done by solving the constrained
minimization problems using fmincon in MATLAB Optimization Toolbox. The code is provided
in our supplementary material. We find that SMM converges to ( 1211 ,

1
11 ,

1
11 ); the trajectory for 10

cycles can be seen in Figure 4.

Figure 4: We run SMM iterations on the toy example by solving the projection problems using an
optimization solver.

C.2 EXPERIMENT DETAILS OF FIGURE 2 & MORE RESULTS

Here we present the experimental details of Figure 2. We also provide omitted result related to it.
Then, more importantly, we extend our experimental setups beyond the cyclic task ordering and the
fixed total offline dataset.
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C.2.1 EXPERIMENTAL DETAIL

Data Generation. We carefully design three 2D synthetic datasets. Each dataset (of size 100) is
randomly sampled from a bounded support. Below, we describe the data distribution from which we
draw samples. Note that the label y ∈ {±1} is uniformly randomly sampled before sampling the 2D
input points.

• Task 0, x|y = +1: Uniform distribution on a round disk (i.e., inside of a circle) with radius 0.9
and centered at (0.6, 4.5).

• Task 0, x|y = −1: Uniform distribution on a rectangle [0, 1.5]× [−3.9,−2.7].
• Task 1, x|y = +1: Uniform distribution on a round disk with radius 0.75 and centered at (5.1, 0).

• Task 1, x|y = −1: Uniform distribution on a rectangle [−4.2,−2.1]× [−0.9, 0.9].
• Task 2, x|y = +1: Uniform distribution on a rectangle [0.6, 3]× [0.6, 2.7].

• Task 2, x|y = −1: Uniform distribution on a disk with radius 1.2 and centered at (−3,−2.4).

Among all 300 data points, we randomly choose 3 points (one for each task) and replace them
by (x = (1.5,−2.7), y = −1) (for task 0), (x = (−2.1, 0.9), y = −1) (for task 1), and (x =
(0.6, 0.6), y = +1) (for task 2), which are the points included in the support of the data distribution(s).
These three points play the role of supporting vectors so that the joint max-margin direction becomes
ŵ

∥ŵ∥ = ( 1√
2
, 1√

2
), where the size of maximum margin (Equation (4)) is ϕ = 0.6

√
2 > 0 (thus, jointly

separable).

Optimization. We run sequential GD for 300 stages in total. Since there are three tasks, for the
cyclic ordering case, it is equivalent to J = 100. The step size we used is η = 0.1. Also, we allow
and conduct K = 1,000 updates per stage. For the joint training case, we run full-batch GD on the
union of all datasets for MJK = 300,000 steps.

C.2.2 OMITTED LOSS CONVERGENCE RESULT IN FIGURE 2

Although we only displayed the directional convergence in the main text, we also observe the loss
convergence to zero, which we proved in Theorems 3.1 and 3.3: see Figure 5. Note that we depict the
loss values for a jointly trained model (with full-batch GD) every K = 1,000 gradient updates, for a
fair comparison with a continually learned model (with sequential GD). It is omitted due to space
limit and being relatively more obvious than directional convergence.
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(a) Losses of continually learned model
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total loss

(b) Losses of jointly trained model

Figure 5: Loss convergence results for cyclic task ordering.
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C.2.3 RANDOM TASK ORDERING

In Section 4, we theoretically showed that loss convergence, as well as implicit bias result, holds
almost surely under the random task ordering. Indeed, we observe a similar tendency of directional
convergence and loss decrease even under the random task ordering. The result is shown in Figure 6.

Joint Max-margin Direction
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Continual Learning trajectory
Task 0 Data (y = + 1)
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Task 1 Data (y = 1)
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(a) Data points and trajectories
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(b) Sine angles (the smaller the more aligned)
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(d) Losses of jointly trained model

Figure 6: Experiments on 2D synthetic data under random task ordering.

C.2.4 BEYOND THEORETICAL SETUP: TOWARDS CONTINUAL LEARNING ON ONLINE DATA

Most theoretical analysis in this work exploits a structural assumption on the data points: there is a
pre-defined set of offline dataset, which is divided into chunks and accessible one by one at each stage.
Thus, exactly the same batch of data is guaranteed to be reused (surely or with high probability). Can
we go beyond this repetition and apply our theoretical intuition to more general setups?

Here, we demonstrate that the results of our theoretical findings are not really limited to the task
repetition setup. Instead, our insight about jointly separable continual linear classification applies to
several general setups. In this section, we showcase an analogous behavior of sequential GD when
the total dataset is no longer fixed throughout the continual learning process. We consider the setup
where there are M different (jointly separable) data distributions, rather than datasets; every time we
encounter a task, we have an access to a totally new samples of data points drawn from the task’s
distribution. For simplicity of visualization, we still stick to the bounded support cases.

An implementational difference from the previous sections is that we re-sample the data points from
a predefined data distribtion at every stage. Another minor detail is that we no longer fix the three
support vectors as mentioned in Appendix C.2.1: thus, at every stage, we never reuse the same
data point(s) from the previous stage, almost surely. We test whether a similar trend happens even
when we add the resampling process, under the same data distribution described in Appendix C.2.1.
The results are shown in Figures 7 and 8 for cyclic task ordering and random task ordering cases,
respectively.
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Figure 7: 2D synthetic experiments: Cyclic task ordering, jointly separable online dataset (keep being
drawn from a task’s predefined data distribution).
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Figure 8: 2D synthetic experiments: Random task ordering, jointly separable online dataset (keep
being drawn from a task’s predefined data distribution).
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C.3 TOY EXAMPLE FOR INCREASING LOSS IN A CYCLE

Here, we give a toy example that shows temporarily increasing joint training loss during a cycle, even
with a small learning rate.

Let the datasets Di (i = 1, ..., 5) be as the following. Without loss of generality, we choose all labels
as +1 without loss of generality, hence we omitted them.

D1 = {(1,−2)}, D2 = {(1, 2)}, D3 = {(1.1, 2.1)},
D4 = {(1.1, 2.2)}, D5 = {(1.1, 2.3)}.

In this case, the max-margin direction is (1, 0), while most of the task has their individual max-margin
direction around (1, 2). We set K = 10, η = 10−6 so that η satisfies the learning rate condition.
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Figure 9: We take average on total loss(black) for better visualization. The current task switches
every 10 iterations. One cycle consists of 5 stages. Figure 9(a) shows the case where some task’s loss
increases within a cycle. However, it eventually decreases as Figure 9(b) shows.

When task 1 is being trained, joint training loss increases while it decreases when other tasks are
being trained. This is because most of the tasks have their own max-margin direction around (1, 2),
dominating joint training loss.

C.4 EXPERIMENTS WITH NEURAL NETWORKS: BEYOND LINEAR MODELS

We explore the possibility of extending our theoretical insight to nonlinear models, in particular wide
two-layer ReLU networks.

For a linear classifier with a single linear layer, recall that we already verified that the sequentially
trained model (in cyclic/random task ordering) directionally converges to the max-margin direction.
However, it is more difficult to analyze and visualize the dynamics of the multi-layer neural net’s
parameter values. Moreover, it might be nonsense to discuss the relationship (e.g., alignment,
directional convergence) between the max-margin direction and the parameter matrices of a neural
net, because the parameter matrices themselves no longer have a semantic meaning in the data space.

Instead of inspecting the parameter values, we move our attention to the decision boundary of the
model. Observe that the decision boundary of a linear binary classifer is a hyperplane (i.e., d − 1
dimensional subspace) of the data space (of d-dimension), whose orthogonal complement is the span
of the classifier’s weight vector. Thus, the alignment between the weight vector and the max-margin
direction (i.e., the implicit bias guarantee) is semantically equivalent to the alignment between the
classifier’s decision boundary and a hyperplane determined by the max-margin solution as a normal
vector; this hyperplane can be approximated well by jointly training a single-layer linear classifier.
Thus, we can still verify the similar idea of implicit bias even for a neural network by observing, not
only that a continually learned model (with sequential GD, under task repitition) eventually classifies
all the data points correctly, but also that the decision boundary of the continually trained model
getting comparable with that of a jointly trained model (both starting from an identical initialization).
Although we cannot not exactly characterize to which set of points a two-layer ReLU net’s decision
boundary should converge only with our theorems, it gives an effective and efficient way to confirm
our findings beyond a simple linear model.
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To intuitively visualize the decision boundaries, we again use the 2D synthetic datasets. Most of the
experimental setting is the same as in Appendix C.2.1, except for the following three differences:

1. The classifier’s architecture is a two-layer neural network fθ : R2 → R consisting of 2-
dimensional input, 500 hidden ReLU neurons, and scalar output:

fθ(x) = w⊤
2 ReLU(W1x+ b1) + b2,

where θ = (W1, b1,w2, b2) ∈ R500×2 × R500 × R500 × R and ReLU(v)i = max{vi, 0}.
2. To make the total dataset non-separable by a linear classifier with a positive margin but still

classifiable by a neural net, we translate all datapoints with positive labels (+1) by a vector
(−1.2,−1.2). In this case, the decision boundary should not be a straightly but bended in a curly
L-shape to effecitively distinguish two classes.

3. To prevent the sequential GD from behaving similarly to a mini-batch SGD with small-scale
and lazy updates, we increase K to 3,000 to guarantee that (1) the jointly trained model can
correctly classify all data points within only one stage (i.e., with initial K updates), and (2) the
continually learned model gets sufficiently trained on a specific task at each stage. As a result,
the jointly trained model takes MJK = 900,000 iterations. (M = 3, J = 100)

As we did for a linear classifier, we classify the input data as y = +1 if the model output is positive
and as −1 otherwise (thus, the decision boundary is a level set {x ∈ R2 : fθ(x) = 0}). We again
use the usual logistic loss 1

N

∑N
i=1 ℓ(yifθ(xi)).
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Decision Boundary
Continual Learning
Decision Boundary
Task 0 Data (y = + 1)
Task 0 Data (y = 1)
Task 1 Data (y = + 1)
Task 1 Data (y = 1)
Task 2 Data (y = + 1)
Task 2 Data (y = 1)

(a) At the end of the first stage.
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Continual Learning
Decision Boundary
Task 0 Data (y = + 1)
Task 0 Data (y = 1)
Task 1 Data (y = + 1)
Task 1 Data (y = 1)
Task 2 Data (y = + 1)
Task 2 Data (y = 1)

(b) After running 300 stages.
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(c) Losses of continually trained model.
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(d) Losses of jointly trained model.

Figure 10: Two-layer ReLU network experiment under cyclic task ordering. (Top.) Each subfigure
displays the decision boundaries (and other auxiliary level sets) of a jointly trained model (dashed
red line) and a continually trained model (dashed green line). (Bottom.) Figure 10(c) demonstrates
the large amounts of forgetting at initial few cycles and convergences of loss and (cycle-averaged)
forgetting to near zero. On the other hand, Figure 10(d) shows that the training loss of the jointly
trained model is already small (e.g., less than 10−3) at initial stages.

The result of experiment for cyclic task order is visualized in Figure 10, exhibiting decision boundaries
of a jointly trained model and a continually trained model (with sequential GD). As we expected,
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the updates are aggressive enough so that even a single stage (i.e., initial K = 3,000 iterations) is
sufficient to perfectly classify the total dataset with the jointly trained model, and the same for the
dataset of the task 0 with the continually trained model (Figure 10(a)). After some number of stages
(Figure 10(b)), the both models not only correctly classify every data points, but also have an almost
identical decision boundary (note that the other level sets are not necessarily the same), implying
that a similar phenomenon like implicit bias is happening here. We also observe almost the same
tendencies under random task ordering and even for non-repeating dataset cases (Appendix C.2.4).
We omit their detailed results from the paper, but one can find them in our supplementary materials.

C.5 EXPERIMENT ON A REAL-WORLD DATASET

In this section, we present a result of training linear model with CIFAR-10 (Krizhevsky et al., 2009).

We choose two classes from the CIFAR-10 dataset and design 3 tasks which have 512 data points
from the two classes (‘airplane’, ‘automobile’). Our Theorem 5.2 on linearly non-separable data like
CIFAR-10 shows that sequential GD iterates should not diverge and instead converge to the global
minimum w∗ under the properly chosen learning rate. To estimate the distance between sequential
GD iterates and the global minimum, we first train a linear model using joint task data and obtain
wJoint as a proxy of w∗; we do this because offline training is guaranteed to converge to the global
minimum. Then, we train sequential GD and measure the distance between iterates and the jointly
trained solution wJoint at the end of every stage of sequential GD.
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(b) Loss of jointly trained model

Figure 11: CIFAR-10 Experiments with linear model. We jointly train a model for 200000
iterations to achieve the global minimum. We then train each task with cyclic ordering. We set the
number of GD for each stage as 50 (K = 50), and run 1350 cycles (J = 1350). Figure 11(a) shows
that sequential GD iterate converges close to wJoint as the training goes on. However, it does not
fully converge to wJoint, as wJoint is not equal to w∗. Figure 11(b) reveals that the loss of the jointly
trained model was decreasing after 200000 iterations.

As a result, we observe that the distance between sequential GD iterates and wJoint converges close
to 0, even when we adopt a learning rate η = 0.01, which is not as too small as our theorem requires.
Yet, we couldn’t show convergence of distance to exactly 0 since the jointly trained model did not
converge all the way to w∗.
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D PROOFS FOR SECTION 3: CYCLIC TASK ORDERING, JOINTLY SEPARABLE

Without loss of generality, we set yi = 1 for all i ∈ [N ].

D.1 ASYMPTOTIC LOSS CONVERGENCE ANALYSIS (PROOF OF THEOREM 3.1)

Let us restate the theorem here for the sake of readability.

Theorem 3.1. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given cyclically. Under Assumptions 3.1 and 3.3, if the learning rate satisfies

η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then

1. Loss converges to zero: limt→∞ L(w(t)
k ) = 0,∀k ∈ [0 : K − 1].

2. Every data point is eventually classified correctly: limt→∞ x⊤
i w

(t)
k =∞,∀k ∈ [0 : K−1], i ∈ I .

3. Square sum of the change of weight is finite:
∑∞

t=0

∑K−1
k=0 ∥w

(t)
k+1 −w

(t)
k ∥2 <∞.

Here, we use the following lemma which holds in cyclic continual learning with M tasks.
Lemma D.1. For all t ∈ N,m ∈ [0 : M − 1], k ∈ [0 : K − 1],∥∥∥∥∥w(t+m)

k −w
(t)
0 + η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0 ) + k∇L(t+m)(w

(t)
0 )

)∥∥∥∥∥ ≤ η2(mK + k)Kσ3
maxβ

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0 )
∥∥∥ ,∥∥∥w(t+m)

k −w
(t)
0

∥∥∥ ≤ ηKσmax

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0 )
∥∥∥ ,∥∥∥∇L(w(t+m)

k )−∇L(w(t)
0 )
∥∥∥ ≤ ηKσ3

maxβ

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0 )
∥∥∥ .

Proof. See Appendix D.1.1.

Also, we rely on the key property of linearly separable data, which is proposed by Nacson et al.
(2019).

Lemma D.2. For any w ∈ Rd,

∥∇L(w)∥ ≥ ϕ

√∑
i∈I

[
ℓ′(x⊤

i w)
]2

Proof. See Appendix D.1.2.

Since L is a σ2
maxβ-smooth function, we get

L(w(Mt+M)
0 )− L(w(Mt)

0 )− σ2
maxβ

2

∥∥∥w(Mt+M)
0 −w

(Mt)
0

∥∥∥2
≤ ∇L(w(Mt)

0 )⊤(w
(Mt+M)
0 −w

(Mt)
0 )

= ∇L(w(Mt)
0 )⊤(w

(Mt+M)
0 −w

(Mt)
0 − ηK∇L(w(Mt)

0 ) + ηK∇L(w(Mt)
0 ))

≤ −ηK
∥∥∥∇L(w(Mt)

0 )
∥∥∥2 + ∥∥∥∇L(w(Mt)

0 )
∥∥∥∥∥∥w(Mt+M)

0 −w
(Mt)
0 +ηK∇L(w(Mt)

0 )
∥∥∥

By Lemma D.1,

L(w(Mt+M)
0 )− L(w(Mt)

0 )− σ2
maxβ

2
· (ησmaxK)2

ϕ2(1− ηMKσ2
maxβ)

2

∥∥∥∇L(w(Mt)
0 )

∥∥∥2
≤ −ηK

∥∥∥∇L(w(Mt)
0 )

∥∥∥2 + η2MK2σ3
maxβ

ϕ(1− ηMKσ2
maxβ)

∥∥∥∇L(w(Mt)
0 )

∥∥∥2
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Given that η ≤ 1
2MKσ2

maxβ
,

L(w(Mt+M)
0 )− L(w(Mt)

0 ) (12)

≤ ηK{1− ηK

(
Mσ3

maxβ

ϕ(1− ηMKσ2
maxβ)

+
σ4
maxβ

2ϕ2(1− ηMKσ2
maxβ)

2

)
}
∥∥∥∇L(w(Mt)

0 )
∥∥∥2 (13)

≤ −ηK
(
1− ηK

2(Mϕ+ σmax)σ
3
maxβ

ϕ2

)∥∥∥∇L(w(Mt)
0 )

∥∥∥2 (14)

= −ηK (1− ηKβ′)
∥∥∥∇L(w(Mt)

0 )
∥∥∥2, (15)

where we set β′ :=
2(Mϕ+σmax)σ

3
maxβ

ϕ2 . Given that η ≤ 1
2Kβ′ , L(w(Mt+M)

0 ) ≤ L(w(Mt)
0 ) holds.

Also, by (15),
∞∑
t=0

∥∥∥∇L(w(Mt)
0 )

∥∥∥2 ≤ L(w(0)
0 )− limt→∞ L(w(Mt)

0 )

ηK(1− ηKβ′)
≤ L(w(0)

0 )

ηK(1− ηKβ′)
<∞

Coupled with Lemma D.1,

∞∑
t=0

M−1∑
m=0

K−1∑
k=0

∥∥∥∇L(w(Mt+m)
k )

∥∥∥2
≤

∞∑
t=0

M−1∑
m=0

K−1∑
k=0

(∥∥∥∇L(w(Mt)
0 )

∥∥∥+ ∥∥∥∇L(w(Mt+m)
k )−∇L(w(Mt)

0 )
∥∥∥)2

≤
∞∑
t=0

M−1∑
m=0

K−1∑
k=0

(
1 +

ηKσ3
maxβ

ϕ{1− η(mK + k)σ2
maxβ}

)2 ∥∥∥∇L(w(Mt)
0 )

∥∥∥2
≤
(
1 +

ηKσ3
maxβ

ϕ{1− ηMKσ2
maxβ}

)2

MK

∞∑
t=0

∥∥∥∇L(w(Mt)
0 )

∥∥∥2 <∞

The boundedness of infinite sum of nonzero elements means limt→∞

∥∥∥∇L(w(t)
k )
∥∥∥2 = 0,∀k ∈

[0 : K − 1]. This leads to limt→∞ ℓ′(x⊤
i w

(t)
k ) = 0,∀i ∈ I, k ∈ [0 : K − 1] by Lemma D.2.

Since ℓ′(u) → 0 only when u → ∞, we obtain x⊤
i w

(t)
k → ∞,∀i ∈ I, k ∈ [0 : K − 1] and

limt→∞ L(w(t)
k ) = 0,∀k ∈ [0 : K−1]. Finally, we obtain that

∑∞
t=0

∑K−1
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 <∞
followed by ∥∥∥∇L(w(t)

k )
∥∥∥ ≥ ϕ

√∑
i∈I

[
ℓ′(x⊤

i w
(t)
k )
]2
≥ ϕ

√√√√∑
i∈I(t)

[
ℓ′(x⊤

i w
(t)
k )
]2

≥ ϕ

σmax

∥∥∥∥∥∥
∑

i∈I(t)

ℓ′(x⊤
i w

(t)
k )xi

∥∥∥∥∥∥ =
ϕ

σmax
η−1

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥ ,
where in the first inequality, we use Lemma D.2 and in the third ineqaultiy, we use the fact ∀λs ∈ R :∥∥∑

s∈I λsxs

∥∥
2
≤ σmax

√∑
s∈I λ

2
s. The last equality is true by the definition of gradient descent.

D.1.1 PROOF OF LEMMA D.1

For all t ∈ N,m ∈ [0 : M − 1], k ∈ [0 : K − 1]∥∥∥∥∥w(t+m)
k −w

(t)
0 + η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0 ) + k∇L(t+m)(w

(t)
0 )

)∥∥∥∥∥
=

∥∥∥∥∥η
m−1∑
i=0

K−1∑
j=0

(
∇L(t+i)(w

(t)
0 )−∇L(t+i)(w

(t+i)
j )

)
+ η

k−1∑
j=0

(
∇L(t+m)(w

(t)
0 )−∇L(t+m)(w

(t+m)
j )

)∥∥∥∥∥
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=

∥∥∥∥∥∥η
m−1∑
i=0

K−1∑
j=0

∑
s∈I(t+i)

(
ℓ′(x⊤

s w
(t)
0 )− ℓ′(x⊤

s w
(t+i)
j )

)
xs + η

k−1∑
j=0

∑
s∈I(t+m)

(
ℓ′(x⊤

s w
(t)
0 )− ℓ′(x⊤

s w
(t+m)
j )
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xs

∥∥∥∥∥∥
≤ η
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ℓ′(x⊤

s w
(t)
0 )− ℓ′(x⊤

s w
(t+m)
j )

)
xs

∥∥∥∥∥∥
holds by triangle inequality. Then

η

m−1∑
i=0

K−1∑
j=0

∥∥∥∥∥∥
∑

s∈I(t+i)

(
ℓ′(x⊤

s w
(t)
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k−1∑
j=0

∥∥∥∥∥∥
∑

s∈I(t+m)

(
ℓ′(x⊤

s w
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√√√√ ∑
s∈I(t+i)

[
x⊤

s

(
w
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0 −w
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(t)
0 −w

(t+m)
j

)]2
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∥∥∥ (16)

The first inequality comes from the fact ∀λs ∈ R :
∥∥∑

s∈I λsxs

∥∥
2
≤ σmax

√∑
s∈I λ

2
s. The next one

comes from β-smoothness, and the last inequality holds since ∀v ∈ Rd :
∑

s∈I(x
⊤
s v)

2 ≤ σ2
max ∥v∥

2.
Then we get∥∥∥w(t+m)
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Then by (16) and Lemma D.2, we obtain∥∥∥w(t+m)

k −w
(t)
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∥∥∥
≤ ηKσmax

ϕ
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i=0

K−1∑
j=0

∥∥∥w(t+i)
j −w

(t)
0

∥∥∥+ k−1∑
j=0

∥∥∥w(t+m)
j −w

(t)
0

∥∥∥

(17)

Here, we use a lemma in Nacson et al. (2019).
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Lemma D.3 (Nacson et al. (2019)). For some ϵ and θ, let δk ≤ θ + ϵ
∑k−1

u=0 δu holds for all k. Then

δk ≤
θ

1− kϵ

and
k−1∑
u=0

δu ≤
kθ

1− kϵ

By applying the lemma to (17), we obtain∥∥∥w(t+m)
k −w

(t)
0

∥∥∥ ≤ ηKσmax

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0 )
∥∥∥

and ∥∥∥∥∥w(t+m)
k −w

(t)
0 + η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0 ) + k∇L(t+m)(w

(t)
0 )

)∥∥∥∥∥
≤ ησ2

maxβ

m−1∑
i=0

K−1∑
j=0

∥∥∥w(t+i)
j −w

(t)
0

∥∥∥+ k−1∑
j=0

∥∥∥w(t+m)
j −w

(t)
0

∥∥∥


≤ η2(mK + k)Kσ3
maxβ

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0 )
∥∥∥ .

Finally, ∥∥∥∇L(w(t+m)
k )−∇L(w(t)

0 )
∥∥∥ ≤ σ2

maxβ
∥∥∥w(t+m)

k −w
(t)
0

∥∥∥
≤ ηKσ3

maxβ

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0 )
∥∥∥

D.1.2 PROOF OF LEMMA D.2

For all w ∈ Rd,

∥∇L(w)∥ =

∥∥∥∥∥∑
i∈I

ℓ′(x⊤
i w)xi

∥∥∥∥∥
≥
√∑

i∈I

[
ℓ′(x⊤

i w)
]2 · min

v∈RN
≥0

:∥v∥=1
∥Xv∥

Let v̂ := argminv∈RN
≥0

:∥v∥=1 ∥Xv∥. Then for max-margin direction ŵ, the following holds.

∥Xv̂∥ ≥

∥∥∥∥∥ ŵ

∥ŵ∥

⊤
Xv̂

∥∥∥∥∥ ≥ ϕ ∥v̂∥ = ϕ

We used Cauchy-Schwarz for the first inequality, and the definition of ŵ for the second one.

D.2 DIRECTIONAL CONVERGENCE ANALYSIS (PROOF OF THEOREM 3.2)

In this section, we prove Theorem 3.2 and further discuss the convergence of ρ(t)
k beyond bounded-

ness.
Theorem 3.2. Let {w(t)

k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given cyclically. Under Assumptions 3.1, 3.2, 3.3, and 3.4, if the learning rate

satisfies η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then w

(t)
k will behave as:

w
(t)
k = ln

(
K
M t
)
ŵ + ρ

(t)
k ,

where ∥ρ(t)
k ∥ stays bounded as t grows.
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Note that we use Assumption 3.2, the unique existence of SVM dual variables α that satisfies

ŵ =
∑
s∈S

αsxs

∀s ∈ S : αs > 0,∀s /∈ S : αs = 0

This assumption holds for almost all data (Soudry et al., 2018).

When the tasks are given in a cyclic order, the following lemma holds. Note that the lemma does not
depend on the algorithm.

Lemma D.4. When tasks are given cyclic, there exists w̌,m1(t, k) ∈ Rd the following holds for all
t ∈ N, k ∈ [0 : K − 1].

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs =
K

M
log(

t

M
)ŵ +

K

M
w̌ +m1(t, k)

m1(t,K) := m1(t+ 1, 0)

such that ∥m1(t, k)∥ = o(t−0.5+ϵ), and ∥m1(t, k + 1)−m1(t, k)∥ = O(t−1) for all k ∈ [0 :
K − 1], ϵ > 0, and w̌ only depends on the order of tasks and constant with respect to t.

Proof. See Appendix D.2.1.

We set m1(t, k) and w̌ along Lemma D.4, and define ρ
(t)
k and r

(t)
k as

∀k ∈ [0 : K − 1] : w
(t)
k = log(

K

M
t)ŵ + ρ

(t)
k

= log(
K

M
t)ŵ + w̃ +

M

K
m1(t, k) + r

(t)
k ,

ρ
(t)
K = ρ

(t+1)
0 , r

(t)
K = r

(t+1)
0 ,

where w̃ is the solution of

∀i ∈ S : η exp (−x⊤
i w̃) = αi, P̄ (w̃ −w

(0)
0 ) = 0,

which is unique under Assumption 3.2. Then by the definition,

r
(t)
k = w

(t)
k −

M

K

(
K

M
log(

K

M
t)ŵ +m1(t, k)

)
− w̃

= w
(t)
k −

M

K

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs

− logKŵ − w̃ + w̌

Under these definitions, we can get the primary lemma of r(t)k .

Lemma D.5. Under Assumption 3.1, 3.3, 3.4, and Assumption 3.2, if learning rate is η <

min{ 1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}, then

1. ∃t̃, C1, C2 > 0 such that ∀t > t̃,

(r
(t)
k+1 − r

(t)
k )⊤r

(t)
k ≤ C1t

−θ + C2t
−1−0.5µ̃,∀k ∈ [0 : K − 1]

2. Moreover, for all ϵ1 > 0, ∃t̃∗, C3 > 0 such that if
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ1 and S(t) ̸= ∅,

(r
(t)
k+1 − r

(t)
k )⊤r

(t)
k ≤ −C3t

−1,∀t > t̃∗, k ∈ [0 : K − 1]
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Proof. See Appendix D.2.2.

By the definition of ρ(t)
k = w̃ + M

K m1(t, k) + r
(t)
k , it is enough to prove

∥∥∥r(t)k

∥∥∥ is bounded.

∥∥∥r(t)k+1

∥∥∥2 − ∥∥∥r(t)k

∥∥∥2 = 2(r
(t)
k+1 − r

(t)
k )⊤r

(t)
k +

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2
For all k ∈ [0 : K − 2], let a(t)

k := M
K (m1(t, k + 1) − m1(t, k)). And let a(t)

K−1 := log(1 +
1
t )ŵ + M

K (m1(t + 1, 0) − m1(t,K − 1)). Since w
(t)
k = log(K

M t)ŵ + w̃ + M
K m1(t, k) + r

(t)
k ,∥∥∥r(t)k+1 − r

(t)
k

∥∥∥2 =
∥∥∥w(t)

k+1 −w
(t)
k − a

(t)
k

∥∥∥2. Also, by Lemma D.4,
∥∥∥a(t)

k

∥∥∥ = O(t−1). Thus, ∃t1

such that ∀t ≥ t1,∀k ∈ [0 : K − 1] :
∥∥∥a(t)

k

∥∥∥ ≤ t−1.

Now we can get the following for all T ≥ t1.
T∑

t=t1

K−1∑
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 =
T∑

t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k − a

(t)
k

∥∥∥2
=

T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + T∑
t=t1

K−1∑
k=0

2(w
(t)
k −w

(t)
k+1)

⊤a
(t)
k +

T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2

≤
T∑

t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + 2

√√√√ T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2 + T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2

≤
T∑

t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + 2

√√√√ T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 T∑
t=t1

K−1∑
k=0

t−2 +

T∑
t=t1

K−1∑
k=0

t−2

<∞ (18)

We use Cauchy-Schwarz inequality for the first inequality and the factor that
∑T

t=t1
t−2 <∞ and∑T

t=t1

∑K−1
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 <∞ by Theorem 3.1.

Combined with Lemma D.5 and the fact that ∀c > 1 :
∑∞

t=1 t
−c <∞, we get∥∥∥r(t)0

∥∥∥2 − ∥∥∥r(t1)0

∥∥∥2 =

t−1∑
u=t1

K−1∑
k=0

(∥∥∥r(u)k+1

∥∥∥2 − ∥∥∥r(u)k

∥∥∥2)

=

t−1∑
u=t1

K−1∑
k=0

(
2(r

(u)
k+1 − r

(u)
k )⊤r

(u)
k +

∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2) <∞

Hence
∥∥∥r(t)k

∥∥∥ is bounded.

D.2.1 PROOF OF LEMMA D.4

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs

= K

⌊ t−1
M ⌋M∑
u=1

1

u

∑
s∈S(u)

αsxs +K

t−1∑
u=⌊ t−1

M ⌋M+1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs

= K

⌊ t−1
M ⌋M∑
u=1

1

u

∑
s∈S(u)

αsxs +m′(t, k)
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= K

⌊ t−1
M ⌋∑

u=1

 M∑
v=1

1

v +M(u− 1)

 ∑
s∈S(v)

αsxs

+m′(t, k)

= K

M∑
v=1

⌊ t−1
M ⌋∑

u=1

1

v +M(u− 1)

 ∑
s∈S(v)

αsxs

+m′(t, k)

Note that m′(t, k) and m′(t, k + 1)−m′(t, k) are both O(t−1) for all k ∈ [0 : K − 1]. For every v,

⌊ t−1
M ⌋∑

u=1

1

v +M(u− 1)

 ∑
s∈S(v)

αsxs


=

⌊ t−1
M ⌋∑

u=1

[
1

Mu
+

1− v
M

Mu2 + (v −M)u

] ∑
s∈S(v)

αsxs


=

 1

M

(
log

(
⌊ t− 1

M
⌋
)
+ γ +O(t−1)

)
+

⌊ t−1
M ⌋∑

u=1

1− v
M

Mu2 + (v −M)u

 ∑
s∈S(v)

αsxs


=

 1

M

(
log

(
t− 1

M

)
+ γ +O(t−1)

)
+

⌊ t−1
M ⌋∑

u=1

1− v
M

Mu2 + (v −M)u

 ∑
s∈S(v)

αsxs


=

 1

M

(
log

(
t

M

)
+ γ +O(t−1)

)
+

⌊ t−1
M ⌋∑

u=1

1− v
M

Mu2 + (v −M)u

 ∑
s∈S(v)

αsxs


where in the last three equality, we use the fact

t∑
u=1

1

u
= log t+ γ +O(t−1)

log (t)− log (⌊t⌋) = O(t−1)

log (t)− log (t− 1) = O(t−1)

where γ is the Euler-Mascheroni constant. Since 1 ≤ v ≤ M , 1− v
M

Mu2+(v−M)u ≤
1− v

M

vu2 . Therefore,∑
u

1− v
M

Mu2+(v−M)u converges with a rate O(t−1).

⌊ t−1
M ⌋∑

u=1

1− v
M

Mu2 + (v −M)u
=

∞∑
u=1

1− v
M

Mu2 + (v −M)u
−

∞∑
u=⌊ t−1

M ⌋+1

1− v
M

Mu2 + (v −M)u

=

∞∑
u=1

1− v
M

Mu2 + (v −M)u
+O(t−1)

Hence,

K

M∑
v=1

⌊ t−1
M ⌋∑

u=1

1

v +M(u− 1)

 ∑
s∈S(v)

αsxs


=

K

M

(
log

t

M
+ γ

)(∑
s∈S

αsxs

)
+K

M∑
v=1

∞∑
u=1

1− v
M

Mu2 + (v −M)u

 ∑
s∈S(v)

αsxs

+m′′(t)

=
K

M

(
log

t

M
+ γ

)
ŵ +K

M∑
v=1

∞∑
u=1

1− v
M

Mu2 + (v −M)u

 ∑
s∈S(v)

αsxs

+m′′(t)
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=
K

M
log(

t

M
)ŵ +

K

M
w̌ +m′′(t)

where w̌ := γŵ +M
∑M

v=1

∑∞
u=1

1− v
M

Mu2+(v−M)u

(∑
s∈S(v) αsxs

)
, and m′′(t) = O(t−1).

Finally, for all k ∈ [0 : K − 1] let

m1(t, k) := K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs −
K

M
log(

t

M
)ŵ − K

M
w̌

and

m1(t,K) := m1(t+ 1, 0)

Then m1(t, k) = m′(t, k) +m′′(t) = O(t−1), and

∀k ∈ [0 : K − 1] : m1(t, k + 1)−m1(t, k) =
1

t

∑
s∈S(t)

αsxs = O(t−1)

m1(t+ 1, 0)−m1(t,K − 1) =
1

t

∑
s∈S(t)

αsxs −
K

M
log(1 + t−1)ŵ = O(t−1)

D.2.2 PROOF OF LEMMA D.5

We use Assumption 3.4 here. That is, there exist positive constants µ+, µ−, and ū such that ∀u > ū :

(1− exp(−µ−u))e
−u ≤ −ℓ′(u) ≤ (1 + exp(−µ+u))e

−u

By definition,

∀k ∈ [0 : K − 1] : r
(t)
k = w

(t)
k −

M

K

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs

− logKŵ − w̃ + w̌

r
(t)
K = r

(t+1)
0

Then for all k ∈ [0 : K − 1], we get

r
(t)
k+1 − r

(t)
k = w

(t)
k+1 −w

(t)
k −

M

Kt

∑
s∈S(t)

αsxs

= −η
∑

s∈I(t)

ℓ′(x⊤
s w

(t)
k )xs −

M

Kt

∑
s∈S(t)

αsxs

= −η
∑

s∈I(t)\S(t)

ℓ′(x⊤
s w

(t)
k )xs −

∑
s∈S(t)

[
ηℓ′(x⊤

s w
(t)
k ) +

M

Kt
αs

]
xs

Hence,

(
r
(t)
k+1 − r

(t)
k

)⊤
r
(t)
k = −η

∑
s∈I(t)\S(t)

ℓ′(x⊤
s w

(t)
k )x⊤

s r
(t)
k −

∑
s∈S(t)

[
ηℓ′(x⊤

s w
(t)
k ) +

M

Kt
αs

]
x⊤
s r

(t)
k

= −η
∑

s∈I(t)\S(t)

ℓ′
(
log(

K

M
t)x⊤

s ŵ +
M

K
x⊤
s m1(t, k) + x⊤

s w̃ + x⊤
s r

(t)
k

)
x⊤
s r

(t)
k

(19)

−
∑

s∈S(t)

[
ηℓ′
(
log(

K

M
t) +

M

K
x⊤
s m1(t, k) + x⊤

s w̃ + x⊤
s r

(t)
k

)
+

M

Kt
αs

]
x⊤
s r

(t)
k

(20)
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The behavior of each term can be analyzed when stage t is large. To achieve this, we first characterize
five stages.

t5 := min{t′ | ∀t ≥ t′,∀k ∈ [0 : K − 1],∀s ∈ I : x⊤
s w

(t)
k ≥ ū}

t6 := min{t′ | ∀t ≥ t′,∀k ∈ [0 : K − 1],∀s ∈ I : x⊤
s w

(t)
k ≥ 0}

t7 := min{t′ | ∀t ≥ t′,∀k ∈ [0 : K − 1],∀s ∈ I : exp

(
−M

K
x⊤
s m1(t, k)

)
≤ 2}

t8 := min{t′ | ∀t ≥ t′,∀k ∈ [0 : K − 1],∀s ∈ I : exp

(
−M

K
x⊤
s m1(t, k)

)
≥ 1

2
}

t9 := min{t′ | ∀t ≥ t′,∀k ∈ [0 : K − 1],∀s ∈ I : exp
(
−µ−x

⊤
s w

(t)
k

)
≤ 1

2
}

Such t5 ∼ t9 exist since ∀s ∈ I, ∀k ∈ [0 : K − 1] : limt→∞ x⊤
s w

(t)
k = ∞ by Theorem 3.1, and

∀k ∈ [0 : K − 1] : limt→∞ ∥m1(t, k)∥ = 0 by Lemma D.4.

Then for all t ≥ max{t5, t6, t7, t8, t9}, the first term (19) can be upper bounded as below:

− η
∑

s∈I(t)\S(t)

ℓ′(x⊤
s w

(t)
k )x⊤

s r
(t)
k ≤ −η

∑
s∈I(t)\S(t)

x⊤
s r

(t)
k >0

ℓ′(x⊤
s w

(t)
k )x⊤

s r
(t)
k

≤ η
∑

s∈I(t)\S(t)

x⊤
s r

(t)
k >0

(
1 + exp(−µ+x

⊤
s w

(t)
k )
)
exp(−x⊤

s w
(t)
k )x⊤

s r
(t)
k t ≥ t5

≤ η
∑

s∈I(t)\S(t)

x⊤
s r

(t)
k >0

2 exp

(
− log(

K

M
t)x⊤

s ŵ −
M

K
x⊤
s m1(t, k)− x⊤

s w̃ − x⊤
s r

(t)
k

)
x⊤
s r

(t)
k t ≥ t6

≤
∑

s∈I(t)\S(t)

x⊤
s r

(t)
k >0

2αs exp

(
− log(

K

M
t)x⊤

s ŵ −
M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
x⊤
s r

(t)
k (21)

≤
∑

s∈I(t)\S(t)

x⊤
s r

(t)
k >0

2αs exp

(
− log(

K

M
t)x⊤

s ŵ −
M

K
x⊤
s m1(t, k)

)
(22)

≤
∑

s∈I(t)\S(t)

x⊤
s r

(t)
k >0

4αs exp

(
− log(

K

M
t)x⊤

s ŵ

)
t ≥ t7

(23)

≤ 4N(max
s

αs)

(
Kt

M

)−θ

(24)

where in (21) we use the definition of w̃, in (22) we use the fact ∀x ≥ 0 : x exp(−x) ≤ 1, and in
(24) we use ∀s ∈ I(t) \ S(t) : x⊤

s ŵ ≥ θ. Now we examine the second term (20). Given t ≥ t5, it can
be divided into two cases.

−ℓ′(x⊤
s w

(t)
k )x⊤

s r
(t)
k ≤


(
1 + exp(−µ+x

⊤
s w

(t)
k )
)
exp(−x⊤

s w
(t)
k )x⊤

s r
(t)
k if x⊤

s r
(t)
k > 0(

1− exp(−µ−x
⊤
s w

(t)
k )
)
exp(−x⊤

s w
(t)
k )x⊤

s r
(t)
k if x⊤

s r
(t)
k ≤ 0

For each s ∈ S, define A
(t)
s,k as

A
(t)
s,k :=

{
1 + exp(−µ+x

⊤
s w

(t)
k ) if x⊤

s r
(t)
k > 0

1− exp(−µ−x
⊤
s w

(t)
k ) if x⊤

s r
(t)
k ≤ 0

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Then, we can use

−ℓ′(x⊤
s w

(t)
k )x⊤

s r
(t)
k ≤ A

(t)
s,k exp(−x

⊤
s w

(t)
k )x⊤

s r
(t)
k

in any s ∈ S, k ∈ [0 : K − 1]. Therefore the second term (20) is bounded

−
∑

s∈S(t)

[
ηℓ′
(
log

(
K

M
t

)
+

M

K
x⊤
s m1(t, k) + x⊤

s w̃ + x⊤
s r

(t)
k

)
+

M

Kt
αs

]
x⊤
s r

(t)
k

≤
∑

s∈S(t)

[
ηA

(t)
s,k exp

(
− log

(
K

M
t

)
− M

K
x⊤
s m1(t, k)− x⊤

s w̃ − x⊤
s r

(t)
k

)
− M

Kt
αs

]
x⊤
s r

(t)
k

=
∑

s∈S(t)

[
A

(t)
s,k

Mαs

Kt
exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− M

Kt
αs

]
x⊤
s r

(t)
k

=
∑

s∈S(t)

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

Now we analyze each s ∈ S(t) by dividing into cases. Note that
∣∣M
K x⊤

s m1(t, k)
∣∣ = o(t−0.5+ϵ) for

all ϵ > 0. Therefore if we set µ̃ = min{µ+, µ−, 0.25}, then
∣∣M
K x⊤

s m1(t, k)
∣∣ = o(t−µ̃).

1. if 0 ≤ x⊤
s r

(t)
k ≤ C7t

−0.5µ̃:

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

≤
[
2 exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k t ≥ t6

≤
[
4 exp

(
−x⊤

s r
(t)
k

)
− 1
]
x⊤
s r

(t)
k t ≥ t7

≤
(
max

s
αs

) 4MC7

K
t−1−0.5µ̃

The last inequality holds by the case condition 0 ≤ x⊤
s r

(t)
k ≤ C7t

−0.5µ̃.

2. if −C7t
−0.5µ̃ ≤ x⊤

s r
(t)
k ≤ 0:

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

=
M

Kt
αs

[
1−A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)] ∣∣∣x⊤
s r

(t)
k

∣∣∣
≤ M

Kt
αs

∣∣∣x⊤
s r

(t)
k

∣∣∣ ≤ M

Kt
αs · C7t

−0.5µ̃

≤
(
max

s
αs

)MC7

K
t−1−0.5µ̃

3. if C7t
−0.5µ̃ < x⊤

s r
(t)
k :

Here, we first examine A
(t)
s,k.

A
(t)
s,k = 1 + exp(−µ+x

⊤
s w

(t)
k )

= 1 + exp

(
−µ+

(
log

(
K

M
t

)
+

M

K
x⊤
s m1(t, k) + x⊤

s w̃ + x⊤
s r

(t)
k

))
≤ 1 + exp

(
−µ+

(
log

(
K

M
t

)
+

M

K
x⊤
s m1(t, k) + x⊤

s w̃

))
≤ 1 + 2µ+ exp

(
−µ+

(
log

(
K

M
t

)
+ x⊤

s w̃

))
t ≥ t7

≤ 1 + C8t
−µ+
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Therefore,

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

≤ M

Kt
αs

[(
1 + C8t

−µ+
)
exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

≤ M

Kt
αs

[(
1 + C8t

−µ+
)
exp

(
−M

K
x⊤
s m1(t, k)− C7t

−0.5µ̃

)
− 1

]
x⊤
s r

(t)
k (25)

Since t ≥ t7, −M
K x⊤

s m1(t, k) ≤ 1. Now we use the fact ∀x ≤ 1 : expx ≤ 1 + x+ x2.

exp

(
−M

K
x⊤
s m1(t, k)

)
≤ 1− M

K
x⊤
s m1(t, k) +

(
M

K
x⊤
s m1(t, k)

)2

exp
(
−C7t

−0.5µ̃
)
≤ 1− C7t

−0.5µ̃ + C2
7 t

−µ̃

Then we get(
1 + C8t

−µ+
)
exp

(
−M

K
x⊤
s m1(t, k)− C7t

−0.5µ̃

)
≤

(
1− M

K
x⊤
s m1(t, k) +

(
M

K
x⊤
s m1(t, k)

)2
)(

1− C7t
−0.5µ̃

)
+ o(t−µ+)

≤ 1− M

K
x⊤
s m1(t, k) +

(
M

K
x⊤
s m1(t, k)

)2

− C7t
−0.5µ̃ + o(t−µ+)

≤ 1− C7t
−0.5µ̃ + o(t−µ̃)

where in the last two inequality, we use
∣∣M
K x⊤

s m1(t, k)
∣∣ = o(t−µ̃).

Finally, Equation (25) is bounded

M

Kt
αs

[(
1 + C8t

−µ+
)
exp

(
−M

K
x⊤
s m1(t, k)− C7t

−0.5µ̃

)
− 1

]
x⊤
s r

(t)
k

≤ M

Kt
αs

[
−C7t

−0.5µ̃ + o(t−µ̃)
]
x⊤
s r

(t)
k

Since −C7t
−0.5µ̃ decrease to zero slower than the other term, ∃t+ ≥ max{t5, t6, t7, t8, t9} such

that for all t ≥ t+, the last term is negative.

4. if x⊤
s r

(t)
k < −C7t

−0.5µ̃:

Since x⊤
s r

(t)
k < 0, it is enough to show that A

(t)
s,k exp

(
−M

K x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
> 1

for sufficiently large t. Note that A
(t)
s,k = 1 − exp(−µ−x

⊤
s w

(t)
k ) > 0 since t ≥ t6. If

exp
(
−x⊤

s r
(t)
k

)
≥ 4,

A
(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
≥ 4(1− exp(−µ−x

⊤
s w

(t)
k )) exp

(
−M

K
x⊤
s m1(t, k)

)
≥ 1

The last inequality holds by t ≥ max{t8, t9}. Now, if exp
(
−x⊤

s r
(t)
k

)
< 4,

A
(t)
s,k = 1− exp

(
−µ−

(
log

(
K

M
t

)
+

M

K
x⊤
s m1(t, k) + x⊤

s w̃ + x⊤
s r

(t)
k

))
≥ 1−

(
4Kt

M

)−µ−

exp

(
−µ−

(
M

K
x⊤
s m1(t, k) + x⊤

s w̃

))
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≥ 1−
(
8Kt

M

)−µ−

exp
(
−µ−x

⊤
s w̃
)
≥ 1− C9t

−µ− t ≥ t7

Also, by the fact ∀x : expx ≥ 1 + x,

exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
≥
(
1− M

K
x⊤
s m1(t, k)

)(
1− x⊤

s r
(t)
k

)
Combined with the former inequality,

A
(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
≥
(
1− C9t

−µ−
)(

1− M

K
x⊤
s m1(t, k)

)(
1− x⊤

s r
(t)
k

)
≥
(
1− C9t

−µ−
) (

1 + o(t−µ̃)
) (

1 + C7t
−0.5µ̃

)
= 1 + C7t

−0.5µ̃ − o(t−µ̃)

Since C7t
−0.5µ̃ decrease to zero slower than the other term, ∃t− ≥ max{t5, t6, t7, t8, t9} such

that for all t ≥ t−, the last equation is larger than 1.

To sum up, there exist C1, C2 > 0, t̃ ≥ max{t+, t−} such that for all t ≥ t̃,

(r
(t)
k+1 − r

(t)
k )⊤r

(t)
k ≤ C1t

−θ + C2t
−1−0.5µ̃,∀k ∈ [0 : K − 1]

Now we consider special cases to finish the lemma. For any ϵ2 > 0, the following analysis holds.

1. If x⊤
s r

(t)
k ≥ ϵ2 > 0:

Since limt→∞ m1(t, k) = 0, there exist t∗1 ≥ max{t+, t−} such that ∀t ≥ t∗1,∀s ∈ S, ∀k ∈ [0 :

K − 1] :
∣∣M
K x⊤

s m1(t, k)
∣∣ < 0.5ϵ2. Also since limt→∞ x⊤

s w
(t)
k →∞, there exist t∗+ ≥ t∗1 such

that ∀t ≥ t∗+,∀s ∈ S,∀k ∈ [0 : K − 1] : exp
(
−µ+x

⊤
s w

(t)
k

)
≤ exp(0.25ϵ2)− 1. Therefore for

t ≥ t∗+,

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

≤ M

Kt
αs

[(
1 + exp(−µ+x

⊤
s w

(t)
k )
)
exp(−0.5ϵ2)− 1

]
x⊤
s r

(t)
k t ≥ t∗1

≤ M

Kt
αs (exp(−0.25ϵ2)− 1)x⊤

s r
(t)
k t ≥ t∗+

≤ min
s

αs
M

K
(exp(−0.25ϵ2)− 1) ϵ2

1

t
= −C ′′

+t
−1

2. If x⊤
s r

(t)
k ≤ −ϵ2 < 0:

Again, since limt→∞ x⊤
s w

(t)
k → ∞, there exist t∗− ≥ t∗1 such that ∀t ≥ t∗−,∀s ∈ S,∀k ∈ [0 :

K − 1] : 1− exp
(
−µ−x

⊤
s w

(t)
k

)
≥ exp(−0.25ϵ2). Therefore for t ≥ t∗−,

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

≤ M

Kt
αs

[(
1− exp(−µ−x

⊤
s w

(t)
k )
)
exp(0.5ϵ2)− 1

]
x⊤
s r

(t)
k t ≥ t∗1

≤ M

Kt
αs (exp(0.25ϵ2)− 1)x⊤

s r
(t)
k t ≥ t∗−

≤ −min
s

αs
M

K
(exp(0.25ϵ2)− 1) ϵ2

1

t
= −C ′′

−t
−1

In conclusion, for any ϵ1 > 0, if
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ1 and S(t) ̸= ∅, then

max
s∈S(t)

∣∣∣x⊤
s r

(t)
k

∣∣∣2 = max
s∈S(t)

∣∣∣(P⊤xs

)⊤
r
(t)
k

∣∣∣2 ≥ 1∣∣S(t)
∣∣ ∑
s∈S(t)

∣∣∣x⊤
s Pr

(t)
k

∣∣∣2
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=
1∣∣S(t)
∣∣ ∥∥∥X⊤

S(t)Pr
(t)
k

∥∥∥2 ≥ 1∣∣S(t)
∣∣σ2

min(XS(t))
∥∥∥Pr

(t)
k

∥∥∥2 ≥ 1∣∣S(t)
∣∣σ2

min(XS(t))ϵ21

where XS(t) ∈ Rd×|S(t)| is a matrix which has {xs | s ∈ S(t)} as its columns. By Assumption 3.2,
σmin(XS(t)) is non-zero. Therefore, for all ϵ1 > 0, ∃t̃∗, C3 > 0 such that if

∥∥∥Pr
(t)
k

∥∥∥ ≥ ϵ1 and

S(t) ̸= ∅,

(r
(t)
k+1 − r

(t)
k )⊤r

(t)
k ≤ −C3t

−1,∀t > t̃∗, k ∈ [0 : K − 1]

D.2.3 CONVERGENCE OF ρ
(t)
k

Theorem 3.2 only shows boundedness of ρ(t)
k . Yet, if additional mild assumption on data is given, it

can be guaranteed for ρ(t)
k to converge to the particular vector.

Assumption D.1. Support vectors span dataset. That is, rank{xi : i ∈ S} = rank{xi : i ∈ I}.
Proposition D.6. Under the same setting as Theorem 3.2 with an additional Assumption D.1, the

“residual” converges to limt→∞ ρ
(t)
k = w̃,∀k ∈ [0 : K − 1]. Here, w̃ is the unique solution of the

following system of equations

∀i ∈ S : η exp (−x⊤
i w̃) = αi, (I − P )(w̃ −w

(0)
0 ) = 0,

where P ∈ Rd×d is the orthogonal projection matrix to the space spanned by the joint support
vectors indexed by S.

We set P̄ = I − P for the convenience of proof.

Proof. By the definition of ρ(t)
k = w̃ + M

K m1(t, k) + r
(t)
k , it is enough to prove limt→∞ r

(t)
k = 0.

First of all, since w
(t)
k = log(K

M t)ŵ + w̃ + M
K m1(t, k) + r

(t)
k ,

P̄r
(t)
k = P̄w

(t)
k − log(

K

M
t)P̄ ŵ − P̄ w̃ − M

K
P̄m1(t, k)

= P̄w
(0)
0 − log(

K

M
t)P̄ ŵ − P̄ w̃ − M

K
P̄m1(t, k)

= P̄w
(0)
0 − P̄ w̃ = 0

The first line holds under the Assumption D.1 since∇L(w) is a linear combination of the columns of
X . that is, ∀l < t : P̄∇L(l)(w) = 0. Remaining lines are true by the definition.

Second, we get to show Pr
(t)
k → 0. By Equation (18), limT→∞

∑T
t=t1

∑K−1
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 =

C4. That means ∀k ∈ [0 : K − 1] : limT→∞

∥∥∥r(T )
k+1 − r

(T )
k

∥∥∥ = 0. Therefore, for any ϵ0, there exists

t2 > 0 such that
∥∥∥r(t)k+1 − r

(t)
k

∥∥∥ < ϵ0
K for all t ≥ t2, k ∈ [0 : K − 1]. As a result,∥∥∥Pr

(t)
0

∥∥∥+ k

K
ϵ0 ≥

∥∥∥Pr
(t)
k

∥∥∥ ≥ ∥∥∥Pr
(t)
0

∥∥∥− k

K
ϵ0

For t ≥ max{t1, t2, t̃∗}, if
∥∥∥Pr

(t)
0

∥∥∥ ≥ ϵ1 + ϵ0 and S(t) ̸= ∅, then ∀k ∈ [0 : K − 1] :
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ1.
By Lemma D.5 (2),

∀m ∈ [0 : M − 1] :

t+m∑
u=t

K−1∑
v=0

(r
(u)
v+1 − r(u)v )⊤r(u)v ≤ −KC3t

−1 +Km
(
C1t

−θ + C2t
−1−0.5µ̃

)
,

Since t−1 decrease to zero slower than t−θ and t−1−0.5µ̃, there exists t3 > max{t1, t2, t̃∗}, C4 > 0
such that−KC3t

−1+Km
(
C1t

−θ + C2t
−1−0.5µ̃

)
≤ −C5t

−1. To sum up, for any ϵ0, ϵ2 > 0, there
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exists t3 > max{t1, t2, t̃∗} such that if
∥∥∥Pr

(t)
0

∥∥∥ ≥ ϵ0 + ϵ1 and S((t)) ̸= ∅, then

∀m ∈ [0 : M − 1] :

t+m∑
u=t

K−1∑
v=0

(r
(u)
v+1 − r(u)v )⊤r(u)v ≤ −C5t

−1,

Now, define two sets for each k ∈ [0 : K − 1]

Tk := {t > t3 :
∥∥∥Pr

(t)
k

∥∥∥ < ϵ0 + ϵ1}

T̄k := {t > t3 :
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ0 + ϵ1}

We will finish our proof by showing T̄k is finite.

First, every Tk is not empty nor finite. If there exists some k′ that T ′
k is empty or finite, then

∃tmax ∈ T̄ ′
k . Then∥∥∥Pr

(t)
0

∥∥∥2 − ∥∥∥Pr
(tmax)
0

∥∥∥2 =
∥∥∥r(t)0

∥∥∥2 − ∥∥∥r(tmax)
0

∥∥∥2
=

t−1∑
u=tmax

K−1∑
k=0

[∥∥∥r(u)k+1

∥∥∥2 − ∥∥∥r(u)k

∥∥∥2]

=

t−1∑
u=tmax

K−1∑
k=0

[∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2]+ 2

t−1∑
u=tmax

K−1∑
k=0

(r
(u)
k+1 − r

(u)
k )⊤r

(u)
k

≤ C4 + 2

t−1∑
u=tmax

∑
k ̸=k′

(r
(u)
k+1 − r

(u)
k )⊤r

(u)
k + (r

(u)
k′+1 − r

(u)
k′ )⊤r

(u)
k′


≤ C4 + C6 + 2

∑
tmax≤u≤t−1

S(u) ̸=∅

(r
(u)
k′+1 − r

(u)
k′ )⊤r

(u)
k′

≤ C4 + C6 − 2C3

∑
tmax≤u≤t−1

S(u) ̸=∅

u−1

The first inequality is true by Equation (18). Other inequalities hold by Lemma D.5. As t goes
infinity, the upper bound goes to negative infinity. However, it contradicts to the fact that

∥∥∥r(t)0

∥∥∥ is
bounded.

Before we move on the final step, note that limT→∞
∑T

t=t1

∑K−1
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 = C4 implies

t∑
u=t1

K−1∑
k=0

∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2 = C4 − h(t)

where h(t) is a positive function monotonic decreasing to zero.
Now, assume that there exists some k′ that T̄k is infinite. WLOG, we set k′ = 0. Since T0 is infinite,
for any t ∈ T̄0 there exists t′, t′′ ∈ T0 such that t ∈ [t′ +1, t′′ − 1] ⊂ T̄0. We divide it into two cases:
For all t ∈ [t′ + 1, t′′ − 1],

1. if |[t′ + 1, t]| < M , then
∥∥∥Pr

(t)
0

∥∥∥2 ≤ ∥∥∥Pr
(t′)
0

∥∥∥2 +Mϵ0 ≤ (M + 1)ϵ0 + ϵ1.

2. if |[t′ + 1, t]| ≥M , let t∗ = min{u ∈ [t′ + 1, t] : S(u) ̸= ∅}. Then∥∥∥Pr
(t)
0

∥∥∥2 =
∥∥∥Pr

(t∗)
0

∥∥∥2 + t−1∑
u=t∗

K−1∑
k=0

[∥∥∥r(u)k+1

∥∥∥2 − ∥∥∥r(u)k

∥∥∥2]

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

=
∥∥∥Pr

(t∗)
0

∥∥∥2 + t−1∑
u=t∗

K−1∑
k=0

[∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2 + 2(r
(u)
k+1 − r

(u)
k )⊤r

(u)
k

]

=
∥∥∥Pr

(t∗)
0

∥∥∥2 + h(t)− h(t∗) + 2

t−1∑
u=t∗

K−1∑
k=0

[
(r

(u)
k+1 − r

(u)
k )⊤r

(u)
k

]

≤ (Mϵ0 + ϵ0 + ϵ1)
2 + h(t)− 2C5

⌊ t−1−t∗
M ⌋∑

u=0

1

Mu+ t∗

≤ (Mϵ0 + ϵ0 + ϵ1)
2 + h(t)

Since h(t) is monotonic decreasing function, for any ϵ2 > 0, there exists t4 such that ∀t ≥ t4 :
h(t) < ϵ2.

Therefore, ∀t ≥ max{t3, t4} :
∥∥∥Pr

(t)
0

∥∥∥2 ≤ (Mϵ0 + ϵ0 + ϵ1)
2 + ϵ2. Since it holds for any ϵ0, ϵ1, ϵ2,

it contradicts with the assumption that T̄0 is infinite.

D.3 NON-ASYMPTOTIC LOSS CONVERGENCE ANALYSIS (PROOF OF THEOREM 3.3)

In this section, we show non-asymptotic loss convergence, as stated below:

Theorem 3.3. Under the same setting as Theorem 3.1 with an additional Assumption 3.5, for any
m ∈ [0 : M − 1] and k ∈ [0 : K − 1], we have

L(w(MJ+m)
k ) ≤

(
|S|+

∑m−1
i=0 |Si|+ k

K |Sm|
J

)
ℓ(ln J) +

∥∥∥w(0)
0 − ŵ ln J

∥∥∥2
2ηKJ

+
D1

J

+

(
|I| − |S|+

∑m−1
i=0 (|Ii| − |Si|) + k

K (|Im| − |Sm|)
J

)
ℓ(θ ln J),

where θ > 1 is the second margin defined in Section 3.1, and

D1 :=
4σ2

max

ϕ2

(
L(w(0)

0 ) +

(
1 +

ηKσ3
maxβ

ϕ(1− ηMKσ2
maxβ)

)
ηKσmax

ϕ(1− ηMKσ2
maxβ)

∥∥∥∇L(w(0)
0 )
∥∥∥2) .

Three major lemmas are used to prove Theorem 3.3. The first lemma is an extension of Lemma D.1.
When M tasks are given cyclic, the following lemma holds.

Lemma D.7. Let t ∈ N, l ∈ [0 : K − 1], m ∈ [0 : M − 1] and k ∈ [0 : K − 1]. If m = 0, then
l ≥ k. If m = M , then l ≤ k. For any t, l,m, k satisfying the condition,∥∥∥∥∥w(t+m)

l −w
(t)
k + η

(
(K − k + 1)∇L(t)(w

(t)
k )K

m−1∑
i=1

∇L(t+i)(w
(t)
k ) + l∇L(t+m)(w

(t)
k )

)∥∥∥∥∥
≤ η2(mK + l − k)Kσ3

maxβ

ϕ{1− η(mK + l − k)σ2
maxβ}

∥∥∥∇L(w(t)
k )
∥∥∥ ,∥∥∥w(t+m)

l −w
(t)
k

∥∥∥ ≤ ηKσmax

ϕ{1− η(mK + l − k)σ2
maxβ}

∥∥∥∇L(w(t)
k )
∥∥∥ ,∥∥∥∇L(w(t+m)

l )−∇L(w(t)
k )
∥∥∥ ≤ ηKσ3

maxβ

ϕ{1− η(mK + l − k)σ2
maxβ}

∥∥∥∇L(w(l)
k )
∥∥∥ .

Proof. We omitted the proof since there are only a few changes from the proof of Appendix D.1.1.

The second and third lemmas represent two similar versions with respect to the common Gradient
Descent setting, and Continual Learning setting.
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Lemma D.8. Suppose L is convex, and there exists β ≥ 0 so that 1 − ηβ ≥ 0 and weights
(w0, . . . ,wt) by wj+1 := wj − η∇L(wj) satisfy

L(wj+1) ≤ L(wj)− η (1− ηβ) ∥∇L(wj)∥2

Then for any z ∈ Rd,

2

t−1∑
j=0

η (L(wj)− L(z))−
t−1∑
j=0

η

1− ηβ
(L(wj)− L(wj+1)) ≤ ∥w0 − z∥2 − ∥wt − z∥2 .

Proof. See Appendix D.3.1.

Lemma D.9. Suppose L is convex, σ2
maxβ-smooth function and there exists β′ ≥ 0 so that η ≤

min{ 1
2MKσ2

maxβ
, 1
2Kβ′ } and weights (w(0)

0 , . . . ,w
(0)
K−1,w

(1)
0 , . . . ,w

(MJ+M)
K−1 ) by w

(p)
q+1 := w

(p)
q −

η∇L(p)(w
(p)
q ), w(p+1)

0 := w
(p)
K satisfy, for all m ∈ [0 : M − 1] and k ∈ [0 : K − 1],

L(w(Mj+M+m)
k ) ≤ L(w(Mj+m)

k )− ηK (1− ηKβ′)
∥∥∥∇L(w(Mj+m)

k )
∥∥∥2 .

Then for any z ∈ Rd,

2

J−1∑
j=0

ηK
(
L(w(Mj+M+m)

k )− L(z)
)

− 2ηMKσ4
maxβ

ϕ2(1− ηMKσ2
maxβ)

2

J−1∑
j=0

ηK

1− ηKβ′

(
L(w(Mj+m)

k )− L(w(Mj+M+m)
k )

)
≤
∥∥∥w(m)

k − z
∥∥∥2 − ∥∥∥w(MJ+m)

k − z
∥∥∥2 .

Proof. See Appendix D.3.2.

Note that Lemma D.9 holds only when jointly separable tasks are given cyclic, while Lemma D.8
always holds.

We follow the process of Appendix D.1 to show that it satisfies the condition in Lemma D.9. Since L
is a σ2

maxβ-smooth function, For all j ∈ [0 : J − 1],m ∈ [0 : M − 1], k ∈ [0 : K − 1] we get

L(w(Mj+M+m)
k )− L(w(Mj+m)

k )− σ2
maxβ

2

∥∥∥w(Mj+M+m)
k −w

(Mj+m)
k

∥∥∥2
≤ ∇L(w(Mj+m)

k )⊤(w
(Mj+M+m)
k −w

(Mj+m)
k )

= ∇L(w(Mj+m)
k )⊤(w

(Mj+M+m)
k −w

(Mj+m)
k − ηK∇L(w(Mj+m)

k ) + ηK∇L(w(Mj+m)
k ))

≤ −ηK
∥∥∥∇L(w(Mj+m)

k )
∥∥∥2 + ∥∥∥∇L(w(Mj+m)

k )
∥∥∥∥∥∥w(Mj+M+m)

k −w
(Mj+m)
k + ηK∇L(w(Mj+m)

k )
∥∥∥ .

By Lemma D.7,

L(w(Mj+M+m)
k )− L(w(Mj+m)

k )− σ2
maxβ

2
· (ησmaxK)2

ϕ2(1− ηMKσ2
maxβ)

2

∥∥∥∇L(w(Mj+m)
k )

∥∥∥2
≤ −ηK

∥∥∥∇L(w(Mj+m)
k )

∥∥∥2 + η2MK2σ3
maxβ

ϕ(1− ηMKσ2
maxβ)

∥∥∥∇L(w(Mj+m)
k )

∥∥∥2 .
Given that η ≤ 1

2MKσ2
maxβ

,

L(w(Mj+M+m)
k )− L(w(Mj+m)

k )

≤ −ηK{1− ηK

(
Mσ3

maxβ

ϕ(1− ηMKσ2
maxβ)

+
σ4
maxβ

2ϕ2(1− ηMKσ2
maxβ)

2

)
}
∥∥∥∇L(w(Mj+m)

k )
∥∥∥2
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≤ −ηK
(
1− ηK

2(Mϕ+ σmax)σ
3
maxβ

ϕ2

)∥∥∥∇L(w(Mj+m)
k )

∥∥∥2
= −ηK (1− ηKβ′)

∥∥∥∇L(w(Mj+m)
k )

∥∥∥2 , (26)

where we set β′ :=
2(Mϕ+σmax)σ

3
maxβ

ϕ2 .
Since Equation (26) holds for all j ∈ [0 : J − 1],m ∈ [0 : M − 1], k ∈ [0 : K − 1] and η < 1/2Kβ′

is given, by Lemma D.9, we get

2

J−1∑
j=0

ηK
(
L(w(Mj+M+m)

k )− L(z)
)

− 2ηMKσ4
maxβ

ϕ2(1− ηMKσ2
maxβ)

2

J−1∑
j=0

ηK

1− ηKβ′

(
L(w(Mj+m)

k )− L(w(Mj+M+m)
k )

)
≤
∥∥∥w(m)

k − z
∥∥∥2 − ∥∥∥w(MJ+m)

k − z
∥∥∥2 . (27)

Given that η < min{ 1
2MKβσ2

max
, 1
2Kβ′ } and L(w(Mj+m)

k ) is decreasing,

2ηMKσ4
maxβ

ϕ2(1− ηMKσ2
maxβ)

2
· ηK

1− ηKβ′

(
L(w(Mj+m)

k )− L(w(Mj+M+m)
k )

)
≤ 8σ2

max

ϕ2
ηK

(
L(w(Mj+m)

k )− L(w(Mj+M+m)
k )

)
. (28)

Also,

8σ2
max

ϕ2
ηKL(w(MJ+m)

k ) + 2ηKJL(w(MJ+m)
k )− 8σ2

max

ϕ2
ηKL(w(m)

k )

≤ 8σ2
max

ϕ2
ηKL(w(MJ+m)

k ) + 2ηK

J∑
j=1

L(w(Mj+m)
k )− 8σ2

max

ϕ2
ηKL(w(m)

k )

= 2ηK

J−1∑
j=0

L(w(Mj+M+m)
k )− 8σ2

max

ϕ2
ηK

J−1∑
j=0

(
L(w(Mj+m)

k )− L(w(Mj+M+m)
k )

)
. (29)

Combine the result (27), (28) and (29), we obtain

2ηKJ
(
L(w(MJ+m)

k )− L(z)
)
+

8σ2
max

ϕ2
ηK

(
L(w(MJ+m)

k )− L(w(m)
k )

)
≤ 2

J−1∑
j=0

ηK
(
L(w(Mj+M+m)

k )− L(z)
)
− 8σ2

max

ϕ2
ηK

J−1∑
j=0

(
L(w(Mj+m)

k )− L(w(Mj+M+m)
k )

)
≤
∥∥∥w(m)

k − z
∥∥∥2 − ∥∥∥w(MJ+m)

k − z
∥∥∥2 . (30)

Now we examine the loss change in a cycle. For any j ∈ [0 : M − 1], l ∈ [0 : K − 1],

Lj(w
(j)
l+1) ≤ Lj(w

(j)
l )− η(1− ησ2

maxβ

2
)
∥∥∥∇Lj(w

(j)
l )
∥∥∥2 .

Since η < 1
2MKβσ2

max
, Lj(w

(j)
l ) decreases. Therefore for any p ∈ [0 : M − 1], q ∈ [0 : K − 1],

2ηq(Lp(w
(p)
q+1)− Lp(z)) ≤ 2

q∑
l=1

η
(
Lp(w

(p)
l )− Lp(z)

)
= 2

q−1∑
l=0

η
(
Lp(w

(p)
l )− Lp(z)

)
+ 2

q−1∑
l=0

η
(
Lp(w

(p)
l+1)− Lp(w

(p)
l )
)
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≤ 2

q−1∑
l=0

η
(
Lp(w

(p)
l )− Lp(z)

)
−

t−1∑
l=0

η

1− ηβ

(
Lp(w

(p)
l )− Lp(w

(p)
l+1)

)
≤
∥∥∥w(p)

0 − z
∥∥∥2 − ∥∥∥w(p)

q − z
∥∥∥2 ,

where in the third line, we use 1
1−ηβ < 2, and in the last line, we use Lemma D.8

By summing up, we obtain
m−1∑
p=0

2ηK
(
Lp(w

(p)
K )− Lp(z)

)
+ 2ηk

(
Lm(w

(m)
k )− Lm(z)

)
≤
∥∥∥w(0)

0 − z
∥∥∥2 − ∥∥∥w(m)

k − z
∥∥∥2 .
(31)

At last, L(w(m)
k ) is bounded by L(w(0)

0 ) as follows:

L(w(m)
k )− L(w(0)

0 ) ≤ ∇L(w(0)
0 )⊤

(
w

(m)
k −w

(0)
0

)
+

σ2
maxβ

2

∥∥∥w(m)
k −w

(0)
0

∥∥∥2
≤
(∥∥∥∇L(w(0)

0 )
∥∥∥+ σ2

maxβ

2

∥∥∥w(m)
k −w

(0)
0

∥∥∥)∥∥∥w(m)
k −w

(0)
0

∥∥∥
≤
(
1 +

ηKσ3
maxβ

ϕ(1− ηMKσ2
maxβ)

)
ηKσmax

ϕ(1− ηMKσ2
maxβ)

∥∥∥∇L(w(0)
0 )
∥∥∥2

= D0

∥∥∥∇L(w(0)
0 )
∥∥∥2 , (32)

where in the first inequality we use smoothness, and in the second inequality we use Cauchy-
Schwarz, and in the last line we use the fact

∥∥∥w(m)
k −w

(0)
0

∥∥∥ ≤ ηKσmax

ϕ(1−ηMKσ2
maxβ)

∥∥∥∇L(w(0)
0 )
∥∥∥ held

by Lemma D.7. We set D0 :=
(
1 +

ηKσ3
maxβ

ϕ(1−ηMKσ2
maxβ)

)
ηKσmax

ϕ(1−ηMKσ2
maxβ)

.

Combine the result (30),(31),(32), we obtain

L(w(MJ+m)
k ) ≤L(z) + 1

J

m−1∑
p=0

Lp(z) +
1

J
· q
K
Lm(z)

+
4σ2

max

ϕ2

L(w(0)
0 ) +D0

∥∥∥∇L(w(0)
0 )
∥∥∥2

J
+

∥∥∥w(0)
0 − z

∥∥∥2
2ηKJ

.

Let z := ŵ log J . Using Lj(ŵ log J) ≤ |Sj | ℓ(log J) + (|Ij | − |Sj |) ℓ(θ log J), we can finish the
proof.

D.3.1 PROOF OF LEMMA D.8

This is a well-known property about gradient descent applied to a smooth convex objective function.
We contain the proof for completeness.

Suppose L is convex, and there exists β ≥ 0 so that 1 − ηβ ≥ 0 and weights (w0, . . . ,wt) by
wj+1 := wj − η∇L(wj) satisfy

L(wj+1) ≤ L(wj)− η (1− ηβ) ∥∇L(wj)∥2 .
For any j and z ∈ Rd,

∥wj+1 − z∥2 = ∥wj − z∥2 + 2η⟨∇L(wj), z −wj⟩+ η2 ∥∇L(wj)∥2

≤ ∥wj∥2 + 2η(L(z)− L(wj)) + η2 ∥∇L(wj)∥2

≤ ∥wj∥2 + 2η(L(z)− L(wj)) +
η

1− ηβ
(L(wj)− L(wj+1)) .

where the first line comes from convexity and the second line comes from the condition. By adding
all j ∈ {0, · · · , t− 1}, we get

2

t−1∑
j=0

η (L(wj)− L(z))−
t−1∑
j=0

η

1− ηβ
(L(wj)− L(wj+1)) ≤ ∥w0 − z∥2 − ∥wt − z∥2 .
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D.3.2 PROOF OF LEMMA D.9

Without loss of generality, we assume m = 0, k = 0.

Suppose L is convex, σ2
maxβ-smooth function and there exists β′ ≥ 0 so that η ≤

min{ 1
2MKσ2

maxβ
, 1
2Kβ′ } and weights (w(0)

0 , . . . ,w
(0)
K−1,w

(1)
0 , . . . ,w

(Mt+M)
K−1 ) by w

(p)
q+1 := w

(p)
q −

η∇L(p)(w
(p)
q ), w(p+1)

0 := w
(p)
K satisfy

L(w(Mj+M)
0 ) ≤ L(w(Mj)

0 )− ηK (1− ηKβ′)
∥∥∥∇L(w(Mj)

0 )
∥∥∥2 .

For any j and z ∈ Rd,∥∥∥w(Mj+M)
0 − z

∥∥∥2 =

∥∥∥∥∥w(Mj)
0 − η

M−1∑
p=0

K−1∑
q=0

∇Lp(w
(Mj+p)
q )− z

∥∥∥∥∥
2

=
∥∥∥w(Mj)

0 − z
∥∥∥2 + 2η

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q ), z −w

(Mj)
0 ⟩+ η2

∥∥∥∥∥
M−1∑
p=0

K−1∑
q=0

∇Lp(w
(Mj+p)
q )

∥∥∥∥∥
2

=
∥∥∥w(Mj)

0 − z
∥∥∥2 + 2η

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q ), z −w(Mj+p)

q ⟩

+ 2η

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q ),w(Mj+p)

q −w
(Mj)
0 ⟩+ η2

∥∥∥∥∥
M−1∑
p=0

K−1∑
q=0

∇Lp(w
(Mj+p)
q )

∥∥∥∥∥
2

. (33)

By convexity,

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q ), z −w(Mj+p)

q ⟩ ≤ KL(z)−
M−1∑
p=0

K−1∑
q=0

Lp(w
(Mj+p)
q ).

Apply smoothness on (33), we get∥∥∥w(Mj+M)
0 − z

∥∥∥2 − ∥∥∥w(Mj)
0 − z

∥∥∥2 ≤ 2ηKL(z)− 2η

M−1∑
p=0

K−1∑
q=0

Lp(w
(Mj+p)
q )

+ 2η

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q ),w(Mj+p)

q −w
(Mj)
0 ⟩+ η2

∥∥∥∥∥
M−1∑
p=0

K−1∑
q=0

∇Lp(w
(Mj+p)
q )

∥∥∥∥∥
2

.

By σ2
maxβ-smoothness,

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q ), z −w(Mj+p)

q ⟩

≥ KL(z)−
M−1∑
p=0

K−1∑
q=0

Lp(w
(Mj+p)
q )− σ2

maxβ

2

M−1∑
p=0

K−1∑
q=0

∥∥∥z −w(Mj+p)
q

∥∥∥2 .
Apply smoothness on (33), and let z := w

(Mj+M)
0 then we get

0 ≥
∥∥∥w(Mj)

0 −w
(Mj+M)
0

∥∥∥2 + 2ηKL(w(Mj+M)
0 )

− 2η

M−1∑
p=0

K−1∑
q=0

Lp(w
(Mj+p)
q )− ησ2

maxβ

M−1∑
p=0

K−1∑
q=0

∥∥∥w(Mj+M)
0 −w(Mj+p)

q

∥∥∥2

+ 2η

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q ),w(Mj+p)

q −w
(Mj)
0 ⟩+ η2

∥∥∥∥∥
M−1∑
p=0

K−1∑
q=0

∇Lp(w
(Mj+p)
q )

∥∥∥∥∥
2

.
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Combined with the smoothness result,∥∥∥w(Mj+M)
0 − z

∥∥∥2 − ∥∥∥w(Mj)
0 − z

∥∥∥2 ≤ 2ηKL(z)− 2ηKL(w(Mj+M)
0 )

−
∥∥∥w(Mj)

0 −w
(Mj+M)
0

∥∥∥2 + ησ2
maxβ

M−1∑
p=0

K−1∑
q=0

∥∥∥w(Mj+M)
0 −w(Mj+p)

q

∥∥∥2
≤ 2ηKL(z)− 2ηKL(w(Mj+M)

0 )−
∥∥∥w(Mj)

0 −w
(Mj+M)
0

∥∥∥2
+ 2ηMKσ2

maxβ
∥∥∥w(Mj)

0 −w
(Mj+M)
0

∥∥∥2 + 2ησ2
maxβ

M−1∑
p=0

K−1∑
q=0

∥∥∥w(Mj)
0 −w(Mj+p)

q

∥∥∥2
≤ 2ηKL(z)− 2ηKL(w(Mj+M)

0 ) + 2ησ2
maxβ

M−1∑
p=0

K−1∑
q=0

∥∥∥w(Mj)
0 −w(Mj+p)

q

∥∥∥2 ,
where in the last line we use η ≤ 1

2MKσ2
maxβ

. Finally, by Lemma D.7,∥∥∥w(Mj+M)
0 − z

∥∥∥2 − ∥∥∥w(Mj)
0 − z

∥∥∥2
≤ 2ηK

(
L(z)− L(w(Mj+M)

0 )
)
+

2η3MK3σ4
maxβ

ϕ2(1− ηMKσ2
maxβ)

2

∥∥∥∇L(w(Mj)
0 )

∥∥∥2
≤ 2ηK

(
L(z)− L(w(Mj+M)

0 )
)
− 2ηMKσ4

maxβ

ϕ2(1− ηMKσ2
maxβ)

2

ηK

1− ηKβ′

(
L(w(Mj+m)

k )− L(w(Mj+M+m)
k )

)
.

By adding all j ∈ {0, · · · , J − 1}, we can finish the proof.

D.4 FORGETTING ANALYSIS (PROOF OF THEOREM 3.4)

We prove Theorem 3.4 here, which is restated for readability.

Theorem 3.4. Let ℓ(u) = ln(1 + e−u) be the logistic loss. If the learning rate satisfies

η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then the cycle-averaged forgetting CF(J) for cycle J

satisfies the following upper and lower bounds:

−ηK · L(J)2 ·
∑

p ̸=q Np,q

M
≤ CF(J) ≤ ηK · L(J)2 ·

−
∑

p ̸=q N̄p,q

M
,

where

L(J) :=
1

J

((
|S|+ |I| − |S|

Jθ−1

)(
1 +

1

J

)
+
∥w(0)

0 − ŵ ln J∥2

2ηK
+D1

)
= O

(
ln2 J

J

)
Np,q :=

∑
(i,j)∈Ip×Iq
x⊤

i xj>0

x⊤
i xj > 0, N̄p,q :=

∑
(i,j)∈Ip×Iq
x⊤

i xj<0

x⊤
i xj < 0.

By Theorem 3.3, loss on cycle J is bounded as

L(w(MJ+m)
k ) ≤ L(J)

where

L(J) :=
1

J

(|S|+ |I| − |S|
Jθ−1

)
(1 +

1

J
) +

∥∥∥w(0)
0 − ŵ log J

∥∥∥2
2ηK

+D1

 ,

D1 :=
4σ2

max

ϕ2

(
L(w(0)

0 ) +D0

∥∥∥∇L(w(0)
0 )
∥∥∥2) .
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Therefore, the following holds:

∀s ∈ I, ∀m ∈ [0 : M − 1],∀k ∈ [0 : K − 1] : x⊤
s w

(MJ+m)
k ≥ ℓ−1 (L(t)) .

Now, we analyze the change of each task in one cycle. For upper bound,

Lm(w
(MJ+M)
0 )− Lm(w

(MJ+m)
K )

≤ −η
M−1∑

p=m+1

K−1∑
q=0

∇Lm(w
(MJ+M)
0 )⊤∇Lp(w

(MJ+p)
q ) (34)

≤ −η
M−1∑

p=m+1

K−1∑
q=0

∑
(i,j)∈Im×Ip

x⊤
i xj<0

ℓ′(x⊤
i w

(MJ+M)
0 )ℓ′(x⊤

j w
(MJ+p)
q )x⊤

i xj

≤ −η
M−1∑

p=m+1

K−1∑
q=0

[
ℓ′
(
ℓ−1 (L(J))

)]2 ∑
(i,j)∈Im×Ip

x⊤
i xj<0

x⊤
i xj (35)

≤ −ηKL(J)2
M−1∑

p=m+1

∑
(i,j)∈Im×Ip

x⊤
i xj<0

x⊤
i xj , (36)

where in (34) we use convexity, in (35) we use the condition that ℓ′ is a negative function mono-
tonically increasing to zero. (36) holds by the fact ∀x : ℓ′(x) = ℓlog

′(x) ≥ − exp(−x) and
∀x : ℓ−1(x) = ℓlog

−1(x) ≥ − log(x). Likewise, we can get a lower bound.

Lm(w
(MJ+M)
0 )− Lm(w

(MJ+m)
K )

≥ −η
M−1∑

p=m+1

K−1∑
q=0

∇Lm(w
(MJ+m)
k )⊤∇Lp(w

(MJ+p)
q )

≥ −η
M−1∑

p=m+1

K−1∑
q=0

∑
(i,j)∈Im×Ip

x⊤
i xj>0

ℓ′(x⊤
i w

(MJ+m)
k )ℓ′(x⊤

j w
(MJ+p)
q )x⊤

i xj

≥ −η
M−1∑

p=m+1

K−1∑
q=0

[
ℓ′
(
ℓ−1 (L(J))

)]2 ∑
(i,j)∈Im×Ip

x⊤
i xj>0

x⊤
i xj

≥ −ηKL(J)2
M−1∑

p=m+1

∑
(i,j)∈Im×Ip

x⊤
i xj>0

x⊤
i xj .

Define

Np,q :=
∑

(i,j)∈Ip×Iq
x⊤

i xj>0

x⊤
i xj , N̄p,q :=

∑
(i,j)∈Ip×Iq
x⊤

i xj<0

x⊤
i xj .

Since
M−1∑
m=0

M−1∑
p=m+1

∑
(i,j)∈Im×Ip

x⊤
i xj>0

x⊤
i xj =

∑
p ̸=q

Np,q,

M−1∑
m=0

M−1∑
p=m+1

∑
(i,j)∈Im×Ip

x⊤
i xj<0

x⊤
i xj =

∑
p ̸=q

N̄p,q,
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we can conclude

−ηKL(J)2 ·
∑

p ̸=q Np,q

M
≤ 1

M

M−1∑
m=0

F (MJ+m)(MJ +M) ≤ −ηKL(J)2 ·
∑

p ̸=q N̄p,q

M
.
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E PROOFS FOR SECTION 4: RANDOM TASK ORDERING, JOINTLY SEPARABLE

E.1 ASYMPTOTIC LOSS CONVERGENCE ANALYSIS (PROOF OF THEOREM 4.1)

Let us restate the theorem here for the sake of readability.

Theorem 4.1. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given randomly. Under Assumptions 3.1 and 3.3, if the learning rate satisfies

η < 2ϕ2

βσ4
max

, then the following statements hold with probability 1:

1. Loss converges to zero: limt→∞ L(w(t)
k ) = 0,∀k ∈ [0 : K − 1].

2. Every data point is classified correctly: limt→∞ x⊤
i w

(t)
k = 0,∀k ∈ [0 : K − 1], i ∈ I .

3. Square sum of the change of weight is finite:
∑∞

t=0

∑K−1
k=0 ∥w

(t)
k+1 −w

(t)
k ∥2 <∞.

Since L is a σ2
maxβ-smooth function, we get

E
[
L(w(t)

k+1)
]
− E

[
L(w(t)

k )
]

≤ E
[
∇L(w(t)

k )⊤(w
(t)
k+1 −w

(t)
k )
]
+

σ2
maxβ

2
E
[∥∥∥w(t)

k+1 −w
(t)
k

∥∥∥2]
= E

[
E
[
∇L(w(t)

k )⊤(w
(t)
k+1 −w

(t)
k ) | w(t)

k

]]
+

σ2
maxβ

2
E
[∥∥∥w(t)

k+1 −w
(t)
k

∥∥∥2]

= E
[
E
[
∇L(w(t)

k )⊤(w
(t)
k+1 −w

(t)
k ) | w(t)

k

]]
+

σ2
maxβ

2
η2E

∥∥∥∥∥∑
s∈I

z(t)s ℓ′(x⊤
s w

(t)
k )xs

∥∥∥∥∥
2


= − η

M
E
[∥∥∥∇L(w(t)

k )
∥∥∥2]+ σ2

maxβ

2
η2E

∥∥∥∥∥∑
s∈I

z(t)s ℓ′(x⊤
s w

(t)
k )xs

∥∥∥∥∥
2


≤ − η

M
E
[∥∥∥∇L(w(t)

k )
∥∥∥2]+ σ4

maxβ

2
η2E

[∑
s∈I

[
z(t)s ℓ′(x⊤

s w
(t)
k )
]2]

= − η

M
E
[∥∥∥∇L(w(t)

k )
∥∥∥2]+ σ4

maxβ

2
η2
∑
s∈I

E
[
(z(t)s )2

]
E
[
ℓ′(x⊤

s w
(t)
k )2

]
= − η

M
E
[∥∥∥∇L(w(t)

k )
∥∥∥2]+ σ4

maxβ

2M
η2E

[∑
s∈I

ℓ′(x⊤
s w

(t)
k )2

]
,

where z
(t)
s is a variable which is 1 when xs is in the task on stage t, or 0 otherwise. The second

inequality comes from the fact ∀λs ∈ R :
∥∥∑

s∈I λsxs

∥∥
2
≤ σmax

√∑
s∈I λ

2
s.

By applying Lemma D.2, we obtain

E
[
L(w(t)

k+1)
]
− E

[
L(w(t)

k )
]
≤ − η

M

(
1− η

σ4
maxβ

2ϕ2

)
E
[∥∥∥∇L(w(t)

k )
∥∥∥2]

= − η

M
(1− ηβ′′)E

[∥∥∥∇L(w(t)
k )
∥∥∥2] , (37)

where β′′ :=
σ4
maxβ
2ϕ2 . Given that η ≤ 1

β′′ ,

∞∑
t=0

K−1∑
k=0

E
[∥∥∥∇L(w(t)

k )
∥∥∥2] ≤ L(w(0)

0 )− limt→∞ E
[
L(w(t)

0 )
]

η
M (1− ηβ′′)

≤ ML(w(0)
0 )

η(1− ηβ′′)
<∞.

According to Markov inequality,

P

( ∞∑
t=0

K−1∑
k=0

∥∥∥∇L(w(t)
k )
∥∥∥2 < c

)
≥ 1−

E
[∑∞

t=0

∑K−1
k=0

∥∥∥∇L(w(t)
k )
∥∥∥2]

c
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Since E
[∑∞

t=0

∑K−1
k=0

∥∥∥∇L(w(t)
k )
∥∥∥2]is finite, if we send c→∞, we get

P

( ∞∑
t=0

K−1∑
k=0

∥∥∥∇L(w(t)
k )
∥∥∥2 <∞

)
= 1.

That is,
∑∞

t=0

∑K−1
k=0

∥∥∥∇L(w(t)
k )
∥∥∥2 is bounded with probability 1. The boundedness of infinite

sum of nonzero elements implies ∀k ∈ [0 : K − 1] : limt→0

∥∥∥∇L(w(t)
k )
∥∥∥2 = 0. Combined with

Lemma D.2, we obtain limt→0 ℓ
′(x⊤

i w
(t)
k ) = 0,∀i ∈ I, k ∈ [0 : K − 1]. Since ℓ′(u) → 0 only

when u→∞, x⊤
i w

(t)
k →∞,∀i ∈ I, k ∈ [0 : K − 1]. And limt→∞ L(w(t)

k ) = 0,∀k ∈ [0 : K − 1].
Finally, followed by∥∥∥∇L(w(t)

k )
∥∥∥ ≥ ϕ

√∑
i∈I

[
ℓ′(x⊤

i w
(t)
k )
]2
≥ ϕ

√√√√∑
i∈I(t)

[
ℓ′(x⊤

i w
(t)
k )
]2

≥ ϕ

σmax

∥∥∥∥∥∥
∑

i∈I(t)

ℓ′(x⊤
i w

(t)
k )xi

∥∥∥∥∥∥ =
ϕ

σmax
η−1

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥ .
We obtain that

∑∞
t=0

∑K−1
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 <∞ with probability 1.

E.2 DIRECTIONAL CONVERGENCE ANALYSIS (PROOF OF THEOREM 4.2)

In this section, we prove Theorem 4.2 and further discuss the convergence of ρ(t)
k beyond bounded-

ness.
Theorem 4.2. Let {w(t)

k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given randomly. Under Assumptions 3.1, 3.2, 3.3, and 3.4, if the learning rate

satisfies η < 2ϕ2

βσ4
max

, then with probability 1, w(t)
k will behave as:

w
(t)
k = ln

(
K
M t
)
ŵ + ρ

(t)
k ,

where ∥ρ(t)
k ∥ stays bounded as t grows.

We only need to prove that the two following lemmas still hold in random order.
Lemma E.1. When tasks are given randomly, there exists w̌,m1(t, k) ∈ Rd the following almost
surely holds for all t ∈ N, k ∈ [0 : K − 1]:

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs =
K

M
log(

t

M
)ŵ +

K

M
w̌ +m1(t, k), (38)

m1(t,K) := m1(t+ 1, 0),

such that ∥m1(t, k)∥ = o(t−0.5+ϵ), and ∥m1(t, k + 1)−m1(t, k)∥ = O(t−1) for all k ∈ [0 :
K − 1], ϵ > 0, and w̌ only depends on the order of tasks and constant with respect to t.

Proof. See Appendix E.2.1.

Using Lemma E.1, we set m1(t, k) and w̌ and define ρ
(t)
k and r

(t)
k as we did in cyclic order. That is,

∀k ∈ [0 : K − 1] : w
(t)
k = log(

K

M
t)ŵ + ρ

(t)
k

= log(
K

M
t)ŵ + w̃ +

M

K
m1(t, k) + r

(t)
k ,
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and

ρ
(t)
K = ρ

(t+1)
0 , r

(t)
K = r

(t+1)
0 ,

where w̃ is the solution of

∀i ∈ S : η exp (−x⊤
i w̃) = αi, P̄ (w̃ −w

(0)
0 ) = 0.

which is unique under Assumption 3.2. Then by the definition,

r
(t)
k = w

(t)
k −

M

K

(
K

M
log(

K

M
t)ŵ +m1(t, k)

)
− w̃

= w
(t)
k −

M

K

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs

− logKŵ − w̃ + w̌.

Then we can get the second primary lemma of r(t)k .

Lemma E.2. Under Assumption 3.1, 3.2, 3.3, and 3.4, if learning rate is η < 2ϕ2

βσ4
max

, then

1. ∃t̃, C1, C2 > 0 such that ∀t > t̃,

(r
(t)
k+1 − r

(t)
k )⊤r

(t)
k ≤ C1t

−θ + C2t
−1−0.5µ̃,∀k ∈ [0 : K − 1].

2. Moreover, for all ϵ1 > 0, ∃t̃∗, C3 > 0 such that if
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ1 and S(t) ̸= ∅,

(r
(t)
k+1 − r

(t)
k )⊤r

(t)
k ≤ −C3t

−1,∀t > t̃∗, k ∈ [0 : K − 1].

Proof. Only the learning rate is different from the cyclic case. Therefore see Appendix D.2.2.

The remaining step is the same as the proof of Theorem 3.2. To sum up, we can set a(t)
k as∥∥∥r(t)k+1 − r

(t)
k

∥∥∥2 =
∥∥∥w(t)

k+1 −w
(t)
k − a

(t)
k

∥∥∥2. Then by Lemma E.1, ∃t1 such that ∀t ≥ t1,∀k ∈ [0 :

K − 1] :
∥∥∥a(t)

k

∥∥∥ ≤ t−1.

For all T ≥ t1.
T∑

t=t1

K−1∑
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 =

T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k − a

(t)
k

∥∥∥2
=

T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + T∑
t=t1

K−1∑
k=0

2(w
(t)
k −w

(t)
k+1)

⊤a
(t)
k +

T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2

≤
T∑

t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + 2

√√√√ T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2 + T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2

≤
T∑

t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + 2

√√√√ T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 T∑
t=t1

K−1∑
k=0

t−2 +

T∑
t=t1

K−1∑
k=0

t−2

<∞. (39)

We use Cauchy-Schwarz inequality for the first inequality and the fact that
∑T

t=t1
t−2 < ∞ and∑T

t=t1

∑K−1
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 <∞ by Theorem 4.1.

Combined with Lemma E.2 and the fact that ∀c > 1 :
∑∞

t=1 t
−c <∞, we almost surely get∥∥∥r(t)0

∥∥∥2 − ∥∥∥r(t1)0

∥∥∥2 =

t−1∑
u=t1

K−1∑
k=0

(∥∥∥r(u)k+1

∥∥∥2 − ∥∥∥r(u)k

∥∥∥2)
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=

t−1∑
u=t1

K−1∑
k=0

(
2(r

(u)
k+1 − r

(u)
k )⊤r

(u)
k +

∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2) <∞.

E.2.1 PROOF OF LEMMA E.1

Here we restate the lemma for the sake of readability.
Lemma E.1. When tasks are given randomly, there exists w̌,m1(t, k) ∈ Rd the following almost
surely holds for all t ∈ N, k ∈ [0 : K − 1]:

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs =
K

M
log(

t

M
)ŵ +

K

M
w̌ +m1(t, k), (38)

m1(t,K) := m1(t+ 1, 0),

such that ∥m1(t, k)∥ = o(t−0.5+ϵ), and ∥m1(t, k + 1)−m1(t, k)∥ = O(t−1) for all k ∈ [0 :
K − 1], ϵ > 0, and w̌ only depends on the order of tasks and constant with respect to t.

We define an (i.i.d.) random variable(s) z
(t)
i := 1{xi ∈ I(t)}. Note that E[z(t)i ] = 1

M and
Var(z

(t)
i ) = M−1

M2 due to uniform sampling of the task index in [0 : M − 1]. Then, we can write a
sum on the right-hand side of Equation (38) as follows:

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs = K
∑
s∈S

(
t−1∑
u=1

z
(u)
s

u

)
αsxs

= K
∑
s∈S

(
t−1∑
u=1

E[z(u)s ]

u
+

t−1∑
u=1

z
(u)
s − E[z(u)s ]

u

)
αsxs

= K
∑
s∈S

(
1

M

t−1∑
u=1

1

u
+ .

t−1∑
u=1

z
(u)
s − E[z(u)s ]

u

)
αsxs.

Since
t−1∑
u=1

1

u
= log t+ γ + q(t)

where γ is the Euler-Mascheroni constant and q(t) = O(t−1), we have

K
∑
s∈S

(
1

M

t−1∑
u=1

1

u

)
αsxs =

K

M
(log t+ γ + q(t)) ŵ.

Now we are going to deal with the sum
t−1∑
u=1

z
(u)
s − E[z(u)s ]

u

in two aspects: (1) it converges with probability 1 as t→∞ and (2) the almost-sure vanishing rate of
the “residual” (a sum from u = t to∞) is o(t−0.5+ϵ) for any ϵ > 0. Let us look at its almost-sure
convergence. To this end, we utilize the following useful proposition.
Proposition E.3 (Theorem 5.2.6 of Durrett (2019)). Suppose X1, X2, . . . are zero-mean independent
random variables. If

∑∞
n=1 Var(Xn) < ∞, then

∑∞
n=1 Xn converges almost surely (i.e., with

probability 1).

Observe that Xu :=
z(u)
s −E[z(u)

s ]
u is a zero-mean random variables. Not only they are independent for

all u, but also the sum of their variances is convergent:
∞∑
u=1

Var(Xu) =
M − 1

M2

∞∑
u=1

1

u2
<∞.
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Thus, by Proposition E.3, the sum
∑∞

u=1 Xu converges with probability 1. Next, we want to show
the vanishing rate

∞∑
u=t

Xu = o(t−0.5+ϵ)

with probability 1, where we choose any ϵ > 0. Observe that it is equivalent to show, for any δ > 0,

P

(
t0.5−ϵ ·

∣∣∣∣∣
∞∑
u=t

Xu

∣∣∣∣∣ > δ for infinitely many t

)
= 0.

Here we bring a renowned Borel-Cantelli Lemma.
Proposition E.4 (Borel-Cantelli lemma; Theorem 2.3.1 of Durrett (2019)). Consider a sequence of
events A1, A2, · · · . If

∑∞
n=1 P(An) <∞, then

P(lim sup
n→∞

An) := P(An happens for infinitely many n) = 0.

By Proposition E.4, it suffices to show

∀δ > 0,

∞∑
t=1

P

(
t0.5−ϵ ·

∣∣∣∣∣
∞∑
u=t

Xu

∣∣∣∣∣ > δ

)
<∞.

Let us recall Hoeffding inequality here:
Proposition E.5 (Hoeffding inequality). Consider a collection of independent random variables
X1, · · · , Xn satisfying ai ≤ Xi ≤ bi for each i = 1, · · · , n (ai < bi). Then,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ r

)
≤ 2 exp

(
− 2r2∑n

i=1(bi − ai)2

)
.

Since the sum
∑∞

u=t Xu converges almost surely, it is a well-defined random variable with probability
1, and

P

(∣∣∣∣∣
∞∑
u=t

Xu

∣∣∣∣∣ > δ · t−0.5+ϵ

)
= P

(∣∣∣∣∣
T∑

u=t

Xu

∣∣∣∣∣ > δ · t−0.5+ϵ for all but finitely many T

)

=: P

(
lim inf
T→∞

{∣∣∣∣∣
T∑

u=t

Xu

∣∣∣∣∣ > δ · t−0.5+ϵ

})

≤ lim inf
T→∞

P

(∣∣∣∣∣
T∑

u=t

Xu

∣∣∣∣∣ > δ · t−0.5+ϵ

)
(40)

≤ lim inf
T→∞

2 exp

(
−2δ2t−1+2ϵ∑T

u=t
1
u2

)
(41)

= 2 exp

(
−2δ2t−1+2ϵ∑∞

u=t
1
u2

)
(42)

≤ 2 exp
(
−δ2t2ϵ

)
. (43)

We use the fact “P(lim infn An) ≤ lim infn P(An)” in Equation (40); we apply Hoeffding inequality
(Proposition E.5) and the fact − 1

Mu ≤ Xu ≤ M−1
Mu in Equation (41); and we utilize the fact∑∞

u=t
1
u2 ≤ 2

t in Equation (43). Since exp(−δ2t2ϵ) = o(t−2) for any ϵ > 0 and large enough t, the
sum

∑
t exp(−δ2t2ϵ) converges. Therefore, we have desired almost-sure convergence guarantees.

From now on, let us proceed with the proof. Using the almost-sure convergence results, let

w̌ := (logM + γ)ŵ +M
∑
s∈S

( ∞∑
u=1

Xu

)
αsxs,
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m1(t, k) :=
K

M
q(t)ŵ +K

∑
s∈S

( ∞∑
u=t

Xu

)
αsxs +

k

t

∑
s∈S(t)

αsxs.

Then with probability 1, the statement of the lemma holds: Equation (38) holds, where w̌ is a constant
vector in terms of t, ∥m1(t, k)∥ ≤ o(t−0.5+ϵ) for any ϵ > 0, and

∥m1(t, k + 1)−m1(t, k)∥ = O(t−1), (k = 0, ...,K − 2)

∥m1(t+ 1, 0)−m1(t,K − 1)∥ = O(t−1).

This concludes the proof of the lemma.

E.2.2 CONVERGENCE OF ρ
(t)
k

We also can prove a characterization of the limit of ρ(t)
k , as done in Appendix D.2.3. However, when

tasks are given randomly, we need an additional assumption to guarantee the convergence of ρ(t)
k to

the particular point.

Assumption E.1. Every task has at least one support vector. That is, ∀m ∈ [0 : M − 1] : Sm ̸= ∅.
Proposition E.6. Under the same setting of Theorem 4.2 with additional Assumptions D.1 and E.1,
the “residual” converges to limt→∞ ρ

(t)
k = w̃,∀k ∈ [0 : K − 1]. Here, w̃ is the vector defined in

Proposition D.6.

Proof. First, P̄r
(t)
k = P̄w

(0)
0 − P̄ w̃ = 0 holds as in cyclic case. See Appendix D.2.3.

Second, we get to show Pr
(t)
k → 0. By Equation (39), limT→∞

∑T
t=t1

∑K−1
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 =

C4. That means ∀k ∈ [0 : K − 1] : limT→∞

∥∥∥r(T )
k+1 − r

(T )
k

∥∥∥ = 0. Therefore, for any ϵ0, there exists

t2 > 0 such that
∥∥∥r(t)k+1 − r

(t)
k

∥∥∥ < ϵ0
K for all t ≥ t2, k ∈ [0 : K − 1]. As a result,∥∥∥Pr

(t)
0

∥∥∥+ k

K
ϵ0 ≥

∥∥∥Pr
(t)
k

∥∥∥ ≥ ∥∥∥Pr
(t)
0

∥∥∥− k

K
ϵ0

For t ≥ max{t1, t2, t̃∗}, if
∥∥∥Pr

(t)
0

∥∥∥ ≥ ϵ1 + ϵ0 and S(t) ̸= ∅, then ∀k ∈ [0 : K − 1] :
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ1.
By Lemma E.2 (2),

t∑
u=t−1

K−1∑
v=0

(r
(u)
v+1 − r(u)v )⊤r(u)v ≤ −KC3t

−1 +K
(
C1t

−θ + C2t
−1−0.5µ̃

)
,

Since t−1 decrease to zero slower than t−θ and t−1−0.5µ̃, there exists t3 > max{t1, t2, t̃∗}, C4 > 0
such that −KC3t

−1 + K
(
C1t

−θ + C2t
−1−0.5µ̃

)
≤ −C5t

−1. Also S(t) ̸= ∅ is given by As-
sumption E.1. To sum up, for any ϵ0, ϵ2 > 0, there exists t3 > max{t1, t2, t̃∗} such that if∥∥∥Pr

(t)
0

∥∥∥ ≥ ϵ0 + ϵ1, then

t∑
u=t−1

K−1∑
v=0

(r
(u)
v+1 − r(u)v )⊤r(u)v ≤ −C5t

−1,

Now, define two sets for each k ∈ [0 : K − 1]

Tk := {t > t3 :
∥∥∥Pr

(t)
k

∥∥∥ < ϵ0 + ϵ1}

T̄k := {t > t3 :
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ0 + ϵ1}
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We will finish our proof by showing that T̄k is finite. Here, we use the fact that every Tk is infinite.

The proof is the same as in the cyclic case. Since limT→∞
∑T

t=t1

∑K−1
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 = C4, we
get

t∑
u=t1

K−1∑
k=0

∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2 = C4 − h(t)

where h(t) is a positive function monotonic decreasing to zero.
Now, assume that there exists some k′ that T̄k is infinite. WLOG, we set k′ = 0. Since T0 is infinite,
for any t ∈ T̄0 there exists t′, t′′ ∈ T0 such that t ∈ [t′ +1, t′′ − 1] ⊂ T̄0. We divide it into two cases:
For all t ∈ [t′ + 1, t′′ − 1],

1. if t = t′ + 1, then
∥∥∥Pr

(t)
0

∥∥∥2 ≤ ∥∥∥Pr
(t′)
0

∥∥∥2 + ϵ0 ≤ 2ϵ0 + ϵ1.

2. if t ≥ t′ + 1, then∥∥∥Pr
(t)
0

∥∥∥2 =
∥∥∥Pr

(t′)
0

∥∥∥2 + t−1∑
u=t′

K−1∑
k=0

[∥∥∥r(u)k+1

∥∥∥2 − ∥∥∥r(u)k

∥∥∥2]

=
∥∥∥Pr

(t′)
0

∥∥∥2 + t−1∑
u=t′

K−1∑
k=0

[∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2 + 2(r
(u)
k+1 − r

(u)
k )⊤r

(u)
k

]

=
∥∥∥Pr

(t′)
0

∥∥∥2 + h(t)− h(t′) + 2

t−1∑
u=t′

K−1∑
k=0

[
(r

(u)
k+1 − r

(u)
k )⊤r

(u)
k

]
≤ (ϵ0 + ϵ1)

2 + h(t)− 2C5
1

t′ + 1
− 2C3

t−1∑
u=t′+2

1

u

≤ (ϵ0 + ϵ1)
2 + h(t).

Since h(t) is monotonic decreasing function, for any ϵ2 > 0, there exists t4 such that ∀t ≥ t4 :
h(t) < ϵ2.

Therefore, ∀t ≥ max{t3, t4} :
∥∥∥Pr

(t)
0

∥∥∥2 ≤ (ϵ0 + ϵ1)
2 + ϵ2. Since it holds for any ϵ0, ϵ1, ϵ2, it

contradicts with the assumption that T̄0 is infinite.
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F PROOFS FOR SECTION 5: CYCLIC TASK ORDERING, JOINTLY
NON-SEPARABLE

Review on Bregman Divergence. Before we start the proofs, we briefly overview some basic
properties of Bregman divergence.

Given a convex function f : S → R defined on a convex set S ⊂ Rd, the Bregman divergence
between two points x,y ∈ S with respect to f is defined as

Df (x,y) := f(x)− f(y)− ⟨∇f(y),x− y⟩ .
Note that Df (x,y) ≥ 0 for any x,y ∈ S because of the definition of convexity; when f is strictly
convex, Df (x,y) = 0 if and only if x = y. Also, if f is β-smooth, Df (x,y) ≤ β

2 ∥x− y∥2 holds
by the definition of smoothness. We often use the following useful identity that links three different
points x,y, z ∈ S:

⟨∇f(z),x− y⟩ = [f(x)− f(y)]− [Df (x, z)−Df (y, z)] . (44)

Here is another useful fact: for a convex β-smooth function f , the Bregman divergence is bound
below by the squared distance between gradients.
Proposition F.1. Let f : S → R be a convex, β-smooth function defined on a convex set S ⊂ Rd.
For any x,y ∈ S,

∥∇f(x)−∇f(y)∥2 ≤ 2βDf (x,y).

Proof. Observe that Df (·,y) is also a β-smooth function for any y. Let z = x− 1
β∇xDf (x,y) =

x− 1
β [∇f(x)−∇(y)]. Then by β-smoothness and the non-negativity of Df (·,y), we have

0 ≤ Df (z,y)

≤ Df (x,y) + ⟨∇xDf (x,y), z − x⟩+ β

2
∥z − x∥2

= Df (x,y)−
1

β
⟨∇f(x)−∇(y),∇f(x)−∇(y)⟩+ 1

2β
∥∇f(x)−∇(y)∥2

= Df (x,y)−
1

2β
∥∇f(x)−∇f(y)∥2 .

This proves the proposition.

Useful Inequalities. There are other two crucial inequalities for the proofs in this appendix. One is
a variant of Jensen’s inequality applied to a squared norm.
Proposition F.2. For any positive numbers λ1, · · · , λn > 0, any vectors u1, · · · ,un ∈ Rd, and an
integer m ∈ [0 : n], ∥∥∥∥∥

m∑
i=1

ui

∥∥∥∥∥
2

≤

(
n∑

i=1

λi

)(
n∑

i=1

1

λi
∥ui∥2

)
.

Proof. Let Λm =
∑m

i=1 λi. Then by convexity of the squared norm,∥∥∥∥∥
m∑
i=1

ui

∥∥∥∥∥
2

=

∥∥∥∥∥
m∑
i=1

λi

Λm

(
Λm

λi
ui

)∥∥∥∥∥
2

≤
m∑
i=1

λi

Λm

∥∥∥∥Λm

λi
ui

∥∥∥∥2
= Λm

m∑
i=1

1

λi
∥ui∥2

≤ Λn

n∑
i=1

1

λi
∥ui∥2 .
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Another is about solving a recurrent inequality.
Proposition F.3. Consider 0 < µ ≤ β, V > 0, T > 1, 0 < c = Θ(1), 0 < m = Θ(1), and ∆0 ≥ 0.
Suppose the following inequality holds for any positive α ≤ c

β and t ∈ [0 : T − 1]:

∆t+1 ≤
1

1 + αµ
∆t + αm+1V.

If we take

α = min

{
c

β
,
c+ 1

µT
ln

(
Tm ·max

{
1,

∆0µ
m+1

V

})}
,

we have

∆T = O
(
exp

(
− cµ

(c+ 1)β
T

)
∆0 +

V lnm T

µm+1Tm

)
.

Proof. Since αµ ≤ cµ
β ≤ c, we have 1

1+αµ ≤ 1 − αµ
c+1 . By unrolling the recurrent inequality, we

have

∆T ≤
(
1− αµ

c+ 1

)T

∆0 + αm+1V

T−1∑
t=0

(
1− αµ

c+ 1

)t

≤ exp

(
− αµ

c+ 1
T

)
∆0 +

2αmV

µ
.

With the choice of α, the first exponential term is bounded as

exp

(
− αµ

c+ 1
T

)
∆0 ≤ max

{
exp

(
− cµ

(c+ 1)β
T

)
∆0,

V

µm+1Tm

}
≤ exp

(
− cµ

(c+ 1)β
T

)
∆0 +

V

µm+1Tm
.

Also, the second term is bounded as

2αmV

µ
≤ 2(c+ 1)mV

µm+1Tm
lnm

(
Tm ·max

{
1,

∆0µ
m+1

V

})
.

Combining these two and ignoring the constant/polylogarithmic factors, we have a desired bound.

F.1 LOCAL STRONG CONVEXITY ANALYSIS (PROOF OF LEMMA 5.1)

Recall that we consider cyclic continual learning on M jointly strictly non-separable classification
tasks. Let us restate the lemma here for the sake of readability.
Lemma 5.1. Consider learning M linear classification tasks cyclically. Suppose that Assumptions 5.1
and 5.2 hold. Let B :=

∑M−1
m=0 βm and V⋆ :=

∑M−1
m=0

1
βm
∥∇Lm(w⋆)∥2. Take a step size η ≤

1
2
√
2KB

. Then, there exists a compact setW ⊂ Rd containing w⋆ and every w(jM)
0 (j = 0, 1, 2, . . .),

whose radius is independent of J (the number of cycles) but depends on other parameters like b, G,
B, and V⋆. Also, the offline training loss L is µ-strongly convex onW , where

µ :=
(
mini∈[0:N−1],w∈W ℓ′′

(
yix

⊤
i w
))
· λmin

(
XX⊤) > 0. (6)

To prove the boundedness of end-of-cycle iterates and the local strong convexity, we first establish a
per-cycle recurrent inequality in terms of squared distance to an arbitrary comparator u ∈ Rd and the
risk values. We put u = w⋆ later.
Lemma F.4 (Backward recurrent inequality). Consider learning M linear classification tasks
cyclically. Suppose that Assumption 5.2 holds. Let B =

∑M−1
m=0 βm. If we take any step size

satisfying η ≤ 1
2
√
2KB

, the iterates of sequential GD satisfies∥∥∥w((j+1)M)
0 − u

∥∥∥2
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≤
∥∥∥w(jM)

0 − u
∥∥∥2 − 2ηK

[
L
(
w

(jM)
0

)
− L(u)

]
+ 2
√
2η2K2B

(
M−1∑
m=0

1

βm
∥∇Lm(u)∥2

)
,

for any vector u ∈ Rd and for all j = 0, 1, · · · .

Proof. We defer the proof to Appendix F.1.1. We remark that this lemma holds even without assuming
the non-separability.

Observe that the following holds as a special case:∥∥∥w((j+1)M)
0 −w⋆

∥∥∥2 ≤ ∥∥∥w(jM)
0 −w⋆

∥∥∥2 − 2ηK
[
L
(
w

(jM)
0

)
− L(w⋆)

]
+ 2
√
2η2K2BV⋆,

(45)

where V⋆ =
∑M−1

m=0
1

βm
∥∇Lm(w⋆)∥2.

The next step is to construct a compact ballW centered at w⋆, containing every end-of-cycle iterate
of sequential GD. The crucial step is to apply the non-separability coefficient b > 0 (Assumption 5.1).

Lemma F.5 (Boundedness of the end-of-cycle iterates). Consider learning M linear classification
tasks cyclically. Suppose that Assumptions 5.1 and 5.2 holds. Let B =

∑M−1
m=0 βm and V⋆ =∑M−1

m=0
1

βm
∥∇Lm(w⋆)∥2. If we take any step size satisfying η ≤ 1

2
√
2KB

, the end-of-cycle iterates
of sequential GD are contained in a compact set which is fixed in terms of the number of the cycle:
for all j = 0, 1, · · · ,

w
(jM)
0 ∈ W :=

{
w ∈ Rd : ∥w −w⋆∥2≤

[
1

Gb

(
L(w⋆) +

√
2ηKBV⋆

)
+∥w⋆∥

]2
+ 2
√
2η2K2BV⋆

}

⊆

{
w ∈ Rd : ∥w −w⋆∥2≤

[
1

Gb

(
L(w⋆) +

V⋆

2

)
+∥w⋆∥

]2
+

V⋆

2
√
2B

}
.

Proof. The proof is done by induction based on Equation (45). We defer the proof to Appendix F.1.2.

The last part of the proof is to compute the strong convexity coefficient of L on W . Since L is
twice differentiable, it can be directly done by computing a lower bound of the minimum Hessian
eigenvalue onW: for any w ∈ W ,

∇2L(w) =

N−1∑
i=0

ℓ′′(x⊤
i w)xix

⊤
i ⪰

 min
i∈[0:N−1]

w∈W

ℓ′′(x⊤
i w)

XX⊤ ⪰ µI.

This concludes the proof of Lemma 5.1.

F.1.1 PROOF OF LEMMA F.4

For the sake of readability, we restate the lemma.
Lemma F.4 (Backward recurrent inequality). Consider learning M linear classification tasks
cyclically. Suppose that Assumption 5.2 holds. Let B =

∑M−1
m=0 βm. If we take any step size

satisfying η ≤ 1
2
√
2KB

, the iterates of sequential GD satisfies∥∥∥w((j+1)M)
0 − u

∥∥∥2
≤
∥∥∥w(jM)

0 − u
∥∥∥2 − 2ηK

[
L
(
w

(jM)
0

)
− L(u)

]
+ 2
√
2η2K2B

(
M−1∑
m=0

1

βm
∥∇Lm(u)∥2

)
,

for any vector u ∈ Rd and for all j = 0, 1, · · · .
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We start the proof by bounding the squared distance between two iterates in the same cycle of
continual learning. For k ∈ [0 : K] and m ∈ [0 : M − 1],∥∥∥w(jM)

0 −w
(jM+m)
k

∥∥∥2
= η2

∥∥∥∥∥
m−1∑
l=0

K−1∑
h=0

∇Ll(w
(jM+l)
h ) +

k−1∑
h=0

∇Lm(w
(jM+m)
h )

∥∥∥∥∥
2

≤ η2

(
M−1∑
l=0

K−1∑
h=0

βl

)(
M−1∑
l=0

K−1∑
h=0

1

βl

∥∥∥∇Ll(w
(jM+l)
h )

∥∥∥2)

≤ 2η2KB

(
M−1∑
l=0

K−1∑
h=0

1

βl

[∥∥∥∇Ll(w
(jM+l)
h )−∇Ll(u)

∥∥∥2 + ∥∇Ll(u)∥2
])

≤ 4η2KB

M−1∑
l=0

K−1∑
h=0

DLl
(u,w

(jM+l)
h ) + 2η2K2B

M−1∑
l=0

1

βl
∥∇Ll(u)∥2 . (46)

We use (modified) Jensen’s inequality (e.g., Proposition F.2) in the first two inequalities above; the
last inequality is due to Proposition F.1.

Next, we decompose the (j + 1)-th squared distance into j-th squared distance and more:∥∥∥w((j+1)M)
0 − u

∥∥∥2
=
∥∥∥w(jM)

0 − u
∥∥∥2 − 2η

M−1∑
m=0

K−1∑
k=0

〈
∇Ll(w

(jM+m)
k ),w

(jM)
0 − u

〉
+
∥∥∥w(jM)

0 −w
((j+1)M)
0

∥∥∥2 .
Using Equation (44) and βm-smoothnesses,∥∥∥w((j+1)M)

0 − u
∥∥∥2 − ∥∥∥w(jM)

0 − u
∥∥∥2

= −2η
M−1∑
m=0

K−1∑
k=0

[
Lm(w

(jM)
0 )− Lm(u)−DLm

(w
(jM)
0 ,w

(jM+m)
k ) +DLm

(u,w
(jM+m)
k )

]
+
∥∥∥w(jM)

0 −w
((j+1)M)
0

∥∥∥2
≤ −2ηK

[
L
(
w

(jM)
0

)
− L(u)

]
+ η

M−1∑
m=0

K−1∑
k=0

βm

∥∥∥w(jM)
0 −w

(jM+m)
k

∥∥∥2
− 2η

M−1∑
m=0

K−1∑
k=0

DLm
(u,w

(jM+m)
k ) +

∥∥∥w(jM)
0 −w

((j+1)M)
0

∥∥∥2
≤ −2ηK

[
L
(
w

(jM)
0

)
− L(u)

]
+ 2η2K2B(1 + ηKB)

M−1∑
m=0

1

βm
∥∇Lm(u)∥2

− 2η(1− 2ηKB − 2η2K2B2)

M−1∑
m=0

K−1∑
k=0

DLm
(u,w

(jM+m)
k )

(47)

≤ −2ηK
[
L
(
w

(jM)
0

)
− L(u)

]
+ 2
√
2η2K2B

M−1∑
m=0

1

βm
∥∇Lm(u)∥2 .

In Equation (47), we use the result from Equation (46) for multiple times. The last inequality is due
to our choice of step size: ηKB ≤ 1

2
√
2
<

√
3−1
2 <

√
2− 1 (∵ 1− 2q − 2q2 ≥ 0 if q ∈

[
0,

√
3−1
2

]
).

This is the end of the proof.

F.1.2 PROOF OF LEMMA F.5

For the sake of readability, we restate the lemma.
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Lemma F.5 (Boundedness of the end-of-cycle iterates). Consider learning M linear classification
tasks cyclically. Suppose that Assumptions 5.1 and 5.2 holds. Let B =

∑M−1
m=0 βm and V⋆ =∑M−1

m=0
1

βm
∥∇Lm(w⋆)∥2. If we take any step size satisfying η ≤ 1

2
√
2KB

, the end-of-cycle iterates
of sequential GD are contained in a compact set which is fixed in terms of the number of the cycle:
for all j = 0, 1, · · · ,

w
(jM)
0 ∈ W :=

{
w ∈ Rd : ∥w −w⋆∥2≤

[
1

Gb

(
L(w⋆) +

√
2ηKBV⋆

)
+∥w⋆∥

]2
+ 2
√
2η2K2BV⋆

}

⊆

{
w ∈ Rd : ∥w −w⋆∥2≤

[
1

Gb

(
L(w⋆) +

V⋆

2

)
+∥w⋆∥

]2
+

V⋆

2
√
2B

}
.

Also, recall the backward recurrent inequality which we write here again:∥∥∥w((j+1)M)
0 −w⋆

∥∥∥2 ≤ ∥∥∥w(jM)
0 −w⋆

∥∥∥2 − 2ηK
[
L
(
w

(jM)
0

)
− L(w⋆)

]
+ 2
√
2η2K2BV⋆.

(48)

We choose w
(0)
0 as we want: if w(0)

0 = 0, since
∥∥∥w(0)

0 −w⋆

∥∥∥2 = ∥w⋆∥2, it is clear that w(0)
0 ∈ W .

Now assume w
(jM)
0 ∈ W and proceed with induction on j: we aim to show w

((j+1)M)
0 ∈ W .

The proof is divided into two parts:

1. If the current total risk is too high, then we can show that the squared distance to w⋆ will decrease.

2. The other case means that the current iterate is close enough to w⋆ (due to the strict non-
separability of the full dataset). Thus, the squared distance to w⋆ at the next cycle will not grow
that much.

Part 1: High-Risk Case. Suppose L
(
w

(jM)
0

)
− L(w⋆) ≥

√
2ηKBV⋆. Then Equation (48)

implies
∥∥∥w((j+1)M)

0 −w⋆

∥∥∥2 ≤ ∥∥∥w(jM)
0 −w⋆

∥∥∥2. Thus, w((j+1)M)
0 ∈ W .

Part 2: Low-Risk Case. We first show that L
(
w

(jM)
0

)
− L(w⋆) ≤

√
2ηKBV⋆ implies an upper

bound on the current squared distance to w⋆. Because of Assumptions 5.1 and 5.2, for any w ∈ Rd,

L(w) =

N−1∑
i=0

ℓ
(
x⊤
i w
)

≥
N−1∑
i=0

G
[
x⊤
i w
]−

= G ∥w∥ ·
N−1∑
i=0

[
x⊤
i

w

∥w∥

]−
≥ G ∥w∥ b,

by the definition of the non-separability b > 0. Thus, we have∥∥∥w(jM)
0 −w⋆

∥∥∥ ≤ ∥∥∥w(jM)
0

∥∥∥+ ∥w⋆∥

≤ 1

Gb
L
(
w

(jM)
0

)
+ ∥w⋆∥

≤ 1

Gb

[
L(u) +

√
2ηKBV⋆

]
+ ∥w⋆∥ .
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Thus, w(jM)
0 lies in a strict subset ofW . Also, Equation (48) implies∥∥∥w((j+1)M)

0 −w⋆

∥∥∥2 ≤ ∥∥∥w(jM)
0 −w⋆

∥∥∥2 + 2
√
2η2K2BV⋆

≤
[

1

Gb

[
L(u) +

√
2ηKBV⋆

]
+ ∥w⋆∥

]2
+ 2
√
2η2K2BV⋆.

Thus, by the definition ofW , w((j+1)M)
0 ∈ W . This concludes the proof of the lemma.

F.2 NON-ASYMPTOTIC LOSS CONVERGENCE ANALYSIS (PROOF OF THEOREM 5.2)

Recall that we write B =
∑M−1

m=0 βm and V⋆ =
∑M−1

m=0
1

βm
∥∇Lm(w⋆)∥2. Also, in the previous

sub-section, we discovered a local strong convexity (with coefficient µ > 0) of the total risk function
satisfied on a compact ballW containing w⋆ and every end-of-cycle iterates of the sequential GD.

Let us restate the theorem for the sake of readability.

Theorem 5.2. Suppose we learn M tasks cyclically for J > 1 cycles. We adopt the notation from
Lemma 5.1. If we choose a step size

η = min

{
1

2
√
2KB

,
1 + 2

√
2

2
√
2KJ

ln

(
J2 ·max

{
1,
∥w(0)

0 −w⋆∥2µ3

B2V⋆

})}
,

then the final iterate of sequential GD satisfies∥∥∥w(MJ)
0 −w⋆

∥∥∥2 ≤ Õ(exp(− µJ

(1 + 2
√
2)B

)
·
∥∥∥w(0)

0 −w⋆

∥∥∥2 + B2V⋆ln
2 J

µ3J2

)
, (7)

where we hide a poly-logarithmic factor of J in Equation (7).

The theorem states a fast Õ(J−2) rate of convergence. One could try to prove it with the backward
recurrent inequality (Equation (45)), but it is difficult due to the η2 dependency of the so-called “noise”
term. We only succeeded in proving a slower Õ(J−1) rate with the backward recurrent inequality,
whose proof is pretty much similar to that in this sub-section. To take a step further towards a faster
rate, we should use a different way of writing the recurrent inequality, with a higher exponent for η in
the “noise” term. Here is how it goes:

Lemma F.6 (Forward recurrent inequality). Consider learning M linear classification tasks cyclically.
Suppose that Assumption 5.2 holds. If we take any step size satisfying η ≤ 1√

2KB
, the iterates of

sequential GD satisfies∥∥∥w((j+1)M)
0 − u

∥∥∥2
≤
∥∥∥w(jM)

0 − u
∥∥∥2 − 2ηK

[
L
(
w

((j+1)M)
0

)
− L(u)

]
+ 2η3K3B2

(
M−1∑
m=0

1

βm
∥∇Lm(u)∥2

)
,

for any vector u ∈ Rd and for all j = 0, 1, · · · .

Proof. We defer the proof to Appendix F.2.1. We remark that this lemma holds even without assuming
the non-separability.

In particular, we have∥∥∥w((j+1)M)
0 −w⋆

∥∥∥2 ≤ ∥∥∥w(jM)
0 −w⋆

∥∥∥2−2ηK [L(w((j+1)M)
0

)
− L(w⋆)

]
+2η3K3B2V⋆. (49)

Applying µ-strong convexity, i.e.,

L
(
w

((j+1)M)
0

)
− L(w⋆) ≥

µ

2

∥∥∥w((j+1)M)
0 −w⋆

∥∥∥2 ,
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we eventually have a recurrent inequality purely on the squared distance to w⋆:∥∥∥w((j+1)M)
0 −w⋆

∥∥∥2 ≤ 1

1 + ηKµ

∥∥∥w(jM)
0 −w⋆

∥∥∥2 + 2η3K3B2V⋆. (50)

We now conclude the proof by applying Proposition F.3: plugging α ← ηK, β ← B, T ← J ,
c← 1

2
√
2

, V ← 2B2V⋆, m = 2, and ∆j ←
∥∥∥w(jM)

0

∥∥∥ to the proposition, we have a desired result.

F.2.1 PROOF OF LEMMA F.6

For the sake of readability, we restate the lemma, whose proof is very similar to that of Lemma F.4.
Lemma F.6 (Forward recurrent inequality). Consider learning M linear classification tasks cyclically.
Suppose that Assumption 5.2 holds. If we take any step size satisfying η ≤ 1√

2KB
, the iterates of

sequential GD satisfies∥∥∥w((j+1)M)
0 − u

∥∥∥2
≤
∥∥∥w(jM)

0 − u
∥∥∥2 − 2ηK

[
L
(
w

((j+1)M)
0

)
− L(u)

]
+ 2η3K3B2

(
M−1∑
m=0

1

βm
∥∇Lm(u)∥2

)
,

for any vector u ∈ Rd and for all j = 0, 1, · · · .

We start the proof by bounding the squared distance between two iterates in the same cycle of
continual learning. For k ∈ [0 : K − 1] and m ∈ [0 : M − 1],∥∥∥w((j+1)M)

0 −w
(jM+m)
k

∥∥∥2
= η2

∥∥∥∥∥
M−1∑

l=m+1

K−1∑
h=0

∇Ll(w
(jM+l)
h ) +

K−1∑
h=k

∇Lm(w
(jM+m)
h )

∥∥∥∥∥
2

≤ η2

(
M−1∑
l=0

K−1∑
h=0

βl

)(
M−1∑
l=0

K−1∑
h=0

1

βl

∥∥∥∇Ll(w
(jM+l)
h )

∥∥∥2)

≤ 2η2KB

(
M−1∑
l=0

K−1∑
h=0

1

βl

[∥∥∥∇Ll(w
(jM+l)
h )−∇Ll(u)

∥∥∥2 + ∥∇Ll(u)∥2
])

≤ 4η2KB

M−1∑
l=0

K−1∑
h=0

DLl
(u,w

(jM+l)
h ) + 2η2K2B

M−1∑
l=0

1

βl
∥∇Ll(u)∥2 (51)

We use (modified) Jensen’s inequality (e.g., Proposition F.2) in the first two inequalities above; the
last inequality is due to Proposition F.1.

Next, we decompose the j-th squared distance into (j + 1)-th squared distance and more:∥∥∥w(jM)
0 − u

∥∥∥2 ≥ ∥∥∥w((j+1)M)
0 − u

∥∥∥2 + 2η

M−1∑
m=0

K−1∑
k=0

〈
∇Ll(w

(jM+m)
k ),w

((j+1)M)
0 − u

〉
.

Using Equation (44) and βm-smoothnesses,∥∥∥w((j+1)M)
0 − u

∥∥∥2 − ∥∥∥w(jM)
0 − u

∥∥∥2
≤ −2η

M−1∑
m=0

K−1∑
k=0

[
Lm(w

((j+1)M)
0 )− Lm(u)−DLm(w

((j+1)M)
0 ,w

(jM+m)
k ) +DLm(u,w

(jM+m)
k )

]
≤ −2ηK

[
L
(
w

((j+1)M)
0

)
− L(u)

]
+ η

M−1∑
m=0

K−1∑
k=0

βm

∥∥∥w((j+1)M)
0 −w

(jM+m)
k

∥∥∥2
− 2η

M−1∑
m=0

K−1∑
k=0

DLm
(u,w

(jM+m)
k )
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≤ −2ηK
[
L
(
w

((j+1)M)
0

)
− L(u)

]
+ 2η3K3B2

M−1∑
m=0

1

βm
∥∇Lm(u)∥2

− 2η(1− 2η2K2B2)

M−1∑
m=0

K−1∑
k=0

DLm
(u,w

(jM+m)
k )

(52)

≤ −2ηK
[
L
(
w

((j+1)M)
0

)
− L(u)

]
+ 2η3K3B2

M−1∑
m=0

1

βm
∥∇Lm(u)∥2 .

In Equation (52), we use the result from Equation (51) for multiple times. The last inequality is due
to our choice of step size: ηKB ≤ 1√

2
. This is the end of the proof.
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