
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONVERGENCE AND IMPLICIT BIAS OF GRADIENT
DESCENT ON CONTINUAL LINEAR CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We study continual learning on multiple linear classification tasks by sequentially
running gradient descent (GD) for a fixed budget of iterations per task. When
all tasks are jointly linearly separable and are presented in a cyclic/random order,
we show the directional convergence of the trained linear classifier to the joint
(offline) max-margin solution. This is surprising because GD training on a single
task is implicitly biased towards the individual max-margin solution for the task,
and the direction of the joint max-margin solution can be largely different from
these individual solutions. Additionally, when tasks are given in a cyclic order,
we present a non-asymptotic analysis on cycle-averaged forgetting, revealing that
(1) alignment between tasks is indeed closely tied to catastrophic forgetting and
backward knowledge transfer and (2) the amount of forgetting vanishes to zero as
the cycle repeats. Lastly, we analyze the case where the tasks are no longer jointly
separable and show that the model trained in a cyclic order converges to the unique
minimum of the joint loss function.

1 INTRODUCTION

Continual learning (CL) aims to sequentially learn a model from a stream of tasks or datasets, to
extend its knowledge continuously. The main challenge in CL is catastrophic forgetting, meaning
that their performance on previous tasks degrades after learning new ones (McCloskey & Cohen,
1989; Goodfellow et al., 2013). It has led to a growing body of works focusing on heuristic methods
of mitigating forgetting, including regularization-based methods (Kirkpatrick et al., 2017; Aljundi
et al., 2018; Li & Hoiem, 2017), replay-based methods (Chaudhry et al., 2019; Lopez-Paz & Ranzato,
2017; Shin et al., 2017), and optimization-based methods (Farajtabar et al., 2020; Javed & White,
2019; Mirzadeh et al., 2020).

As CL is receiving significant attention in practice, it is also important to theoretically understand the
mechanism of continual learning. A vast amount of the theoretical works on CL so far has focused on
regression problems (Bennani et al., 2020; Doan et al., 2021; Asanuma et al., 2021; Lee et al., 2021;
Evron et al., 2022; Goldfarb & Hand, 2023; Li et al., 2023), whereas most of the practical application
of deep learning is based on classification. Thus, theoretical analysis of continual classification
methods and their learning dynamics is of significant interest and importance. Indeed, a few results
study continual classification (Raghavan & Balaprakash, 2021; Kim et al., 2022; 2023; Shi & Wang,
2023), albeit focusing on theoretical perspectives that are different from ours; we review these related
works in Appendix A.

This paper is mainly motivated by a recent result studying continual linear classification on a collection
of jointly separable datasets (Evron et al., 2023). The authors consider continual training of a linear
classifier under weak regularization, where the linear classifier is trained until convergence at every
given task. By taking the limit of the regularization coefficient λ → 0, this training procedure is
shown to be equivalent (in terms of the parameter direction as λ→ 0) to a projection-based scheme
called Sequential Max-Margin (SMM): every time we encounter a new binary classification task, we
project the current model parameter vector to a convex set defined by the margin conditions of the
given dataset. Then, under this framework of projection onto convex sets, the authors show linear
convergence of the iterates of SMM to an offline solution (i.e., a classifier that solves all tasks at once)
under cyclic/random ordering of the tasks. More details can be found in Appendix B.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In light of the insightful analyses by Evron et al. (2023), we now highlight some aspects of their
work that motivate the setup of our interest. First of all, Evron et al. (2023) consider minimizing the
regularized training loss of each task until convergence; however, it is far more common to spend a
finite budget of iterations per task in practice (i.e., online one-pass setting, or fixed-epoch setting).
Training until convergence, combined with sending the regularization coefficient λ→ 0, also raises
an issue on the claimed equivalence of weakly regularized training and the projection-based scheme.
As λ→ 0, the solution of the training objective diverges to infinity, which does not match the fact
that the iterate of the SMM travels only for a finite distance at every stage.1 Another noteworthy
characteristic of the considered SMM scheme is that it does not always converge to the offline
max-margin solution, i.e., the hard-margin support vector machine solution that solves all tasks
jointly, which is known to be beneficial in terms of generalization (Vapnik, 2013). Lastly, in their
concluding section, Evron et al. (2023) also suggest studying unregularized continual training with
early stopping and highlight that the behavior may be different. These observations triggered our
investigation into a gradient-based algorithm for continual linear classification and its convergence
and algorithmic bias.

Task 0 datapoints
Task 1 datapoints
Task 0 Only
Task 1 Only
Joint Training
Continual (Cyclic)

Figure 1: Trajectory of sequential GD on
a two-task toy example (Appendix C.1) in
which the offline max-margin direction is not
on the subspace spanned by individual task
max-margin solutions. Sequential GD iterates
initially oscillate but quickly start to evolve
along the same direction as the offline max-
margin direction.

In this work, we theoretically study continual linear
classification via sequentially running gradient de-
scent (GD) on the unregularized logistic loss for a
fixed budget of iterations at every stage.2 When all
tasks are jointly separable and revealed in cyclic order
(as studied by Evron et al. (2023)), we show that se-
quential GD converges in the direction of the offline
max-margin solution, unlike SMM. We highlight that
this is an interesting result for at least two reasons:

• It reveals a clear difference between sequential GD
and the projection-based SMM algorithm in terms
of algorithmic bias.

• It is well-known that GD applied to an individ-
ual task has its implicit bias towards the task’s
own max-margin direction (Soudry et al., 2018).
However, the direction of the offline max-margin
solution can largely differ from the max-margin
directions of individual tasks, not even lying on
the subspace spanned by the individual directions
(see Figure 1 and Appendix C.1).

Therefore, the convergence of sequential GD to the
offline max-margin solution highlights that repeated
continual training eventually drives the model to learn all tasks well, overcoming the biases towards
individual tasks. In addition to the implicit bias result, we also characterize the convergence rate in
terms of total loss and the vanishing rate of the per-cycle forgetting. Our analysis reveals a surprising
but intuitive link between positive/negative task alignments and forgetting. Furthermore, we broaden
the scope of our analysis to the random task ordering case and a jointly non-separable case. We
summarize our main contributions below.

1.1 SUMMARY OF CONTRIBUTIONS

We study continual linear classification using sequential GD, where the model is updated by K
iterations of GD on the unregularized training loss of each given task.

• In Section 3, we study the scenario where the tasks are jointly separable and are given in
a cyclic order. We prove that the joint (full) training loss asymptotically converges to zero
(Theorem 3.1) and the sequential GD iterates in fact align with the joint (offline) max-margin
solution (Theorem 3.2). We also provide non-asymptotic analysis of cycle-averaged forgetting and

1Recall that Evron et al. (2023) show their equivalence in terms of parameter direction.
2We focus on this setup instead of early stopping because it is closer to common practice in deep learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

loss convergence and show that average forgetting per cycle J diminishes at the rate of O(ln
4 J
J2)

(Theorem 3.4), which is faster than the convergence rate of the loss O(ln
2 J
J) (Theorem 3.3). Our

forgetting analysis is closely aligned with the common intuition on how task alignment/conflict
impacts forgetting.

• Section 4 considers the same jointly separable setup, but the tasks given in a random order. In
Theorems 4.1 and 4.2, we show that asymptotic loss convergence and directional convergence to
the joint max-margin solution still happen, albeit almost surely.

• Lastly, in Section 5 we consider the case where the tasks are no longer jointly separable, which
admits a unique global minimum of the joint training loss. We derive a fast non-asymptotic
convergence rate ofO(ln

2 J
J2) towards the global minimum when the tasks are presented cyclically.

2 PROBLEM SETUP

In this section, we outline the problem setup considered throughout the paper.

2.1 SETUP: CONTINUAL LINEAR BINARY CLASSIFICATION

We consider binary classification, where each data point x ∈ Rd has its own label y ∈ {−1,+1}. We
assume that our learning algorithm encounters M different binary classification tasks in a sequential
manner, and our goal is to find an offline solution that jointly solves all the tasks. The total dataset
is denoted as D = {(xi, yi)}i∈I , where I := {0, . . . , N − 1} is the set of indices of data. Since
the dataset comprises all data pairs from M tasks, the index set I is partitioned into I =

⊎M−1
m=0 Im,

where Im is a set of indices for data points in task m ∈ {0, . . . ,M − 1}.
We consider a linear model f(x;w) = x⊤w, which is parameterized by a weight vector w ∈ Rd.
With a loss function ℓ(u) that decreases to zero as u→∞, the offline (joint) training loss is defined
as

L(w) :=
∑
i∈I

ℓ (yif(xi;w)) =
∑
i∈I

ℓ(yix
⊤
i w).

Likewise, loss of task m ∈ {0, . . . ,M − 1} is defined as

Lm(w) :=
∑
i∈Im

ℓ(yix
⊤
i w).

Notation. We denote the joint data matrix as X ∈ Rd×N , whose columns are the d-dimensional data
points xi’s. For a square matrix A, we denote the maximum/minimum eigenvalue of it by λmax(A)

and λmin(A), respectively. In particular, we write σmax =
√

λmax(XX⊤) as the maximum singular
value of X . The ℓ2 norm of a vector v is denoted as ∥v∥. Let RN

≥0 be the set of N dimensional
vectors whose elements are greater or equal to zero. Also, for a couple of integers K1 ≤ K2, we
write [K1 : K2] to denote a set of consecutive integers {K1,K1 + 1, . . . ,K2}.

2.2 ALGORITHM: SEQUENTIAL GRADIENT DESCENT

In continual learning, we can only see data in the current stage. For each stage t = 0, 1, . . . , the
index set I(t) of data that will be used comes from one of {Im}m∈[0:M−1]. Note that the learning
algorithm does not have the freedom to choose the next task; we assume that the task is presented to
the algorithm by the “environment.” During stage t, we minimize the corresponding training loss

L(t)(w) :=
∑
i∈I(t)

ℓ(yix
⊤
i w) (1)

using gradient descent (GD) with a fixed learning rate η as follows:

w
(t)
k+1 = w

(t)
k − η∇L(t)(w

(t)
k) for k ∈ [0 : K − 1], w

(t+1)
0 = w

(t)
K . (2)

That is, for the task L(t) given at stage t, we run K steps of GD updates and move on to the next task
by setting the initial iterate of the next stage w

(t+1)
0 as the last iterate of the current stage w

(t)
K .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

There are two common schemes for deciding the order of the tasks to be learned.

Cyclic task ordering. The tasks are presented in a predefined cyclic order. That is, L(t) = Lt mod M .

Random task ordering. Every task is independently sampled uniformly at random. That is, for all
t ∈ N ∪ {0} and m ∈ [0 : M − 1], P(I(t) = Im) = 1/M holds.

Both ordering schemes have been studied theoretically and empirically (Evron et al., 2022; 2023;
Cossu et al., 2022; Houyon et al., 2023). Indeed, such schemes can naturally occur in real-world
scenarios. For instance, cyclic task ordering covers search engines influenced by periodic events3 and
seasonal financial data (Gultekin & Gultekin, 1983; Yang et al., 2022). Random task ordering bears a
resemblance to autonomous driving in randomly recurring environments (Verwimp et al., 2023).

3 CYCLIC LEARNING OF JOINTLY SEPARABLE TASKS

In this section, we focus on the jointly linearly separable datasets (Evron et al., 2023). We dive deep
into the case of cyclic task ordering and prove that sequential GD on separable linear classification
tasks converges in direction to the offline max-margin solution of the total dataset. Additionally,
through a non-asymptotic analysis on the loss convergence, we also characterize the average forgetting
within cycles, and show that the forgetting vanishes to zero at a faster rate than the loss convergence.

3.1 DEFINITIONS AND ASSUMPTIONS

To this end, we first state some necessary assumptions and additional notation. The first assumption
is that the joint dataset is linearly separable:
Assumption 3.1 (Joint Separability). There exists w ∈ Rd such that yix⊤

i w > 0 for ∀i ∈ I .

Under Assumption 3.1, we can state an important definition central to our analysis. We define the
joint (offline) ℓ2 max-margin solution (where we usually omit “ℓ2” for convenience)

ŵ := arg min
w∈Rd

∥w∥2 subject to yix
⊤
i w ≥ 1, ∀i ∈ I. (3)

It can be shown that the optimization problem in Equation (3) has a unique solution ŵ (Mohri
et al., 2018). Max-margin solutions are of key interest in the study of linear classification, because
it is well-known that they have good generalization guarantees (Vapnik, 2013) and GD applied
to a single separable binary classification problem has an implicit bias towards its ℓ2 max-margin
solution (Soudry et al., 2018). To be more specific, it is shown in Soudry et al. (2018) that the norm of
GD iterates diverges to infinity, but their direction converges to ŵ

∥ŵ∥ . In our CL setting, we consider
running multiple steps of GD on one task at a time and still aim to find the joint max-margin solution
that solves all tasks.

Given the definition of joint max-margin solution, we now define several key quantities. The
maximum margin of (normalized) ŵ is defined as

ϕ := min
i∈I

yix
⊤
i ŵ

∥ŵ∥
. (4)

In fact, it can be shown that ϕ = ∥ŵ∥. A support vector is a data point xi that attains this minimum
ϕ; we define the index set of support vectors as S := {i ∈ I : yix

⊤
i

ŵ
∥ŵ∥ = ϕ}, and define the index

sets of support vectors of each task Sm := S ∩ Im for ∀m ∈ [0 : M − 1]. Let the support vector
matrix be XS ∈ Rd×|S|, a submatrix of the data matrix X that only contains columns corresponding
to support vectors. Lastly, we define the second margin θ := mini∈I\S yix

⊤
i ŵ > 1, which will

appear in our non-asymptotic analysis.

To show directional convergence to the joint max-margin solution (Theorem 3.2), we pose an
additional assumption on the support vectors.
Assumption 3.2 (Non-degeneracy Condition). For all i ∈ S, there exists a unique αi > 0 such that
ŵ =

∑
i∈S αi · yixi.

3trends.google.com/trends/

4

https://trends.google.com/trends/explore?date=now 7-d&q=dinner

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Assumption 3.2 is adopted from Soudry et al. (2018). According to their analysis, this holds for
almost all datasets sampled from a continuous distribution. Intuitively, for a general dataset, no more
than d support vectors can be on the same hyperplane.

In the upcoming sections, we present four theorems on the convergence, implicit bias, and forgetting
of sequential GD. The theorems rely on different assumptions on the loss ℓ(u); we collect them here.
It is noteworthy that the logistic loss ℓ(u) = ln(1 + e−u) satisfies all the assumptions listed below.
Assumption 3.3. The loss ℓ(u) is a positive, differentiable, β-smooth function, monotonically
decreasing to zero, and lim supu→−∞ ℓ′(u) < 0.
Assumption 3.4 (Tight Exponential Tail). The negative loss derivative −ℓ′(u) has a tight exponential
tail. i.e., there exist positive constants µ+, µ−, and ū such that ∀u > ū:

(1− exp(−µ−u))e
−u ≤ −ℓ′(u) ≤ (1 + exp(−µ+u))e

−u

Assumption 3.5 (Convexity). The loss ℓ(u) is a convex function.

3.2 ASYMPTOTIC RESULTS: LOSS CONVERGENCE & IMPLICIT BIAS TO JOINT MAX-MARGIN

Now, we analyze the asymptotic convergence of offline training loss and characterize the directional
convergence of sequential GD (2) on jointly separable cyclic tasks. We start by understanding the
asymptotic behavior of the joint task loss L(w).

Theorem 3.1. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given cyclically. Under Assumptions 3.1 and 3.3, if the learning rate satisfies

η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then

1. Loss converges to zero: limt→∞ L(w(t)
k) = 0,∀k ∈ [0 : K − 1].

2. Every data point is eventually classified correctly: limt→∞ x⊤
i w

(t)
k =∞,∀k ∈ [0 : K−1], i ∈ I .

3. Square sum of the change of weight is finite:
∑∞

t=0

∑K−1
k=0 ∥w

(t)
k+1 −w

(t)
k ∥2 <∞.

Theorem 3.1 shows that cyclic continual learning on the jointly separable data will eventually learn all
tasks, or equivalently, find an offline solution without any additional techniques such as regularization.
This result matches the recent empirical findings that DNN can mitigate catastrophic forgetting when
tasks are given repetitively (Lesort et al., 2023). The last part on the square sum of the change is used
to prove the upcoming Theorem 3.2. We note that Theorem 3.1 does not require convexity of ℓ. The
proof can be found in Appendix D.1.

Theorem 3.1 shows that the joint loss converges to zero. However, due to the joint separability
(Assumption 3.1), there are multiple directions in which w

(t)
k could evolve to make the offline training

loss decay to zero. That is, the loss convergence only guarantees finding an offline solution, but does
not characterize which. Under additional assumptions of non-degeneracy and tight exponential tails,
we characterize which direction w

(t)
k diverges to, and show that the model parameter in fact aligns

with the joint ℓ2 max-margin solution ŵ (3).

Theorem 3.2. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given cyclically. Under Assumptions 3.1, 3.2, 3.3, and 3.4, if the learning rate

satisfies η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then w

(t)
k will behave as:

w
(t)
k = ln

(
K
M t
)
ŵ + ρ

(t)
k ,

where ∥ρ(t)
k ∥ stays bounded as t grows.

The proof is in Appendix D.2. The key implication of Theorem 3.2 is that the weight vector converges
in the direction of the joint max-margin solution, while diverging in magnitude in a rate O(ln t):

lim
t→∞

w
(t)
k

∥w(t)
k ∥

=
ŵ

∥ŵ∥
, ∀k ∈ [0 : K − 1]. (5)

It implies that standard gradient descent without any regularization not only learns every task but
also converges to the joint max-margin direction. This result suggests the potential benefits of naive
training methods without common CL techniques such as regularization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

On Assumption 3.2. As noted earlier, the non-degeneracy assumption (Assumption 3.2) is bor-
rowed from Soudry et al. (2018); the purpose of adopting this assumption is to facilitate a more
complete analysis of the residual ρ(t)

k . In fact, in Soudry et al. (2018), the conclusion on the direc-
tional convergence (similar to (5), but for single-task GD training) continues to hold even without
Assumption 3.2. In light of this, we also believe that directional convergence of sequential GD (5)
will hold even without Assumption 3.2, but we did not pursue removing the assumption because it
does not offer substantial additional insights.

Joint Max-margin Direction
Joint Training trajectory
Continual Learning trajectory
Task 0 Data (y = + 1)
Task 0 Data (y = 1)
Task 1 Data (y = + 1)
Task 1 Data (y = 1)
Task 2 Data (y = + 1)
Task 2 Data (y = 1)

(a) 2D visualization of data points, the training trajec-
tory, and the decision boundaries (dashed).

100 101 102

Stage

10 2

10 1

Si
ne

 A
ng

le

Sine Angle(= (1 cossim2))
between Linear Model vs. Joint Max-Margin

Continually learned model
Jointly trained model

(b) Sine angles, implying the implicit bias toward
joint max-margin direction.

Figure 2: Comparison between continually learned and jointly trained linear classifier. We
generate three jointly separable binary classification tasks (with 2D inputs) and run (1) sequential
GD in a cyclic task ordering and (2) full-batch GD. It is well-known that the offline full-batch GD
converges to the offline ℓ2 max-margin solution (Soudry et al., 2018). We verify a similar implicit
bias of sequential GD iterates (which we proved in Theorem 3.2) by observing the decrease in angle
between the model weight and the joint max-margin direction (set as (1, 1)). We also observe similar
phenomena for more general experimental setup (e.g., random task ordering): see Appendix C.2.

Beyond repetition of fixed datasets. Although we analyze continual learning in a setting where
each task has a fixed dataset, the insight of our analysis extends to general setups. To show this, we
conduct experiments in a setting where each task has its own (separable) data distribution and a dataset
is freshly sampled at every new stage. We observe the same directional convergence behavior of
sequential GD toward the true joint max-margin direction. The detailed results are in Appendix C.2.4.

Beyond linear model. We also provide experiments with shallow ReLU networks, verifying analo-
gous insights on implicit bias and loss convergence of continually learned models: see Appendix C.4.

3.3 NON-ASYMPTOTIC RESULTS: LOSS CONVERGENCE AND FORGETTING BOUNDS

In Section 3.2, we presented asymptotic results characterizing the convergence of total training loss to
zero and the directional convergence of sequential GD iterates to the max-margin solutions. We now
supplement these results with an additional non-asymptotic convergence analysis on total training
loss, which we can use to obtain a non-asymptotic analysis of cycle-averaged forgetting as well.

As aforementioned, the main challenge in CL is mitigating catastrophic forgetting. Analyses of
continual learning methods aim to show that methods decrease forgetting, theoretically or empirically.
In this paper, we are interested in how strong forgetting is in our continual linear classification setup.

We start by stating a common definition of forgetting, which quantifies the amount of loss increase at
the end of stage t compared to the end of K steps of GD on L(s) executed in stage s ≤ t.
Definition 3.6 (Forgetting). The forgetting at stage t of the task learned in stage s (≤ t) is the change
of the task loss L(s) from the moment the K GD steps were finished in stage s. That is,

F (s)(t) := L(s)(w
(t)
K)− L(s)(w

(s)
K).

Notice that forgetting is zero by definition when t = s. While it is usually expected that forgetting is
a positive quantity, it could be also negative by definition. Such a case can happen when the tasks

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

seen in stages between s and t are well-aligned with L(s), so that the model improves on the task
previously seen in stage s. This phenomenon is called backward knowledge transfer.

When CL tasks do not necessarily repeat, it is common to evaluate the average forgetting over all
past stages, namely 1

t

∑t−1
s=0 F (s)(t). However, since we consider the case where tasks are given

cyclically, it is natural to define our quantity of interest as below:
Definition 3.7 (Cycle-averaged Forgetting). The cycle-averaged forgetting at cycle j is the average
loss change of previous tasks from the stage in which it was learned. That is,

CF(j) := 1

M

M−1∑
m=0

F (Mj+m)(Mj +M − 1) =
1

M

M−1∑
m=0

Lm(w
(Mj+M)
0)− Lm(w

(Mj+m)
K).

By studying cycle-averaged forgetting, we would like to understand how much forgetting happens
during the cyclic learning process, and how the amount of forgetting changes as we repeat the cycles.

Although the asymptotic convergence to joint max-margin solution (Theorem 3.2) suggests that the
model will suffer a diminishing level of forgetting in the long run, characterizing the amount of
forgetting for a given cycle count J necessitates a more careful non-asymptotic analysis of the loss
convergence. For this purpose, we present an additional theorem characterizing the non-asymptotic
convergence of offline training loss L; we then build on this theorem to prove upper and lower bounds
on cycle-averaged forgetting. The new convergence theorem requires the same set of assumptions as
Theorem 3.1, except for an additional assumption of convex ℓ(u).
Theorem 3.3. Under the same setting as Theorem 3.1 with an additional Assumption 3.5, for any
m ∈ [0 : M − 1] and k ∈ [0 : K − 1], we have

L(w(MJ+m)
k) ≤

(
|S|+

∑m−1
i=0 |Si|+ k

K |Sm|
J

)
ℓ(ln J) +

∥∥∥w(0)
0 − ŵ ln J

∥∥∥2
2ηKJ

+
D1

J

+

(
|I| − |S|+

∑m−1
i=0 (|Ii| − |Si|) + k

K (|Im| − |Sm|)
J

)
ℓ(θ ln J),

where θ > 1 is the second margin defined in Section 3.1, and

D1 :=
4σ2

max

ϕ2

(
L(w(0)

0) +

(
1 +

ηKσ3
maxβ

ϕ(1− ηMKσ2
maxβ)

)
ηKσmax

ϕ(1− ηMKσ2
maxβ)

∥∥∥∇L(w(0)
0)
∥∥∥2) .

The proof can be found in Appendix D.3. One can revisit Section 3.1 to recall the definitions of
symbols such as σmax, ϕ, and β. The bound in Theorem 3.3 may be a bit difficult to parse. First of
all, notice that whenever ℓ(u) ≤ e−u, which is true for logistic loss ℓ(u) = ln(1 + e−u), we have
ℓ(ln J) ≤ 1

J and ℓ(θ ln J) ≤ 1
Jθ . Combined with other terms, this implies an overall O(ln

2 J
J) upper

bound for the offline training loss.

Next, we can notice for any fixed J , the upper bound in fact grows with k and m. This unusual growth
of the upper bound reflects the effect of forgetting that can happen during cycles. Even though such
an increase in loss does not usually occur with a small learning rate, it is not impossible. For example,
when most of the tasks have individual max-margin directions different from the joint max-margin
direction, this situation can occur. We demonstrate this mid-cycle increase of joint loss using a toy
example in Appendix C.3.

The possible increase of loss due to forgetting becomes less of an issue as training proceeds since the
terms increasing in m and k are all divided by an additional factor of J and hence decay faster than
other terms. Therefore, the increase of loss bound becomes smaller for larger J , indicating smaller
forgetting during cycles. Despite the possible forgetting, Theorem 3.3 indicates that if tasks are given
cyclically, then the loss bound is guaranteed to decrease at the end of every cycle.

We can now use Theorem 3.3 to derive bounds on cycle-averaged forgetting we defined in Defini-
tion 3.7. We characterize how fast the cycle-averaged forgetting CF(J) converges to zero as the
cycles replay. For this theorem, we specifically consider the logistic loss, which satisfies all loss
assumptions in the paper.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 3.4. Let ℓ(u) = ln(1 + e−u) be the logistic loss. If the learning rate satisfies

η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then the cycle-averaged forgetting CF(J) for cycle J

satisfies the following upper and lower bounds:

−ηK · L(J)2 ·
∑

p ̸=q Np,q

M
≤ CF(J) ≤ ηK · L(J)2 ·

−
∑

p ̸=q N̄p,q

M
,

where

L(J) :=
1

J

((
|S|+ |I| − |S|

Jθ−1

)(
1 +

1

J

)
+
∥w(0)

0 − ŵ ln J∥2

2ηK
+D1

)
= O

(
ln2 J

J

)
Np,q :=

∑
(i,j)∈Ip×Iq
x⊤

i xj>0

x⊤
i xj > 0, N̄p,q :=

∑
(i,j)∈Ip×Iq
x⊤

i xj<0

x⊤
i xj < 0.

The proof is in Appendix D.4. Theorem 3.4 shows a nonnegative upper bound and a nonpositive lower
bound on the cycle-averaged forgetting at cycle J . Note that both upper and lower bounds decay to
zero as J grows. Convergence of CF(J) is of rate O(ln

4 J
J2), which is faster than the convergence

rate O(ln
2 J
J) of joint loss shown in Theorem 3.3.

The bounds in Theorem 3.4 reflect how positive/negative data alignment between different tasks
impact forgetting. The quantities Np,q and N̄p,q capture show how similar and different (respectively)
data points are, for a pair of tasks (p, q). In particular, when

∑
p ̸=q N̄p,q = 0, it is guaranteed

that average forgetting does not happen, regardless of J . Rather, training on a task will decrease
the loss for all previously learned tasks, which can be thought of as an extreme form of backward
knowledge transfer. On the other hand, when

∑
p ̸=q Np,q = 0, it is guaranteed that the model will

suffer forgetting at every cycle; however, even in this case, Theorem 3.4 implies that repeating tasks
over cycles mitigates catastrophic forgetting.

Even when the joint dataset D is the same, forgetting behavior can differ depending on how the data
points are distributed over different tasks. This matches the former theoretical explanation of how
distribution affects forgetting. For instance, Lin et al. (2023) show that a larger distance between each
task’s optimal solution leads to larger forgetting. For a straightforward interpretation, consider the
following example of two tasks: their cycle-averaged forgetting for two different decompositions
of D is plotted in Figure 3. We can observe that two tasks contradicting each other (i.e., large N̄1,2)
results in positive forgetting, whereas two tasks aligning better (i.e., large N1,2) exhibit negative
forgetting. Nevertheless, cycle-averaged forgetting converges to zero in both cases.

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

(a) Contradicting case

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

(b) Aligned case (c) Cycle-averaged Forgetting

Figure 3: We compare two continual learning scenarios with the same joint dataset D =
{(1, 2), (1.1, 1.8), (1.2, 1.9), (1,−2), (1.1,−1.8), (1.2,−1.9)}, where labels are all +1 and hence
omitted. We mark Task 1’s data as ‘o’ and Task 2’s data as ‘+’. We used M = 2 and K = 10.
Figure 3(a) displays a data composition that makes large N̄1,2, whereas Figure 3(b) displays a data
composition that makes relatively small N̄1,2 and large N1,2. Figure 3(c) is a plot of cycle-averaged
forgetting (CF), evolving over cycles. For “contradict” scenario (red), CF is always positive and
diminishing to 0. In contrast, for “aligned” scenario (blue), CF is always negative and rising to 0.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4 RANDOM-ORDER LEARNING OF JOINTLY SEPARABLE TASKS

In this section, we consider the scenario where tasks are given in a random order, while still assuming
that the tasks are jointly separable. Formally, at the end of K-th GD iteration of stage t, the next task
is sampled independently and uniformly at random. Even in this case, our analysis reveals that the
asymptotic results shown in Section 3.2 continue to hold almost surely.

We first show that the offline training loss converges to zero almost surely, which is a random-order
counterpart of Theorem 3.1. The proof is in Appendix E.1.

Theorem 4.1. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given randomly. Under Assumptions 3.1 and 3.3, if the learning rate satisfies

η < 2ϕ2

βσ4
max

, then the following statements hold with probability 1:

1. Loss converges to zero: limt→∞ L(w(t)
k) = 0,∀k ∈ [0 : K − 1].

2. Every data point is classified correctly: limt→∞ x⊤
i w

(t)
k = 0,∀k ∈ [0 : K − 1], i ∈ I .

3. Square sum of the change of weight is finite:
∑∞

t=0

∑K−1
k=0 ∥w

(t)
k+1 −w

(t)
k ∥2 <∞.

We derive the same asymptotic loss convergence result, with a minor difference that the learning rate
can be chosen independent of the number of tasks M and the iteration count K.

We now state the random-order counterpart of Theorem 3.2, which implies that the sequential GD
iterates converge to joint ℓ2 max-margin solution almost surely. The proof is in Appendix E.2.

Theorem 4.2. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given randomly. Under Assumptions 3.1, 3.2, 3.3, and 3.4, if the learning rate

satisfies η < 2ϕ2

βσ4
max

, then with probability 1, w(t)
k will behave as:

w
(t)
k = ln

(
K
M t
)
ŵ + ρ

(t)
k ,

where ∥ρ(t)
k ∥ stays bounded as t grows.

5 BEYOND JOINTLY SEPARABLE TASKS

Now we turn our attention to the CL on a strictly non-separable set of M tasks, where the tasks
are presented in a cyclic manner. In this section, we assume that the set of all data points spans the
whole space Rd without loss of generality. This is a mild assumption because every gradient update
happens in the span of data points. In this case, if we assume the strict non-separability on the full
dataset (see Assumption 5.1), the offline training loss L(w) =

∑M−1
m=0 Lm(w) defined with logistic

losses becomes strictly convex and coercive (i.e., lim∥w∥→∞ L(w) = +∞); thus, it has a unique
minimum w⋆ ∈ Rd. We show that, under cyclic task ordering, the iterates of sequential GD converge
to w⋆ at a rate O(ln

2 J
J2), which is faster than the loss convergence rate of the separable case.

The core idea of the analysis is to identify the local strong convexity of the offline training loss on a
compact set on which every end-of-cycle iterates lie (Freund et al., 2018). To this end, we require a
strict non-separability of the joint dataset as defined below.
Assumption 5.1 (Joint Strict Non-separability Condition (Freund et al., 2018)). Assume that the
whole collection of data points is of full rank: span({xi : i = 0, . . . , N − 1}) = Rd. Additionally,
assume that there exists b > 0 defined as

b := min
v∈Rd:∥v∥=1

∑N−1

i=0
[yix

⊤
i v]

−,

where [a]− := max{0,−a}.

Note that a large b means that the joint data points are highly non-separable: for any classifier vector
v, there exist some data points with the incorrect prediction of the label with a large margin. We also
remark that individual tasks are not necessarily strictly non-separable. Hence, our analysis covers the
case where all individual tasks are separable while the full dataset is not separable.

We additionally assume some mild properties of the loss function ℓ(·).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Assumption 5.2. The loss function ℓ : R → R+ is a strictly convex, β-smooth function with a
positive second derivative such that ℓ(u) ≥ G · [u]− for some G > 0.

Note that the logistic loss ℓ(u) = ln(1 + e−u) satisfies the assumption above with β = 1/4 and
G = 1. From the assumptions, we have that (1) the risk of m-th task Lm(w) =

∑
i∈Im

ℓ(yix
⊤
i w) is

convex and βm-smooth for βm := βλmax

(
XmX⊤

m

)
where Xm ∈ Rd×|Im| is a data matrix of task

m consisting of columns {xi : i ∈ Im}; (2) due to the strict non-separability, the offline training loss
L(w) =

∑M−1
m=0 Lm(w) has a unique minimum w⋆. Furthermore, we can prove that the end-of-cycle

iterates of the sequential GD stay bounded in a compact setW around w⋆. Consequently, we have a
local strong convexity of the offline training loss onW . The proof is in Appendix F.1.
Lemma 5.1. Consider learning M linear classification tasks cyclically. Suppose that Assumptions 5.1
and 5.2 hold. Let B :=

∑M−1
m=0 βm and V⋆ :=

∑M−1
m=0

1
βm
∥∇Lm(w⋆)∥2. Take a step size η ≤

1
2
√
2KB

. Then, there exists a compact setW ⊂ Rd containing w⋆ and every w(jM)
0 (j = 0, 1, 2, . . .),

whose radius is independent of J (the number of cycles) but depends on other parameters like b, G,
B, and V⋆. Also, the offline training loss L is µ-strongly convex onW , where

µ :=
(
mini∈[0:N−1],w∈W ℓ′′

(
yix

⊤
i w
))
· λmin

(
XX⊤) > 0. (6)

We remark that the radius of the setW largely depends on the non-separability b (Assumption 5.1):
loosely speaking,W can be arbitrarily large if b goes to zero since ∥w −w⋆∥ = O(1/b) for any
w ∈ W . In particular, for the logistic loss ℓ, the local strong convexity coefficient µ can get small if b
is small, because of (possibly) a large radius ofW . With the local strong convexity, we finally have
a fast non-asymptotic convergence rate of Õ(J−2) towards the global minimum. The proof can be
found in Appendix F.2.
Theorem 5.2. Suppose we learn M tasks cyclically for J > 1 cycles. We adopt the notation from
Lemma 5.1. If we choose a step size

η = min

{
1

2
√
2KB

,
1 + 2

√
2

2
√
2KJ

ln

(
J2 ·max

{
1,
∥w(0)

0 −w⋆∥2µ3

B2V⋆

})}
,

then the final iterate of sequential GD satisfies∥∥∥w(MJ)
0 −w⋆

∥∥∥2 ≤ Õ(exp(− µJ

(1 + 2
√
2)B

)
·
∥∥∥w(0)

0 −w⋆

∥∥∥2 + B2V⋆ln
2 J

µ3J2

)
, (7)

where we hide a poly-logarithmic factor of J in Equation (7).

Remark on the loss convergence rate. Since the L(w) is B-smooth, it satisfies that

L(w)− L(w⋆) ≤ ⟨∇L(w⋆),w −w⋆⟩+
B

2
∥w −w⋆∥2 =

B

2
∥w −w⋆∥2. (8)

Thus, our Theorem 5.2 naturally implies the loss convergence at the same rate (in terms of J).

Experiments on a real-world dataset. For those interested, we also provide an experiments on
a real-world dataset CIFAR-10 (Krizhevsky et al., 2009), which is not guaranteed to be linearly
separable: see Appendix C.5.

6 CONCLUSION

We considered continual linear classification by running gradient descent for a fixed number of
iterations per task. When there exist solutions that can solve every task, we found that even without
any regularization or CL methods, the classifier eventually converges to the joint max-margin
direction. This implicit bias happens on both cyclic/random task ordering. We further presented a
non-asymptotic analysis on cycle-averaged forgetting with respect to positive/negative alignments
of tasks and the number of cycles. Lastly, we showed that if no linear classifier solves all tasks
simultaneously, the model converges to the unique minimum of the offline training loss. As for
future work, we believe the convergence on continual classification can be extended to other model
structures, bridging the gap between empirical findings and theoretical understanding of the impact
of task repetition. Also, our results are restricted to the “small learning rate” regime, and do not cover
larger learning rates or even the “edge of stability” regime (Wu et al., 2024); relaxing this restriction
is left for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018. 1

Haruka Asanuma, Shiro Takagi, Yoshihiro Nagano, Yuki Yoshida, Yasuhiko Igarashi, and Masato
Okada. Statistical mechanical analysis of catastrophic forgetting in continual learning with teacher
and student networks. Journal of the Physical Society of Japan, 90(10):104001, 2021. 1

Mehdi Abbana Bennani, Thang Doan, and Masashi Sugiyama. Generalisation guarantees for continual
learning with orthogonal gradient descent. arXiv preprint arXiv:2006.11942, 2020. 1, A

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. ICML Workshop on Multi-Task and Lifelong Reinforcement Learning, 2019. 1

Andrea Cossu, Gabriele Graffieti, Lorenzo Pellegrini, Davide Maltoni, Davide Bacciu, Antonio
Carta, and Vincenzo Lomonaco. Is class-incremental enough for continual learning? Frontiers in
Artificial Intelligence, 5:829842, 2022. 2.2

Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier.
A theoretical analysis of catastrophic forgetting through the ntk overlap matrix. In International
Conference on Artificial Intelligence and Statistics, pp. 1072–1080. PMLR, 2021. 1, A

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019. E.3,
E.4

Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic
can catastrophic forgetting be in linear regression? In Conference on Learning Theory, pp.
4028–4079. PMLR, 2022. 1, 2.2

Itay Evron, Edward Moroshko, Gon Buzaglo, Maroun Khriesh, Badea Marjieh, Nathan Srebro, and
Daniel Soudry. Continual learning in linear classification on separable data. In International
Conference on Machine Learning, pp. 9440–9484. PMLR, 2023. 1, 1, 1, 2.2, 3, 6, B, B, B.1, B

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762–3773.
PMLR, 2020. 1, A

Robert M Freund, Paul Grigas, and Rahul Mazumder. Condition number analysis of logis-
tic regression, and its implications for standard first-order solution methods. arXiv preprint
arXiv:1810.08727, 2018. 5, 5.1

Daniel Goldfarb and Paul Hand. Analysis of catastrophic forgetting for random orthogonal transfor-
mation tasks in the overparameterized regime. In International Conference on Artificial Intelligence
and Statistics, pp. 2975–2993. PMLR, 2023. 1

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013. 1

Mustafa N Gultekin and N Bulent Gultekin. Stock market seasonality: International evidence. Journal
of financial economics, 12(4):469–481, 1983. 2.2

Joachim Houyon, Anthony Cioppa, Yasir Ghunaim, Motasem Alfarra, Anaïs Halin, Maxim Henry,
Bernard Ghanem, and Marc Van Droogenbroeck. Online distillation with continual learning for
cyclic domain shifts, 2023. URL https://arxiv.org/abs/2304.01239. 2.2

Khurram Javed and Martha White. Meta-learning representations for continual learning. Advances in
neural information processing systems, 32, 2019. 1

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv preprint
arXiv:1803.07300, 2018. A

11

https://arxiv.org/abs/2304.01239

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ziwei Ji and Matus Telgarsky. Characterizing the implicit bias via a primal-dual analysis. In
Algorithmic Learning Theory, pp. 772–804. PMLR, 2021. A

Ryo Karakida and Shotaro Akaho. Learning curves for continual learning in neural networks: Self-
knowledge transfer and forgetting. In International Conference on Learning Representations, 2022.
A

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke, and Bing Liu. A theoretical study on
solving continual learning. Advances in neural information processing systems, 35:5065–5079,
2022. 1, A

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, and Bing Liu. Learnability and algorithm for
continual learning. In International Conference on Machine Learning, pp. 16877–16896. PMLR,
2023. 1

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017. 1

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
5, C.5

Sebastian Lee, Sebastian Goldt, and Andrew Saxe. Continual learning in the teacher-student setup:
Impact of task similarity. In International Conference on Machine Learning, pp. 6109–6119.
PMLR, 2021. 1, A

Timothée Lesort, Oleksiy Ostapenko, Pau Rodríguez, Diganta Misra, Md Rifat Arefin, Laurent
Charlin, and Irina Rish. Challenging common assumptions about catastrophic forgetting and
knowledge accumulation. In Conference on Lifelong Learning Agents, pp. 43–65. PMLR, 2023.
3.2

Haoran Li, Jingfeng Wu, and Vladimir Braverman. Fixed design analysis of regularization-based
continual learning. In Conference on Lifelong Learning Agents, pp. 513–533. PMLR, 2023. 1

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017. 1

Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
continual learning. In International Conference on Machine Learning, pp. 21078–21100. PMLR,
2023. 3.3, A

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017. 1

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989. 1

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understand-
ing the role of training regimes in continual learning. Advances in Neural Information Processing
Systems, 33:7308–7320, 2020. 1

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning, second edition.
Adaptive Computation and Machine Learning series. MIT Press, 2018. ISBN 9780262351362.
URL https://books.google.co.kr/books?id=dWB9DwAAQBAJ. 3.1

Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gradient descent on separable
data: Exact convergence with a fixed learning rate. In The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 3051–3059. PMLR, 2019. A, D.1, D.1.1, D.3

Binghui Peng and Andrej Risteski. Continual learning: a feature extraction formalization, an efficient
algorithm, and fundamental obstructions. Advances in Neural Information Processing Systems, 35:
28414–28427, 2022. A

12

https://books.google.co.kr/books?id=dWB9DwAAQBAJ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Krishnan Raghavan and Prasanna Balaprakash. Formalizing the generalization-forgetting trade-off in
continual learning. Advances in Neural Information Processing Systems, 34:17284–17297, 2021.
1, A

Haizhou Shi and Hao Wang. A unified approach to domain incremental learning with memory:
Theory and algorithm. Advances in Neural Information Processing Systems, 36, 2023. 1, A

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017. 1

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57,
2018. 1, 3.1, 3.1, 3.2, 2, A, D.2

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.
1, 3.1

Eli Verwimp, Kuo Yang, Sarah Parisot, Lanqing Hong, Steven McDonagh, Eduardo Pérez-Pellitero,
Matthias De Lange, and Tinne Tuytelaars. Clad: A realistic continual learning benchmark for
autonomous driving. Neural Networks, 161:659–669, 2023. 2.2

Jingfeng Wu, Vladimir Braverman, and Jason D Lee. Implicit bias of gradient descent for logistic
regression at the edge of stability. Advances in Neural Information Processing Systems, 36, 2024.
6, A

Yingxiang Yang, Zhihan Xiong, Tianyi Liu, Taiqing Wang, and Chong Wang. Fourier learning with
cyclical data. In International Conference on Machine Learning, pp. 25280–25301. PMLR, 2022.
2.2

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

1.1 Summary of Contributions . 2

2 Problem Setup 3

2.1 Setup: Continual Linear Binary Classification . 3

2.2 Algorithm: Sequential Gradient Descent . 3

3 Cyclic Learning of Jointly Separable Tasks 4

3.1 Definitions and Assumptions . 4

3.2 Asymptotic Results: Loss Convergence & Implicit Bias to Joint Max-margin 5

3.3 Non-asymptotic Results: Loss Convergence and Forgetting Bounds 6

4 Random-order Learning of Jointly Separable Tasks 9

5 Beyond Jointly Separable Tasks 9

6 Conclusion 10

A Other Related Works 16

B Brief Overview of Evron et al. (2023) and Comparisons 17

C Experiment Details & Omitted Experimental Results 19

C.1 Experiment Details of Figure 1 . 19

C.2 Experiment Details of Figure 2 & More Results 19

C.2.1 Experimental Detail . 20

C.2.2 Omitted Loss Convergence Result in Figure 2 20

C.2.3 Random Task Ordering . 21

C.2.4 Beyond Theoretical Setup: Towards Continual Learning on Online Data . . 21

C.3 Toy Example for Increasing Loss in A Cycle . 23

C.4 Experiments with Neural Networks: Beyond Linear Models 23

C.5 Experiment on a Real-world Dataset . 25

D Proofs for Section 3: Cyclic Task Ordering, Jointly Separable 26

D.1 Asymptotic Loss Convergence Analysis (Proof of Theorem 3.1) 26

D.1.1 Proof of Lemma D.1 . 27

D.1.2 Proof of Lemma D.2 . 29

D.2 Directional Convergence Analysis (Proof of Theorem 3.2) 29

D.2.1 Proof of Lemma D.4 . 31

D.2.2 Proof of Lemma D.5 . 33

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D.2.3 Convergence of ρ(t)k . 38

D.3 Non-asymptotic Loss Convergence Analysis (Proof of Theorem 3.3) 40

D.3.1 Proof of Lemma D.8 . 43

D.3.2 Proof of Lemma D.9 . 44

D.4 Forgetting Analysis (Proof of Theorem 3.4) . 45

E Proofs for Section 4: Random Task Ordering, Jointly Separable 48

E.1 Asymptotic Loss Convergence Analysis (Proof of Theorem 4.1) 48

E.2 Directional Convergence Analysis (Proof of Theorem 4.2) 49

E.2.1 Proof of Lemma E.1 . 51

E.2.2 Convergence of ρ(t)k . 53

F Proofs for Section 5: Cyclic Task Ordering, Jointly Non-Separable 55

F.1 Local Strong Convexity Analysis (Proof of Lemma 5.1) 56

F.1.1 Proof of Lemma F.4 . 57

F.1.2 Proof of Lemma F.5 . 58

F.2 Non-asymptotic Loss Convergence Analysis (Proof of Theorem 5.2) 60

F.2.1 Proof of Lemma F.6 . 61

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A OTHER RELATED WORKS

Theoretical Results on Continual Learning. Several theoretical analyses have been proposed
on classification. Raghavan & Balaprakash (2021) examine the generalization-forgetting trade-off
by viewing it as a two-player sequential game, in which player 1 wants to maximize generalization,
whereas player 2 wants to minimize forgetting. They show the existence of a balanced point where
both players are satisfied with each new task and suggest a new algorithm to achieve the point. Kim
et al. (2022) consider Class-Incremental Learning, where the model can see a disjoint subset of the
total class at a time. They prove that good Within-task Prediction (WP) and good Task-id Prediction
(TP) are necessary and sufficient for good CIL. Furthermore, they relate TP with OOD detection.
Shi & Wang (2023) consider Domain-Incremental Learning, where the model can see the different
domains in a class over time. They especially suggest a framework with a memory buffer that unified
earlier methods.

Lin et al. (2023) distinguish empirical and population risks by drawing samples from Gaussian with
true linear regression solutions. Then, they investigate the impact of overparameterization and task
similarity over forgetting. Bennani et al. (2020); Doan et al. (2021); Karakida & Akaho (2022) study
forgetting in NTK regime. Specifically, Bennani et al. (2020); Doan et al. (2021) analyze forgetting
of orthogonal gradient descent (OGD, Farajtabar et al. (2020)), while Karakida & Akaho (2022)
study continual transfer learning. Other settings such as Teacher-Student setup (Lee et al., 2021), and
feature extraction (Peng & Risteski, 2022) have been considered in Task-Incremental Learing.

Implicit Bias of Gradient Descent for Linear Classification. Soudry et al. (2018) are the first to
show that if data is linearly separable, gradient descent with certain loss functions converges to the
max-margin direction. Nacson et al. (2019) prove the same result on the same condition but with
stochastic gradient descent. Ji & Telgarsky (2018) show the same result with a slower convergence
rate, resulting from the absence of degeneracy condition. They also consider cases where data is not
separable, yet weight diverges to infinity. Ji & Telgarsky (2021) show a faster convergence rate under
decreasing learning rate via a primal-dual analysis. While these findings require small learning rates,
Wu et al. (2024) prove that gradient descent with logistic loss converges to the max-margin direction
even when the learning rate is large.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B BRIEF OVERVIEW OF EVRON ET AL. (2023) AND COMPARISONS

To highlight how our sequential GD algorithm differs from Evron et al. (2023), we briefly summarize
the Sequential Max-Margin (SMM) framework considered in the existing paper and its theoretical
results.

Evron et al. (2023) consider minimizing the regularized training loss of each task until convergence,
where the loss function is chosen to be the exponential loss ℓ(u) = exp(−u). Let

{
w

(t)
λ-Re

}
t

be the
iterates trained by regularized continual learning with regularization coefficient λ. The algorithm can
be written as follows:

w
(t+1)
λ-Re = arg min

w∈Rd

∑
i∈I(t)

exp
(
−yix⊤

i w
)
+

λ

2

∥∥∥w −w
(t)
λ-Re

∥∥∥2 . (9)

Also, let w(t)
SMM be the weight trained by the Sequential Max-Margin algorithm. The update rule is as

follows:

w
(t+1)
SMM = arg min

w∈Rd

∥∥∥w −w
(t)
SMM

∥∥∥2 subject to yix
⊤
i w ≥ 1,∀i ∈ I(t)

= P (t)(w
(t)
SMM).

(10)

Here, the operator P (t) can be thought of as the orthogonal projection onto a convex set{
w ∈ Rd : yix

⊤
i w ≥ 1,∀i ∈ I(t)

}
(11)

defined by the margin conditions on data points in I(t). That is, w(t)
SMM is the same as the sequential

projection onto such convex sets. Evron et al. (2023) showed the relation of w(t)
λ-Re and w

(t)
SMM, when

the regularization coefficient λ→ 0:

Theorem B.1 (Theorem 3.1 of Evron et al. (2023)). For almost all dataset, in the limit of λ→ 0, it

holds that w(t)
λ-Re → w

(t)
SMM with a residual of O(t log log

(
1
λ

)
). Therefore, at any t = o

(
log(1

λ)
log log(1

λ)

)
,

we get

lim
λ→0

w
(t)
λ-Re∥∥∥w(t)
λ-Re

∥∥∥ =
w

(t)
SMM∥∥∥w(t)
SMM

∥∥∥ .
Based on this equivalence in terms of parameter direction, Evron et al. (2023) expect that the behavior
of w(t)

λ-Re can be analyzed through the lens of w(t)
SMM as long as λ is close to 0, since Theorem B.1

holds for all t = o

(
log(1

λ)
log log(1

λ)

)
.

Given this background, we now highlight some differences between Evron et al. (2023) and our
analysis. First of all, as seen in (9), Evron et al. (2023) study regularized exponential loss trained until
convergence, whereas we study unregularized logistic loss trained for a fixed number of iterations.
Training the weakly regularized loss until convergence, in conjunction with limit λ→ 0, sends each
w

(t)
λ-Re to infinity. Hence, each stage requires a growing number of iterations, and the grounds for

the equivalence between (9) and (10) becomes weaker, since the solutions become vastly different in
terms of magnitude.

Second, thanks to the connection between weakly-regularized continual learning and SMM, Evron
et al. (2023) could obtain the exact trajectory of every stage via the projection method. On the
other hand, in our sequential GD setting, it is very difficult to keep track of the exact location of the
iterate after one task is trained, since the iterates are updated multiple times but training stops before
convergence. This makes it challenging to analyze implicit bias and forgetting via tracking the exact
trajectory stage by stage. We use different proof techniques from Evron et al. (2023) to overcome this
challenge. Rather than pinpointing the exact position of the iterate after each stage, we focus on the
direction that sequential GD eventually converges to.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

On top of that, importantly, our analysis of sequential GD reveals that training on unregularized loss
using a fixed number of GD iterations results in the joint/offline max-margin solution. In contrast,
although the convergence to some offline solutions is already shown for SMM (Evron et al., 2023),
the converged offline solution can be different from the offline max-margin solution. In fact, in the
next section (Appendix C.1), we demonstrate by a toy example that SMM can indeed converge to a
point other than the joint max-margin solution.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C EXPERIMENT DETAILS & OMITTED EXPERIMENTAL RESULTS

C.1 EXPERIMENT DETAILS OF FIGURE 1

In this section, we present a simple toy example that demonstrates interesting facts about max-margin
solutions in continual linear classification:

• The joint max-margin direction of the joint dataset can be quite different from the max-margin
solutions of individual tasks. Specifically, the joint solution may not be on the subspace spanned
by the individual solutions.

• The limit of Sequantial Max-Margin (SMM) iterations can be different from the joint max-margin
solution, whereas the limit direction of sequential GD does align with it.

We consider the case of M = 2 tasks, where the input points come from R3. Without loss of
generality, we assume that all the labels are +1, and hence omit them. We let {(1, 1, 0), (1,−2, 1)}
be the dataset of task 1, and {(1, 0, 1), (1, 1,−2)} be the data of task 2. One can verify that:

• Their joint max-margin direction is (1, 0, 0).

• The max-margin direction for task 1 is (1011 ,
1
11 ,

3
11).

• The max-margin direction for task 2 is (1011 ,
3
11 ,

1
11).

Therefore, we can observe that the joint max-margin solution does not belong to the span of individual
max-margin solutions.

We ran numerical experiments running the SMM iterations, which is done by solving the constrained
minimization problems using fmincon in MATLAB Optimization Toolbox. The code is provided
in our supplementary material. We find that SMM converges to (1211 ,

1
11 ,

1
11); the trajectory for 10

cycles can be seen in Figure 4.

Figure 4: We run SMM iterations on the toy example by solving the projection problems using an
optimization solver.

C.2 EXPERIMENT DETAILS OF FIGURE 2 & MORE RESULTS

Here we present the experimental details of Figure 2. We also provide omitted result related to it.
Then, more importantly, we extend our experimental setups beyond the cyclic task ordering and the
fixed total offline dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.2.1 EXPERIMENTAL DETAIL

Data Generation. We carefully design three 2D synthetic datasets. Each dataset (of size 100) is
randomly sampled from a bounded support. Below, we describe the data distribution from which we
draw samples. Note that the label y ∈ {±1} is uniformly randomly sampled before sampling the 2D
input points.

• Task 0, x|y = +1: Uniform distribution on a round disk (i.e., inside of a circle) with radius 0.9
and centered at (0.6, 4.5).

• Task 0, x|y = −1: Uniform distribution on a rectangle [0, 1.5]× [−3.9,−2.7].
• Task 1, x|y = +1: Uniform distribution on a round disk with radius 0.75 and centered at (5.1, 0).

• Task 1, x|y = −1: Uniform distribution on a rectangle [−4.2,−2.1]× [−0.9, 0.9].
• Task 2, x|y = +1: Uniform distribution on a rectangle [0.6, 3]× [0.6, 2.7].

• Task 2, x|y = −1: Uniform distribution on a disk with radius 1.2 and centered at (−3,−2.4).

Among all 300 data points, we randomly choose 3 points (one for each task) and replace them
by (x = (1.5,−2.7), y = −1) (for task 0), (x = (−2.1, 0.9), y = −1) (for task 1), and (x =
(0.6, 0.6), y = +1) (for task 2), which are the points included in the support of the data distribution(s).
These three points play the role of supporting vectors so that the joint max-margin direction becomes
ŵ

∥ŵ∥ = (1√
2
, 1√

2
), where the size of maximum margin (Equation (4)) is ϕ = 0.6

√
2 > 0 (thus, jointly

separable).

Optimization. We run sequential GD for 300 stages in total. Since there are three tasks, for the
cyclic ordering case, it is equivalent to J = 100. The step size we used is η = 0.1. Also, we allow
and conduct K = 1,000 updates per stage. For the joint training case, we run full-batch GD on the
union of all datasets for MJK = 300,000 steps.

C.2.2 OMITTED LOSS CONVERGENCE RESULT IN FIGURE 2

Although we only displayed the directional convergence in the main text, we also observe the loss
convergence to zero, which we proved in Theorems 3.1 and 3.3: see Figure 5. Note that we depict the
loss values for a jointly trained model (with full-batch GD) every K = 1,000 gradient updates, for a
fair comparison with a continually learned model (with sequential GD). It is omitted due to space
limit and being relatively more obvious than directional convergence.

0 50 100 150 200 250 300
Stage

10 4

10 3

10 2

10 1

100

Lo
ss

Loss: Continually learned model
task0 loss
task1 loss
task2 loss
total loss

(a) Losses of continually learned model

0 50 100 150 200 250 300
Stage

10 4

10 3

Lo
ss

Loss: Jointly learned model
task0 loss
task1 loss
task2 loss
total loss

(b) Losses of jointly trained model

Figure 5: Loss convergence results for cyclic task ordering.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.2.3 RANDOM TASK ORDERING

In Section 4, we theoretically showed that loss convergence, as well as implicit bias result, holds
almost surely under the random task ordering. Indeed, we observe a similar tendency of directional
convergence and loss decrease even under the random task ordering. The result is shown in Figure 6.

Joint Max-margin Direction
Joint Training trajectory
Continual Learning trajectory
Task 0 Data (y = + 1)
Task 0 Data (y = 1)
Task 1 Data (y = + 1)
Task 1 Data (y = 1)
Task 2 Data (y = + 1)
Task 2 Data (y = 1)

(a) Data points and trajectories

100 101 102

Stage

10 2

10 1

100

Si
ne

 A
ng

le

Sine Angle(= (1 cossim2))
between Linear Model vs. Joint Max-Margin

Continually learned model
Jointly trained model

(b) Sine angles (the smaller the more aligned)

0 50 100 150 200 250 300
Stage

10 4

10 3

10 2

10 1

100

Lo
ss

Loss: Continually learned model
task0 loss
task1 loss
task2 loss
total loss

(c) Losses of continually learned model

0 50 100 150 200 250 300
Stage

10 4

10 3

Lo
ss

Loss: Jointly learned model
task0 loss
task1 loss
task2 loss
total loss

(d) Losses of jointly trained model

Figure 6: Experiments on 2D synthetic data under random task ordering.

C.2.4 BEYOND THEORETICAL SETUP: TOWARDS CONTINUAL LEARNING ON ONLINE DATA

Most theoretical analysis in this work exploits a structural assumption on the data points: there is a
pre-defined set of offline dataset, which is divided into chunks and accessible one by one at each stage.
Thus, exactly the same batch of data is guaranteed to be reused (surely or with high probability). Can
we go beyond this repetition and apply our theoretical intuition to more general setups?

Here, we demonstrate that the results of our theoretical findings are not really limited to the task
repetition setup. Instead, our insight about jointly separable continual linear classification applies to
several general setups. In this section, we showcase an analogous behavior of sequential GD when
the total dataset is no longer fixed throughout the continual learning process. We consider the setup
where there are M different (jointly separable) data distributions, rather than datasets; every time we
encounter a task, we have an access to a totally new samples of data points drawn from the task’s
distribution. For simplicity of visualization, we still stick to the bounded support cases.

An implementational difference from the previous sections is that we re-sample the data points from
a predefined data distribtion at every stage. Another minor detail is that we no longer fix the three
support vectors as mentioned in Appendix C.2.1: thus, at every stage, we never reuse the same
data point(s) from the previous stage, almost surely. We test whether a similar trend happens even
when we add the resampling process, under the same data distribution described in Appendix C.2.1.
The results are shown in Figures 7 and 8 for cyclic task ordering and random task ordering cases,
respectively.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Joint Max-margin Direction
Joint Training trajectory
Continual Learning trajectory
Task 0 Data (y = + 1)
Task 0 Data (y = 1)
Task 1 Data (y = + 1)
Task 1 Data (y = 1)
Task 2 Data (y = + 1)
Task 2 Data (y = 1)

(a) Data points and trajectories

100 101 102

Stage

10 2

10 1

Si
ne

 A
ng

le

Sine Angle(= (1 cossim2))
between Linear Model vs. Joint Max-Margin

Continually learned model
Jointly trained model

(b) Sine angles (the smaller the more aligned)

0 50 100 150 200 250 300
Stage

10 5

10 4

10 3

10 2

10 1

100

Lo
ss

Loss: Continually learned model
task0 loss
task1 loss
task2 loss
total loss

(c) Losses of continually learned model

0 50 100 150 200 250 300
Stage

10 5

10 4

10 3

Lo
ss

Loss: Jointly learned model
task0 loss
task1 loss
task2 loss
total loss

(d) Losses of jointly trained model

Figure 7: 2D synthetic experiments: Cyclic task ordering, jointly separable online dataset (keep being
drawn from a task’s predefined data distribution).

Joint Max-margin Direction
Joint Training trajectory
Continual Learning trajectory
Task 0 Data (y = + 1)
Task 0 Data (y = 1)
Task 1 Data (y = + 1)
Task 1 Data (y = 1)
Task 2 Data (y = + 1)
Task 2 Data (y = 1)

(a) Data points and trajectories

100 101 102

Stage

10 2

10 1

Si
ne

 A
ng

le

Sine Angle(= (1 cossim2))
between Linear Model vs. Joint Max-Margin

Continually learned model
Jointly trained model

(b) Sine angles (the smaller the more aligned)

0 50 100 150 200 250 300
Stage

10 6

10 5

10 4

10 3

10 2

Lo
ss

Loss: Continually learned model
task0 loss
task1 loss
task2 loss
total loss

(c) Losses of continually learned model

0 50 100 150 200 250 300
Stage

10 6

10 5

10 4

10 3

Lo
ss

Loss: Jointly learned model
task0 loss
task1 loss
task2 loss
total loss

(d) Losses of jointly trained model

Figure 8: 2D synthetic experiments: Random task ordering, jointly separable online dataset (keep
being drawn from a task’s predefined data distribution).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.3 TOY EXAMPLE FOR INCREASING LOSS IN A CYCLE

Here, we give a toy example that shows temporarily increasing joint training loss during a cycle, even
with a small learning rate.

Let the datasets Di (i = 1, ..., 5) be as the following. Without loss of generality, we choose all labels
as +1 without loss of generality, hence we omitted them.

D1 = {(1,−2)}, D2 = {(1, 2)}, D3 = {(1.1, 2.1)},
D4 = {(1.1, 2.2)}, D5 = {(1.1, 2.3)}.

In this case, the max-margin direction is (1, 0), while most of the task has their individual max-margin
direction around (1, 2). We set K = 10, η = 10−6 so that η satisfies the learning rate condition.

0 5 10 15 20 25 30 35
Number of Stage

6.928 × 10 1

6.929 × 10 1

6.93 × 10 1

6.931 × 10 1

6.932 × 10 1

6.933 × 10 1

Lo
ss

1 task loss
2 task loss
3 task loss
4 task loss
5 task loss
total loss

(a) J = 7
e

0 50000 100000 150000 200000 250000
Number of Stage

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Lo
ss

1 task loss
2 task loss
3 task loss
4 task loss
5 task loss
total loss

(b) J = 50000

Figure 9: We take average on total loss(black) for better visualization. The current task switches
every 10 iterations. One cycle consists of 5 stages. Figure 9(a) shows the case where some task’s loss
increases within a cycle. However, it eventually decreases as Figure 9(b) shows.

When task 1 is being trained, joint training loss increases while it decreases when other tasks are
being trained. This is because most of the tasks have their own max-margin direction around (1, 2),
dominating joint training loss.

C.4 EXPERIMENTS WITH NEURAL NETWORKS: BEYOND LINEAR MODELS

We explore the possibility of extending our theoretical insight to nonlinear models, in particular wide
two-layer ReLU networks.

For a linear classifier with a single linear layer, recall that we already verified that the sequentially
trained model (in cyclic/random task ordering) directionally converges to the max-margin direction.
However, it is more difficult to analyze and visualize the dynamics of the multi-layer neural net’s
parameter values. Moreover, it might be nonsense to discuss the relationship (e.g., alignment,
directional convergence) between the max-margin direction and the parameter matrices of a neural
net, because the parameter matrices themselves no longer have a semantic meaning in the data space.

Instead of inspecting the parameter values, we move our attention to the decision boundary of the
model. Observe that the decision boundary of a linear binary classifer is a hyperplane (i.e., d − 1
dimensional subspace) of the data space (of d-dimension), whose orthogonal complement is the span
of the classifier’s weight vector. Thus, the alignment between the weight vector and the max-margin
direction (i.e., the implicit bias guarantee) is semantically equivalent to the alignment between the
classifier’s decision boundary and a hyperplane determined by the max-margin solution as a normal
vector; this hyperplane can be approximated well by jointly training a single-layer linear classifier.
Thus, we can still verify the similar idea of implicit bias even for a neural network by observing, not
only that a continually learned model (with sequential GD, under task repitition) eventually classifies
all the data points correctly, but also that the decision boundary of the continually trained model
getting comparable with that of a jointly trained model (both starting from an identical initialization).
Although we cannot not exactly characterize to which set of points a two-layer ReLU net’s decision
boundary should converge only with our theorems, it gives an effective and efficient way to confirm
our findings beyond a simple linear model.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

To intuitively visualize the decision boundaries, we again use the 2D synthetic datasets. Most of the
experimental setting is the same as in Appendix C.2.1, except for the following three differences:

1. The classifier’s architecture is a two-layer neural network fθ : R2 → R consisting of 2-
dimensional input, 500 hidden ReLU neurons, and scalar output:

fθ(x) = w⊤
2 ReLU(W1x+ b1) + b2,

where θ = (W1, b1,w2, b2) ∈ R500×2 × R500 × R500 × R and ReLU(v)i = max{vi, 0}.
2. To make the total dataset non-separable by a linear classifier with a positive margin but still

classifiable by a neural net, we translate all datapoints with positive labels (+1) by a vector
(−1.2,−1.2). In this case, the decision boundary should not be a straightly but bended in a curly
L-shape to effecitively distinguish two classes.

3. To prevent the sequential GD from behaving similarly to a mini-batch SGD with small-scale
and lazy updates, we increase K to 3,000 to guarantee that (1) the jointly trained model can
correctly classify all data points within only one stage (i.e., with initial K updates), and (2) the
continually learned model gets sufficiently trained on a specific task at each stage. As a result,
the jointly trained model takes MJK = 900,000 iterations. (M = 3, J = 100)

As we did for a linear classifier, we classify the input data as y = +1 if the model output is positive
and as −1 otherwise (thus, the decision boundary is a level set {x ∈ R2 : fθ(x) = 0}). We again
use the usual logistic loss 1

N

∑N
i=1 ℓ(yifθ(xi)).

Joint Training
Decision Boundary
Continual Learning
Decision Boundary
Task 0 Data (y = + 1)
Task 0 Data (y = 1)
Task 1 Data (y = + 1)
Task 1 Data (y = 1)
Task 2 Data (y = + 1)
Task 2 Data (y = 1)

(a) At the end of the first stage.

Joint Training
Decision Boundary
Continual Learning
Decision Boundary
Task 0 Data (y = + 1)
Task 0 Data (y = 1)
Task 1 Data (y = + 1)
Task 1 Data (y = 1)
Task 2 Data (y = + 1)
Task 2 Data (y = 1)

(b) After running 300 stages.

0 50 100 150 200 250 300
Stage

10 6

10 5

10 4

10 3

10 2

10 1

100

Lo
ss

Loss: Continually learned model
task0 loss
task1 loss
task2 loss
total loss

(c) Losses of continually trained model.

0 50 100 150 200 250 300
Stage

10 6

10 5

10 4

10 3

Lo
ss

Loss: Jointly learned model
task0 loss
task1 loss
task2 loss
total loss

(d) Losses of jointly trained model.

Figure 10: Two-layer ReLU network experiment under cyclic task ordering. (Top.) Each subfigure
displays the decision boundaries (and other auxiliary level sets) of a jointly trained model (dashed
red line) and a continually trained model (dashed green line). (Bottom.) Figure 10(c) demonstrates
the large amounts of forgetting at initial few cycles and convergences of loss and (cycle-averaged)
forgetting to near zero. On the other hand, Figure 10(d) shows that the training loss of the jointly
trained model is already small (e.g., less than 10−3) at initial stages.

The result of experiment for cyclic task order is visualized in Figure 10, exhibiting decision boundaries
of a jointly trained model and a continually trained model (with sequential GD). As we expected,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

the updates are aggressive enough so that even a single stage (i.e., initial K = 3,000 iterations) is
sufficient to perfectly classify the total dataset with the jointly trained model, and the same for the
dataset of the task 0 with the continually trained model (Figure 10(a)). After some number of stages
(Figure 10(b)), the both models not only correctly classify every data points, but also have an almost
identical decision boundary (note that the other level sets are not necessarily the same), implying
that a similar phenomenon like implicit bias is happening here. We also observe almost the same
tendencies under random task ordering and even for non-repeating dataset cases (Appendix C.2.4).
We omit their detailed results from the paper, but one can find them in our supplementary materials.

C.5 EXPERIMENT ON A REAL-WORLD DATASET

In this section, we present a result of training linear model with CIFAR-10 (Krizhevsky et al., 2009).

We choose two classes from the CIFAR-10 dataset and design 3 tasks which have 512 data points
from the two classes (‘airplane’, ‘automobile’). Our Theorem 5.2 on linearly non-separable data like
CIFAR-10 shows that sequential GD iterates should not diverge and instead converge to the global
minimum w∗ under the properly chosen learning rate. To estimate the distance between sequential
GD iterates and the global minimum, we first train a linear model using joint task data and obtain
wJoint as a proxy of w∗; we do this because offline training is guaranteed to converge to the global
minimum. Then, we train sequential GD and measure the distance between iterates and the jointly
trained solution wJoint at the end of every stage of sequential GD.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of cycles*M

0

2

4

6

8

10

l2
-d

ist
an

ce

parameter difference

(a)
∥∥∥w(t)

K −wJoint

∥∥∥
0 25000 50000 75000 100000 125000 150000 175000 200000

Number of Iterations

10 2

10 1

100

Lo
ss

joint task loss

(b) Loss of jointly trained model

Figure 11: CIFAR-10 Experiments with linear model. We jointly train a model for 200000
iterations to achieve the global minimum. We then train each task with cyclic ordering. We set the
number of GD for each stage as 50 (K = 50), and run 1350 cycles (J = 1350). Figure 11(a) shows
that sequential GD iterate converges close to wJoint as the training goes on. However, it does not
fully converge to wJoint, as wJoint is not equal to w∗. Figure 11(b) reveals that the loss of the jointly
trained model was decreasing after 200000 iterations.

As a result, we observe that the distance between sequential GD iterates and wJoint converges close
to 0, even when we adopt a learning rate η = 0.01, which is not as too small as our theorem requires.
Yet, we couldn’t show convergence of distance to exactly 0 since the jointly trained model did not
converge all the way to w∗.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D PROOFS FOR SECTION 3: CYCLIC TASK ORDERING, JOINTLY SEPARABLE

Without loss of generality, we set yi = 1 for all i ∈ [N].

D.1 ASYMPTOTIC LOSS CONVERGENCE ANALYSIS (PROOF OF THEOREM 3.1)

Let us restate the theorem here for the sake of readability.

Theorem 3.1. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given cyclically. Under Assumptions 3.1 and 3.3, if the learning rate satisfies

η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then

1. Loss converges to zero: limt→∞ L(w(t)
k) = 0,∀k ∈ [0 : K − 1].

2. Every data point is eventually classified correctly: limt→∞ x⊤
i w

(t)
k =∞,∀k ∈ [0 : K−1], i ∈ I .

3. Square sum of the change of weight is finite:
∑∞

t=0

∑K−1
k=0 ∥w

(t)
k+1 −w

(t)
k ∥2 <∞.

Here, we use the following lemma which holds in cyclic continual learning with M tasks.
Lemma D.1. For all t ∈ N,m ∈ [0 : M − 1], k ∈ [0 : K − 1],∥∥∥∥∥w(t+m)

k −w
(t)
0 + η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0) + k∇L(t+m)(w

(t)
0)

)∥∥∥∥∥ ≤ η2(mK + k)Kσ3
maxβ

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0)
∥∥∥ ,∥∥∥w(t+m)

k −w
(t)
0

∥∥∥ ≤ ηKσmax

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0)
∥∥∥ ,∥∥∥∇L(w(t+m)

k)−∇L(w(t)
0)
∥∥∥ ≤ ηKσ3

maxβ

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0)
∥∥∥ .

Proof. See Appendix D.1.1.

Also, we rely on the key property of linearly separable data, which is proposed by Nacson et al.
(2019).

Lemma D.2. For any w ∈ Rd,

∥∇L(w)∥ ≥ ϕ

√∑
i∈I

[
ℓ′(x⊤

i w)
]2

Proof. See Appendix D.1.2.

Since L is a σ2
maxβ-smooth function, we get

L(w(Mt+M)
0)− L(w(Mt)

0)− σ2
maxβ

2

∥∥∥w(Mt+M)
0 −w

(Mt)
0

∥∥∥2
≤ ∇L(w(Mt)

0)⊤(w
(Mt+M)
0 −w

(Mt)
0)

= ∇L(w(Mt)
0)⊤(w

(Mt+M)
0 −w

(Mt)
0 − ηK∇L(w(Mt)

0) + ηK∇L(w(Mt)
0))

≤ −ηK
∥∥∥∇L(w(Mt)

0)
∥∥∥2 + ∥∥∥∇L(w(Mt)

0)
∥∥∥∥∥∥w(Mt+M)

0 −w
(Mt)
0 +ηK∇L(w(Mt)

0)
∥∥∥

By Lemma D.1,

L(w(Mt+M)
0)− L(w(Mt)

0)− σ2
maxβ

2
· (ησmaxK)2

ϕ2(1− ηMKσ2
maxβ)

2

∥∥∥∇L(w(Mt)
0)

∥∥∥2
≤ −ηK

∥∥∥∇L(w(Mt)
0)

∥∥∥2 + η2MK2σ3
maxβ

ϕ(1− ηMKσ2
maxβ)

∥∥∥∇L(w(Mt)
0)

∥∥∥2

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Given that η ≤ 1
2MKσ2

maxβ
,

L(w(Mt+M)
0)− L(w(Mt)

0) (12)

≤ ηK{1− ηK

(
Mσ3

maxβ

ϕ(1− ηMKσ2
maxβ)

+
σ4
maxβ

2ϕ2(1− ηMKσ2
maxβ)

2

)
}
∥∥∥∇L(w(Mt)

0)
∥∥∥2 (13)

≤ −ηK
(
1− ηK

2(Mϕ+ σmax)σ
3
maxβ

ϕ2

)∥∥∥∇L(w(Mt)
0)

∥∥∥2 (14)

= −ηK (1− ηKβ′)
∥∥∥∇L(w(Mt)

0)
∥∥∥2, (15)

where we set β′ :=
2(Mϕ+σmax)σ

3
maxβ

ϕ2 . Given that η ≤ 1
2Kβ′ , L(w(Mt+M)

0) ≤ L(w(Mt)
0) holds.

Also, by (15),
∞∑
t=0

∥∥∥∇L(w(Mt)
0)

∥∥∥2 ≤ L(w(0)
0)− limt→∞ L(w(Mt)

0)

ηK(1− ηKβ′)
≤ L(w(0)

0)

ηK(1− ηKβ′)
<∞

Coupled with Lemma D.1,

∞∑
t=0

M−1∑
m=0

K−1∑
k=0

∥∥∥∇L(w(Mt+m)
k)

∥∥∥2
≤

∞∑
t=0

M−1∑
m=0

K−1∑
k=0

(∥∥∥∇L(w(Mt)
0)

∥∥∥+ ∥∥∥∇L(w(Mt+m)
k)−∇L(w(Mt)

0)
∥∥∥)2

≤
∞∑
t=0

M−1∑
m=0

K−1∑
k=0

(
1 +

ηKσ3
maxβ

ϕ{1− η(mK + k)σ2
maxβ}

)2 ∥∥∥∇L(w(Mt)
0)

∥∥∥2
≤
(
1 +

ηKσ3
maxβ

ϕ{1− ηMKσ2
maxβ}

)2

MK

∞∑
t=0

∥∥∥∇L(w(Mt)
0)

∥∥∥2 <∞

The boundedness of infinite sum of nonzero elements means limt→∞

∥∥∥∇L(w(t)
k)
∥∥∥2 = 0,∀k ∈

[0 : K − 1]. This leads to limt→∞ ℓ′(x⊤
i w

(t)
k) = 0,∀i ∈ I, k ∈ [0 : K − 1] by Lemma D.2.

Since ℓ′(u) → 0 only when u → ∞, we obtain x⊤
i w

(t)
k → ∞,∀i ∈ I, k ∈ [0 : K − 1] and

limt→∞ L(w(t)
k) = 0,∀k ∈ [0 : K−1]. Finally, we obtain that

∑∞
t=0

∑K−1
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 <∞
followed by ∥∥∥∇L(w(t)

k)
∥∥∥ ≥ ϕ

√∑
i∈I

[
ℓ′(x⊤

i w
(t)
k)
]2
≥ ϕ

√√√√∑
i∈I(t)

[
ℓ′(x⊤

i w
(t)
k)
]2

≥ ϕ

σmax

∥∥∥∥∥∥
∑

i∈I(t)

ℓ′(x⊤
i w

(t)
k)xi

∥∥∥∥∥∥ =
ϕ

σmax
η−1

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥ ,
where in the first inequality, we use Lemma D.2 and in the third ineqaultiy, we use the fact ∀λs ∈ R :∥∥∑

s∈I λsxs

∥∥
2
≤ σmax

√∑
s∈I λ

2
s. The last equality is true by the definition of gradient descent.

D.1.1 PROOF OF LEMMA D.1

For all t ∈ N,m ∈ [0 : M − 1], k ∈ [0 : K − 1]∥∥∥∥∥w(t+m)
k −w

(t)
0 + η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0) + k∇L(t+m)(w

(t)
0)

)∥∥∥∥∥
=

∥∥∥∥∥η
m−1∑
i=0

K−1∑
j=0

(
∇L(t+i)(w

(t)
0)−∇L(t+i)(w

(t+i)
j)

)
+ η

k−1∑
j=0

(
∇L(t+m)(w

(t)
0)−∇L(t+m)(w

(t+m)
j)

)∥∥∥∥∥
27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

=

∥∥∥∥∥∥η
m−1∑
i=0

K−1∑
j=0

∑
s∈I(t+i)

(
ℓ′(x⊤

s w
(t)
0)− ℓ′(x⊤

s w
(t+i)
j)

)
xs + η

k−1∑
j=0

∑
s∈I(t+m)

(
ℓ′(x⊤

s w
(t)
0)− ℓ′(x⊤

s w
(t+m)
j)

)
xs

∥∥∥∥∥∥
≤ η

m−1∑
i=0

K−1∑
j=0

∥∥∥∥∥∥
∑

s∈I(t+i)

(
ℓ′(x⊤

s w
(t)
0)− ℓ′(x⊤

s w
(t+i)
j)

)
xs

∥∥∥∥∥∥+ η

k−1∑
j=0

∥∥∥∥∥∥
∑

s∈I(t+m)

(
ℓ′(x⊤

s w
(t)
0)− ℓ′(x⊤

s w
(t+m)
j)

)
xs

∥∥∥∥∥∥
holds by triangle inequality. Then

η

m−1∑
i=0

K−1∑
j=0

∥∥∥∥∥∥
∑

s∈I(t+i)

(
ℓ′(x⊤

s w
(t)
0)− ℓ′(x⊤

s w
(t+i)
j)

)
xs

∥∥∥∥∥∥+ η

k−1∑
j=0

∥∥∥∥∥∥
∑

s∈I(t+m)

(
ℓ′(x⊤

s w
(t)
0)− ℓ′(x⊤

s w
(t+m)
j)

)
xs

∥∥∥∥∥∥
≤ ησmax

m−1∑
i=0

K−1∑
j=0

√√√√ ∑
s∈I(t+i)

(
ℓ′(x⊤

s w
(t)
0)− ℓ′(x⊤

s w
(t+i)
j)

)2
+ ησmax

k−1∑
j=0

√√√√ ∑
s∈I(t+m)

(
ℓ′(x⊤

s w
(t)
0)− ℓ′(x⊤

s w
(t+m)
j)

)2

≤ ησmaxβ

m−1∑
i=0

K−1∑
j=0

√√√√ ∑
s∈I(t+i)

[
x⊤

s

(
w

(t)
0 −w

(t+i)
j

)]2
+ ησmaxβ

k−1∑
j=0

√√√√ ∑
s∈I(t+m)

[
x⊤

s

(
w

(t)
0 −w

(t+m)
j

)]2

≤ ησ2
maxβ

m−1∑
i=0

K−1∑
j=0

∥∥∥w(t+i)
j −w

(t)
0

∥∥∥+ ησ2
maxβ

k−1∑
j=0

∥∥∥w(t+m)
j −w

(t)
0

∥∥∥ (16)

The first inequality comes from the fact ∀λs ∈ R :
∥∥∑

s∈I λsxs

∥∥
2
≤ σmax

√∑
s∈I λ

2
s. The next one

comes from β-smoothness, and the last inequality holds since ∀v ∈ Rd :
∑

s∈I(x
⊤
s v)

2 ≤ σ2
max ∥v∥

2.
Then we get∥∥∥w(t+m)

k −w
(t)
0

∥∥∥
≤

∥∥∥∥∥−η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0) + k∇L(t+m)(w

(t)
0)

)∥∥∥∥∥
+

∥∥∥∥∥w(t+m)
k −w

(t)
0 + η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0) + k∇L(t+m)(w

(t)
0)

)∥∥∥∥∥
≤ η

∥∥∥∥∥∥K
m−1∑
i=0

∑
s∈I(t+i)

ℓ′(x⊤
s w

(t)
0)xs + k

∑
s∈I(t+m)

ℓ′(x⊤
s w

(t)
0)xs

∥∥∥∥∥∥
+

∥∥∥∥∥w(t+m)
k −w

(t)
0 + η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0) + k∇L(t+m)(w

(t)
0)

)∥∥∥∥∥
≤ ησmax

√√√√m−1∑
i=0

∑
s∈I(t+i)

(
Kℓ′(x⊤

s w
(t)
0)
)2

+
∑

s∈I(t+m)

(
kℓ′(x⊤

s w
(t)
0)
)2

+

∥∥∥∥∥w(t+m)
k −w

(t)
0 + η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0) + k∇L(t+m)(w

(t)
0)

)∥∥∥∥∥
≤ ηKσmax

√∑
s∈I

(
ℓ′(x⊤

s w
(t)
0)
)2

+

∥∥∥∥∥w(t+m)
k −w

(t)
0 + η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0) + k∇L(t+m)(w

(t)
0)

)∥∥∥∥∥
Then by (16) and Lemma D.2, we obtain∥∥∥w(t+m)

k −w
(t)
0

∥∥∥
≤ ηKσmax

ϕ

∥∥∥∇L(w(t)
0)
∥∥∥+ ησ2

maxβ

m−1∑
i=0

K−1∑
j=0

∥∥∥w(t+i)
j −w

(t)
0

∥∥∥+ k−1∑
j=0

∥∥∥w(t+m)
j −w

(t)
0

∥∥∥

(17)

Here, we use a lemma in Nacson et al. (2019).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Lemma D.3 (Nacson et al. (2019)). For some ϵ and θ, let δk ≤ θ + ϵ
∑k−1

u=0 δu holds for all k. Then

δk ≤
θ

1− kϵ

and
k−1∑
u=0

δu ≤
kθ

1− kϵ

By applying the lemma to (17), we obtain∥∥∥w(t+m)
k −w

(t)
0

∥∥∥ ≤ ηKσmax

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0)
∥∥∥

and ∥∥∥∥∥w(t+m)
k −w

(t)
0 + η

(
K

m−1∑
i=0

∇L(t+i)(w
(t)
0) + k∇L(t+m)(w

(t)
0)

)∥∥∥∥∥
≤ ησ2

maxβ

m−1∑
i=0

K−1∑
j=0

∥∥∥w(t+i)
j −w

(t)
0

∥∥∥+ k−1∑
j=0

∥∥∥w(t+m)
j −w

(t)
0

∥∥∥

≤ η2(mK + k)Kσ3
maxβ

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0)
∥∥∥ .

Finally, ∥∥∥∇L(w(t+m)
k)−∇L(w(t)

0)
∥∥∥ ≤ σ2

maxβ
∥∥∥w(t+m)

k −w
(t)
0

∥∥∥
≤ ηKσ3

maxβ

ϕ{1− η(mK + k)σ2
maxβ}

∥∥∥∇L(w(t)
0)
∥∥∥

D.1.2 PROOF OF LEMMA D.2

For all w ∈ Rd,

∥∇L(w)∥ =

∥∥∥∥∥∑
i∈I

ℓ′(x⊤
i w)xi

∥∥∥∥∥
≥
√∑

i∈I

[
ℓ′(x⊤

i w)
]2 · min

v∈RN
≥0

:∥v∥=1
∥Xv∥

Let v̂ := argminv∈RN
≥0

:∥v∥=1 ∥Xv∥. Then for max-margin direction ŵ, the following holds.

∥Xv̂∥ ≥

∥∥∥∥∥ ŵ

∥ŵ∥

⊤
Xv̂

∥∥∥∥∥ ≥ ϕ ∥v̂∥ = ϕ

We used Cauchy-Schwarz for the first inequality, and the definition of ŵ for the second one.

D.2 DIRECTIONAL CONVERGENCE ANALYSIS (PROOF OF THEOREM 3.2)

In this section, we prove Theorem 3.2 and further discuss the convergence of ρ(t)
k beyond bounded-

ness.
Theorem 3.2. Let {w(t)

k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given cyclically. Under Assumptions 3.1, 3.2, 3.3, and 3.4, if the learning rate

satisfies η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then w

(t)
k will behave as:

w
(t)
k = ln

(
K
M t
)
ŵ + ρ

(t)
k ,

where ∥ρ(t)
k ∥ stays bounded as t grows.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Note that we use Assumption 3.2, the unique existence of SVM dual variables α that satisfies

ŵ =
∑
s∈S

αsxs

∀s ∈ S : αs > 0,∀s /∈ S : αs = 0

This assumption holds for almost all data (Soudry et al., 2018).

When the tasks are given in a cyclic order, the following lemma holds. Note that the lemma does not
depend on the algorithm.

Lemma D.4. When tasks are given cyclic, there exists w̌,m1(t, k) ∈ Rd the following holds for all
t ∈ N, k ∈ [0 : K − 1].

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs =
K

M
log(

t

M
)ŵ +

K

M
w̌ +m1(t, k)

m1(t,K) := m1(t+ 1, 0)

such that ∥m1(t, k)∥ = o(t−0.5+ϵ), and ∥m1(t, k + 1)−m1(t, k)∥ = O(t−1) for all k ∈ [0 :
K − 1], ϵ > 0, and w̌ only depends on the order of tasks and constant with respect to t.

Proof. See Appendix D.2.1.

We set m1(t, k) and w̌ along Lemma D.4, and define ρ
(t)
k and r

(t)
k as

∀k ∈ [0 : K − 1] : w
(t)
k = log(

K

M
t)ŵ + ρ

(t)
k

= log(
K

M
t)ŵ + w̃ +

M

K
m1(t, k) + r

(t)
k ,

ρ
(t)
K = ρ

(t+1)
0 , r

(t)
K = r

(t+1)
0 ,

where w̃ is the solution of

∀i ∈ S : η exp (−x⊤
i w̃) = αi, P̄ (w̃ −w

(0)
0) = 0,

which is unique under Assumption 3.2. Then by the definition,

r
(t)
k = w

(t)
k −

M

K

(
K

M
log(

K

M
t)ŵ +m1(t, k)

)
− w̃

= w
(t)
k −

M

K

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs

− logKŵ − w̃ + w̌

Under these definitions, we can get the primary lemma of r(t)k .

Lemma D.5. Under Assumption 3.1, 3.3, 3.4, and Assumption 3.2, if learning rate is η <

min{ 1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}, then

1. ∃t̃, C1, C2 > 0 such that ∀t > t̃,

(r
(t)
k+1 − r

(t)
k)⊤r

(t)
k ≤ C1t

−θ + C2t
−1−0.5µ̃,∀k ∈ [0 : K − 1]

2. Moreover, for all ϵ1 > 0, ∃t̃∗, C3 > 0 such that if
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ1 and S(t) ̸= ∅,

(r
(t)
k+1 − r

(t)
k)⊤r

(t)
k ≤ −C3t

−1,∀t > t̃∗, k ∈ [0 : K − 1]

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Proof. See Appendix D.2.2.

By the definition of ρ(t)
k = w̃ + M

K m1(t, k) + r
(t)
k , it is enough to prove

∥∥∥r(t)k

∥∥∥ is bounded.

∥∥∥r(t)k+1

∥∥∥2 − ∥∥∥r(t)k

∥∥∥2 = 2(r
(t)
k+1 − r

(t)
k)⊤r

(t)
k +

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2
For all k ∈ [0 : K − 2], let a(t)

k := M
K (m1(t, k + 1) − m1(t, k)). And let a(t)

K−1 := log(1 +
1
t)ŵ + M

K (m1(t + 1, 0) − m1(t,K − 1)). Since w
(t)
k = log(K

M t)ŵ + w̃ + M
K m1(t, k) + r

(t)
k ,∥∥∥r(t)k+1 − r

(t)
k

∥∥∥2 =
∥∥∥w(t)

k+1 −w
(t)
k − a

(t)
k

∥∥∥2. Also, by Lemma D.4,
∥∥∥a(t)

k

∥∥∥ = O(t−1). Thus, ∃t1

such that ∀t ≥ t1,∀k ∈ [0 : K − 1] :
∥∥∥a(t)

k

∥∥∥ ≤ t−1.

Now we can get the following for all T ≥ t1.
T∑

t=t1

K−1∑
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 =
T∑

t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k − a

(t)
k

∥∥∥2
=

T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + T∑
t=t1

K−1∑
k=0

2(w
(t)
k −w

(t)
k+1)

⊤a
(t)
k +

T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2

≤
T∑

t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + 2

√√√√ T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2 + T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2

≤
T∑

t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + 2

√√√√ T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 T∑
t=t1

K−1∑
k=0

t−2 +

T∑
t=t1

K−1∑
k=0

t−2

<∞ (18)

We use Cauchy-Schwarz inequality for the first inequality and the factor that
∑T

t=t1
t−2 <∞ and∑T

t=t1

∑K−1
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 <∞ by Theorem 3.1.

Combined with Lemma D.5 and the fact that ∀c > 1 :
∑∞

t=1 t
−c <∞, we get∥∥∥r(t)0

∥∥∥2 − ∥∥∥r(t1)0

∥∥∥2 =

t−1∑
u=t1

K−1∑
k=0

(∥∥∥r(u)k+1

∥∥∥2 − ∥∥∥r(u)k

∥∥∥2)

=

t−1∑
u=t1

K−1∑
k=0

(
2(r

(u)
k+1 − r

(u)
k)⊤r

(u)
k +

∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2) <∞

Hence
∥∥∥r(t)k

∥∥∥ is bounded.

D.2.1 PROOF OF LEMMA D.4

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs

= K

⌊ t−1
M ⌋M∑
u=1

1

u

∑
s∈S(u)

αsxs +K

t−1∑
u=⌊ t−1

M ⌋M+1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs

= K

⌊ t−1
M ⌋M∑
u=1

1

u

∑
s∈S(u)

αsxs +m′(t, k)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

= K

⌊ t−1
M ⌋∑

u=1

 M∑
v=1

1

v +M(u− 1)

 ∑
s∈S(v)

αsxs

+m′(t, k)

= K

M∑
v=1

⌊ t−1
M ⌋∑

u=1

1

v +M(u− 1)

 ∑
s∈S(v)

αsxs

+m′(t, k)

Note that m′(t, k) and m′(t, k + 1)−m′(t, k) are both O(t−1) for all k ∈ [0 : K − 1]. For every v,

⌊ t−1
M ⌋∑

u=1

1

v +M(u− 1)

 ∑
s∈S(v)

αsxs

=

⌊ t−1
M ⌋∑

u=1

[
1

Mu
+

1− v
M

Mu2 + (v −M)u

] ∑
s∈S(v)

αsxs

=

 1

M

(
log

(
⌊ t− 1

M
⌋
)
+ γ +O(t−1)

)
+

⌊ t−1
M ⌋∑

u=1

1− v
M

Mu2 + (v −M)u

 ∑
s∈S(v)

αsxs

=

 1

M

(
log

(
t− 1

M

)
+ γ +O(t−1)

)
+

⌊ t−1
M ⌋∑

u=1

1− v
M

Mu2 + (v −M)u

 ∑
s∈S(v)

αsxs

=

 1

M

(
log

(
t

M

)
+ γ +O(t−1)

)
+

⌊ t−1
M ⌋∑

u=1

1− v
M

Mu2 + (v −M)u

 ∑
s∈S(v)

αsxs

where in the last three equality, we use the fact

t∑
u=1

1

u
= log t+ γ +O(t−1)

log (t)− log (⌊t⌋) = O(t−1)

log (t)− log (t− 1) = O(t−1)

where γ is the Euler-Mascheroni constant. Since 1 ≤ v ≤ M , 1− v
M

Mu2+(v−M)u ≤
1− v

M

vu2 . Therefore,∑
u

1− v
M

Mu2+(v−M)u converges with a rate O(t−1).

⌊ t−1
M ⌋∑

u=1

1− v
M

Mu2 + (v −M)u
=

∞∑
u=1

1− v
M

Mu2 + (v −M)u
−

∞∑
u=⌊ t−1

M ⌋+1

1− v
M

Mu2 + (v −M)u

=

∞∑
u=1

1− v
M

Mu2 + (v −M)u
+O(t−1)

Hence,

K

M∑
v=1

⌊ t−1
M ⌋∑

u=1

1

v +M(u− 1)

 ∑
s∈S(v)

αsxs

=

K

M

(
log

t

M
+ γ

)(∑
s∈S

αsxs

)
+K

M∑
v=1

∞∑
u=1

1− v
M

Mu2 + (v −M)u

 ∑
s∈S(v)

αsxs

+m′′(t)

=
K

M

(
log

t

M
+ γ

)
ŵ +K

M∑
v=1

∞∑
u=1

1− v
M

Mu2 + (v −M)u

 ∑
s∈S(v)

αsxs

+m′′(t)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

=
K

M
log(

t

M
)ŵ +

K

M
w̌ +m′′(t)

where w̌ := γŵ +M
∑M

v=1

∑∞
u=1

1− v
M

Mu2+(v−M)u

(∑
s∈S(v) αsxs

)
, and m′′(t) = O(t−1).

Finally, for all k ∈ [0 : K − 1] let

m1(t, k) := K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs −
K

M
log(

t

M
)ŵ − K

M
w̌

and

m1(t,K) := m1(t+ 1, 0)

Then m1(t, k) = m′(t, k) +m′′(t) = O(t−1), and

∀k ∈ [0 : K − 1] : m1(t, k + 1)−m1(t, k) =
1

t

∑
s∈S(t)

αsxs = O(t−1)

m1(t+ 1, 0)−m1(t,K − 1) =
1

t

∑
s∈S(t)

αsxs −
K

M
log(1 + t−1)ŵ = O(t−1)

D.2.2 PROOF OF LEMMA D.5

We use Assumption 3.4 here. That is, there exist positive constants µ+, µ−, and ū such that ∀u > ū :

(1− exp(−µ−u))e
−u ≤ −ℓ′(u) ≤ (1 + exp(−µ+u))e

−u

By definition,

∀k ∈ [0 : K − 1] : r
(t)
k = w

(t)
k −

M

K

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs

− logKŵ − w̃ + w̌

r
(t)
K = r

(t+1)
0

Then for all k ∈ [0 : K − 1], we get

r
(t)
k+1 − r

(t)
k = w

(t)
k+1 −w

(t)
k −

M

Kt

∑
s∈S(t)

αsxs

= −η
∑

s∈I(t)

ℓ′(x⊤
s w

(t)
k)xs −

M

Kt

∑
s∈S(t)

αsxs

= −η
∑

s∈I(t)\S(t)

ℓ′(x⊤
s w

(t)
k)xs −

∑
s∈S(t)

[
ηℓ′(x⊤

s w
(t)
k) +

M

Kt
αs

]
xs

Hence,

(
r
(t)
k+1 − r

(t)
k

)⊤
r
(t)
k = −η

∑
s∈I(t)\S(t)

ℓ′(x⊤
s w

(t)
k)x⊤

s r
(t)
k −

∑
s∈S(t)

[
ηℓ′(x⊤

s w
(t)
k) +

M

Kt
αs

]
x⊤
s r

(t)
k

= −η
∑

s∈I(t)\S(t)

ℓ′
(
log(

K

M
t)x⊤

s ŵ +
M

K
x⊤
s m1(t, k) + x⊤

s w̃ + x⊤
s r

(t)
k

)
x⊤
s r

(t)
k

(19)

−
∑

s∈S(t)

[
ηℓ′
(
log(

K

M
t) +

M

K
x⊤
s m1(t, k) + x⊤

s w̃ + x⊤
s r

(t)
k

)
+

M

Kt
αs

]
x⊤
s r

(t)
k

(20)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

The behavior of each term can be analyzed when stage t is large. To achieve this, we first characterize
five stages.

t5 := min{t′ | ∀t ≥ t′,∀k ∈ [0 : K − 1],∀s ∈ I : x⊤
s w

(t)
k ≥ ū}

t6 := min{t′ | ∀t ≥ t′,∀k ∈ [0 : K − 1],∀s ∈ I : x⊤
s w

(t)
k ≥ 0}

t7 := min{t′ | ∀t ≥ t′,∀k ∈ [0 : K − 1],∀s ∈ I : exp

(
−M

K
x⊤
s m1(t, k)

)
≤ 2}

t8 := min{t′ | ∀t ≥ t′,∀k ∈ [0 : K − 1],∀s ∈ I : exp

(
−M

K
x⊤
s m1(t, k)

)
≥ 1

2
}

t9 := min{t′ | ∀t ≥ t′,∀k ∈ [0 : K − 1],∀s ∈ I : exp
(
−µ−x

⊤
s w

(t)
k

)
≤ 1

2
}

Such t5 ∼ t9 exist since ∀s ∈ I, ∀k ∈ [0 : K − 1] : limt→∞ x⊤
s w

(t)
k = ∞ by Theorem 3.1, and

∀k ∈ [0 : K − 1] : limt→∞ ∥m1(t, k)∥ = 0 by Lemma D.4.

Then for all t ≥ max{t5, t6, t7, t8, t9}, the first term (19) can be upper bounded as below:

− η
∑

s∈I(t)\S(t)

ℓ′(x⊤
s w

(t)
k)x⊤

s r
(t)
k ≤ −η

∑
s∈I(t)\S(t)

x⊤
s r

(t)
k >0

ℓ′(x⊤
s w

(t)
k)x⊤

s r
(t)
k

≤ η
∑

s∈I(t)\S(t)

x⊤
s r

(t)
k >0

(
1 + exp(−µ+x

⊤
s w

(t)
k)
)
exp(−x⊤

s w
(t)
k)x⊤

s r
(t)
k t ≥ t5

≤ η
∑

s∈I(t)\S(t)

x⊤
s r

(t)
k >0

2 exp

(
− log(

K

M
t)x⊤

s ŵ −
M

K
x⊤
s m1(t, k)− x⊤

s w̃ − x⊤
s r

(t)
k

)
x⊤
s r

(t)
k t ≥ t6

≤
∑

s∈I(t)\S(t)

x⊤
s r

(t)
k >0

2αs exp

(
− log(

K

M
t)x⊤

s ŵ −
M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
x⊤
s r

(t)
k (21)

≤
∑

s∈I(t)\S(t)

x⊤
s r

(t)
k >0

2αs exp

(
− log(

K

M
t)x⊤

s ŵ −
M

K
x⊤
s m1(t, k)

)
(22)

≤
∑

s∈I(t)\S(t)

x⊤
s r

(t)
k >0

4αs exp

(
− log(

K

M
t)x⊤

s ŵ

)
t ≥ t7

(23)

≤ 4N(max
s

αs)

(
Kt

M

)−θ

(24)

where in (21) we use the definition of w̃, in (22) we use the fact ∀x ≥ 0 : x exp(−x) ≤ 1, and in
(24) we use ∀s ∈ I(t) \ S(t) : x⊤

s ŵ ≥ θ. Now we examine the second term (20). Given t ≥ t5, it can
be divided into two cases.

−ℓ′(x⊤
s w

(t)
k)x⊤

s r
(t)
k ≤

(
1 + exp(−µ+x

⊤
s w

(t)
k)
)
exp(−x⊤

s w
(t)
k)x⊤

s r
(t)
k if x⊤

s r
(t)
k > 0(

1− exp(−µ−x
⊤
s w

(t)
k)
)
exp(−x⊤

s w
(t)
k)x⊤

s r
(t)
k if x⊤

s r
(t)
k ≤ 0

For each s ∈ S, define A
(t)
s,k as

A
(t)
s,k :=

{
1 + exp(−µ+x

⊤
s w

(t)
k) if x⊤

s r
(t)
k > 0

1− exp(−µ−x
⊤
s w

(t)
k) if x⊤

s r
(t)
k ≤ 0

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Then, we can use

−ℓ′(x⊤
s w

(t)
k)x⊤

s r
(t)
k ≤ A

(t)
s,k exp(−x

⊤
s w

(t)
k)x⊤

s r
(t)
k

in any s ∈ S, k ∈ [0 : K − 1]. Therefore the second term (20) is bounded

−
∑

s∈S(t)

[
ηℓ′
(
log

(
K

M
t

)
+

M

K
x⊤
s m1(t, k) + x⊤

s w̃ + x⊤
s r

(t)
k

)
+

M

Kt
αs

]
x⊤
s r

(t)
k

≤
∑

s∈S(t)

[
ηA

(t)
s,k exp

(
− log

(
K

M
t

)
− M

K
x⊤
s m1(t, k)− x⊤

s w̃ − x⊤
s r

(t)
k

)
− M

Kt
αs

]
x⊤
s r

(t)
k

=
∑

s∈S(t)

[
A

(t)
s,k

Mαs

Kt
exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− M

Kt
αs

]
x⊤
s r

(t)
k

=
∑

s∈S(t)

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

Now we analyze each s ∈ S(t) by dividing into cases. Note that
∣∣M
K x⊤

s m1(t, k)
∣∣ = o(t−0.5+ϵ) for

all ϵ > 0. Therefore if we set µ̃ = min{µ+, µ−, 0.25}, then
∣∣M
K x⊤

s m1(t, k)
∣∣ = o(t−µ̃).

1. if 0 ≤ x⊤
s r

(t)
k ≤ C7t

−0.5µ̃:

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

≤
[
2 exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k t ≥ t6

≤
[
4 exp

(
−x⊤

s r
(t)
k

)
− 1
]
x⊤
s r

(t)
k t ≥ t7

≤
(
max

s
αs

) 4MC7

K
t−1−0.5µ̃

The last inequality holds by the case condition 0 ≤ x⊤
s r

(t)
k ≤ C7t

−0.5µ̃.

2. if −C7t
−0.5µ̃ ≤ x⊤

s r
(t)
k ≤ 0:

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

=
M

Kt
αs

[
1−A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)] ∣∣∣x⊤
s r

(t)
k

∣∣∣
≤ M

Kt
αs

∣∣∣x⊤
s r

(t)
k

∣∣∣ ≤ M

Kt
αs · C7t

−0.5µ̃

≤
(
max

s
αs

)MC7

K
t−1−0.5µ̃

3. if C7t
−0.5µ̃ < x⊤

s r
(t)
k :

Here, we first examine A
(t)
s,k.

A
(t)
s,k = 1 + exp(−µ+x

⊤
s w

(t)
k)

= 1 + exp

(
−µ+

(
log

(
K

M
t

)
+

M

K
x⊤
s m1(t, k) + x⊤

s w̃ + x⊤
s r

(t)
k

))
≤ 1 + exp

(
−µ+

(
log

(
K

M
t

)
+

M

K
x⊤
s m1(t, k) + x⊤

s w̃

))
≤ 1 + 2µ+ exp

(
−µ+

(
log

(
K

M
t

)
+ x⊤

s w̃

))
t ≥ t7

≤ 1 + C8t
−µ+

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Therefore,

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

≤ M

Kt
αs

[(
1 + C8t

−µ+
)
exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

≤ M

Kt
αs

[(
1 + C8t

−µ+
)
exp

(
−M

K
x⊤
s m1(t, k)− C7t

−0.5µ̃

)
− 1

]
x⊤
s r

(t)
k (25)

Since t ≥ t7, −M
K x⊤

s m1(t, k) ≤ 1. Now we use the fact ∀x ≤ 1 : expx ≤ 1 + x+ x2.

exp

(
−M

K
x⊤
s m1(t, k)

)
≤ 1− M

K
x⊤
s m1(t, k) +

(
M

K
x⊤
s m1(t, k)

)2

exp
(
−C7t

−0.5µ̃
)
≤ 1− C7t

−0.5µ̃ + C2
7 t

−µ̃

Then we get(
1 + C8t

−µ+
)
exp

(
−M

K
x⊤
s m1(t, k)− C7t

−0.5µ̃

)
≤

(
1− M

K
x⊤
s m1(t, k) +

(
M

K
x⊤
s m1(t, k)

)2
)(

1− C7t
−0.5µ̃

)
+ o(t−µ+)

≤ 1− M

K
x⊤
s m1(t, k) +

(
M

K
x⊤
s m1(t, k)

)2

− C7t
−0.5µ̃ + o(t−µ+)

≤ 1− C7t
−0.5µ̃ + o(t−µ̃)

where in the last two inequality, we use
∣∣M
K x⊤

s m1(t, k)
∣∣ = o(t−µ̃).

Finally, Equation (25) is bounded

M

Kt
αs

[(
1 + C8t

−µ+
)
exp

(
−M

K
x⊤
s m1(t, k)− C7t

−0.5µ̃

)
− 1

]
x⊤
s r

(t)
k

≤ M

Kt
αs

[
−C7t

−0.5µ̃ + o(t−µ̃)
]
x⊤
s r

(t)
k

Since −C7t
−0.5µ̃ decrease to zero slower than the other term, ∃t+ ≥ max{t5, t6, t7, t8, t9} such

that for all t ≥ t+, the last term is negative.

4. if x⊤
s r

(t)
k < −C7t

−0.5µ̃:

Since x⊤
s r

(t)
k < 0, it is enough to show that A

(t)
s,k exp

(
−M

K x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
> 1

for sufficiently large t. Note that A
(t)
s,k = 1 − exp(−µ−x

⊤
s w

(t)
k) > 0 since t ≥ t6. If

exp
(
−x⊤

s r
(t)
k

)
≥ 4,

A
(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
≥ 4(1− exp(−µ−x

⊤
s w

(t)
k)) exp

(
−M

K
x⊤
s m1(t, k)

)
≥ 1

The last inequality holds by t ≥ max{t8, t9}. Now, if exp
(
−x⊤

s r
(t)
k

)
< 4,

A
(t)
s,k = 1− exp

(
−µ−

(
log

(
K

M
t

)
+

M

K
x⊤
s m1(t, k) + x⊤

s w̃ + x⊤
s r

(t)
k

))
≥ 1−

(
4Kt

M

)−µ−

exp

(
−µ−

(
M

K
x⊤
s m1(t, k) + x⊤

s w̃

))

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

≥ 1−
(
8Kt

M

)−µ−

exp
(
−µ−x

⊤
s w̃
)
≥ 1− C9t

−µ− t ≥ t7

Also, by the fact ∀x : expx ≥ 1 + x,

exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
≥
(
1− M

K
x⊤
s m1(t, k)

)(
1− x⊤

s r
(t)
k

)
Combined with the former inequality,

A
(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
≥
(
1− C9t

−µ−
)(

1− M

K
x⊤
s m1(t, k)

)(
1− x⊤

s r
(t)
k

)
≥
(
1− C9t

−µ−
) (

1 + o(t−µ̃)
) (

1 + C7t
−0.5µ̃

)
= 1 + C7t

−0.5µ̃ − o(t−µ̃)

Since C7t
−0.5µ̃ decrease to zero slower than the other term, ∃t− ≥ max{t5, t6, t7, t8, t9} such

that for all t ≥ t−, the last equation is larger than 1.

To sum up, there exist C1, C2 > 0, t̃ ≥ max{t+, t−} such that for all t ≥ t̃,

(r
(t)
k+1 − r

(t)
k)⊤r

(t)
k ≤ C1t

−θ + C2t
−1−0.5µ̃,∀k ∈ [0 : K − 1]

Now we consider special cases to finish the lemma. For any ϵ2 > 0, the following analysis holds.

1. If x⊤
s r

(t)
k ≥ ϵ2 > 0:

Since limt→∞ m1(t, k) = 0, there exist t∗1 ≥ max{t+, t−} such that ∀t ≥ t∗1,∀s ∈ S, ∀k ∈ [0 :

K − 1] :
∣∣M
K x⊤

s m1(t, k)
∣∣ < 0.5ϵ2. Also since limt→∞ x⊤

s w
(t)
k →∞, there exist t∗+ ≥ t∗1 such

that ∀t ≥ t∗+,∀s ∈ S,∀k ∈ [0 : K − 1] : exp
(
−µ+x

⊤
s w

(t)
k

)
≤ exp(0.25ϵ2)− 1. Therefore for

t ≥ t∗+,

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

≤ M

Kt
αs

[(
1 + exp(−µ+x

⊤
s w

(t)
k)
)
exp(−0.5ϵ2)− 1

]
x⊤
s r

(t)
k t ≥ t∗1

≤ M

Kt
αs (exp(−0.25ϵ2)− 1)x⊤

s r
(t)
k t ≥ t∗+

≤ min
s

αs
M

K
(exp(−0.25ϵ2)− 1) ϵ2

1

t
= −C ′′

+t
−1

2. If x⊤
s r

(t)
k ≤ −ϵ2 < 0:

Again, since limt→∞ x⊤
s w

(t)
k → ∞, there exist t∗− ≥ t∗1 such that ∀t ≥ t∗−,∀s ∈ S,∀k ∈ [0 :

K − 1] : 1− exp
(
−µ−x

⊤
s w

(t)
k

)
≥ exp(−0.25ϵ2). Therefore for t ≥ t∗−,

M

Kt
αs

[
A

(t)
s,k exp

(
−M

K
x⊤
s m1(t, k)− x⊤

s r
(t)
k

)
− 1

]
x⊤
s r

(t)
k

≤ M

Kt
αs

[(
1− exp(−µ−x

⊤
s w

(t)
k)
)
exp(0.5ϵ2)− 1

]
x⊤
s r

(t)
k t ≥ t∗1

≤ M

Kt
αs (exp(0.25ϵ2)− 1)x⊤

s r
(t)
k t ≥ t∗−

≤ −min
s

αs
M

K
(exp(0.25ϵ2)− 1) ϵ2

1

t
= −C ′′

−t
−1

In conclusion, for any ϵ1 > 0, if
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ1 and S(t) ̸= ∅, then

max
s∈S(t)

∣∣∣x⊤
s r

(t)
k

∣∣∣2 = max
s∈S(t)

∣∣∣(P⊤xs

)⊤
r
(t)
k

∣∣∣2 ≥ 1∣∣S(t)
∣∣ ∑
s∈S(t)

∣∣∣x⊤
s Pr

(t)
k

∣∣∣2

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

=
1∣∣S(t)
∣∣ ∥∥∥X⊤

S(t)Pr
(t)
k

∥∥∥2 ≥ 1∣∣S(t)
∣∣σ2

min(XS(t))
∥∥∥Pr

(t)
k

∥∥∥2 ≥ 1∣∣S(t)
∣∣σ2

min(XS(t))ϵ21

where XS(t) ∈ Rd×|S(t)| is a matrix which has {xs | s ∈ S(t)} as its columns. By Assumption 3.2,
σmin(XS(t)) is non-zero. Therefore, for all ϵ1 > 0, ∃t̃∗, C3 > 0 such that if

∥∥∥Pr
(t)
k

∥∥∥ ≥ ϵ1 and

S(t) ̸= ∅,

(r
(t)
k+1 − r

(t)
k)⊤r

(t)
k ≤ −C3t

−1,∀t > t̃∗, k ∈ [0 : K − 1]

D.2.3 CONVERGENCE OF ρ
(t)
k

Theorem 3.2 only shows boundedness of ρ(t)
k . Yet, if additional mild assumption on data is given, it

can be guaranteed for ρ(t)
k to converge to the particular vector.

Assumption D.1. Support vectors span dataset. That is, rank{xi : i ∈ S} = rank{xi : i ∈ I}.
Proposition D.6. Under the same setting as Theorem 3.2 with an additional Assumption D.1, the

“residual” converges to limt→∞ ρ
(t)
k = w̃,∀k ∈ [0 : K − 1]. Here, w̃ is the unique solution of the

following system of equations

∀i ∈ S : η exp (−x⊤
i w̃) = αi, (I − P)(w̃ −w

(0)
0) = 0,

where P ∈ Rd×d is the orthogonal projection matrix to the space spanned by the joint support
vectors indexed by S.

We set P̄ = I − P for the convenience of proof.

Proof. By the definition of ρ(t)
k = w̃ + M

K m1(t, k) + r
(t)
k , it is enough to prove limt→∞ r

(t)
k = 0.

First of all, since w
(t)
k = log(K

M t)ŵ + w̃ + M
K m1(t, k) + r

(t)
k ,

P̄r
(t)
k = P̄w

(t)
k − log(

K

M
t)P̄ ŵ − P̄ w̃ − M

K
P̄m1(t, k)

= P̄w
(0)
0 − log(

K

M
t)P̄ ŵ − P̄ w̃ − M

K
P̄m1(t, k)

= P̄w
(0)
0 − P̄ w̃ = 0

The first line holds under the Assumption D.1 since∇L(w) is a linear combination of the columns of
X . that is, ∀l < t : P̄∇L(l)(w) = 0. Remaining lines are true by the definition.

Second, we get to show Pr
(t)
k → 0. By Equation (18), limT→∞

∑T
t=t1

∑K−1
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 =

C4. That means ∀k ∈ [0 : K − 1] : limT→∞

∥∥∥r(T)
k+1 − r

(T)
k

∥∥∥ = 0. Therefore, for any ϵ0, there exists

t2 > 0 such that
∥∥∥r(t)k+1 − r

(t)
k

∥∥∥ < ϵ0
K for all t ≥ t2, k ∈ [0 : K − 1]. As a result,∥∥∥Pr

(t)
0

∥∥∥+ k

K
ϵ0 ≥

∥∥∥Pr
(t)
k

∥∥∥ ≥ ∥∥∥Pr
(t)
0

∥∥∥− k

K
ϵ0

For t ≥ max{t1, t2, t̃∗}, if
∥∥∥Pr

(t)
0

∥∥∥ ≥ ϵ1 + ϵ0 and S(t) ̸= ∅, then ∀k ∈ [0 : K − 1] :
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ1.
By Lemma D.5 (2),

∀m ∈ [0 : M − 1] :

t+m∑
u=t

K−1∑
v=0

(r
(u)
v+1 − r(u)v)⊤r(u)v ≤ −KC3t

−1 +Km
(
C1t

−θ + C2t
−1−0.5µ̃

)
,

Since t−1 decrease to zero slower than t−θ and t−1−0.5µ̃, there exists t3 > max{t1, t2, t̃∗}, C4 > 0
such that−KC3t

−1+Km
(
C1t

−θ + C2t
−1−0.5µ̃

)
≤ −C5t

−1. To sum up, for any ϵ0, ϵ2 > 0, there

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

exists t3 > max{t1, t2, t̃∗} such that if
∥∥∥Pr

(t)
0

∥∥∥ ≥ ϵ0 + ϵ1 and S((t)) ̸= ∅, then

∀m ∈ [0 : M − 1] :

t+m∑
u=t

K−1∑
v=0

(r
(u)
v+1 − r(u)v)⊤r(u)v ≤ −C5t

−1,

Now, define two sets for each k ∈ [0 : K − 1]

Tk := {t > t3 :
∥∥∥Pr

(t)
k

∥∥∥ < ϵ0 + ϵ1}

T̄k := {t > t3 :
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ0 + ϵ1}

We will finish our proof by showing T̄k is finite.

First, every Tk is not empty nor finite. If there exists some k′ that T ′
k is empty or finite, then

∃tmax ∈ T̄ ′
k . Then∥∥∥Pr

(t)
0

∥∥∥2 − ∥∥∥Pr
(tmax)
0

∥∥∥2 =
∥∥∥r(t)0

∥∥∥2 − ∥∥∥r(tmax)
0

∥∥∥2
=

t−1∑
u=tmax

K−1∑
k=0

[∥∥∥r(u)k+1

∥∥∥2 − ∥∥∥r(u)k

∥∥∥2]

=

t−1∑
u=tmax

K−1∑
k=0

[∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2]+ 2

t−1∑
u=tmax

K−1∑
k=0

(r
(u)
k+1 − r

(u)
k)⊤r

(u)
k

≤ C4 + 2

t−1∑
u=tmax

∑
k ̸=k′

(r
(u)
k+1 − r

(u)
k)⊤r

(u)
k + (r

(u)
k′+1 − r

(u)
k′)⊤r

(u)
k′

≤ C4 + C6 + 2

∑
tmax≤u≤t−1

S(u) ̸=∅

(r
(u)
k′+1 − r

(u)
k′)⊤r

(u)
k′

≤ C4 + C6 − 2C3

∑
tmax≤u≤t−1

S(u) ̸=∅

u−1

The first inequality is true by Equation (18). Other inequalities hold by Lemma D.5. As t goes
infinity, the upper bound goes to negative infinity. However, it contradicts to the fact that

∥∥∥r(t)0

∥∥∥ is
bounded.

Before we move on the final step, note that limT→∞
∑T

t=t1

∑K−1
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 = C4 implies

t∑
u=t1

K−1∑
k=0

∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2 = C4 − h(t)

where h(t) is a positive function monotonic decreasing to zero.
Now, assume that there exists some k′ that T̄k is infinite. WLOG, we set k′ = 0. Since T0 is infinite,
for any t ∈ T̄0 there exists t′, t′′ ∈ T0 such that t ∈ [t′ +1, t′′ − 1] ⊂ T̄0. We divide it into two cases:
For all t ∈ [t′ + 1, t′′ − 1],

1. if |[t′ + 1, t]| < M , then
∥∥∥Pr

(t)
0

∥∥∥2 ≤ ∥∥∥Pr
(t′)
0

∥∥∥2 +Mϵ0 ≤ (M + 1)ϵ0 + ϵ1.

2. if |[t′ + 1, t]| ≥M , let t∗ = min{u ∈ [t′ + 1, t] : S(u) ̸= ∅}. Then∥∥∥Pr
(t)
0

∥∥∥2 =
∥∥∥Pr

(t∗)
0

∥∥∥2 + t−1∑
u=t∗

K−1∑
k=0

[∥∥∥r(u)k+1

∥∥∥2 − ∥∥∥r(u)k

∥∥∥2]

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

=
∥∥∥Pr

(t∗)
0

∥∥∥2 + t−1∑
u=t∗

K−1∑
k=0

[∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2 + 2(r
(u)
k+1 − r

(u)
k)⊤r

(u)
k

]

=
∥∥∥Pr

(t∗)
0

∥∥∥2 + h(t)− h(t∗) + 2

t−1∑
u=t∗

K−1∑
k=0

[
(r

(u)
k+1 − r

(u)
k)⊤r

(u)
k

]

≤ (Mϵ0 + ϵ0 + ϵ1)
2 + h(t)− 2C5

⌊ t−1−t∗
M ⌋∑

u=0

1

Mu+ t∗

≤ (Mϵ0 + ϵ0 + ϵ1)
2 + h(t)

Since h(t) is monotonic decreasing function, for any ϵ2 > 0, there exists t4 such that ∀t ≥ t4 :
h(t) < ϵ2.

Therefore, ∀t ≥ max{t3, t4} :
∥∥∥Pr

(t)
0

∥∥∥2 ≤ (Mϵ0 + ϵ0 + ϵ1)
2 + ϵ2. Since it holds for any ϵ0, ϵ1, ϵ2,

it contradicts with the assumption that T̄0 is infinite.

D.3 NON-ASYMPTOTIC LOSS CONVERGENCE ANALYSIS (PROOF OF THEOREM 3.3)

In this section, we show non-asymptotic loss convergence, as stated below:

Theorem 3.3. Under the same setting as Theorem 3.1 with an additional Assumption 3.5, for any
m ∈ [0 : M − 1] and k ∈ [0 : K − 1], we have

L(w(MJ+m)
k) ≤

(
|S|+

∑m−1
i=0 |Si|+ k

K |Sm|
J

)
ℓ(ln J) +

∥∥∥w(0)
0 − ŵ ln J

∥∥∥2
2ηKJ

+
D1

J

+

(
|I| − |S|+

∑m−1
i=0 (|Ii| − |Si|) + k

K (|Im| − |Sm|)
J

)
ℓ(θ ln J),

where θ > 1 is the second margin defined in Section 3.1, and

D1 :=
4σ2

max

ϕ2

(
L(w(0)

0) +

(
1 +

ηKσ3
maxβ

ϕ(1− ηMKσ2
maxβ)

)
ηKσmax

ϕ(1− ηMKσ2
maxβ)

∥∥∥∇L(w(0)
0)
∥∥∥2) .

Three major lemmas are used to prove Theorem 3.3. The first lemma is an extension of Lemma D.1.
When M tasks are given cyclic, the following lemma holds.

Lemma D.7. Let t ∈ N, l ∈ [0 : K − 1], m ∈ [0 : M − 1] and k ∈ [0 : K − 1]. If m = 0, then
l ≥ k. If m = M , then l ≤ k. For any t, l,m, k satisfying the condition,∥∥∥∥∥w(t+m)

l −w
(t)
k + η

(
(K − k + 1)∇L(t)(w

(t)
k)K

m−1∑
i=1

∇L(t+i)(w
(t)
k) + l∇L(t+m)(w

(t)
k)

)∥∥∥∥∥
≤ η2(mK + l − k)Kσ3

maxβ

ϕ{1− η(mK + l − k)σ2
maxβ}

∥∥∥∇L(w(t)
k)
∥∥∥ ,∥∥∥w(t+m)

l −w
(t)
k

∥∥∥ ≤ ηKσmax

ϕ{1− η(mK + l − k)σ2
maxβ}

∥∥∥∇L(w(t)
k)
∥∥∥ ,∥∥∥∇L(w(t+m)

l)−∇L(w(t)
k)
∥∥∥ ≤ ηKσ3

maxβ

ϕ{1− η(mK + l − k)σ2
maxβ}

∥∥∥∇L(w(l)
k)
∥∥∥ .

Proof. We omitted the proof since there are only a few changes from the proof of Appendix D.1.1.

The second and third lemmas represent two similar versions with respect to the common Gradient
Descent setting, and Continual Learning setting.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Lemma D.8. Suppose L is convex, and there exists β ≥ 0 so that 1 − ηβ ≥ 0 and weights
(w0, . . . ,wt) by wj+1 := wj − η∇L(wj) satisfy

L(wj+1) ≤ L(wj)− η (1− ηβ) ∥∇L(wj)∥2

Then for any z ∈ Rd,

2

t−1∑
j=0

η (L(wj)− L(z))−
t−1∑
j=0

η

1− ηβ
(L(wj)− L(wj+1)) ≤ ∥w0 − z∥2 − ∥wt − z∥2 .

Proof. See Appendix D.3.1.

Lemma D.9. Suppose L is convex, σ2
maxβ-smooth function and there exists β′ ≥ 0 so that η ≤

min{ 1
2MKσ2

maxβ
, 1
2Kβ′ } and weights (w(0)

0 , . . . ,w
(0)
K−1,w

(1)
0 , . . . ,w

(MJ+M)
K−1) by w

(p)
q+1 := w

(p)
q −

η∇L(p)(w
(p)
q), w(p+1)

0 := w
(p)
K satisfy, for all m ∈ [0 : M − 1] and k ∈ [0 : K − 1],

L(w(Mj+M+m)
k) ≤ L(w(Mj+m)

k)− ηK (1− ηKβ′)
∥∥∥∇L(w(Mj+m)

k)
∥∥∥2 .

Then for any z ∈ Rd,

2

J−1∑
j=0

ηK
(
L(w(Mj+M+m)

k)− L(z)
)

− 2ηMKσ4
maxβ

ϕ2(1− ηMKσ2
maxβ)

2

J−1∑
j=0

ηK

1− ηKβ′

(
L(w(Mj+m)

k)− L(w(Mj+M+m)
k)

)
≤
∥∥∥w(m)

k − z
∥∥∥2 − ∥∥∥w(MJ+m)

k − z
∥∥∥2 .

Proof. See Appendix D.3.2.

Note that Lemma D.9 holds only when jointly separable tasks are given cyclic, while Lemma D.8
always holds.

We follow the process of Appendix D.1 to show that it satisfies the condition in Lemma D.9. Since L
is a σ2

maxβ-smooth function, For all j ∈ [0 : J − 1],m ∈ [0 : M − 1], k ∈ [0 : K − 1] we get

L(w(Mj+M+m)
k)− L(w(Mj+m)

k)− σ2
maxβ

2

∥∥∥w(Mj+M+m)
k −w

(Mj+m)
k

∥∥∥2
≤ ∇L(w(Mj+m)

k)⊤(w
(Mj+M+m)
k −w

(Mj+m)
k)

= ∇L(w(Mj+m)
k)⊤(w

(Mj+M+m)
k −w

(Mj+m)
k − ηK∇L(w(Mj+m)

k) + ηK∇L(w(Mj+m)
k))

≤ −ηK
∥∥∥∇L(w(Mj+m)

k)
∥∥∥2 + ∥∥∥∇L(w(Mj+m)

k)
∥∥∥∥∥∥w(Mj+M+m)

k −w
(Mj+m)
k + ηK∇L(w(Mj+m)

k)
∥∥∥ .

By Lemma D.7,

L(w(Mj+M+m)
k)− L(w(Mj+m)

k)− σ2
maxβ

2
· (ησmaxK)2

ϕ2(1− ηMKσ2
maxβ)

2

∥∥∥∇L(w(Mj+m)
k)

∥∥∥2
≤ −ηK

∥∥∥∇L(w(Mj+m)
k)

∥∥∥2 + η2MK2σ3
maxβ

ϕ(1− ηMKσ2
maxβ)

∥∥∥∇L(w(Mj+m)
k)

∥∥∥2 .
Given that η ≤ 1

2MKσ2
maxβ

,

L(w(Mj+M+m)
k)− L(w(Mj+m)

k)

≤ −ηK{1− ηK

(
Mσ3

maxβ

ϕ(1− ηMKσ2
maxβ)

+
σ4
maxβ

2ϕ2(1− ηMKσ2
maxβ)

2

)
}
∥∥∥∇L(w(Mj+m)

k)
∥∥∥2

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

≤ −ηK
(
1− ηK

2(Mϕ+ σmax)σ
3
maxβ

ϕ2

)∥∥∥∇L(w(Mj+m)
k)

∥∥∥2
= −ηK (1− ηKβ′)

∥∥∥∇L(w(Mj+m)
k)

∥∥∥2 , (26)

where we set β′ :=
2(Mϕ+σmax)σ

3
maxβ

ϕ2 .
Since Equation (26) holds for all j ∈ [0 : J − 1],m ∈ [0 : M − 1], k ∈ [0 : K − 1] and η < 1/2Kβ′

is given, by Lemma D.9, we get

2

J−1∑
j=0

ηK
(
L(w(Mj+M+m)

k)− L(z)
)

− 2ηMKσ4
maxβ

ϕ2(1− ηMKσ2
maxβ)

2

J−1∑
j=0

ηK

1− ηKβ′

(
L(w(Mj+m)

k)− L(w(Mj+M+m)
k)

)
≤
∥∥∥w(m)

k − z
∥∥∥2 − ∥∥∥w(MJ+m)

k − z
∥∥∥2 . (27)

Given that η < min{ 1
2MKβσ2

max
, 1
2Kβ′ } and L(w(Mj+m)

k) is decreasing,

2ηMKσ4
maxβ

ϕ2(1− ηMKσ2
maxβ)

2
· ηK

1− ηKβ′

(
L(w(Mj+m)

k)− L(w(Mj+M+m)
k)

)
≤ 8σ2

max

ϕ2
ηK

(
L(w(Mj+m)

k)− L(w(Mj+M+m)
k)

)
. (28)

Also,

8σ2
max

ϕ2
ηKL(w(MJ+m)

k) + 2ηKJL(w(MJ+m)
k)− 8σ2

max

ϕ2
ηKL(w(m)

k)

≤ 8σ2
max

ϕ2
ηKL(w(MJ+m)

k) + 2ηK

J∑
j=1

L(w(Mj+m)
k)− 8σ2

max

ϕ2
ηKL(w(m)

k)

= 2ηK

J−1∑
j=0

L(w(Mj+M+m)
k)− 8σ2

max

ϕ2
ηK

J−1∑
j=0

(
L(w(Mj+m)

k)− L(w(Mj+M+m)
k)

)
. (29)

Combine the result (27), (28) and (29), we obtain

2ηKJ
(
L(w(MJ+m)

k)− L(z)
)
+

8σ2
max

ϕ2
ηK

(
L(w(MJ+m)

k)− L(w(m)
k)

)
≤ 2

J−1∑
j=0

ηK
(
L(w(Mj+M+m)

k)− L(z)
)
− 8σ2

max

ϕ2
ηK

J−1∑
j=0

(
L(w(Mj+m)

k)− L(w(Mj+M+m)
k)

)
≤
∥∥∥w(m)

k − z
∥∥∥2 − ∥∥∥w(MJ+m)

k − z
∥∥∥2 . (30)

Now we examine the loss change in a cycle. For any j ∈ [0 : M − 1], l ∈ [0 : K − 1],

Lj(w
(j)
l+1) ≤ Lj(w

(j)
l)− η(1− ησ2

maxβ

2
)
∥∥∥∇Lj(w

(j)
l)
∥∥∥2 .

Since η < 1
2MKβσ2

max
, Lj(w

(j)
l) decreases. Therefore for any p ∈ [0 : M − 1], q ∈ [0 : K − 1],

2ηq(Lp(w
(p)
q+1)− Lp(z)) ≤ 2

q∑
l=1

η
(
Lp(w

(p)
l)− Lp(z)

)
= 2

q−1∑
l=0

η
(
Lp(w

(p)
l)− Lp(z)

)
+ 2

q−1∑
l=0

η
(
Lp(w

(p)
l+1)− Lp(w

(p)
l)
)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

≤ 2

q−1∑
l=0

η
(
Lp(w

(p)
l)− Lp(z)

)
−

t−1∑
l=0

η

1− ηβ

(
Lp(w

(p)
l)− Lp(w

(p)
l+1)

)
≤
∥∥∥w(p)

0 − z
∥∥∥2 − ∥∥∥w(p)

q − z
∥∥∥2 ,

where in the third line, we use 1
1−ηβ < 2, and in the last line, we use Lemma D.8

By summing up, we obtain
m−1∑
p=0

2ηK
(
Lp(w

(p)
K)− Lp(z)

)
+ 2ηk

(
Lm(w

(m)
k)− Lm(z)

)
≤
∥∥∥w(0)

0 − z
∥∥∥2 − ∥∥∥w(m)

k − z
∥∥∥2 .
(31)

At last, L(w(m)
k) is bounded by L(w(0)

0) as follows:

L(w(m)
k)− L(w(0)

0) ≤ ∇L(w(0)
0)⊤

(
w

(m)
k −w

(0)
0

)
+

σ2
maxβ

2

∥∥∥w(m)
k −w

(0)
0

∥∥∥2
≤
(∥∥∥∇L(w(0)

0)
∥∥∥+ σ2

maxβ

2

∥∥∥w(m)
k −w

(0)
0

∥∥∥)∥∥∥w(m)
k −w

(0)
0

∥∥∥
≤
(
1 +

ηKσ3
maxβ

ϕ(1− ηMKσ2
maxβ)

)
ηKσmax

ϕ(1− ηMKσ2
maxβ)

∥∥∥∇L(w(0)
0)
∥∥∥2

= D0

∥∥∥∇L(w(0)
0)
∥∥∥2 , (32)

where in the first inequality we use smoothness, and in the second inequality we use Cauchy-
Schwarz, and in the last line we use the fact

∥∥∥w(m)
k −w

(0)
0

∥∥∥ ≤ ηKσmax

ϕ(1−ηMKσ2
maxβ)

∥∥∥∇L(w(0)
0)
∥∥∥ held

by Lemma D.7. We set D0 :=
(
1 +

ηKσ3
maxβ

ϕ(1−ηMKσ2
maxβ)

)
ηKσmax

ϕ(1−ηMKσ2
maxβ)

.

Combine the result (30),(31),(32), we obtain

L(w(MJ+m)
k) ≤L(z) + 1

J

m−1∑
p=0

Lp(z) +
1

J
· q
K
Lm(z)

+
4σ2

max

ϕ2

L(w(0)
0) +D0

∥∥∥∇L(w(0)
0)
∥∥∥2

J
+

∥∥∥w(0)
0 − z

∥∥∥2
2ηKJ

.

Let z := ŵ log J . Using Lj(ŵ log J) ≤ |Sj | ℓ(log J) + (|Ij | − |Sj |) ℓ(θ log J), we can finish the
proof.

D.3.1 PROOF OF LEMMA D.8

This is a well-known property about gradient descent applied to a smooth convex objective function.
We contain the proof for completeness.

Suppose L is convex, and there exists β ≥ 0 so that 1 − ηβ ≥ 0 and weights (w0, . . . ,wt) by
wj+1 := wj − η∇L(wj) satisfy

L(wj+1) ≤ L(wj)− η (1− ηβ) ∥∇L(wj)∥2 .
For any j and z ∈ Rd,

∥wj+1 − z∥2 = ∥wj − z∥2 + 2η⟨∇L(wj), z −wj⟩+ η2 ∥∇L(wj)∥2

≤ ∥wj∥2 + 2η(L(z)− L(wj)) + η2 ∥∇L(wj)∥2

≤ ∥wj∥2 + 2η(L(z)− L(wj)) +
η

1− ηβ
(L(wj)− L(wj+1)) .

where the first line comes from convexity and the second line comes from the condition. By adding
all j ∈ {0, · · · , t− 1}, we get

2

t−1∑
j=0

η (L(wj)− L(z))−
t−1∑
j=0

η

1− ηβ
(L(wj)− L(wj+1)) ≤ ∥w0 − z∥2 − ∥wt − z∥2 .

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

D.3.2 PROOF OF LEMMA D.9

Without loss of generality, we assume m = 0, k = 0.

Suppose L is convex, σ2
maxβ-smooth function and there exists β′ ≥ 0 so that η ≤

min{ 1
2MKσ2

maxβ
, 1
2Kβ′ } and weights (w(0)

0 , . . . ,w
(0)
K−1,w

(1)
0 , . . . ,w

(Mt+M)
K−1) by w

(p)
q+1 := w

(p)
q −

η∇L(p)(w
(p)
q), w(p+1)

0 := w
(p)
K satisfy

L(w(Mj+M)
0) ≤ L(w(Mj)

0)− ηK (1− ηKβ′)
∥∥∥∇L(w(Mj)

0)
∥∥∥2 .

For any j and z ∈ Rd,∥∥∥w(Mj+M)
0 − z

∥∥∥2 =

∥∥∥∥∥w(Mj)
0 − η

M−1∑
p=0

K−1∑
q=0

∇Lp(w
(Mj+p)
q)− z

∥∥∥∥∥
2

=
∥∥∥w(Mj)

0 − z
∥∥∥2 + 2η

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q), z −w

(Mj)
0 ⟩+ η2

∥∥∥∥∥
M−1∑
p=0

K−1∑
q=0

∇Lp(w
(Mj+p)
q)

∥∥∥∥∥
2

=
∥∥∥w(Mj)

0 − z
∥∥∥2 + 2η

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q), z −w(Mj+p)

q ⟩

+ 2η

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q),w(Mj+p)

q −w
(Mj)
0 ⟩+ η2

∥∥∥∥∥
M−1∑
p=0

K−1∑
q=0

∇Lp(w
(Mj+p)
q)

∥∥∥∥∥
2

. (33)

By convexity,

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q), z −w(Mj+p)

q ⟩ ≤ KL(z)−
M−1∑
p=0

K−1∑
q=0

Lp(w
(Mj+p)
q).

Apply smoothness on (33), we get∥∥∥w(Mj+M)
0 − z

∥∥∥2 − ∥∥∥w(Mj)
0 − z

∥∥∥2 ≤ 2ηKL(z)− 2η

M−1∑
p=0

K−1∑
q=0

Lp(w
(Mj+p)
q)

+ 2η

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q),w(Mj+p)

q −w
(Mj)
0 ⟩+ η2

∥∥∥∥∥
M−1∑
p=0

K−1∑
q=0

∇Lp(w
(Mj+p)
q)

∥∥∥∥∥
2

.

By σ2
maxβ-smoothness,

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q), z −w(Mj+p)

q ⟩

≥ KL(z)−
M−1∑
p=0

K−1∑
q=0

Lp(w
(Mj+p)
q)− σ2

maxβ

2

M−1∑
p=0

K−1∑
q=0

∥∥∥z −w(Mj+p)
q

∥∥∥2 .
Apply smoothness on (33), and let z := w

(Mj+M)
0 then we get

0 ≥
∥∥∥w(Mj)

0 −w
(Mj+M)
0

∥∥∥2 + 2ηKL(w(Mj+M)
0)

− 2η

M−1∑
p=0

K−1∑
q=0

Lp(w
(Mj+p)
q)− ησ2

maxβ

M−1∑
p=0

K−1∑
q=0

∥∥∥w(Mj+M)
0 −w(Mj+p)

q

∥∥∥2

+ 2η

M−1∑
p=0

K−1∑
q=0

⟨∇Lp(w
(Mj+p)
q),w(Mj+p)

q −w
(Mj)
0 ⟩+ η2

∥∥∥∥∥
M−1∑
p=0

K−1∑
q=0

∇Lp(w
(Mj+p)
q)

∥∥∥∥∥
2

.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Combined with the smoothness result,∥∥∥w(Mj+M)
0 − z

∥∥∥2 − ∥∥∥w(Mj)
0 − z

∥∥∥2 ≤ 2ηKL(z)− 2ηKL(w(Mj+M)
0)

−
∥∥∥w(Mj)

0 −w
(Mj+M)
0

∥∥∥2 + ησ2
maxβ

M−1∑
p=0

K−1∑
q=0

∥∥∥w(Mj+M)
0 −w(Mj+p)

q

∥∥∥2
≤ 2ηKL(z)− 2ηKL(w(Mj+M)

0)−
∥∥∥w(Mj)

0 −w
(Mj+M)
0

∥∥∥2
+ 2ηMKσ2

maxβ
∥∥∥w(Mj)

0 −w
(Mj+M)
0

∥∥∥2 + 2ησ2
maxβ

M−1∑
p=0

K−1∑
q=0

∥∥∥w(Mj)
0 −w(Mj+p)

q

∥∥∥2
≤ 2ηKL(z)− 2ηKL(w(Mj+M)

0) + 2ησ2
maxβ

M−1∑
p=0

K−1∑
q=0

∥∥∥w(Mj)
0 −w(Mj+p)

q

∥∥∥2 ,
where in the last line we use η ≤ 1

2MKσ2
maxβ

. Finally, by Lemma D.7,∥∥∥w(Mj+M)
0 − z

∥∥∥2 − ∥∥∥w(Mj)
0 − z

∥∥∥2
≤ 2ηK

(
L(z)− L(w(Mj+M)

0)
)
+

2η3MK3σ4
maxβ

ϕ2(1− ηMKσ2
maxβ)

2

∥∥∥∇L(w(Mj)
0)

∥∥∥2
≤ 2ηK

(
L(z)− L(w(Mj+M)

0)
)
− 2ηMKσ4

maxβ

ϕ2(1− ηMKσ2
maxβ)

2

ηK

1− ηKβ′

(
L(w(Mj+m)

k)− L(w(Mj+M+m)
k)

)
.

By adding all j ∈ {0, · · · , J − 1}, we can finish the proof.

D.4 FORGETTING ANALYSIS (PROOF OF THEOREM 3.4)

We prove Theorem 3.4 here, which is restated for readability.

Theorem 3.4. Let ℓ(u) = ln(1 + e−u) be the logistic loss. If the learning rate satisfies

η < min
{

1
2MKβσ2

max
, ϕ2

4Kβσ3
max(Mϕ+σmax)

}
, then the cycle-averaged forgetting CF(J) for cycle J

satisfies the following upper and lower bounds:

−ηK · L(J)2 ·
∑

p ̸=q Np,q

M
≤ CF(J) ≤ ηK · L(J)2 ·

−
∑

p ̸=q N̄p,q

M
,

where

L(J) :=
1

J

((
|S|+ |I| − |S|

Jθ−1

)(
1 +

1

J

)
+
∥w(0)

0 − ŵ ln J∥2

2ηK
+D1

)
= O

(
ln2 J

J

)
Np,q :=

∑
(i,j)∈Ip×Iq
x⊤

i xj>0

x⊤
i xj > 0, N̄p,q :=

∑
(i,j)∈Ip×Iq
x⊤

i xj<0

x⊤
i xj < 0.

By Theorem 3.3, loss on cycle J is bounded as

L(w(MJ+m)
k) ≤ L(J)

where

L(J) :=
1

J

(|S|+ |I| − |S|
Jθ−1

)
(1 +

1

J
) +

∥∥∥w(0)
0 − ŵ log J

∥∥∥2
2ηK

+D1

 ,

D1 :=
4σ2

max

ϕ2

(
L(w(0)

0) +D0

∥∥∥∇L(w(0)
0)
∥∥∥2) .

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Therefore, the following holds:

∀s ∈ I, ∀m ∈ [0 : M − 1],∀k ∈ [0 : K − 1] : x⊤
s w

(MJ+m)
k ≥ ℓ−1 (L(t)) .

Now, we analyze the change of each task in one cycle. For upper bound,

Lm(w
(MJ+M)
0)− Lm(w

(MJ+m)
K)

≤ −η
M−1∑

p=m+1

K−1∑
q=0

∇Lm(w
(MJ+M)
0)⊤∇Lp(w

(MJ+p)
q) (34)

≤ −η
M−1∑

p=m+1

K−1∑
q=0

∑
(i,j)∈Im×Ip

x⊤
i xj<0

ℓ′(x⊤
i w

(MJ+M)
0)ℓ′(x⊤

j w
(MJ+p)
q)x⊤

i xj

≤ −η
M−1∑

p=m+1

K−1∑
q=0

[
ℓ′
(
ℓ−1 (L(J))

)]2 ∑
(i,j)∈Im×Ip

x⊤
i xj<0

x⊤
i xj (35)

≤ −ηKL(J)2
M−1∑

p=m+1

∑
(i,j)∈Im×Ip

x⊤
i xj<0

x⊤
i xj , (36)

where in (34) we use convexity, in (35) we use the condition that ℓ′ is a negative function mono-
tonically increasing to zero. (36) holds by the fact ∀x : ℓ′(x) = ℓlog

′(x) ≥ − exp(−x) and
∀x : ℓ−1(x) = ℓlog

−1(x) ≥ − log(x). Likewise, we can get a lower bound.

Lm(w
(MJ+M)
0)− Lm(w

(MJ+m)
K)

≥ −η
M−1∑

p=m+1

K−1∑
q=0

∇Lm(w
(MJ+m)
k)⊤∇Lp(w

(MJ+p)
q)

≥ −η
M−1∑

p=m+1

K−1∑
q=0

∑
(i,j)∈Im×Ip

x⊤
i xj>0

ℓ′(x⊤
i w

(MJ+m)
k)ℓ′(x⊤

j w
(MJ+p)
q)x⊤

i xj

≥ −η
M−1∑

p=m+1

K−1∑
q=0

[
ℓ′
(
ℓ−1 (L(J))

)]2 ∑
(i,j)∈Im×Ip

x⊤
i xj>0

x⊤
i xj

≥ −ηKL(J)2
M−1∑

p=m+1

∑
(i,j)∈Im×Ip

x⊤
i xj>0

x⊤
i xj .

Define

Np,q :=
∑

(i,j)∈Ip×Iq
x⊤

i xj>0

x⊤
i xj , N̄p,q :=

∑
(i,j)∈Ip×Iq
x⊤

i xj<0

x⊤
i xj .

Since
M−1∑
m=0

M−1∑
p=m+1

∑
(i,j)∈Im×Ip

x⊤
i xj>0

x⊤
i xj =

∑
p ̸=q

Np,q,

M−1∑
m=0

M−1∑
p=m+1

∑
(i,j)∈Im×Ip

x⊤
i xj<0

x⊤
i xj =

∑
p ̸=q

N̄p,q,

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

we can conclude

−ηKL(J)2 ·
∑

p ̸=q Np,q

M
≤ 1

M

M−1∑
m=0

F (MJ+m)(MJ +M) ≤ −ηKL(J)2 ·
∑

p ̸=q N̄p,q

M
.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

E PROOFS FOR SECTION 4: RANDOM TASK ORDERING, JOINTLY SEPARABLE

E.1 ASYMPTOTIC LOSS CONVERGENCE ANALYSIS (PROOF OF THEOREM 4.1)

Let us restate the theorem here for the sake of readability.

Theorem 4.1. Let {w(t)
k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given randomly. Under Assumptions 3.1 and 3.3, if the learning rate satisfies

η < 2ϕ2

βσ4
max

, then the following statements hold with probability 1:

1. Loss converges to zero: limt→∞ L(w(t)
k) = 0,∀k ∈ [0 : K − 1].

2. Every data point is classified correctly: limt→∞ x⊤
i w

(t)
k = 0,∀k ∈ [0 : K − 1], i ∈ I .

3. Square sum of the change of weight is finite:
∑∞

t=0

∑K−1
k=0 ∥w

(t)
k+1 −w

(t)
k ∥2 <∞.

Since L is a σ2
maxβ-smooth function, we get

E
[
L(w(t)

k+1)
]
− E

[
L(w(t)

k)
]

≤ E
[
∇L(w(t)

k)⊤(w
(t)
k+1 −w

(t)
k)
]
+

σ2
maxβ

2
E
[∥∥∥w(t)

k+1 −w
(t)
k

∥∥∥2]
= E

[
E
[
∇L(w(t)

k)⊤(w
(t)
k+1 −w

(t)
k) | w(t)

k

]]
+

σ2
maxβ

2
E
[∥∥∥w(t)

k+1 −w
(t)
k

∥∥∥2]

= E
[
E
[
∇L(w(t)

k)⊤(w
(t)
k+1 −w

(t)
k) | w(t)

k

]]
+

σ2
maxβ

2
η2E

∥∥∥∥∥∑
s∈I

z(t)s ℓ′(x⊤
s w

(t)
k)xs

∥∥∥∥∥
2

= − η

M
E
[∥∥∥∇L(w(t)

k)
∥∥∥2]+ σ2

maxβ

2
η2E

∥∥∥∥∥∑
s∈I

z(t)s ℓ′(x⊤
s w

(t)
k)xs

∥∥∥∥∥
2

≤ − η

M
E
[∥∥∥∇L(w(t)

k)
∥∥∥2]+ σ4

maxβ

2
η2E

[∑
s∈I

[
z(t)s ℓ′(x⊤

s w
(t)
k)
]2]

= − η

M
E
[∥∥∥∇L(w(t)

k)
∥∥∥2]+ σ4

maxβ

2
η2
∑
s∈I

E
[
(z(t)s)2

]
E
[
ℓ′(x⊤

s w
(t)
k)2

]
= − η

M
E
[∥∥∥∇L(w(t)

k)
∥∥∥2]+ σ4

maxβ

2M
η2E

[∑
s∈I

ℓ′(x⊤
s w

(t)
k)2

]
,

where z
(t)
s is a variable which is 1 when xs is in the task on stage t, or 0 otherwise. The second

inequality comes from the fact ∀λs ∈ R :
∥∥∑

s∈I λsxs

∥∥
2
≤ σmax

√∑
s∈I λ

2
s.

By applying Lemma D.2, we obtain

E
[
L(w(t)

k+1)
]
− E

[
L(w(t)

k)
]
≤ − η

M

(
1− η

σ4
maxβ

2ϕ2

)
E
[∥∥∥∇L(w(t)

k)
∥∥∥2]

= − η

M
(1− ηβ′′)E

[∥∥∥∇L(w(t)
k)
∥∥∥2] , (37)

where β′′ :=
σ4
maxβ
2ϕ2 . Given that η ≤ 1

β′′ ,

∞∑
t=0

K−1∑
k=0

E
[∥∥∥∇L(w(t)

k)
∥∥∥2] ≤ L(w(0)

0)− limt→∞ E
[
L(w(t)

0)
]

η
M (1− ηβ′′)

≤ ML(w(0)
0)

η(1− ηβ′′)
<∞.

According to Markov inequality,

P

(∞∑
t=0

K−1∑
k=0

∥∥∥∇L(w(t)
k)
∥∥∥2 < c

)
≥ 1−

E
[∑∞

t=0

∑K−1
k=0

∥∥∥∇L(w(t)
k)
∥∥∥2]

c

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Since E
[∑∞

t=0

∑K−1
k=0

∥∥∥∇L(w(t)
k)
∥∥∥2]is finite, if we send c→∞, we get

P

(∞∑
t=0

K−1∑
k=0

∥∥∥∇L(w(t)
k)
∥∥∥2 <∞

)
= 1.

That is,
∑∞

t=0

∑K−1
k=0

∥∥∥∇L(w(t)
k)
∥∥∥2 is bounded with probability 1. The boundedness of infinite

sum of nonzero elements implies ∀k ∈ [0 : K − 1] : limt→0

∥∥∥∇L(w(t)
k)
∥∥∥2 = 0. Combined with

Lemma D.2, we obtain limt→0 ℓ
′(x⊤

i w
(t)
k) = 0,∀i ∈ I, k ∈ [0 : K − 1]. Since ℓ′(u) → 0 only

when u→∞, x⊤
i w

(t)
k →∞,∀i ∈ I, k ∈ [0 : K − 1]. And limt→∞ L(w(t)

k) = 0,∀k ∈ [0 : K − 1].
Finally, followed by∥∥∥∇L(w(t)

k)
∥∥∥ ≥ ϕ

√∑
i∈I

[
ℓ′(x⊤

i w
(t)
k)
]2
≥ ϕ

√√√√∑
i∈I(t)

[
ℓ′(x⊤

i w
(t)
k)
]2

≥ ϕ

σmax

∥∥∥∥∥∥
∑

i∈I(t)

ℓ′(x⊤
i w

(t)
k)xi

∥∥∥∥∥∥ =
ϕ

σmax
η−1

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥ .
We obtain that

∑∞
t=0

∑K−1
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 <∞ with probability 1.

E.2 DIRECTIONAL CONVERGENCE ANALYSIS (PROOF OF THEOREM 4.2)

In this section, we prove Theorem 4.2 and further discuss the convergence of ρ(t)
k beyond bounded-

ness.
Theorem 4.2. Let {w(t)

k }k∈[0:K−1],t≥0 be the sequence of GD iterates (2) from any starting point

w
(0)
0 , where tasks are given randomly. Under Assumptions 3.1, 3.2, 3.3, and 3.4, if the learning rate

satisfies η < 2ϕ2

βσ4
max

, then with probability 1, w(t)
k will behave as:

w
(t)
k = ln

(
K
M t
)
ŵ + ρ

(t)
k ,

where ∥ρ(t)
k ∥ stays bounded as t grows.

We only need to prove that the two following lemmas still hold in random order.
Lemma E.1. When tasks are given randomly, there exists w̌,m1(t, k) ∈ Rd the following almost
surely holds for all t ∈ N, k ∈ [0 : K − 1]:

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs =
K

M
log(

t

M
)ŵ +

K

M
w̌ +m1(t, k), (38)

m1(t,K) := m1(t+ 1, 0),

such that ∥m1(t, k)∥ = o(t−0.5+ϵ), and ∥m1(t, k + 1)−m1(t, k)∥ = O(t−1) for all k ∈ [0 :
K − 1], ϵ > 0, and w̌ only depends on the order of tasks and constant with respect to t.

Proof. See Appendix E.2.1.

Using Lemma E.1, we set m1(t, k) and w̌ and define ρ
(t)
k and r

(t)
k as we did in cyclic order. That is,

∀k ∈ [0 : K − 1] : w
(t)
k = log(

K

M
t)ŵ + ρ

(t)
k

= log(
K

M
t)ŵ + w̃ +

M

K
m1(t, k) + r

(t)
k ,

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

and

ρ
(t)
K = ρ

(t+1)
0 , r

(t)
K = r

(t+1)
0 ,

where w̃ is the solution of

∀i ∈ S : η exp (−x⊤
i w̃) = αi, P̄ (w̃ −w

(0)
0) = 0.

which is unique under Assumption 3.2. Then by the definition,

r
(t)
k = w

(t)
k −

M

K

(
K

M
log(

K

M
t)ŵ +m1(t, k)

)
− w̃

= w
(t)
k −

M

K

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs

− logKŵ − w̃ + w̌.

Then we can get the second primary lemma of r(t)k .

Lemma E.2. Under Assumption 3.1, 3.2, 3.3, and 3.4, if learning rate is η < 2ϕ2

βσ4
max

, then

1. ∃t̃, C1, C2 > 0 such that ∀t > t̃,

(r
(t)
k+1 − r

(t)
k)⊤r

(t)
k ≤ C1t

−θ + C2t
−1−0.5µ̃,∀k ∈ [0 : K − 1].

2. Moreover, for all ϵ1 > 0, ∃t̃∗, C3 > 0 such that if
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ1 and S(t) ̸= ∅,

(r
(t)
k+1 − r

(t)
k)⊤r

(t)
k ≤ −C3t

−1,∀t > t̃∗, k ∈ [0 : K − 1].

Proof. Only the learning rate is different from the cyclic case. Therefore see Appendix D.2.2.

The remaining step is the same as the proof of Theorem 3.2. To sum up, we can set a(t)
k as∥∥∥r(t)k+1 − r

(t)
k

∥∥∥2 =
∥∥∥w(t)

k+1 −w
(t)
k − a

(t)
k

∥∥∥2. Then by Lemma E.1, ∃t1 such that ∀t ≥ t1,∀k ∈ [0 :

K − 1] :
∥∥∥a(t)

k

∥∥∥ ≤ t−1.

For all T ≥ t1.
T∑

t=t1

K−1∑
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 =

T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k − a

(t)
k

∥∥∥2
=

T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + T∑
t=t1

K−1∑
k=0

2(w
(t)
k −w

(t)
k+1)

⊤a
(t)
k +

T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2

≤
T∑

t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + 2

√√√√ T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2 + T∑
t=t1

K−1∑
k=0

∥∥∥a(t)
k

∥∥∥2

≤
T∑

t=t1

K−1∑
k=0

∥∥∥w(t)
k+1 −w

(t)
k

∥∥∥2 + 2

√√√√ T∑
t=t1

K−1∑
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 T∑
t=t1

K−1∑
k=0

t−2 +

T∑
t=t1

K−1∑
k=0

t−2

<∞. (39)

We use Cauchy-Schwarz inequality for the first inequality and the fact that
∑T

t=t1
t−2 < ∞ and∑T

t=t1

∑K−1
k=0

∥∥∥w(t)
k −w

(t)
k+1

∥∥∥2 <∞ by Theorem 4.1.

Combined with Lemma E.2 and the fact that ∀c > 1 :
∑∞

t=1 t
−c <∞, we almost surely get∥∥∥r(t)0

∥∥∥2 − ∥∥∥r(t1)0

∥∥∥2 =

t−1∑
u=t1

K−1∑
k=0

(∥∥∥r(u)k+1

∥∥∥2 − ∥∥∥r(u)k

∥∥∥2)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

=

t−1∑
u=t1

K−1∑
k=0

(
2(r

(u)
k+1 − r

(u)
k)⊤r

(u)
k +

∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2) <∞.

E.2.1 PROOF OF LEMMA E.1

Here we restate the lemma for the sake of readability.
Lemma E.1. When tasks are given randomly, there exists w̌,m1(t, k) ∈ Rd the following almost
surely holds for all t ∈ N, k ∈ [0 : K − 1]:

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs +
k

t

∑
s∈S(t)

αsxs =
K

M
log(

t

M
)ŵ +

K

M
w̌ +m1(t, k), (38)

m1(t,K) := m1(t+ 1, 0),

such that ∥m1(t, k)∥ = o(t−0.5+ϵ), and ∥m1(t, k + 1)−m1(t, k)∥ = O(t−1) for all k ∈ [0 :
K − 1], ϵ > 0, and w̌ only depends on the order of tasks and constant with respect to t.

We define an (i.i.d.) random variable(s) z
(t)
i := 1{xi ∈ I(t)}. Note that E[z(t)i] = 1

M and
Var(z

(t)
i) = M−1

M2 due to uniform sampling of the task index in [0 : M − 1]. Then, we can write a
sum on the right-hand side of Equation (38) as follows:

K

t−1∑
u=1

1

u

∑
s∈S(u)

αsxs = K
∑
s∈S

(
t−1∑
u=1

z
(u)
s

u

)
αsxs

= K
∑
s∈S

(
t−1∑
u=1

E[z(u)s]

u
+

t−1∑
u=1

z
(u)
s − E[z(u)s]

u

)
αsxs

= K
∑
s∈S

(
1

M

t−1∑
u=1

1

u
+ .

t−1∑
u=1

z
(u)
s − E[z(u)s]

u

)
αsxs.

Since
t−1∑
u=1

1

u
= log t+ γ + q(t)

where γ is the Euler-Mascheroni constant and q(t) = O(t−1), we have

K
∑
s∈S

(
1

M

t−1∑
u=1

1

u

)
αsxs =

K

M
(log t+ γ + q(t)) ŵ.

Now we are going to deal with the sum
t−1∑
u=1

z
(u)
s − E[z(u)s]

u

in two aspects: (1) it converges with probability 1 as t→∞ and (2) the almost-sure vanishing rate of
the “residual” (a sum from u = t to∞) is o(t−0.5+ϵ) for any ϵ > 0. Let us look at its almost-sure
convergence. To this end, we utilize the following useful proposition.
Proposition E.3 (Theorem 5.2.6 of Durrett (2019)). Suppose X1, X2, . . . are zero-mean independent
random variables. If

∑∞
n=1 Var(Xn) < ∞, then

∑∞
n=1 Xn converges almost surely (i.e., with

probability 1).

Observe that Xu :=
z(u)
s −E[z(u)

s]
u is a zero-mean random variables. Not only they are independent for

all u, but also the sum of their variances is convergent:
∞∑
u=1

Var(Xu) =
M − 1

M2

∞∑
u=1

1

u2
<∞.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Thus, by Proposition E.3, the sum
∑∞

u=1 Xu converges with probability 1. Next, we want to show
the vanishing rate

∞∑
u=t

Xu = o(t−0.5+ϵ)

with probability 1, where we choose any ϵ > 0. Observe that it is equivalent to show, for any δ > 0,

P

(
t0.5−ϵ ·

∣∣∣∣∣
∞∑
u=t

Xu

∣∣∣∣∣ > δ for infinitely many t

)
= 0.

Here we bring a renowned Borel-Cantelli Lemma.
Proposition E.4 (Borel-Cantelli lemma; Theorem 2.3.1 of Durrett (2019)). Consider a sequence of
events A1, A2, · · · . If

∑∞
n=1 P(An) <∞, then

P(lim sup
n→∞

An) := P(An happens for infinitely many n) = 0.

By Proposition E.4, it suffices to show

∀δ > 0,

∞∑
t=1

P

(
t0.5−ϵ ·

∣∣∣∣∣
∞∑
u=t

Xu

∣∣∣∣∣ > δ

)
<∞.

Let us recall Hoeffding inequality here:
Proposition E.5 (Hoeffding inequality). Consider a collection of independent random variables
X1, · · · , Xn satisfying ai ≤ Xi ≤ bi for each i = 1, · · · , n (ai < bi). Then,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ r

)
≤ 2 exp

(
− 2r2∑n

i=1(bi − ai)2

)
.

Since the sum
∑∞

u=t Xu converges almost surely, it is a well-defined random variable with probability
1, and

P

(∣∣∣∣∣
∞∑
u=t

Xu

∣∣∣∣∣ > δ · t−0.5+ϵ

)
= P

(∣∣∣∣∣
T∑

u=t

Xu

∣∣∣∣∣ > δ · t−0.5+ϵ for all but finitely many T

)

=: P

(
lim inf
T→∞

{∣∣∣∣∣
T∑

u=t

Xu

∣∣∣∣∣ > δ · t−0.5+ϵ

})

≤ lim inf
T→∞

P

(∣∣∣∣∣
T∑

u=t

Xu

∣∣∣∣∣ > δ · t−0.5+ϵ

)
(40)

≤ lim inf
T→∞

2 exp

(
−2δ2t−1+2ϵ∑T

u=t
1
u2

)
(41)

= 2 exp

(
−2δ2t−1+2ϵ∑∞

u=t
1
u2

)
(42)

≤ 2 exp
(
−δ2t2ϵ

)
. (43)

We use the fact “P(lim infn An) ≤ lim infn P(An)” in Equation (40); we apply Hoeffding inequality
(Proposition E.5) and the fact − 1

Mu ≤ Xu ≤ M−1
Mu in Equation (41); and we utilize the fact∑∞

u=t
1
u2 ≤ 2

t in Equation (43). Since exp(−δ2t2ϵ) = o(t−2) for any ϵ > 0 and large enough t, the
sum

∑
t exp(−δ2t2ϵ) converges. Therefore, we have desired almost-sure convergence guarantees.

From now on, let us proceed with the proof. Using the almost-sure convergence results, let

w̌ := (logM + γ)ŵ +M
∑
s∈S

(∞∑
u=1

Xu

)
αsxs,

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

m1(t, k) :=
K

M
q(t)ŵ +K

∑
s∈S

(∞∑
u=t

Xu

)
αsxs +

k

t

∑
s∈S(t)

αsxs.

Then with probability 1, the statement of the lemma holds: Equation (38) holds, where w̌ is a constant
vector in terms of t, ∥m1(t, k)∥ ≤ o(t−0.5+ϵ) for any ϵ > 0, and

∥m1(t, k + 1)−m1(t, k)∥ = O(t−1), (k = 0, ...,K − 2)

∥m1(t+ 1, 0)−m1(t,K − 1)∥ = O(t−1).

This concludes the proof of the lemma.

E.2.2 CONVERGENCE OF ρ
(t)
k

We also can prove a characterization of the limit of ρ(t)
k , as done in Appendix D.2.3. However, when

tasks are given randomly, we need an additional assumption to guarantee the convergence of ρ(t)
k to

the particular point.

Assumption E.1. Every task has at least one support vector. That is, ∀m ∈ [0 : M − 1] : Sm ̸= ∅.
Proposition E.6. Under the same setting of Theorem 4.2 with additional Assumptions D.1 and E.1,
the “residual” converges to limt→∞ ρ

(t)
k = w̃,∀k ∈ [0 : K − 1]. Here, w̃ is the vector defined in

Proposition D.6.

Proof. First, P̄r
(t)
k = P̄w

(0)
0 − P̄ w̃ = 0 holds as in cyclic case. See Appendix D.2.3.

Second, we get to show Pr
(t)
k → 0. By Equation (39), limT→∞

∑T
t=t1

∑K−1
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 =

C4. That means ∀k ∈ [0 : K − 1] : limT→∞

∥∥∥r(T)
k+1 − r

(T)
k

∥∥∥ = 0. Therefore, for any ϵ0, there exists

t2 > 0 such that
∥∥∥r(t)k+1 − r

(t)
k

∥∥∥ < ϵ0
K for all t ≥ t2, k ∈ [0 : K − 1]. As a result,∥∥∥Pr

(t)
0

∥∥∥+ k

K
ϵ0 ≥

∥∥∥Pr
(t)
k

∥∥∥ ≥ ∥∥∥Pr
(t)
0

∥∥∥− k

K
ϵ0

For t ≥ max{t1, t2, t̃∗}, if
∥∥∥Pr

(t)
0

∥∥∥ ≥ ϵ1 + ϵ0 and S(t) ̸= ∅, then ∀k ∈ [0 : K − 1] :
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ1.
By Lemma E.2 (2),

t∑
u=t−1

K−1∑
v=0

(r
(u)
v+1 − r(u)v)⊤r(u)v ≤ −KC3t

−1 +K
(
C1t

−θ + C2t
−1−0.5µ̃

)
,

Since t−1 decrease to zero slower than t−θ and t−1−0.5µ̃, there exists t3 > max{t1, t2, t̃∗}, C4 > 0
such that −KC3t

−1 + K
(
C1t

−θ + C2t
−1−0.5µ̃

)
≤ −C5t

−1. Also S(t) ̸= ∅ is given by As-
sumption E.1. To sum up, for any ϵ0, ϵ2 > 0, there exists t3 > max{t1, t2, t̃∗} such that if∥∥∥Pr

(t)
0

∥∥∥ ≥ ϵ0 + ϵ1, then

t∑
u=t−1

K−1∑
v=0

(r
(u)
v+1 − r(u)v)⊤r(u)v ≤ −C5t

−1,

Now, define two sets for each k ∈ [0 : K − 1]

Tk := {t > t3 :
∥∥∥Pr

(t)
k

∥∥∥ < ϵ0 + ϵ1}

T̄k := {t > t3 :
∥∥∥Pr

(t)
k

∥∥∥ ≥ ϵ0 + ϵ1}

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

We will finish our proof by showing that T̄k is finite. Here, we use the fact that every Tk is infinite.

The proof is the same as in the cyclic case. Since limT→∞
∑T

t=t1

∑K−1
k=0

∥∥∥r(t)k+1 − r
(t)
k

∥∥∥2 = C4, we
get

t∑
u=t1

K−1∑
k=0

∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2 = C4 − h(t)

where h(t) is a positive function monotonic decreasing to zero.
Now, assume that there exists some k′ that T̄k is infinite. WLOG, we set k′ = 0. Since T0 is infinite,
for any t ∈ T̄0 there exists t′, t′′ ∈ T0 such that t ∈ [t′ +1, t′′ − 1] ⊂ T̄0. We divide it into two cases:
For all t ∈ [t′ + 1, t′′ − 1],

1. if t = t′ + 1, then
∥∥∥Pr

(t)
0

∥∥∥2 ≤ ∥∥∥Pr
(t′)
0

∥∥∥2 + ϵ0 ≤ 2ϵ0 + ϵ1.

2. if t ≥ t′ + 1, then∥∥∥Pr
(t)
0

∥∥∥2 =
∥∥∥Pr

(t′)
0

∥∥∥2 + t−1∑
u=t′

K−1∑
k=0

[∥∥∥r(u)k+1

∥∥∥2 − ∥∥∥r(u)k

∥∥∥2]

=
∥∥∥Pr

(t′)
0

∥∥∥2 + t−1∑
u=t′

K−1∑
k=0

[∥∥∥r(u)k+1 − r
(u)
k

∥∥∥2 + 2(r
(u)
k+1 − r

(u)
k)⊤r

(u)
k

]

=
∥∥∥Pr

(t′)
0

∥∥∥2 + h(t)− h(t′) + 2

t−1∑
u=t′

K−1∑
k=0

[
(r

(u)
k+1 − r

(u)
k)⊤r

(u)
k

]
≤ (ϵ0 + ϵ1)

2 + h(t)− 2C5
1

t′ + 1
− 2C3

t−1∑
u=t′+2

1

u

≤ (ϵ0 + ϵ1)
2 + h(t).

Since h(t) is monotonic decreasing function, for any ϵ2 > 0, there exists t4 such that ∀t ≥ t4 :
h(t) < ϵ2.

Therefore, ∀t ≥ max{t3, t4} :
∥∥∥Pr

(t)
0

∥∥∥2 ≤ (ϵ0 + ϵ1)
2 + ϵ2. Since it holds for any ϵ0, ϵ1, ϵ2, it

contradicts with the assumption that T̄0 is infinite.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

F PROOFS FOR SECTION 5: CYCLIC TASK ORDERING, JOINTLY
NON-SEPARABLE

Review on Bregman Divergence. Before we start the proofs, we briefly overview some basic
properties of Bregman divergence.

Given a convex function f : S → R defined on a convex set S ⊂ Rd, the Bregman divergence
between two points x,y ∈ S with respect to f is defined as

Df (x,y) := f(x)− f(y)− ⟨∇f(y),x− y⟩ .
Note that Df (x,y) ≥ 0 for any x,y ∈ S because of the definition of convexity; when f is strictly
convex, Df (x,y) = 0 if and only if x = y. Also, if f is β-smooth, Df (x,y) ≤ β

2 ∥x− y∥2 holds
by the definition of smoothness. We often use the following useful identity that links three different
points x,y, z ∈ S:

⟨∇f(z),x− y⟩ = [f(x)− f(y)]− [Df (x, z)−Df (y, z)] . (44)

Here is another useful fact: for a convex β-smooth function f , the Bregman divergence is bound
below by the squared distance between gradients.
Proposition F.1. Let f : S → R be a convex, β-smooth function defined on a convex set S ⊂ Rd.
For any x,y ∈ S,

∥∇f(x)−∇f(y)∥2 ≤ 2βDf (x,y).

Proof. Observe that Df (·,y) is also a β-smooth function for any y. Let z = x− 1
β∇xDf (x,y) =

x− 1
β [∇f(x)−∇(y)]. Then by β-smoothness and the non-negativity of Df (·,y), we have

0 ≤ Df (z,y)

≤ Df (x,y) + ⟨∇xDf (x,y), z − x⟩+ β

2
∥z − x∥2

= Df (x,y)−
1

β
⟨∇f(x)−∇(y),∇f(x)−∇(y)⟩+ 1

2β
∥∇f(x)−∇(y)∥2

= Df (x,y)−
1

2β
∥∇f(x)−∇f(y)∥2 .

This proves the proposition.

Useful Inequalities. There are other two crucial inequalities for the proofs in this appendix. One is
a variant of Jensen’s inequality applied to a squared norm.
Proposition F.2. For any positive numbers λ1, · · · , λn > 0, any vectors u1, · · · ,un ∈ Rd, and an
integer m ∈ [0 : n], ∥∥∥∥∥

m∑
i=1

ui

∥∥∥∥∥
2

≤

(
n∑

i=1

λi

)(
n∑

i=1

1

λi
∥ui∥2

)
.

Proof. Let Λm =
∑m

i=1 λi. Then by convexity of the squared norm,∥∥∥∥∥
m∑
i=1

ui

∥∥∥∥∥
2

=

∥∥∥∥∥
m∑
i=1

λi

Λm

(
Λm

λi
ui

)∥∥∥∥∥
2

≤
m∑
i=1

λi

Λm

∥∥∥∥Λm

λi
ui

∥∥∥∥2
= Λm

m∑
i=1

1

λi
∥ui∥2

≤ Λn

n∑
i=1

1

λi
∥ui∥2 .

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Another is about solving a recurrent inequality.
Proposition F.3. Consider 0 < µ ≤ β, V > 0, T > 1, 0 < c = Θ(1), 0 < m = Θ(1), and ∆0 ≥ 0.
Suppose the following inequality holds for any positive α ≤ c

β and t ∈ [0 : T − 1]:

∆t+1 ≤
1

1 + αµ
∆t + αm+1V.

If we take

α = min

{
c

β
,
c+ 1

µT
ln

(
Tm ·max

{
1,

∆0µ
m+1

V

})}
,

we have

∆T = O
(
exp

(
− cµ

(c+ 1)β
T

)
∆0 +

V lnm T

µm+1Tm

)
.

Proof. Since αµ ≤ cµ
β ≤ c, we have 1

1+αµ ≤ 1 − αµ
c+1 . By unrolling the recurrent inequality, we

have

∆T ≤
(
1− αµ

c+ 1

)T

∆0 + αm+1V

T−1∑
t=0

(
1− αµ

c+ 1

)t

≤ exp

(
− αµ

c+ 1
T

)
∆0 +

2αmV

µ
.

With the choice of α, the first exponential term is bounded as

exp

(
− αµ

c+ 1
T

)
∆0 ≤ max

{
exp

(
− cµ

(c+ 1)β
T

)
∆0,

V

µm+1Tm

}
≤ exp

(
− cµ

(c+ 1)β
T

)
∆0 +

V

µm+1Tm
.

Also, the second term is bounded as

2αmV

µ
≤ 2(c+ 1)mV

µm+1Tm
lnm

(
Tm ·max

{
1,

∆0µ
m+1

V

})
.

Combining these two and ignoring the constant/polylogarithmic factors, we have a desired bound.

F.1 LOCAL STRONG CONVEXITY ANALYSIS (PROOF OF LEMMA 5.1)

Recall that we consider cyclic continual learning on M jointly strictly non-separable classification
tasks. Let us restate the lemma here for the sake of readability.
Lemma 5.1. Consider learning M linear classification tasks cyclically. Suppose that Assumptions 5.1
and 5.2 hold. Let B :=

∑M−1
m=0 βm and V⋆ :=

∑M−1
m=0

1
βm
∥∇Lm(w⋆)∥2. Take a step size η ≤

1
2
√
2KB

. Then, there exists a compact setW ⊂ Rd containing w⋆ and every w(jM)
0 (j = 0, 1, 2, . . .),

whose radius is independent of J (the number of cycles) but depends on other parameters like b, G,
B, and V⋆. Also, the offline training loss L is µ-strongly convex onW , where

µ :=
(
mini∈[0:N−1],w∈W ℓ′′

(
yix

⊤
i w
))
· λmin

(
XX⊤) > 0. (6)

To prove the boundedness of end-of-cycle iterates and the local strong convexity, we first establish a
per-cycle recurrent inequality in terms of squared distance to an arbitrary comparator u ∈ Rd and the
risk values. We put u = w⋆ later.
Lemma F.4 (Backward recurrent inequality). Consider learning M linear classification tasks
cyclically. Suppose that Assumption 5.2 holds. Let B =

∑M−1
m=0 βm. If we take any step size

satisfying η ≤ 1
2
√
2KB

, the iterates of sequential GD satisfies∥∥∥w((j+1)M)
0 − u

∥∥∥2
56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

≤
∥∥∥w(jM)

0 − u
∥∥∥2 − 2ηK

[
L
(
w

(jM)
0

)
− L(u)

]
+ 2
√
2η2K2B

(
M−1∑
m=0

1

βm
∥∇Lm(u)∥2

)
,

for any vector u ∈ Rd and for all j = 0, 1, · · · .

Proof. We defer the proof to Appendix F.1.1. We remark that this lemma holds even without assuming
the non-separability.

Observe that the following holds as a special case:∥∥∥w((j+1)M)
0 −w⋆

∥∥∥2 ≤ ∥∥∥w(jM)
0 −w⋆

∥∥∥2 − 2ηK
[
L
(
w

(jM)
0

)
− L(w⋆)

]
+ 2
√
2η2K2BV⋆,

(45)

where V⋆ =
∑M−1

m=0
1

βm
∥∇Lm(w⋆)∥2.

The next step is to construct a compact ballW centered at w⋆, containing every end-of-cycle iterate
of sequential GD. The crucial step is to apply the non-separability coefficient b > 0 (Assumption 5.1).

Lemma F.5 (Boundedness of the end-of-cycle iterates). Consider learning M linear classification
tasks cyclically. Suppose that Assumptions 5.1 and 5.2 holds. Let B =

∑M−1
m=0 βm and V⋆ =∑M−1

m=0
1

βm
∥∇Lm(w⋆)∥2. If we take any step size satisfying η ≤ 1

2
√
2KB

, the end-of-cycle iterates
of sequential GD are contained in a compact set which is fixed in terms of the number of the cycle:
for all j = 0, 1, · · · ,

w
(jM)
0 ∈ W :=

{
w ∈ Rd : ∥w −w⋆∥2≤

[
1

Gb

(
L(w⋆) +

√
2ηKBV⋆

)
+∥w⋆∥

]2
+ 2
√
2η2K2BV⋆

}

⊆

{
w ∈ Rd : ∥w −w⋆∥2≤

[
1

Gb

(
L(w⋆) +

V⋆

2

)
+∥w⋆∥

]2
+

V⋆

2
√
2B

}
.

Proof. The proof is done by induction based on Equation (45). We defer the proof to Appendix F.1.2.

The last part of the proof is to compute the strong convexity coefficient of L on W . Since L is
twice differentiable, it can be directly done by computing a lower bound of the minimum Hessian
eigenvalue onW: for any w ∈ W ,

∇2L(w) =

N−1∑
i=0

ℓ′′(x⊤
i w)xix

⊤
i ⪰

 min
i∈[0:N−1]

w∈W

ℓ′′(x⊤
i w)

XX⊤ ⪰ µI.

This concludes the proof of Lemma 5.1.

F.1.1 PROOF OF LEMMA F.4

For the sake of readability, we restate the lemma.
Lemma F.4 (Backward recurrent inequality). Consider learning M linear classification tasks
cyclically. Suppose that Assumption 5.2 holds. Let B =

∑M−1
m=0 βm. If we take any step size

satisfying η ≤ 1
2
√
2KB

, the iterates of sequential GD satisfies∥∥∥w((j+1)M)
0 − u

∥∥∥2
≤
∥∥∥w(jM)

0 − u
∥∥∥2 − 2ηK

[
L
(
w

(jM)
0

)
− L(u)

]
+ 2
√
2η2K2B

(
M−1∑
m=0

1

βm
∥∇Lm(u)∥2

)
,

for any vector u ∈ Rd and for all j = 0, 1, · · · .

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

We start the proof by bounding the squared distance between two iterates in the same cycle of
continual learning. For k ∈ [0 : K] and m ∈ [0 : M − 1],∥∥∥w(jM)

0 −w
(jM+m)
k

∥∥∥2
= η2

∥∥∥∥∥
m−1∑
l=0

K−1∑
h=0

∇Ll(w
(jM+l)
h) +

k−1∑
h=0

∇Lm(w
(jM+m)
h)

∥∥∥∥∥
2

≤ η2

(
M−1∑
l=0

K−1∑
h=0

βl

)(
M−1∑
l=0

K−1∑
h=0

1

βl

∥∥∥∇Ll(w
(jM+l)
h)

∥∥∥2)

≤ 2η2KB

(
M−1∑
l=0

K−1∑
h=0

1

βl

[∥∥∥∇Ll(w
(jM+l)
h)−∇Ll(u)

∥∥∥2 + ∥∇Ll(u)∥2
])

≤ 4η2KB

M−1∑
l=0

K−1∑
h=0

DLl
(u,w

(jM+l)
h) + 2η2K2B

M−1∑
l=0

1

βl
∥∇Ll(u)∥2 . (46)

We use (modified) Jensen’s inequality (e.g., Proposition F.2) in the first two inequalities above; the
last inequality is due to Proposition F.1.

Next, we decompose the (j + 1)-th squared distance into j-th squared distance and more:∥∥∥w((j+1)M)
0 − u

∥∥∥2
=
∥∥∥w(jM)

0 − u
∥∥∥2 − 2η

M−1∑
m=0

K−1∑
k=0

〈
∇Ll(w

(jM+m)
k),w

(jM)
0 − u

〉
+
∥∥∥w(jM)

0 −w
((j+1)M)
0

∥∥∥2 .
Using Equation (44) and βm-smoothnesses,∥∥∥w((j+1)M)

0 − u
∥∥∥2 − ∥∥∥w(jM)

0 − u
∥∥∥2

= −2η
M−1∑
m=0

K−1∑
k=0

[
Lm(w

(jM)
0)− Lm(u)−DLm

(w
(jM)
0 ,w

(jM+m)
k) +DLm

(u,w
(jM+m)
k)

]
+
∥∥∥w(jM)

0 −w
((j+1)M)
0

∥∥∥2
≤ −2ηK

[
L
(
w

(jM)
0

)
− L(u)

]
+ η

M−1∑
m=0

K−1∑
k=0

βm

∥∥∥w(jM)
0 −w

(jM+m)
k

∥∥∥2
− 2η

M−1∑
m=0

K−1∑
k=0

DLm
(u,w

(jM+m)
k) +

∥∥∥w(jM)
0 −w

((j+1)M)
0

∥∥∥2
≤ −2ηK

[
L
(
w

(jM)
0

)
− L(u)

]
+ 2η2K2B(1 + ηKB)

M−1∑
m=0

1

βm
∥∇Lm(u)∥2

− 2η(1− 2ηKB − 2η2K2B2)

M−1∑
m=0

K−1∑
k=0

DLm
(u,w

(jM+m)
k)

(47)

≤ −2ηK
[
L
(
w

(jM)
0

)
− L(u)

]
+ 2
√
2η2K2B

M−1∑
m=0

1

βm
∥∇Lm(u)∥2 .

In Equation (47), we use the result from Equation (46) for multiple times. The last inequality is due
to our choice of step size: ηKB ≤ 1

2
√
2
<

√
3−1
2 <

√
2− 1 (∵ 1− 2q − 2q2 ≥ 0 if q ∈

[
0,

√
3−1
2

]
).

This is the end of the proof.

F.1.2 PROOF OF LEMMA F.5

For the sake of readability, we restate the lemma.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

Lemma F.5 (Boundedness of the end-of-cycle iterates). Consider learning M linear classification
tasks cyclically. Suppose that Assumptions 5.1 and 5.2 holds. Let B =

∑M−1
m=0 βm and V⋆ =∑M−1

m=0
1

βm
∥∇Lm(w⋆)∥2. If we take any step size satisfying η ≤ 1

2
√
2KB

, the end-of-cycle iterates
of sequential GD are contained in a compact set which is fixed in terms of the number of the cycle:
for all j = 0, 1, · · · ,

w
(jM)
0 ∈ W :=

{
w ∈ Rd : ∥w −w⋆∥2≤

[
1

Gb

(
L(w⋆) +

√
2ηKBV⋆

)
+∥w⋆∥

]2
+ 2
√
2η2K2BV⋆

}

⊆

{
w ∈ Rd : ∥w −w⋆∥2≤

[
1

Gb

(
L(w⋆) +

V⋆

2

)
+∥w⋆∥

]2
+

V⋆

2
√
2B

}
.

Also, recall the backward recurrent inequality which we write here again:∥∥∥w((j+1)M)
0 −w⋆

∥∥∥2 ≤ ∥∥∥w(jM)
0 −w⋆

∥∥∥2 − 2ηK
[
L
(
w

(jM)
0

)
− L(w⋆)

]
+ 2
√
2η2K2BV⋆.

(48)

We choose w
(0)
0 as we want: if w(0)

0 = 0, since
∥∥∥w(0)

0 −w⋆

∥∥∥2 = ∥w⋆∥2, it is clear that w(0)
0 ∈ W .

Now assume w
(jM)
0 ∈ W and proceed with induction on j: we aim to show w

((j+1)M)
0 ∈ W .

The proof is divided into two parts:

1. If the current total risk is too high, then we can show that the squared distance to w⋆ will decrease.

2. The other case means that the current iterate is close enough to w⋆ (due to the strict non-
separability of the full dataset). Thus, the squared distance to w⋆ at the next cycle will not grow
that much.

Part 1: High-Risk Case. Suppose L
(
w

(jM)
0

)
− L(w⋆) ≥

√
2ηKBV⋆. Then Equation (48)

implies
∥∥∥w((j+1)M)

0 −w⋆

∥∥∥2 ≤ ∥∥∥w(jM)
0 −w⋆

∥∥∥2. Thus, w((j+1)M)
0 ∈ W .

Part 2: Low-Risk Case. We first show that L
(
w

(jM)
0

)
− L(w⋆) ≤

√
2ηKBV⋆ implies an upper

bound on the current squared distance to w⋆. Because of Assumptions 5.1 and 5.2, for any w ∈ Rd,

L(w) =

N−1∑
i=0

ℓ
(
x⊤
i w
)

≥
N−1∑
i=0

G
[
x⊤
i w
]−

= G ∥w∥ ·
N−1∑
i=0

[
x⊤
i

w

∥w∥

]−
≥ G ∥w∥ b,

by the definition of the non-separability b > 0. Thus, we have∥∥∥w(jM)
0 −w⋆

∥∥∥ ≤ ∥∥∥w(jM)
0

∥∥∥+ ∥w⋆∥

≤ 1

Gb
L
(
w

(jM)
0

)
+ ∥w⋆∥

≤ 1

Gb

[
L(u) +

√
2ηKBV⋆

]
+ ∥w⋆∥ .

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

Thus, w(jM)
0 lies in a strict subset ofW . Also, Equation (48) implies∥∥∥w((j+1)M)

0 −w⋆

∥∥∥2 ≤ ∥∥∥w(jM)
0 −w⋆

∥∥∥2 + 2
√
2η2K2BV⋆

≤
[

1

Gb

[
L(u) +

√
2ηKBV⋆

]
+ ∥w⋆∥

]2
+ 2
√
2η2K2BV⋆.

Thus, by the definition ofW , w((j+1)M)
0 ∈ W . This concludes the proof of the lemma.

F.2 NON-ASYMPTOTIC LOSS CONVERGENCE ANALYSIS (PROOF OF THEOREM 5.2)

Recall that we write B =
∑M−1

m=0 βm and V⋆ =
∑M−1

m=0
1

βm
∥∇Lm(w⋆)∥2. Also, in the previous

sub-section, we discovered a local strong convexity (with coefficient µ > 0) of the total risk function
satisfied on a compact ballW containing w⋆ and every end-of-cycle iterates of the sequential GD.

Let us restate the theorem for the sake of readability.

Theorem 5.2. Suppose we learn M tasks cyclically for J > 1 cycles. We adopt the notation from
Lemma 5.1. If we choose a step size

η = min

{
1

2
√
2KB

,
1 + 2

√
2

2
√
2KJ

ln

(
J2 ·max

{
1,
∥w(0)

0 −w⋆∥2µ3

B2V⋆

})}
,

then the final iterate of sequential GD satisfies∥∥∥w(MJ)
0 −w⋆

∥∥∥2 ≤ Õ(exp(− µJ

(1 + 2
√
2)B

)
·
∥∥∥w(0)

0 −w⋆

∥∥∥2 + B2V⋆ln
2 J

µ3J2

)
, (7)

where we hide a poly-logarithmic factor of J in Equation (7).

The theorem states a fast Õ(J−2) rate of convergence. One could try to prove it with the backward
recurrent inequality (Equation (45)), but it is difficult due to the η2 dependency of the so-called “noise”
term. We only succeeded in proving a slower Õ(J−1) rate with the backward recurrent inequality,
whose proof is pretty much similar to that in this sub-section. To take a step further towards a faster
rate, we should use a different way of writing the recurrent inequality, with a higher exponent for η in
the “noise” term. Here is how it goes:

Lemma F.6 (Forward recurrent inequality). Consider learning M linear classification tasks cyclically.
Suppose that Assumption 5.2 holds. If we take any step size satisfying η ≤ 1√

2KB
, the iterates of

sequential GD satisfies∥∥∥w((j+1)M)
0 − u

∥∥∥2
≤
∥∥∥w(jM)

0 − u
∥∥∥2 − 2ηK

[
L
(
w

((j+1)M)
0

)
− L(u)

]
+ 2η3K3B2

(
M−1∑
m=0

1

βm
∥∇Lm(u)∥2

)
,

for any vector u ∈ Rd and for all j = 0, 1, · · · .

Proof. We defer the proof to Appendix F.2.1. We remark that this lemma holds even without assuming
the non-separability.

In particular, we have∥∥∥w((j+1)M)
0 −w⋆

∥∥∥2 ≤ ∥∥∥w(jM)
0 −w⋆

∥∥∥2−2ηK [L(w((j+1)M)
0

)
− L(w⋆)

]
+2η3K3B2V⋆. (49)

Applying µ-strong convexity, i.e.,

L
(
w

((j+1)M)
0

)
− L(w⋆) ≥

µ

2

∥∥∥w((j+1)M)
0 −w⋆

∥∥∥2 ,
60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

we eventually have a recurrent inequality purely on the squared distance to w⋆:∥∥∥w((j+1)M)
0 −w⋆

∥∥∥2 ≤ 1

1 + ηKµ

∥∥∥w(jM)
0 −w⋆

∥∥∥2 + 2η3K3B2V⋆. (50)

We now conclude the proof by applying Proposition F.3: plugging α ← ηK, β ← B, T ← J ,
c← 1

2
√
2

, V ← 2B2V⋆, m = 2, and ∆j ←
∥∥∥w(jM)

0

∥∥∥ to the proposition, we have a desired result.

F.2.1 PROOF OF LEMMA F.6

For the sake of readability, we restate the lemma, whose proof is very similar to that of Lemma F.4.
Lemma F.6 (Forward recurrent inequality). Consider learning M linear classification tasks cyclically.
Suppose that Assumption 5.2 holds. If we take any step size satisfying η ≤ 1√

2KB
, the iterates of

sequential GD satisfies∥∥∥w((j+1)M)
0 − u

∥∥∥2
≤
∥∥∥w(jM)

0 − u
∥∥∥2 − 2ηK

[
L
(
w

((j+1)M)
0

)
− L(u)

]
+ 2η3K3B2

(
M−1∑
m=0

1

βm
∥∇Lm(u)∥2

)
,

for any vector u ∈ Rd and for all j = 0, 1, · · · .

We start the proof by bounding the squared distance between two iterates in the same cycle of
continual learning. For k ∈ [0 : K − 1] and m ∈ [0 : M − 1],∥∥∥w((j+1)M)

0 −w
(jM+m)
k

∥∥∥2
= η2

∥∥∥∥∥
M−1∑

l=m+1

K−1∑
h=0

∇Ll(w
(jM+l)
h) +

K−1∑
h=k

∇Lm(w
(jM+m)
h)

∥∥∥∥∥
2

≤ η2

(
M−1∑
l=0

K−1∑
h=0

βl

)(
M−1∑
l=0

K−1∑
h=0

1

βl

∥∥∥∇Ll(w
(jM+l)
h)

∥∥∥2)

≤ 2η2KB

(
M−1∑
l=0

K−1∑
h=0

1

βl

[∥∥∥∇Ll(w
(jM+l)
h)−∇Ll(u)

∥∥∥2 + ∥∇Ll(u)∥2
])

≤ 4η2KB

M−1∑
l=0

K−1∑
h=0

DLl
(u,w

(jM+l)
h) + 2η2K2B

M−1∑
l=0

1

βl
∥∇Ll(u)∥2 (51)

We use (modified) Jensen’s inequality (e.g., Proposition F.2) in the first two inequalities above; the
last inequality is due to Proposition F.1.

Next, we decompose the j-th squared distance into (j + 1)-th squared distance and more:∥∥∥w(jM)
0 − u

∥∥∥2 ≥ ∥∥∥w((j+1)M)
0 − u

∥∥∥2 + 2η

M−1∑
m=0

K−1∑
k=0

〈
∇Ll(w

(jM+m)
k),w

((j+1)M)
0 − u

〉
.

Using Equation (44) and βm-smoothnesses,∥∥∥w((j+1)M)
0 − u

∥∥∥2 − ∥∥∥w(jM)
0 − u

∥∥∥2
≤ −2η

M−1∑
m=0

K−1∑
k=0

[
Lm(w

((j+1)M)
0)− Lm(u)−DLm(w

((j+1)M)
0 ,w

(jM+m)
k) +DLm(u,w

(jM+m)
k)

]
≤ −2ηK

[
L
(
w

((j+1)M)
0

)
− L(u)

]
+ η

M−1∑
m=0

K−1∑
k=0

βm

∥∥∥w((j+1)M)
0 −w

(jM+m)
k

∥∥∥2
− 2η

M−1∑
m=0

K−1∑
k=0

DLm
(u,w

(jM+m)
k)

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

≤ −2ηK
[
L
(
w

((j+1)M)
0

)
− L(u)

]
+ 2η3K3B2

M−1∑
m=0

1

βm
∥∇Lm(u)∥2

− 2η(1− 2η2K2B2)

M−1∑
m=0

K−1∑
k=0

DLm
(u,w

(jM+m)
k)

(52)

≤ −2ηK
[
L
(
w

((j+1)M)
0

)
− L(u)

]
+ 2η3K3B2

M−1∑
m=0

1

βm
∥∇Lm(u)∥2 .

In Equation (52), we use the result from Equation (51) for multiple times. The last inequality is due
to our choice of step size: ηKB ≤ 1√

2
. This is the end of the proof.

62

	Introduction
	Summary of Contributions

	Problem Setup
	Setup: Continual Linear Binary Classification
	Algorithm: Sequential Gradient Descent

	Cyclic Learning of Jointly Separable Tasks
	Definitions and Assumptions
	Asymptotic Results: Loss Convergence & Implicit Bias to Joint Max-margin
	Non-asymptotic Results: Loss Convergence and Forgetting Bounds

	Random-order Learning of Jointly Separable Tasks
	Beyond Jointly Separable Tasks
	Conclusion
	Other Related Works
	Brief Overview of Evron et al. (2023) and Comparisons
	Experiment Details & Omitted Experimental Results
	Experiment Details of Figure 1
	Experiment Details of Figure 2 & More Results
	Experimental Detail
	Omitted Loss Convergence Result in Figure 2
	Random Task Ordering
	Beyond Theoretical Setup: Towards Continual Learning on Online Data

	Toy Example for Increasing Loss in A Cycle
	Experiments with Neural Networks: Beyond Linear Models
	Experiment on a Real-world Dataset

	Proofs for Section 3: Cyclic Task Ordering, Jointly Separable
	Asymptotic Loss Convergence Analysis (Proof of Theorem 3.1)
	Proof of Lemma B.1
	Proof of Lemma B.2

	Directional Convergence Analysis (Proof of Theorem 3.2)
	Proof of Lemma B.4
	Proof of Lemma B.5
	Convergence of rho(t)k

	Non-asymptotic Loss Convergence Analysis (Proof of Theorem 3.3)
	Proof of Lemma B.8
	Proof of Lemma B.9

	Forgetting Analysis (Proof of Theorem 3.4)

	Proofs for Section 4: Random Task Ordering, Jointly Separable
	Asymptotic Loss Convergence Analysis (Proof of Theorem 4.1)
	Directional Convergence Analysis (Proof of Theorem 4.2)
	Proof of Lemma C.1
	Convergence of rho(t)k

	Proofs for Section 5: Cyclic Task Ordering, Jointly Non-Separable
	Local Strong Convexity Analysis (Proof of Lemma 5.1)
	Proof of Lemma D.4
	Proof of Lemma D.5

	Non-asymptotic Loss Convergence Analysis (Proof of Theorem 5.2)
	Proof of Lemma D.6

