
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SOREL: A STOCHASTIC ALGORITHM FOR SPECTRAL
RISKS MINIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The spectral risk has wide applications in machine learning, especially in real-
world decision-making, where people are concerned with more than just average
model performance. By assigning different weights to the losses of different sam-
ple points, rather than the same weights as in the empirical risk, it allows the
model’s performance to lie between the average performance and the worst-case
performance. In this paper, we propose SOREL, the first stochastic gradient-based
algorithm with convergence guarantees for spectral risks minimization. Previous
approaches often rely on smoothing the spectral risk by adding a strongly concave
function, thereby lacking convergence guarantees for the original spectral risk. We
theoretically prove that our algorithm achieves a near-optimal rate of Õ(1/

√
ϵ) to

obtain an ϵ-optimal solution in terms ϵ. Experiments on real datasets show that
our algorithm outperforms existing ones in most cases, both in terms of runtime
and sample complexity.

1 INTRODUCTION

In modern machine learning, model training heavily relies on minimizing the empirical risk. This
ensures that the model have high average performance. Given a training set of n sample points
D = {xi}ni=1 ⊂ X , the goal of the empirical risk minimization is to solve

min
w∈Rd

R(w) = (1/n)

n∑
i=1

ℓi(w).

Here, w ∈ Rd is the parameter vector of the model, ℓi(w) = ℓ(w,xi) is the loss of the i-th sample,
and ℓ : Rd × X → R is the loss function. However, as machine learning models are deployed in
real-world scenarios, the evaluation metrics for these models become more diverse, including factors
such as fairness or risk aversion.

In this paper, we consider a generalized aggregation loss function: the spectral risk, which is of the
form

Rσ(w) =

n∑
i=1

σiℓ[i](w).

Here ℓ[1](·) ≤ · · · ≤ ℓ[n](·) denotes the order statistics of the empirical loss distribution, and 0 ≤
σ1 ≤ · · · ≤ σn,

∑n
i=1 σi = 1. In form, the spectral risk penalizes the occurrence of extreme

losses by assigning greater weights to extreme losses. When σi = 1/n, the spectral risk reduces
to the empirical risk. When σn = 1 and σi = 0 for i = 1, . . . , n − 1, the spectral risk becomes
the maximum loss. Therefore, the spectral risk measures the model’s performance between the
average case and the worst case. By assigning different values to σi, the spectral risk encompasses
a wide range of aggregated loss functions that have broad applications in fields such as machine
learning and finance. Common spectral risks include Conditional Value at Risk (CVaR) or the
average of top-k loss (Artzner, 1997; Rockafellar & Uryasev, 2000), Exponential Spectral Risk
Measure (ESRM) (Cotter & Dowd, 2006), and Extremal Spectral Risk (Extremile) (Daouia et al.,
2019). Their specific forms are shown in Table 1 (Mehta et al., 2022).

Despite the broad applications of spectral risks, optimization methods for spectral risks are still
limited. In particular, for large-scale optimization problems, there is currently a lack of stochastic

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Different spectral risks and the corresponding weights.

Spectral Risks Parameter σi

α-CVaR 0 < α < 1


1
nα , i > ⌈n(1− α)⌉
1− ⌊nα⌋

nα , ⌊n(1− α)⌋ < i < ⌈n(1− α)⌉
0, otherwise

ρ-ESRM ρ > 0 e−ρ
(
eρ

i
n − eρ

i−1
n

)
/ (1− e−ρ)

r-Extremile r ≥ 1
(
i
n

)r − (
i−1
n

)r

algorithms with convergence guarantees for the spectral risk minimization. Indeed, the weight of
each sample point depends on the entire training set, introducing complex dependencies and thus
making the optimization process challenging. Existing algorithms either abandon the convergence
guarantee to the minimum of the spectral risk problem due to the difficulty of obtaining unbiased
subgradient estimates (Levy et al., 2020; Kawaguchi & Lu, 2020), or turn to optimize the smooth
regularized spectral risk (Mehta et al., 2024; 2022), which lacks convergence guarantees for the
original spectral risk. Given the widespread application of the spectral risk in machine learning and
the lack of stochastic algorithms for the spectral risk minimization, we are committed to developing
stochastic algorithms with convergence guarantees for the spectral risk minimization.

Our Contributions. In this paper, we propose the Stochastic Optimizer for Spectral Risks mini-
mization with trajectory Stabilization (SOREL). i) We propose SOREL, the first stochastic algorithm
with convergence guarantees for the spectral risk minimization problem. In particular, SOREL sta-
bilizes the trajectory of the primal variable to the optimal point. ii) Theoretically, we prove that
SOREL achieves a near-optimal rate of Õ(1/

√
ϵ) to obtain an ϵ-optimal solution in terms of the

squared distance to the optimal point ϵ for spectral risks with a strongly convex regularizer. This
matches the known lower bound of Ω(1/

√
ϵ) in the deterministic setting (Ouyang & Xu, 2021). iii)

Experimentally, SOREL outperforms existing baselines in most cases, both in terms of runtime and
sample complexity.

2 RELATED WORK

Statistical Properties of the Spectral Risk. As a type of risk measures, the spectral risk assigns
higher weights to the tail distribution and has been profoundly studied in the financial field (Artzner
et al., 1999; Rockafellar & Uryasev, 2013; He et al., 2022). Recently, statistical properties of the
spectral risk have been investigated by many works in the field of learning theory. Specifically,
Mehta et al. (2022); A. & Bhat (2022) demonstrate that the discrete form of spectral risks converges
to the spectral risk of the overall distribution, controlled by the Wasserstein distance. Holland &
Haress (2022); Khim et al. (2020); Holland & Haress (2021) also consider the learning bounds of
spectral risks.

Applications. The spectral risk is widely applied in various fields of finance and machine learn-
ing. In some real-world tasks, the worst-case loss is as important as the average-case loss, such as
medical imaging (Xu et al., 2022) or robotics (Sharma et al., 2020). The spectral risk minimization
can be viewed as a risk-averse learning strategy. In the domain of fair machine learning, different
subgroups are classified by sensitive features (e.g., gender and race). Subgroups with higher losses
may be treated unfairly in decision-making. By penalizing samples with higher losses, the model’s
performance across different subgroups can meet certain fairness criteria (Williamson & Menon,
2019), such as demographic parity (Dwork et al., 2012) and equalized odds (Hardt et al., 2016). In
the field of distributionally robust optimization, the sample distribution may deviate from a uniform
distribution, which can be modeled by reweighting the samples (Chen & Paschalidis, 2020). Mehta
et al. (2024) adopts the spectral risk measures as the uncertainty set of the shifted distribution, which
is similar to the form of the spectral risk minimization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In practical applications, people can choose different types of spectral risks based on actual needs.
For example, CVaR is popular in the context of portfolio optimization (Rockafellar & Uryasev,
2000), as well as reinforcement learning (Zhang et al., 2024; Chow et al., 2017). Levy et al. (2020)
uses the CVaR measure as the uncertainty set in distributionally robust optimization, and their op-
timization problem is the same as the spectral risk minimization problem that uses CVaR as the
spectral risk. Other applications of spectral risks include reducing test errors and mitigating the
impact of outliers (Maurer et al., 2021; Kawaguchi & Lu, 2020; Fan et al., 2017), to name a few.

Existing Optimization Methods. There have been many algorithms to optimize CVaR, a special
case of spectral risks, including both deterministic (Rockafellar & Uryasev, 2000) and stochastic
algorithms (Fan et al., 2017; Curi et al., 2020). For the spectral risk, deterministic methods such
as subgradient methods have convergence guarantees, although they are considered algorithms with
slow convergence rate. Xiao et al. (2023) propose an Alternating Direction Method of Multipliers
(ADMM) type method for the minimization of the rank-based loss, inspired by Cui et al. (2024).
Other deterministic methods reformulate this problem into a minimax problem (Thekumparampil
et al., 2019; Hamedani & Aybat, 2021; Khalafi & Boob, 2023). However, these methods require
calculating O(n) function values and gradients at each iteration, posing significant limitations when
solving large-scale problems.

Stochastic algorithms for solving the spectral risk minimization problems are still limited. Some al-
gorithms forgo convergence to the true minimum of the spectral risk (Levy et al., 2020; Kawaguchi
& Lu, 2020). Other methods modify the objective to minimize a smooth approximation of the spec-
tral risk by adding a strongly concave term with a coefficient ν (Mehta et al., 2022; 2024). The
smaller ν is, the closer the approximation is to the original spectral risk. Mehta et al. (2024) propose
the Prospect algorithm and prove that it achieves linear convergence for any ν > 0. Furthermore,
if the loss of each sample is different at the optimal point, then the optimal value of the smooth
approximation of the spectral risk is the same as the optimal value of the original spectral risk as
long as ν is below a certain positive threshold. However, in practice, these conditions are difficult
to verify. The convergence of these algorithms still lacks guarantees for original spectral risks min-
imization. Other stochastic algorithms, including Hamedani & Jalilzadeh (2023); Yan et al. (2019),
designed for solving general minimax problems, have a slower convergence rate of O(1/ϵ) in terms
of ϵ to obtain an ϵ-optimal solution. In this paper, we propose SOREL for the original spectral risk
minimization problems and achieve a near-optimal convergence rate in terms of ϵ.

3 ALGORITHM

We consider stochastic optimization of the spectral risk combined with a strongly convex regularizer:

min
w

n∑
i=1

σiℓ[i](w)︸ ︷︷ ︸
Rσ(w)

+g(w).
(1)

Firstly, we make the basic assumption about the individual loss function ℓi and the regularizer g.

Assumption 1 The individual loss function ℓi : Rd → R is convex, G-Lipschitz continuous and L-
smooth for all i ∈ {1, . . . , n}. The regularizer g : Rd → R ∪ {∞} is proper, lower semicontinuous
and µ-strongly convex.

Assumption 1 is a standard assumption in the literature on stochastic optimization (Nemirovski
et al., 2009; Davis & Drusvyatskiy, 2019), especially in the field of the spectral risk minimiza-
tion (Kawaguchi & Lu, 2020; Holland & Haress, 2022; Levy et al., 2020; Mehta et al., 2022; 2024).
The logistic loss satisfies this assumption. The least-square loss satisfies this assumption as long as
the iterative sequence lies in a bounded sublevel set. The assumption of strong convexity of g is very
common, for example, the l2 regularization is widely used in machine learning.

3.1 CHALLENGES OF STOCHASTIC OPTIMIZATION FOR SPECTRAL RISKS

In this section, we describe the challenges of the spectral risk minimization problem and the tech-
niques to solve them.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Biases of Stochastic Subgradient Estimators. From convex analysis (Wang et al., 2023, Lemma
10), we know that the subgradient of Rσ is

∂Rσ(w) = Conv

{⋃
π

{
n∑

i=1

σi∇ℓπ(i)(w) : ℓπ(1)(w) ≤ · · · ≤ ℓπ(n)(w)

}}
,

where Conv denotes the convex hull of a set, and π is a permutation that arranges ℓ1, . . . , ℓn in
ascending order. Note that Rσ(w) is non-smooth. Indeed, when there exist i ̸= j such that ℓi(w) =
ℓj(w), ∂Rσ(w) contains multiple elements.

The subgradient of Rσ is related to the ordering of ℓ1, ..., ℓn. We cannot obtain an unbiased subgra-
dient estimator of ∂Rσ if we use only a mini-batch with m (m < n) sample points. For example,
when m = 1, we randomly sample i uniformly from {1, . . . , n}. The subgradient estimator ∇ℓi(w)
is unbiased only if σi = 1/n. For general σ, unfortunately, to obtain an unbiased subgradient es-
timator of ∂Rσ , we have to compute n loss function values and then determine the ranking of ℓi
among the n losses (or the weight corresponding to the i-th sample point). However, computing
O(n) losses at each step is computationally heavy. To remedy this, we next design an algorithm that
first uses a minimax reformulation of Problem (1) and then alternately updates the weights of each
sample point and w using a primal-dual method.

Equivalently, we can rewrite Rσ(w) in the following form

Rσ(w) = max
λ∈Πσ

n∑
i=1

λiℓi(w), (2)

where Πσ = {Πσ : Π1 = 1,Π⊤1 = 1,Π ∈ [0, 1]n×n} is the permutahedron associated with σ,
i.e., the convex hull of all permutations of σ, and 1 is the all-one vector (Blondel et al., 2020). Then
Problem (1) can be rewritten as

min
w

max
λ∈Πσ

L(w,λ) =

n∑
i=1

λiℓi(w) + g(w). (3)

Next, we use a primal-dual method to solve Problem (3). Specifically, we iteratively update w and
λ:

λk+1 = argmax
λ∈Πσ

n∑
i=1

λiℓi(wk)−
1

2ηk
∥λ− λk∥2, (4)

wk+1 = argmin
w

Pk(w) :=

n∑
i=1

λi,k+1ℓi(w) + g(w) +
1

2τk
∥w −wk∥2. (5)

Steps (4) and (5) can be seen as alternatingly solving the min problem and the max problem in (3)
with proximal terms.

Stabilizing the Optimization Trajectory. To update λk+1, one may naturally think of solving
Problem (2): λk+1 = argmaxλ∈Πσ

∑n
i=1 λiℓi(wk), similar to methods in Mehta et al. (2022;

2024) with smoothing coefficient ν = 0. However, since Problem (2) is merely convex, the solution
λ lacks continuity with respect to w, that is, a small change in w could lead to a large change in
λ. Indeed, it is often the case that there are multiple optimal solutions for (2) when there exists
i ̸= j such that ℓi(w) = ℓj(w), and in this case, an arbitrary small perturbation of w will lead to a
different value of λi. As shown in Figure 1, this can cause w to oscillate near points where some
losses are the same and prevents the convergence of the algorithm. We also provide a toy example in
Appendix C to further illustrate this difficulty. Therefore, the proximal term 1

2ηk
∥λ−λk∥2 is added

in (4) to prevent excessive changes in λ and stabilize the trajectory of the primal variable, where
ηk > 0 controls the extent of its variation.

Stochastic Optimization for the Primal Variable. We use a stochastic algorithm to approxi-
mately solve (5). Through the minimax reformulation in (5), we avoid directly calculating the
stochastic subgradient of Rσ(w), which requires computing all loss function values to obtain the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Without Trajectory Stabilization With Trajectory Stabilization

Figure 1: The level set plot of 2D least-square regression with primal-dual optimization trajectories
described in Section 3.1. The max subproblem does not have a proximal term (left) or has a proximal
term (right). The min subproblem does not have a proximal term. The black star represents the
optimal point. The sample points are obtained by projecting the yacht dataset onto R2 using PCA.

corresponding sample weight λi. Additionally, since λk+1 is fixed, the finite sum part of the ob-
jective function in (5) is smooth, allowing us to use variance reduction (VR), a commonly used
technique in stochastic optimization (Shalev-Shwartz & Zhang, 2013; Roux et al., 2012; Johnson &
Zhang, 2013; Defazio et al., 2014), to accelerate our stochastic algorithm. In contrast, since Rσ(w)
is non-smooth, as previously mentioned, VR cannot be used to directly solve Problem (1). For
smooth convex functions in the form of the finite sum, many methods such as SVRG (Johnson &
Zhang, 2013), SAGA (Defazio et al., 2014), and SARAH (Nguyen et al., 2017) can enable stochastic
methods to achieve the convergence rate of deterministic methods. We apply the proximal stochas-
tic gradient descent with a generalized VR method inspired by SVRG to approximately solve (5),
which will be presented in Section 3.2 in detail. Thanks to its strong convexity, Problem (5) can be
solved efficiently.

Similar to (4), we add a proximal term 1
2τk

∥w−wk∥2 in (5) where τk > 0 is the proximal parameter.
The proximal parameter τk is crucial for the convergence proof of our algorithm. By carefully
choosing τk = O(1/k), the updates of w become more stringent as the algorithm progresses, and
SOREL can achieve a near optimal rate of Õ(1/

√
ϵ) in terms of ϵ.

3.2 THE SOREL ALGORITHM

Our proposed algorithm SOREL is summarized in Algorithm 1. The specific values for the param-
eters θk, ηk, τk and mk in Algorithm 1 will be given in Section 4. In Line 2 the algorithm initializes
λ0 by solving Problem (2). In Lines 8-15, the algorithm computes the stochastic gradient and update
w for a fixed λ, as described in Section 3.1. Additionally, we compute the full gradient of w every
mk updates to reduce the variance. In Lines 4-5, we update λ. Note that we replace ℓi(wk) with
ℓi(wk) + θk (ℓi(wk)− ℓi(wk−1)) to accelerate the algorithm. This can be seen as a momentum
term, a widely used technique in smooth optimization (Tseng, 1998; Liu et al., 2020; Gitman et al.,
2019; Sutskever et al., 2013), where θk > 0 is the momentum parameter.

Define the proximal operator proxh(x̄) := argminx h(x) + 1
2∥x − x̄∥2 for a function h. In

Line 15, we apply the proximal stochastic gradient descent step. We assume that proxg+ 1
2∥·∥2(·)

is easy to compute, which is the case for many commonly used regularizers g, such as the
l1 norm and the elastic net regularization (Zou & Hastie, 2005). If g is differentiable, we
can replace the proximal stochastic gradient with stochastic gradient: wk,t+1 = wk,t −
α
(
dk,t +

1
τk

(wk,t −wk) +∇g(wk,t)
)
. This will not affect the convergence or convergence rate

of the algorithm as long as ∇g is Lipschitz continuous and the step size α is small enough. In Line
5, we need to compute the projection onto Πσ . For an ordered vector, projecting onto the permuta-
hedron takes O(n) operations using the Pool Adjacent Violators Algorithm (PAVA)(Lim & Wright,
2016). In SOREL, we need to first sort n elements of the projected vector and then compute the
projection onto Πσ , which takes a total of O(n log n) operations.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In practice, we set Tk and mk to n in Lines 8 and 9, meaning the algorithm updates λ once it
traverses the training set. We also set the reference point w̄ and the output wk+1 in Lines 10 and
17 to be the last vector of the previous epoch rather than the average vector, as with most practical
algorithms (Johnson & Zhang, 2013; Zhu & Hazan, 2016; Cutkosky & Orabona, 2019; Babanezhad
et al., 2015; Gower et al., 2020). In this way, SOREL only requires computing the full batch gradient
once for each update of λ, and becomes single-loop in Lines 8- 16. This makes the algorithm more
concise and parameters easier to tune.

Additionally, in the Appendix D, we provide the SOREL algorithm with mini-batching.

Algorithm 1 SOREL

1: Input: initial w0, w−1 = w0, σ, and learning rate α, {θk}K−1
k=0 , {ηk}K−1

k=0 , {τk}K−1
k=0 ,

{mk}K−1
k=0 and {Tk}K−1

k=0 .
2: λ0 = argminλ∈Πσ −ℓ(w0)

⊤λ.
3: for k = 0, . . . ,K − 1 do
4: vk = (1 + θk)ℓ(wk)− θkℓ(wk−1).
5: λk+1 = argminλ∈Πσ −v⊤

k λ+ 1
2ηk

∥λ− λk∥2.
6: wk,0 = wk, w̄ = wk.
7: ḡ =

∑n
i=1 λi,k+1∇ℓi(w̄).

8: for t = 1, . . . , Tk do
9: if tmodmk = 0 then

10: w̄ = 1
mk

∑t
j=t−mk+1 wk,j .

11: ḡ =
∑n

i=1 λi,k+1∇ℓi(w̄).
12: end if
13: Sample it uniformly from {1, . . . , n},
14: dk,t = nλit,k+1∇ℓit(wk,t)− nλit,k+1∇ℓit(w̄) + ḡ
15: wk,t+1 = Prox

α
(
g+ 1

2τk
∥·−wk∥2

) {wk,t − αdk,t} .
16: end for
17: wk+1 = 1

mk

∑Tk

j=Tk−mk+1 wk,j .
18: end for
19: Output: wK .

4 THEORETICAL ANALYSIS

For convenience, we consider that Tk (will be determined in Theorem 1) is large enough so that
wk is a δk-optimal solution of Pk(w), that is, EkPk(wk+1) − minw Pk(w) ≤ δk. Here, Ek

represents the conditional expectation with respect to the random sample points used to compute
wk+1 given wk, . . . ,w0. Then, we can provide a one-step analysis of the outer loop of SOREL. We
use L(w,λ) = λ⊤ℓ(w) + g(w) in the analysis for simplicity. The cnvergence analysis for SOREL
with mini-batching is presented in Appendix D.

Lemma 1 Suppose Assumption 1 holds. Let {wk} and {λk} be the sequences generated by Algo-
rithm 1. Then for any w ∈ Rd, λ ∈ Πσ and D = G/µ, the following inequality holds,

Ek {L(wk+1,λ)− L(w,λk+1)}

≤Ek

{
⟨λ− λk+1, ℓ(wk+1)⟩+

1

2ηk

[
∥λ− λk∥2 − ∥λ− λk+1∥2 − ∥λk+1 − λk∥2

]
+

1

2τk

[
∥w −wk∥2 − ∥w −wk+1∥2 − ∥wk+1 −wk∥2

]
− µ

2
∥w −wk+1∥2

+ ⟨vk,λk+1 − λ⟩+ δk +

√
(τ−1

k + µ)δk
2

(D−1∥w −wk+1∥2 +D)

 .

(6)

Next, we try to telescope the terms on the right hand side of (6) by multiplying each term by γk.
By choosing appropriate parameters in Algorithm 1 to satisfy some conditions (will be discussed in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Appendix A), we can ensure that the adjacent terms indexed by k = 0, . . . ,K − 1 can be canceled
out during summation. Then we can achieve the desired convergence result.

Theorem 1 Suppose Assumption 1 holds. Set γk = k + 1, ηk = µ(k+1)
8nG2 , θk = k

k+1 , τk =

4
µ(k+1) , δk = D2 min

(
µ

8(k+5) , µ(k + 1)−6
)

, D = G/µ, the step-size α = 1
12L , mk = 384L

(k+5)µ + 2

and Tk = O(mk log
1
δk
) in Algorithm 1. Let w⋆ be the optimal solution of Problem (1). Then we

have E∥wK −w⋆∥2 = O
(

nG2

µ2K2

)
.

Corollary 1 Under the same conditions in Theorem 1, we obtain an output wK of Algorithm 1 such

that E∥wK −w⋆∥2 ≤ ϵ in a total sample complexity of O
(

n
3
2 G

µ
√
ϵ
log

√
n

G
√
ϵ
+ L

µ log
√
n

G
√
ϵ
log

√
nG

µ
√
ϵ

)
.

Our algorithm achieves a near-optimal convergence rate of Õ(1/
√
ϵ) in terms of ϵ, which matches

the lower bound of Ω(1/
√
ϵ) in the deterministic setting up to a logarithmic term (Ouyang & Xu,

2021). This is the first near-optimal stochastic method for solving the spectral risk minimization
problem. Previously, Mehta et al. (2022; 2024) add a strongly concave term with respect to λ
in L(w,λ) and achieve a linear convergence rate for the perturbed problem. One may set the
coefficient of the strongly concave term ν to O(ϵ), obtaining an ϵ-optimal solution for the original
spectral risk minimization problem. However, this approach has drawbacks: it leads to a worse
sample complexity of Õ(1/ϵ) (Palaniappan & Bach, 2016) or even Õ(1/ϵ3) (Mehta et al., 2024);
additionally, to achieve an ϵ-optimal solution, the step size would need to be set to O(ϵ), resulting in
very small steps that perform poorly in practice. In contrast, SOREL’s step size is independent of ϵ.

Remark 1 In Lines 10 and 17 of Algorithm 1, we set the reference point w̄ and the output wk+1 to
the average of the previous epoch. Instead, we can also set them to be the last vector of the previous
epoch, which aligns with practical implementation. For theoretical completeness, we may compute
the full gradient ḡ in Line 11 at each step t with probability p instead of once per epoch (every
mk steps), as done in (Kulunchakov & Mairal, 2019; Hofmann et al., 2015; Kovalev et al., 2020).
However, these methods are beyond the scope of this paper.

5 EXPERIMENTS

In this section, we compare our proposed algorithm SOREL with existing baselines for solving the
spectral risk minimization problem. In addition to the precision of the optimizers during training, we
also explore fairness and distribution shift metrics on the test set. We focus more on the performance
of an optimizer during the training process; therefore, we do not pursue state-of-the-art test metrics
due to potential overfitting issues.

We train linear models with l2 regularization in all experiments. We adopt a wide variety of spectral
risks, including ESRM, Extremile, and CVaR. Baseline methods include SGD (Mehta et al., 2022)
with a minibatch size of 64, LSVRG (Mehta et al., 2022), and Prospect (Mehta et al., 2024). Note
that although both LSVRG and Prospect add a strongly concave term with coefficient ν to smooth the
original spectral risk, they have been observed to exhibit linear convergence for the original spectral
risk minimization problem in practice without the strongly concave term (Mehta et al., 2022; 2024).
Consequently, we set ν = 0 in our experiments. Detailed experimental settings are provided in
Appendix B.

5.1 LEAST-SQUARES REGRESSION

Five tabular regression benchmarks are used for the least squares loss: yacht (Tsanas & Xi-
fara, 2012), energy (Baressi Šegota et al., 2019), concrete (Yeh, 2006), kin8nm (Akujuobi
& Zhang, 2017), power (Tüfekci, 2014). We compare the suboptimality versus passes (the number
of samples divided by n) and runtime. The suboptimality is defined as

Suboptimality(wk) =
Rσ(wk) + g(wk)−Rσ(w

⋆)− g(w⋆)

Rσ(w0) + g(w0)−Rσ(w⋆)− g(w⋆)
,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 50 100

10 4

10 3

10 2

10 1

100

ya
ch

t

CVaR

0 1 2 3 4

10 6

10 4

10 2

100
CVaR

0 50 100

10 7

10 5

10 3

10 1

ESRM

0 1 2 3

10 9

10 7

10 5

10 3

10 1

ESRM

0 50 100

10 7

10 5

10 3

10 1

Extremile

0 1 2 3

10 9

10 7

10 5

10 3

10 1

Extremile

0 50 100

10 5

10 3

10 1

en
er

gy

0 10 20

10 9

10 7

10 5

10 3

10 1

0 50 100

10 9

10 7

10 5

10 3

10 1

0 5 10 15

10 9

10 6

10 3

100

0 50 100

10 9

10 7

10 5

10 3

10 1

0.0 2.5 5.0 7.5 10.0

10 9

10 7

10 5

10 3

10 1

0 50 100

10 4

10 2

100

co
nc

re
te

0 5 10 15 20

10 5

10 3

10 1

0 50 100

10 10

10 7

10 4

10 1

0 2 4 6 8

10 10

10 7

10 4

10 1

0 50 100

10 9

10 7

10 5

10 3

10 1

0.0 2.5 5.0 7.5 10.0

10 9

10 6

10 3

100

0 20 40

10 6

10 4

10 2

100

ki
n8

nm

101 103

10 9

10 7

10 5

10 3

10 1

0 20 40

10 9

10 6

10 3

100

101 103

10 9

10 6

10 3

100

0 20 40

10 9

10 6

10 3

100

101 103

10 9

10 6

10 3

100

0 20 40
Passes

10 8

10 6

10 4

10 2

100

po
we

r

100 102

Time (s)

10 10

10 7

10 4

10 1

0 20 40
Passes

10 9

10 6

10 3

100

100 102

Time (s)

10 10

10 7

10 4

10 1

0 20 40
Passes

10 9

10 6

10 3

100

100 102

Time (s)

10 10

10 7

10 4

10 1

SGD LSVRG Prospect SOREL

Figure 2: Suboptimality of spectral risks for different algorithms without mini-batching. The x-
axis represents the effective number of samples used by the algorithm divided by n (odd columns) or
CPU time (even columns). Each row corresponds to the same dataset, and each column corresponds
to the same type of the spectral risk.

where w⋆ is calculated by L-BFGS (Nocedal & Wright, 1999).

Results. Figure 2 compares the training curves of our method with other baselines across various
datasets and the spectral risk settings. In terms of sample complexity and runtime, SOREL outper-
forms other baselines in most cases; SOREL also achieve comparable results in the kin8nm dataset.
In the power dataset, the sample complexity of Prospect is better than that of SOREL. However, the
runtime of SOREL is significantly shorter than that of Prospect due to the fact that Prospect needs
the calculation of projections onto the permutahedron with O(n) operations each step. As expected,
SGD fails to converge due to its inherent bias (Mehta et al., 2022). Although Mehta et al. (2024)
discusses the equivalence of minimizing the smoothed spectral risk and the original spectral risk
when losses at the optimal point are different from each other, we find that LSVRG and Prospect of-
ten fail to reach the true optimal point, indicating limitations of these methods. In contrast, SOREL
converges to the true optimal point in all settings (suboptimality less than 0 means the solution’s
accuracy is higher than L-BFGS).

5.2 FAIR MACHINE LEARNING

In this experiment, we explore the role of the spectral risks in enhancing fairness in machine learning,
as studied in Williamson & Menon (2019). We use the law and acs datasets. law refers to the Law
School Admissions Council’s National Longitudinal Bar Passage Study, which is used for the
regression task of predicting a student’s GPA (Wightman, 1998). acs is derived from US Census
surveys, which is used for the classification task of predicting whether an adult is employed (Ding
et al., 2021). All algorithm are implemented using mini-batching in this experiment.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Assume a source distribution (Y,X,A), where Y is the true label, X represents the available fea-
tures, and A ∈ {0, 1} is the binary sensitive attribute. Let Ŷ = f(X,A) be the model’s prediction.
For binary classification problems, we consider the fairness metric of Equal Opportunity (EO) de-
fined by

EO = P{Ŷ = 1 | A = 0, Y = 1} − P{Ŷ = 1 | A = 1, Y = 1}.
For regression tasks, we consider the absolute mean difference (SMD) as the fairness metric defined
by

SMD =
∣∣∣E [

Ŷ | A = 1
]
− E

[
Ŷ
]∣∣∣+ ∣∣∣E [

Ŷ | A = 0
]
− E

[
Ŷ
]∣∣∣ .

Intuitively, if the EO and SMD are close to 0, the model does not discriminate with respect to A. In
both datasets, we set race as the sensitive attribute.

Results. Tables 2 shows the results of using different spectral risks on the acs and law datasets,
respectively. ERM represents the empirical risk. We find that using spectral risks instead of the em-
pirical risk does improve the fairness metrics of the model, and in most cases, a lower suboptimality
indicates better fairness of the model. In the acs classification task, SOREL significantly outper-
forms other algorithms in terms of both fairness metrics and suboptimality. For ESRM, SOREL’s
suboptimality surpasses that of L-BFGS, while the fairness metric of SGD is worse than the baseline
under the ERM setting, possibly due to poor performance of SGD when optimizing the objective
function. Additionally, CVaR and Extremile are more effective at reducing EO, compared to Ex-
tremile. In the law regression task, there is no significant difference in SMD improvement among
LSVRG, Prospect, and SOREL, but all perform better than SGD. However, SOREL achieves the
lowest suboptimality, and its suboptimality is lower than that of L-BFGS under both the ESRM and
Extremile settings. Furthermore, training curves in Appendix B show that SOREL can reach low
suboptimality in the shortest amount of time.

Table 2: Results of different algorithms on acs and law. The values in the ERM row represent
the mean fairnes metrics (values closer to 0 indicate better fairness) on the test set. The first to third
rows for each spectral risk (except ERM) represent, respectively: the mean fairness metrics on the
test set, relative fairness metric improvements (%) from ERM, and training suboptimality.

Datasets acs law

ERM 0.02092 0.05188

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

CVaR
0.00645 0.00816 0.00634 0.00551 0.04019 0.03896 0.03893 0.03890

69.17 60.99 69.69 73.66 22.53 24.90 24.96 25.02
4.29e-4 7.23e-4 2.12e-4 2.31e-6 3.80e-3 5.88e-3 6.71e-4 2.95e-5

ESRM
0.02469 0.01842 0.01840 0.01770 0.04184 0.04122 0.04123 0.04123

– 11.95 12.05 15.39 19.35 20.55 20.53 20.53
1.47e-3 3.33e-4 4.38e-6 -2.38e-8 7.60e-4 1.13e-4 1.52e-7 -1.13e-7

Extremile
0.00424 0.00377 0.00237 0.00130 0.04416 0.04377 0.04380 0.04381

79.73 81.98 88.67 93.97 14.88 15.63 15.57 15.56
5.11e-3 7.90e-3 6.69e-4 1.14e-4 1.63e-4 6.14e-4 8.14e-6 -2.12e-7

5.3 OUT-OF-DISTRIBUTION GENERALIZATION

In this subsection, we explore the role of the spectral risk in enhancing model robustness under
distribution shift. We use CVaR and Extremile as the spectral risks. Levy et al. (2020) uses the
CVaR measure as the uncertainty set, and their optimization problem is the same as the spectral
risk minimization problem (1) that uses CVaR as the spectral risk. We use the amazon dataset
preprocessed by Mehta et al. (2024) for the multi-class classification task, which consists of feature
representations generated by BERT (Devlin et al., 2019) from the original dataset. amazon refers
to the Amazon Reviews dataset (Ni et al., 2019), which includes textual reviews of products along
with their corresponding ratings from one to five, with different reviewers for the training and test
sets. We evaluate the worst group classification error (Sagawa et al., 2020) on the test set. Each
group is classified based on the true labels. All algorithm are implemented using mini-batching in
this experiment.

We also explore the impact of distribution shift on fairness metrics in Section 5.2. In Ding et al.
(2021), it is observed that training and testing on different states lead to unpredictable results. We use

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

data from California as the training data and train models using ERM and CVaR as loss functions,
respectively. We then test the models on four other states.

Results. Figure 3 shows the results of using CVaR and Extremile spectral risks on amazon.
SOREL achieves the best worst group classification error in both settings. For CVaR, under similar
suboptimality, SOREL reaches the minimum worst group classification error, indicating better gen-
eralization performance. Moreover, SOREL is the only algorithm that can converge to the true op-
timal solution under the CVaR setting. Additionally, SOREL demonstrates optimal or near-optimal
convergence rates in both spectral risk settings.

Figure 4 shows the results of models tested on four other states. The circles represent model’s per-
formance in California (in-distribution). Models’ performance in other states (out-of-distribution) is
indeed hard to predict. Notably, models trained with ERM often fail to meet the expected fairness
metrics in other states. However, models trained with CVaR often achieves higher test accuracy and
better fairness metrics. Moreover, the models trained with SOREL achieve the best or nearly the
best EO and test accuracy.

10 1 100 101 102

Time (s)

10 5

10 4

10 3

10 2

10 1

100

Su
bo

pt
im

al
ity

CVaR

SGD LSVRG Prospect SOREL
0.800

0.805

0.810

W
or

st
 G

ro
up

 E
rro

r

CVaR

10 1 100 101 102

Time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

Su
bo

pt
im

al
ity

Extremile

SGD LSVRG Prospect SOREL
0.750

0.755

0.760

0.765

0.770

W
or

st
 G

ro
up

 E
rro

r

Extremile

SGD LSVRG Prospect SOREL

Figure 3: Training curves and worst group classification errors of different algorithms on the
amazon dataset. The suboptimality at the 500 th pass (where we evaluate the worst group er-
ror) is marked on the training curves. The training curves are extended to illustrate convergence.

0.750 0.755 0.760 0.765 0.770
Test Accuracy

0.02

0.04

0.06

0.08

0.10

Eq
ua

lit
y

of
 O

pp
or

tu
ni

ty

Baseline
SGD
LSVRG
Prospect
SOREL

CA
CT
HI
WV
FL

Figure 4: Model performance under geographic distribution shift. The models are trained on the
state CA and tested on other states. Dots of different colors (except black) represent the results of
using different optimization algorithms to solve the CVaR minimization problem. Baseline refers to
the results using ERM as the loss function.

6 CONCLUSION

We have proposed SOREL, the first stochastic algorithm with convergence guarantees for the spec-
tral risk minimization problems. We have proved that SOREL achieves a near-optimal rate of
Õ(1/

√
ϵ). In experiments, SOREL outperforms existing baselines in terms of sample complexity

and runtime in most cases.

Future work includes exploring convergence of SOREL for nonconvex problems, and investigating
broader applications of the spectral risk in areas such as fairness and distributionally robust opti-
mization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Prashanth L. A. and Sanjay P. Bhat. A Wasserstein Distance Approach for Concentration of Empir-
ical Risk Estimates. Journal of Machine Learning Research (JMLR), 23:238:1–238:61, 2022.

Uchenna Akujuobi and Xiangliang Zhang. Delve: A Dataset-Driven Scholarly Search and Analysis
System. SIGKDD Explorations, 19(2):36–46, 2017.

Philippe Artzner. Thinking coherently. Risk, 10:68–71, 1997.

Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk.
Mathematical finance, 9(3):203–228, 1999.

Reza Babanezhad, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Konecný, and Scott
Sallinen. Stopwasting My Gradients: Practical SVRG. In Conference on Neural Information
Processing Systems (NeurIPS), pp. 2251–2259, 2015.

Sandi Baressi Šegota, Nikola And̄elić, Jan Kudláček, and Robert Čep. Artificial neural network for
predicting values of residuary resistance per unit weight of displacement. Pomorski zbornik, 57
(1):9–22, 2019.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast Differentiable Sorting
and Ranking. In International Conference on Machine Learning (ICML), pp. 950–959, 2020.

Digvijay Boob, Qi Deng, and Guanghui Lan. Level constrained first order methods for function
constrained optimization. Mathematical Programming, 2024.

Ruidi Chen and Ioannis Ch Paschalidis. Distributionally robust learning. Foundations and Trends®
in Optimization, 4(1-2):1–243, 2020.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-Constrained
Reinforcement Learning with Percentile Risk Criteria. Journal of Machine Learning Research
(JMLR), 18:167:1–167:51, 2017.

John Cotter and Kevin Dowd. Extreme spectral risk measures: An application to futures clearing-
house margin requirements. Journal of Banking & Finance, 30(12):3469–3485, 2006.

Xiangyu Cui, Rujun Jiang, Yun Shi, Rufeng Xiao, and Yifan Yan. Decision making under cumu-
lative prospect theory: An alternating direction method of multipliers. INFORMS Journal on
Computing, 2024.

Sebastian Curi, Kfir Y. Levy, Stefanie Jegelka, and Andreas Krause. Adaptive Sampling for Stochas-
tic Risk-Averse Learning. In Conference on Neural Information Processing Systems (NeurIPS),
2020.

Ashok Cutkosky and Francesco Orabona. Momentum-Based Variance Reduction in Non-Convex
SGD. In Conference on Neural Information Processing Systems (NeurIPS), pp. 15210–15219,
2019.

Abdelaati Daouia, Irène Gijbels, and Gilles Stupfler. Extremiles: A New Perspective on Asymmetric
Least Squares. Journal of the American Statistical Association, 114(527):1366–1381, 2019.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic Model-Based Minimization of Weakly Convex
Functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. Saga: A Fast Incremental Gradient
Method With Support for Non-Strongly Convex Composite Objectives. In Conference on Neural
Information Processing Systems (NeurIPS), pp. 1646–1654, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference
of the North, pp. 4171–4186. Association for Computational Linguistics, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring Adult: New Datasets for
Fair Machine Learning. In Conference on Neural Information Processing Systems (NeurIPS), pp.
6478–6490, 2021.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. Fairness
through awareness. In Innovations in Theoretical Computer Science (ITCS), pp. 214–226, 2012.

Yanbo Fan, Siwei Lyu, Yiming Ying, and Bao-Gang Hu. Learning with Average Top-k Loss. In
Conference on Neural Information Processing Systems (NeurIPS), pp. 497–505, 2017.

Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. Understanding the Role of Momen-
tum in Stochastic Gradient Methods. In Conference on Neural Information Processing Systems
(NeurIPS), pp. 9630–9640, 2019.

Robert M. Gower, Mark Schmidt, Francis R. Bach, and Peter Richtárik. Variance-Reduced Methods
for Machine Learning. Proceedings of the IEEE, 108(11):1968–1983, 2020.

Erfan Yazdandoost Hamedani and Necdet Serhat Aybat. A Primal-Dual Algorithm with Line Search
for General Convex-Concave Saddle Point Problems. SIAM Journal on Optimization, 31(2):
1299–1329, 2021.

Erfan Yazdandoost Hamedani and Afrooz Jalilzadeh. A stochastic variance-reduced accelerated
primal-dual method for finite-sum saddle-point problems. Computational Optimization and Ap-
plications, 85(2):653–679, 2023.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of Opportunity in Supervised Learning. In
Conference on Neural Information Processing Systems (NeurIPS), pp. 3315–3323, 2016.

Xue Dong He, Steven Kou, and Xianhua Peng. Risk measures: robustness, elicitability, and back-
testing. Annual Review of Statistics and Its Application, 9(1):141–166, 2022.

Thomas Hofmann, Aurélien Lucchi, Simon Lacoste-Julien, and Brian McWilliams. Variance Re-
duced Stochastic Gradient Descent with Neighbors. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), pp. 2305–2313, 2015.

Matthew J. Holland and El Mehdi Haress. Learning with risk-averse feedback under potentially
heavy tails. In International Conference on Artificial Intelligence and Statistics (AISTATS), pp.
892–900, 2021.

Matthew J. Holland and El Mehdi Haress. Spectral risk-based learning using unbounded losses.
In International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1871–1886,
2022.

Rie Johnson and Tong Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance
Reduction. In Conference on Neural Information Processing Systems (NeurIPS), pp. 315–323,
2013.

Kenji Kawaguchi and Haihao Lu. Ordered SGD: A New Stochastic Optimization Framework for
Empirical Risk Minimization. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 669–679, 2020.

Mohammad Khalafi and Digvijay Boob. Accelerated Primal-Dual Methods for Convex-Strongly-
Concave Saddle Point Problems. In International Conference on Machine Learning (ICML), pp.
16250–16270, 2023.

Justin Khim, Liu Leqi, Adarsh Prasad, and Pradeep Ravikumar. Uniform Convergence of Rank-
weighted Learning. In International Conference on Machine Learning (ICML), pp. 5254–5263,
2020.

Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t Jump Through Hoops and Remove
Those Loops: Svrg and Katyusha are Better Without the Outer Loop. In International Conference
on Algorithmic Learning Theory (ALT), pp. 451–467, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrei Kulunchakov and Julien Mairal. Estimate Sequences for Variance-Reduced Stochastic Com-
posite Optimization. In International Conference on Machine Learning (ICML), pp. 3541–3550,
2019.

Daniel Levy, Yair Carmon, John C. Duchi, and Aaron Sidford. Large-Scale Methods for Dis-
tributionally Robust Optimization. In Conference on Neural Information Processing Systems
(NeurIPS), 2020.

Cong Han Lim and Stephen J. Wright. Efficient Bregman Projections onto the Permutahedron and
Related Polytopes. In International Conference on Artificial Intelligence and Statistics (AIS-
TATS), pp. 1205–1213, 2016.

Yanli Liu, Yuan Gao, and Wotao Yin. An Improved Analysis of Stochastic Gradient Descent with
Momentum. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

Andreas Maurer, Daniela Angela Parletta, Andrea Paudice, and Massimiliano Pontil. Robust Unsu-
pervised Learning via L-statistic Minimization. In International Conference on Machine Learning
(ICML), pp. 7524–7533, 2021.

Ronak Mehta, Vincent Roulet, Krishna Pillutla, and Zaïd Harchaoui. Distributionally Robust Opti-
mization with Bias and Variance Reduction. The Twelfth International Conference on Learning
Representations, abs/2310.13863, 2024.

Ronak R. Mehta, Vincent Roulet, Krishna Pillutla, Lang Liu, and Zaïd Harchaoui. Stochastic Opti-
mization for Spectral Risk Measures. In International Conference on Artificial Intelligence and
Statistics, pp. 10112–10159, 2022.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takác. Sarah: A Novel Method for Machine
Learning Problems Using Stochastic Recursive Gradient. In International Conference on Machine
Learning (ICML), pp. 2613–2621, 2017.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying Recommendations using Distantly-Labeled
Reviews and Fine-Grained Aspects. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Association for Computational Linguistics, 2019.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order methods for convex-
concave bilinear saddle-point problems. Mathematical Programming, 185(1-2):1–35, 2021.

Balamurugan Palaniappan and Francis R. Bach. Stochastic Variance Reduction Methods for Saddle-
Point Problems. In Conference on Neural Information Processing Systems (NeurIPS), pp. 1408–
1416, 2016.

R Tyrrell Rockafellar and Stan Uryasev. The fundamental risk quadrangle in risk management,
optimization and statistical estimation. Surveys in Operations Research and Management Science,
18(1-2):33–53, 2013.

R. Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at-risk. The Journal
of Risk, 2(3):21–41, 2000.

Nicolas Le Roux, Mark Schmidt, and Francis R. Bach. A Stochastic Gradient Method with an
Exponential Convergence Rate for Finite Training Sets. In Conference on Neural Information
Processing Systems (NeurIPS), pp. 2672–2680, 2012.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally Robust
Neural Networks. In International Conference on Learning Representations (ICLR), 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14(1), 2013.

Vishnu D. Sharma, Maymoonah Toubeh, Lifeng Zhou, and Pratap Tokekar. Risk-Aware Plan-
ning and Assignment for Ground Vehicles using Uncertain Perception from Aerial Vehicles. In
IEEE/RJS International Conference on Intelligent RObots and Systems (IROS), pp. 11763–11769,
2020.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of
initialization and momentum in deep learning. In International Conference on Machine Learning
(ICML), pp. 1139–1147, 2013.

Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Efficient Al-
gorithms for Smooth Minimax Optimization. In Conference on Neural Information Processing
Systems (NeurIPS), pp. 12659–12670, 2019.

Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation of energy performance of
residential buildings using statistical machine learning tools. Energy and Buildings, 49:560–567,
2012.

Paul Tseng. An incremental gradient (-projection) method with momentum term and adaptive step-
size rule. SIAM Journal on Optimization, 8(2):506–531, 1998.

Pınar Tüfekci. Prediction of full load electrical power output of a base load operated combined
cycle power plant using machine learning methods. International Journal of Electrical Power &
Energy Systems, 60:126–140, 2014.

Peng Wang, Rujun Jiang, Qingyuan Kong, and L. Balzano. Proximal DC Algorithm for Sample Av-
erage Approximation of Chance Constrained Programming: Convergence and Numerical Results.
arXiv, 2023.

Linda F Wightman. Lsac national longitudinal bar passage study. lsac research report series. 1998.

Robert C. Williamson and Aditya Krishna Menon. Fairness risk measures. In International Confer-
ence on Machine Learning (ICML), pp. 6786–6797, 2019.

Lin Xiao and Tong Zhang. A Proximal Stochastic Gradient Method with Progressive Variance
Reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Rufeng Xiao, Yuze Ge, Rujun Jiang, and Yifan Yan. A Unified Framework for Rank-based Loss
Minimization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Ziyue Xu, Andriy Myronenko, Dong Yang, Holger R. Roth, Can Zhao, Xiaosong Wang, and
Daguang Xu. Clinical-Realistic Annotation for Histopathology Images with Probabilistic Semi-
supervision: A Worst-Case Study. Springer Nature Switzerland, 2022.

Yan Yan, Yi Xu, Qihang Lin, Lijun Zhang, and Tianbao Yang. Stochastic Primal-Dual Algo-
rithms with Faster Convergence than O(1/√T) for Problems without Bilinear Structure. ArXiv,
abs/1904.10112, 2019.

I-Cheng Yeh. Analysis of Strength of Concrete Using Design of Experiments and Neural Networks.
Journal of Materials in Civil Engineering, 18(4):597–604, 2006.

Qiyuan Zhang, Shu Leng, Xiaoteng Ma, Qihan Liu, Xueqian Wang, Bin Liang, Yu Liu, and Jun
Yang. Cvar-Constrained Policy Optimization for Safe Reinforcement Learning. IEEE Transac-
tions on Neural Networks and Learning Systems, 2024.

Zeyuan Allen Zhu and Elad Hazan. Variance Reduction for Faster Non-Convex Optimization. In
International Conference on Machine Learning (ICML), pp. 699–707, 2016.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS

First, we provide an auxiliary lemma. This is an extension of Boob et al. (2024, Lemma 8).

Lemma 2 Let x̄ be an ϵ-approximate solution of minx{g(x) + λ
2 ∥x− x̂∥2} in expectation, where

g : Rd → R is µ-strongly convex, µ ≥ 0. Then for any D>0

E {g(x̄)− g(x)} ≤E
{
λ

2

[
∥x− x̂∥2 − ∥x− x̄∥2 − ∥x̂− x̄∥2

]
− µ

2
∥x− x̄∥2

}
+

√
(λ+ µ)ϵ

2
D−1E∥x̄− x∥2 +

√
(λ+ µ)ϵ

2
D + ϵ.

Proof: Let x⋆ = argmin
x

{g(x) + λ
2 ∥x− x̂∥2}. By (µ+ λ)-strong convexity of g(·) + λ

2 ∥ · −x̂∥2

we have

g(x) +
λ

2
∥x− x̂∥2 ≥ g(x⋆) +

λ

2
∥x⋆ − x̂∥2 + µ+ λ

2
∥x− x⋆∥2,

g(x⋆)− g(x) ≤ λ

2

[
∥x− x̂∥2 − ∥x⋆ − x̂∥2 − ∥x⋆ − x∥2

]
− µ

2
∥x− x⋆∥2. (7)

By the definition of x̄ we have

E{g(x̄) + λ

2
∥x̄− x̂∥2} ≤ g(x⋆) +

λ

2
∥x⋆ − x̂∥2 + ϵ (8)

Combining (7) and (8) gives

E {g(x̄)− g(x)} ≤ λ

2

[
∥x− x̂∥2 − ∥x⋆ − x∥2 − E∥x̂− x̄∥2

]
− µ

2
∥x− x⋆∥2 + ϵ (9)

= E
{
λ

2

[
∥x− x̂∥2 − ∥x− x̄∥2 − ∥x̄− x̂∥2

]
− µ

2
∥x− x̄∥2

+
λ+ µ

2

[
∥x− x̄∥2 − ∥x− x⋆∥2

]
+ ϵ

}
≤ E

{
λ

2

[
∥x− x̂∥2 − ∥x− x̄∥2 − ∥x̄− x̂∥2

]
− µ

2
∥x− x̄∥2

+(λ+ µ)∥x− x̄∥∥x̄− x⋆∥+ ϵ} , (10)

where the last inequality is due to the fact that ∥a∥2 − ∥b∥2 ≤ −2⟨a, b− a⟩ ≤ 2∥a∥∥b− a∥.

Let x = x̄ in (9), and take the expectation with respect to x̄. Then we have

λ+ µ

2
E ∥x⋆ − x̄∥2 ≤ ϵ.

By Hölder’s inequality we have

E∥x− x̄∥∥x̄− x⋆∥ ≤
(
E∥x− x̄∥2

) 1
2
(
E∥x⋆ − x̄∥2

) 1
2

≤ 1

2

(
E∥x⋆ − x̄∥2

) 1
2
(
D +D−1E∥x− x̄∥2

)
.

≤ 1

2

√
2ϵ

λ+ µ

(
D +D−1E∥x− x̄∥2

)
.

Combining the above results and (10) we get the desired result. □

Consider solving the problem from Line 8 to Line 16 in Algorithm 1 while updating w:

min
w

Pk(w) := g(w) + λ⊤
k+1ℓ(w) +

1

2ηk
∥w −wk∥2.

The following lemma provides the error between wk+1 and argminw Pk(w).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lemma 3 Let Pk(w) := λ⊤
k+1ℓ(w) + g(w) + 1

2τk
∥w −wk∥2. Set α < L

4 , mk = Θ(Lτk
µτk+1) and

Tk = O(mk log
1
ϵ) in Algorithm 1. The overall sample complexity of obtaining an ϵ-approximate

solution such that EPk(w
k+1) −minw Pk(w) ≤ ϵ is O

((
n+ Lτk

µτk+1

)
log 1

ϵ

)
. Moreover, we can

set α = 1
12L and mk = 96L

µ+τ−1
k

+ 2 in practice.

Proof: First note that λk+1⊤ℓ(w) is L-smooth since

∥
n∑
i=i

λk+1,iℓi(x)−
n∑

i=1

λk+1,iℓi(y)∥ ≤
n∑

i=1

λk+1,i∥ℓi(x)− ℓi(y)∥ ≤ L∥x− y∥,

for ∀x,y ∈ Rd. In the last inequality we use
∑

i λk+1,i ≤ 1 due to λk+1 ∈ Πσ and L-smoothness
of ℓi. Moreover, it is not hard to see that Pk(w) is µ + τ−1

k -strongly convex. By Xiao & Zhang
(2014, Theorem 1) we get the desired result. □

A.1 PROOF OF LEMMA 1

Proof: From the update of λk+1 and Lemma 2 we have

0 ≤ 1

2ηk

[
∥λ− λk∥2 − ∥λ− λk+1∥2 − ∥λk+1 − λk∥2

]
+ ⟨vk,λk+1 − λ⟩. (11)

From the update of wk+1 and Lemma 2 we have

Ek {g(wk+1) + ⟨λk+1, ℓ(wk+1)⟩ − g(w)− ⟨λk+1, ℓ(w)⟩}

≤ Ek

{
1

2τk

[
∥w −wk∥2 − ∥w −wk+1∥2 − ∥wk+1 −wk∥2

]
− µ

2
∥w −wk+1∥2

+δk +

√
(τ−1

k + µ)δk
2

(D−1∥w −wk+1∥2 +D)

 . (12)

Taking the conditional expectation Ek of both sides of (11) and summing with (12) we obtain that

Ek {L(wk+1,λ)− L(w,λk+1)}
=Ek {g(wk+1) + ⟨λ, ℓ(wk+1)⟩ − g(w)− ⟨λk+1, ℓ(w)⟩}

≤Ek

{
⟨λ− λk+1, ℓ(wk+1)⟩+

1

2ηk

[
∥λ− λk∥2 − ∥λ− λk+1∥2 − ∥λk+1 − λk∥2

]
+

1

2τk

[
∥w −wk∥2 − ∥w −wk+1∥2 − ∥wk+1 −wk∥2

]
+ ⟨vk,λk+1 − λ⟩

−µ

2
∥w −wk+1∥2 + δk +

√
(τ−1

k + µ)δk
2

(D−1∥w −wk+1∥2 +D)

 .

(13)

□

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 PROOF OF THEOREM 1

Lemma 4 Under the same assumptions as Lemma 1, for any w ∈ Rd and λ ∈ Πσ , we have

Ek {L(wk+1,λ)− L(w,λk+1)}

≤Ek

{
1

2ηk

[
∥λ− λk∥2 − ∥λ− λk+1∥2

]
+

1

2τk
∥w −wk∥2 −

1

2

(
1

τk
+ µ

)
∥w −wk+1∥2

+ ⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩ − θk⟨ℓ(wk)− ℓ(wk−1),λ− λk⟩

− 1

2

[
1

ηk
− θk

√
nG

αk

]
∥λk − λk+1∥2 −

1

2τk
∥wk −wk+1∥2 +

√
nGθkαk

2
∥wk −wk−1∥2

+δk +

√
(τ−1

k + µ)δk
2

(D−1∥w −wk+1∥2 +D)

 .

(14)

Proof: First, we have

⟨vk,λk+1 − λ⟩
=⟨ℓ(wk) + θk (ℓ(wk)− ℓ(wk−1)) ,λk+1 − λ⟩
=− ⟨ℓ(wk+1),λ− λk+1⟩+ ⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩
− θk⟨ℓ(wk)− ℓ(wk−1),λ− λk⟩ − θk⟨ℓ(wk)− ℓ(wk−1),λk − λk+1⟩.

Then we obtain that

⟨λ− λk+1, ℓ(wk+1)⟩+ ⟨vk,λk+1 − λ⟩
≤ ⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩ − θk⟨ℓ(wk)− ℓ(wk−1),λ− λk⟩
− θk⟨ℓ(wk)− ℓ(wk−1),λk − λk+1⟩.

(15)

Next we bound the last term on the right-hand side of (15):

⟨ℓ(wk)− ℓ(wk−1),λk − λk+1⟩
≤
√
nG∥wk −wk−1∥∥λk − λk+1∥

≤
√
nGαk

2
∥wk −wk−1∥2 +

√
nG

2αk
∥λk − λk+1∥2,

(16)

where the first inequality is due to the G-Lipschitz continuity of ℓi and in the second inequality we
use Young’s inequality with αk > 0.

Combing (15) and (16) we obtain that

⟨λ− λk+1, ℓ(wk+1)⟩+ ⟨vk,λk+1 − λ⟩
≤ ⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩ − θk⟨ℓ(wk)− ℓ(wk−1),λ− λk⟩

+

√
nGαkθk

2
∥wk −wk−1∥2 +

√
nGθk
2αk

∥λk − λk+1∥2.
(17)

Taking the conditional expectation Ek of both sides of (17) and combing it with Lemma 1 we get
the desired result. □

We remark that αk does not need to be computed in the actual algorithm but only exists in the
theoretical analysis. Next, we try to telescope the terms on the right hand side of (14) by multiplying
each term by γk. To ensure that the adjacent terms in the sequence k = 0, . . . ,K−1 can be canceled
out during summation, we need the parameters of the algorithm to satisfy the following conditions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Condition 1 For k = 0, 1, ..., the following conditions for parameters in the analysis and Algo-
rithm 1:

γk+1

ηk+1
≤ γk

ηk
, (18a)

γk+1

τk+1
≤ γk

(
1

τk
+ µ−

√
2(µ+ τ−1

k)δkD
−1

)
, (18b)

γk = γk+1θk+1, (18c)
√
nGαk+1 ≤ 1

τk
, (18d)

θk

√
nG

αk
≤ 1

ηk
. (18e)

Lemma 5 Assume Assumption 1 holds and Condition 1 is satisfied. Then for all w ∈ Rd and
λ ∈ Πσ we have

γK
2τK

E∥w⋆−wK∥2 ≤ γ0
2η0

∥λ⋆−λ0∥2+
γ0
2τ0

∥w⋆−w0∥2+
K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k)δkD

)
,

where w⋆ = argminw Rσ(w) + g(w) and λ⋆ = σπ−1 . Here, π is the permutation that arranges
ℓ1(w

⋆), . . . , ℓn(w
⋆) in ascending order, that is, ℓπ(1)(w⋆) ≤ · · · ≤ ℓπ(n)(w

⋆).

Proof: Taking expectations with respect to wk, . . . ,w1 in (14) and using the law of total expecta-
tion yields

E {L(wk+1,λ)− L(w,λk+1)}

≤E
{

1

2ηk

[
∥λ− λk∥2 − ∥λ− λk+1∥2

]
− 1

2

[
1

ηk
−

√
nGθk
αk

]
∥λk − λk+1∥2

+ ⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩ − θk⟨ℓ(wk)− ℓ(wk−1),λ− λk⟩

+
1

2τk
∥w −wk∥2 −

1

2

(
1

τk
+ µ−

√
2(µ+ τ−1

k)δkD
−1

)
∥w −wk+1∥2

− 1

2τk
∥wk −wk+1∥2 +

√
nGθkαk

2
∥wk −wk−1∥2 + δk +

1

2

√
2(µ+ τ−1

k)δkD

}
.

(19)

Multiplying both sides of (19) by γk and summing over k = 0 to K − 1 we obtain that

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

K−1∑
k=0

γkE {L(wk+1,λ)− L(w,λk+1)}

≤E


γ0
2η0

∥λ− λ0∥2 +
K−2∑
k=0

1

2

(
γk+1

ηk+1
− γk

ηk

)
∥λ− λk+1∥2︸ ︷︷ ︸

A

− γK−1

2ηK−1
∥λ− λK∥2

+
γ0
2τ0

∥w −w0∥2 +
K−2∑
k=0

1

2

[
γk+1

τk+1
− γk

(
1

τk
+ µ−

√
2(µ+ τ−1

k)δkD
−1

)]
∥w −wk+1∥2︸ ︷︷ ︸

B

−γK−1

2

(
1

τK−1
+ µ−

√
2(µ+ τ−1

K−1)δK−1D
−1

)
∥w −wK∥2

+

K−2∑
k=0

(γk − γk+1θk+1)︸ ︷︷ ︸
C

⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩+ γK−1⟨ℓ(wK)− ℓ(wK−1),λ− λK⟩

+
1

2

K−2∑
k=0

(
γk+1θk+1αk+1

√
nG− γk

τk

)
︸ ︷︷ ︸

D

∥wk −wk+1∥2 −
γK−1

2τK−1
∥wK −wK−1∥2

+
1

2

K−1∑
k=0

[
−γk

(
1

ηk
− θk

√
nG

αk

)]
︸ ︷︷ ︸

E

∥λk − λk+1∥2 +
K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k)δkD

) .

Here we use ℓ(w0) − ℓ(w−1) = 0 by w0 = w−1 and λ0 = λ−1. By Condition 1, we have
A,B,D,E ≤ 0 and C = 0.

Then we have

K−1∑
k=0

γkE {L(wk+1,λ)− L(w,λk+1)}

≤E
{

γ0
2η0

∥λ− λ0∥2 −
γK−1

2ηK−1
∥λ− λK∥2 + γ0

2τ0
∥w −w0∥2

−γK−1

2

(
1

τK−1
+ µ−

√
2(µ+ τ−1

K−1)δK−1D
−1

)
∥w −wK∥2

+γK−1⟨ℓ(wK)− ℓ(wK−1),λ− λK⟩ − γK−1

2τK−1
∥wK −wK−1∥2

+

K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k)δkD

)}
.

(20)

Next we bound γK−1⟨ℓ(wK)− ℓ(wK−1),λ− λK⟩ similar to (16). We have

⟨ℓ(wK)− ℓ(wK−1),λ− λK⟩ ≤
√
nGαK

2
∥wK −wK−1∥2 +

1

2

√
nG

αK
∥λ− λK∥2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Taking the expectation and plugging this into (20), we obtain that
K−1∑
k=0

γkE {L(wk+1,λ)− L(w,λk+1)}

≤E


γ0
2η0

∥λ− λ0∥2 −
1

2

[
γK−1

ηK−1
− γK−1

√
nG

αK

]
︸ ︷︷ ︸

Ã

∥λ− λK∥2

+
γ0
2τ0

∥w −w0∥2 −
γK−1

2

(
1

τK−1
+ µ−

√
2(µ+ τ−1

K−1)δK−1D
−1

)
︸ ︷︷ ︸

B̃

∥w −wK∥2

+
γK−1

2

(
αK

√
nG− 1

τK−1

)
︸ ︷︷ ︸

C̃

∥wK −wK−1∥2 +
K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k)δkD

) .

(21)

We analyze Ã-D̃ under Condition 1:

Ã
(18a)

≥
[
γK
ηK

− γK−1

√
nG

αK

]
(18c)
= γK

[
1

ηK
− θK

√
nG

αK

]
(18e)

≥ 0,

B̃
(18b)

≥ γK
2τK

,

C̃
(18d)

≤ 0.

We obtain that
K−1∑
k=0

γkE {L(wk+1,λ)− L(w,λk+1)}

≤ γ0
2η0

∥λ− λ0∥2 +
γ0
2τ0

∥w −w0∥2 −
γK
2τK

E ∥w −wK∥2 +
K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k)δkD

)
.

(22)

For any w ∈ Rd and λ ∈ Πσ , we have L(w⋆,λ⋆) = maxλ∈Πσ L(w⋆,λ) ≥ L(w⋆,λ).
On the other hand, we have L(w,λ⋆) ≥ L(w⋆,λ⋆) = minw L(w,λ⋆). Thus we obtain that
L(wk+1,λ

⋆)− L(w⋆,λk+1) ≥ 0 for ∀k = 0, . . . ,K − 1. Let w = w⋆ and λ = λ⋆ in (22) we get
the desired result. □

Now we are ready to prove Theorem 1. By choosing appropriate parameters in Algorithm 1 to
satisfy Condition 1, we can achieve the desired convergence rate.

Proof of Theorem 1.

Proof: First, we obtain an δk approximate solution to (11) through Tk updates to w in Algorithm 1
by Lemma 3. We then verify that Condition 1 is satisfied by the parameters.

It is not hard to see that γk+1

γk
= ηk+1

ηk
= k+2

k+1 and θk+1 = γk

γk+1
= k+1

k+2 . Thus (18a) and (18c) are
satisfied.

Since δk ≤ µ
8(k+5)D

2, we have
√
2(µ+ τ−1

k)δkD
−1 ≤

√
2µ(1 + k+1

4) µD2

8(k+5)D
−1 ≤ µ

4 . Then we
obtain that

γk+1

γkτk+1
=

k + 2

4
µ+

k + 2

4(k + 1)
µ ≤ k + 4

4
µ,

and
1

τk
+ µ−

√
2(µ+ τ−1

k)δkD
−1 ≥ k + 1

4
µ+ µ− µ

4
=

k + 4

4
µ.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Thus (18b) holds.

Furthermore, (18d) and (18e) hold due to
√
nGαk+1 = nG2ηk = k+1

8 µ ≤ k+1
4 µ = 1

τk
and

θk
√
nG
αk

= ηk−1

ηk

√
nG√

nGηk−1
= 1

ηk
.

Now Condition 1 is satisfied. By Lemma 5, we have

γK
2τK

E ∥w−wK∥2 ≤ γ0
2η0

∥λ⋆−λ0∥2+
γ0
2τ0

∥w⋆−w0∥2+
K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k)δkD

)
.

Since δk ≤ µ(k + 1)−6D2, we have
∑∞

k=0 δkγk ≤ µD2
∑∞

k=0(k + 1)−5 ≤ µ
4D

2, and

∞∑
k=0

γk

√
(µ+ τ−1

k)δkD ≤
√
2µ

4
D2

∞∑
k=0

(k+1)−2
√
k + 5 ≤

√
2µ

4
D2

∞∑
k=0

(k+1)−2
(√

k + 1 + 2
)
≤

√
2µD2.

Finally, by γK

2τK
= µ(K+1)2

8 , τ0 = 4
µ , η0 = µ

8nG2 and D = G
µ , we get the desired result. □

A.3 PROOF OF COROLLARY 1

Proof: Recall that τk = 4
µ(k+1) . It is not hard to see that Lτk

µτk+1 = 4L
µ(k+5) ≤ 4L

µ(k+1) .
By Lemma 3, we get a δk approximate solution with the sample complexity of Cwk+1

=

O
((

n+ L
µ(k+1)

)
log

(
δ−1
k

))
. We set δk = D2 min

(
µ

8(k+5) , µ(k + 1)−6
)

= G2

µ (k + 1)−6 for
k ≥ 1. And δ0 = µ/40. The total sample complexity is

K−1∑
k=0

Cwk+1
=

K−1∑
k=0

O

((
n+

L

µ(k + 1)

)(
log(k + 1)+ log

(µ

G2

)))
= O

(
nK log

µK

G2
+

L

µ
logK log

µK

G2

)
.

In the last equality, we calculate
∑K

k=1
log k
k = O

(
(logK)

2
)

,
∑K

k=1 log k = O (K logK) and∑K
k=1

1
k = O(logK). By Theorem 1, to achieve an ϵ-optimal solution, we need K = O

(√
nG

µ
√
ϵ

)
.

Therefore, the total sample complexity is O
(

n
3
2 G

µ
√
ϵ
log

√
n

G
√
ϵ
+ L

µ log
√
n

G
√
ϵ
log

√
nG

µ
√
ϵ

)
. □

B EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTAL RESULTS

We now outline the details of our experimental setup. Our experimental setup mainly follows that
of Mehta et al. (2024).

Datasets. We use the same five datasets from the regression task in Section 5.1 and the amazon
dataset in Section 5.3 as in Mehta et al. (2024). The statistical characteristics are summarized in
Table 3.

Other two datasets in Section 5.2 are as follows:

1. acs: predicting whether an American adult is employed.

2. law: predicting a student’s GPA.

In the experiments, we normalize the features of the sample matrix X ∈ Rn×d so that each feature
has a mean of 0 and a variance of 1. The test sets are normalized using the statistics of the training
set.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Dataset # features # samples Source

yacht 6 244 Tsanas & Xifara (2012)
energy 8 614 Baressi Šegota et al. (2019)
concrete 8 824 Yeh (2006)
kin8nm 8 6,553 Akujuobi & Zhang (2017)
power 4 7,654 Tüfekci (2014)
acs 16 10000 Ding et al. (2021)
law 10 20800 Wightman (1998)
amazon 535 20000 Mehta et al. (2024),Ni et al. (2019)

Table 3: Statistical details of real datasets and sources.

Objectives. We use linear models in our experiments. For spectral risks, we adopt three types:
ESRM, Extremile, and CVaR, as specified in Table 1. Additionally, we set the regularizer g(w)
to µ

2 ∥w∥2 with µ = 1
n , where n donates the number of sample points in the taining set. Thus,

Problem (1) can be written as

min
w

n∑
i=1

σiℓ[i](w) +
µ

2
∥w∥2,

where ℓi(·) is the loss function, which will be chosen in different forms for different tasks.

Hyperparameter Selection. We use similar hyperparameter selection method as in Mehta et al.
(2024). We set the batch size for SGD to 64. For the selection of step size α, we set the random
seed s ∈ {1, . . . , S}. For a single seed s, we calculate the average training loss of the last ten
epochs, donated by Ls(α). We choose α that minimizes 1

S

∑S
s=1 Ls(α), where α ∈ {1× 10−4, 3×

10−4, 1×10−3, 3×10−3, 1×10−2, 3×10−2, 1×10−1, 3×10−1}. For LSVRG, we set the length
of an epoch to n. For SOREL, we set Tk = mk = n. Moreover, we set batch size to 64 for all
algorithms with mini-batching.

For SOREL, we follow the parameter values given in Theorem 1. In particular, we set θk = k
k+1

and τk = 20n
k+1 in all experiments. Therefore, there are only two parameters α and ηk left to tune.

We set ηk = C(k+1)
n and choose C from {1× 10−2, 2× 10−2, 4× 10−2, 1× 10−1, 2× 10−1, 4×

10−1, 1 × 100, 2 × 100, 4 × 100, 1 × 101}, with two orders of magnitude higher numbers used in
law, since the Lipschitz constant G is hard to estimate. We use grid search to select α and C, with
the selection criteria being the same as the previous paragraph. We apply stochastic gradient descent
to solve (5) instead of proximal stochastic gradient descent.

Experimental Environment. We run all experiments on a laptop with 16.0 GB RAM and Intel
i7-1360P 2.20 GHz CPU. All algorithms are implemented in Python 3.8.

B.1 EXPERIMENTAL DETAILS ON LINEAR REGRESSION

Dataset. We use the same dataset as that used in Mehta et al. (2024), as previously described.

Objectives. We use the least square loss in this experiment. For spectral risks, we adopt three
types: ESRM (ρ = 2), Extremile (r = 2.5), and CVaR (α = 0.5).

Evaluation. We set random seeds s ∈ {1, 2, 3, 4, 5} as the seeds for the random algorithms. We
compare the suboptimality versus passes (the number of samples divided by n) and runtime. The
suboptimality is defined as

Suboptimality(wk) =
Rσ(wk) + g(wk)−Rσ(w

⋆)− g(w⋆)

Rσ(w0) + g(w0)−Rσ(w⋆)− g(w⋆)
,

where w⋆ is calculated by L-BFGS (Nocedal & Wright, 1999).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.2 EXPERIMENTAL DETAILS ON FAIR MACHINE LEARNING

Dataset. We use two datasets, acs (Ding et al., 2021) and law (Wightman, 1998), which are
for classification and regression tasks, respectively. For acs, we randomly selected 10, 000 sample
points from the California data. We use data from four states Connecticut, Hawaii, West Virginia
and Florida in Ding et al. (2021) as the test dataset to explore the out-of-distribution performance of
models trained with spectral risks, with each state having 36287, 14400, 18066, and 202160 sample
points, respectively.

Objectives. For the regression and classification tasks, we use the least squares loss and the binary
logistic loss, respectively. For acs, we set the spectral risks to CVaR (α = 0.75), ESRM (ρ = 1.75)
and Extremile (r = 2.1). For law, we set the spectral risks to CVaR (α = 0.05), ESRM (ρ = 20)
and Extremile (r = 10).

Evaluation. We fix the number of training passes at 100. We split the training set and test set in
a 4:1 ratio and used five-fold cross-validation to report the average results on the test set. For each
training and test set split, we set random seeds s ∈ {1, 2, 3} as the seeds for the random algorithms.
All algorithms are implemented using mini-batching. We set race as the sensitive feature. For
acs, the sensitive feature includes Black and White. For law, the sensitive feature includes non-
White and White. For the task of exploring models’ out-of-domain performance, we directly use the
models obtained from the acs experiments as the models trained on California dataset. Then, we
test these models on all data points from the other four states.

B.3 EXPERIMENTAL DETAILS ON OUT-OF-DISTRIBUTION GENERALIZATION

Dataset. amazon (Ni et al., 2019) is for the multi-class classification task. We use the prepro-
cessed data in Mehta et al. (2024). They fine-tuned a BERT model on 10, 000 held-out examples
and applied PCA to the deep representations produced by BERT. The training set and test set each
contain 10,000 samples. #features in Table 3 refers to the total dimension of the parameter vectors
for all 5 classes.

Objectives. We use a linear model and the multinomial logistic loss. In amazon, we set the
spectral risks to CVaR (α = 0.75) and Extremile (r = 2.0).

Evaluation. We set random seeds s ∈ {1, 2, 3, 4, 5} as the seeds for the random algorithms. We
evaluate the worst group classification error (Sagawa et al., 2020) on the test set. Each group is
classified based on the true labels. We fix the number of passes during training to 500 and report the
average worst group classification error of the last ten passes. All algorithms are implemented using
mini-batching.

B.4 ADDITIONAL EXPERIMENTAL RESULTS

Algorithms with mini-batching. In Figure 5, we present results of the algorithms with mini-
batching for tasks in Section 5.1. Mini-batching has a significant improvement on the convergence
rate of all the algorithms. Similar to what is shown in Figure 2, SGD, LSVEG and Prospect fail
to converge to the true optimal points, especially in the first two datasets. SOREL converges to the
optimal solutions in all settings, and achieves the best or competitive results, in terms of sample
complexity, runtime, or both, except in the setting of CVaR and power dataset. Still SOREL
performs competitively for the suboptimality of 10−7 in this setting.

Training curves in fair machine learning. Figure 6 shows the training curves for the task in
Section 5.2. The training curves are extended to illustrate convergence. SOREL is able to achieve
low suboptimality in the shortest amount of time.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 200 400

10 8

10 6

10 4

10 2

100

en
er

gy

CVaR

0.00 0.25 0.50 0.75 1.00

10 8

10 6

10 4

10 2

100
CVaR

0 200 400

10 8

10 6

10 4

10 2

100
ESRM

0.00 0.25 0.50 0.75 1.00

10 10

10 7

10 4

10 1

ESRM

0 200 400

10 6

10 4

10 2

100
Extremile

0.00 0.25 0.50 0.75 1.00

10 9

10 7

10 5

10 3

10 1

Extremile

0 200 400

10 9

10 6

10 3

100

co
nc

re
te

0.00 0.25 0.50 0.75 1.00

10 9

10 6

10 3

100

0 200 400

10 9

10 7

10 5

10 3

10 1

0.00 0.25 0.50 0.75 1.00

10 9

10 7

10 5

10 3

10 1

0 200 400

10 10

10 7

10 4

10 1

0.00 0.25 0.50 0.75 1.00

10 10

10 7

10 4

10 1

0 50 100

10 7

10 5

10 3

10 1

ki
n8

nm

0 2 4

10 8

10 6

10 4

10 2

100

0 50 100

10 11

10 8

10 5

10 2

0 1 2

10 11

10 8

10 5

10 2

0 50 100

10 11

10 8

10 5

10 2

0 1 2

10 11

10 8

10 5

10 2

0 50 100
Passes

10 9

10 6

10 3

100

po
we

r

0.0 2.5 5.0 7.5 10.0
Time (s)

10 10

10 7

10 4

10 1

0 50 100
Passes

10 9

10 6

10 3

100

0 1 2
Time (s)

10 9

10 6

10 3

100

0 50 100
Passes

10 9

10 6

10 3

100

0 1 2
Time (s)

10 9

10 6

10 3

100

SGD LSVRG Prospect SOREL

Figure 5: Suboptimality of spectral risks for different algorithms with mini-batching. The x-axis
represents the effective number of samples used by the algorithm divided by n (odd columns) or
CPU time (even columns).

10 2 10 1 100 101

10 7

10 5

10 3

10 1

AC
S

Em
pl

oy
m

en
t

CVaR

10 1 100 101

Time (s)

10 7

10 5

10 3

10 1

ESRM

10 1 100 101

10 7

10 5

10 3

10 1

101
Extremile

10 1 100 101 102

10 6

10 4

10 2

100

La
w

Sc
ho

ol

10 1 100 101 102

Time (s)

10 8

10 6

10 4

10 2

100

10 1 100 101 102

10 7

10 5

10 3

10 1

SGD LSVRG Prospect SOREL

Figure 6: Suboptimality of spectral risks for different algorithms on fairness benchmarks. The x-
axis represents the CPU time.

C EXAMPLE

To illustrate the necessity of stabilizing the trajectory of the primal variable in Section 3.1, we
provide a toy example. For simplicity, we consider a one-dimensional problem

min
w∈R

σ1ℓ[1](w) + σ2ℓ[2](w), (23)

where σ1 = 0, σ2 = 1 and ℓ1 = 1
2 (w−1)2, ℓ2(w) =

1
2 (w+1)2. We use the following deterministic

method, similar to Algorithm 1.

Example 1 For any 0 < α < 2, suppose we solve Problem (23) using Algorithm 2 and T is
sufficiently large. In that case, the iterative sequence {wk} can not converge to the optimal solution
for any initial point w0.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 2 Simplified Algorithm for Solving the Example Problem.
1: for k = 0, 1, . . . do
2: Update {λk+1,1, λk+1,2} = {σ1, σ2} if ℓ1(wk) ≥ ℓ2(wk) else {σ2, σ1}. Set w0

k = wk.
3: for t = 0, 1, . . . , T − 1 do
4: Compute the gradient gt = λk+1,1∇ℓ1(w

t
k) + λk+1,2∇ℓ2(w

t
k).

5: Update wt+1 = wt − αgt.
6: end for
7: Set wk+1 = wT

k .
8: end for

Without loss of generality, we assume w0 > 0, in which case λ1 = [0, 1]⊤. We solve
minw1∈R

1
2 (w1 + 1)2 through sufficient steps of gradient descent to obtain w1 = −1. At this

point, λ2 = [1, 0]⊤. By iterating this process, wk always oscillates between -1 and 1, unable to
converge to w⋆ = 0. If w0 = 0, we set σ1 = 1 and σ2 = 0, reaching the same conclusion. A similar
conclusion can be extended to stochastic methods in the expectation sense.

We know that ℓ1(w⋆) = ℓ2(w
⋆) at the optimal point w⋆ = 0. Clearly, the iterative sequence of

the algorithm oscillates at w⋆ and cannot converge to the optimal solution. Although Mehta et al.
(2022; 2024) employ a similar approach to update λ for subgradient estimations, they consider
the smoothed spectral risk by adding a strongly concave term with respect to λ. However, for the
original spectral risk minimization problems, updating λ with their method results in discontinuities,
thereby lacking convergence guarantees.

D SOREL WITH MINI-BATCHING

In this section, we present the results of SOREL with mini-batching. To apply mini-batching, We
only need to change Line 13 of Algorithm 1 to: Sample a mini-batch bt ⊂ {1, . . . , n} without
replacement, and change Line 14 to

dk,t =
1

b

∑
i∈bt

[nλi,k+1∇ℓi (wk,t)− nλi,k+1∇ℓi(w̄)] + ḡ,

where b = |bt| is the mini-batch size.

We first present the main result of SOREL with mini-batching.

Corollary 2 Use the same conditions in Therorem 1. Additionally, set the step-size α =
b(n−1)
5L(n−b) , mk = 400L(n−b)

(k+5)µb(n−1) + 8 and Tk = O(mk log
1
δk
). Then we obtain an output wK

of SOREL with mini-batching such that E∥wk − w⋆∥2 ≤ ϵ in a total sample complexity of

O

(
n

3
2 G

µ
√
ϵ
log

√
n

G
√
ϵ
+ L(n−b)

µ(n−1) log
√
n

G
√
ϵ
log

√
nG

µ
√
ϵ

)
.

D.1 PROOF OF COROLLARY 2

We first discuss the inner loop in Lines 6-17 of Algorithm 1. This is an extension of SVRG (Johnson
& Zhang, 2013; Xiao & Zhang, 2014). To illustrate more clearly, we consider the problem

min
w

P (w) := F (w) + h(w),

where F (w) = 1
n

∑n
i=1 fi(w), each fi is convex and L-smooth, and h is µ-strongly convex. We

rewrite Lines 6-17 of Algorithm 1 to Algorithm 3. Note that, by setting w̄0 = wk, m = mk,
F (w) = λ⊤

k+1ℓ(w), and h(w) = g(w) + 1
2τk

∥w −wk∥2, Algorithm 3 is the same as Lines 6-17
of Algorithm 1.

Assumption 2 Each fi : Rd → R is convex and L-smooth. h : Rd → R ∪ {∞} is proper, lower
semicontinuous and µh-strongly convex.

The following two results are adopted from Xiao & Zhang (2014), which will be used in the proof
of the main result.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 3 Simplified Inner Loop of Algorithm 1 with Mini-batching.
1: Input: initial w̄0, the learning rate α, mini-batch size b, and the inner-loop length m.
2: for s = 0, 1, . . . do
3: w̄ = w̄s−1, ḡ = ∇F (w̄).
4: w0 = w̄.
5: for t = 0, 1, . . . ,m− 1 do
6: Sample bt ⊂ {1, . . . , n} of size b uniformly at random without replacement.
7: dt =

1
b

∑
i∈bt

[∇fi(wt)−∇fi(w̄)] + ḡ.
8: wt+1 = Proxαh{wt − αdt}.
9: end for

10: w̄s =
1
m

∑m
t=1 wt.

11: end for

Lemma 6 (Xiao & Zhang, 2014, Lemma 1) Suppose Assumption 2 holds, and let w⋆ =
argminw P (w). Then for all w ∈ Rd

1

n
∥∇fi(w)−∇fi(w⋆)∥2 ≤ 2L (P (w)− P (w⋆)) .

Lemma 7 (Xiao & Zhang, 2014, Lemma 3) Suppose Assuption 2 holds, let ∆t = dt − ∇F (wt)
and w⋆ = argminw P (w). Then

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 2α [P (wt+1)− P (w⋆)]− 2α∆⊤
t (wt+1 −w⋆) . (24)

The following lemma bounds the variance of the stochastic gradient dt.

Lemma 8 Let Et be the conditional expectation given wt and w⋆ = argminw P (w). We have

Et∥dt −∇F (wt)∥2 ≤ 2(n− b)L

b(n− 1)
(P (wt)− P (w⋆) + P (w̄)− P (w⋆)) .

Proof: Define ξi = ∇fi(wt)−∇fi(w̄).

Et∥dt −∇F (wt)∥2

= Et∥
1

b

∑
it∈bt

(∇fit(wt)−∇fit(w̄)) +
1

n

n∑
i=1

(∇fi(w̄)−∇fi(wt)) ∥2

= Et∥
1

b

∑
it∈bt

ξit∥2 − ∥ 1
n

n∑
i=1

ξi∥2

=
1

b2
Et

 ∑
it ̸=jt∈bt

ξ⊤it ξjt +
∑
it∈bt

ξ⊤it ξit

− 1

n2

n∑
i,j=1

ξ⊤i ξj

=
1

b2

 b(b− 1)

n(n− 1)

∑
i ̸=j

ξ⊤i ξj +
b

n

n∑
i=1

ξ⊤i ξi

− 1

n2

n∑
i,j=1

ξ⊤i ξj

=
1

nb

 b− 1

n− 1

n∑
i,j=1

ξ⊤i ξj +

(
1− b− 1

n− 1

) n∑
i=1

ξ⊤i ξi

− 1

n2

n∑
i,j=1

ξ⊤i ξj

=
n− b

nb(n− 1)

− 1

n

n∑
i,j=1

ξ⊤i ξj +

n∑
i=1

ξ⊤i ξi

 ,

where the second equation is due to E∥ξ − Eξ∥2 = E∥ξ∥2 − ∥Eξ∥2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Note that 1
n

∑n
i,j=1 ξ

⊤
i ξj = n∥ 1

n

∑n
i=1 ξi∥2 ≥ 0. Combing the above result with Lemma 6 we

obtain that

Et∥dt −∇F (wt)∥2 ≤ n− b

bn(n− 1)

n∑
i=1

∥∇fi(wt)−∇fi(w̄)∥2

≤ n− b

bn(n− 1)

n∑
i=1

(
∥∇fi(wt)−∇fi(w⋆)∥2 + ∥∇fi(w̄)−∇fi(w⋆)∥2

)
≤ 2(n− b)L

b(n− 1)
(P (wt)− P (w⋆) + P (w̄)− P (w⋆)) .

This completes the proof. □

Lemma 9 Suppose Assumption 2 holds and 2αL n−b
b(n−1) < 1. Let w⋆ = argminw P (w). Then we

obtain an output w̄s of Algorithm 3 such that

EP (w̄s)− P (w⋆) ≤ ρs (P (w̄0)− P (w⋆)) ,

where ρ = U
D , U = 2αm

(
1− 2αL n−b

b(n−1)

)
and D =

(
2
µh

+ 4α2L(m+ 1) n−b
b(n−1)

)
.

Proof: We first consieder the s-th outer iteration of Algorithm 3. We have that w̄ = w̄s−1. We
define w̃t+1 = Proxαh (wt − α∇F (wt)), which is independent of the mini-batch bt. First we
bound the last term in (24):

− 2α∆⊤
t (wt+1 −w⋆) = −2α∆⊤

t (wt+1 − w̃t+1 + w̃t+1 −w⋆)

≤ 2α∥∆t∥∥wt+1 − w̃t+1∥ − 2α∆⊤
t (w̃t+1 −w⋆)

≤ 2α∥∆t∥∥wt − αdt −wt + α∇F (wt)∥ − 2α∆⊤
t (w̃t+1 −w⋆)

= 2α2∥∆t∥2 − 2α∆⊤
t (w̃t+1 −w⋆),

(25)

where in the second inequality we use the non-expansiveness of the projection operator. Note that
Et∆

⊤
t (w̃t+1 −w⋆) = (Et∆t)

⊤(w̃t+1 −w⋆) = 0. Taking the conditional expectation Et on both
sides of (25) and using Lemma 8 we obtain that

−2αEt∆
⊤
t (wt+1 −w⋆) ≤

4α2(n− b)L

b(n− 1)
(P (wt)− P (w⋆) + P (w̄s−1)− P (w⋆)) .

Taking the conditional expectation Et on both sides of (24) and plugging in the above result, we
obtain that

Et∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 2α(EtP (wt+1)− P (w⋆))

+
4α2(n− b)L

b(n− 1)
(P (wt)− P (w⋆) + P (w̄s−1)− P (w⋆)) .

(26)

Taking the expectation on both sides of (26), using the law of total expectation and summing over
t = 0, . . . ,m− 1 we obtain that

E∥wm −w⋆∥2 + 2α(EP (wm)− P (w⋆)) + 2α

(
1− 2αL

n− b

b(n− 1)

)m−1∑
t=1

(EP (wt)− P (w⋆))

≤ ∥w0 −w⋆∥2 + 4α2L
n− b

b(n− 1)
(P (w0)− P (w⋆)) + 4α2Lm

n− b

b(n− 1)
(P (w̄s−1)− P (w⋆)) .

(27)
Since w0 = w̄s−1 and 2α ≥ 2α

(
1− 2αL n−b

b(n−1)

)
by the assumption, we obtain that

E∥wm −w⋆∥2 + 2α

(
1− 2αL

n− b

b(n− 1)

) m∑
t=1

(EP (wt)− P (w⋆))

≤ ∥w̄s−1 −w⋆∥2 + 4α2L(m+ 1)
n− b

b(n− 1)
(P (w̄s−1)− P (w⋆)) .

(28)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

By the µh-strong convexity of P and the definition of w̄s, we obtain that

2αm

(
1− 2αL

n− b

b(n− 1)

)
(EP (w̄s)− P (w⋆))

≤
(

2

µh
+ 4α2L(m+ 1)

n− b

b(n− 1)

)
(P (w̄s−1)− P (w⋆)).

Finally, by applying the above inequality recursively, we get the desired result. □

Corollary 3 Let w⋆ = argminw P (w). With the same conditions as Lemma 9, setting the step size
α = b(n−1)

5L(n−b) and the loop length m = 100L(n−b)
µhb(n−1) + 8, we obtain an output ws of Algorithm 3 such

that EP (ws)− P (w⋆) ≤ ϵ in a total sample complexity of O
((

n+ (n−b)L
(n−1)µ

)
log 1

ϵ

)
.

Proof: Through simple calculations, we can obtain that ρ = 3
4 . Thus Algorithm 3 has geometric

convergence. We need s ≥ log 4
3 log

P (w0)−P (w⋆)
ϵ to obtain an ϵ-optimal solution in expectation.

The total sample complexity is s(n+ bm) = O
((

n+ (n−b)L
(n−1)µ

)
log 1

ϵ

)
. □

Now we are ready to prove the main result for SOREL with mini-batching based on Theorem 1.

Proof of Corollary 2

Proof: By Corollary 3, we get a δk approximate solution of the k-th outer loop of SOREL
with mini-batching with the sample complexity of O

((
n+ (n−b)L

(k+1)(n−1)µ

)
log δ−1

k

)
. Similar to

the proof of Corollary 1, through simple calculations we obtain the total sample complexity of

O

(
n

3
2 G

µ
√
ϵ
log

√
n

G
√
ϵ
+ L(n−b)

µ(n−1) log
√
n

G
√
ϵ
log

√
nG

µ
√
ϵ

)
.

□

E EXPERIMENTS WITH ERROR BARS

In this section, we present the error bars of experiments in Section 5.

E.1 LINEAR REGRESSION

Figure 7 presents the results of using different algorithms with minibatching, as described in Sec-
tion 5.1. For each algorithm, we set five random seeds, as detailed in Appendix B, and report the
mean training curves with standard deviations. Since our plots are in log scale, we only keep the
upper error bar to make the plots easier to read. The performances of each algorithm in Figure 7
are consistent with those in Figure 5. SOREL achieves the best or competitive results in terms of
sample complexity, runtime, or both.

E.2 FAIR MACHINE LEARNING

Table 4 presents the mean fairness metrics (and standard deviations in parentheses) in Section 5.2.
Note that the standard deviations are large in the acs dataset. We attribute this to the use of 5-
fold cross-validation. The standard deviations primarily arise from differences in data across folds,
instead of the randomness of stochastic algorithms. Indeed, the fairness metrics obtained using ERM
(solved by L-BFGS) as the loss function also exhibit large standard deviations. We follow the 5-fold
cross-validation approach as recommended by Williamson & Menon (2019).

Tables 5, 6, and 7 respectively show the fairness metrics (and standard deviations in parentheses)
on each fold of the data when CVaR, ESRM, and Extremile are used as the loss functions. We
observe that the standard deviations of each algorithm (except SGD) are small on each fold. Thus
the standard deviations of the fairness metrics in Table 4 arise from differences in the data across
folds. In the acs dataset, SOREL still achieves the lowest fairness metrics on each fold of the data
in most cases.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350 400

10 7

10 5

10 3

10 1

en
er

gy

CVaR

0.0 0.2 0.4 0.6 0.8 1.0

10 7

10 5

10 3

10 1

CVaR

0 50 100 150 200 250 300 350 400

10 8

10 6

10 4

10 2

100

ESRM

0.0 0.2 0.4 0.6 0.8 1.0

10 9

10 7

10 5

10 3

10 1

ESRM

0 50 100 150 200 250 300 350 400

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Extremile

0.0 0.2 0.4 0.6 0.8 1.0

10 10

10 8

10 6

10 4

10 2

100

Extremile

0 50 100 150 200 250 300 350 400

10 8

10 6

10 4

10 2

100

co
nc

re
te

0.0 0.2 0.4 0.6 0.8 1.0

10 8

10 6

10 4

10 2

100

0 50 100 150 200 250 300 350 400

10 8

10 6

10 4

10 2

100

0.0 0.2 0.4 0.6 0.8 1.0

10 8

10 6

10 4

10 2

100

0 50 100 150 200 250 300 350 400

10 8

10 6

10 4

10 2

100

0.0 0.2 0.4 0.6 0.8 1.0

10 9

10 7

10 5

10 3

10 1

0 20 40 60 80 100

10 7

10 5

10 3

10 1

ki
n8

nm

0 1 2 3 4 5

10 8

10 6

10 4

10 2

100

0 20 40 60 80 100

10 12

10 10

10 8

10 6

10 4

10 2

100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10 12

10 10

10 8

10 6

10 4

10 2

100

0 20 40 60 80 100

10 9

10 7

10 5

10 3

10 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10 9

10 7

10 5

10 3

10 1

0 20 40 60 80 100
Passes

10 10

10 8

10 6

10 4

10 2

100

po
we

r

0 2 4 6 8 10
Time (s)

10 11

10 9

10 7

10 5

10 3

10 1

0 20 40 60 80 100
Passes

10 10

10 8

10 6

10 4

10 2

100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

10 10

10 8

10 6

10 4

10 2

100

0 20 40 60 80 100
Passes

10 12

10 10

10 8

10 6

10 4

10 2

100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

10 12

10 10

10 8

10 6

10 4

10 2

100

SGD LSVRG Prospect SOREL

Figure 7: Suboptimality of spectral risks for different algorithms with mini-batching.

In the acs dataset, the fairness metrics for the folds 4 and 5 are negative. This is because we use
the same spectral risk measure for all folds. Given the differences between folds, the spectral risk
we used may be too aggressive for the folds 4 and 5. In practice, the parameters of the spectral
risk could be tuned for each fold. However, as our primary focus is on the performances of each
optimizer during training, this approach is beyond the scope of this paper.

Tables 8, 9 and 10 respectively show the mean suboptimality of algorithms on each fold of the data
when CVaR, ESRM, and Extremile are used as the loss functions. SOREL achieves the lowest
suboptimality in all settings, except for the Extremile setting in fold 2, acs dataset.

Table 4: The mean fairnes metrics of different algorithms on acs and law (and standard deviations
in parentheses). Values closer to 0 indicate better fairness.

Datasets acs law

ERM 0.02092 (0.04767) 0.05188 (0.00200)

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

CVaR 0.00645 0.00816 0.00634 0.00551 0.04019 0.03896 0.03893 0.03890
(0.03539) (0.03464) (0.03494) (0.03555) (0.00177) (0.00163) (0.00172) (0.00176)

ESRM 0.02469 0.01842 0.01840 0.01770 0.04184 0.04122 0.04123 0.04123
(0.04823) (0.04479) (0.04629) (0.04557) (0.00180) (0.00172) (0.00173) (0.00173)

Extremile 0.00424 0.00377 0.00237 0.00130 0.04416 0.04377 0.04380 0.04381
(0.02970) (0.02899) (0.02888) (0.03006) (0.00171) (0.00166) (0.00167) (0.00167)

Table 5: The mean fairnes metrics of different algorithms on acs and law (and standard deviations
in parentheses) for CVaR.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 0.04199 0.04144 0.04144 0.04089 0.03724 0.03643 0.03614 0.03597
(0.00095) (0.00095) (0.00095) (0.00000) (0.00105) (0.00004) (0.00016) (0.00000)

Fold 2 0.04071 0.04132 0.03950 0.03950 0.04221 0.04119 0.04131 0.04116
(0.00210) (0.00000) (0.00000) (0.00000) (0.00038) (0.00000) (0.00016) (0.00000)

Fold 3 0.00324 0.00875 0.00324 0.00324 0.04008 0.03834 0.03867 0.03855
(0.00184) (0.00000) (0.00000) (0.00000) (0.00032) (0.00003) (0.00005) (0.00000)

Fold 4 -0.00262 -0.00141 -0.00141 -0.00323 0.04053 0.03981 0.03928 0.03925
(0.00105) (0.00000) (0.00000) (0.00000) (0.00023) (0.00003) (0.00013) (0.00000)

Fold 5 -0.05108 -0.04928 -0.05108 -0.05287 0.04088 0.03904 0.03926 0.03957
(0.00000) (0.00000) (0.00000) (0.00000) (0.00053) (0.00008) (0.00011) (0.00000)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 6: The mean fairnes metrics of different algorithms on acs and law (and standard deviations
in parentheses) for ESRM.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 0.05054 0.02530 0.02695 0.02530 0.03899 0.03830 0.03830 0.03830
(0.02043) ((0.00000) (0.00000) (0.00000) (0.00065) (0.00000) (0.00000) (0.00000)

Fold 2 0.09799 0.09496 0.09678 0.09496 0.04377 0.04335 0.04338 0.04338
(0.00105) (0.00000) (0.00000) (0.00000) (0.00020) (0.00000) (0.00000) (0.00000)

Fold 3 0.02040 0.01794 0.01794 0.01794 0.04170 0.04107 0.04109 0.04109
(0.00106) (0.00000) (0.00000) (0.00000) (0.00095) (0.00000) (0.00000) (0.00000)

Fold 4 -0.02011 -0.02011 -0.02011 -0.02011 0.04209 0.04135 0.04136 0.04136
(0.00000) (0.00000) (0.00000) (0.00000) (0.00104) (0.00000) (0.00000) (0.00000)

Fold 5 -0.02539 -0.02599 -0.02957 -0.02957 0.04266 0.04203 0.04204 0.04204
(0.00103) (0.00000) (0.00000) (0.00000) (0.00112) (0.00000) (0.00000) (0.00000)

Table 7: The mean fairnes metrics of different algorithms on acs and law (and standard deviations
in parentheses) for Extremile.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 0.01100 0.01045 0.00715 0.00715 0.04137 0.04103 0.04105 0.04105
(0.00095) (0.00000) (0.00000) (0.00000) (0.00024) (0.00000) (0.00000) (0.00000)

Fold 2 0.04739 0.04496 0.04496 0.04314 0.04626 0.04592 0.04598 0.04598
(0.00105) (0.00000) (0.00000) (0.00000) (0.00015) (0.00000) (0.00000) (0.00000)

Fold 3 0.00753 0.00875 0.00692 0.00692 0.04400 0.04357 0.04364 0.04365
(0.00106) (0.00000) (0.00000) (0.00000) (0.00053) (0.00000) (0.00000) (0.00000)

Fold 4
-0.00262, -0.00323 -0.00504 -0.00323 0.04417 0.04370 0.04370 0.04370
(0.00105) (0.00000) (0.00000) (0.00000) (0.00056) (0.00000) (0.00000) (0.00000)

Fold 5 -0.04211 -0.04211 -0.04211 -0.04749 0.04499 0.04465 0.04465 0.04465
(0.00000) (0.00000) (0.00000) (0.00000) (0.00053) (0.00000) (0.00000) (0.00000)

E.3 OUT-OF-DISTRIBUTION GENERALIZATION

Figure 8 shows the training curves and worst group classification errors with standard deviations for
the experiments in Section 5.3. Table 11 shows the worst group classification errors (and standard
deviations in parentheses) in Figure 8. SOREL achieves the lowest worst group classification error
in both settings. SOREL is also the only algorithm that can converge to the true optimal solution
under the CVaR setting, as stated in Section 5.3.

10 1 100 101 102

Time (s)

10 5

10 4

10 3

10 2

10 1

100

Su
bo

pt
im

al
ity

CVaR

SGD LSVRG Prospect SOREL
0.800

0.805

0.810

W
or

st
 G

ro
up

 E
rro

r

CVaR

10 1 100 101 102

Time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

Su
bo

pt
im

al
ity

Extremile

SGD LSVRG Prospect SOREL
0.750

0.755

0.760

0.765

0.770

W
or

st
 G

ro
up

 E
rro

r

Extremile

SGD LSVRG Prospect SOREL

Figure 8: Training curves and worst group classification errors of different algorithms on the
amazon dataset.

F ADDITIONAL EXPERIMENTS ON NONCONVEX OBJECTIVES

In this section, we empirically explore the performance of SOREL in optimizing nonlinear models.
We train a two-layer neural network with ReLU activation function and set the hidden layer’s dimen-
sion equal to the feature dimension of the input data. We use the regression task from Section 5.1.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 8: The mean Suboptimality of different algorithms on acs and law (and standard deviations
in parentheses) for CVaR.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 3.82e-04 5.00e-04 1.48e-04 9.90e-07 5.28e-03 1.02e-02 1.72e-03 9.75e-05
(7.42e-05) (1.27e-06) (2.83e-05) (1.86e-08) (1.02e-03) (1.89e-06) (1.04e-05) (2.00e-07)

Fold 2 3.33e-04 2.91e-04 6.00e-05 7.84e-07 3.93e-03 6.04e-03 5.37e-04 2.27e-05
(8.88e-05) (4.70e-06) (6.14e-06) (7.25e-08) (5.75e-04) (1.65e-05) (1.25e-05) (6.49e-08)

Fold 3 3.58e-04 6.81e-04 1.95e-04 4.90e-06 2.14e-03 3.44e-03 2.79e-04 3.06e-07
(1.13e-04) (1.32e-06) (1.30e-05) (1.89e-08) (6.97e-04) (9.74e-06) (9.04e-06) (3.85e-08)

Fold 4 4.62e-04 7.84e-04 2.45e-04 1.72e-06 3.44e-03 5.02e-03 2.97e-04 4.12e-06
(1.02e-05) (1.86e-06) (2.39e-06) (1.32e-08) (1.31e-04) (1.57e-05) (2.44e-05) (1.10e-08)

Fold 5 6.10e-04 1.36e-03 4.14e-04 3.14e-06 4.22e-03 4.66e-03 5.25e-04 2.30e-05
(1.48e-05) (6.01e-07) (2.92e-06) (4.20e-08) (9.23e-05) (1.15e-05) (1.82e-05) (3.91e-08)

Table 9: The mean Suboptimality of different algorithms on acs and law (and standard deviations
in parentheses) for ESRM.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 1.02e-03 1.15e-04 2.07e-06 -5.14e-08 6.16e-04 2.46e-04 7.83e-07 8.47e-08
(3.63e-06) (2.75e-07) (1.04e-06) (9.61e-12) (2.26e-05) (9.54e-08) (1.77e-09) (2.52e-10)

Fold 2 9.66e-04 5.79e-05 1.95e-05 -1.23e-08 5.53e-04 9.69e-05 -3.89e-08 -2.73e-07
(9.40e-05) (3.55e-07) (8.86e-07) (1.04e-11) (1.19e-04) (8.61e-08) (1.75e-09) (2.21e-10)

Fold 3 1.25e-03 2.62e-04 1.68e-07 -3.46e-08 9.67e-04 6.24e-05 -3.25e-07 -4.25e-07
(5.74e-05) (8.65e-07) (1.25e-07) (4.11e-12) (5.48e-04) (2.94e-08) (5.19e-10) (2.26e-10)

Fold 4 1.57e-03 4.31e-04 4.72e-08 -8.08e-09 8.70e-04 8.52e-05 1.87e-07 3.83e-08
(6.84e-05) (1.05e-06) (9.27e-09) (6.04e-12) (4.06e-04) (3.28e-08) (1.14e-09) (5.34e-11)

Fold 5 2.54e-03 7.98e-04 1.43e-07 -1.16e-08 7.92e-04 7.53e-05 1.53e-07 8.38e-09
(8.78e-05) (1.44e-06) (2.76e-08) (9.90e-12) (5.58e-04) (1.07e-07) (5.01e-10) (4.75e-10)

Thus, the loss function and the model can be written as

ℓ(z) =
1

2
(z − y)2

and
z = W2 (ReLU(W1x+ b1)) + b2,

where x ∈ Rd, y ∈ R are the feature and label, W1 ∈ Rd×d, b1 ∈ Rd, W2 ∈ R1×d and b2 ∈ R are
trainable parameters. The experimental setup is identical to that in Section 5.1.

Figure 9 shows the training curves using three spectral risk measures on the energy and
concrete datasets. Note that none of the four algorithms have theoretical guarantees in the
non-convex setting. However, SOREL achieves the optimal or near-optimal results across various
settings. On the energy dataset, SOREL achieves the lowest losses, significantly outperforming
LSVRG and Prospect. On the concrete dataset, SOREL also achieves slightly lower loss val-
ues compared to LSVRG and Prospect. Table 12 reports the mean losses and standard deviations
over the last ten passes. We observe that SOREL achieves the lowest mean losses, demonstrating
the effectiveness in optimizing non-convex functions, even though theoretical guarantees are not
available.

G FURTHER DISCUSSION ON THE COMPLEXITY IN COROLLARY 1

In Section 4, we discussed the optimality of the complexity in Corollary 1 with respect to ϵ. In this
section, we further discuss the dependence of the complexity in the Corollary 1 on n. The sample
complexity with respect to n and ϵ in Corollary 1 is Õ(n3/2/

√
ϵ). Since SOREL requires computing

the projection onto the permutahedron Πσ in each outer iteration, which takes O(n log n) time, the
total time complexity of SOREL includes an additional O(Kn log n) term, where K = O

(√
nG

µ
√
ϵ

)
31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 10: The mean Suboptimality of different algorithms on acs and law (and standard deviations
in parentheses) for Extremile.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 5.34e-03 6.04e-03 2.49e-04 1.03e-04 1.38e-04 9.60e-04 1.46e-05 -1.96e-07
(1.13e-04) (4.08e-06) (4.61e-06) (1.84e-07) (7.31e-05) (1.73e-07) (9.97e-09) (3.29e-12)

Fold 2 6.09e-03 5.23e-03 9.23e-05 9.36e-05 1.41e-04 6.08e-04 7.32e-06 -4.77e-07
(5.68e-04) (8.57e-07) (9.98e-07) (2.51e-07) (8.16e-05) (1.81e-07) (1.07e-08) (5.09e-12)

Fold 3 4.36e-03 7.66e-03 5.18e-04 7.98e-05 1.95e-04 4.30e-04 5.47e-06 -3.42e-07
(1.74e-04) (2.76e-06) (2.92e-06) (3.52e-07) (1.22e-04) (1.58e-07) (7.48e-09) (1.50e-12)

Fold 4 4.31e-03 9.84e-03 9.22e-04 1.49e-04 1.99e-04 6.01e-04 7.97e-06 -9.44e-10
(3.03e-04) (2.84e-06) (3.13e-06) (6.40e-07) (1.29e-04) (1.34e-07) (1.68e-08) (2.04e-13)

Fold 5 5.46e-03 1.07e-02 1.56e-03 1.43e-04 1.43e-04 4.71e-04 5.40e-06 -4.31e-08
(4.21e-04) (5.52e-06) (7.60e-06) (7.27e-07) (1.50e-04) (3.69e-07) (7.82e-09) (3.60e-13)

Table 11: Worst group classification errors of different algorithms (and standard deviations in paren-
theses) on the amazon dataset.

Spectral Risks SGD LSVRG Prospect SOREL

CVaR 0.8102 0.8057 0.8083 0.8036
(0.0044) (0.0022) (0.0014) (0.0000)

Extremile 0.7582 0.7679 0.7560 0.7560
(0.0017) (0.0000) (0.0000) (0.0000)

is given in the proof of Corollary 1. Therefore, the total complexity of SOREL with respect to n and
ϵ is Õ(n3/2/

√
ϵ).

Here, we discuss the complexity of baselines in Section 5 with respect to n and ϵ. SGD has been
shown to fail to converge to the optimal solution of the spectral risk minimization problem, while
LSVRG only guarantees convergence for ν ≥ Ω

(
nG2/µ

)
(Mehta et al., 2022). For Prospect,

by setting ν = O(ϵ), we obtain its sample complexity with respect to n and ϵ as Õ(n2/ϵ2) or
Õ(n/ϵ3) (depending on the size of ϵ). Moreover, Prospect requires computing the projection onto
the permutahedron Πσ at each step with a cost of O(n log n) time, which results in its total time
complexity Õ(n2/ϵ3) or Õ(n3/ϵ2). Therefore, SOREL also has an advantage in terms of the total
time complexity with respect to n. This is consistent with the experimental results in Section 5,
where SOREL significantly outperforms Prospect in terms of runtime.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600
0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

en
er

gy

CVaR

0 100 200 300 400 500 600
Passes

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
ESRM

0 100 200 300 400 500 600
0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
Extremile

0 100 200 300 400 500 600

0.09

0.10

0.11

0.12

0.13

0.14

co
nc

re
te

0 100 200 300 400 500 600
Passes

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0 100 200 300 400 500 600

0.09

0.10

0.11

0.12

0.13

0.14

SGD LSVRG Prospect SOREL

Figure 9: Results of training two-layer neural networks using different algorithms.

Table 12: The mean function values over the last ten passes (and standard deviations in parentheses).

Datasets energy concrete

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

CVaR 0.05533 0.06986 0.06715 0.04787 0.09573 0.09149 0.09099 0.08888
(0.02004) (0.00027) (0.00024) (0.00045) (0.00299) (0.00276) (0.00188) (0.00104)

ESRM 0.05463 0.06253 0.06594 0.04464 0.08942 0.08417 0.08443 0.08275
(0.01268) (0.00882) (0.00006) (0.00020) (0.00253) (0.00006) (0.00039) (0.00013)

Extremile 0.05153 0.07544 0.07155 0.04792 0.09832 0.09132 0.09261 0.09073
(0.00329) (0.00005) (0.00005) (0.00005) (0.00325) (0.00012) (0.00097) (0.00077)

33

	Introduction
	Related Work
	Algorithm
	Challenges of Stochastic Optimization for Spectral Risks
	The SOREL Algorithm

	Theoretical Analysis
	Experiments
	Least-Squares Regression
	Fair Machine Learning
	Out-of-Distribution Generalization

	Conclusion
	Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Corollary 1

	Experimental Details and Additional Experimental Results
	Experimental Details on Linear Regression
	Experimental Details on Fair Machine Learning
	Experimental Details on Out-of-Distribution Generalization
	Additional Experimental Results

	Example
	SOREL with Mini-batching
	Proof of Corollary 2

	Experiments with Error Bars
	Linear Regression
	Fair Machine Learning
	Out-of-Distribution Generalization

	Additional Experiments on Nonconvex Objectives
	Further Discussion on the Complexity in Corollary 1

