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ABSTRACT

The spectral risk has wide applications in machine learning, especially in real-
world decision-making, where people are concerned with more than just average
model performance. By assigning different weights to the losses of different sam-
ple points, rather than the same weights as in the empirical risk, it allows the
model’s performance to lie between the average performance and the worst-case
performance. In this paper, we propose SOREL, the first stochastic gradient-based
algorithm with convergence guarantees for spectral risks minimization. Previous
approaches often rely on smoothing the spectral risk by adding a strongly concave
function, thereby lacking convergence guarantees for the original spectral risk. We
theoretically prove that our algorithm achieves a near-optimal rate of Õ(1/

√
ϵ) to

obtain an ϵ-optimal solution in terms ϵ. Experiments on real datasets show that
our algorithm outperforms existing ones in most cases, both in terms of runtime
and sample complexity.

1 INTRODUCTION

In modern machine learning, model training heavily relies on minimizing the empirical risk. This
ensures that the model have high average performance. Given a training set of n sample points
D = {xi}ni=1 ⊂ X , the goal of the empirical risk minimization is to solve

min
w∈Rd

R(w) = (1/n)

n∑
i=1

ℓi(w).

Here, w ∈ Rd is the parameter vector of the model, ℓi(w) = ℓ(w,xi) is the loss of the i-th sample,
and ℓ : Rd × X → R is the loss function. However, as machine learning models are deployed in
real-world scenarios, the evaluation metrics for these models become more diverse, including factors
such as fairness or risk aversion.

In this paper, we consider a generalized aggregation loss function: the spectral risk, which is of the
form

Rσ(w) =

n∑
i=1

σiℓ[i](w).

Here ℓ[1](·) ≤ · · · ≤ ℓ[n](·) denotes the order statistics of the empirical loss distribution, and 0 ≤
σ1 ≤ · · · ≤ σn,

∑n
i=1 σi = 1. In form, the spectral risk penalizes the occurrence of extreme

losses by assigning greater weights to extreme losses. When σi = 1/n, the spectral risk reduces
to the empirical risk. When σn = 1 and σi = 0 for i = 1, . . . , n − 1, the spectral risk becomes
the maximum loss. Therefore, the spectral risk measures the model’s performance between the
average case and the worst case. By assigning different values to σi, the spectral risk encompasses
a wide range of aggregated loss functions that have broad applications in fields such as machine
learning and finance. Common spectral risks include Conditional Value at Risk (CVaR) or the
average of top-k loss (Artzner, 1997; Rockafellar & Uryasev, 2000), Exponential Spectral Risk
Measure (ESRM) (Cotter & Dowd, 2006), and Extremal Spectral Risk (Extremile) (Daouia et al.,
2019). Their specific forms are shown in Table 1 (Mehta et al., 2022).

Despite the broad applications of spectral risks, optimization methods for spectral risks are still
limited. In particular, for large-scale optimization problems, there is currently a lack of stochastic
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Table 1: Different spectral risks and the corresponding weights.

Spectral Risks Parameter σi

α-CVaR 0 < α < 1


1
nα , i > ⌈n(1− α)⌉
1− ⌊nα⌋

nα , ⌊n(1− α)⌋ < i < ⌈n(1− α)⌉
0, otherwise

ρ-ESRM ρ > 0 e−ρ
(
eρ

i
n − eρ

i−1
n

)
/ (1− e−ρ)

r-Extremile r ≥ 1
(
i
n

)r − (
i−1
n

)r

algorithms with convergence guarantees for the spectral risk minimization. Indeed, the weight of
each sample point depends on the entire training set, introducing complex dependencies and thus
making the optimization process challenging. Existing algorithms either abandon the convergence
guarantee to the minimum of the spectral risk problem due to the difficulty of obtaining unbiased
subgradient estimates (Levy et al., 2020; Kawaguchi & Lu, 2020), or turn to optimize the smooth
regularized spectral risk (Mehta et al., 2024; 2022), which lacks convergence guarantees for the
original spectral risk. Given the widespread application of the spectral risk in machine learning and
the lack of stochastic algorithms for the spectral risk minimization, we are committed to developing
stochastic algorithms with convergence guarantees for the spectral risk minimization.

Our Contributions. In this paper, we propose the Stochastic Optimizer for Spectral Risks mini-
mization with trajectory Stabilization (SOREL). i) We propose SOREL, the first stochastic algorithm
with convergence guarantees for the spectral risk minimization problem. In particular, SOREL sta-
bilizes the trajectory of the primal variable to the optimal point. ii) Theoretically, we prove that
SOREL achieves a near-optimal rate of Õ(1/

√
ϵ) to obtain an ϵ-optimal solution in terms of the

squared distance to the optimal point ϵ for spectral risks with a strongly convex regularizer. This
matches the known lower bound of Ω(1/

√
ϵ) in the deterministic setting (Ouyang & Xu, 2021). iii)

Experimentally, SOREL outperforms existing baselines in most cases, both in terms of runtime and
sample complexity.

2 RELATED WORK

Statistical Properties of the Spectral Risk. As a type of risk measures, the spectral risk assigns
higher weights to the tail distribution and has been profoundly studied in the financial field (Artzner
et al., 1999; Rockafellar & Uryasev, 2013; He et al., 2022). Recently, statistical properties of the
spectral risk have been investigated by many works in the field of learning theory. Specifically,
Mehta et al. (2022); A. & Bhat (2022) demonstrate that the discrete form of spectral risks converges
to the spectral risk of the overall distribution, controlled by the Wasserstein distance. Holland &
Haress (2022); Khim et al. (2020); Holland & Haress (2021) also consider the learning bounds of
spectral risks.

Applications. The spectral risk is widely applied in various fields of finance and machine learn-
ing. In some real-world tasks, the worst-case loss is as important as the average-case loss, such as
medical imaging (Xu et al., 2022) or robotics (Sharma et al., 2020). The spectral risk minimization
can be viewed as a risk-averse learning strategy. In the domain of fair machine learning, different
subgroups are classified by sensitive features (e.g., gender and race). Subgroups with higher losses
may be treated unfairly in decision-making. By penalizing samples with higher losses, the model’s
performance across different subgroups can meet certain fairness criteria (Williamson & Menon,
2019), such as demographic parity (Dwork et al., 2012) and equalized odds (Hardt et al., 2016). In
the field of distributionally robust optimization, the sample distribution may deviate from a uniform
distribution, which can be modeled by reweighting the samples (Chen & Paschalidis, 2020). Mehta
et al. (2024) adopts the spectral risk measures as the uncertainty set of the shifted distribution, which
is similar to the form of the spectral risk minimization.
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In practical applications, people can choose different types of spectral risks based on actual needs.
For example, CVaR is popular in the context of portfolio optimization (Rockafellar & Uryasev,
2000), as well as reinforcement learning (Zhang et al., 2024; Chow et al., 2017). Levy et al. (2020)
uses the CVaR measure as the uncertainty set in distributionally robust optimization, and their op-
timization problem is the same as the spectral risk minimization problem that uses CVaR as the
spectral risk. Other applications of spectral risks include reducing test errors and mitigating the
impact of outliers (Maurer et al., 2021; Kawaguchi & Lu, 2020; Fan et al., 2017), to name a few.

Existing Optimization Methods. There have been many algorithms to optimize CVaR, a special
case of spectral risks, including both deterministic (Rockafellar & Uryasev, 2000) and stochastic
algorithms (Fan et al., 2017; Curi et al., 2020). For the spectral risk, deterministic methods such
as subgradient methods have convergence guarantees, although they are considered algorithms with
slow convergence rate. Xiao et al. (2023) propose an Alternating Direction Method of Multipliers
(ADMM) type method for the minimization of the rank-based loss, inspired by Cui et al. (2024).
Other deterministic methods reformulate this problem into a minimax problem (Thekumparampil
et al., 2019; Hamedani & Aybat, 2021; Khalafi & Boob, 2023). However, these methods require
calculating O(n) function values and gradients at each iteration, posing significant limitations when
solving large-scale problems.

Stochastic algorithms for solving the spectral risk minimization problems are still limited. Some al-
gorithms forgo convergence to the true minimum of the spectral risk (Levy et al., 2020; Kawaguchi
& Lu, 2020). Other methods modify the objective to minimize a smooth approximation of the spec-
tral risk by adding a strongly concave term with a coefficient ν (Mehta et al., 2022; 2024). The
smaller ν is, the closer the approximation is to the original spectral risk. Mehta et al. (2024) propose
the Prospect algorithm and prove that it achieves linear convergence for any ν > 0. Furthermore,
if the loss of each sample is different at the optimal point, then the optimal value of the smooth
approximation of the spectral risk is the same as the optimal value of the original spectral risk as
long as ν is below a certain positive threshold. However, in practice, these conditions are difficult
to verify. The convergence of these algorithms still lacks guarantees for original spectral risks min-
imization. Other stochastic algorithms, including Hamedani & Jalilzadeh (2023); Yan et al. (2019),
designed for solving general minimax problems, have a slower convergence rate of O(1/ϵ) in terms
of ϵ to obtain an ϵ-optimal solution. In this paper, we propose SOREL for the original spectral risk
minimization problems and achieve a near-optimal convergence rate in terms of ϵ.

3 ALGORITHM

We consider stochastic optimization of the spectral risk combined with a strongly convex regularizer:

min
w

n∑
i=1

σiℓ[i](w)︸ ︷︷ ︸
Rσ(w)

+g(w).
(1)

Firstly, we make the basic assumption about the individual loss function ℓi and the regularizer g.

Assumption 1 The individual loss function ℓi : Rd → R is convex, G-Lipschitz continuous and L-
smooth for all i ∈ {1, . . . , n}. The regularizer g : Rd → R ∪ {∞} is proper, lower semicontinuous
and µ-strongly convex.

Assumption 1 is a standard assumption in the literature on stochastic optimization (Nemirovski
et al., 2009; Davis & Drusvyatskiy, 2019), especially in the field of the spectral risk minimiza-
tion (Kawaguchi & Lu, 2020; Holland & Haress, 2022; Levy et al., 2020; Mehta et al., 2022; 2024).
The logistic loss satisfies this assumption. The least-square loss satisfies this assumption as long as
the iterative sequence lies in a bounded sublevel set. The assumption of strong convexity of g is very
common, for example, the l2 regularization is widely used in machine learning.

3.1 CHALLENGES OF STOCHASTIC OPTIMIZATION FOR SPECTRAL RISKS

In this section, we describe the challenges of the spectral risk minimization problem and the tech-
niques to solve them.

3
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Biases of Stochastic Subgradient Estimators. From convex analysis (Wang et al., 2023, Lemma
10), we know that the subgradient of Rσ is

∂Rσ(w) = Conv

{⋃
π

{
n∑

i=1

σi∇ℓπ(i)(w) : ℓπ(1)(w) ≤ · · · ≤ ℓπ(n)(w)

}}
,

where Conv denotes the convex hull of a set, and π is a permutation that arranges ℓ1, . . . , ℓn in
ascending order. Note that Rσ(w) is non-smooth. Indeed, when there exist i ̸= j such that ℓi(w) =
ℓj(w), ∂Rσ(w) contains multiple elements.

The subgradient of Rσ is related to the ordering of ℓ1, ..., ℓn. We cannot obtain an unbiased subgra-
dient estimator of ∂Rσ if we use only a mini-batch with m (m < n) sample points. For example,
when m = 1, we randomly sample i uniformly from {1, . . . , n}. The subgradient estimator ∇ℓi(w)
is unbiased only if σi = 1/n. For general σ, unfortunately, to obtain an unbiased subgradient es-
timator of ∂Rσ , we have to compute n loss function values and then determine the ranking of ℓi
among the n losses (or the weight corresponding to the i-th sample point). However, computing
O(n) losses at each step is computationally heavy. To remedy this, we next design an algorithm that
first uses a minimax reformulation of Problem (1) and then alternately updates the weights of each
sample point and w using a primal-dual method.

Equivalently, we can rewrite Rσ(w) in the following form

Rσ(w) = max
λ∈Πσ

n∑
i=1

λiℓi(w), (2)

where Πσ = {Πσ : Π1 = 1,Π⊤1 = 1,Π ∈ [0, 1]n×n} is the permutahedron associated with σ,
i.e., the convex hull of all permutations of σ, and 1 is the all-one vector (Blondel et al., 2020). Then
Problem (1) can be rewritten as

min
w

max
λ∈Πσ

L(w,λ) =

n∑
i=1

λiℓi(w) + g(w). (3)

Next, we use a primal-dual method to solve Problem (3). Specifically, we iteratively update w and
λ:

λk+1 = argmax
λ∈Πσ

n∑
i=1

λiℓi(wk)−
1

2ηk
∥λ− λk∥2, (4)

wk+1 = argmin
w

Pk(w) :=

n∑
i=1

λi,k+1ℓi(w) + g(w) +
1

2τk
∥w −wk∥2. (5)

Steps (4) and (5) can be seen as alternatingly solving the min problem and the max problem in (3)
with proximal terms.

Stabilizing the Optimization Trajectory. To update λk+1, one may naturally think of solving
Problem (2): λk+1 = argmaxλ∈Πσ

∑n
i=1 λiℓi(wk), similar to methods in Mehta et al. (2022;

2024) with smoothing coefficient ν = 0. However, since Problem (2) is merely convex, the solution
λ lacks continuity with respect to w, that is, a small change in w could lead to a large change in
λ. Indeed, it is often the case that there are multiple optimal solutions for (2) when there exists
i ̸= j such that ℓi(w) = ℓj(w), and in this case, an arbitrary small perturbation of w will lead to a
different value of λi. As shown in Figure 1, this can cause w to oscillate near points where some
losses are the same and prevents the convergence of the algorithm. We also provide a toy example in
Appendix C to further illustrate this difficulty. Therefore, the proximal term 1

2ηk
∥λ−λk∥2 is added

in (4) to prevent excessive changes in λ and stabilize the trajectory of the primal variable, where
ηk > 0 controls the extent of its variation.

Stochastic Optimization for the Primal Variable. We use a stochastic algorithm to approxi-
mately solve (5). Through the minimax reformulation in (5), we avoid directly calculating the
stochastic subgradient of Rσ(w), which requires computing all loss function values to obtain the

4
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Without Trajectory Stabilization With Trajectory Stabilization

Figure 1: The level set plot of 2D least-square regression with primal-dual optimization trajectories
described in Section 3.1. The max subproblem does not have a proximal term (left) or has a proximal
term (right). The min subproblem does not have a proximal term. The black star represents the
optimal point. The sample points are obtained by projecting the yacht dataset onto R2 using PCA.

corresponding sample weight λi. Additionally, since λk+1 is fixed, the finite sum part of the ob-
jective function in (5) is smooth, allowing us to use variance reduction (VR), a commonly used
technique in stochastic optimization (Shalev-Shwartz & Zhang, 2013; Roux et al., 2012; Johnson &
Zhang, 2013; Defazio et al., 2014), to accelerate our stochastic algorithm. In contrast, since Rσ(w)
is non-smooth, as previously mentioned, VR cannot be used to directly solve Problem (1). For
smooth convex functions in the form of the finite sum, many methods such as SVRG (Johnson &
Zhang, 2013), SAGA (Defazio et al., 2014), and SARAH (Nguyen et al., 2017) can enable stochastic
methods to achieve the convergence rate of deterministic methods. We apply the proximal stochas-
tic gradient descent with a generalized VR method inspired by SVRG to approximately solve (5),
which will be presented in Section 3.2 in detail. Thanks to its strong convexity, Problem (5) can be
solved efficiently.

Similar to (4), we add a proximal term 1
2τk

∥w−wk∥2 in (5) where τk > 0 is the proximal parameter.
The proximal parameter τk is crucial for the convergence proof of our algorithm. By carefully
choosing τk = O(1/k), the updates of w become more stringent as the algorithm progresses, and
SOREL can achieve a near optimal rate of Õ(1/

√
ϵ) in terms of ϵ.

3.2 THE SOREL ALGORITHM

Our proposed algorithm SOREL is summarized in Algorithm 1. The specific values for the param-
eters θk, ηk, τk and mk in Algorithm 1 will be given in Section 4. In Line 2 the algorithm initializes
λ0 by solving Problem (2). In Lines 8-15, the algorithm computes the stochastic gradient and update
w for a fixed λ, as described in Section 3.1. Additionally, we compute the full gradient of w every
mk updates to reduce the variance. In Lines 4-5, we update λ. Note that we replace ℓi(wk) with
ℓi(wk) + θk (ℓi(wk)− ℓi(wk−1)) to accelerate the algorithm. This can be seen as a momentum
term, a widely used technique in smooth optimization (Tseng, 1998; Liu et al., 2020; Gitman et al.,
2019; Sutskever et al., 2013), where θk > 0 is the momentum parameter.

Define the proximal operator proxh(x̄) := argminx h(x) + 1
2∥x − x̄∥2 for a function h. In

Line 15, we apply the proximal stochastic gradient descent step. We assume that proxg+ 1
2∥·∥2(·)

is easy to compute, which is the case for many commonly used regularizers g, such as the
l1 norm and the elastic net regularization (Zou & Hastie, 2005). If g is differentiable, we
can replace the proximal stochastic gradient with stochastic gradient: wk,t+1 = wk,t −
α
(
dk,t +

1
τk

(wk,t −wk) +∇g(wk,t)
)
. This will not affect the convergence or convergence rate

of the algorithm as long as ∇g is Lipschitz continuous and the step size α is small enough. In Line
5, we need to compute the projection onto Πσ . For an ordered vector, projecting onto the permuta-
hedron takes O(n) operations using the Pool Adjacent Violators Algorithm (PAVA)(Lim & Wright,
2016). In SOREL, we need to first sort n elements of the projected vector and then compute the
projection onto Πσ , which takes a total of O(n log n) operations.

5
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In practice, we set Tk and mk to n in Lines 8 and 9, meaning the algorithm updates λ once it
traverses the training set. We also set the reference point w̄ and the output wk+1 in Lines 10 and
17 to be the last vector of the previous epoch rather than the average vector, as with most practical
algorithms (Johnson & Zhang, 2013; Zhu & Hazan, 2016; Cutkosky & Orabona, 2019; Babanezhad
et al., 2015; Gower et al., 2020). In this way, SOREL only requires computing the full batch gradient
once for each update of λ, and becomes single-loop in Lines 8- 16. This makes the algorithm more
concise and parameters easier to tune.

Additionally, in the Appendix D, we provide the SOREL algorithm with mini-batching.

Algorithm 1 SOREL

1: Input: initial w0, w−1 = w0, σ, and learning rate α, {θk}K−1
k=0 , {ηk}K−1

k=0 , {τk}K−1
k=0 ,

{mk}K−1
k=0 and {Tk}K−1

k=0 .
2: λ0 = argminλ∈Πσ −ℓ(w0)

⊤λ.
3: for k = 0, . . . ,K − 1 do
4: vk = (1 + θk)ℓ(wk)− θkℓ(wk−1).
5: λk+1 = argminλ∈Πσ −v⊤

k λ+ 1
2ηk

∥λ− λk∥2.
6: wk,0 = wk, w̄ = wk.
7: ḡ =

∑n
i=1 λi,k+1∇ℓi(w̄).

8: for t = 1, . . . , Tk do
9: if tmodmk = 0 then

10: w̄ = 1
mk

∑t
j=t−mk+1 wk,j .

11: ḡ =
∑n

i=1 λi,k+1∇ℓi(w̄).
12: end if
13: Sample it uniformly from {1, . . . , n},
14: dk,t = nλit,k+1∇ℓit(wk,t)− nλit,k+1∇ℓit(w̄) + ḡ
15: wk,t+1 = Prox

α
(
g+ 1

2τk
∥·−wk∥2

) {wk,t − αdk,t} .
16: end for
17: wk+1 = 1

mk

∑Tk

j=Tk−mk+1 wk,j .
18: end for
19: Output: wK .

4 THEORETICAL ANALYSIS

For convenience, we consider that Tk (will be determined in Theorem 1) is large enough so that
wk is a δk-optimal solution of Pk(w), that is, EkPk(wk+1) − minw Pk(w) ≤ δk. Here, Ek

represents the conditional expectation with respect to the random sample points used to compute
wk+1 given wk, . . . ,w0. Then, we can provide a one-step analysis of the outer loop of SOREL. We
use L(w,λ) = λ⊤ℓ(w) + g(w) in the analysis for simplicity. The cnvergence analysis for SOREL
with mini-batching is presented in Appendix D.

Lemma 1 Suppose Assumption 1 holds. Let {wk} and {λk} be the sequences generated by Algo-
rithm 1. Then for any w ∈ Rd, λ ∈ Πσ and D = G/µ, the following inequality holds,

Ek {L(wk+1,λ)− L(w,λk+1)}

≤Ek

{
⟨λ− λk+1, ℓ(wk+1)⟩+

1

2ηk

[
∥λ− λk∥2 − ∥λ− λk+1∥2 − ∥λk+1 − λk∥2

]
+

1

2τk

[
∥w −wk∥2 − ∥w −wk+1∥2 − ∥wk+1 −wk∥2

]
− µ

2
∥w −wk+1∥2

+ ⟨vk,λk+1 − λ⟩+ δk +

√
(τ−1

k + µ)δk
2

(D−1∥w −wk+1∥2 +D)

 .

(6)

Next, we try to telescope the terms on the right hand side of (6) by multiplying each term by γk.
By choosing appropriate parameters in Algorithm 1 to satisfy some conditions (will be discussed in

6
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Appendix A), we can ensure that the adjacent terms indexed by k = 0, . . . ,K − 1 can be canceled
out during summation. Then we can achieve the desired convergence result.

Theorem 1 Suppose Assumption 1 holds. Set γk = k + 1, ηk = µ(k+1)
8nG2 , θk = k

k+1 , τk =

4
µ(k+1) , δk = D2 min

(
µ

8(k+5) , µ(k + 1)−6
)

, D = G/µ, the step-size α = 1
12L , mk = 384L

(k+5)µ + 2

and Tk = O(mk log
1
δk
) in Algorithm 1. Let w⋆ be the optimal solution of Problem (1). Then we

have E∥wK −w⋆∥2 = O
(

nG2

µ2K2

)
.

Corollary 1 Under the same conditions in Theorem 1, we obtain an output wK of Algorithm 1 such

that E∥wK −w⋆∥2 ≤ ϵ in a total sample complexity of O
(

n
3
2 G

µ
√
ϵ
log

√
n

G
√
ϵ
+ L

µ log
√
n

G
√
ϵ
log

√
nG

µ
√
ϵ

)
.

Our algorithm achieves a near-optimal convergence rate of Õ(1/
√
ϵ) in terms of ϵ, which matches

the lower bound of Ω(1/
√
ϵ) in the deterministic setting up to a logarithmic term (Ouyang & Xu,

2021). This is the first near-optimal stochastic method for solving the spectral risk minimization
problem. Previously, Mehta et al. (2022; 2024) add a strongly concave term with respect to λ
in L(w,λ) and achieve a linear convergence rate for the perturbed problem. One may set the
coefficient of the strongly concave term ν to O(ϵ), obtaining an ϵ-optimal solution for the original
spectral risk minimization problem. However, this approach has drawbacks: it leads to a worse
sample complexity of Õ(1/ϵ) (Palaniappan & Bach, 2016) or even Õ(1/ϵ3) (Mehta et al., 2024);
additionally, to achieve an ϵ-optimal solution, the step size would need to be set to O(ϵ), resulting in
very small steps that perform poorly in practice. In contrast, SOREL’s step size is independent of ϵ.

Remark 1 In Lines 10 and 17 of Algorithm 1, we set the reference point w̄ and the output wk+1 to
the average of the previous epoch. Instead, we can also set them to be the last vector of the previous
epoch, which aligns with practical implementation. For theoretical completeness, we may compute
the full gradient ḡ in Line 11 at each step t with probability p instead of once per epoch (every
mk steps), as done in (Kulunchakov & Mairal, 2019; Hofmann et al., 2015; Kovalev et al., 2020).
However, these methods are beyond the scope of this paper.

5 EXPERIMENTS

In this section, we compare our proposed algorithm SOREL with existing baselines for solving the
spectral risk minimization problem. In addition to the precision of the optimizers during training, we
also explore fairness and distribution shift metrics on the test set. We focus more on the performance
of an optimizer during the training process; therefore, we do not pursue state-of-the-art test metrics
due to potential overfitting issues.

We train linear models with l2 regularization in all experiments. We adopt a wide variety of spectral
risks, including ESRM, Extremile, and CVaR. Baseline methods include SGD (Mehta et al., 2022)
with a minibatch size of 64, LSVRG (Mehta et al., 2022), and Prospect (Mehta et al., 2024). Note
that although both LSVRG and Prospect add a strongly concave term with coefficient ν to smooth the
original spectral risk, they have been observed to exhibit linear convergence for the original spectral
risk minimization problem in practice without the strongly concave term (Mehta et al., 2022; 2024).
Consequently, we set ν = 0 in our experiments. Detailed experimental settings are provided in
Appendix B.

5.1 LEAST-SQUARES REGRESSION

Five tabular regression benchmarks are used for the least squares loss: yacht (Tsanas & Xi-
fara, 2012), energy (Baressi Šegota et al., 2019), concrete (Yeh, 2006), kin8nm (Akujuobi
& Zhang, 2017), power (Tüfekci, 2014). We compare the suboptimality versus passes (the number
of samples divided by n) and runtime. The suboptimality is defined as

Suboptimality(wk) =
Rσ(wk) + g(wk)−Rσ(w

⋆)− g(w⋆)

Rσ(w0) + g(w0)−Rσ(w⋆)− g(w⋆)
,
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Figure 2: Suboptimality of spectral risks for different algorithms without mini-batching. The x-
axis represents the effective number of samples used by the algorithm divided by n (odd columns) or
CPU time (even columns). Each row corresponds to the same dataset, and each column corresponds
to the same type of the spectral risk.

where w⋆ is calculated by L-BFGS (Nocedal & Wright, 1999).

Results. Figure 2 compares the training curves of our method with other baselines across various
datasets and the spectral risk settings. In terms of sample complexity and runtime, SOREL outper-
forms other baselines in most cases; SOREL also achieve comparable results in the kin8nm dataset.
In the power dataset, the sample complexity of Prospect is better than that of SOREL. However, the
runtime of SOREL is significantly shorter than that of Prospect due to the fact that Prospect needs
the calculation of projections onto the permutahedron with O(n) operations each step. As expected,
SGD fails to converge due to its inherent bias (Mehta et al., 2022). Although Mehta et al. (2024)
discusses the equivalence of minimizing the smoothed spectral risk and the original spectral risk
when losses at the optimal point are different from each other, we find that LSVRG and Prospect of-
ten fail to reach the true optimal point, indicating limitations of these methods. In contrast, SOREL
converges to the true optimal point in all settings (suboptimality less than 0 means the solution’s
accuracy is higher than L-BFGS).

5.2 FAIR MACHINE LEARNING

In this experiment, we explore the role of the spectral risks in enhancing fairness in machine learning,
as studied in Williamson & Menon (2019). We use the law and acs datasets. law refers to the Law
School Admissions Council’s National Longitudinal Bar Passage Study, which is used for the
regression task of predicting a student’s GPA (Wightman, 1998). acs is derived from US Census
surveys, which is used for the classification task of predicting whether an adult is employed (Ding
et al., 2021). All algorithm are implemented using mini-batching in this experiment.
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Assume a source distribution (Y,X,A), where Y is the true label, X represents the available fea-
tures, and A ∈ {0, 1} is the binary sensitive attribute. Let Ŷ = f(X,A) be the model’s prediction.
For binary classification problems, we consider the fairness metric of Equal Opportunity (EO) de-
fined by

EO = P{Ŷ = 1 | A = 0, Y = 1} − P{Ŷ = 1 | A = 1, Y = 1}.
For regression tasks, we consider the absolute mean difference (SMD) as the fairness metric defined
by

SMD =
∣∣∣E [

Ŷ | A = 1
]
− E

[
Ŷ
]∣∣∣+ ∣∣∣E [

Ŷ | A = 0
]
− E

[
Ŷ
]∣∣∣ .

Intuitively, if the EO and SMD are close to 0, the model does not discriminate with respect to A. In
both datasets, we set race as the sensitive attribute.

Results. Tables 2 shows the results of using different spectral risks on the acs and law datasets,
respectively. ERM represents the empirical risk. We find that using spectral risks instead of the em-
pirical risk does improve the fairness metrics of the model, and in most cases, a lower suboptimality
indicates better fairness of the model. In the acs classification task, SOREL significantly outper-
forms other algorithms in terms of both fairness metrics and suboptimality. For ESRM, SOREL’s
suboptimality surpasses that of L-BFGS, while the fairness metric of SGD is worse than the baseline
under the ERM setting, possibly due to poor performance of SGD when optimizing the objective
function. Additionally, CVaR and Extremile are more effective at reducing EO, compared to Ex-
tremile. In the law regression task, there is no significant difference in SMD improvement among
LSVRG, Prospect, and SOREL, but all perform better than SGD. However, SOREL achieves the
lowest suboptimality, and its suboptimality is lower than that of L-BFGS under both the ESRM and
Extremile settings. Furthermore, training curves in Appendix B show that SOREL can reach low
suboptimality in the shortest amount of time.

Table 2: Results of different algorithms on acs and law. The values in the ERM row represent
the mean fairnes metrics (values closer to 0 indicate better fairness) on the test set. The first to third
rows for each spectral risk (except ERM) represent, respectively: the mean fairness metrics on the
test set, relative fairness metric improvements (%) from ERM, and training suboptimality.

Datasets acs law

ERM 0.02092 0.05188

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

CVaR
0.00645 0.00816 0.00634 0.00551 0.04019 0.03896 0.03893 0.03890

69.17 60.99 69.69 73.66 22.53 24.90 24.96 25.02
4.29e-4 7.23e-4 2.12e-4 2.31e-6 3.80e-3 5.88e-3 6.71e-4 2.95e-5

ESRM
0.02469 0.01842 0.01840 0.01770 0.04184 0.04122 0.04123 0.04123

– 11.95 12.05 15.39 19.35 20.55 20.53 20.53
1.47e-3 3.33e-4 4.38e-6 -2.38e-8 7.60e-4 1.13e-4 1.52e-7 -1.13e-7

Extremile
0.00424 0.00377 0.00237 0.00130 0.04416 0.04377 0.04380 0.04381

79.73 81.98 88.67 93.97 14.88 15.63 15.57 15.56
5.11e-3 7.90e-3 6.69e-4 1.14e-4 1.63e-4 6.14e-4 8.14e-6 -2.12e-7

5.3 OUT-OF-DISTRIBUTION GENERALIZATION

In this subsection, we explore the role of the spectral risk in enhancing model robustness under
distribution shift. We use CVaR and Extremile as the spectral risks. Levy et al. (2020) uses the
CVaR measure as the uncertainty set, and their optimization problem is the same as the spectral
risk minimization problem (1) that uses CVaR as the spectral risk. We use the amazon dataset
preprocessed by Mehta et al. (2024) for the multi-class classification task, which consists of feature
representations generated by BERT (Devlin et al., 2019) from the original dataset. amazon refers
to the Amazon Reviews dataset (Ni et al., 2019), which includes textual reviews of products along
with their corresponding ratings from one to five, with different reviewers for the training and test
sets. We evaluate the worst group classification error (Sagawa et al., 2020) on the test set. Each
group is classified based on the true labels. All algorithm are implemented using mini-batching in
this experiment.

We also explore the impact of distribution shift on fairness metrics in Section 5.2. In Ding et al.
(2021), it is observed that training and testing on different states lead to unpredictable results. We use
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data from California as the training data and train models using ERM and CVaR as loss functions,
respectively. We then test the models on four other states.

Results. Figure 3 shows the results of using CVaR and Extremile spectral risks on amazon.
SOREL achieves the best worst group classification error in both settings. For CVaR, under similar
suboptimality, SOREL reaches the minimum worst group classification error, indicating better gen-
eralization performance. Moreover, SOREL is the only algorithm that can converge to the true op-
timal solution under the CVaR setting. Additionally, SOREL demonstrates optimal or near-optimal
convergence rates in both spectral risk settings.

Figure 4 shows the results of models tested on four other states. The circles represent model’s per-
formance in California (in-distribution). Models’ performance in other states (out-of-distribution) is
indeed hard to predict. Notably, models trained with ERM often fail to meet the expected fairness
metrics in other states. However, models trained with CVaR often achieves higher test accuracy and
better fairness metrics. Moreover, the models trained with SOREL achieve the best or nearly the
best EO and test accuracy.
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Figure 3: Training curves and worst group classification errors of different algorithms on the
amazon dataset. The suboptimality at the 500 th pass (where we evaluate the worst group er-
ror) is marked on the training curves. The training curves are extended to illustrate convergence.
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Figure 4: Model performance under geographic distribution shift. The models are trained on the
state CA and tested on other states. Dots of different colors (except black) represent the results of
using different optimization algorithms to solve the CVaR minimization problem. Baseline refers to
the results using ERM as the loss function.

6 CONCLUSION

We have proposed SOREL, the first stochastic algorithm with convergence guarantees for the spec-
tral risk minimization problems. We have proved that SOREL achieves a near-optimal rate of
Õ(1/

√
ϵ). In experiments, SOREL outperforms existing baselines in terms of sample complexity

and runtime in most cases.

Future work includes exploring convergence of SOREL for nonconvex problems, and investigating
broader applications of the spectral risk in areas such as fairness and distributionally robust opti-
mization.
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A PROOFS

First, we provide an auxiliary lemma. This is an extension of Boob et al. (2024, Lemma 8).

Lemma 2 Let x̄ be an ϵ-approximate solution of minx{g(x) + λ
2 ∥x− x̂∥2} in expectation, where

g : Rd → R is µ-strongly convex, µ ≥ 0. Then for any D>0

E {g(x̄)− g(x)} ≤E
{
λ

2

[
∥x− x̂∥2 − ∥x− x̄∥2 − ∥x̂− x̄∥2

]
− µ

2
∥x− x̄∥2

}
+

√
(λ+ µ)ϵ

2
D−1E∥x̄− x∥2 +

√
(λ+ µ)ϵ

2
D + ϵ.

Proof: Let x⋆ = argmin
x

{g(x) + λ
2 ∥x− x̂∥2}. By (µ+ λ)-strong convexity of g(·) + λ

2 ∥ · −x̂∥2

we have

g(x) +
λ

2
∥x− x̂∥2 ≥ g(x⋆) +

λ

2
∥x⋆ − x̂∥2 + µ+ λ

2
∥x− x⋆∥2,

g(x⋆)− g(x) ≤ λ

2

[
∥x− x̂∥2 − ∥x⋆ − x̂∥2 − ∥x⋆ − x∥2

]
− µ

2
∥x− x⋆∥2. (7)

By the definition of x̄ we have

E{g(x̄) + λ

2
∥x̄− x̂∥2} ≤ g(x⋆) +

λ

2
∥x⋆ − x̂∥2 + ϵ (8)

Combining (7) and (8) gives

E {g(x̄)− g(x)} ≤ λ

2

[
∥x− x̂∥2 − ∥x⋆ − x∥2 − E∥x̂− x̄∥2

]
− µ

2
∥x− x⋆∥2 + ϵ (9)

= E
{
λ

2

[
∥x− x̂∥2 − ∥x− x̄∥2 − ∥x̄− x̂∥2

]
− µ

2
∥x− x̄∥2

+
λ+ µ

2

[
∥x− x̄∥2 − ∥x− x⋆∥2

]
+ ϵ

}
≤ E

{
λ

2

[
∥x− x̂∥2 − ∥x− x̄∥2 − ∥x̄− x̂∥2

]
− µ

2
∥x− x̄∥2

+(λ+ µ)∥x− x̄∥∥x̄− x⋆∥+ ϵ} , (10)

where the last inequality is due to the fact that ∥a∥2 − ∥b∥2 ≤ −2⟨a, b− a⟩ ≤ 2∥a∥∥b− a∥.

Let x = x̄ in (9), and take the expectation with respect to x̄. Then we have

λ+ µ

2
E ∥x⋆ − x̄∥2 ≤ ϵ.

By Hölder’s inequality we have

E∥x− x̄∥∥x̄− x⋆∥ ≤
(
E∥x− x̄∥2

) 1
2
(
E∥x⋆ − x̄∥2

) 1
2

≤ 1

2

(
E∥x⋆ − x̄∥2

) 1
2
(
D +D−1E∥x− x̄∥2

)
.

≤ 1

2

√
2ϵ

λ+ µ

(
D +D−1E∥x− x̄∥2

)
.

Combining the above results and (10) we get the desired result. □

Consider solving the problem from Line 8 to Line 16 in Algorithm 1 while updating w:

min
w

Pk(w) := g(w) + λ⊤
k+1ℓ(w) +

1

2ηk
∥w −wk∥2.

The following lemma provides the error between wk+1 and argminw Pk(w).
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Lemma 3 Let Pk(w) := λ⊤
k+1ℓ(w) + g(w) + 1

2τk
∥w −wk∥2. Set α < L

4 , mk = Θ( Lτk
µτk+1 ) and

Tk = O(mk log
1
ϵ ) in Algorithm 1. The overall sample complexity of obtaining an ϵ-approximate

solution such that EPk(w
k+1) −minw Pk(w) ≤ ϵ is O

((
n+ Lτk

µτk+1

)
log 1

ϵ

)
. Moreover, we can

set α = 1
12L and mk = 96L

µ+τ−1
k

+ 2 in practice.

Proof: First note that λk+1⊤ℓ(w) is L-smooth since

∥
n∑
i=i

λk+1,iℓi(x)−
n∑

i=1

λk+1,iℓi(y)∥ ≤
n∑

i=1

λk+1,i∥ℓi(x)− ℓi(y)∥ ≤ L∥x− y∥,

for ∀x,y ∈ Rd. In the last inequality we use
∑

i λk+1,i ≤ 1 due to λk+1 ∈ Πσ and L-smoothness
of ℓi. Moreover, it is not hard to see that Pk(w) is µ + τ−1

k -strongly convex. By Xiao & Zhang
(2014, Theorem 1) we get the desired result. □

A.1 PROOF OF LEMMA 1

Proof: From the update of λk+1 and Lemma 2 we have

0 ≤ 1

2ηk

[
∥λ− λk∥2 − ∥λ− λk+1∥2 − ∥λk+1 − λk∥2

]
+ ⟨vk,λk+1 − λ⟩. (11)

From the update of wk+1 and Lemma 2 we have

Ek {g(wk+1) + ⟨λk+1, ℓ(wk+1)⟩ − g(w)− ⟨λk+1, ℓ(w)⟩}

≤ Ek

{
1

2τk

[
∥w −wk∥2 − ∥w −wk+1∥2 − ∥wk+1 −wk∥2

]
− µ

2
∥w −wk+1∥2

+δk +

√
(τ−1

k + µ)δk
2

(D−1∥w −wk+1∥2 +D)

 . (12)

Taking the conditional expectation Ek of both sides of (11) and summing with (12) we obtain that

Ek {L(wk+1,λ)− L(w,λk+1)}
=Ek {g(wk+1) + ⟨λ, ℓ(wk+1)⟩ − g(w)− ⟨λk+1, ℓ(w)⟩}

≤Ek

{
⟨λ− λk+1, ℓ(wk+1)⟩+

1

2ηk

[
∥λ− λk∥2 − ∥λ− λk+1∥2 − ∥λk+1 − λk∥2

]
+

1

2τk

[
∥w −wk∥2 − ∥w −wk+1∥2 − ∥wk+1 −wk∥2

]
+ ⟨vk,λk+1 − λ⟩

−µ

2
∥w −wk+1∥2 + δk +

√
(τ−1

k + µ)δk
2

(D−1∥w −wk+1∥2 +D)

 .

(13)

□
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A.2 PROOF OF THEOREM 1

Lemma 4 Under the same assumptions as Lemma 1, for any w ∈ Rd and λ ∈ Πσ , we have

Ek {L(wk+1,λ)− L(w,λk+1)}

≤Ek

{
1

2ηk

[
∥λ− λk∥2 − ∥λ− λk+1∥2

]
+

1

2τk
∥w −wk∥2 −

1

2

(
1

τk
+ µ

)
∥w −wk+1∥2

+ ⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩ − θk⟨ℓ(wk)− ℓ(wk−1),λ− λk⟩

− 1

2

[
1

ηk
− θk

√
nG

αk

]
∥λk − λk+1∥2 −

1

2τk
∥wk −wk+1∥2 +

√
nGθkαk

2
∥wk −wk−1∥2

+δk +

√
(τ−1

k + µ)δk
2

(D−1∥w −wk+1∥2 +D)

 .

(14)

Proof: First, we have

⟨vk,λk+1 − λ⟩
=⟨ℓ(wk) + θk (ℓ(wk)− ℓ(wk−1)) ,λk+1 − λ⟩
=− ⟨ℓ(wk+1),λ− λk+1⟩+ ⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩
− θk⟨ℓ(wk)− ℓ(wk−1),λ− λk⟩ − θk⟨ℓ(wk)− ℓ(wk−1),λk − λk+1⟩.

Then we obtain that

⟨λ− λk+1, ℓ(wk+1)⟩+ ⟨vk,λk+1 − λ⟩
≤ ⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩ − θk⟨ℓ(wk)− ℓ(wk−1),λ− λk⟩
− θk⟨ℓ(wk)− ℓ(wk−1),λk − λk+1⟩.

(15)

Next we bound the last term on the right-hand side of (15):

⟨ℓ(wk)− ℓ(wk−1),λk − λk+1⟩
≤
√
nG∥wk −wk−1∥∥λk − λk+1∥

≤
√
nGαk

2
∥wk −wk−1∥2 +

√
nG

2αk
∥λk − λk+1∥2,

(16)

where the first inequality is due to the G-Lipschitz continuity of ℓi and in the second inequality we
use Young’s inequality with αk > 0.

Combing (15) and (16) we obtain that

⟨λ− λk+1, ℓ(wk+1)⟩+ ⟨vk,λk+1 − λ⟩
≤ ⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩ − θk⟨ℓ(wk)− ℓ(wk−1),λ− λk⟩

+

√
nGαkθk

2
∥wk −wk−1∥2 +

√
nGθk
2αk

∥λk − λk+1∥2.
(17)

Taking the conditional expectation Ek of both sides of (17) and combing it with Lemma 1 we get
the desired result. □

We remark that αk does not need to be computed in the actual algorithm but only exists in the
theoretical analysis. Next, we try to telescope the terms on the right hand side of (14) by multiplying
each term by γk. To ensure that the adjacent terms in the sequence k = 0, . . . ,K−1 can be canceled
out during summation, we need the parameters of the algorithm to satisfy the following conditions.
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Condition 1 For k = 0, 1, ..., the following conditions for parameters in the analysis and Algo-
rithm 1:

γk+1

ηk+1
≤ γk

ηk
, (18a)

γk+1

τk+1
≤ γk

(
1

τk
+ µ−

√
2(µ+ τ−1

k )δkD
−1

)
, (18b)

γk = γk+1θk+1, (18c)
√
nGαk+1 ≤ 1

τk
, (18d)

θk

√
nG

αk
≤ 1

ηk
. (18e)

Lemma 5 Assume Assumption 1 holds and Condition 1 is satisfied. Then for all w ∈ Rd and
λ ∈ Πσ we have

γK
2τK

E∥w⋆−wK∥2 ≤ γ0
2η0

∥λ⋆−λ0∥2+
γ0
2τ0

∥w⋆−w0∥2+
K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k )δkD

)
,

where w⋆ = argminw Rσ(w) + g(w) and λ⋆ = σπ−1 . Here, π is the permutation that arranges
ℓ1(w

⋆), . . . , ℓn(w
⋆) in ascending order, that is, ℓπ(1)(w⋆) ≤ · · · ≤ ℓπ(n)(w

⋆).

Proof: Taking expectations with respect to wk, . . . ,w1 in (14) and using the law of total expecta-
tion yields

E {L(wk+1,λ)− L(w,λk+1)}

≤E
{

1

2ηk

[
∥λ− λk∥2 − ∥λ− λk+1∥2

]
− 1

2

[
1

ηk
−

√
nGθk
αk

]
∥λk − λk+1∥2

+ ⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩ − θk⟨ℓ(wk)− ℓ(wk−1),λ− λk⟩

+
1

2τk
∥w −wk∥2 −

1

2

(
1

τk
+ µ−

√
2(µ+ τ−1

k )δkD
−1

)
∥w −wk+1∥2

− 1

2τk
∥wk −wk+1∥2 +

√
nGθkαk

2
∥wk −wk−1∥2 + δk +

1

2

√
2(µ+ τ−1

k )δkD

}
.

(19)

Multiplying both sides of (19) by γk and summing over k = 0 to K − 1 we obtain that
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K−1∑
k=0

γkE {L(wk+1,λ)− L(w,λk+1)}

≤E


γ0
2η0

∥λ− λ0∥2 +
K−2∑
k=0

1

2

(
γk+1

ηk+1
− γk

ηk

)
∥λ− λk+1∥2︸ ︷︷ ︸

A

− γK−1

2ηK−1
∥λ− λK∥2

+
γ0
2τ0

∥w −w0∥2 +
K−2∑
k=0

1

2

[
γk+1

τk+1
− γk

(
1

τk
+ µ−

√
2(µ+ τ−1

k )δkD
−1

)]
∥w −wk+1∥2︸ ︷︷ ︸

B

−γK−1

2

(
1

τK−1
+ µ−

√
2(µ+ τ−1

K−1)δK−1D
−1

)
∥w −wK∥2

+

K−2∑
k=0

(γk − γk+1θk+1)︸ ︷︷ ︸
C

⟨ℓ(wk+1)− ℓ(wk),λ− λk+1⟩+ γK−1⟨ℓ(wK)− ℓ(wK−1),λ− λK⟩

+
1

2

K−2∑
k=0

(
γk+1θk+1αk+1

√
nG− γk

τk

)
︸ ︷︷ ︸

D

∥wk −wk+1∥2 −
γK−1

2τK−1
∥wK −wK−1∥2

+
1

2

K−1∑
k=0

[
−γk

(
1

ηk
− θk

√
nG

αk

)]
︸ ︷︷ ︸

E

∥λk − λk+1∥2 +
K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k )δkD

) .

Here we use ℓ(w0) − ℓ(w−1) = 0 by w0 = w−1 and λ0 = λ−1. By Condition 1, we have
A,B,D,E ≤ 0 and C = 0.

Then we have

K−1∑
k=0

γkE {L(wk+1,λ)− L(w,λk+1)}

≤E
{

γ0
2η0

∥λ− λ0∥2 −
γK−1

2ηK−1
∥λ− λK∥2 + γ0

2τ0
∥w −w0∥2

−γK−1

2

(
1

τK−1
+ µ−

√
2(µ+ τ−1

K−1)δK−1D
−1

)
∥w −wK∥2

+γK−1⟨ℓ(wK)− ℓ(wK−1),λ− λK⟩ − γK−1

2τK−1
∥wK −wK−1∥2

+

K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k )δkD

)}
.

(20)

Next we bound γK−1⟨ℓ(wK)− ℓ(wK−1),λ− λK⟩ similar to (16). We have

⟨ℓ(wK)− ℓ(wK−1),λ− λK⟩ ≤
√
nGαK

2
∥wK −wK−1∥2 +

1

2

√
nG

αK
∥λ− λK∥2.
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Taking the expectation and plugging this into (20), we obtain that
K−1∑
k=0

γkE {L(wk+1,λ)− L(w,λk+1)}

≤E


γ0
2η0

∥λ− λ0∥2 −
1

2

[
γK−1

ηK−1
− γK−1

√
nG

αK

]
︸ ︷︷ ︸

Ã

∥λ− λK∥2

+
γ0
2τ0

∥w −w0∥2 −
γK−1

2

(
1

τK−1
+ µ−

√
2(µ+ τ−1

K−1)δK−1D
−1

)
︸ ︷︷ ︸

B̃

∥w −wK∥2

+
γK−1

2

(
αK

√
nG− 1

τK−1

)
︸ ︷︷ ︸

C̃

∥wK −wK−1∥2 +
K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k )δkD

) .

(21)

We analyze Ã-D̃ under Condition 1:

Ã
(18a)

≥
[
γK
ηK

− γK−1

√
nG

αK

]
(18c)
= γK

[
1

ηK
− θK

√
nG

αK

]
(18e)

≥ 0,

B̃
(18b)

≥ γK
2τK

,

C̃
(18d)

≤ 0.

We obtain that
K−1∑
k=0

γkE {L(wk+1,λ)− L(w,λk+1)}

≤ γ0
2η0

∥λ− λ0∥2 +
γ0
2τ0

∥w −w0∥2 −
γK
2τK

E ∥w −wK∥2 +
K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k )δkD

)
.

(22)

For any w ∈ Rd and λ ∈ Πσ , we have L(w⋆,λ⋆) = maxλ∈Πσ L(w⋆,λ) ≥ L(w⋆,λ).
On the other hand, we have L(w,λ⋆) ≥ L(w⋆,λ⋆) = minw L(w,λ⋆). Thus we obtain that
L(wk+1,λ

⋆)− L(w⋆,λk+1) ≥ 0 for ∀k = 0, . . . ,K − 1. Let w = w⋆ and λ = λ⋆ in (22) we get
the desired result. □

Now we are ready to prove Theorem 1. By choosing appropriate parameters in Algorithm 1 to
satisfy Condition 1, we can achieve the desired convergence rate.

Proof of Theorem 1.

Proof: First, we obtain an δk approximate solution to (11) through Tk updates to w in Algorithm 1
by Lemma 3. We then verify that Condition 1 is satisfied by the parameters.

It is not hard to see that γk+1

γk
= ηk+1

ηk
= k+2

k+1 and θk+1 = γk

γk+1
= k+1

k+2 . Thus (18a) and (18c) are
satisfied.

Since δk ≤ µ
8(k+5)D

2, we have
√
2(µ+ τ−1

k )δkD
−1 ≤

√
2µ(1 + k+1

4 ) µD2

8(k+5)D
−1 ≤ µ

4 . Then we
obtain that

γk+1

γkτk+1
=

k + 2

4
µ+

k + 2

4(k + 1)
µ ≤ k + 4

4
µ,

and
1

τk
+ µ−

√
2(µ+ τ−1

k )δkD
−1 ≥ k + 1

4
µ+ µ− µ

4
=

k + 4

4
µ.
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Thus (18b) holds.

Furthermore, (18d) and (18e) hold due to
√
nGαk+1 = nG2ηk = k+1

8 µ ≤ k+1
4 µ = 1

τk
and

θk
√
nG
αk

= ηk−1

ηk

√
nG√

nGηk−1
= 1

ηk
.

Now Condition 1 is satisfied. By Lemma 5, we have

γK
2τK

E ∥w−wK∥2 ≤ γ0
2η0

∥λ⋆−λ0∥2+
γ0
2τ0

∥w⋆−w0∥2+
K−1∑
k=0

(
δkγk +

γk
2

√
2(µ+ τ−1

k )δkD

)
.

Since δk ≤ µ(k + 1)−6D2, we have
∑∞

k=0 δkγk ≤ µD2
∑∞

k=0(k + 1)−5 ≤ µ
4D

2, and

∞∑
k=0

γk

√
(µ+ τ−1

k )δkD ≤
√
2µ

4
D2

∞∑
k=0

(k+1)−2
√
k + 5 ≤

√
2µ

4
D2

∞∑
k=0

(k+1)−2
(√

k + 1 + 2
)
≤

√
2µD2.

Finally, by γK

2τK
= µ(K+1)2

8 , τ0 = 4
µ , η0 = µ

8nG2 and D = G
µ , we get the desired result. □

A.3 PROOF OF COROLLARY 1

Proof: Recall that τk = 4
µ(k+1) . It is not hard to see that Lτk

µτk+1 = 4L
µ(k+5) ≤ 4L

µ(k+1) .
By Lemma 3, we get a δk approximate solution with the sample complexity of Cwk+1

=

O
((

n+ L
µ(k+1)

)
log

(
δ−1
k

))
. We set δk = D2 min

(
µ

8(k+5) , µ(k + 1)−6
)

= G2

µ (k + 1)−6 for
k ≥ 1. And δ0 = µ/40. The total sample complexity is

K−1∑
k=0

Cwk+1
=

K−1∑
k=0

O

((
n+

L

µ(k + 1)

)(
log(k + 1)+ log

( µ

G2

)))
= O

(
nK log

µK

G2
+

L

µ
logK log

µK

G2

)
.

In the last equality, we calculate
∑K

k=1
log k
k = O

(
(logK)

2
)

,
∑K

k=1 log k = O (K logK) and∑K
k=1

1
k = O(logK). By Theorem 1, to achieve an ϵ-optimal solution, we need K = O

(√
nG

µ
√
ϵ

)
.

Therefore, the total sample complexity is O
(

n
3
2 G

µ
√
ϵ
log

√
n

G
√
ϵ
+ L

µ log
√
n

G
√
ϵ
log

√
nG

µ
√
ϵ

)
. □

B EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTAL RESULTS

We now outline the details of our experimental setup. Our experimental setup mainly follows that
of Mehta et al. (2024).

Datasets. We use the same five datasets from the regression task in Section 5.1 and the amazon
dataset in Section 5.3 as in Mehta et al. (2024). The statistical characteristics are summarized in
Table 3.

Other two datasets in Section 5.2 are as follows:

1. acs: predicting whether an American adult is employed.

2. law: predicting a student’s GPA.

In the experiments, we normalize the features of the sample matrix X ∈ Rn×d so that each feature
has a mean of 0 and a variance of 1. The test sets are normalized using the statistics of the training
set.
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Dataset # features # samples Source

yacht 6 244 Tsanas & Xifara (2012)
energy 8 614 Baressi Šegota et al. (2019)
concrete 8 824 Yeh (2006)
kin8nm 8 6,553 Akujuobi & Zhang (2017)
power 4 7,654 Tüfekci (2014)
acs 16 10000 Ding et al. (2021)
law 10 20800 Wightman (1998)
amazon 535 20000 Mehta et al. (2024),Ni et al. (2019)

Table 3: Statistical details of real datasets and sources.

Objectives. We use linear models in our experiments. For spectral risks, we adopt three types:
ESRM, Extremile, and CVaR, as specified in Table 1. Additionally, we set the regularizer g(w)
to µ

2 ∥w∥2 with µ = 1
n , where n donates the number of sample points in the taining set. Thus,

Problem (1) can be written as

min
w

n∑
i=1

σiℓ[i](w) +
µ

2
∥w∥2,

where ℓi(·) is the loss function, which will be chosen in different forms for different tasks.

Hyperparameter Selection. We use similar hyperparameter selection method as in Mehta et al.
(2024). We set the batch size for SGD to 64. For the selection of step size α, we set the random
seed s ∈ {1, . . . , S}. For a single seed s, we calculate the average training loss of the last ten
epochs, donated by Ls(α). We choose α that minimizes 1

S

∑S
s=1 Ls(α), where α ∈ {1× 10−4, 3×

10−4, 1×10−3, 3×10−3, 1×10−2, 3×10−2, 1×10−1, 3×10−1}. For LSVRG, we set the length
of an epoch to n. For SOREL, we set Tk = mk = n. Moreover, we set batch size to 64 for all
algorithms with mini-batching.

For SOREL, we follow the parameter values given in Theorem 1. In particular, we set θk = k
k+1

and τk = 20n
k+1 in all experiments. Therefore, there are only two parameters α and ηk left to tune.

We set ηk = C(k+1)
n and choose C from {1× 10−2, 2× 10−2, 4× 10−2, 1× 10−1, 2× 10−1, 4×

10−1, 1 × 100, 2 × 100, 4 × 100, 1 × 101}, with two orders of magnitude higher numbers used in
law, since the Lipschitz constant G is hard to estimate. We use grid search to select α and C, with
the selection criteria being the same as the previous paragraph. We apply stochastic gradient descent
to solve (5) instead of proximal stochastic gradient descent.

Experimental Environment. We run all experiments on a laptop with 16.0 GB RAM and Intel
i7-1360P 2.20 GHz CPU. All algorithms are implemented in Python 3.8.

B.1 EXPERIMENTAL DETAILS ON LINEAR REGRESSION

Dataset. We use the same dataset as that used in Mehta et al. (2024), as previously described.

Objectives. We use the least square loss in this experiment. For spectral risks, we adopt three
types: ESRM (ρ = 2), Extremile (r = 2.5), and CVaR (α = 0.5).

Evaluation. We set random seeds s ∈ {1, 2, 3, 4, 5} as the seeds for the random algorithms. We
compare the suboptimality versus passes (the number of samples divided by n) and runtime. The
suboptimality is defined as

Suboptimality(wk) =
Rσ(wk) + g(wk)−Rσ(w

⋆)− g(w⋆)

Rσ(w0) + g(w0)−Rσ(w⋆)− g(w⋆)
,

where w⋆ is calculated by L-BFGS (Nocedal & Wright, 1999).
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B.2 EXPERIMENTAL DETAILS ON FAIR MACHINE LEARNING

Dataset. We use two datasets, acs (Ding et al., 2021) and law (Wightman, 1998), which are
for classification and regression tasks, respectively. For acs, we randomly selected 10, 000 sample
points from the California data. We use data from four states Connecticut, Hawaii, West Virginia
and Florida in Ding et al. (2021) as the test dataset to explore the out-of-distribution performance of
models trained with spectral risks, with each state having 36287, 14400, 18066, and 202160 sample
points, respectively.

Objectives. For the regression and classification tasks, we use the least squares loss and the binary
logistic loss, respectively. For acs, we set the spectral risks to CVaR (α = 0.75), ESRM (ρ = 1.75)
and Extremile (r = 2.1). For law, we set the spectral risks to CVaR (α = 0.05), ESRM (ρ = 20)
and Extremile (r = 10).

Evaluation. We fix the number of training passes at 100. We split the training set and test set in
a 4:1 ratio and used five-fold cross-validation to report the average results on the test set. For each
training and test set split, we set random seeds s ∈ {1, 2, 3} as the seeds for the random algorithms.
All algorithms are implemented using mini-batching. We set race as the sensitive feature. For
acs, the sensitive feature includes Black and White. For law, the sensitive feature includes non-
White and White. For the task of exploring models’ out-of-domain performance, we directly use the
models obtained from the acs experiments as the models trained on California dataset. Then, we
test these models on all data points from the other four states.

B.3 EXPERIMENTAL DETAILS ON OUT-OF-DISTRIBUTION GENERALIZATION

Dataset. amazon (Ni et al., 2019) is for the multi-class classification task. We use the prepro-
cessed data in Mehta et al. (2024). They fine-tuned a BERT model on 10, 000 held-out examples
and applied PCA to the deep representations produced by BERT. The training set and test set each
contain 10,000 samples. #features in Table 3 refers to the total dimension of the parameter vectors
for all 5 classes.

Objectives. We use a linear model and the multinomial logistic loss. In amazon, we set the
spectral risks to CVaR (α = 0.75) and Extremile (r = 2.0).

Evaluation. We set random seeds s ∈ {1, 2, 3, 4, 5} as the seeds for the random algorithms. We
evaluate the worst group classification error (Sagawa et al., 2020) on the test set. Each group is
classified based on the true labels. We fix the number of passes during training to 500 and report the
average worst group classification error of the last ten passes. All algorithms are implemented using
mini-batching.

B.4 ADDITIONAL EXPERIMENTAL RESULTS

Algorithms with mini-batching. In Figure 5, we present results of the algorithms with mini-
batching for tasks in Section 5.1. Mini-batching has a significant improvement on the convergence
rate of all the algorithms. Similar to what is shown in Figure 2, SGD, LSVEG and Prospect fail
to converge to the true optimal points, especially in the first two datasets. SOREL converges to the
optimal solutions in all settings, and achieves the best or competitive results, in terms of sample
complexity, runtime, or both, except in the setting of CVaR and power dataset. Still SOREL
performs competitively for the suboptimality of 10−7 in this setting.

Training curves in fair machine learning. Figure 6 shows the training curves for the task in
Section 5.2. The training curves are extended to illustrate convergence. SOREL is able to achieve
low suboptimality in the shortest amount of time.
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Figure 5: Suboptimality of spectral risks for different algorithms with mini-batching. The x-axis
represents the effective number of samples used by the algorithm divided by n (odd columns) or
CPU time (even columns).
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Figure 6: Suboptimality of spectral risks for different algorithms on fairness benchmarks. The x-
axis represents the CPU time.

C EXAMPLE

To illustrate the necessity of stabilizing the trajectory of the primal variable in Section 3.1, we
provide a toy example. For simplicity, we consider a one-dimensional problem

min
w∈R

σ1ℓ[1](w) + σ2ℓ[2](w), (23)

where σ1 = 0, σ2 = 1 and ℓ1 = 1
2 (w−1)2, ℓ2(w) =

1
2 (w+1)2. We use the following deterministic

method, similar to Algorithm 1.

Example 1 For any 0 < α < 2, suppose we solve Problem (23) using Algorithm 2 and T is
sufficiently large. In that case, the iterative sequence {wk} can not converge to the optimal solution
for any initial point w0.
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Algorithm 2 Simplified Algorithm for Solving the Example Problem.
1: for k = 0, 1, . . . do
2: Update {λk+1,1, λk+1,2} = {σ1, σ2} if ℓ1(wk) ≥ ℓ2(wk) else {σ2, σ1}. Set w0

k = wk.
3: for t = 0, 1, . . . , T − 1 do
4: Compute the gradient gt = λk+1,1∇ℓ1(w

t
k) + λk+1,2∇ℓ2(w

t
k).

5: Update wt+1 = wt − αgt.
6: end for
7: Set wk+1 = wT

k .
8: end for

Without loss of generality, we assume w0 > 0, in which case λ1 = [0, 1]⊤. We solve
minw1∈R

1
2 (w1 + 1)2 through sufficient steps of gradient descent to obtain w1 = −1. At this

point, λ2 = [1, 0]⊤. By iterating this process, wk always oscillates between -1 and 1, unable to
converge to w⋆ = 0. If w0 = 0, we set σ1 = 1 and σ2 = 0, reaching the same conclusion. A similar
conclusion can be extended to stochastic methods in the expectation sense.

We know that ℓ1(w⋆) = ℓ2(w
⋆) at the optimal point w⋆ = 0. Clearly, the iterative sequence of

the algorithm oscillates at w⋆ and cannot converge to the optimal solution. Although Mehta et al.
(2022; 2024) employ a similar approach to update λ for subgradient estimations, they consider
the smoothed spectral risk by adding a strongly concave term with respect to λ. However, for the
original spectral risk minimization problems, updating λ with their method results in discontinuities,
thereby lacking convergence guarantees.

D SOREL WITH MINI-BATCHING

In this section, we present the results of SOREL with mini-batching. To apply mini-batching, We
only need to change Line 13 of Algorithm 1 to: Sample a mini-batch bt ⊂ {1, . . . , n} without
replacement, and change Line 14 to

dk,t =
1

b

∑
i∈bt

[nλi,k+1∇ℓi (wk,t)− nλi,k+1∇ℓi(w̄)] + ḡ,

where b = |bt| is the mini-batch size.

We first present the main result of SOREL with mini-batching.

Corollary 2 Use the same conditions in Therorem 1. Additionally, set the step-size α =
b(n−1)
5L(n−b) , mk = 400L(n−b)

(k+5)µb(n−1) + 8 and Tk = O(mk log
1
δk
). Then we obtain an output wK

of SOREL with mini-batching such that E∥wk − w⋆∥2 ≤ ϵ in a total sample complexity of

O

(
n

3
2 G

µ
√
ϵ
log

√
n

G
√
ϵ
+ L(n−b)

µ(n−1) log
√
n

G
√
ϵ
log

√
nG

µ
√
ϵ

)
.

D.1 PROOF OF COROLLARY 2

We first discuss the inner loop in Lines 6-17 of Algorithm 1. This is an extension of SVRG (Johnson
& Zhang, 2013; Xiao & Zhang, 2014). To illustrate more clearly, we consider the problem

min
w

P (w) := F (w) + h(w),

where F (w) = 1
n

∑n
i=1 fi(w), each fi is convex and L-smooth, and h is µ-strongly convex. We

rewrite Lines 6-17 of Algorithm 1 to Algorithm 3. Note that, by setting w̄0 = wk, m = mk,
F (w) = λ⊤

k+1ℓ(w), and h(w) = g(w) + 1
2τk

∥w −wk∥2, Algorithm 3 is the same as Lines 6-17
of Algorithm 1.

Assumption 2 Each fi : Rd → R is convex and L-smooth. h : Rd → R ∪ {∞} is proper, lower
semicontinuous and µh-strongly convex.

The following two results are adopted from Xiao & Zhang (2014), which will be used in the proof
of the main result.
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Algorithm 3 Simplified Inner Loop of Algorithm 1 with Mini-batching.
1: Input: initial w̄0, the learning rate α, mini-batch size b, and the inner-loop length m.
2: for s = 0, 1, . . . do
3: w̄ = w̄s−1, ḡ = ∇F (w̄).
4: w0 = w̄.
5: for t = 0, 1, . . . ,m− 1 do
6: Sample bt ⊂ {1, . . . , n} of size b uniformly at random without replacement.
7: dt =

1
b

∑
i∈bt

[∇fi(wt)−∇fi(w̄)] + ḡ.
8: wt+1 = Proxαh{wt − αdt}.
9: end for

10: w̄s =
1
m

∑m
t=1 wt.

11: end for

Lemma 6 (Xiao & Zhang, 2014, Lemma 1) Suppose Assumption 2 holds, and let w⋆ =
argminw P (w). Then for all w ∈ Rd

1

n
∥∇fi(w)−∇fi(w⋆)∥2 ≤ 2L (P (w)− P (w⋆)) .

Lemma 7 (Xiao & Zhang, 2014, Lemma 3) Suppose Assuption 2 holds, let ∆t = dt − ∇F (wt)
and w⋆ = argminw P (w). Then

∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 2α [P (wt+1)− P (w⋆)]− 2α∆⊤
t (wt+1 −w⋆) . (24)

The following lemma bounds the variance of the stochastic gradient dt.

Lemma 8 Let Et be the conditional expectation given wt and w⋆ = argminw P (w). We have

Et∥dt −∇F (wt)∥2 ≤ 2(n− b)L

b(n− 1)
(P (wt)− P (w⋆) + P (w̄)− P (w⋆)) .

Proof: Define ξi = ∇fi(wt)−∇fi(w̄).

Et∥dt −∇F (wt)∥2

= Et∥
1

b

∑
it∈bt

(∇fit(wt)−∇fit(w̄)) +
1

n

n∑
i=1

(∇fi(w̄)−∇fi(wt)) ∥2

= Et∥
1

b

∑
it∈bt

ξit∥2 − ∥ 1
n

n∑
i=1

ξi∥2

=
1

b2
Et

 ∑
it ̸=jt∈bt

ξ⊤it ξjt +
∑
it∈bt

ξ⊤it ξit

− 1

n2

n∑
i,j=1

ξ⊤i ξj

=
1

b2

 b(b− 1)

n(n− 1)

∑
i ̸=j

ξ⊤i ξj +
b

n

n∑
i=1

ξ⊤i ξi

− 1

n2

n∑
i,j=1

ξ⊤i ξj

=
1

nb

 b− 1

n− 1

n∑
i,j=1

ξ⊤i ξj +

(
1− b− 1

n− 1

) n∑
i=1

ξ⊤i ξi

− 1

n2

n∑
i,j=1

ξ⊤i ξj

=
n− b

nb(n− 1)

− 1

n

n∑
i,j=1

ξ⊤i ξj +

n∑
i=1

ξ⊤i ξi

 ,

where the second equation is due to E∥ξ − Eξ∥2 = E∥ξ∥2 − ∥Eξ∥2.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Note that 1
n

∑n
i,j=1 ξ

⊤
i ξj = n∥ 1

n

∑n
i=1 ξi∥2 ≥ 0. Combing the above result with Lemma 6 we

obtain that

Et∥dt −∇F (wt)∥2 ≤ n− b

bn(n− 1)

n∑
i=1

∥∇fi(wt)−∇fi(w̄)∥2

≤ n− b

bn(n− 1)

n∑
i=1

(
∥∇fi(wt)−∇fi(w⋆)∥2 + ∥∇fi(w̄)−∇fi(w⋆)∥2

)
≤ 2(n− b)L

b(n− 1)
(P (wt)− P (w⋆) + P (w̄)− P (w⋆)) .

This completes the proof. □

Lemma 9 Suppose Assumption 2 holds and 2αL n−b
b(n−1) < 1. Let w⋆ = argminw P (w). Then we

obtain an output w̄s of Algorithm 3 such that

EP (w̄s)− P (w⋆) ≤ ρs (P (w̄0)− P (w⋆)) ,

where ρ = U
D , U = 2αm

(
1− 2αL n−b

b(n−1)

)
and D =

(
2
µh

+ 4α2L(m+ 1) n−b
b(n−1)

)
.

Proof: We first consieder the s-th outer iteration of Algorithm 3. We have that w̄ = w̄s−1. We
define w̃t+1 = Proxαh (wt − α∇F (wt)), which is independent of the mini-batch bt. First we
bound the last term in (24):

− 2α∆⊤
t (wt+1 −w⋆) = −2α∆⊤

t (wt+1 − w̃t+1 + w̃t+1 −w⋆)

≤ 2α∥∆t∥∥wt+1 − w̃t+1∥ − 2α∆⊤
t (w̃t+1 −w⋆)

≤ 2α∥∆t∥∥wt − αdt −wt + α∇F (wt)∥ − 2α∆⊤
t (w̃t+1 −w⋆)

= 2α2∥∆t∥2 − 2α∆⊤
t (w̃t+1 −w⋆),

(25)

where in the second inequality we use the non-expansiveness of the projection operator. Note that
Et∆

⊤
t (w̃t+1 −w⋆) = (Et∆t)

⊤(w̃t+1 −w⋆) = 0. Taking the conditional expectation Et on both
sides of (25) and using Lemma 8 we obtain that

−2αEt∆
⊤
t (wt+1 −w⋆) ≤

4α2(n− b)L

b(n− 1)
(P (wt)− P (w⋆) + P (w̄s−1)− P (w⋆)) .

Taking the conditional expectation Et on both sides of (24) and plugging in the above result, we
obtain that

Et∥wt+1 −w⋆∥2 ≤ ∥wt −w⋆∥2 − 2α(EtP (wt+1)− P (w⋆))

+
4α2(n− b)L

b(n− 1)
(P (wt)− P (w⋆) + P (w̄s−1)− P (w⋆)) .

(26)

Taking the expectation on both sides of (26), using the law of total expectation and summing over
t = 0, . . . ,m− 1 we obtain that

E∥wm −w⋆∥2 + 2α(EP (wm)− P (w⋆)) + 2α

(
1− 2αL

n− b

b(n− 1)

)m−1∑
t=1

(EP (wt)− P (w⋆))

≤ ∥w0 −w⋆∥2 + 4α2L
n− b

b(n− 1)
(P (w0)− P (w⋆)) + 4α2Lm

n− b

b(n− 1)
(P (w̄s−1)− P (w⋆)) .

(27)
Since w0 = w̄s−1 and 2α ≥ 2α

(
1− 2αL n−b

b(n−1)

)
by the assumption, we obtain that

E∥wm −w⋆∥2 + 2α

(
1− 2αL

n− b

b(n− 1)

) m∑
t=1

(EP (wt)− P (w⋆))

≤ ∥w̄s−1 −w⋆∥2 + 4α2L(m+ 1)
n− b

b(n− 1)
(P (w̄s−1)− P (w⋆)) .

(28)
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By the µh-strong convexity of P and the definition of w̄s, we obtain that

2αm

(
1− 2αL

n− b

b(n− 1)

)
(EP (w̄s)− P (w⋆))

≤
(

2

µh
+ 4α2L(m+ 1)

n− b

b(n− 1)

)
(P (w̄s−1)− P (w⋆)).

Finally, by applying the above inequality recursively, we get the desired result. □

Corollary 3 Let w⋆ = argminw P (w). With the same conditions as Lemma 9, setting the step size
α = b(n−1)

5L(n−b) and the loop length m = 100L(n−b)
µhb(n−1) + 8, we obtain an output ws of Algorithm 3 such

that EP (ws)− P (w⋆) ≤ ϵ in a total sample complexity of O
((

n+ (n−b)L
(n−1)µ

)
log 1

ϵ

)
.

Proof: Through simple calculations, we can obtain that ρ = 3
4 . Thus Algorithm 3 has geometric

convergence. We need s ≥ log 4
3 log

P (w0)−P (w⋆)
ϵ to obtain an ϵ-optimal solution in expectation.

The total sample complexity is s(n+ bm) = O
((

n+ (n−b)L
(n−1)µ

)
log 1

ϵ

)
. □

Now we are ready to prove the main result for SOREL with mini-batching based on Theorem 1.

Proof of Corollary 2

Proof: By Corollary 3, we get a δk approximate solution of the k-th outer loop of SOREL
with mini-batching with the sample complexity of O

((
n+ (n−b)L

(k+1)(n−1)µ

)
log δ−1

k

)
. Similar to

the proof of Corollary 1, through simple calculations we obtain the total sample complexity of

O

(
n

3
2 G

µ
√
ϵ
log

√
n

G
√
ϵ
+ L(n−b)

µ(n−1) log
√
n

G
√
ϵ
log

√
nG

µ
√
ϵ

)
.

□

E EXPERIMENTS WITH ERROR BARS

In this section, we present the error bars of experiments in Section 5.

E.1 LINEAR REGRESSION

Figure 7 presents the results of using different algorithms with minibatching, as described in Sec-
tion 5.1. For each algorithm, we set five random seeds, as detailed in Appendix B, and report the
mean training curves with standard deviations. Since our plots are in log scale, we only keep the
upper error bar to make the plots easier to read. The performances of each algorithm in Figure 7
are consistent with those in Figure 5. SOREL achieves the best or competitive results in terms of
sample complexity, runtime, or both.

E.2 FAIR MACHINE LEARNING

Table 4 presents the mean fairness metrics (and standard deviations in parentheses) in Section 5.2.
Note that the standard deviations are large in the acs dataset. We attribute this to the use of 5-
fold cross-validation. The standard deviations primarily arise from differences in data across folds,
instead of the randomness of stochastic algorithms. Indeed, the fairness metrics obtained using ERM
(solved by L-BFGS) as the loss function also exhibit large standard deviations. We follow the 5-fold
cross-validation approach as recommended by Williamson & Menon (2019).

Tables 5, 6, and 7 respectively show the fairness metrics (and standard deviations in parentheses)
on each fold of the data when CVaR, ESRM, and Extremile are used as the loss functions. We
observe that the standard deviations of each algorithm (except SGD) are small on each fold. Thus
the standard deviations of the fairness metrics in Table 4 arise from differences in the data across
folds. In the acs dataset, SOREL still achieves the lowest fairness metrics on each fold of the data
in most cases.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350 400

10 7

10 5

10 3

10 1

en
er

gy

CVaR

0.0 0.2 0.4 0.6 0.8 1.0

10 7

10 5

10 3

10 1

CVaR

0 50 100 150 200 250 300 350 400

10 8

10 6

10 4

10 2

100

ESRM

0.0 0.2 0.4 0.6 0.8 1.0

10 9

10 7

10 5

10 3

10 1

ESRM

0 50 100 150 200 250 300 350 400

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Extremile

0.0 0.2 0.4 0.6 0.8 1.0

10 10

10 8

10 6

10 4

10 2

100

Extremile

0 50 100 150 200 250 300 350 400

10 8

10 6

10 4

10 2

100

co
nc

re
te

0.0 0.2 0.4 0.6 0.8 1.0

10 8

10 6

10 4

10 2

100

0 50 100 150 200 250 300 350 400

10 8

10 6

10 4

10 2

100

0.0 0.2 0.4 0.6 0.8 1.0

10 8

10 6

10 4

10 2

100

0 50 100 150 200 250 300 350 400

10 8

10 6

10 4

10 2

100

0.0 0.2 0.4 0.6 0.8 1.0

10 9

10 7

10 5

10 3

10 1

0 20 40 60 80 100

10 7

10 5

10 3

10 1

ki
n8

nm

0 1 2 3 4 5

10 8

10 6

10 4

10 2

100

0 20 40 60 80 100

10 12

10 10

10 8

10 6

10 4

10 2

100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10 12

10 10

10 8

10 6

10 4

10 2

100

0 20 40 60 80 100

10 9

10 7

10 5

10 3

10 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10 9

10 7

10 5

10 3

10 1

0 20 40 60 80 100
Passes

10 10

10 8

10 6

10 4

10 2

100

po
we

r

0 2 4 6 8 10
Time (s)

10 11

10 9

10 7

10 5

10 3

10 1

0 20 40 60 80 100
Passes

10 10

10 8

10 6

10 4

10 2

100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

10 10

10 8

10 6

10 4

10 2

100

0 20 40 60 80 100
Passes

10 12

10 10

10 8

10 6

10 4

10 2

100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

10 12

10 10

10 8

10 6

10 4

10 2

100

SGD LSVRG Prospect SOREL

Figure 7: Suboptimality of spectral risks for different algorithms with mini-batching.

In the acs dataset, the fairness metrics for the folds 4 and 5 are negative. This is because we use
the same spectral risk measure for all folds. Given the differences between folds, the spectral risk
we used may be too aggressive for the folds 4 and 5. In practice, the parameters of the spectral
risk could be tuned for each fold. However, as our primary focus is on the performances of each
optimizer during training, this approach is beyond the scope of this paper.

Tables 8, 9 and 10 respectively show the mean suboptimality of algorithms on each fold of the data
when CVaR, ESRM, and Extremile are used as the loss functions. SOREL achieves the lowest
suboptimality in all settings, except for the Extremile setting in fold 2, acs dataset.

Table 4: The mean fairnes metrics of different algorithms on acs and law (and standard deviations
in parentheses). Values closer to 0 indicate better fairness.

Datasets acs law

ERM 0.02092 (0.04767) 0.05188 (0.00200)

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

CVaR 0.00645 0.00816 0.00634 0.00551 0.04019 0.03896 0.03893 0.03890
(0.03539) (0.03464) (0.03494) (0.03555) (0.00177) (0.00163) (0.00172) (0.00176)

ESRM 0.02469 0.01842 0.01840 0.01770 0.04184 0.04122 0.04123 0.04123
(0.04823) (0.04479) (0.04629) (0.04557) (0.00180) (0.00172) (0.00173) (0.00173)

Extremile 0.00424 0.00377 0.00237 0.00130 0.04416 0.04377 0.04380 0.04381
(0.02970) (0.02899) (0.02888) (0.03006) (0.00171) (0.00166) (0.00167) (0.00167)

Table 5: The mean fairnes metrics of different algorithms on acs and law (and standard deviations
in parentheses) for CVaR.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 0.04199 0.04144 0.04144 0.04089 0.03724 0.03643 0.03614 0.03597
(0.00095) (0.00095) (0.00095) (0.00000) (0.00105) (0.00004) (0.00016) (0.00000)

Fold 2 0.04071 0.04132 0.03950 0.03950 0.04221 0.04119 0.04131 0.04116
(0.00210) (0.00000) (0.00000) (0.00000) (0.00038) (0.00000) (0.00016) (0.00000)

Fold 3 0.00324 0.00875 0.00324 0.00324 0.04008 0.03834 0.03867 0.03855
(0.00184) (0.00000) (0.00000) (0.00000) (0.00032) (0.00003) (0.00005) (0.00000)

Fold 4 -0.00262 -0.00141 -0.00141 -0.00323 0.04053 0.03981 0.03928 0.03925
(0.00105) (0.00000) (0.00000) (0.00000) (0.00023) (0.00003) (0.00013) (0.00000)

Fold 5 -0.05108 -0.04928 -0.05108 -0.05287 0.04088 0.03904 0.03926 0.03957
(0.00000) (0.00000) (0.00000) (0.00000) (0.00053) (0.00008) (0.00011) (0.00000)
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Table 6: The mean fairnes metrics of different algorithms on acs and law (and standard deviations
in parentheses) for ESRM.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 0.05054 0.02530 0.02695 0.02530 0.03899 0.03830 0.03830 0.03830
(0.02043) ((0.00000) (0.00000) (0.00000) (0.00065) (0.00000) (0.00000) (0.00000)

Fold 2 0.09799 0.09496 0.09678 0.09496 0.04377 0.04335 0.04338 0.04338
(0.00105) (0.00000) (0.00000) (0.00000) (0.00020) (0.00000) (0.00000) (0.00000)

Fold 3 0.02040 0.01794 0.01794 0.01794 0.04170 0.04107 0.04109 0.04109
(0.00106) (0.00000) (0.00000) (0.00000) (0.00095) (0.00000) (0.00000) (0.00000)

Fold 4 -0.02011 -0.02011 -0.02011 -0.02011 0.04209 0.04135 0.04136 0.04136
(0.00000) (0.00000) (0.00000) (0.00000) (0.00104) (0.00000) (0.00000) (0.00000)

Fold 5 -0.02539 -0.02599 -0.02957 -0.02957 0.04266 0.04203 0.04204 0.04204
(0.00103) (0.00000) (0.00000) (0.00000) (0.00112) (0.00000) (0.00000) (0.00000)

Table 7: The mean fairnes metrics of different algorithms on acs and law (and standard deviations
in parentheses) for Extremile.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 0.01100 0.01045 0.00715 0.00715 0.04137 0.04103 0.04105 0.04105
(0.00095) (0.00000) (0.00000) (0.00000) (0.00024) (0.00000) (0.00000) (0.00000)

Fold 2 0.04739 0.04496 0.04496 0.04314 0.04626 0.04592 0.04598 0.04598
(0.00105) (0.00000) (0.00000) (0.00000) (0.00015) (0.00000) (0.00000) (0.00000)

Fold 3 0.00753 0.00875 0.00692 0.00692 0.04400 0.04357 0.04364 0.04365
(0.00106) (0.00000) (0.00000) (0.00000) (0.00053) (0.00000) (0.00000) (0.00000)

Fold 4
-0.00262, -0.00323 -0.00504 -0.00323 0.04417 0.04370 0.04370 0.04370
(0.00105) (0.00000) (0.00000) (0.00000) (0.00056) (0.00000) (0.00000) (0.00000)

Fold 5 -0.04211 -0.04211 -0.04211 -0.04749 0.04499 0.04465 0.04465 0.04465
(0.00000) (0.00000) (0.00000) (0.00000) (0.00053) (0.00000) (0.00000) (0.00000)

E.3 OUT-OF-DISTRIBUTION GENERALIZATION

Figure 8 shows the training curves and worst group classification errors with standard deviations for
the experiments in Section 5.3. Table 11 shows the worst group classification errors (and standard
deviations in parentheses) in Figure 8. SOREL achieves the lowest worst group classification error
in both settings. SOREL is also the only algorithm that can converge to the true optimal solution
under the CVaR setting, as stated in Section 5.3.
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Figure 8: Training curves and worst group classification errors of different algorithms on the
amazon dataset.

F ADDITIONAL EXPERIMENTS ON NONCONVEX OBJECTIVES

In this section, we empirically explore the performance of SOREL in optimizing nonlinear models.
We train a two-layer neural network with ReLU activation function and set the hidden layer’s dimen-
sion equal to the feature dimension of the input data. We use the regression task from Section 5.1.
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Table 8: The mean Suboptimality of different algorithms on acs and law (and standard deviations
in parentheses) for CVaR.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 3.82e-04 5.00e-04 1.48e-04 9.90e-07 5.28e-03 1.02e-02 1.72e-03 9.75e-05
(7.42e-05) (1.27e-06) (2.83e-05) (1.86e-08) (1.02e-03) (1.89e-06) (1.04e-05) (2.00e-07)

Fold 2 3.33e-04 2.91e-04 6.00e-05 7.84e-07 3.93e-03 6.04e-03 5.37e-04 2.27e-05
(8.88e-05) (4.70e-06) (6.14e-06) (7.25e-08) (5.75e-04) (1.65e-05) (1.25e-05) (6.49e-08)

Fold 3 3.58e-04 6.81e-04 1.95e-04 4.90e-06 2.14e-03 3.44e-03 2.79e-04 3.06e-07
(1.13e-04) (1.32e-06) (1.30e-05) (1.89e-08) (6.97e-04) (9.74e-06) (9.04e-06) (3.85e-08)

Fold 4 4.62e-04 7.84e-04 2.45e-04 1.72e-06 3.44e-03 5.02e-03 2.97e-04 4.12e-06
(1.02e-05) (1.86e-06) (2.39e-06) (1.32e-08) (1.31e-04) (1.57e-05) (2.44e-05) (1.10e-08)

Fold 5 6.10e-04 1.36e-03 4.14e-04 3.14e-06 4.22e-03 4.66e-03 5.25e-04 2.30e-05
(1.48e-05) (6.01e-07) (2.92e-06) (4.20e-08) (9.23e-05) (1.15e-05) (1.82e-05) (3.91e-08)

Table 9: The mean Suboptimality of different algorithms on acs and law (and standard deviations
in parentheses) for ESRM.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 1.02e-03 1.15e-04 2.07e-06 -5.14e-08 6.16e-04 2.46e-04 7.83e-07 8.47e-08
(3.63e-06) (2.75e-07) (1.04e-06) (9.61e-12) (2.26e-05) (9.54e-08) (1.77e-09) (2.52e-10)

Fold 2 9.66e-04 5.79e-05 1.95e-05 -1.23e-08 5.53e-04 9.69e-05 -3.89e-08 -2.73e-07
(9.40e-05) (3.55e-07) (8.86e-07) (1.04e-11) (1.19e-04) (8.61e-08) (1.75e-09) (2.21e-10)

Fold 3 1.25e-03 2.62e-04 1.68e-07 -3.46e-08 9.67e-04 6.24e-05 -3.25e-07 -4.25e-07
(5.74e-05) (8.65e-07) (1.25e-07) (4.11e-12) (5.48e-04) (2.94e-08) (5.19e-10) (2.26e-10)

Fold 4 1.57e-03 4.31e-04 4.72e-08 -8.08e-09 8.70e-04 8.52e-05 1.87e-07 3.83e-08
(6.84e-05) (1.05e-06) (9.27e-09) (6.04e-12) (4.06e-04) (3.28e-08) (1.14e-09) (5.34e-11)

Fold 5 2.54e-03 7.98e-04 1.43e-07 -1.16e-08 7.92e-04 7.53e-05 1.53e-07 8.38e-09
(8.78e-05) (1.44e-06) (2.76e-08) (9.90e-12) (5.58e-04) (1.07e-07) (5.01e-10) (4.75e-10)

Thus, the loss function and the model can be written as

ℓ(z) =
1

2
(z − y)2

and
z = W2 (ReLU(W1x+ b1)) + b2,

where x ∈ Rd, y ∈ R are the feature and label, W1 ∈ Rd×d, b1 ∈ Rd, W2 ∈ R1×d and b2 ∈ R are
trainable parameters. The experimental setup is identical to that in Section 5.1.

Figure 9 shows the training curves using three spectral risk measures on the energy and
concrete datasets. Note that none of the four algorithms have theoretical guarantees in the
non-convex setting. However, SOREL achieves the optimal or near-optimal results across various
settings. On the energy dataset, SOREL achieves the lowest losses, significantly outperforming
LSVRG and Prospect. On the concrete dataset, SOREL also achieves slightly lower loss val-
ues compared to LSVRG and Prospect. Table 12 reports the mean losses and standard deviations
over the last ten passes. We observe that SOREL achieves the lowest mean losses, demonstrating
the effectiveness in optimizing non-convex functions, even though theoretical guarantees are not
available.

G FURTHER DISCUSSION ON THE COMPLEXITY IN COROLLARY 1

In Section 4, we discussed the optimality of the complexity in Corollary 1 with respect to ϵ. In this
section, we further discuss the dependence of the complexity in the Corollary 1 on n. The sample
complexity with respect to n and ϵ in Corollary 1 is Õ(n3/2/

√
ϵ). Since SOREL requires computing

the projection onto the permutahedron Πσ in each outer iteration, which takes O(n log n) time, the
total time complexity of SOREL includes an additional O(Kn log n) term, where K = O

(√
nG

µ
√
ϵ

)
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Table 10: The mean Suboptimality of different algorithms on acs and law (and standard deviations
in parentheses) for Extremile.

Datasets acs law

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

Fold 1 5.34e-03 6.04e-03 2.49e-04 1.03e-04 1.38e-04 9.60e-04 1.46e-05 -1.96e-07
(1.13e-04) (4.08e-06) (4.61e-06) (1.84e-07) (7.31e-05) (1.73e-07) (9.97e-09) (3.29e-12)

Fold 2 6.09e-03 5.23e-03 9.23e-05 9.36e-05 1.41e-04 6.08e-04 7.32e-06 -4.77e-07
(5.68e-04) (8.57e-07) (9.98e-07) (2.51e-07) (8.16e-05) (1.81e-07) (1.07e-08) (5.09e-12)

Fold 3 4.36e-03 7.66e-03 5.18e-04 7.98e-05 1.95e-04 4.30e-04 5.47e-06 -3.42e-07
(1.74e-04) (2.76e-06) (2.92e-06) (3.52e-07) (1.22e-04) (1.58e-07) (7.48e-09) (1.50e-12)

Fold 4 4.31e-03 9.84e-03 9.22e-04 1.49e-04 1.99e-04 6.01e-04 7.97e-06 -9.44e-10
(3.03e-04) (2.84e-06) (3.13e-06) (6.40e-07) (1.29e-04) (1.34e-07) (1.68e-08) (2.04e-13)

Fold 5 5.46e-03 1.07e-02 1.56e-03 1.43e-04 1.43e-04 4.71e-04 5.40e-06 -4.31e-08
(4.21e-04) (5.52e-06) (7.60e-06) (7.27e-07) (1.50e-04) (3.69e-07) (7.82e-09) (3.60e-13)

Table 11: Worst group classification errors of different algorithms (and standard deviations in paren-
theses) on the amazon dataset.

Spectral Risks SGD LSVRG Prospect SOREL

CVaR 0.8102 0.8057 0.8083 0.8036
(0.0044) (0.0022) (0.0014) (0.0000)

Extremile 0.7582 0.7679 0.7560 0.7560
(0.0017) (0.0000) (0.0000) (0.0000)

is given in the proof of Corollary 1. Therefore, the total complexity of SOREL with respect to n and
ϵ is Õ(n3/2/

√
ϵ).

Here, we discuss the complexity of baselines in Section 5 with respect to n and ϵ. SGD has been
shown to fail to converge to the optimal solution of the spectral risk minimization problem, while
LSVRG only guarantees convergence for ν ≥ Ω

(
nG2/µ

)
(Mehta et al., 2022). For Prospect,

by setting ν = O(ϵ), we obtain its sample complexity with respect to n and ϵ as Õ(n2/ϵ2) or
Õ(n/ϵ3) (depending on the size of ϵ). Moreover, Prospect requires computing the projection onto
the permutahedron Πσ at each step with a cost of O(n log n) time, which results in its total time
complexity Õ(n2/ϵ3) or Õ(n3/ϵ2). Therefore, SOREL also has an advantage in terms of the total
time complexity with respect to n. This is consistent with the experimental results in Section 5,
where SOREL significantly outperforms Prospect in terms of runtime.
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Figure 9: Results of training two-layer neural networks using different algorithms.

Table 12: The mean function values over the last ten passes (and standard deviations in parentheses).

Datasets energy concrete

SGD LSVRG Prospect SOREL SGD LSVRG Prospect SOREL

CVaR 0.05533 0.06986 0.06715 0.04787 0.09573 0.09149 0.09099 0.08888
(0.02004) (0.00027) (0.00024) (0.00045) (0.00299) (0.00276) (0.00188) (0.00104)

ESRM 0.05463 0.06253 0.06594 0.04464 0.08942 0.08417 0.08443 0.08275
(0.01268) (0.00882) (0.00006) (0.00020) (0.00253) (0.00006) (0.00039) (0.00013)

Extremile 0.05153 0.07544 0.07155 0.04792 0.09832 0.09132 0.09261 0.09073
(0.00329) (0.00005) (0.00005) (0.00005) (0.00325) (0.00012) (0.00097) (0.00077)
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