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ABSTRACT

Large language models (LLMs) have shown immense potential across various do-
mains, but their high memory requirements and inference costs remain critical
challenges for deployment. Post-training quantization (PTQ) has emerged as a
promising technique to reduce memory requirements and decoding latency. How-
ever, recent accurate quantization methods often depend on specialized computa-
tions or custom data formats to achieve better model quality, which limits their
compatibility with popular frameworks, as they require dedicated inference ker-
nels tailored to specific hardware and software platforms, hindering wider adop-
tion. Furthermore, many competitive methods have high resource requirements
and computational overhead, making it challenging to scale them to hundreds of
billions of parameters. In response to these challenges, we propose LeanQuant
(Loss-error-aware Network Quantization), a novel quantization method that is ac-
curate, versatile, and scalable. In the existing popular iterative loss-error-based
quantization framework, we identify a critical limitation in prior methods: the
min-max affine quantization grid fails to preserve model quality due to outliers in
inverse Hessian diagonals. To overcome this fundamental issue, we propose learn-
ing loss-error-aware grids, instead of using non-adaptive min-max affine grids.
Our approach not only produces quantized models that are more accurate but
also generalizes to a wider range of quantization types, including affine and non-
uniform quantization, enhancing compatibility with more frameworks. Extensive
empirical evaluations on recent LLMs demonstrate that LeanQuant is highly accu-
rate, comparing favorably against recent competitive baselines in model quality,
and scalable, achieving very accurate quantization of Llama-3.1 405B, one of the
largest open-source LLMs to date, using two Quadro RTX 8000-48GB GPUs in
21 hours.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive reasoning (Wei et al., 2022) and
problem solving abilities (Kojima et al., 2022), and have shown the potential to bring transforma-
tive changes to various fields such as law (Kaddour et al., 2023), education (Kasneci et al., 2023),
and medicine (Thirunavukarasu et al., 2023). However, deploying LLMs in a cost-effective manner
presents significant challenges due to their substantial memory and computational demands (Chen
et al., 2023), which hinders the accessibility and democratization of artificial intelligence (AI) (Kad-
dour et al., 2023).

Post-training quantization (PTQ) (Krishnamoorthi, 2018) is a technique for reducing the memory
requirement for model inference by reducing the precision of floating-point weights of a pre-trained
model and storing them in a compact low-bit-width format. PTQ offers the additional benefit of
reducing the decoding latency of LLMs by reducing memory reads, since LLM inference is often
bottlenecked by memory bandwidth (Kim et al., 2023). Although quantization causes a certain
amount of precision loss in the parameters, the model quality can be reasonably preserved even in
lower bit widths (Frantar et al., 2022; Chee et al., 2024). For many tasks, a quantized model is
preferred over a full model due to its better size-accuracy trade-off (Dettmers & Zettlemoyer, 2023).
As open-source foundational models continue to scale up in size (Dubey et al., 2024), accurate and
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efficient quantization becomes essential for making AI accessible to a wider audience. For instance,
serving Llama-3.1 405B (Dubey et al., 2024) using its original 16-bit weights requires a cluster of
2 nodes, each with 8×80GB GPUs, while the 4-bit quantized version can be deployed on a single
nodes of 8×48GB GPUs, eliminating the overhead of inter-node communication.

Challenges of Deploying Quantized Models One of the biggest challenges of successful deploy-
ment of quantized models is implementing optimized kernels for quantized GEMM (general matrix
multiply) that are tailored to various hardware platforms and software frameworks. In order to accel-
erate inference of quantized models, fused kernels, which fuse dequantization and matrix multiplica-
tion in the same subroutine, have to be implemented and tuned for the specific hardware accelerator.
These kernels require specialized designs and tunings for different hardware accelerators to be fully
optimized (Park et al., 2022). Recent quantization algorithms have chosen to employ specialized
computations or custom data formats to reduce the impact of quantization on model quality, but they
require more sophisticated kernel designs for efficient inference. For example, AQLM (Egiazar-
ian et al., 2024) and QUIP# (Tseng et al., 2024) perform dequantization through look-ups from
multi-dimensional or multi-bit codebooks, and Dotzel et al. (2024) proposed new data types such
as Student Float to reduce quantization errors. While these approaches demonstrate promising re-
sults, their reliance on specialized operations and data formats can hinder their widespread adoption
due to the need for optimized inference kernels for each hardware platform and software framework.
For example, llama.cpp (Gerganov, 2023), a popular LLM inference engine that supports mobile de-
vices, only supports affine and non-uniform quantization formats. Consequently, instead of focusing
on developing better quantization methods with specialized operations, it may be more worthwhile
to investigate improving the accuracy of existing widely adopted quantization formats, such as affine
integer quantization and non-uniform quantization, which are supported by popular deep learning
libraries (Paszke et al., 2019) and deployment frameworks (Kwon et al., 2023).

Scalability Challenges of Accurate Quantization To improve the quality of quantized models, ex-
isting approaches often incur higher computational overhead and require more hardware resources.
As foundational models scale up in size (Hoffmann et al., 2022), these quantization approaches may
struggle to scale to very large models such as Llama-3.1 405B (405 billion parameters) (Dubey
et al., 2024). For instance, LLM-QAT (Liu et al., 2023) uses 100K samples of training data and
hundreds of GPU-hours to recover the performance of a quantized LLaMA-13B model (Touvron
et al., 2023a). For AQLM (Egiazarian et al., 2024), the time needed for quantizing a 7B to 70B
LLM ranges from 1 to 14 days of an A100-80GB GPU. For SqueezeLLM (Kim et al., 2023), due to
its use of the gradients of model parameters, quantizing a 70B LLM requires at least 240GB of total
GPU memory, or 8×32GB GPUs. As these accurate quantization approaches demand significant
hardware resources and long optimization time, it is crucial to develop accurate methods that are
efficient in terms of resource usage and time cost, to ensure the accessibility of increasingly large
foundational models.

Our Proposal In this work, we propose LeanQuant, an accurate, versatile, and scalable quantization
approach. We build upon the iterative loss-error-based quantization framework (Frantar & Alistarh,
2022; Frantar et al., 2022) and identify one of the biggest limitations of such methods: the min-max
affine quantization grid introduces high loss errors due to the existence of outliers in the inverse
Hessian diagonals. We introduce techniques for learning loss-error-aware quantization grids, which
mitigate this issue and greatly improve the accuracy and quality of quantized models. We empiri-
cally demonstrate that LeanQuant compares favorably against competitive baselines in the 4/3/2-bit
regions. Our approach is versatile, able to generalize to multiple commonly used quantization for-
mats, such as affine and non-uniform quantization, allowing our quantized models to be directly
compatible with existing highly optimized inference kernels (Frantar et al., 2024; Park et al., 2022)
for maximum accessibility. Furthermore, our method is scalable and efficient. By designing and im-
plementing a fused GPU kernel for LeanQuant grid learning, we achieve the accurate quantization
of LLMs up to 123B in size using a single L40s-48GB GPU in 4 hours, and Llama-3.1 405B using
2 Quadro RTX 8000-48GB GPUs in 21 hours.

2 BACKGROUND

In this section, we introduce the relevant background for our proposal including quantization grids
and iterative loss-error-based quantization.
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2.1 QUANTIZATION GRID

Quantization achieves model compression by representing the full-precision floating-point param-
eters with a limited set of grid points on the quantization grid. The number of points on the grid
depends on the bit width: a b-bit code represents 2b distinct values, so 2-bit quantization yields 4 grid
points. The placement of these points significantly affects the precision of the original parameters,
and imprecise placement can degrade model quality. To address this, different types of quantization
grids, such as affine, non-uniform, and normal, have been introduced, which we survey as follows.

Affine Grid In an affine quantization grid (Krishnamoorthi, 2018), the grid points are evenly spaced
over the dynamic range of a group of weights. The weights of the network are divided into groups
of fixed size, e.g. every 128 contiguous parameters as a group. For min-max asymmetric affine
quantization, the scaling factor S and the zero-point Z are recorded for each group of weights
(the zero-point is omitted in the symmetric affine case). Then, the i-th weight wi in a group w is
quantized to b-bit as follows,

wint
i = clip(⌊wi

S
⌉+ Z, 0, 2b − 1),where S =

max(w)−min(w)

2b − 1
and Z = −⌊min(w)

S
⌉

quantaff(wi, S, Z) = (wint
i − Z)S

where ⌊·⌉ is the rounding operator, clip(·) constrains the weight value within the range of b-bit
integer, wint

i is the compact integer representation of wi, and quantaff(wi, S, Z) is the value of wi

after being quantized to the nearest grid point.

Non-uniform Grid The grid points on a non-uniform grid are placed in a non-equidistant manner
(Li et al., 2019). The motivation behind non-uniform quantization is to allow for finer precision in
regions where model parameters are more concentrated or sensitive. Each row in a weight matrix
has a distinct set of grid points G, where |G| = 2b for b-bit non-uniform quantization. The weight
wi is quantized to the nearest grid point in G as follows,

quantnu(wi,G) = argmin
g∈G

|g − wi|

Other Grid Types Previous works have observed that LLM parameters tend to be distributed simi-
larly as Normal or Student T’s Distribution, hence they propose new grid types, such as NormalFloat
(Dettmers et al., 2024) and Student Float (Dotzel et al., 2024), which place grid lines at the quantiles
of these distributions. Our proposed method can also be extended to work with these quantization
formats.

2.2 ITERATIVE LOSS-ERROR-BASED QUANTIZATION

Iterative loss-error-based quantization (Frantar & Alistarh, 2022) is a promising framework for quan-
tizing deep neural networks to low bit widths while maintaining strong performance on downstream
tasks. In particular, Optimal Brain Quantization (OBQ) (Frantar & Alistarh, 2022), which is based
on the seminal works by LeCun et al. (1989) and Hassibi et al. (1993), aims to minimize the im-
pact of weight perturbations introduced by parameter quantization on the network’s task loss. Let
L(wN ) be the task loss of a network N evaluated at the weights wN (flattened to a vector). Then,
the OBQ objective is to minimize the loss error ϵ, which is defined as

ϵ = L(wN + δN )− L(wN )
where δN is the weight perturbation introduced by quantization. The loss error ϵ can be approxi-
mated with a Taylor series (LeCun et al., 1989) as

ϵ =
( ∂L
∂wN

)⊤
δN︸ ︷︷ ︸

negligible

+
1

2
δ⊤N

∂2L
∂w2
N
δN +O

(
∥δN ∥3

)︸ ︷︷ ︸
negligible

where the first term is omitted due to ∂L
∂wN

≈ 0 in a converged network, and the third and higher

terms can be ignored due to small norms. Computing the exact Hessian H = ∂2L
∂w2

N
in a deep network

is difficult, hence OBQ leverages an approximation of loss error proposed by Nagel et al. (2020),

E(ϵ) ≈
∑

W∈N

∥∥WX− ŴX
∥∥2
F
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where W,Ŵ,X are the weight matrix, quantized weight matrix, and the input matrix to a linear
layer in the networkN . As a result, the OBQ objective can be decomposed into layer-wise indepen-
dent convex problems,

argmin
Ŵ

∥WX− ŴX∥2F (1)

which can be further decomposed into row-wise independent problems, since Equation 1 can be
written as a sum of squares over the rows of W.

OBQ employs an iterative quantization approach, in which a single weight in a row w is quantized
in each step, and then the remaining not-yet-quantized weights in the same row are updated to
compensate for the introduced error. Given the constraint that the parameter wi, indexed by i in row
w, is being quantized, the optimal weight perturbation δ to the remaining weights can be solved
with the following Lagrangian,

L(δ, λ) =
1

2
δ⊤Hδ + λ

(
e⊤i δ −

(
quant(wi)− wi

))
(2)

where the Hessian H = 2XX⊤ (from Equation 1) is computed on a small sample of input data and
ei is the i-th standard basis vector. Solving Equation 2 yields the optimal weight perturbation δi and
the resulting loss error ϵi after quantizing wi,

δi =
quant(wi)− wi

H−1i,i

H−1:,i , ϵi =
1

2

(
quant(wi)− wi

)2
H−1i,i

(3)

where H−1i,i and H−1:,i denotes the i-th diagonal entry and the i-th column of the inverse Hessian,
respectively.

The loss error ϵi reflects the negative impact of quantizing parameter wi on the model quality, and it
is always a non-negative value. OBQ utilizes the loss error ϵi as a heuristic for greedy optimization.
Specifically, in each iteration, OBQ computes ϵ for all weights in a row and greedily selects the
i-th parameter with the minimum ϵi to quantize. Then, wi is round to the nearest value on the
quantization grid, and the remaining weights are updated via w← w − δi, and the updated inverse
Hessian for the remaining weights, with the i-th row and column removed from H, is computed as

H−1−i,−i =
(
H−1 −

H−1:,i H
−1
i,:

H−1i,i

)
−i,−i (4)

This iterative process continues until all weights are quantized.

Scaling to Billion-Parameter LLMs Using Cholesky and Dampening OBQ produces accu-
rate post-training quantized models for million-parameter networks, but fails to scale to billion-
parameter LLMs due to two primary reasons: the inefficient time complexity and the accumulation
of numerical inaccuracies during updates. To improve its computational efficiency, Frantar et al.
(2022) propose to quantize the weights in a fixed non-greedy order for all rows, and keep the weight
updates within a block of B columns at a time. To prevent model quality collapse resulted from the
accumulation of numerical inaccuracies by repeated weight updates, Frantar et al. (2022) propose to
apply a mild dampening (1% of the average diagonals) to the diagonal entries of the Hessian H and
leverage a Cholesky decomposition of the inverse Hessian H−1 in place of the update in Equation
4. The resulting algorithm is GPTQ, which is able to efficiently quantizes billion-parameter LLMs.

3 METHODOLOGY

In this section, we introduce our proposed approach Loss-error-aware network Quantization (Lean-
Quant), for accurately and efficiently quantizing LLMs.

3.1 REVISITING THE LOSS ERROR

To motivate our proposed approach, we first revisit the loss error ϵi in Equation 3, which approx-
imates the (detrimental) increase in the network’s task loss, introduced by quantizing weight wi.
This error ϵi has been used as a heuristic in multiple previous works (LeCun et al., 1989; Hassibi
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Outliers, which may
introduce high loss errors

during iterative quantization

Min-max Affine
Quantization Grid

Loss-error-aware
Non-uniform Grid

(ours)

Loss-error-aware
Affine Grid

(ours)

Learned using
Equation (6)

Learned using
Equation (7) & fused

GPU kernel

Outliers, which are preserved
by loss-error-aware grid

Figure 1: (Left) The empirical distributions of inverse Hessian diagonals, computed on 262K tokens
from the C4 dataset for the Llama-3-8B model, contain outliers that can cause high loss errors.
(Right) Our proposed loss-error-aware non-uniform and affine grids better preserves the quantized
precision of outliers, leading to more accurate quantized models.

et al., 1993; Singh & Alistarh, 2020; Frantar & Alistarh, 2022) for choosing the next best weight i
to prune or quantize. It has been shown to be a highly informative metric for measuring the impact
of quantization.

By examining Equation 3, one finds that the loss error ϵi is proportional to the square of weight
quantization error and inversely proportional to the diagonal entry of the inverse Hessian, i.e.,

ϵi ∝
(
quant(wi)− wi

)2
and ϵi ∝

1

H−1i,i

(5)

Hence, we further examine the empirical distribution of 1
diag(H−1) , to which the loss error row

vector ϵ is proportional. We obtain the empirical distributions on layers of Llama-3-8B (Dubey
et al., 2024) with 128 sequences of length 2048 tokens from the C4 dataset (Raffel et al., 2020), and
compute the inverse Hessian as H−1 = (2XX⊤)−1 where X is the layer input matrix. As shown
in Figure 1, The majority of the inverse diagonals are concentrated in low-magnitude regions, with
a few outliers having high magnitudes. Quantizing the weights corresponding to these outliers
can lead to high loss errors if these weights are not well-aligned with the quantization grid points.
Preserving the quantized precision of the weights corresponding to these inverse-diagonal outliers
is especially important because the loss error increases quadratically with their quantization error
(Equation 5). Iterative loss-error-based quantization approaches (OBQ, GPTQ, etc.) employ min-
max affine quantization grid, which is suboptimal for preserving the quantized precision of the
inverse-diagonal outliers, leading to high loss errors and model quality degradation. Our idea is to
learn quantization grids that minimize the loss error ϵ.

3.2 LOSS-ERROR-AWARE NETWORK QUANTIZATION

Existing iterative loss-error-based quantization methods rely on min-max affine grids, which fail to
account for outliers in the inverse Hessian diagonals. These outliers can cause significant degra-
dation in model quality. To address this limitation, we propose loss-error-aware quantization grids
that preserve the precision of weights corresponding to these outliers, thereby improving model
accuracy. Our approach introduces techniques for learning loss-error-aware grids across various
quantization formats, including non-uniform and affine. Additionally, to accelerate grid learning for
large models, we developed fused GPU kernels that enable efficient and scalable quantization.

3.2.1 NON-UNIFORM LOSS-ERROR-AWARE GRID

For non-uniform quantization, we perform clustering on the model parameters, weighted by their
corresponding exponentiated inverse Hessian diagonals, to derive a set of loss-error-aware grid
points. The motivation for the proposed objective is to shape the quantization grid such that the
quantization error for weights corresponding to inverse-diagonal outliers remains low, as these out-
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liers can disproportionately impact model quality. Concretely, we determine the set of grid points G
for b-bit quantization by optimizing the following objective:

argmin
G:|G|=2b

∑
i

(H−1i,i )
−p |quantnu(wi,G)− wi|2 (6)

Here, p is a hyperparameter that balances the strength of precision preservation between inverse-
diagonal outliers and non-outliers. Higher values of p prioritize the precision preservation of outliers,
while p = 0 treats all weights equally. In our experiments, we set p = 4 for all models. A
sensitivity analysis for p is provided in Section 4.3. To optimize this objective, we employ the
k-means algorithm (Lloyd, 1982), incorporating careful centroid initialization as described below.
Once the quantization grid G is established, the weights are iteratively quantized to the nearest grid
points within G.

Grid Initialization The quality of clustering results heavily depends on the initialization method
(Arthur et al., 2007), as Lloyd’s Algorithm (Lloyd, 1982) converges to a locally optimal solution.
This sensitivity is particularly pronounced in lower bit-width settings, where the initialization of
grid points can significantly impact the quality of the quantized model. Standard centroid initial-
ization methods, such as random and k-means++ (Arthur et al., 2007), often produce suboptimal
results in lower bit-width scenarios (e.g., 3-bit and 2-bit quantization), largely due to the distribution
characteristics of weights.

Weights are typically densely concentrated near the center and sparsely distributed at the extremes.
As a result, standard initialization methods tend to undersample extreme values, leading to poor
representation of these sparsely populated regions in the quantization grid. To address this issue, we
propose a lightweight and robust initialization method: uniformly spaced grid initialization. This
method initializes centroids by evenly spacing them between the minimum and maximum weight
values, ensuring that the entire range of weights, including sparsely populated extremes, is well
represented by the grid points. Concretely, the grid points Ginit are defined as:

Ginit =
{
min(w) +

max(w)−min(w)

2b − 1
t
∣∣∣ t ∈ {0, . . . , 2b − 1}

}
By evenly spacing the initial centroids between the minimum and maximum weight values, this
method provides a balanced initialization that captures both dense central regions and sparsely pop-
ulated extremes. The effectiveness of this approach is validated through ablative experiments, with
results presented in Table 11 in the Appendix.

3.2.2 LOSS-ERROR-AWARE AFFINE GRID

The goal of learning an affine grid is to determine an optimal scaling factor S and zero-point Z that
minimize the loss error. Unlike non-uniform grids, where clustering strategies can be applied, affine
grids require the grid points to be uniformly spaced over an interval, making clustering-based ap-
proaches inapplicable. While gradient descent could theoretically be used to search for S and Z over
the real numbers, this approach is computationally intensive, memory-demanding, and susceptible
to local minima.

To address this challenge, we adopt an enumerative search approach to learn the affine grid. Specif-
ically, we enumerate candidate pairs of S and Z from a constrained search space S and select the
pair that minimizes the following objective:

argmin
(S,Z)∈S

∑
i

(H−1i,i )
−p

∣∣∣quantaff(wi, S, Z)− wi

∣∣∣2,where

S =

{( (
max(w)− tmax

R
T

)
−
(
min(w) + tmin

R
T

)
2b − 1︸ ︷︷ ︸

scaling factor S

,−
⌊min(w) + tmin

R
T

S

⌉
︸ ︷︷ ︸

zero-point Z

)∣∣∣∣tmin, tmax ∈ {0, . . . , T
2 − 1}

}
(7)

Here, R = max(w)−min(w) is the range of the weights, and T is the number of partitions within
R. By iteratively enumerating candidates for S and Z and evaluating their corresponding losses, we
identify the optimal pair that minimizes the objective. The parameter T determines the granularity
of the search; in our experiments, we set T = 2048.
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Algorithm 1 LeanQuant for LLM quantization
Input: weight matrix W ∈ Rr×c, input matrix X, bit width b, block size B, dampening factor df , outlier preservation strength p

Output: Quantized matrix Ŵ

1: Ŵ ← 0r×c

2: E← 0r×B

3: H← 2XX⊤

4: H−1 ← Cholesky
([

H + df · avg
(
diag(H)

)
· I

]−1
)

▷ apply dampening, inversion, and Cholesky decomposition

5: if using non-uniform grid then
6: Gk ← argmin

G:|G|=2b

(
diag(H−1)−p

)⊤∣∣quantnu(Wk,:,G)−Wk,:

∣∣2 forall k ∈ {0, . . . , r − 1} ▷ E.6

7: else if using affine grid then
8: Sk, Zk ← argmin

(S,Z)∈S

(
diag(H−1)−p

)⊤∣∣quantaff(Wk,:,S, Z)−Wk,:

∣∣2 forall k ∈ {0, . . . , r − 1} ▷ E.7

9: end if
10: for i← 0, B, 2B, . . . do ▷ apply block-wise quantization
11: for j ← i, . . . , i + B − 1 do
12: if using non-uniform grid then
13: Ŵk,j ← quantnu(Wk,j ,Gk) forall k ∈ {0, . . . , r − 1} ▷ quantize to non-uniform grid
14: else if using affine grid then
15: Ŵk,j ← quantaff(Wk,j , Sk, Zk) forall k ∈ {0, . . . , r − 1} ▷ quantize to affine grid
16: end if
17: E:,j−1 ←

W:,j−Ŵ:,j

H
−1
j,j

18: W:,j:(i+B) ←W:,j:(i+B) − E:,j−i ·H−1
j,j:(i+B)

19: end for
20: W:,(i+B): ←W:,(i+B): − E ·H−1

i:(i+B),(i+B):

21: end for
22: return Ŵ

Efficient Fused GPU Kernel for Grid Learning The enumerative search for S and Z involves
evaluating (T2 )

2 candidate pairs, which can be computationally expensive if performed sequentially.
To accelerate this process, we design and implement a fused GPU kernel that leverages parallel
processing. Each thread block is assigned a group of weights, and individual threads within the
block evaluate all combinations of a specific tmin and all possible tmax. The threads compute the
loss for their assigned combinations, and the results are aggregated at the block level to determine
the optimal S and Z for the weight group.

This parallelized approach enables simultaneous computation of S and Z across all weight groups,
achieving a speedup of over 50× for the end-to-end quantization process. An analysis of the kernel’s
efficiency is presented in Section 4.3.

3.2.3 LEANQUANT

Our proposed loss-error-aware quantization grid can be seamlessly integrated with any iterative loss-
error-based quantization method to enhance the quality of quantized models. Figure 1 illustrates
a comparison between the min-max affine quantization grid and loss-error-aware grids (both non-
uniform and affine) applied to a layer of Llama-3-8B (Dubey et al., 2024). We introduce LeanQuant,
which combines loss-error-aware grids with GPTQ (Frantar et al., 2022), and detail the method in
Algorithm 1. Additionally, for quantizing million-parameter models more accurately, we propose
LeanQuant-Exact, which integrates loss-error-aware grids with OBQ (Frantar & Alistarh, 2022),
with details presented in Algorithm 2 in the Appendix. To specify the grid type used within Lean-
Quant, we use subscripts such as LeanQuantaff for affine and LeanQuantnu for non-uniform grids.

4 EXPERIMENTS

In this section, we perform extensive experiments to validate the effectiveness and scalability of
our proposed LeanQuant for quantizing LLMs against competitive baselines. We first introduce
the baselines, models, evaluation metrics and datasets, and hardware used for the experiments. We
then describe the experimental results and findings, and analyze the efficiency and scalability of
our proposal. Finally, we perform ablative experiments to validate each component of proposed
approach.

Baselines We compare LeanQuantaff against competitive affine quantization approaches AWQ (Lin
et al., 2024), GPTQ (Frantar et al., 2022), and OmniQuant (Shao et al., 2024), and LeanQuantnu
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Table 1: Zero-shot accuracy of quantized LLMs on benchmarks. The results of more models can be
found in Table 8 of the Appendix. †2-bit quantization is unsupported by the SqueezeLLM codebase.

Method Bits ARC LAMBADA MMLU HellaS PIQA WinoG Avg.Easy Chg Std OpenAI STEM Human. Social Other
Llama-3-8B

BF16 16 80.30 50.17 68.85 75.82 53.82 54.88 73.29 70.42 60.11 79.71 73.56 67.36
GPTQ 4.00 74.83 44.11 63.42 70.75 47.29 52.28 66.04 64.89 57.98 77.26 71.82 61.58

A
ffi

ne

OmniQuant 4.00 76.89 47.35 61.05 69.16 49.38 49.05 66.62 64.40 58.25 78.84 71.98 63.00
LeanQuantaff 4.00 76.60 46.93 66.89 74.07 51.89 52.96 70.04 68.43 58.47 77.91 72.77 65.18
GPTQ 3.00 50.84 24.32 24.16 38.89 26.23 29.16 34.38 30.00 45.07 64.64 60.69 37.75
OmniQuant 3.00 60.90 30.12 21.08 27.63 26.32 27.80 29.51 29.90 46.98 68.17 59.98 38.95
LeanQuantaff 3.00 69.44 35.75 46.81 65.42 42.59 44.78 58.17 56.97 52.72 74.86 69.93 56.13
GPTQ 2.00 25.46 22.53 0.00 0.00 21.06 23.95 21.16 23.78 25.66 52.77 51.54 24.25
OmniQuant 2.00 26.81 21.67 0.00 0.00 21.34 24.21 21.71 23.98 25.90 53.75 47.43 24.26
LeanQuantaff 2.00 35.06 18.26 11.33 14.71 21.31 24.17 21.71 24.01 31.43 59.30 51.85 28.47

N
on

-u
ni

fo
rm

SqueezeLLM 4.05 79.59 49.32 66.18 73.24 51.13 53.32 70.78 68.59 59.10 79.33 73.80 65.85
LeanQuantnu 4.05 79.50 49.15 67.36 74.95 52.17 53.16 71.40 68.75 59.19 78.89 74.11 66.24
SqueezeLLM 3.02 73.19 43.52 58.22 66.58 43.61 46.57 61.91 60.03 56.17 77.64 69.22 59.70
LeanQuantnu 3.02 77.74 47.01 63.32 72.17 48.84 49.05 65.45 62.79 56.42 78.24 71.67 62.97
SqueezeLLM† 2.01 - N/A -
LeanQuantnu 2.01 58.21 26.62 31.22 39.16 25.98 25.48 27.01 26.65 40.78 68.01 60.38 39.05

Llama-2-7B
FP16 16 76.26 43.43 68.33 73.88 34.38 39.79 47.32 47.12 57.10 78.07 68.98 57.70
GPTQ 4.00 74.16 40.78 65.38 71.94 32.67 36.92 42.61 42.61 55.99 77.48 68.32 53.47

A
ffi

ne

OmniQuant 4.00 74.12 40.70 64.10 70.62 28.80 32.18 34.71 35.79 55.37 76.93 68.67 52.91
LeanQuantaff 4.00 75.00 41.21 65.03 72.02 34.82 36.94 46.77 44.54 55.32 77.15 68.75 56.14
GPTQ 3.00 66.29 34.22 46.46 58.18 28.20 26.99 32.11 29.90 49.05 73.23 62.83 44.12
OmniQuant 3.00 70.12 37.29 53.27 66.66 29.05 31.05 30.61 30.38 52.58 74.05 66.46 49.23
LeanQuantaff 3.00 71.84 38.99 59.13 69.05 33.56 32.96 41.11 40.10 52.19 75.57 66.69 52.84
GPTQ 2.00 25.97 21.67 0.00 0.00 21.31 23.25 21.11 23.01 25.76 51.74 48.78 23.66
OmniQuant 2.00 37.42 21.76 1.28 3.24 21.47 24.14 21.74 23.91 29.59 57.18 51.93 26.70
LeanQuantaff 2.00 41.08 20.99 16.98 21.93 21.25 24.06 21.77 23.88 31.94 61.64 56.51 31.09

N
on

-u
ni

fo
rm

SqueezeLLM 4.05 75.59 41.98 67.81 72.79 34.32 38.94 45.40 44.96 56.80 77.48 68.43 56.77
LeanQuantnu 4.05 75.97 42.66 68.14 74.25 34.35 39.06 46.05 46.51 56.03 77.86 69.38 57.30
SqueezeLLM 3.02 73.06 40.27 61.96 70.11 33.75 35.22 43.35 43.16 54.15 76.50 67.88 54.49
LeanQuantnu 3.02 73.74 40.19 66.12 73.16 32.25 35.54 43.40 43.39 53.24 76.44 68.35 55.07
SqueezeLLM† 2.01 - N/A -
LeanQuantnu 2.01 51.81 23.98 28.68 38.21 22.26 23.89 22.49 24.01 35.88 66.38 58.17 35.98

Mistral-7B
BF16 16 80.77 50.09 69.38 75.63 50.46 53.48 69.35 68.01 61.26 80.58 73.88 66.62
GPTQ 4.00 79.00 46.25 66.99 73.67 46.24 50.82 66.20 64.66 59.36 79.65 72.93 62.68

A
ffi

ne

OmniQuant 4.00 78.49 46.25 63.28 71.20 45.96 51.35 65.68 64.76 60.19 79.87 71.90 63.54
LeanQuantaff 4.00 79.71 48.04 68.33 75.70 47.42 51.84 68.05 66.43 59.65 80.41 73.48 65.37
GPTQ 3.00 70.54 38.65 52.63 62.10 36.31 38.89 49.20 47.86 54.76 77.58 67.96 52.60
OmniQuant 3.00 70.54 35.07 35.49 46.54 33.71 32.88 40.23 37.85 52.35 75.19 63.93 47.62
LeanQuantaff 3.00 76.94 44.62 65.63 74.60 44.18 45.59 61.20 59.03 56.36 78.89 72.30 61.76
GPTQ 2.00 26.73 22.27 0.00 0.00 23.31 24.46 23.86 23.42 25.35 51.52 49.72 24.39
OmniQuant 2.00 27.06 21.67 0.00 0.00 21.25 24.29 21.71 23.98 25.89 51.25 51.54 24.42
LeanQuantaff 2.00 57.91 27.22 36.91 49.00 24.23 24.91 24.60 27.29 40.27 69.15 60.46 40.18

N
on

-u
ni

fo
rm

SqueezeLLM 4.05 79.73 49.06 68.28 74.93 48.81 52.73 68.87 66.98 59.80 80.25 73.56 65.73
LeanQuantnu 4.05 79.80 48.89 69.03 76.03 48.84 52.86 68.87 66.69 60.19 80.14 74.59 65.99
SqueezeLLM 3.02 77.54 45.93 64.06 71.43 43.96 47.93 62.69 59.16 58.76 79.43 71.98 62.08
LeanQuantnu 3.02 77.74 45.99 67.59 76.07 44.24 47.97 62.14 62.47 57.28 79.27 72.22 63.00
SqueezeLLM† 2.01 - N/A -
LeanQuantnu 2.01 63.47 30.55 41.01 54.61 31.34 29.97 32.14 33.96 42.29 71.38 64.01 44.97

against the existing state-of-the-art non-uniform method SqueezeLLM (Kim et al., 2023). For the
baselines, we use the quantized models provided by their official repository where possible, and
quantize the unavailable models using their official codebase and recommended hyperparameters.
More details on baseline reproduction and evaluation methods can be found in Section D of the
Appendix. For all LeanQuant models, we use a small calibration set of 128 sequences of 2048
tokens from the C4 dataset (Raffel et al., 2020) for computing the Hessian H, and set p = 4.

Models We consider the following recent, popular LLMs for quantization: Llama 1/2/3 series mod-
els (Touvron et al., 2023a;b; Dubey et al., 2024), Mistral-7B-v0.1 (Jiang et al., 2023), Mistral-Large-
Instruct-2407 (123B) (Mistral AI Team, 2024), and Llama-3.1-405B-Instruct (Dubey et al., 2024).

Evaluation Metrics and Datasets We evaluate quantized LLMs using the perplexity metric on the
datasets WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2020), and zero-shot accuracy on the
benchmarks ARC (Clark et al., 2018), LAMBADA (Paperno et al., 2016), MMLU (Hendrycks et al.,
2020), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al.,
2021). We also quantize and evaluate the instruction-following Llama-3-8B-Instruct using OpenAI
GPT-4o (2024-05-13) as a judge on the MT-Bench (Zheng et al., 2023), and the results are presented
in Section F in the Appendix.
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Table 2: Zero-shot accuracy comparison of the quantized 123B Mistral-Large-Instruct-2407 model.

Model Method Bits Arc LAMBADA MMLU Avg.Easy Chg. Std. OpenAI STEM Human. Social Other

Mistral-Large-Instruct-2407 GPTQ 4.00 84.60 63.99 74.38 80.52 76.31 77.23 89.31 85.23 78.95
LeanQuantaff 4.00 85.14 63.99 74.99 81.14 76.56 77.32 89.21 85.87 79.28
LeanQuantnu 4.05 87.67 64.59 76.63 81.51 76.50 78.00 89.35 85.68 79.99

Table 3: Zero-shot accuracy comparison of the quantized Llama-3.1-405B-Instruct model.

Method Group Size Bits Arc-E Arc-C LAMBADA-Std PIQA Avg
Llama-3.1-405B-Instruct

GPTQ 128 4.25 88.21 65.10 76.96 82.75 78.26
LeanQuantaff 128 4.25 88.34 65.70 77.86 83.03 78.73

Testbed Hardware LeanQuant models are quantized using a machine quipped with an L40s-48GB
GPU, an AMD EPYC 7R13 48-Core CPU, and 370GB of RAM. To fit Llama-3.1-405B-Instruct in
RAM, which is around 800GB in size, we use a machine equipped with 2 Quadro RTX 8000 GPUs,
an AMD EPYC 7742 64-Core CPU, and 1.48TB of RAM.

4.1 MAIN RESULTS

Accuracy and Perplexity The zero-shot accuracy of quantized models on benchmarks are presented
in Table 1, as well as in Table 8 in the Appendix, and the perplexity results are shown in Table 7
in the Appendix. At the same bit width, LeanQuant achieves significantly better (lower) perplexity
than GPTQ and AWQ, and performs on par with OmniQuant and SqueezeLLM. However, perplexity
may not be a representative metric for evaluating the accuracy of quantized models. In terms of zero-
shot accuracy on various benchmarks, LeanQuantaff mostly outperforms GPTQ and OmniQuant,
and LeanQuantnu similarly performs better than SqueezeLLM in most cases. We highlight that
LeanQuantaff improves the average zero-shot accuracy on 11 tasks over OmniQuant by 17.18% for
3-bit Llama-3-8B, and by 14.14% for 3-bit Mistral-7B. Compared to GPTQ, LeanQuantaff improves
the average zero-shot accuracy by 18.38% for 3-bit Llama-3-8B, and by 9.16% for 3-bit Mistral-7B.

Effectiveness on Very Large LLMs We quantize the 123B Mistral-Large-Instruct-2407 and the
405B Llama-3.1 model using LeanQuantaff and GPTQ, and present their zero-shot accuracy in Table
2 and 3, respectively. OmniQuant and SqueezeLLM fail to quantize to these models due to GPU
out-of-memory errors. For Llama-3.1 405B, we use a smaller set of evaluation tasks due to the high
inference costs. LeanQuantaff models mostly outperforms GPTQ in zero-shot accuracy. We employ
row-wise quantization for Mistral-Large and group-wise quantization (with size 128) for Llama-3.1.
This showcases that our method is effective for both row-wise affine quantization and group-wise
affine quantization.

4.2 MEMORY AND TIME EFFICIENCY

We report the maximum GPU memory consumption of LeanQuant and the baselines during quanti-
zation on models of different sizes in Table 4. LeanQuant is significantly more memory efficient than
OmniQuant and SqueezeLLM: it successfully scales to 123B Mistral-Large using a single 48GB
GPU, and to 405B Llama-3.1 models using two 48GB GPUs, while OmniQuant fails to quantize
Llama-3-70B and SqueezeLLM fails to quantize Llama-3-8B on a single 48GB GPU. The time cost
of LeanQuant for different sized models are reported in Table 9 in the Appendix. LeanQuant can
quantize 7B/8B models in less than an hour, the 123B model in 4.2 hours, and the 405B model in
20.7 hours.

4.3 ABLATION STUDY

Q1: Does LeanQuant effectively reduce the loss error ϵ compared to other iterative loss-error-
based methods? Yes, LeanQuant effectively reduces loss errors ϵ compared to GPTQ, as shown in
Figure 2, as well as in Figure 5 in the Appendix. The sum of loss errors are computed as Equation
3. Moreover, non-uniform LeanQuant generally achieves lower loss errors than affine LeanQuant,
due to more degrees of freedom in the grid point placements, which also explains why LeanQuantnu
achieves higher accuracy than LeanQuantaff on benchmarks in Table 1.
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Figure 2: Comparison of loss errors ϵ, summed over each layer, for GPTQ and LeanQuant (affine
and non-uniform) during iterative quantization.

Q2: Is LeanQuant sensitive to the hyperparameter p? No, we found LeanQuant to be not very
sensitive to p. A sensitivity analysis on the hyperparameter p is given in Table 10 in the Appendix.
LeanQuant works well with p values of 3 or 4.

Q3: Is uniformly spaced grid initialization beneficial for model quality? Yes, uniformly spaced
grid initialization consistently outperforms k-means++ (Arthur et al., 2007) initialization on different
models in 3-bit and 2-bit regions, as shown in Table 11 in the Appendix.

Q4: Does the fused GPU kernel for LeanQuantaff accelerate quantization? Yes, our fused kernel
for learning affine grids accelerate the end-to-end quantization process by more than 50×, as shown
in Table 5, which enables LeanQuant to be scaled to very large models.

Table 4: Peak GPU memory consumption of differ-
ent algorithms during 4-bit quantization. “OOM”
indicates out of memory on a single 48GB GPU,
except for Llama-3.1-405B where we use 2 48GB
GPUs.
Model OmniQuant SqueezeLLM GPTQ LeanQuant

Llama-3-8B 25.3 GB OOM 7.9 GB 7.9 GB
Llama-3-70B OOM OOM 17.1 GB 17.2 GB
Mistral-Large (123B) OOM OOM 32.8 GB 33.0 GB
Llama-3.1-405B OOM OOM OOM 65.4 GB

Table 5: Comparison of total time needed for
quantizing Llama-3-8B with and without our
fused kernel for loss-error-aware affine grid
learning.

Fused Kernel Group Size Bits Quant. Time

✗ - 4.00 15.1 hrs
✓ - 4.00 0.27 hrs

✗ 128 4.25 >100 hrs
✓ 128 4.25 0.40 hrs

5 RELATED WORKS

Iterative Loss-error-based Compression Optimal Brain Damage (LeCun et al., 1989) introduced
a saliency-score-based iterative pruning algorithm for neural networks, and Optimal Brain Surgeon
(Hassibi & Stork, 1992; Hassibi et al., 1993) extended it to apply a weight update to compensate for
the error introduced in each iteration. These methods inspired a number of works on model pruning
(Guo et al., 2016; Singh & Alistarh, 2020; Yu et al., 2022) and weight quantization (Li et al., 2021;
Frantar & Alistarh, 2022; Frantar et al., 2022).

Efficient LLM Inference LLM inference is computationally and memory demanding, and existing
works accelerate inference and reduce memory requirements through post-training weight quantiza-
tion (Dettmers et al., 2022; Lin et al., 2024; Frantar et al., 2022; Chee et al., 2024; Kim et al., 2023;
Shao et al., 2024; Egiazarian et al., 2024; Tseng et al., 2024), pruning (Frantar & Alistarh, 2023;
Ashkboos et al., 2024), weight-activation quantization (Xiao et al., 2023), offloading Sheng et al.
(2023), etc.

6 CONCLUSION

In this work, we propose LeanQuant, an accurate, versatile, and scalable quantization method for
LLMs. Motivated by the finding that the min-max affine grid causes large errors in the network’s
task loss in iterative loss-error-based methods, we propose to learn loss-error-aware grids to enable
more accurate quantized models, and design fused kernels for efficient and scalable quantization.
Our method generalizes to multiple quantization formats to enable greater accessibility. Exten-
sive empirical evaluations reveal that our quantized models compares favorably against competitive
baselines in accuracy, and can scale to Llama-3.1 405B, one of the largest open-source LLM to date.
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APPENDIX

A EXPLANATIONS ON QUANTIZATION GRID

0 31 2 0 31 2

Figure 3: Comparison of affine (left) and non-uniform (right) 2-bit quantization grids applied to the
weights in the first MLP-down layer of Llama-3-8B. The affine grid uses evenly spaced quantization
points between the minimum and maximum weights. In contrast, the non-uniform grid allows grid
points to be placed flexibly, as their positions are stored in a look-up table. This enables finer
quantization in dense regions and coarser quantization in sparse regions, better aligning with the
weight distribution and reducing quantization error.

In the context of quantization, a grid is a predefined set of values representing the possible quantized
outputs for full-precision parameters. During quantization, each full-precision parameter is mapped
to its nearest grid point on the quantization grid. For example, in a 2-bit quantization scheme with
grid points {−1.0,−0.33, 0.33, 1.0}, a floating-point weight of 0.25 would be assigned to 0.33, the
closest grid point.

Affine Quantization Grid An affine quantization grid distributes points uniformly across the
range of the weights being quantized. The dynamic range of the weights, defined as [Wmin,Wmax],
determines the spacing of the grid points. For example, if [Wmin,Wmax] = [−1.0, 1.0] in a 2-bit
quantization setting, the grid points would be evenly spaced at−1.0,−0.33, 0.33, 1.0. This uniform
distribution is computationally simple and widely used in practice, but it may lead to suboptimal
precision when the weight distribution is non-uniform, as many grid points may be underutilized.

Non-uniform Quantization Grid Non-uniform grids allocate grid points more flexibly, allowing
denser spacing in high-probability regions of the weight distribution and sparser spacing in low-
probability regions. This approach minimizes quantization error by adapting the grid to the data
distribution. Non-uniform grids typically store the grid points in a look-up table, enabling flexible
placement that better represents the original data. Figure 3 illustrates an example of affine grid and
non-uniform grid applied to the weights of Llama-3-8B.

Grouped Quantization The quantization grid for a set of weights is determined by the range
[Wmin,Wmax] within the group. Smaller group sizes allow for a narrower dynamic range, leading
to finer granularity in the quantization grid and higher precision. Grouping contiguous weights into
blocks is a common practice in quantization literature (Lin et al., 2024; Frantar et al., 2022) and
ensures a balance between memory efficiency and precision.

B LEANQUANT-EXACT

The pseudocode of LeanQuant-Exact for accurately quantizing million-parameter networks is pre-
sented in Algorithm 2.
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Algorithm 2 LeanQuant-Exact for Millon-parameter Networks
Input: a row w ∈ Rc in the weight matrix, sample input matrix X, bit width b, hyperparameter p
Output: Quantized row ŵ

1: ŵ← 0c

2: H−1 ← (2XX⊤)−1

3: if using non-uniform grid then
4: G ← argmin

G:|G|=2b

(
diag(H−1)−p

)⊤∣∣quantnu(w,G)−w
∣∣2 ▷ E. 6

5: else if using affine grid then
6: S,Z ← argmin

(S,Z)∈S

(
diag(H−1)−p

)⊤∣∣quantaff(w,S, Z)−w
∣∣2 ▷ E. 7

7: end if
8: for j ← 1, . . . , c do
9: if using non-uniform grid then

10: i← argmini
(quantnu(wi,G)−wi)

2

2H−1
i,i

11: ŵi ← quantnu(wi,G)
12: else if using affine grid then
13: i← argmini

(quantaff(wi,S,Z)−wi)
2

2H−1
i,i

14: ŵi ← quantaff(wi, S, Z)
15: end if
16: w← w −

H−1
:,i

H−1
i,i

(
wi − ŵi

)
17: H−1 ← H−1 −

H−1
:,i H−1

i,:

H−1
i,i

18: end for
19: return ŵ

B.1 BERT EXPERIMENTS WITH LEANQUANT-EXACT

We compare the performance of BERT models (Devlin et al., 2018), quantized with OBQ (Frantar
& Alistarh, 2022) and LeanQuantnu-Exact, on the SQuAD dataset (Rajpurkar et al., 2016). We
quantize the 12-layer BERT-base (Devlin et al., 2018) and the 3-layer BERT-3 variant from Kurtic
et al. (2022) to 3 and 4 bits. OBQ and LeanQuant-Exact are calibrated using 1024 samples from the
training set, and the F1 score is reported on the test set.

Method Bits BERT-3 BERT

FP32 32 84.66 88.53

OBQ 4.03 84.40 87.96
LeanQuantnu-Exact 4.13 84.58 88.49

OBQ 3.03 83.47 84.72
LeanQuantnu-Exact 3.06 84.20 86.21

Table 6: F1 scores on SQuAD of BERT models quantized using OBQ and LeanQuantnu-Exact.
LeanQuantnu-Exact outperforms OBQ in maintaining model quality.

C DISCUSSION ON ERROR ACCUMULATION DURING ITERATIVE
QUANTIZATION

LeanQuant prevents drastic increase to the task loss by learning the quantization grid for better
preservation of the precision of outlier inverse diagonals. However, since the not-yet-quantized
weights will shift during the iterative quantization process and the quantization grid is fixed before-
hand, one potential problem arises: the quantization grid is no longer well-aligned with the outliers
after certain iterations. Fortunately, this is not a problem in practice. The loss-error-awareness prop-
erty of LeanQuant grids prevents high-norm weight perturbations δi (Equation 3) from ocurring,
hence the weights do not shift by much during the iterations. Furthermore, no new inverse-diagonal
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outliers will arise during the iterative quantization process, since the remaining inverse diagonals
only decrease in magnitude towards zero after each column and row removal (Equation 4).

D EXPERIMENT DETAILS

Baseline Reproduction We use the quantized models provided by the official repository where
possible. We obtained quantized LLaMA-7B, LLaMA-13B, Llama-2-7B, Llama-2-13B from the
OmniQuant repository, and LLaMA-7B, LLaMA-13B, Llama-2-7B, Llama-2-13B, Mistral-7B from
the SqueezeLLM repository. We obtained the community-driven GPTQ-quantized version of
Llama-3.1-405B-Instruct from HuggingFace 1. The other quantized models are reproduced using
the official codebases and recommended hyperparameters. For OmniQuant, we set the training
epochs to 20, enable Learnable Weight Clipping (LWC), set an LWC learning rate of 1e-2. For
SqueezeLLM, there is no tunable parameters. For GPTQ, we turn on activation ordering (quantizing
columns in order of decreasing activation size) for more accurate model.

Perplexity Evaluations We follow the perplexity evaluation procedure described by (Frantar
et al., 2022): sequences from the test set of the WikiText2 and C4 datasets (Merity et al., 2016;
Raffel et al., 2020) are concatenated into 128 sequences of length 2048 tokens for perplexity testing.

Accuracy Evaluations We use lm-evaluation-harness (Gao et al., 2023) for evaluating zero-shot
accuracy on tasks. The task names we evaluate are lambada, ai2 arc, winogrande,
piqa, hellaswag, mmlu.

E PERPLEXITY EVALUATIONS

The perplexity evaluation results on WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2020) for
quantized models are presented in Table 7.

F LLM-AS-A-JUDGE

LLM as a Judge The evaluation results on MT-Bench using GPT-4o (2024-05-13) as a judge are
presented in Figure 4. We pitch 3-bit and 4-bit, with group size of 128, LeanQuantaff against Om-
niQuant, and 4-bit LeanQuantnu against SqueezeLLM. LeanQuant achieves higher win rate than the
baselines.

0 80 160

LeanQuantaff vs. OmniQuant
(3 bit, group size 128)

LeanQuantaff vs. OmniQuant
(4 bit, group size 128)

LeanQuantnu vs. SqueezeLLM
(4 bit)

Win Rate=54.43%

Win Rate=51.43%

Win Rate=53.23%

43

36

33

Win Rate=54.43%

Win Rate=51.43%

Win Rate=53.23%

81

90

98

Win Rate=54.43%

Win Rate=51.43%

Win Rate=53.23%

36

34

29

Llama­3­8B­Instruct on MT­Bench

Former Win Tie Former Lose

Figure 4: Evaluation of quantized Llama-3-8B-Instruct on MT-Bench using OpenAI GPT-4o as a
judge. The win rates reported exclude ties.

G ACCURACY RESULTS ON MORE MODELS

The zero-shot accuracy results on benchmarks for quantized LLaMA-7B, LLaMA-13B, Llama-2-7B
(Touvron et al., 2023a;b) are presented in Table 8.

1https://huggingface.co/hugging-quants/Meta-Llama-3.
1-405B-Instruct-GPTQ-INT4

17

https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4
https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Perplexity evaluations of Llama models under different quantization methods and bit
widths. The results of GPTQ, AWQ, OmniQuant are from Shao et al. (2024), and the results of
SqueezeLLM are from Kim et al. (2023). † The official SqueezeLLM code does not support 2-bit
quantization, and we report the available results from Kim et al. (2023).

WikiText-2 C4
Grid Method Bits 1-7B 1-13B 2-7B 2-13B 2-70B 1-7B 1-13B 2-7B 2-13B 2-70B Avg.

FP16 16 5.58 5.09 5.47 4.88 3.31 7.08 6.61 6.97 6.46 5.52 5.697

Affine

GPTQ 4.00 6.13 5.40 5.83 5.13 3.58 7.43 6.84 7.37 6.70 5.67 6.008
AWQ 4.00 6.08 5.34 6.15 5.12 - 7.52 6.86 7.68 6.74 - -
OmniQuant 4.00 5.86 5.21 5.74 5.02 3.47 7.34 6.76 7.35 6.65 5.65 5.905
LeanQuantaff 4.00 5.92 5.25 5.73 5.08 3.49 7.30 6.76 7.25 6.63 5.63 5.904

Non-uniform SqueezeLLM 4.04-4.05 5.79 5.18 5.62 4.99 3.41 7.21 6.71 7.12 6.57 5.58 5.818
LeanQuantnu 4.04-4.05 5.81 5.19 5.64 4.99 3.42 7.21 6.70 7.13 6.57 5.58 5.824

Affine

GPTQ 3.00 8.06 6.76 8.37 6.44 4.82 9.49 8.16 9.81 8.02 6.57 7.650
AWQ 3.00 11.88 7.45 24.00 10.45 - 13.26 9.13 23.85 13.07 - -
OmniQuant 3.00 6.49 5.68 6.58 5.58 3.92 8.19 7.32 8.65 7.44 6.06 6.591
LeanQuantaff 3.00 6.62 5.76 6.61 5.66 3.91 7.98 7.19 8.27 7.23 5.90 6.513

Non-uniform SqueezeLLM 3.02 6.32 5.60 6.18 5.36 3.77 7.75 7.08 7.72 6.97 5.83 6.258
LeanQuantnu 3.02 6.34 5.60 6.19 5.40 3.80 7.74 7.05 7.73 6.98 5.83 6.266

Affine
GPTQ 2.00 1.1E5 6.8E4 3.8E4 5.6E4 2.0E4 689.13 2.5E3 NaN 323.12 48.82 NaN
OmniQuant 2.00 15.47 13.21 37.37 17.21 7.81 24.89 18.31 90.64 26.76 12.28 26.395
LeanQuantaff 2.00 18.53 14.42 25.69 24.43 7.92 19.99 16.53 27.11 20.92 10.84 18.638

Non-uniform SqueezeLLM† 2.01 - N/A - 61.25 10.86 - N/A - N/A
LeanQuantnu 2.01 15.65 9.64 15.51 10.06 6.35 17.62 10.93 17.07 11.83 7.96 12.262

H QUANTIZATION TIME COST

The time cost of LeanQuant for different models and configurations are presented in Table 9.

I ABLATION STUDY

Sensitivity to Hyperparameter p Ablative experiments on the effects of the hyperparameter p on
the quality of LeanQuant models are presented in Table 10. In the case of p = 0, the inverse Hessian
diagonals are ignored as the weights for clustering, and the centroids are learned based on the density
of weights. It is worth noting that p = 0 results in sub-optimal model quality compared to higher
values of p, which means that the loss-error-awareness property of the quantization grid is critical
for maintaining model quality.

Grid Point Initialization Ablative experiments comparing k-means++ initialization with our pro-
posed uniformly spaced grid initialization are presented in Table 11.

J LOSS ERROR COMPARISON

A comparison of the sum of loss errors ϵ between GPTQ and LeanQuant (affine and non-uniform)
is presented in Figure 5.
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Table 8: Zero-shot accuracy of more quantized LLMs on benchmarks.

Method Bits
ARC LAMBADA MMLU

HellaS PIQA WinoG Avg.
Easy Chg Std OpenAI STEM Human. Social Other

LLaMA-7B
FP16 16 75.29 41.81 67.77 73.49 28.20 32.03 31.65 36.53 56.92 78.67 70.09 53.86
GPTQ 4.00 73.61 39.51 65.61 71.98 24.29 28.12 25.80 31.16 55.61 77.80 70.40 49.03

A
ffi

ne

OmniQuant 4.00 74.49 39.68 65.38 71.96 30.32 30.92 33.38 35.79 55.82 78.45 68.67 53.17
LeanQuantaff 4.00 74.03 41.64 63.75 70.56 31.27 33.13 32.66 37.79 56.31 78.40 69.30 53.53
GPTQ 3.00 66.67 35.84 49.89 58.37 25.94 27.46 23.46 24.98 51.76 75.35 64.72 43.78
OmniQuant 3.00 72.22 38.48 59.67 69.20 27.18 27.65 25.64 29.61 52.99 76.55 67.17 49.67
LeanQuantaff 3.00 73.70 40.78 65.28 72.66 27.85 31.37 30.61 35.31 56.23 78.45 70.09 52.94
GPTQ 2.00 26.35 22.01 0.00 0.00 23.69 25.08 24.28 24.01 25.69 53.70 50.99 24.95
OmniQuant 2.00 51.05 22.70 11.80 23.13 26.51 26.04 24.37 23.69 34.71 64.36 54.30 32.97
LeanQuantaff 2.00 55.98 27.22 38.56 47.45 24.45 25.31 22.85 25.46 37.19 68.12 60.77 39.40

N
on

-u
ni

fo
rm

SqueezeLLM 4.05 76.56 46.25 69.53 75.22 32.98 37.19 42.18 44.00 59.29 78.62 71.82 57.60
LeanQuantnu 4.05 76.39 45.05 71.55 76.48 34.76 38.77 46.12 47.18 59.29 78.78 73.24 58.87
SqueezeLLM 3.02 75.46 43.77 65.07 72.75 30.45 34.24 37.18 40.46 57.32 78.29 71.35 55.12
LeanQuantnu 3.02 75.17 43.00 70.41 77.29 33.81 38.32 43.16 45.06 57.35 78.29 71.35 57.56
SqueezeLLM 2.01 - N/A -
LeanQuantnu 2.01 50.38 24.40 31.67 41.30 21.79 24.19 21.74 24.36 37.49 65.67 58.33 36.48

LLaMA-13B
FP16 16 77.40 46.42 71.12 76.19 36.41 41.55 48.49 48.54 59.92 79.16 72.69 59.81
GPTQ 4.00 77.06 45.56 69.12 75.28 34.44 39.15 45.95 46.73 58.99 78.56 72.53 56.63

A
ffi

ne

OmniQuant 4.00 75.97 45.22 68.25 75.59 35.30 40.21 48.20 47.25 59.11 78.94 72.61 58.79
LeanQuantaff 4.00 76.39 46.42 70.48 76.27 35.52 39.45 46.18 47.22 58.82 78.94 72.30 58.91
GPTQ 3.00 70.92 39.93 57.29 64.82 29.37 31.94 33.18 35.34 54.05 76.99 68.43 49.13
OmniQuant 3.00 75.42 42.83 60.80 71.34 29.56 34.24 36.24 41.17 57.27 77.97 69.61 54.22
LeanQuantaff 3.00 75.84 43.34 67.49 74.85 33.37 36.56 41.92 44.74 56.75 77.97 70.48 56.66
GPTQ 2.00 27.10 21.93 0.02 0.00 23.37 25.50 23.56 24.49 25.76 53.16 49.72 24.75
OmniQuant 2.00 59.51 29.52 17.85 23.35 22.52 24.12 22.81 24.46 42.01 67.25 56.12 35.41
LeanQuantaff 2.00 61.45 29.27 44.63 50.82 28.73 26.01 27.20 27.26 39.08 71.27 65.82 42.87

N
on

-u
ni

fo
rm

SqueezeLLM 4.04 76.56 46.25 69.53 75.22 32.98 37.19 42.18 44.00 59.29 78.62 71.82 57.60
LeanQuantnu 4.04 76.39 45.05 71.55 76.48 34.76 38.77 46.12 47.18 59.29 78.78 73.24 58.87
SqueezeLLM 3.02 75.46 43.77 65.07 72.75 30.45 34.24 37.18 40.46 57.32 78.29 71.35 55.12
LeanQuantnu 3.02 75.17 43.00 70.41 77.29 33.81 38.32 43.16 45.06 57.35 78.29 71.35 57.56
SqueezeLLM 2.01 - N/A -
LeanQuantnu 2.01 65.66 32.42 54.49 66.93 23.44 25.50 23.98 28.42 45.66 72.80 66.14 45.95

Llama-2-13B
FP16 16 79.50 48.46 70.35 76.73 42.28 47.89 61.16 59.38 60.06 79.05 72.22 63.37
GPTQ 4.00 78.32 45.48 68.33 75.35 40.28 46.08 56.48 54.65 58.92 78.45 71.82 59.59

A
ffi

ne

OmniQuant 4.00 77.69 47.10 68.74 75.57 41.39 46.10 57.39 55.87 59.48 79.00 70.32 61.70
LeanQuantaff 4.00 79.42 47.27 69.16 75.90 42.21 47.31 59.90 57.93 59.07 78.24 71.82 62.57
GPTQ 3.00 72.85 39.85 59.77 67.20 34.86 38.85 47.97 46.48 54.61 76.28 70.32 53.62
OmniQuant 3.00 76.60 43.34 60.70 70.54 38.60 42.59 53.23 51.82 57.42 77.97 69.14 58.36
LeanQuantaff 3.00 77.31 44.54 68.15 75.88 37.93 43.80 53.07 52.62 56.36 76.99 70.72 59.76
GPTQ 2.00 25.84 20.22 0.00 0.00 22.84 25.59 23.53 23.98 25.97 52.07 47.75 24.19
OmniQuant 2.00 48.19 24.66 10.21 20.14 21.34 24.21 21.77 23.85 40.16 63.00 52.33 31.81
LeanQuantaff 2.00 50.88 24.32 32.70 39.57 21.50 24.38 21.90 24.40 38.01 67.19 56.91 36.52

N
on

-u
ni

fo
rm

SqueezeLLM 4.04 78.91 47.70 70.00 76.23 42.72 47.89 60.19 58.32 59.74 78.73 72.77 63.02
LeanQuantnu 4.04 78.91 47.56 71.12 77.43 43.51 47.44 59.54 58.83 59.58 78.62 72.06 63.15
SqueezeLLM 3.02 77.27 43.17 66.37 73.80 38.22 44.63 55.18 53.11 58.74 77.86 69.46 59.80
LeanQuantnu 3.02 77.19 44.20 71.14 78.59 40.72 45.46 56.87 55.10 56.38 77.75 70.09 61.23
SqueezeLLM 2.01 - N/A -
LeanQuantnu 2.01 62.46 30.20 47.00 61.09 25.28 27.74 27.56 28.87 42.20 69.91 62.04 44.03
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Table 9: Total time taken by LeanQuant for quantizing different-sized LLMs, using a single L40s-
48GB GPU, an AMD EPYC 7R13 48-Core CPU, and 370GB of RAM. Llama-3.1-405B is quantized
using 2 Quadro RTX 8000 GPUs, an AMD EPYC 7742 64-Core CPU, and 1.48TB of RAM.

Model Grid Group Size Bits Time

Llama-2-7B
Affine - 4.00 14 mins
Affine 128 4.25 15 mins
Non-uniform - 4.05 35 mins

Llama-3-8B
Affine - 4.00 16 mins
Affine 128 4.25 20 mins
Non-uniform - 4.05 37 mins

Llama-2-70B Affine - 4.00 178 mins
Non-uniform - 4.04 335 mins

Mistral-Large-Instruct-2407 (123B) Affine - 4.00 252 mins

Llama-3.1-405B Affine 128 4.25 1241 mins

Table 10: The perplexity of LeanQuant models on WikiText2 and C4, using different values of p.

WikiText2 C4
Grid Hyperparameter 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit

p = 0 12.13 29.92 5,991.18 16.73 22.71 5,998.96
p = 2 5.39 5.98 25.09 7.89 8.50 20.27
p = 3 5.37 5.92 22.32 7.88 8.48 19.81Non-uniform

p = 4 5.38 5.96 25.61 7.88 8.47 21.65

p = 0 14.52 80.54 230.66 16.94 69.04 243.65
p = 2 5.52 8.58 55.50 8.03 16.84 41.99
p = 3 5.51 6.36 18.33 8.03 8.80 20.20

Mistral-7B

Affine

p = 4 5.51 6.31 18.00 8.02 8.86 20.47

p = 0 5.69 6.76 NaN 7.15 8.23 62.00
p = 2 5.65 6.30 17.16 7.13 7.83 19.14
p = 3 5.64 6.25 17.84 7.13 7.80 19.55

Non-uniform

p = 4 5.64 6.28 15.82 7.14 7.83 18.89

p = 0 5.84 8.19 93.01 7.30 9.54 85.62
p = 2 5.77 7.33 27.82 7.27 8.83 28.86
p = 3 5.75 6.80 25.97 7.26 8.32 27.57

Llama-2-7B

Affine

p = 4 5.75 6.69 26.82 7.25 8.29 28.14

Table 11: Ablative experiments on grid point initialization.

Llama-2-7B Llama-3-8B Mistral-7B
Grid Init. 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit

WikiText2 K-means++ 5.64 6.25 17.84 6.59 8.31 46.31 5.37 5.92 22.32
Uniformly Spaced (ours) 5.66 6.20 17.53 6.59 7.88 41.78 5.40 5.88 19.06

C4 K-means++ 7.13 7.80 19.55 10.17 12.53 39.86 7.88 8.48 19.81
Uniformly Spaced (ours) 7.14 7.72 18.75 10.20 12.16 36.00 7.91 8.42 17.85
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Figure 5: Comparison of loss errors ϵ of each layer for GPTQ and LeanQuant (affine and non-
uniform) during iterative quantization.
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