
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEANQUANT: ACCURATE AND SCALABLE LARGE
LANGUAGE MODEL QUANTIZATION WITH LOSS-
ERROR-AWARE GRID

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown immense potential across various do-
mains, but their high memory requirements and inference costs remain critical
challenges for deployment. Post-training quantization (PTQ) has emerged as a
promising technique to reduce memory requirements and decoding latency. How-
ever, recent accurate quantization methods often depend on specialized computa-
tions or custom data formats to achieve better model quality, which limits their
compatibility with popular frameworks, as they require dedicated inference ker-
nels tailored to specific hardware and software platforms, hindering wider adop-
tion. Furthermore, many competitive methods have high resource requirements
and computational overhead, making it challenging to scale them to hundreds of
billions of parameters. In response to these challenges, we propose LeanQuant
(Loss-error-aware Network Quantization), a novel quantization method that is ac-
curate, versatile, and scalable. In the existing popular iterative loss-error-based
quantization framework, we identify a critical limitation in prior methods: the
min-max affine quantization grid fails to preserve model quality due to outliers in
inverse Hessian diagonals. To overcome this fundamental issue, we propose learn-
ing loss-error-aware grids, instead of using non-adaptive min-max affine grids.
Our approach not only produces quantized models that are more accurate but
also generalizes to a wider range of quantization types, including affine and non-
uniform quantization, enhancing compatibility with more frameworks. Extensive
empirical evaluations on recent LLMs demonstrate that LeanQuant is highly accu-
rate, comparing favorably against recent competitive baselines in model quality,
and scalable, achieving very accurate quantization of Llama-3.1 405B, one of the
largest open-source LLMs to date, using two Quadro RTX 8000-48GB GPUs in
21 hours.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive reasoning (Wei et al., 2022) and
problem solving abilities (Kojima et al., 2022), and have shown the potential to bring transforma-
tive changes to various fields such as law (Kaddour et al., 2023), education (Kasneci et al., 2023),
and medicine (Thirunavukarasu et al., 2023). However, deploying LLMs in a cost-effective manner
presents significant challenges due to their substantial memory and computational demands (Chen
et al., 2023), which hinders the accessibility and democratization of artificial intelligence (AI) (Kad-
dour et al., 2023).

Post-training quantization (PTQ) (Krishnamoorthi, 2018) is a technique for reducing the memory
requirement for model inference by reducing the precision of floating-point weights of a pre-trained
model and storing them in a compact low-bit-width format. PTQ offers the additional benefit of
reducing the decoding latency of LLMs by reducing memory reads, since LLM inference is often
bottlenecked by memory bandwidth (Kim et al., 2023). Although quantization causes a certain
amount of precision loss in the parameters, the model quality can be reasonably preserved even in
lower bit widths (Frantar et al., 2022; Chee et al., 2024). For many tasks, a quantized model is
preferred over a full model due to its better size-accuracy trade-off (Dettmers & Zettlemoyer, 2023).
As open-source foundational models continue to scale up in size (Dubey et al., 2024), accurate and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

efficient quantization becomes essential for making AI accessible to a wider audience. For instance,
serving Llama-3.1 405B (Dubey et al., 2024) using its original 16-bit weights requires a cluster of
2 nodes, each with 8×80GB GPUs, while the 4-bit quantized version can be deployed on a single
nodes of 8×48GB GPUs, eliminating the overhead of inter-node communication.

Challenges of Deploying Quantized Models One of the biggest challenges of successful deploy-
ment of quantized models is implementing optimized kernels for quantized GEMM (general matrix
multiply) that are tailored to various hardware platforms and software frameworks. In order to accel-
erate inference of quantized models, fused kernels, which fuse dequantization and matrix multiplica-
tion in the same subroutine, have to be implemented and tuned for the specific hardware accelerator.
These kernels require specialized designs and tunings for different hardware accelerators to be fully
optimized (Park et al., 2022). Recent quantization algorithms have chosen to employ specialized
computations or custom data formats to reduce the impact of quantization on model quality, but they
require more sophisticated kernel designs for efficient inference. For example, AQLM (Egiazar-
ian et al., 2024) and QUIP# (Tseng et al., 2024) perform dequantization through look-ups from
multi-dimensional or multi-bit codebooks, and Dotzel et al. (2024) proposed new data types such
as Student Float to reduce quantization errors. While these approaches demonstrate promising re-
sults, their reliance on specialized operations and data formats can hinder their widespread adoption
due to the need for optimized inference kernels for each hardware platform and software framework.
For example, llama.cpp (Gerganov, 2023), a popular LLM inference engine that supports mobile de-
vices, only supports affine and non-uniform quantization formats. Consequently, instead of focusing
on developing better quantization methods with specialized operations, it may be more worthwhile
to investigate improving the accuracy of existing widely adopted quantization formats, such as affine
integer quantization and non-uniform quantization, which are supported by popular deep learning
libraries (Paszke et al., 2019) and deployment frameworks (Kwon et al., 2023).

Scalability Challenges of Accurate Quantization To improve the quality of quantized models, ex-
isting approaches often incur higher computational overhead and require more hardware resources.
As foundational models scale up in size (Hoffmann et al., 2022), these quantization approaches may
struggle to scale to very large models such as Llama-3.1 405B (405 billion parameters) (Dubey
et al., 2024). For instance, LLM-QAT (Liu et al., 2023) uses 100K samples of training data and
hundreds of GPU-hours to recover the performance of a quantized LLaMA-13B model (Touvron
et al., 2023a). For AQLM (Egiazarian et al., 2024), the time needed for quantizing a 7B to 70B
LLM ranges from 1 to 14 days of an A100-80GB GPU. For SqueezeLLM (Kim et al., 2023), due to
its use of the gradients of model parameters, quantizing a 70B LLM requires at least 240GB of total
GPU memory, or 8×32GB GPUs. As these accurate quantization approaches demand significant
hardware resources and long optimization time, it is crucial to develop accurate methods that are
efficient in terms of resource usage and time cost, to ensure the accessibility of increasingly large
foundational models.

Our Proposal In this work, we propose LeanQuant, an accurate, versatile, and scalable quantization
approach. We build upon the iterative loss-error-based quantization framework (Frantar & Alistarh,
2022; Frantar et al., 2022) and identify one of the biggest limitations of such methods: the min-max
affine quantization grid introduces high loss errors due to the existence of outliers in the inverse
Hessian diagonals. We introduce techniques for learning loss-error-aware quantization grids, which
mitigate this issue and greatly improve the accuracy and quality of quantized models. We empiri-
cally demonstrate that LeanQuant compares favorably against competitive baselines in the 4/3/2-bit
regions. Our approach is versatile, able to generalize to multiple commonly used quantization for-
mats, such as affine and non-uniform quantization, allowing our quantized models to be directly
compatible with existing highly optimized inference kernels (Frantar et al., 2024; Park et al., 2022)
for maximum accessibility. Furthermore, our method is scalable and efficient. By designing and im-
plementing a fused GPU kernel for LeanQuant grid learning, we achieve the accurate quantization
of LLMs up to 123B in size using a single L40s-48GB GPU in 4 hours, and Llama-3.1 405B using
2 Quadro RTX 8000-48GB GPUs in 21 hours.

2 BACKGROUND

In this section, we introduce the relevant background for our proposal including quantization grids
and iterative loss-error-based quantization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 QUANTIZATION GRID

Quantization achieves model compression by representing the full-precision floating-point param-
eters with a limited set of grid points on the quantization grid. The number of points on the grid
depends on the bit width: a b-bit code represents 2b distinct values, so 2-bit quantization yields 4 grid
points. The placement of these points significantly affects the precision of the original parameters,
and imprecise placement can degrade model quality. To address this, different types of quantization
grids, such as affine, non-uniform, and normal, have been introduced, which we survey as follows.

Affine Grid In an affine quantization grid (Krishnamoorthi, 2018), the grid points are evenly spaced
over the dynamic range of a group of weights. The weights of the network are divided into groups
of fixed size, e.g. every 128 contiguous parameters as a group. For min-max asymmetric affine
quantization, the scaling factor S and the zero-point Z are recorded for each group of weights
(the zero-point is omitted in the symmetric affine case). Then, the i-th weight wi in a group w is
quantized to b-bit as follows,

wint
i = clip(⌊wi

S
⌉+ Z, 0, 2b − 1),where S =

max(w)−min(w)

2b − 1
and Z = −⌊min(w)

S
⌉

quantaff(wi, S, Z) = (wint
i − Z)S

where ⌊·⌉ is the rounding operator, clip(·) constrains the weight value within the range of b-bit
integer, wint

i is the compact integer representation of wi, and quantaff(wi, S, Z) is the value of wi

after being quantized to the nearest grid point.

Non-uniform Grid The grid points on a non-uniform grid are placed in a non-equidistant manner
(Li et al., 2019). The motivation behind non-uniform quantization is to allow for finer precision in
regions where model parameters are more concentrated or sensitive. Each row in a weight matrix
has a distinct set of grid points G, where |G| = 2b for b-bit non-uniform quantization. The weight
wi is quantized to the nearest grid point in G as follows,

quantnu(wi,G) = argmin
g∈G

|g − wi|

Other Grid Types Previous works have observed that LLM parameters tend to be distributed simi-
larly as Normal or Student T’s Distribution, hence they propose new grid types, such as NormalFloat
(Dettmers et al., 2024) and Student Float (Dotzel et al., 2024), which place grid lines at the quantiles
of these distributions. Our proposed method can also be extended to work with these quantization
formats.

2.2 ITERATIVE LOSS-ERROR-BASED QUANTIZATION

Iterative loss-error-based quantization (Frantar & Alistarh, 2022) is a promising framework for quan-
tizing deep neural networks to low bit widths while maintaining strong performance on downstream
tasks. In particular, Optimal Brain Quantization (OBQ) (Frantar & Alistarh, 2022), which is based
on the seminal works by LeCun et al. (1989) and Hassibi et al. (1993), aims to minimize the im-
pact of weight perturbations introduced by parameter quantization on the network’s task loss. Let
L(wN) be the task loss of a network N evaluated at the weights wN (flattened to a vector). Then,
the OBQ objective is to minimize the loss error ϵ, which is defined as

ϵ = L(wN + δN)− L(wN)
where δN is the weight perturbation introduced by quantization. The loss error ϵ can be approxi-
mated with a Taylor series (LeCun et al., 1989) as

ϵ =
(∂L
∂wN

)⊤
δN︸ ︷︷ ︸

negligible

+
1

2
δ⊤N

∂2L
∂w2
N
δN +O

(
∥δN ∥3

)︸ ︷︷ ︸
negligible

where the first term is omitted due to ∂L
∂wN

≈ 0 in a converged network, and the third and higher

terms can be ignored due to small norms. Computing the exact Hessian H = ∂2L
∂w2

N
in a deep network

is difficult, hence OBQ leverages an approximation of loss error proposed by Nagel et al. (2020),

E(ϵ) ≈
∑

W∈N

∥∥WX− ŴX
∥∥2
F

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where W,Ŵ,X are the weight matrix, quantized weight matrix, and the input matrix to a linear
layer in the networkN . As a result, the OBQ objective can be decomposed into layer-wise indepen-
dent convex problems,

argmin
Ŵ

∥WX− ŴX∥2F (1)

which can be further decomposed into row-wise independent problems, since Equation 1 can be
written as a sum of squares over the rows of W.

OBQ employs an iterative quantization approach, in which a single weight in a row w is quantized
in each step, and then the remaining not-yet-quantized weights in the same row are updated to
compensate for the introduced error. Given the constraint that the parameter wi, indexed by i in row
w, is being quantized, the optimal weight perturbation δ to the remaining weights can be solved
with the following Lagrangian,

L(δ, λ) =
1

2
δ⊤Hδ + λ

(
e⊤i δ −

(
quant(wi)− wi

))
(2)

where the Hessian H = 2XX⊤ (from Equation 1) is computed on a small sample of input data and
ei is the i-th standard basis vector. Solving Equation 2 yields the optimal weight perturbation δi and
the resulting loss error ϵi after quantizing wi,

δi =
quant(wi)− wi

H−1i,i

H−1:,i , ϵi =
1

2

(
quant(wi)− wi

)2
H−1i,i

(3)

where H−1i,i and H−1:,i denotes the i-th diagonal entry and the i-th column of the inverse Hessian,
respectively.

The loss error ϵi reflects the negative impact of quantizing parameter wi on the model quality, and it
is always a non-negative value. OBQ utilizes the loss error ϵi as a heuristic for greedy optimization.
Specifically, in each iteration, OBQ computes ϵ for all weights in a row and greedily selects the
i-th parameter with the minimum ϵi to quantize. Then, wi is round to the nearest value on the
quantization grid, and the remaining weights are updated via w← w − δi, and the updated inverse
Hessian for the remaining weights, with the i-th row and column removed from H, is computed as

H−1−i,−i =
(
H−1 −

H−1:,i H
−1
i,:

H−1i,i

)
−i,−i (4)

This iterative process continues until all weights are quantized.

Scaling to Billion-Parameter LLMs Using Cholesky and Dampening OBQ produces accu-
rate post-training quantized models for million-parameter networks, but fails to scale to billion-
parameter LLMs due to two primary reasons: the inefficient time complexity and the accumulation
of numerical inaccuracies during updates. To improve its computational efficiency, Frantar et al.
(2022) propose to quantize the weights in a fixed non-greedy order for all rows, and keep the weight
updates within a block of B columns at a time. To prevent model quality collapse resulted from the
accumulation of numerical inaccuracies by repeated weight updates, Frantar et al. (2022) propose to
apply a mild dampening (1% of the average diagonals) to the diagonal entries of the Hessian H and
leverage a Cholesky decomposition of the inverse Hessian H−1 in place of the update in Equation
4. The resulting algorithm is GPTQ, which is able to efficiently quantizes billion-parameter LLMs.

3 METHODOLOGY

In this section, we introduce our proposed approach Loss-error-aware network Quantization (Lean-
Quant), for accurately and efficiently quantizing LLMs.

3.1 REVISITING THE LOSS ERROR

To motivate our proposed approach, we first revisit the loss error ϵi in Equation 3, which approx-
imates the (detrimental) increase in the network’s task loss, introduced by quantizing weight wi.
This error ϵi has been used as a heuristic in multiple previous works (LeCun et al., 1989; Hassibi

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Outliers, which may
introduce high loss errors

during iterative quantization

Min-max Affine
Quantization Grid

Loss-error-aware
Non-uniform Grid

(ours)

Loss-error-aware
Affine Grid

(ours)

Learned using
Equation (6)

Learned using
Equation (7) & fused

GPU kernel

Outliers, which are preserved
by loss-error-aware grid

Figure 1: (Left) The empirical distributions of inverse Hessian diagonals, computed on 262K tokens
from the C4 dataset for the Llama-3-8B model, contain outliers that can cause high loss errors.
(Right) Our proposed loss-error-aware non-uniform and affine grids better preserves the quantized
precision of outliers, leading to more accurate quantized models.

et al., 1993; Singh & Alistarh, 2020; Frantar & Alistarh, 2022) for choosing the next best weight i
to prune or quantize. It has been shown to be a highly informative metric for measuring the impact
of quantization.

By examining Equation 3, one finds that the loss error ϵi is proportional to the square of weight
quantization error and inversely proportional to the diagonal entry of the inverse Hessian, i.e.,

ϵi ∝
(
quant(wi)− wi

)2
and ϵi ∝

1

H−1i,i

(5)

Hence, we further examine the empirical distribution of 1
diag(H−1) , to which the loss error row

vector ϵ is proportional. We obtain the empirical distributions on layers of Llama-3-8B (Dubey
et al., 2024) with 128 sequences of length 2048 tokens from the C4 dataset (Raffel et al., 2020), and
compute the inverse Hessian as H−1 = (2XX⊤)−1 where X is the layer input matrix. As shown
in Figure 1, The majority of the inverse diagonals are concentrated in low-magnitude regions, with
a few outliers having high magnitudes. Quantizing the weights corresponding to these outliers
can lead to high loss errors if these weights are not well-aligned with the quantization grid points.
Preserving the quantized precision of the weights corresponding to these inverse-diagonal outliers
is especially important because the loss error increases quadratically with their quantization error
(Equation 5). Iterative loss-error-based quantization approaches (OBQ, GPTQ, etc.) employ min-
max affine quantization grid, which is suboptimal for preserving the quantized precision of the
inverse-diagonal outliers, leading to high loss errors and model quality degradation. Our idea is to
learn quantization grids that minimize the loss error ϵ.

3.2 LOSS-ERROR-AWARE NETWORK QUANTIZATION

Existing iterative loss-error-based quantization methods rely on min-max affine grids, which fail to
account for outliers in the inverse Hessian diagonals. These outliers can cause significant degra-
dation in model quality. To address this limitation, we propose loss-error-aware quantization grids
that preserve the precision of weights corresponding to these outliers, thereby improving model
accuracy. Our approach introduces techniques for learning loss-error-aware grids across various
quantization formats, including non-uniform and affine. Additionally, to accelerate grid learning for
large models, we developed fused GPU kernels that enable efficient and scalable quantization.

3.2.1 NON-UNIFORM LOSS-ERROR-AWARE GRID

For non-uniform quantization, we perform clustering on the model parameters, weighted by their
corresponding exponentiated inverse Hessian diagonals, to derive a set of loss-error-aware grid
points. The motivation for the proposed objective is to shape the quantization grid such that the
quantization error for weights corresponding to inverse-diagonal outliers remains low, as these out-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

liers can disproportionately impact model quality. Concretely, we determine the set of grid points G
for b-bit quantization by optimizing the following objective:

argmin
G:|G|=2b

∑
i

(H−1i,i)
−p |quantnu(wi,G)− wi|2 (6)

Here, p is a hyperparameter that balances the strength of precision preservation between inverse-
diagonal outliers and non-outliers. Higher values of p prioritize the precision preservation of outliers,
while p = 0 treats all weights equally. In our experiments, we set p = 4 for all models. A
sensitivity analysis for p is provided in Section 4.3. To optimize this objective, we employ the
k-means algorithm (Lloyd, 1982), incorporating careful centroid initialization as described below.
Once the quantization grid G is established, the weights are iteratively quantized to the nearest grid
points within G.

Grid Initialization The quality of clustering results heavily depends on the initialization method
(Arthur et al., 2007), as Lloyd’s Algorithm (Lloyd, 1982) converges to a locally optimal solution.
This sensitivity is particularly pronounced in lower bit-width settings, where the initialization of
grid points can significantly impact the quality of the quantized model. Standard centroid initial-
ization methods, such as random and k-means++ (Arthur et al., 2007), often produce suboptimal
results in lower bit-width scenarios (e.g., 3-bit and 2-bit quantization), largely due to the distribution
characteristics of weights.

Weights are typically densely concentrated near the center and sparsely distributed at the extremes.
As a result, standard initialization methods tend to undersample extreme values, leading to poor
representation of these sparsely populated regions in the quantization grid. To address this issue, we
propose a lightweight and robust initialization method: uniformly spaced grid initialization. This
method initializes centroids by evenly spacing them between the minimum and maximum weight
values, ensuring that the entire range of weights, including sparsely populated extremes, is well
represented by the grid points. Concretely, the grid points Ginit are defined as:

Ginit =
{
min(w) +

max(w)−min(w)

2b − 1
t
∣∣∣ t ∈ {0, . . . , 2b − 1}

}
By evenly spacing the initial centroids between the minimum and maximum weight values, this
method provides a balanced initialization that captures both dense central regions and sparsely pop-
ulated extremes. The effectiveness of this approach is validated through ablative experiments, with
results presented in Table 11 in the Appendix.

3.2.2 LOSS-ERROR-AWARE AFFINE GRID

The goal of learning an affine grid is to determine an optimal scaling factor S and zero-point Z that
minimize the loss error. Unlike non-uniform grids, where clustering strategies can be applied, affine
grids require the grid points to be uniformly spaced over an interval, making clustering-based ap-
proaches inapplicable. While gradient descent could theoretically be used to search for S and Z over
the real numbers, this approach is computationally intensive, memory-demanding, and susceptible
to local minima.

To address this challenge, we adopt an enumerative search approach to learn the affine grid. Specif-
ically, we enumerate candidate pairs of S and Z from a constrained search space S and select the
pair that minimizes the following objective:

argmin
(S,Z)∈S

∑
i

(H−1i,i)
−p

∣∣∣quantaff(wi, S, Z)− wi

∣∣∣2,where

S =

{((
max(w)− tmax

R
T

)
−
(
min(w) + tmin

R
T

)
2b − 1︸ ︷︷ ︸

scaling factor S

,−
⌊min(w) + tmin

R
T

S

⌉
︸ ︷︷ ︸

zero-point Z

)∣∣∣∣tmin, tmax ∈ {0, . . . , T
2 − 1}

}
(7)

Here, R = max(w)−min(w) is the range of the weights, and T is the number of partitions within
R. By iteratively enumerating candidates for S and Z and evaluating their corresponding losses, we
identify the optimal pair that minimizes the objective. The parameter T determines the granularity
of the search; in our experiments, we set T = 2048.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 LeanQuant for LLM quantization
Input: weight matrix W ∈ Rr×c, input matrix X, bit width b, block size B, dampening factor df , outlier preservation strength p

Output: Quantized matrix Ŵ

1: Ŵ ← 0r×c

2: E← 0r×B

3: H← 2XX⊤

4: H−1 ← Cholesky
([

H + df · avg
(
diag(H)

)
· I

]−1
)

▷ apply dampening, inversion, and Cholesky decomposition

5: if using non-uniform grid then
6: Gk ← argmin

G:|G|=2b

(
diag(H−1)−p

)⊤∣∣quantnu(Wk,:,G)−Wk,:

∣∣2 forall k ∈ {0, . . . , r − 1} ▷ E.6

7: else if using affine grid then
8: Sk, Zk ← argmin

(S,Z)∈S

(
diag(H−1)−p

)⊤∣∣quantaff(Wk,:,S, Z)−Wk,:

∣∣2 forall k ∈ {0, . . . , r − 1} ▷ E.7

9: end if
10: for i← 0, B, 2B, . . . do ▷ apply block-wise quantization
11: for j ← i, . . . , i + B − 1 do
12: if using non-uniform grid then
13: Ŵk,j ← quantnu(Wk,j ,Gk) forall k ∈ {0, . . . , r − 1} ▷ quantize to non-uniform grid
14: else if using affine grid then
15: Ŵk,j ← quantaff(Wk,j , Sk, Zk) forall k ∈ {0, . . . , r − 1} ▷ quantize to affine grid
16: end if
17: E:,j−1 ←

W:,j−Ŵ:,j

H
−1
j,j

18: W:,j:(i+B) ←W:,j:(i+B) − E:,j−i ·H−1
j,j:(i+B)

19: end for
20: W:,(i+B): ←W:,(i+B): − E ·H−1

i:(i+B),(i+B):

21: end for
22: return Ŵ

Efficient Fused GPU Kernel for Grid Learning The enumerative search for S and Z involves
evaluating (T2)

2 candidate pairs, which can be computationally expensive if performed sequentially.
To accelerate this process, we design and implement a fused GPU kernel that leverages parallel
processing. Each thread block is assigned a group of weights, and individual threads within the
block evaluate all combinations of a specific tmin and all possible tmax. The threads compute the
loss for their assigned combinations, and the results are aggregated at the block level to determine
the optimal S and Z for the weight group.

This parallelized approach enables simultaneous computation of S and Z across all weight groups,
achieving a speedup of over 50× for the end-to-end quantization process. An analysis of the kernel’s
efficiency is presented in Section 4.3.

3.2.3 LEANQUANT

Our proposed loss-error-aware quantization grid can be seamlessly integrated with any iterative loss-
error-based quantization method to enhance the quality of quantized models. Figure 1 illustrates
a comparison between the min-max affine quantization grid and loss-error-aware grids (both non-
uniform and affine) applied to a layer of Llama-3-8B (Dubey et al., 2024). We introduce LeanQuant,
which combines loss-error-aware grids with GPTQ (Frantar et al., 2022), and detail the method in
Algorithm 1. Additionally, for quantizing million-parameter models more accurately, we propose
LeanQuant-Exact, which integrates loss-error-aware grids with OBQ (Frantar & Alistarh, 2022),
with details presented in Algorithm 2 in the Appendix. To specify the grid type used within Lean-
Quant, we use subscripts such as LeanQuantaff for affine and LeanQuantnu for non-uniform grids.

4 EXPERIMENTS

In this section, we perform extensive experiments to validate the effectiveness and scalability of
our proposed LeanQuant for quantizing LLMs against competitive baselines. We first introduce
the baselines, models, evaluation metrics and datasets, and hardware used for the experiments. We
then describe the experimental results and findings, and analyze the efficiency and scalability of
our proposal. Finally, we perform ablative experiments to validate each component of proposed
approach.

Baselines We compare LeanQuantaff against competitive affine quantization approaches AWQ (Lin
et al., 2024), GPTQ (Frantar et al., 2022), and OmniQuant (Shao et al., 2024), and LeanQuantnu

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Zero-shot accuracy of quantized LLMs on benchmarks. The results of more models can be
found in Table 8 of the Appendix. †2-bit quantization is unsupported by the SqueezeLLM codebase.

Method Bits ARC LAMBADA MMLU HellaS PIQA WinoG Avg.Easy Chg Std OpenAI STEM Human. Social Other
Llama-3-8B

BF16 16 80.30 50.17 68.85 75.82 53.82 54.88 73.29 70.42 60.11 79.71 73.56 67.36
GPTQ 4.00 74.83 44.11 63.42 70.75 47.29 52.28 66.04 64.89 57.98 77.26 71.82 61.58

A
ffi

ne

OmniQuant 4.00 76.89 47.35 61.05 69.16 49.38 49.05 66.62 64.40 58.25 78.84 71.98 63.00
LeanQuantaff 4.00 76.60 46.93 66.89 74.07 51.89 52.96 70.04 68.43 58.47 77.91 72.77 65.18
GPTQ 3.00 50.84 24.32 24.16 38.89 26.23 29.16 34.38 30.00 45.07 64.64 60.69 37.75
OmniQuant 3.00 60.90 30.12 21.08 27.63 26.32 27.80 29.51 29.90 46.98 68.17 59.98 38.95
LeanQuantaff 3.00 69.44 35.75 46.81 65.42 42.59 44.78 58.17 56.97 52.72 74.86 69.93 56.13
GPTQ 2.00 25.46 22.53 0.00 0.00 21.06 23.95 21.16 23.78 25.66 52.77 51.54 24.25
OmniQuant 2.00 26.81 21.67 0.00 0.00 21.34 24.21 21.71 23.98 25.90 53.75 47.43 24.26
LeanQuantaff 2.00 35.06 18.26 11.33 14.71 21.31 24.17 21.71 24.01 31.43 59.30 51.85 28.47

N
on

-u
ni

fo
rm

SqueezeLLM 4.05 79.59 49.32 66.18 73.24 51.13 53.32 70.78 68.59 59.10 79.33 73.80 65.85
LeanQuantnu 4.05 79.50 49.15 67.36 74.95 52.17 53.16 71.40 68.75 59.19 78.89 74.11 66.24
SqueezeLLM 3.02 73.19 43.52 58.22 66.58 43.61 46.57 61.91 60.03 56.17 77.64 69.22 59.70
LeanQuantnu 3.02 77.74 47.01 63.32 72.17 48.84 49.05 65.45 62.79 56.42 78.24 71.67 62.97
SqueezeLLM† 2.01 - N/A -
LeanQuantnu 2.01 58.21 26.62 31.22 39.16 25.98 25.48 27.01 26.65 40.78 68.01 60.38 39.05

Llama-2-7B
FP16 16 76.26 43.43 68.33 73.88 34.38 39.79 47.32 47.12 57.10 78.07 68.98 57.70
GPTQ 4.00 74.16 40.78 65.38 71.94 32.67 36.92 42.61 42.61 55.99 77.48 68.32 53.47

A
ffi

ne

OmniQuant 4.00 74.12 40.70 64.10 70.62 28.80 32.18 34.71 35.79 55.37 76.93 68.67 52.91
LeanQuantaff 4.00 75.00 41.21 65.03 72.02 34.82 36.94 46.77 44.54 55.32 77.15 68.75 56.14
GPTQ 3.00 66.29 34.22 46.46 58.18 28.20 26.99 32.11 29.90 49.05 73.23 62.83 44.12
OmniQuant 3.00 70.12 37.29 53.27 66.66 29.05 31.05 30.61 30.38 52.58 74.05 66.46 49.23
LeanQuantaff 3.00 71.84 38.99 59.13 69.05 33.56 32.96 41.11 40.10 52.19 75.57 66.69 52.84
GPTQ 2.00 25.97 21.67 0.00 0.00 21.31 23.25 21.11 23.01 25.76 51.74 48.78 23.66
OmniQuant 2.00 37.42 21.76 1.28 3.24 21.47 24.14 21.74 23.91 29.59 57.18 51.93 26.70
LeanQuantaff 2.00 41.08 20.99 16.98 21.93 21.25 24.06 21.77 23.88 31.94 61.64 56.51 31.09

N
on

-u
ni

fo
rm

SqueezeLLM 4.05 75.59 41.98 67.81 72.79 34.32 38.94 45.40 44.96 56.80 77.48 68.43 56.77
LeanQuantnu 4.05 75.97 42.66 68.14 74.25 34.35 39.06 46.05 46.51 56.03 77.86 69.38 57.30
SqueezeLLM 3.02 73.06 40.27 61.96 70.11 33.75 35.22 43.35 43.16 54.15 76.50 67.88 54.49
LeanQuantnu 3.02 73.74 40.19 66.12 73.16 32.25 35.54 43.40 43.39 53.24 76.44 68.35 55.07
SqueezeLLM† 2.01 - N/A -
LeanQuantnu 2.01 51.81 23.98 28.68 38.21 22.26 23.89 22.49 24.01 35.88 66.38 58.17 35.98

Mistral-7B
BF16 16 80.77 50.09 69.38 75.63 50.46 53.48 69.35 68.01 61.26 80.58 73.88 66.62
GPTQ 4.00 79.00 46.25 66.99 73.67 46.24 50.82 66.20 64.66 59.36 79.65 72.93 62.68

A
ffi

ne

OmniQuant 4.00 78.49 46.25 63.28 71.20 45.96 51.35 65.68 64.76 60.19 79.87 71.90 63.54
LeanQuantaff 4.00 79.71 48.04 68.33 75.70 47.42 51.84 68.05 66.43 59.65 80.41 73.48 65.37
GPTQ 3.00 70.54 38.65 52.63 62.10 36.31 38.89 49.20 47.86 54.76 77.58 67.96 52.60
OmniQuant 3.00 70.54 35.07 35.49 46.54 33.71 32.88 40.23 37.85 52.35 75.19 63.93 47.62
LeanQuantaff 3.00 76.94 44.62 65.63 74.60 44.18 45.59 61.20 59.03 56.36 78.89 72.30 61.76
GPTQ 2.00 26.73 22.27 0.00 0.00 23.31 24.46 23.86 23.42 25.35 51.52 49.72 24.39
OmniQuant 2.00 27.06 21.67 0.00 0.00 21.25 24.29 21.71 23.98 25.89 51.25 51.54 24.42
LeanQuantaff 2.00 57.91 27.22 36.91 49.00 24.23 24.91 24.60 27.29 40.27 69.15 60.46 40.18

N
on

-u
ni

fo
rm

SqueezeLLM 4.05 79.73 49.06 68.28 74.93 48.81 52.73 68.87 66.98 59.80 80.25 73.56 65.73
LeanQuantnu 4.05 79.80 48.89 69.03 76.03 48.84 52.86 68.87 66.69 60.19 80.14 74.59 65.99
SqueezeLLM 3.02 77.54 45.93 64.06 71.43 43.96 47.93 62.69 59.16 58.76 79.43 71.98 62.08
LeanQuantnu 3.02 77.74 45.99 67.59 76.07 44.24 47.97 62.14 62.47 57.28 79.27 72.22 63.00
SqueezeLLM† 2.01 - N/A -
LeanQuantnu 2.01 63.47 30.55 41.01 54.61 31.34 29.97 32.14 33.96 42.29 71.38 64.01 44.97

against the existing state-of-the-art non-uniform method SqueezeLLM (Kim et al., 2023). For the
baselines, we use the quantized models provided by their official repository where possible, and
quantize the unavailable models using their official codebase and recommended hyperparameters.
More details on baseline reproduction and evaluation methods can be found in Section D of the
Appendix. For all LeanQuant models, we use a small calibration set of 128 sequences of 2048
tokens from the C4 dataset (Raffel et al., 2020) for computing the Hessian H, and set p = 4.

Models We consider the following recent, popular LLMs for quantization: Llama 1/2/3 series mod-
els (Touvron et al., 2023a;b; Dubey et al., 2024), Mistral-7B-v0.1 (Jiang et al., 2023), Mistral-Large-
Instruct-2407 (123B) (Mistral AI Team, 2024), and Llama-3.1-405B-Instruct (Dubey et al., 2024).

Evaluation Metrics and Datasets We evaluate quantized LLMs using the perplexity metric on the
datasets WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2020), and zero-shot accuracy on the
benchmarks ARC (Clark et al., 2018), LAMBADA (Paperno et al., 2016), MMLU (Hendrycks et al.,
2020), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al.,
2021). We also quantize and evaluate the instruction-following Llama-3-8B-Instruct using OpenAI
GPT-4o (2024-05-13) as a judge on the MT-Bench (Zheng et al., 2023), and the results are presented
in Section F in the Appendix.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Zero-shot accuracy comparison of the quantized 123B Mistral-Large-Instruct-2407 model.

Model Method Bits Arc LAMBADA MMLU Avg.Easy Chg. Std. OpenAI STEM Human. Social Other

Mistral-Large-Instruct-2407 GPTQ 4.00 84.60 63.99 74.38 80.52 76.31 77.23 89.31 85.23 78.95
LeanQuantaff 4.00 85.14 63.99 74.99 81.14 76.56 77.32 89.21 85.87 79.28
LeanQuantnu 4.05 87.67 64.59 76.63 81.51 76.50 78.00 89.35 85.68 79.99

Table 3: Zero-shot accuracy comparison of the quantized Llama-3.1-405B-Instruct model.

Method Group Size Bits Arc-E Arc-C LAMBADA-Std PIQA Avg
Llama-3.1-405B-Instruct

GPTQ 128 4.25 88.21 65.10 76.96 82.75 78.26
LeanQuantaff 128 4.25 88.34 65.70 77.86 83.03 78.73

Testbed Hardware LeanQuant models are quantized using a machine quipped with an L40s-48GB
GPU, an AMD EPYC 7R13 48-Core CPU, and 370GB of RAM. To fit Llama-3.1-405B-Instruct in
RAM, which is around 800GB in size, we use a machine equipped with 2 Quadro RTX 8000 GPUs,
an AMD EPYC 7742 64-Core CPU, and 1.48TB of RAM.

4.1 MAIN RESULTS

Accuracy and Perplexity The zero-shot accuracy of quantized models on benchmarks are presented
in Table 1, as well as in Table 8 in the Appendix, and the perplexity results are shown in Table 7
in the Appendix. At the same bit width, LeanQuant achieves significantly better (lower) perplexity
than GPTQ and AWQ, and performs on par with OmniQuant and SqueezeLLM. However, perplexity
may not be a representative metric for evaluating the accuracy of quantized models. In terms of zero-
shot accuracy on various benchmarks, LeanQuantaff mostly outperforms GPTQ and OmniQuant,
and LeanQuantnu similarly performs better than SqueezeLLM in most cases. We highlight that
LeanQuantaff improves the average zero-shot accuracy on 11 tasks over OmniQuant by 17.18% for
3-bit Llama-3-8B, and by 14.14% for 3-bit Mistral-7B. Compared to GPTQ, LeanQuantaff improves
the average zero-shot accuracy by 18.38% for 3-bit Llama-3-8B, and by 9.16% for 3-bit Mistral-7B.

Effectiveness on Very Large LLMs We quantize the 123B Mistral-Large-Instruct-2407 and the
405B Llama-3.1 model using LeanQuantaff and GPTQ, and present their zero-shot accuracy in Table
2 and 3, respectively. OmniQuant and SqueezeLLM fail to quantize to these models due to GPU
out-of-memory errors. For Llama-3.1 405B, we use a smaller set of evaluation tasks due to the high
inference costs. LeanQuantaff models mostly outperforms GPTQ in zero-shot accuracy. We employ
row-wise quantization for Mistral-Large and group-wise quantization (with size 128) for Llama-3.1.
This showcases that our method is effective for both row-wise affine quantization and group-wise
affine quantization.

4.2 MEMORY AND TIME EFFICIENCY

We report the maximum GPU memory consumption of LeanQuant and the baselines during quanti-
zation on models of different sizes in Table 4. LeanQuant is significantly more memory efficient than
OmniQuant and SqueezeLLM: it successfully scales to 123B Mistral-Large using a single 48GB
GPU, and to 405B Llama-3.1 models using two 48GB GPUs, while OmniQuant fails to quantize
Llama-3-70B and SqueezeLLM fails to quantize Llama-3-8B on a single 48GB GPU. The time cost
of LeanQuant for different sized models are reported in Table 9 in the Appendix. LeanQuant can
quantize 7B/8B models in less than an hour, the 123B model in 4.2 hours, and the 405B model in
20.7 hours.

4.3 ABLATION STUDY

Q1: Does LeanQuant effectively reduce the loss error ϵ compared to other iterative loss-error-
based methods? Yes, LeanQuant effectively reduces loss errors ϵ compared to GPTQ, as shown in
Figure 2, as well as in Figure 5 in the Appendix. The sum of loss errors are computed as Equation
3. Moreover, non-uniform LeanQuant generally achieves lower loss errors than affine LeanQuant,
due to more degrees of freedom in the grid point placements, which also explains why LeanQuantnu
achieves higher accuracy than LeanQuantaff on benchmarks in Table 1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0

25000

50000

75000

Llama­3­8B (4­bit)

0

100000

200000

300000

Llama­3­8B (3­bit)

GPTQ LeanQuantaff LeanQuantnu

0

1000000

2000000

Llama­3­8B (2­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

100000

200000

Mistral­7B (4­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

500000

1000000

Mistral­7B (3­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

2000000

4000000

Mistral­7B (2­bit)

S
um

 o
f L

os
s

E
rr

or

Figure 2: Comparison of loss errors ϵ, summed over each layer, for GPTQ and LeanQuant (affine
and non-uniform) during iterative quantization.

Q2: Is LeanQuant sensitive to the hyperparameter p? No, we found LeanQuant to be not very
sensitive to p. A sensitivity analysis on the hyperparameter p is given in Table 10 in the Appendix.
LeanQuant works well with p values of 3 or 4.

Q3: Is uniformly spaced grid initialization beneficial for model quality? Yes, uniformly spaced
grid initialization consistently outperforms k-means++ (Arthur et al., 2007) initialization on different
models in 3-bit and 2-bit regions, as shown in Table 11 in the Appendix.

Q4: Does the fused GPU kernel for LeanQuantaff accelerate quantization? Yes, our fused kernel
for learning affine grids accelerate the end-to-end quantization process by more than 50×, as shown
in Table 5, which enables LeanQuant to be scaled to very large models.

Table 4: Peak GPU memory consumption of differ-
ent algorithms during 4-bit quantization. “OOM”
indicates out of memory on a single 48GB GPU,
except for Llama-3.1-405B where we use 2 48GB
GPUs.
Model OmniQuant SqueezeLLM GPTQ LeanQuant

Llama-3-8B 25.3 GB OOM 7.9 GB 7.9 GB
Llama-3-70B OOM OOM 17.1 GB 17.2 GB
Mistral-Large (123B) OOM OOM 32.8 GB 33.0 GB
Llama-3.1-405B OOM OOM OOM 65.4 GB

Table 5: Comparison of total time needed for
quantizing Llama-3-8B with and without our
fused kernel for loss-error-aware affine grid
learning.

Fused Kernel Group Size Bits Quant. Time

✗ - 4.00 15.1 hrs
✓ - 4.00 0.27 hrs

✗ 128 4.25 >100 hrs
✓ 128 4.25 0.40 hrs

5 RELATED WORKS

Iterative Loss-error-based Compression Optimal Brain Damage (LeCun et al., 1989) introduced
a saliency-score-based iterative pruning algorithm for neural networks, and Optimal Brain Surgeon
(Hassibi & Stork, 1992; Hassibi et al., 1993) extended it to apply a weight update to compensate for
the error introduced in each iteration. These methods inspired a number of works on model pruning
(Guo et al., 2016; Singh & Alistarh, 2020; Yu et al., 2022) and weight quantization (Li et al., 2021;
Frantar & Alistarh, 2022; Frantar et al., 2022).

Efficient LLM Inference LLM inference is computationally and memory demanding, and existing
works accelerate inference and reduce memory requirements through post-training weight quantiza-
tion (Dettmers et al., 2022; Lin et al., 2024; Frantar et al., 2022; Chee et al., 2024; Kim et al., 2023;
Shao et al., 2024; Egiazarian et al., 2024; Tseng et al., 2024), pruning (Frantar & Alistarh, 2023;
Ashkboos et al., 2024), weight-activation quantization (Xiao et al., 2023), offloading Sheng et al.
(2023), etc.

6 CONCLUSION

In this work, we propose LeanQuant, an accurate, versatile, and scalable quantization method for
LLMs. Motivated by the finding that the min-max affine grid causes large errors in the network’s
task loss in iterative loss-error-based methods, we propose to learn loss-error-aware grids to enable
more accurate quantized models, and design fused kernels for efficient and scalable quantization.
Our method generalizes to multiple quantization formats to enable greater accessibility. Exten-
sive empirical evaluations reveal that our quantized models compares favorably against competitive
baselines in accuracy, and can scale to Llama-3.1 405B, one of the largest open-source LLM to date.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Arthur, Sergei Vassilvitskii, et al. k-means++: The advantages of careful seeding. In Soda,
volume 7, pp. 1027–1035, 2007.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36, 2024.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning, pp. 7750–7774. PMLR, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jordan Dotzel, Yuzong Chen, Bahaa Kotb, Sushma Prasad, Gang Wu, Sheng Li, Mohamed S Ab-
delfattah, and Zhiru Zhang. Learning from students: Applying t-distributions to explore accurate
and efficient formats for llms. arXiv preprint arXiv:2405.03103, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Elias Frantar, Roberto L Castro, Jiale Chen, Torsten Hoefler, and Dan Alistarh. Marlin:
Mixed-precision auto-regressive parallel inference on large language models. arXiv preprint
arXiv:2408.11743, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

Georgi Gerganov. llama.cpp. https://github.com/ggerganov/llama.cpp, 2023. Ac-
cessed: 2024-10-01.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances
in neural information processing systems, 29, 2016.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
Robert McHardy. Challenges and applications of large language models. arXiv preprint
arXiv:2307.10169, 2023.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning
for large language models. arXiv preprint arXiv:2203.07259, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

12

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://github.com/ggerganov/llama.cpp

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-
uniform discretization for neural networks. arXiv preprint arXiv:1909.13144, 2019.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Mistral AI Team. Mistral large 2, July 26 2024. URL https://mistral.ai/news/
mistral-large-2407/.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung
Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. Lut-gemm: Quantized matrix mul-
tiplication based on luts for efficient inference in large-scale generative language models. arXiv
preprint arXiv:2206.09557, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=8Wuvhh0LYW.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

13

https://mistral.ai/news/mistral-large-2407/
https://mistral.ai/news/mistral-large-2407/
https://openreview.net/forum?id=8Wuvhh0LYW

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine,
29(8):1930–1940, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Xin Yu, Thiago Serra, Srikumar Ramalingam, and Shandian Zhe. The combinatorial brain surgeon:
pruning weights that cancel one another in neural networks. In International Conference on
Machine Learning, pp. 25668–25683. PMLR, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A EXPLANATIONS ON QUANTIZATION GRID

0 31 2 0 31 2

Figure 3: Comparison of affine (left) and non-uniform (right) 2-bit quantization grids applied to the
weights in the first MLP-down layer of Llama-3-8B. The affine grid uses evenly spaced quantization
points between the minimum and maximum weights. In contrast, the non-uniform grid allows grid
points to be placed flexibly, as their positions are stored in a look-up table. This enables finer
quantization in dense regions and coarser quantization in sparse regions, better aligning with the
weight distribution and reducing quantization error.

In the context of quantization, a grid is a predefined set of values representing the possible quantized
outputs for full-precision parameters. During quantization, each full-precision parameter is mapped
to its nearest grid point on the quantization grid. For example, in a 2-bit quantization scheme with
grid points {−1.0,−0.33, 0.33, 1.0}, a floating-point weight of 0.25 would be assigned to 0.33, the
closest grid point.

Affine Quantization Grid An affine quantization grid distributes points uniformly across the
range of the weights being quantized. The dynamic range of the weights, defined as [Wmin,Wmax],
determines the spacing of the grid points. For example, if [Wmin,Wmax] = [−1.0, 1.0] in a 2-bit
quantization setting, the grid points would be evenly spaced at−1.0,−0.33, 0.33, 1.0. This uniform
distribution is computationally simple and widely used in practice, but it may lead to suboptimal
precision when the weight distribution is non-uniform, as many grid points may be underutilized.

Non-uniform Quantization Grid Non-uniform grids allocate grid points more flexibly, allowing
denser spacing in high-probability regions of the weight distribution and sparser spacing in low-
probability regions. This approach minimizes quantization error by adapting the grid to the data
distribution. Non-uniform grids typically store the grid points in a look-up table, enabling flexible
placement that better represents the original data. Figure 3 illustrates an example of affine grid and
non-uniform grid applied to the weights of Llama-3-8B.

Grouped Quantization The quantization grid for a set of weights is determined by the range
[Wmin,Wmax] within the group. Smaller group sizes allow for a narrower dynamic range, leading
to finer granularity in the quantization grid and higher precision. Grouping contiguous weights into
blocks is a common practice in quantization literature (Lin et al., 2024; Frantar et al., 2022) and
ensures a balance between memory efficiency and precision.

B LEANQUANT-EXACT

The pseudocode of LeanQuant-Exact for accurately quantizing million-parameter networks is pre-
sented in Algorithm 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2 LeanQuant-Exact for Millon-parameter Networks
Input: a row w ∈ Rc in the weight matrix, sample input matrix X, bit width b, hyperparameter p
Output: Quantized row ŵ

1: ŵ← 0c

2: H−1 ← (2XX⊤)−1

3: if using non-uniform grid then
4: G ← argmin

G:|G|=2b

(
diag(H−1)−p

)⊤∣∣quantnu(w,G)−w
∣∣2 ▷ E. 6

5: else if using affine grid then
6: S,Z ← argmin

(S,Z)∈S

(
diag(H−1)−p

)⊤∣∣quantaff(w,S, Z)−w
∣∣2 ▷ E. 7

7: end if
8: for j ← 1, . . . , c do
9: if using non-uniform grid then

10: i← argmini
(quantnu(wi,G)−wi)

2

2H−1
i,i

11: ŵi ← quantnu(wi,G)
12: else if using affine grid then
13: i← argmini

(quantaff(wi,S,Z)−wi)
2

2H−1
i,i

14: ŵi ← quantaff(wi, S, Z)
15: end if
16: w← w −

H−1
:,i

H−1
i,i

(
wi − ŵi

)
17: H−1 ← H−1 −

H−1
:,i H−1

i,:

H−1
i,i

18: end for
19: return ŵ

B.1 BERT EXPERIMENTS WITH LEANQUANT-EXACT

We compare the performance of BERT models (Devlin et al., 2018), quantized with OBQ (Frantar
& Alistarh, 2022) and LeanQuantnu-Exact, on the SQuAD dataset (Rajpurkar et al., 2016). We
quantize the 12-layer BERT-base (Devlin et al., 2018) and the 3-layer BERT-3 variant from Kurtic
et al. (2022) to 3 and 4 bits. OBQ and LeanQuant-Exact are calibrated using 1024 samples from the
training set, and the F1 score is reported on the test set.

Method Bits BERT-3 BERT

FP32 32 84.66 88.53

OBQ 4.03 84.40 87.96
LeanQuantnu-Exact 4.13 84.58 88.49

OBQ 3.03 83.47 84.72
LeanQuantnu-Exact 3.06 84.20 86.21

Table 6: F1 scores on SQuAD of BERT models quantized using OBQ and LeanQuantnu-Exact.
LeanQuantnu-Exact outperforms OBQ in maintaining model quality.

C DISCUSSION ON ERROR ACCUMULATION DURING ITERATIVE
QUANTIZATION

LeanQuant prevents drastic increase to the task loss by learning the quantization grid for better
preservation of the precision of outlier inverse diagonals. However, since the not-yet-quantized
weights will shift during the iterative quantization process and the quantization grid is fixed before-
hand, one potential problem arises: the quantization grid is no longer well-aligned with the outliers
after certain iterations. Fortunately, this is not a problem in practice. The loss-error-awareness prop-
erty of LeanQuant grids prevents high-norm weight perturbations δi (Equation 3) from ocurring,
hence the weights do not shift by much during the iterations. Furthermore, no new inverse-diagonal

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

outliers will arise during the iterative quantization process, since the remaining inverse diagonals
only decrease in magnitude towards zero after each column and row removal (Equation 4).

D EXPERIMENT DETAILS

Baseline Reproduction We use the quantized models provided by the official repository where
possible. We obtained quantized LLaMA-7B, LLaMA-13B, Llama-2-7B, Llama-2-13B from the
OmniQuant repository, and LLaMA-7B, LLaMA-13B, Llama-2-7B, Llama-2-13B, Mistral-7B from
the SqueezeLLM repository. We obtained the community-driven GPTQ-quantized version of
Llama-3.1-405B-Instruct from HuggingFace 1. The other quantized models are reproduced using
the official codebases and recommended hyperparameters. For OmniQuant, we set the training
epochs to 20, enable Learnable Weight Clipping (LWC), set an LWC learning rate of 1e-2. For
SqueezeLLM, there is no tunable parameters. For GPTQ, we turn on activation ordering (quantizing
columns in order of decreasing activation size) for more accurate model.

Perplexity Evaluations We follow the perplexity evaluation procedure described by (Frantar
et al., 2022): sequences from the test set of the WikiText2 and C4 datasets (Merity et al., 2016;
Raffel et al., 2020) are concatenated into 128 sequences of length 2048 tokens for perplexity testing.

Accuracy Evaluations We use lm-evaluation-harness (Gao et al., 2023) for evaluating zero-shot
accuracy on tasks. The task names we evaluate are lambada, ai2 arc, winogrande,
piqa, hellaswag, mmlu.

E PERPLEXITY EVALUATIONS

The perplexity evaluation results on WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2020) for
quantized models are presented in Table 7.

F LLM-AS-A-JUDGE

LLM as a Judge The evaluation results on MT-Bench using GPT-4o (2024-05-13) as a judge are
presented in Figure 4. We pitch 3-bit and 4-bit, with group size of 128, LeanQuantaff against Om-
niQuant, and 4-bit LeanQuantnu against SqueezeLLM. LeanQuant achieves higher win rate than the
baselines.

0 80 160

LeanQuantaff vs. OmniQuant
(3 bit, group size 128)

LeanQuantaff vs. OmniQuant
(4 bit, group size 128)

LeanQuantnu vs. SqueezeLLM
(4 bit)

Win Rate=54.43%

Win Rate=51.43%

Win Rate=53.23%

43

36

33

Win Rate=54.43%

Win Rate=51.43%

Win Rate=53.23%

81

90

98

Win Rate=54.43%

Win Rate=51.43%

Win Rate=53.23%

36

34

29

Llama­3­8B­Instruct on MT­Bench

Former Win Tie Former Lose

Figure 4: Evaluation of quantized Llama-3-8B-Instruct on MT-Bench using OpenAI GPT-4o as a
judge. The win rates reported exclude ties.

G ACCURACY RESULTS ON MORE MODELS

The zero-shot accuracy results on benchmarks for quantized LLaMA-7B, LLaMA-13B, Llama-2-7B
(Touvron et al., 2023a;b) are presented in Table 8.

1https://huggingface.co/hugging-quants/Meta-Llama-3.
1-405B-Instruct-GPTQ-INT4

17

https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4
https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Perplexity evaluations of Llama models under different quantization methods and bit
widths. The results of GPTQ, AWQ, OmniQuant are from Shao et al. (2024), and the results of
SqueezeLLM are from Kim et al. (2023). † The official SqueezeLLM code does not support 2-bit
quantization, and we report the available results from Kim et al. (2023).

WikiText-2 C4
Grid Method Bits 1-7B 1-13B 2-7B 2-13B 2-70B 1-7B 1-13B 2-7B 2-13B 2-70B Avg.

FP16 16 5.58 5.09 5.47 4.88 3.31 7.08 6.61 6.97 6.46 5.52 5.697

Affine

GPTQ 4.00 6.13 5.40 5.83 5.13 3.58 7.43 6.84 7.37 6.70 5.67 6.008
AWQ 4.00 6.08 5.34 6.15 5.12 - 7.52 6.86 7.68 6.74 - -
OmniQuant 4.00 5.86 5.21 5.74 5.02 3.47 7.34 6.76 7.35 6.65 5.65 5.905
LeanQuantaff 4.00 5.92 5.25 5.73 5.08 3.49 7.30 6.76 7.25 6.63 5.63 5.904

Non-uniform SqueezeLLM 4.04-4.05 5.79 5.18 5.62 4.99 3.41 7.21 6.71 7.12 6.57 5.58 5.818
LeanQuantnu 4.04-4.05 5.81 5.19 5.64 4.99 3.42 7.21 6.70 7.13 6.57 5.58 5.824

Affine

GPTQ 3.00 8.06 6.76 8.37 6.44 4.82 9.49 8.16 9.81 8.02 6.57 7.650
AWQ 3.00 11.88 7.45 24.00 10.45 - 13.26 9.13 23.85 13.07 - -
OmniQuant 3.00 6.49 5.68 6.58 5.58 3.92 8.19 7.32 8.65 7.44 6.06 6.591
LeanQuantaff 3.00 6.62 5.76 6.61 5.66 3.91 7.98 7.19 8.27 7.23 5.90 6.513

Non-uniform SqueezeLLM 3.02 6.32 5.60 6.18 5.36 3.77 7.75 7.08 7.72 6.97 5.83 6.258
LeanQuantnu 3.02 6.34 5.60 6.19 5.40 3.80 7.74 7.05 7.73 6.98 5.83 6.266

Affine
GPTQ 2.00 1.1E5 6.8E4 3.8E4 5.6E4 2.0E4 689.13 2.5E3 NaN 323.12 48.82 NaN
OmniQuant 2.00 15.47 13.21 37.37 17.21 7.81 24.89 18.31 90.64 26.76 12.28 26.395
LeanQuantaff 2.00 18.53 14.42 25.69 24.43 7.92 19.99 16.53 27.11 20.92 10.84 18.638

Non-uniform SqueezeLLM† 2.01 - N/A - 61.25 10.86 - N/A - N/A
LeanQuantnu 2.01 15.65 9.64 15.51 10.06 6.35 17.62 10.93 17.07 11.83 7.96 12.262

H QUANTIZATION TIME COST

The time cost of LeanQuant for different models and configurations are presented in Table 9.

I ABLATION STUDY

Sensitivity to Hyperparameter p Ablative experiments on the effects of the hyperparameter p on
the quality of LeanQuant models are presented in Table 10. In the case of p = 0, the inverse Hessian
diagonals are ignored as the weights for clustering, and the centroids are learned based on the density
of weights. It is worth noting that p = 0 results in sub-optimal model quality compared to higher
values of p, which means that the loss-error-awareness property of the quantization grid is critical
for maintaining model quality.

Grid Point Initialization Ablative experiments comparing k-means++ initialization with our pro-
posed uniformly spaced grid initialization are presented in Table 11.

J LOSS ERROR COMPARISON

A comparison of the sum of loss errors ϵ between GPTQ and LeanQuant (affine and non-uniform)
is presented in Figure 5.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Zero-shot accuracy of more quantized LLMs on benchmarks.

Method Bits
ARC LAMBADA MMLU

HellaS PIQA WinoG Avg.
Easy Chg Std OpenAI STEM Human. Social Other

LLaMA-7B
FP16 16 75.29 41.81 67.77 73.49 28.20 32.03 31.65 36.53 56.92 78.67 70.09 53.86
GPTQ 4.00 73.61 39.51 65.61 71.98 24.29 28.12 25.80 31.16 55.61 77.80 70.40 49.03

A
ffi

ne

OmniQuant 4.00 74.49 39.68 65.38 71.96 30.32 30.92 33.38 35.79 55.82 78.45 68.67 53.17
LeanQuantaff 4.00 74.03 41.64 63.75 70.56 31.27 33.13 32.66 37.79 56.31 78.40 69.30 53.53
GPTQ 3.00 66.67 35.84 49.89 58.37 25.94 27.46 23.46 24.98 51.76 75.35 64.72 43.78
OmniQuant 3.00 72.22 38.48 59.67 69.20 27.18 27.65 25.64 29.61 52.99 76.55 67.17 49.67
LeanQuantaff 3.00 73.70 40.78 65.28 72.66 27.85 31.37 30.61 35.31 56.23 78.45 70.09 52.94
GPTQ 2.00 26.35 22.01 0.00 0.00 23.69 25.08 24.28 24.01 25.69 53.70 50.99 24.95
OmniQuant 2.00 51.05 22.70 11.80 23.13 26.51 26.04 24.37 23.69 34.71 64.36 54.30 32.97
LeanQuantaff 2.00 55.98 27.22 38.56 47.45 24.45 25.31 22.85 25.46 37.19 68.12 60.77 39.40

N
on

-u
ni

fo
rm

SqueezeLLM 4.05 76.56 46.25 69.53 75.22 32.98 37.19 42.18 44.00 59.29 78.62 71.82 57.60
LeanQuantnu 4.05 76.39 45.05 71.55 76.48 34.76 38.77 46.12 47.18 59.29 78.78 73.24 58.87
SqueezeLLM 3.02 75.46 43.77 65.07 72.75 30.45 34.24 37.18 40.46 57.32 78.29 71.35 55.12
LeanQuantnu 3.02 75.17 43.00 70.41 77.29 33.81 38.32 43.16 45.06 57.35 78.29 71.35 57.56
SqueezeLLM 2.01 - N/A -
LeanQuantnu 2.01 50.38 24.40 31.67 41.30 21.79 24.19 21.74 24.36 37.49 65.67 58.33 36.48

LLaMA-13B
FP16 16 77.40 46.42 71.12 76.19 36.41 41.55 48.49 48.54 59.92 79.16 72.69 59.81
GPTQ 4.00 77.06 45.56 69.12 75.28 34.44 39.15 45.95 46.73 58.99 78.56 72.53 56.63

A
ffi

ne

OmniQuant 4.00 75.97 45.22 68.25 75.59 35.30 40.21 48.20 47.25 59.11 78.94 72.61 58.79
LeanQuantaff 4.00 76.39 46.42 70.48 76.27 35.52 39.45 46.18 47.22 58.82 78.94 72.30 58.91
GPTQ 3.00 70.92 39.93 57.29 64.82 29.37 31.94 33.18 35.34 54.05 76.99 68.43 49.13
OmniQuant 3.00 75.42 42.83 60.80 71.34 29.56 34.24 36.24 41.17 57.27 77.97 69.61 54.22
LeanQuantaff 3.00 75.84 43.34 67.49 74.85 33.37 36.56 41.92 44.74 56.75 77.97 70.48 56.66
GPTQ 2.00 27.10 21.93 0.02 0.00 23.37 25.50 23.56 24.49 25.76 53.16 49.72 24.75
OmniQuant 2.00 59.51 29.52 17.85 23.35 22.52 24.12 22.81 24.46 42.01 67.25 56.12 35.41
LeanQuantaff 2.00 61.45 29.27 44.63 50.82 28.73 26.01 27.20 27.26 39.08 71.27 65.82 42.87

N
on

-u
ni

fo
rm

SqueezeLLM 4.04 76.56 46.25 69.53 75.22 32.98 37.19 42.18 44.00 59.29 78.62 71.82 57.60
LeanQuantnu 4.04 76.39 45.05 71.55 76.48 34.76 38.77 46.12 47.18 59.29 78.78 73.24 58.87
SqueezeLLM 3.02 75.46 43.77 65.07 72.75 30.45 34.24 37.18 40.46 57.32 78.29 71.35 55.12
LeanQuantnu 3.02 75.17 43.00 70.41 77.29 33.81 38.32 43.16 45.06 57.35 78.29 71.35 57.56
SqueezeLLM 2.01 - N/A -
LeanQuantnu 2.01 65.66 32.42 54.49 66.93 23.44 25.50 23.98 28.42 45.66 72.80 66.14 45.95

Llama-2-13B
FP16 16 79.50 48.46 70.35 76.73 42.28 47.89 61.16 59.38 60.06 79.05 72.22 63.37
GPTQ 4.00 78.32 45.48 68.33 75.35 40.28 46.08 56.48 54.65 58.92 78.45 71.82 59.59

A
ffi

ne

OmniQuant 4.00 77.69 47.10 68.74 75.57 41.39 46.10 57.39 55.87 59.48 79.00 70.32 61.70
LeanQuantaff 4.00 79.42 47.27 69.16 75.90 42.21 47.31 59.90 57.93 59.07 78.24 71.82 62.57
GPTQ 3.00 72.85 39.85 59.77 67.20 34.86 38.85 47.97 46.48 54.61 76.28 70.32 53.62
OmniQuant 3.00 76.60 43.34 60.70 70.54 38.60 42.59 53.23 51.82 57.42 77.97 69.14 58.36
LeanQuantaff 3.00 77.31 44.54 68.15 75.88 37.93 43.80 53.07 52.62 56.36 76.99 70.72 59.76
GPTQ 2.00 25.84 20.22 0.00 0.00 22.84 25.59 23.53 23.98 25.97 52.07 47.75 24.19
OmniQuant 2.00 48.19 24.66 10.21 20.14 21.34 24.21 21.77 23.85 40.16 63.00 52.33 31.81
LeanQuantaff 2.00 50.88 24.32 32.70 39.57 21.50 24.38 21.90 24.40 38.01 67.19 56.91 36.52

N
on

-u
ni

fo
rm

SqueezeLLM 4.04 78.91 47.70 70.00 76.23 42.72 47.89 60.19 58.32 59.74 78.73 72.77 63.02
LeanQuantnu 4.04 78.91 47.56 71.12 77.43 43.51 47.44 59.54 58.83 59.58 78.62 72.06 63.15
SqueezeLLM 3.02 77.27 43.17 66.37 73.80 38.22 44.63 55.18 53.11 58.74 77.86 69.46 59.80
LeanQuantnu 3.02 77.19 44.20 71.14 78.59 40.72 45.46 56.87 55.10 56.38 77.75 70.09 61.23
SqueezeLLM 2.01 - N/A -
LeanQuantnu 2.01 62.46 30.20 47.00 61.09 25.28 27.74 27.56 28.87 42.20 69.91 62.04 44.03

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Total time taken by LeanQuant for quantizing different-sized LLMs, using a single L40s-
48GB GPU, an AMD EPYC 7R13 48-Core CPU, and 370GB of RAM. Llama-3.1-405B is quantized
using 2 Quadro RTX 8000 GPUs, an AMD EPYC 7742 64-Core CPU, and 1.48TB of RAM.

Model Grid Group Size Bits Time

Llama-2-7B
Affine - 4.00 14 mins
Affine 128 4.25 15 mins
Non-uniform - 4.05 35 mins

Llama-3-8B
Affine - 4.00 16 mins
Affine 128 4.25 20 mins
Non-uniform - 4.05 37 mins

Llama-2-70B Affine - 4.00 178 mins
Non-uniform - 4.04 335 mins

Mistral-Large-Instruct-2407 (123B) Affine - 4.00 252 mins

Llama-3.1-405B Affine 128 4.25 1241 mins

Table 10: The perplexity of LeanQuant models on WikiText2 and C4, using different values of p.

WikiText2 C4
Grid Hyperparameter 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit

p = 0 12.13 29.92 5,991.18 16.73 22.71 5,998.96
p = 2 5.39 5.98 25.09 7.89 8.50 20.27
p = 3 5.37 5.92 22.32 7.88 8.48 19.81Non-uniform

p = 4 5.38 5.96 25.61 7.88 8.47 21.65

p = 0 14.52 80.54 230.66 16.94 69.04 243.65
p = 2 5.52 8.58 55.50 8.03 16.84 41.99
p = 3 5.51 6.36 18.33 8.03 8.80 20.20

Mistral-7B

Affine

p = 4 5.51 6.31 18.00 8.02 8.86 20.47

p = 0 5.69 6.76 NaN 7.15 8.23 62.00
p = 2 5.65 6.30 17.16 7.13 7.83 19.14
p = 3 5.64 6.25 17.84 7.13 7.80 19.55

Non-uniform

p = 4 5.64 6.28 15.82 7.14 7.83 18.89

p = 0 5.84 8.19 93.01 7.30 9.54 85.62
p = 2 5.77 7.33 27.82 7.27 8.83 28.86
p = 3 5.75 6.80 25.97 7.26 8.32 27.57

Llama-2-7B

Affine

p = 4 5.75 6.69 26.82 7.25 8.29 28.14

Table 11: Ablative experiments on grid point initialization.

Llama-2-7B Llama-3-8B Mistral-7B
Grid Init. 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit

WikiText2 K-means++ 5.64 6.25 17.84 6.59 8.31 46.31 5.37 5.92 22.32
Uniformly Spaced (ours) 5.66 6.20 17.53 6.59 7.88 41.78 5.40 5.88 19.06

C4 K-means++ 7.13 7.80 19.55 10.17 12.53 39.86 7.88 8.48 19.81
Uniformly Spaced (ours) 7.14 7.72 18.75 10.20 12.16 36.00 7.91 8.42 17.85

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0

25000

50000

75000

100000

Llama­2­7B (4­bit)

0

200000

400000

600000

Llama­2­7B (3­bit)

GPTQ LeanQuantaff LeanQuantnu

0

1000000

2000000

3000000

Llama­2­7B (2­bit)

0

50000

100000

Llama­2­13B (4­bit)

0

200000

400000

600000
Llama­2­13B (3­bit)

0

1000000

2000000

Llama­2­13B (2­bit)

0

50000

100000

150000

200000

LLaMA­7B (4­bit)

0

200000

400000

600000

800000

LLaMA­7B (3­bit)

0

1000000

2000000

3000000

LLaMA­7B (2­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

50000

100000

150000

200000

LLaMA­13B (4­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

250000

500000

750000

1000000

LLaMA­13B (3­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

1000000

2000000

3000000

4000000

LLaMA­13B (2­bit)

S
um

 o
f L

os
s

E
rr

or

Figure 5: Comparison of loss errors ϵ of each layer for GPTQ and LeanQuant (affine and non-
uniform) during iterative quantization.

21

	Introduction
	Background
	Quantization Grid
	Iterative Loss-error-based Quantization

	Methodology
	Revisiting the Loss Error
	blue Loss-Error-Aware Network Quantization
	blue Non-Uniform Loss-Error-Aware Grid
	blue Loss-Error-Aware Affine Grid
	blue LeanQuant

	Experiments
	Main Results
	Memory and Time Efficiency
	Ablation Study

	Related Works
	Conclusion
	blue Explanations on Quantization Grid
	LeanQuant-Exact
	BERT Experiments with LeanQuant-Exact

	Discussion on Error Accumulation During Iterative Quantization
	Experiment Details
	Perplexity Evaluations
	LLM-as-a-Judge
	Accuracy Results on More Models
	Quantization Time Cost
	Ablation Study
	Loss Error Comparison

