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Abstract

LLM test-time compute (or LLM inference) via search has emerged as a promising research
area with rapid developments. However, current frameworks often adopt distinct perspec-
tives on three key aspects—task definition, LLM profiling, and search procedures—making
direct comparisons challenging. Moreover, the search algorithms employed often diverge
from standard implementations, and their specific characteristics are not thoroughly speci-
fied. In this survey, we provide a comprehensive technical review that unifies task definitions
and provides modular definitions of LLM profiling and search procedures. The definitions
enable precise comparisons of various LLM inference frameworks while highlighting their
departures from conventional search algorithms. We also discuss the applicability, perfor-
mance, and efficiency of these methods.

1 Introduction

Scaling test-time compute via search has recently enhanced the LLMs’ power to a new level on reasoning
tasks (Yao et al., 2023a; Hao et al., 2023), sequential decision-making tasks (e.g., robotics) (Putta et al.,
2024), and graph-traversal tasks (e.g., path finding) (Meng et al., 2024). This survey aims to provide a
comprehensive but integrated survey on existing frameworks for LLM Inference via Search (LIS). The focus
is on the work that the search processes are coupled with LLMs’ test time compute rather than those using
search and LLMs separately. For example, the plans (commonly in the form of PDDL) are prepared by
LLMs to perform local search (Valmeekam et al., 2023b; Guan et al., 2023; Valmeekam et al., 2023a).

1.1 Existing Surveys

Current reviews on LLM search are limited from the following perspectives.

No dedicated, Detailed Survey Current surveys only contain paragraphs or sections to roughly touch
on both technical aspects and their practical applicability, as summarized in Table 1.

Limited Mention on LLM-Side Design Specifically, most of existing surveys (Huang et al., 2024; Wang
et al., 2024b) mention little or a few implementations and dimensions for LLM profiling, which is not suitable
for all the frameworks. Besides, the lack of examples hinders understanding.

Limited Mention on Search Li (2024) give more detail regarding LLM profiling but lack details on
search processes. Nonthelessness, most of existing surveys (Huang et al., 2024; Wang et al., 2024b) give a
general sense of the computation process by mentioning which classical search algorithms the frameworks are
built upon (e.g., depth-first search). However, details should be given because of their nuanced differences.
Besides, many untypical twists to classic search algorithms are hidden. The deviations are not friendly for
newcomers in the newly-developed area, e.g., those computer science graduates educated with typical search
algorithms.
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Table 1: Comparisons with other surveys related to LLM inference via search (LIS). “Coverage” indicates
the number of related papers, “Sections” refers to the sections of the survey manuscripts that discuss LLM
inference via search, and “Def.” is the abbreviation for Definition. The URLs for the reference versions
are given at the footnotes. “Mentioned” refers to the mention of the LLM function, while “Limited”
means that a formal definition is given without specific distinctions. The numerical values correspond to
the number of implementations (impl.) or dimensions (dim.) identified for LLM-Profiled Roles (LMPRs);
different dimensions may lead to a combinatorial number of implementations. “25+” represents the number
of papers detailed in Sections 5 and 6, excluding those used solely for benchmarking, analysis, or from related
domains.

Coverage Sections Task Def. Search Algorithms LLM Profiling

Details Deviations Policy Value Transition

Huang
et al.
(2024)

5 ✓(§4) ✗ ✗ ✗ 1 impl. 1 impl. ✗

Wang et al.
(2024b)

3 ✓(§2.1.3) ✗ ✗ ✗ ✗ ✗ Mentioned

Li (2024) 8 ✓(§4.3) ✗ Limited ✗ 2 impl. 2 dim. NA

Ours 25+ All ✓ ✓ ✓ 8 impl. 4 dim.;
14 impl.

2 impl.

1.2 Survey Structure

To solve the above limitations, we provide unified task definitions and decouple the LLM-specific design
(mainly prompting) from the control program (search procedures/algorithms). There exists a
hierarchical structure between them: the low-level definitions provide a unified interface for the high-level
components. The overall structure, accompanied by illustrative examples, is presented in Figure 1.

Introducing a Unified Task Definition Based on MDPs (§ 2) Our definition standardizes different
tasks in MDP structure. While MDPs naturally align with AI domains like robotics, special attention is given
to adapting this definition for tasks traditionally not modeled as MDPs, such as graph traversal, reasoning,
dialogue systems, and code generation. Notably, this MDP-based definition is also applicable to other LLM
inference frameworks beyond search, including works like Li et al. (2022), Zhao et al. (2023), and Hu et al.
(2024).

Comprehensively Summarizing LLM Profiling and Implementations (§ 3) The design and imple-
mentation of LLM profiling and prompting can be modularized into components commonly used in solving
MDPs (Sutton & Barto, 2018): policies, value functions, and transition models. Correspondingly, 3 types of
LLM-Profiled Roles (LMPRs) are defined.

Defining Modular Search Procedures (§ 4) Rather than directly showcasing individual search-based
frameworks for LLM inference, we focus on modular and reusable components to reduce redundancy and en-
able more straightforward comparisons across frameworks. This approach promotes flexibility and minimizes
overhead when adapting or extending search methods.

Reviewing Individual Frameworks (§ 5) Based on the unified task and LMPR interface, we provide
a comprehensive review of individual frameworks, organized by the search algorithms they are built upon.
Our analysis highlights how LLM integration either diverges from or enhances traditional search algorithms.
We identify and clearly present 11 frameworks, summarized in Table 7. This count exclusively includes
frameworks that focus on test-time computation through search detailed in Section 5. Note that our im-
plementations may differ from the specific approach described in the original manuscript, as our goal is to
provide a unified interface that facilitates easier comparison among various methods. Nevertheless, they are
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Task
Definitions (§2) Details in Table 2

Low-level
Modules:
LLM-
Profiled
Roles (§3)

Policy (§3.1) Details in Table 3

Transition
Model (§3.2)

Evaluator (§3.3) Details in Table 4

Mid-level
Modules:
Search
Procedures
(§4)

Details in Table 7

LIS (LLM
Inference via
Search)
Frameworks (§5)

Beam Search
E.g., Beam-LLM†(Xie et al., 2023), PathFinder (Golovneva et al., 2023),
Think-on-Graph (Sun et al., 2024), Think-on-Graph 2.0 (Ma et al., 2025),
M* (Beam) (Kang et al., 2024)

BFS (breath) E.g., ToT(Yao et al., 2023a)

DFS E.g., ToT(Yao et al., 2023a)

BFS (Best) E.g., Best-LLM† (Koh et al., 2024), M* (Best) (Kang et al., 2024)

A* E.g., LLM-A* (Meng et al., 2024), Q* (Wang et al., 2024a), ToolChain (Zhuang et al., 2024)

MCTS E.g., RAP (Hao et al., 2023), LATS (Zhou et al., 2024a), LLM-MCTS (Zhao et al., 2023),
rStar (Qi et al., 2025), MC-DML (Shi et al., 2025)

α-MCTS E.g., PG-TD (Zhang et al., 2023), GDP-ZERO (Yu et al., 2023), TS-LLM (Wan et al., 2024) ,
ReST-MCTS* (Zhang et al., 2024a)

Others
Including LLM
Inference
and Search (§ 6)

LLM for World
Modeling+Search E.g., Guan et al. (2023), LLM+P (Liu et al., 2023), Dainese et al. (2024)

Meta-Search for
High-Level
Strategies

E.g., AFlow (Zhang et al., 2025), DOTS (Yue et al., 2025), Strategist (Light et al., 2025),
Zheng et al. (2025)

Evolutionary
Search E.g., EvoPrompting (Chen et al., 2023), Wang et al. (2025b)

Related
Work
(§7)

LLM fine-tuning
for LMPRs

E.g., CPO (Zhang et al., 2024b), TS-LLM (Wan et al., 2024),
ReST-MCTS* (Zhang et al., 2024a), AgentQ (Putta et al., 2024)

Search with
Multi-Modal LLMs E.g., Mulberry(Yao et al., 2024)

Branching without
Search E.g., Tree-Planner (Hu et al., 2024), Graph-of-Thoughts (GoT) (Besta et al., 2024)

Re-Ranking
Frameworks

E.g., LEVER (Ni et al., 2023), Self-consistency (Wang et al., 2023), DiVeRSe (Li et al., 2023),
Self-refine (Madaan et al., 2023a)

Figure 1: Survey structure. This table shows a selected subset of the works reviewed. Here are two notes: 1)
To avoid duplication, comprehensive lists of related work for Task Definitions and LLM-Profiled Roles
are provided in the refered tables; 2) Framework names marked with a sword symbol (†) denote those devised
by the authors of this survey, rather than being directly drawn from existing literature.

functionally equivalent. For example, whereas Koh et al. (2024) implement Best-first search using a priority
queue, we achieve the same outcome by employing a top-k selection procedure that is common to MCTS
and other search algorithms.

Comparisons with Other Test-Time Frameworks Additionally, we highlight other test-time frame-
works that function as components within search processes, such as ReAct (Yao et al., 2023b), CoT (Wei
et al., 2022), and Self-Consistency (Wang et al., 2023), along with those discussed in Section 7.

Analyzing Key Perspectives of LIS Frameworks (§ 8) We critically examine these methods from four
key perspectives: deviation, applicability, performance, and efficiency. For deviations, we compare
the structural and functional differences between search procedures in LIS frameworks and standard search
algorithms as described in foundational texts such as Russell & Norvig (2010) and Sutton & Barto (2018).
This analysis highlights how LLMs modify or enhance traditional search processes, providing a deeper
understanding of their impact and potential.
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Other LLM Inference + Search Directions (§ 6) This survey primarily focuses on LLM inference via
search, where downstream tasks are formulated as sequential decision-making problems, and LLMs serve as
integral components. This focus allows us to present a detailed, concise, and systematic analysis. However,
confining our discussion solely to these frameworks might give the impression that the title overstates our
scope. Hence, Section 6 covers additional research directions that also involve LLM inference and search.

1.3 Intended Audience and Use Cases

Reviewed Venues Our goal is to provide a comprehensive overview of the latest research from active
venues. To this end, we systematically search high-quality conferences that publish work on LLM inference
via search, including ICLR, ICML, and NeurIPS from 2023 to 20251, and we pay special attention to ACL,
EMNLP, and NAACL conferences. We acknowledge, however, that the rapid pace of advancements in the
field means that some forthcoming papers (that are under review or available as preprints) may not be
covered. Nonetheless, this survey offers a curated collection of classical and reusable implementations that
serve as a solid foundation for future research and development.

Support for Reviewers and Researchers This survey is intended to help reviewers and researchers
more effectively assess the novelty of their contributions relative to prior work. After reviewing papers and
evaluating the reviews of papers on OpenReview„ we have observed that some claims of novelty in existing
research may be inadvertently inaccurate due to the rapid pace of developments and the entanglement of
task novelty and technical novelty in this area. Researchers and reviewers from the venues we specify above
might have additional interests.

For Research Engineers To support practical implementation, search procedures (Section 4) are pre-
sented in an Object-Oriented Programming (OOP) style, promoting modularity and ease of integration for
research engineers.

Anchoring Purpose Our work serves as a valuable reference in two key ways: 1) Incorporating Novel
Designs with Minimal Adjustments: During the development of this survey, we seamlessly integrated
emerging methods with minor modifications. For example, we separated single-step simulation from path
simulation in MCTS to accommodate LATS (Zhou et al., 2024a) and decoupled value-based selection from
LMPE+ or state-based evaluation to allow specialized ways to assign values, e.g., using parents’ states for
evaluation Koh et al. (2024). 2) Expanding with Additional Details: Our structured presentation of
search control flows serves as a stable anchor for integrating such complex components. Although many of
these design elements are non-trivial, our framework simplifies readers’ understanding of their integration
by using existing search process as a guiding anchor.

1.4 Limitations

We adopt Markov Decision Process (MDP) definitions to unify and compare various methods due to their
comprehensive nature. However, this formalism may feel excessive for readers focused on specific frameworks
or tasks where transition and action definitions are unnecessary. For instance, the Tree-of-Thoughts (Yao
et al., 2023a) approach could be more intuitively understood without relying on MDP foundations.

2 Task (Re)formulation

Tasks solved by LLM-integrated search are inherited from both the “LLM” side (human language tasks)
and the “search” side (structured tasks): 1) language reasoning: LLMs are naturally applied to reasoning
tasks in language (Wei et al., 2022). 2) structured tasks: On the other hand, search algorithms are more
conventionally utilized for structured tasks, such as web navigation, robotic navigation, gaming, and graph
traversal (Russell & Norvig, 2010; Sutton & Barto, 2018). The convergent nature is that all of them belongs
to sequential decision-making, e.g., reasoning often involves generating and evaluating sequences of logical
steps or decisions to arrive at a conclusion.

1Excluding ICML2025 and NeurIPS2025, which have not yet been released.
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Table 2: A unification of various tasks for LLM Inference via Search (LIS). A single benchmark may be
configured for different tasks. Therefore, the “Benchmark” column specifies each task’s benchmark alongside
the corresponding adapting frameworks (listed in parentheses).

Tasks Actions States / Ob-
servations

Transitions Rewards Action Re-
versible?

Benchmarks (Used by)

Embodied Tasks Discrete,
constrained,
heterogeneous,
state-
dependent

Discrete Normally
determinis-
tic

Rdefault: 1
if the goal is
achieved

Maybe VirtualHome (Puig
et al., 2018)(Tree-
Planner), Jericho
(Hausknecht et al.,
2020) (MC-DML)

Combinatorial
Tasks

Discrete,
constrained,
state-
dependent

Discrete Deterministic Rdefault Maybe Game-of-24 (Yao et al.,
2023a) (ToT, TS-LLM),
Chess (Wan et al., 2024)
(TS-LLM)

Web Naviga-
tions

Discrete,
constrained,
heterogeneous

Discrete,
infinite

Dynamic or
Determinis-
tic

Rdefault Maybe WebShop (Yao et al.,
2022) (Agent Q, LATS),
WebArena (Zhou et al.,
2024b) (Best-LLM)

Graph traversal Discrete,
constrained,
homogeneous

Discrete,
finite (com-
monly)

Deterministic 1 if s ∈ G Maybe GridMap (Meng et al.,
2024) (LLM-A*)

Reasoning (T
via Concatena-
tion)

Open (A
thought ex-
pressed in
one or more
tokens)

Open, un-
known until
reached
(Problem
description +
concatenated
thoughts)

Deterministic
(Concate-
nating)

1 if the
final results
= ground-
truth

✓ GSM8K Cobbe et al.
(2021) (Q*, M*,
ReST-MCTS*), Math
(Hendrycks et al.,
2021b) (Q*, ReST-
MCTS*), HotpotQA
(Yang et al., 2018)
(CPO, rStar), ToT-
Writing (Yao et al.,
2023a) (ToT)

Reasoning via
QAs

Open Open, un-
known until
reached

Dynamic
(Question
answering
then con-
catenating
Q&A)

1 if the
final results
= ground-
truth

✓ HotpotQA (Yang et al.,
2018) (rStar), GSM8K
Cobbe et al. (2021)
(RAP)

Reasoning (T
via concatena-
tions and tool
invocation)

Open Open, un-
known until
reached

Deterministic
(Concate-
nating);
dynamic or
determin-
istic (tool
invocation)

1 if the
final results
= ground-
truth

Maybe HotpotQA (Yang et al.,
2018) (LATS)

Reasoning Over
Knowledge
Graph

Discrete,
constrained,
heterogeneous

Open
thoughts
+ discrete
and finite
entity-relation
triplets

Deterministic
(Concate-
nating)

1 if the
final results
= ground-
truth

✓ WebQSP (Yih et al.,
2016) (Think-on-Graph,
Think-on-Graph 2.0)

Tool-based
tasks

Discrete,
constrained,
heterogeneous

Problem de-
scription +
concatenated
actions

Deterministic
(Concate-
nating)

1 if the
task is com-
pleted

Maybe GSM8K Cobbe et al.
(2021) (ToolChain*),
ToolBench (Xu et al.,
2023) (ToolChain*)

Code Genera-
tion

Open (A sin-
gle token)

Open, un-
known until
reached
(Problem
description +
concatenated
tokens)

Deterministic E.g., pass
rate of the
complete
program

✓ MBPP (Austin et al.,
2021) (LATS, Q*),
APPS (Hendrycks et al.,
2021a) (PG-TD)

Goal-oriented
Dialog

Discrete, con-
strained (An
intent)

A sequence
of intents,
agent/user
utterances

Dynamic 1 if the
conversa-
tional goal
is achieved

✗ PersuasionForGood
(Wang et al., 2019)
(GDP-Zero)

A MDP-Like Formulation To enable a clear comparison across different frameworks, this section for-
mulates the tasks in Markov Decision Processes (MDPs) ⟨S, A, T , R⟩. In addition, observations O are often
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considered in Partially Observable Markov Decision Processes (POMDPs) (Li et al., 2022; Zhao et al., 2023;
Hu et al., 2024):

• A set of states S, including the goal state sg;

• A set of observations O, where ot is the partial observations of the state st at time step t;

• A set of actions A, where at ∈ A is the action on st;

• Transitions T (st+1 | st, at), which define the dynamics from one state to another after executing
an action;

• Rewards R: A rewards evaluate the “quality” of a state or a trajectory towards the desired outcomes
or goals. They can be delivered in two ways: outcome rewards are provided at the end of an episode
to assess the overall quality of the final state, whereas process rewards are given throughout the
episode to reflect the quality of the agent’s behavior as it progresses.

Before introducing concrete tasks in the subsections, some necessary highlights can facilitate the understand-
ing:

• Tasks (this section) vs. search agents (The following sections): This section only discuss
task elements that are external to agents and exist independently of how agents operate or learn.
We will see in the next section how the POMDP setting fits in LMPRs and agent definitions, where
the Markovian assumption is broke.

• MDPs for both concrete and abstract domains: MDP settings are purely conceptual. They
do not need to mirror real-world states such as sensor readings, a robot’s position, or a digital image
snapshot. They also do not have to replicate actual actions like a robot arm lifting an object, a
self-driving car navigating intersections, or selecting a digital advertisement. Similarly, the feedback
mechanisms for reward shaping can differ from those in the real world, such as a thermometer’s
continuous reading or a binary success/failure indicator. Therefore, we can categorize the tasks into
concrete and abstract domains:

– Concrete domains: In tasks like recycling robot, gridworld, and chess, actions and states are
always naturally defined. They are always modeled as MDPs in the study of Reinforcement
Learning (RL) (Sutton & Barto, 2018), intelligent agents, and control theory. Commonly, a
physical environment or a rule set defines a discrete and finite action space. And states are
commonly finite and can be enumerated, e.g., all the possible configurations of chess board or
the grid areas robot can travel.

– Abstract domains: However, others, e.g., graph traversal and reasoning tasks, are not commonly
formalized as MDPs until the emergent of LLM-based agents. In particular, the MDP elements
in graph traversal and reasoning tasks are not explicit. The rest of this section mainly discusses
how the these tasks fit the following MDP notations, as summarized in Table 2.

We highlight this to prevent readers from unnecessary confusion because some task settings seem
counterintuitive.

2.1 Embodied Tasks in Text

Embodied tasks involve simulating physical interactions and spatial relationships analogous to those in the
real world. In these tasks, agents must navigate through environments, manipulate objects, and perform
other complex physical activities that result in observable changes. The simulated environments can range
from realistic household settings (e.g., AlfWorld (Shridhar et al., 2021), VirtualHome (Puig et al., 2018)) to
realms inspired by Interactive Fiction (IF) games (e.g., Minecraft (Fan et al., 2022), Jericho (Hausknecht
et al., 2020)).
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• States: A state captures the current physical configuration of the environment, detailing the posi-
tions and conditions of both objects and the agent.

• Actions: The action space is dynamic and varies based on the current state of the environment.
While identifying valid actions can be part of the agent’s job, existing benchmarks often provide a
predefined set of valid actions for each state.

• Transitions: State transitions T represent the physical changes occurring in the environment, which
are typically discernible through common sense in a single-player setting.

• Default Rewards: Rewards are typically assigned when the agent reaches a goal state g. The
default reward function Rdefault(s) follows a binary scheme: R(s) = 1 if s ∈ G (i.e., s is a goal state),
and R(s) = 0 otherwise.

2.2 Combinatorial Tasks in Text

Combinatorial tasks focus on strategic reasoning and decision-making within abstract, rule-governed en-
vironments. In these tasks, agents must explore discrete state spaces, evaluate possible moves, and plan
sequences of actions to achieve a desired outcome. The environments are defined by clear, deterministic
rules and often involve well-known games or puzzles, such as chess and the game of 24.

• States: A state encapsulates the current configuration of the game or puzzle. For example, in
chess, the state is defined by the positions of all the pieces on the board, while in the game of 24, it
represents the current arrangement of numbers and operations available.

• Actions: Actions are the discrete moves or operations that alter the state. In chess, these are the
legal moves of the pieces, and in the game of 24, they are the mathematical operations (addition,
subtraction, multiplication, division) used to combine numbers.

• Transitions: Transitions describe the evolution of the state following an action, adhering strictly
to the game’s rules. These transitions are deterministic, meaning that the same action in a given
state will always yield the same new state, as seen in the systematic progressions in chess or the
arithmetic rules in the game of 24.

• Default Rewards: Rewards are typically associated with achieving specific goals, such as winning
a game or solving the puzzle. For instance, in chess, a reward might be assigned upon checkmate,
whereas in the game of 24, the reward is granted when the target number is correctly reached.

2.3 Web Navigation

Another type of tasks is to navigate on websites for shopping and retrieving information (Zhou et al., 2024b)

• States/observations: A state/observation is normally a web page. For example, the beginning
state can be the homepage. The transition is governed by a deterministic transition function. The
state is not always accessible to the agent. For example, “st may include private information such
as database entries of the site” (Koh et al., 2024)).

• Transitions: Transitions occur when the agent interacts with webpage elements—such as clicking
links, filling forms, or selecting menu options—to move from one page (state) to another. These
transitions are governed by a deterministic function, meaning that a specific action reliably leads
to the same subsequent state, although dynamic content or session-specific data might occasionally
influence the exact presentation of the resulting page.

• Reward: A default reward function, Rdefault, is frequently employed; for example, a goal state
might be defined as successfully ordering a desired product on a website.
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2.4 Graph Traversal in MDPs

A graph traversal problem, e.g., robotic navigation, is represented as a graph G = (V, E), where V is a set
of vertices (or nodes), and E ⊆ V × V represents the transitions between them. However, this definition is
the common task settings for uninformed and informed search. However, these algorithms integrated with
LLMs can be generalized beyond this definition. This is why recent work (Yao et al., 2023a) that uses these
search algorithms along with LLM often uses MDP terminology, but does not include formal unification.
Hence, we propose a conceptual framework that views graph traversal as a simplified, deterministic form
of an MDP, where actions and transitions are predefined by the graph structure. This framework can be
described as follows:

• States: Each node v ∈ V is a state.

• Actions: Actions are represented by edges E. The action space is generally considered homogeneous
because the type of action is uniform, such as “MOVE[arg]”, where “[arg]” represents parameters
like direction or target node.

• Transitions: Following an edge from a node s via an action (edge) (s, s′) ∈ E always leads to the
same node s′. Hence, the transitions T are deterministic.

• Rewards: Besides the default one, an estimated cost-to-go from node s to a goal node g ∈ G can be
defined for process rewards in the MDP formulation. This is explicitly defined in A* as a heuristic
guiding the search

As best as we know, this conceptualization is not explicitly stated in any peer-reviewed literature.

2.5 Language Reasoning in MDP

The formulations of language reasoning tasks are more diverse and creative. Although not exhaustive, the
following paragraphs summarize forms that are particularly used in the current study of LLM-integrated
search.

Reasoning (T via Concatenation) A reasoning process can be concretized as a Chain of Thoughts
(CoT) T1, T2, . . . (Wei et al., 2022), each expressed as a sequence of tokens via LLM generation. Reasoning
steps can evolve naturally, ranging from a single word to a full sentence (Zhang et al., 2024a). However,
ensuring clear semantics for each step remains a challenge. Alternatively, these steps can be explicitly
defined. For instance, in creative writing, the first step can be specified as planning, and the second step
is to generate according to the plan (Yao et al., 2023b). Following previous work (Li, 2024; Wang et al.,
2024a), the MDP formulation includes:

• Actions: An action is a thought consisting of several tokens, i.e., a1 = T1.

• States: The initial state s1 is defined by the task information, e.g., a user query, a problem descrip-
tion or the goal. The following states are defined as the concatenation of the following thoughts:

st = (st−1, at−1) = (s1, a1, . . . , at−1) (1)

Apparently, directly concatnenating open actions leads to the open state space. When the reasoning
is naturally evolved, the final state sg comes when the final thought Tg or the entire chain expresses
a valid response. It can be known in which step sg is reached for deliberate reasoning steps.

• Transition: The deterministic state transition is defined for reasoning tasks. The next state st+1
is equal to the concatenation of st and at.

• Rewards: An outcome reward is given when the final answer matches the ground truth and fits in
human preference.

8



Under review as submission to TMLR

Reasoning via QAs Some other works deliberately formulate an action space. A given task is decomposed
into sequentially dependent subtasks (actions) requiring an Execute function, which relies on LLMs to solve.
In other words, LLMs can be considered as transitions. Recent work on LLM search formulates a subtask
as a question and use LLMs to answer the question. These subtasks (i.e., actions) can be generated all at
once (Zhou et al., 2023) or in sequential order (Hao et al., 2023), each can be defined as an action at. st

is the concatenation of the task information s0 and all the questions already answered with their answers:
question1, answer1, . . . , questiont, answert.

Reasoning (T via Concatenation and Tool Invocations) Once tool definitions are given to LLMs.
During reasoning, LLMs can generate specific tokens to invoke tools. This integration of tool invocation into
reasoning is firstly proposed by ReAct Yao et al. (2023b) and recently adapted to the LIS framework (Zhou
et al., 2024a). Based on the definitions for Reasoning (T via Concatenation), the following things are added:

• Actions: Tool-related actions are commonly discrete and constrained. For example, when Wikipedia
is used, the possible actions include search[arg], lookup[arg]. Although not always, most works on
LLM tool use only include the reading-only actions, the actions are reversible.

• Transitions: Due to the change of the action space, the transitions can be either dynamic or
deterministic, depending on the tools.

• States: a state now concatenates not only the LLM generation but also tool responses. More-
over, LLM generation is not only about the direct thoughts for tasks but also the actions for tool
invocations.

st = (s1, a1, o1, . . . , at−1, ot−1) (2)

Reasoning Over Knowledge Graph Before defining reasoning over a knowledge graph, we clarify why
this task is distinct from both graph traversal and reasoning under tool invocations.

• Not a Tool Invocation: In reasoning under tool invocations, LLMs autonomously decide whether
to use external tools. In contrast, a knowledge graph is an integral part of the task environment on
which the LLM agent operates.

• Different from Graph Traversal: In typical graph traversal tasks, the graph directly models
a visible or observable world. A knowledge graph, however, is a carefully designed structure that
captures heterogeneous semantic relationships between entities or concepts.

We now define the task of reasoning over a knowledge graph:

• States: In graph traversal, each node v ∈ V represents a state. In this context, the state is
composed of all explored nodes (entities) and their interrelationships, which collectively inform
subsequent decisions and the final outcome. Additionally, any relevant LLM-generated knowledge
that contributes to these decisions is incorporated into the state.

• Actions: The action space consists of exploring new relations and entities within the knowledge
graph, as well as generating new knowledge through LLM outputs.

• Transitions: A transition deterministically concatenates the new information (e.g., a discovered
relation or entity) with the existing state, reflecting the edge (s, s′) ∈ E between the current state
and the new information.

• Rewards: Rdefault is used by default.

9
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2.6 Tool-Based Tasks in MDP

Unlike language reasoning under tool invocations, where tools are optionally provided and agents au-
tonomously decide whether to use them, this kind of tasks inherently requires tool invocation. For example,
an agent may need to clean a room using APIs designed for a robotic arm or send an email using an email
API.

• Actions: An action is formalized using predicates and arguments, e.g., Pick_Up[Apple]. Since
predicates can have various definitions, the action space is both discrete and heterogeneous.

• States and Transitions: The definitions of state and transition remain the same as in language
reasoning (T via concatenation), while the properties of actions are different,. Specifically, the initial
state s1 is the given task description, and subsequent states are obtained by concatenating s1 with
actions from previous steps, as expressed in Equation 1.

• Rewards: Rdefault is normally used by default.

2.7 Code Generation in MDP

This is similar to language reasoning under Deterministic T via Concatenation. The only difference is that
an action is a token in the vocabulary set of the LLM (rather than a thought consisting of several tokens).
Such definition is originally proposed by Zhang et al. (2023). Under their definition, “the reward of state s
is the pass rate of the program on the public test cases. The reward of a partial program is always 0.”

2.8 Goal-Oriented Dialog in MDP

Previous work (Wang et al., 2020) frames goal-oriented dialog as MDP. Yu et al. (2023) begin using such
formulation for LLM-integrated search. The formulation is demonstrated below.

• Actions: An action a ∈ A indicates the intent, which is predefined. For example, the intent to
convince the Persuadee using reasoning and factual evidence is defined as “Logical Appeal”. This is
commonly termed “dialog act” (Wang et al., 2020).

• States: st is defined as the dialogue history of previous t turns, containing dialog act and agent/user
utterances

h =
(

aagent
0 , uagent

1 , uusr
1 , . . . , aagent

t−1 , uagent
t , uusr

t

)
(3)

, where uagent
i , uusr

i are the utterances of the agent and user, respectively at the i−th turn.

• Transitions: The state is updated according to stochastic responses from the user uusr
i (Wang et al.,

2020)

• Rewards: it represents the immediate feedback of a desired conversational outcome, such as in-
process, success, or failure of persuading a user to donate to a charity

2.9 Discussion

Accessibility of Action-State Transition In environments under deterministic transitions (e.g., dialog,
code generation), the next state s′ can be directly derived based on the selected action. In a dynamic
environment, s′ can be either sampled over the probability distribution or generated from lmprtransition.
Section 4 will demonstrate how this property affects search procedures.

Overhead of Using MDP Definition Although the comprehensive definition provides a unified interface
to discuss LIS frameworks, it increases the overhead when applied to graph traversal tasks, since several
defining characteristics of an MDP are not necessary, e.g., state transitions and explicit definitions of actions.

10
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Why Is There No Previous Work Defining Reasoning Tasks as MDPs? Typical MDPs are often
defined for decision-making models which can only handle the tasks whose action space is constrained and
finite. However, general-purpose models like LLMs naturally deal with infinite or/and hard-to-define action
space, since LLMs can infer plausible actions with world knowledge and commonsense.

Do Tasks Enable Action Undoing and State Back-Up? Some environments allow going back up to
an earlier step after executing a sequence of actions (e.g., reasoning tasks), while other tasks may not (such
as robotic tasks). This property is particularly important to discuss the applicability of LLM-integrated
search methods. For environments under such property, the LIS agent can feel free to simulate future states
for planning without worrying that the change of environments is irreversible. Details will be discussed in
§ 5).

3 LLM-Profiled Roles

Following standard reinforcement learning terminology (Sutton & Barto, 2018), an agent designed to solve
Markov Decision Processes (MDPs) typically incorporates the following components:

• Policy π(at | g, st): Determines the action at to take given the current state st.

• Value Function V π(s) 7→ R: Estimates the expected return of state s under policy π.

• Transition Model T (st+1 | st, at): Represents the dynamics of the environment, predicting the
next state st+1 given the current state st and action at.

These definitions are broadly applicable across different agent designs. In this work, we adapt them to
LLM-based search and focus on how to profile LLMs to work as/for these agentic components.

Background of LLM-Profiled Policy, Evaluator and Transition Model This section outlines the
implementation of the three core components using three types of LMPRs. These roles are defined by Li
(2024) as the LLM-profiled policy (lmprpolicy), evaluator (lmpreval), and transition model (lmprtransition).
For brevity, these notations are commonly adopted throughout this work.

While prior studies such as Spiegel et al. (2024) and Feng et al. (2024) explored these LMPRs primarily
in theoretical contexts and toy environments for reinforcement learning, this section extends these ideas by
presenting detailed implementations in real-world tasks.

Presentation of Prompting Examples To illustrate how LLMs are configured for different LMPR
roles, we provide prompting examples throughout the paper. Model outputs are visually distinguished using
shadow boxes for clarity. For example:

An output from LMPR

To maintain brevity, placeholders enclosed in angle brackets (e.g., <demos> for few-shot demonstrations and
<task desc.> for task descriptions) are used to represent verbal components within prompts.

3.1 LLM-Profiled Policy (LMPP)

This section introduces three types of LMPPs. A deterministic policy maps each state directly to a specific
action, while a stochastic policy assigns a probability distribution over actions ∈ Acandidate, where Acandidate
may be fixed or change based on the current state st. Lastly, a batch policy produces multiple candidate
actions at each time step. While various types of information can be provided in the LLM prompt, the
verbalized observation ot is always mandatory.

11
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Table 3: Types of LLM-profiled policy. Note that what we really require is only at. N : sample size; T :
length of action sequence.

Type Outputs Example Works

Deterministic at Xie et al. (2023), ReAct (Yao et al.,
2023b)

Batch a1
t , a2

t , . . . , aN
t Yao et al. (2023a), Jacob et al.

(2024)

Stochastic Probability Distri-
bution over all the
actions ∈ Acandidate

MC-DML (Shi et al., 2025)

Deterministic LMPP This paragraph introduces three types of deterministic LMPPs:

• Naive LMPP (lmppnaive): An LLM is directly prompted to generate the next action at.

• Reasoning LMPP (lmppreasoning): To generate at, the LLM first produces a complete reasoning
path that explains or justifies the generation of at. The reasoning path serves as an explicit interme-
diate step, enhancing interpretability and illuminating the decision-making process for at. Finally,
at is extracted and parsed.

• ReAct LMPP (lmppreact): In contrast to lmppreasoning, lmppreact separates the reasoning step
and the action-generation step into distinct LLM inference passes. Each pass corresponds to an un-
interrupted generation session. The reasoning text may include a planning path (e.g., ãt+1, . . . , ãT ),
but only ãt is used for search. Another distinguishing feature is the more autonomous behavior of
this policy, which does not strictly adhere to a fixed reasoning-then-acting sequence. Instead, it
can dynamically alternate between reasoning and acting steps, such as reasoning-acting-acting. For
example:

Your task is to: put a cool tomato in microwave.
>

think: To solve the task, I need to find a tomato, then cool it with the fridge, and
finally put it in the microwave. <more thoughts>

OK.

> go to countertop 1

<observation>

> go to countertop 2

Prompting Example 1

The term “react” is attributed to the work of ReAct (Yao et al., 2023b). However, in their formula-
tion, each thought is not explicitly treated as an action; instead, only tool invocations are considered
actions in reasoning tasks. This distinction highlights the broader applicability of lmppreact in our
definition.

Stochastic LMPP (lmpps)

12
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• Logit-based LMPP (lmpps
logit): Leveraging model logits to capture uncertainty is a long-

established technique in machine learning (e.g., logistic regression). In language models, the logits
over the vocabulary can be converted into a probability distribution over a set of verbalized actions.

• Verbalized LMPP (lmpps
verbalized): As shown by Lin et al. (2022), LLMs can “learn to express

uncertainty about its own answers in natural language,” enabling the probability distribution to be
directly generated through prompting.

• Self-consistency (lmpps
sc): This approach involves sampling multiple trajectories from an LLM

and computing self-consistency scores (Wang et al., 2023) by counting the frequency of each outcome,
which is then normalized to form a probability distribution.

Batch LMPP (lmppbatch) A batch LMPP generates multiple actions simultaneously.

1. lmppbatch1: In this variant, one inference generates multiple candidate actions in text form, with
candidates separated by a special token for subsequent extraction. As noted by Yao et al. (2023a),
this avoids duplication in constrained action spaces, such as selecting a word in a crossword puzzle.
By leveraging a global view of the action space, lmppbatch1 improves efficiency of LLM inference and
coherence in tasks.

2. lmppbatch2: This variant leverages a stochastic LMPP to generate a probability distribution across
a set of candidates. Actions are then sampled directly from this distribution.

3.2 LLM-Profiled Transition Model (LMPT)

Transition models are especially beneficial in dynamic environments, while in deterministic settings, where
transitions are predictable or actions easily reversible, their utility is limited. lmprtransition predicts outcomes
according to LLMs’ internal knowledge. The profiling can be categorized as generating: 1) Full state: The
final goal is to return a full state/observation at the current step, as exemplified in Example 2 from Hao
et al. (2023).

<profile information>
[STATE 0] I have that, the white block is clear, the cyan block is clear, <more detail>
[ACTION] Pick up the brown block.
[CHANGE]

The hand was empty and is now holding the brown block, the brown block was on
the table and is now in the hand, and the brown block is no longer clear. [STATE 1]
I have that, the white block is clear, the cyan block is clear, <more detail>

Prompting Example 2

2) Partial observation: The partial observation would be further processed to form the full state. One
obvious task is reasoning via QAs.

Given a question, please decompose it into sub-questions. For each sub-question, please
answer it in a complete sentence, ending with "The answer is". When the original question
is answerable, please start the subquestion with "Now we can answer the question:
<few shot demos>
Question 1: James writes a 3-page letter to 2 different friends twice a week. How many
pages does he write a year?
Question 1.1: How many pages does he write every week?

13
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Answer 1.1: James writes a 3-page letter to 2 different friends twice a week, so he
writes 3 * 2 * 2 = 12 pages every week. The answer is 12.

Prompting Example 3

Table 4: LLM-profiled evaluators lmpe. The columns of “V ?” and “Q?” indicate whether the LMPE
configuration can work as state value function and action value function, respectively.

Prompting Tasks Outputs V? Q? Example Works

lmpe1 Binary/Multi-
class
Classification

Discrete values
mapped by LLM
generations

✓ ✓ RAP (Hao et al., 2023), ToT (Yao
et al., 2023a), Koh et al. (2024),
LATS (Zhou et al., 2024a)

lmpe2 Binary/multi-
class Classifica-
tion

Logits of LLM genera-
tions

✓ ✓ RAP (Hao et al., 2023), Tree-
BeamSearch (Xie et al., 2023)

lmpe3 Multi-choice QA Choices of top-N ac-
tions

✗ ✓ ToT (Yao et al., 2023a), Think-on-
Graph (Sun et al., 2024)

lmpe4 Classification (Im-
plicit)

Logits of given contin-
uation

✗ ✓ RAP (Hao et al., 2023)

lmpe5 Multi-choice QA Logits of given contin-
uation (choices)

✓ ✗ Kadavath et al. (2022), Xie et al.
(2023)

lmpe6 Scoring Generated continuous
scores

✓ ✗ Think-on-Graph (Sun et al., 2024)

lmprpolicy&eval1 NA Logits of policy gener-
ations

✗ ✓ RAP (Hao et al., 2023), Tree-
BeamSearch (Xie et al., 2023)

lmpeverbalize Episode Evalua-
tion

Free-form text NA NA Reflexion (Shinn et al., 2023), MC-
DML (Shi et al., 2025)

lmprpolicy&eval1 NA Logits of policy gener-
ations

✗ ✓ RAP (Hao et al., 2023), Tree-
BeamSearch (Xie et al., 2023)

lmprpolicy&eval2 NA Self-consistency scores
of policy generations

✗ ✓ LATS (Zhou et al., 2024a), rStar
(Qi et al., 2025), ToolChain*
(Zhuang et al., 2024),

lmprpolicy&eval3 NA Consistency of policy-
generated steps and a
candidate plan

✓ ✗ LLM-A* (Meng et al., 2024)

lmprpolicy&eval4 NA Q-Values based on a
strong lmpp

✗ ✓ Q* (Wang et al., 2024a)

lmprtransition&eval1 NA Logits of lmpt genera-
tions

✓ ✗ RAP (Hao et al., 2023)

lmprtransition&eval2 NA Logits of lmpt genera-
tions

✓ ✗ /

3.3 LLM-Profiled Evaluator (LMPE)

LLMs can serve as flexible evaluators (LMPEs) by leveraging their generative and probabilistic capabilities.
We propose categorizing these evaluators along three key dimensions:

• Task Formulation: Whether the evaluation is a binary classification, multi-choice QA, or a free-
form judgment influences how the LLM’s output or logits can be interpreted. These tasks are always
formulated in LLMs’ system-level prompts.

• State vs. Action vs. Episode Evaluation: This is analogous to state/action-state value func-
tions in reinforcement learning. Depending on whether the evaluator is assessing a static state st
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or a transition (st, at), the LLM must parse different context inputs to provide a valid judgment.
Another evaluation target is the cross-trial episode (i.e., a sequence of actions leading to a terminal
state ) (Shinn et al., 2023; Shi et al., 2025).

• Output Types: Unlike lmpp or lmpt, the output of an evaluator lmpe can produce not only
text-based outputs (continuous text or discrete labels or free-form text) but also raw logits and
self-consistency scores. This flexibility allows for nuanced scoring and confidence measurement that
can be mapped to discrete classes or continuous values.

• Use of Reasoning: As LMPPs, some reasoning techniques can be generalized to LMPEs.

As summarized in Table 4, various works have shown that LLMs configured under these dimensions can
support diverse evaluation goals. The paragraphs below illustrate the four dimensions through concrete
prompts and output examples.

Task Formulations Three types are commonly used for evaluation. 1) Binary/Multi-class Classifi-
cation: As shown below, a prompt can explicitly request a binary judgment, e.g., yes/no or failure/success:

<prompt>

Status: “failure”

Prompting Example 4

In some cases, more fine-grained judgments are required with multiple labels. For example, the “status” tag
is defined for LMPE to indicate partial successes in Koh et al. (2024):

<prompt>

Status: “failure”
On the right track to success: “yes”

Prompting Example 5

This can be considered as multi-class classification, where “yes” yields an intermediate class. A more direct
multi-class classification is specified in the example below, where the prompt assesses whether a given set of
numbers can reach 24:

Evaluate if given numbers can reach 24 (sure/likely/impossible)
10 14
10 + 14 = 24
sure

1 3 3

1 * 3 * 3 = 9
(1 + 3) * 3 = 12
1 3 3 are all too small
impossible

Prompting Example 6

15



Under review as submission to TMLR

2) Multi-choice QA: This is often advantageous when directly scoring an action/state is difficult to compute
in contrast to comparing multiple candidates. For example, it is difficult to judge whether a give passage is
coherent, while it is easy to judge whether Passage A is more or less coherent than Passage B. Another way
is to implicitly compare different solutions via voting through self-consistency scores of lmpp, which belongs
to the next formulation type. 3) Scoring: A continuous score is given for each candidate option. Example 7
demonstrates how to prompt LLMs for scoring in the task of reasoning over a knowledge graph.

Please rate thee contribution of the relations on a scale from 0 to 1 (the sum of the scores
of the relations is 1)
Q: <Query>
Topic Entity: <Topic Entity>
Relations: <list of relations> Prompting Example 7

4) No Explicit Evaluator Definition: Evaluation can be inferred from the lmpp’s generative process
itself. In such cases, no separate system-level prompt is required for task formulation. Likewise, lmpt can
be used for evaluation. This LLM-based evaluation will be detailed from the perspective of output types.

State vs. State-Action Function 1) State-Value Evaluator: A state-based evaluator accepts st as
its input to produce a judgment:

discrete judge = lmpe(st) (4)

Example 6 is one of the example. 2) State-Action Evaluator: the evaluator assesses whether taking
action at is appropriate at the current state st:

discrete judge = lmpe(st, at) (5)

This setup is exemplified in Example 10, where the new sub-question (at)’s usefulness depends on the prior
state (st). Below is another example of BlocksWorld (Slaney & Thiébaux, 2001):

[STATE]
As initial conditions I have that, the blue block is clear, the orange block is in the hand,
the red block is clear, the hand is holding the orange block, the red block is on top of the
yellow block, the blue block is on the table, and the yellow block is on the table. My goal
is to have have that the red block is on top of the yellow block and the orange block is on
top of the blue block.
[ACTION]
stack the orange block on top of the red block
[EVALUATION]

bad

Prompting Example 8

The prompting format is adapted from Hao et al. (2023).

Outputs Finally, the outputs of lmpe can take one of several forms, depending on how we wish to interpret
or utilize the evaluator’s opinion:

1. Mapping lmpe generation to discrete values: For instance, “impossible” or “Yes” may be
mapped to numeric scores (0 or 1) in Quotes 6 and 10.

2. Using logits of lmpe: The probability of generating a specific token (e.g., “impossible”) can serve
as the confidence score.
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3. Using logits of given continuations: Rather than having the LLM generate the evaluation tokens,
one can provide the exact sequence to be evaluated (e.g., “good” in Quote 8 or “(A) good”). The
log probability of each token is then summed to indicate how well (i.e., how confidently) the model
“accepts” that evaluation in the given context. A higher cumulative log-likelihood suggests that the
LLM finds the provided evaluation more plausible. Moreover, multiple predefined options (e.g., “(A)
Correct” vs. “(B) Incorrect”) can be separately fed in as continuations. The log probabilities of
each option can then be compared as self-evaluation scores (Xie et al., 2023; Kadavath et al., 2022).

4. Using logits from lmpp or lmpt: Alternatively, the evaluation can be derived from the policy
or transition model’s token probabilities. This method can avoid additional inference steps by
reusing existing logits. However, the fundamental flaw is that when multiple plausible answers exist,
individual logits can be low even if overall confidence in the correct answer set is high (Lin et al.,
2022).

5. Using self-consistency scores based on lmpp or lmpt: By sampling multiple trajectories (or
states) from an LMPP (or LMPT) via self-consistency (Wang et al., 2023), one can gauge confidence
via how often a particular action (or state) appears. More frequent outcomes can be assumed more
likely (or better). One challenge is how to distinguish different outcomes. For example, Zhuang et al.
(2024) fine-tune a natural language inference (NLI) model to distinguish the generated actions. Note
that the logits from the LMPP or the self-consistency scores based on the LMPP ultimately converges
to the probability distribution of a stochastic LMPP.

6. Comparing consistency of lmpp-generated steps and candidate states: The actions/plan
generated by actions can be compared to the candidate for evaluation. This is suitable for tasks
with limited successor states.

7. Comparing Consistency of lmpp-Generated Steps and Candidate States: The actions or
plans produced by the policy can be compared against candidate states to assess consistency. This
approach is particularly suitable for tasks with a limited number of successor states, e.g., sovling a
maze (Meng et al., 2024).

8. Using a Stronger lmpp as a Proxy Optimal Policy to Approximate Q-Values: When
rewards are only obtained at the terminal state, the Q-value can be approximated by discounting
the rewards along the path. This approach assumes that all subsequent actions are optimal, which
necessitates the use of a more robust lmpp as a proxy for the optimal policy.

Use of Reasoning Similar to lmppreasoning, a reasoning process can be required before generating the final
judgment. This reasoning process provides a logical justification to augment the evaluation. For example:

<prompt>

Thoughts: <your thoughts and reasoning process>
Status: “failure”

Prompting Example 9

3.4 Discussion

Inference Cost of lmpp In practice, the overall computational cost follows the pattern

lmppreact > lmppreasoning > lmppnaive.

The gap between lmppreasoning and lmppnaive arises from the additional output tokens produced for reasoning.
More importantly, when commercial API is used, lmppreact exhibits an even higher cost because each separate
reasoning or action-generation pass is effectively stateless with respect to the cached K–V pairs from previous
passes, thereby preventing token-reuse optimizations.
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Applicability of lmppreact. A central requirement for ReAct-style prompting (lmppreact) is the avail-
ability of step-wise observations after each action. This imposes two prevalent scenarios:

1. Tasks relying on simulators: When direct interaction with the real environment is impractical
(e.g., actions on tasks are irreversible), a simulator can be substituted to generate the observation
following each action. For instance, an LLM-based simulator (lmpt) might use commonsense knowl-
edge to model environmental responses (e.g., turning on a water tap in a sealed sink). However,
such simulators are unsuitable for tasks involving external or private data—like querying proprietary
databases or retrieving up-to-date information—since an LLM’s internal knowledge typically cannot
replicate these data sources.

2. Action-reversible tasks. Certain problems can be retried or backtracked, allowing the agent to
iteratively act, observe, and refine its actions, as discussed in Section 2. In Section 5, for exam-
ple, LLM-based search frameworks such as LATS (Zhou et al., 2024a) leverage this property when
interacting with real environments across multiple search steps to perform monte-carlo simulation.

Risk of lmpe Although lmpe can effectively evaluate state or action quality, two challenges stand out:

1. Mediocre discrimination abilities: As shown by Chen et al. (2024b), using logits as dense re-
wards (e.g., in lmprpolicy&eval or lmprtransition&eval) can reveal that many open-source LLMs struggle
to reliably distinguish “good” from “bad” examples.2

2. In-Context Reward Hacking (ICRH): According to Pan et al. (2024), an LLM evaluator (lmpe)
may attempt to “explain away” negative feedback by globally altering its reasoning and actions,
potentially violating constraints. For example, to fix an InsufficientBalanceError, the LLM
might suggest unauthorized money transfers from other accounts, thus compromising safety or policy
compliance.

Not All Generation with “Reasoning” is Truly Augmented. By design, LLMs generate tokens in
an auto-regressive manner, meaning earlier tokens are not influenced by later ungenerated tokens. Hence,
although reasoning tokens after actions (or evaluation) can make the model outputs more interpretable, they
do not always alter subsequent decisions or evaluations. In Xie et al. (2023), for instance, a chain of thoughts

at, ãt+1, . . . , ãT

is produced, where ãt+1, . . . , ãT are “unrecorded” actions. Crucially, at is unaffected by any future ã tokens,
making this effectively a naive policy rather than a true reasoning-augmented approach.

Similarly, consider the evaluator in Example 10:

Given a question and some sub-questions, determine whether the last sub-question is useful
to answer the question. Output ’Yes’ or ’No’, and a reason.
Question 1: Four years ago, Kody was only half as old as Mohamed. If Mohamed is
currently twice as 30 years old, how old is Kody?
Question 1.1: How old is Mohamed?
Question 1.2: How old was Mohamed four years ago?
New question 1.3: How old was Kody four years ago?
Is the new question useful?

Yes. We need the answer to calculate how old is Kody now.

Prompting Example 10

Although the model’s output includes a short “reason,” that intermediate reasoning does not necessarily
inform the generation of ‘Yes’ or ‘No’.

2GPT-4 turbo was the most advanced model at the time of evaluation.
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Table 5: Examples of combining LLM-Profiled Evaluators with heuristics. ∥s = sg∥1 indicate whether the
agent reaches the goal state at s.

Task Value
Reasoning-QA in RAP (Hao et al., 2023) lmpe1 + lmprpolicy&eval1

Game (Blockworld) in RAP (Hao et al., 2023) lmpe4 + lmpe2 + ∥s = sg∥1 (weights ig-
nored)

Graph traversal in LLM-A* (Meng et al., 2024) Euclidean distance to the next state + llme
Reasoning in Xie et al. (2023) lmpe5 + lmprpolicy&eval1

Reasoning-QA/Code Gen/Web Nav. in LATS
(Zhou et al., 2024a)

lmpe + lmprpolicy&eval2

4 Search Procedures

This section presents the reusable search procedures applied across various frameworks, including both non-
LMPR-specific and LMPR-based procedures. Unlike Section 3, which focused on configuring LMPRs, here
we demonstrate how these LMPRs are integrated into the operational processes. However, some content
may overlap slightly for coherence. Table 6 summarizes the dependencies between these search procedures
and the LMPR components.

Table 6: Overview of dependencies in search procedures. Sampl.: Sampling; Exp.: Expansion; Eval.:
Evaluation; Sel.: Selection; Sim.: Simulation; Backprop.: Backpropagation.

(a) Dependency of first-order procedures on LMPRs.

LMPP LMPE LMPT
LMPP Sampl. ✓ ✗ ✗

LMPE+ Eval. ✗ ✓ ✗

LMPT Sim. ✗ ✗ ✓

Multi-Choice LMPE Sel. ✗ ✓ ✗

Single-Step UCT Sel. ✗ ✗ ✗

Single-Step PUCT Sel. maybe ✗ ✗

Exhaustive Action Retrieval ✗ ✗ ✗

(b) Dependency of higher-order procedures on LMPR-based, first-order procedures.

LMPP Sampl. LMPE+ Eval. LMPT Sim.
Value-Based Sel. ✗ maybe ✗

LMPP Exp. ✓ ✗ maybe
Path Sim. ✓ maybe maybe
MCTS Sel. ✗ ✗ ✗

MCTS Backprop. ✗ ✗ ✗

Search Nodes: Integrating States, Action, and Rewards In this section, we shift our focus to search
and clarify how the fundamental search “node” is defined with respect to states and actions. Some methods
(e.g., ToT (Yao et al., 2023a)) treat a node as a particular state in a search tree, with transitions determined
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by the actions taken. To ensure generality, we unify states, actions, and even their estimated values (or
rewards) in a single node structure (e.g., RAP (Hao et al., 2023)), facilitating partial expansions or multi-
step lookahead. To align with object-oriented design, we represent a node as n with attributes n.action,
n.state, n.parent, and n.val , representing the action, state, parent node, and value, respectively.

4.1 First-Order Procedures

First-order procedures operate independently, without relying on other procedures. They serve as the foun-
dational components upon which more complex procedures are built, ensuring a modular and scalable frame-
work for LLM-based search operations. The first three are based on LLM-Profiled Policy (LMPP), evaluator
(LMPE), and transition model (LMPT), respectively, while others not necessarily depend on LMPRs.

LMPP Sampling The sampling procedure involves generating multiple actions (assuming N actions) for
a given state st. Generally, there are two approaches to sampling actions: one based on generating actions
sequentially using the single-action policy (lmpp), and another based on generating all actions simultaneously
using the batch policy (lmppbatch). These approaches are detailed in Procedures 1 and 2, respectively.

Procedure 1 LMPP Sampling: Sample Actions One at a Time
1: procedure Sample_LMPP_One_At_A_Pass(st, N)
2: at ← {}
3: for i ∈ {1, . . . , N} do
4: ai ∼ lmpp (a | st)
5: at ← at ∪ {ai}
6: end for
7: return at

8: end procedure

Procedure 2 LMPP Sampling: Sample All Actions at Once
1: procedure Sample_LMPP_All_At_Once(st, N)
2: at ∼ lmppbatch (a | st, N)
3: return at

4: end procedure

LMPE+ Evaluation LMPEs can be used to estimate the value (or reward) of a state. The evaluator’s
output—whether in textual or numerical form—can then be combined with rule-based heuristics to refine
the overall assessment. For instance, Table 5 illustrates how numeric outputs from LMPEs are incorporated
into a heuristic that balances both LLM-based scoring and domain-specific constraints. Such integrated
approaches are particularly relevant when neither pure heuristic nor pure LLM-based evaluation alone is
sufficient for robust decision-making. Based on the input, the procedure can be defined as V_Eval for
taking a state as input and Q_Eval for taking both a state and an action as input.

Multi-Choice LMPE Selection lmpe5 (an LLM profiled for multiple-choice tasks) can be leveraged for
top-k selection to directly select K nodes.

Procedure 3 TopK Selection via lmpe5
1: procedure TopK_Select_lmpe(N, k)
2: A← {n.action | n ∈ N} ▷ Extract actions from each node in N
3: A∗ ← lmpe5(A, k) ▷ Select the top k actions from A
4: N∗ ← {n ∈ N | n.action ∈ A∗} ▷ Return nodes corresponding to the selected actions
5: return N∗

6: end procedure

20



Under review as submission to TMLR

Single-Step UCT Selection The objective of Upper Confidence Tree (UCT) selection is to choose an
action that balances exploitation and exploration. This is captured by the UCT formula:

UCT (s, a) = Q(s, a) + c

√
ln N(s)

N(c(s, a)) , (6)

where c is a constant controlling exploration, N(s) is the number of times state s has been visited, and
N(s, a) is the number of times action a has been selected under s. A related variant, Predictor Upper
Confidence Tree (PUCT), incorporates the prior probability P (s, a) into the exploration term to further
guide the action selection. P (s, a) can be implemented by a stochastic LMPP.

PUCT (s, a) = Q (s, a) + cP (s, a)
√

N (s)
1 + N (s, a) (7)

P (s, a) is normally a domain-specific predictor. Based on the two estimates, the procedure is just to iterate
over the given actions A, along with their values Q, and extract the one with the highest value, as summarized
in Procedure 4.

Procedure 4 Single-Step UCT Selection
1: procedure UCT_Select(s, A)
2: a∗ = arg maxa∈A [UCT(s, a)]
3: end procedure
4: procedure PUCT_Select(s, A)
5: a∗ = arg maxa∈A [PUCT(s, a)]
6: end procedure

LMPT Simulation This procedure is straightforward: given the current state st and an action at, the
LMPT directly outputs the next state st+1. Unlike LMPP sampling (which may loop through multiple
actions) or LMPE+ Evaluation (which may incorporate additional heuristics), no further processing or
components are involved.

Exhaustive Action Retrieval When the action space is small and well-defined (e.g., in BlockWorld), all
possible actions can be retrieved exhaustively. This procedure is primarily used to facilitate the subsequent
expansion or simulation steps.

4.2 Higher-Order Procedures

Value-Based Selection The first type is top-k selection. The top k states or actions are picked from a
large pool of candidates based on their estimated values. A state-value function V (s′) or an action-value
function Q(s, a) is used to generate values. Commonly, they are implemented by LMPE+ evaluation. The
detail is illustrated in Procedures 5.

Procedure 5 Value-Based TopK Selection
1: procedure TopK_Select(N, k, ValueFunc = NA)
2: for each node n′ ∈ N ′ do
3: if ValueFunc ̸= NA and n′.val is uninitialized then
4: n′.val← ValueFunc(n′.state)
5: end if
6: end for
7: N∗ ← arg topk

{
n′.val | n′ ∈ N ′}

8: return N∗

9: end procedure
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Once k = 1, the arg topk

{
n′.val | n′ ∈ N ′} reduces to arg maxn′∈N ′ n′.val. Note that the if statement

for value assignment also allows specialized ways to assign values without necessarily relying on n′.state.
This is particularly prepared for Monte-Carlo Tree Search (MCTS), where Q values are accumulated during
backpropagation.

Another type is threshold-based selection. Here, the procedure repeatedly samples one action from the
current node’s state, simulates the new state, and evaluates its value. If the value surpasses a threshold θ,
the procedure returns the newly created node; otherwise, it continues sampling.

Procedure 6 Value-Based Threshold Selection
1: procedure ThresholdSelect(n, θ)
2: while true do
3: a← Sample_Action(n.state)
4: s′ ← Simulate(n.state, a)
5: v ← ValueFunc(s′)
6: if v ≥ θ then ▷ Value exceeds threshold; accept this node
7: Instantiate a new node n′

8: n′.state← s′

9: n′.action← a
10: n′.val← v
11: return n′

12: end if ▷ Otherwise, continue sampling another action
13: end while
14: end procedure

LMPP Expansion This expansion procedure adds one or more child nodes under the given leaf node(s),
typically visualized at the next depth level in a tree search. The procedure is based on the following
components:

1. LMPP Sampling: This step provides the n.action attribute for each node, while leaving n.state
and n.val uninitialized.

2. Simulating States Based on Sampled Actions: To enable further expansion, the node’s state
(n.state) must be generated. This can be accomplished via simulators (e.g., using LMPT simulation),
direct action execution, or even hard-coded methods (e.g., simply concatenating actions).

3. (Optional) Expanding Multiple Nodes Simultaneously: In many search strategies (such
as beam search with a beam size greater than 1 or breadth-first search), multiple leaf nodes are
expanded concurrently.

A general form of the expansion procedure is specified in Procedure 7.

Procedure 7 Expansion
1: procedure Expand_LMPP(Nt)
2: Nt+1 ← {}
3: for each node nt ∈ Nt do
4: At ← Sample_LMPP(nt.state, k)
5: for each action at ∈ At do
6: Instantiate a new node nt+1 with nt+1.action← at

7: nt+1.state← Simulate(nt.state, at)
8: Nt+1 ← Nt+1 ∪ n
9: end for

10: end for
11: return Nt+1
12: end procedure
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Here, Sample_LMPP refers to Procedure 1 or Procedure 2. The total number of Nt+1 equals the product
of the number of nodes in Nt and the number of actions k sampled per node.

Path Simulation

• Sampling: At each step, actions Acandidate are sampled from the current state using either LMPP
sampling or a random sampling method or a uniform sampling (Shi et al., 2025). We denote by
M the size of Acandidate in this paragraph. After sampling, there are different scenarios: In the
standard MCTS framework (Sutton & Barto, 2018), a basic policy is used to select an action at
random during each simulation step. Additionally, a LMPP can be employed to roll out a path until
either a goal state or a terminal state is encountered. We refer to these two approaches as Greedy-
Random and Greedy-LMPP, respectively, noting that more sophisticated implementations exist.
Evaluate-Select-Transit (EST) or Transit-Evaluate-Select (TES). The former requires M
evaluations and 1 transition, while the latter requires M transitions and M evaluations.

• Evaluate-Select-Transit (EST): 1) Evaluate: A reward model (RM) is instantiated by LMPE+
evaluation to evaluate M pairs (st, a) where a ∈ Acandidate. The generated reward is denoted as
r. Afterwards, a function named createNode initializes M nodes with each st, a, and r for node
attributes: .state, .action, amd .val.
2) Select: TopK_Select is then applied with only the highest-valued node preserved (i.e., k = 1).
3) Transit: Finally, the next state st+1 is generated by a Transition Model (TM). This model can be
implemented in one of three ways: through LMPT simulation, by using domain-specific simulators,
or by directly executing the selected action in the environment to obtain the following state (or
observation). For brevity, we refer to these implementations as TM-LMPT, TM-Sim, and TM-Env,
respectively.

• Transit-Evaluate-Select (TES): 1) Transit: The Transition Model (TM) is applied to a ∈
Acandidate.
2) Evaluate: The reward model (RM) is instantiated to evaluate each st+1, generating reward r.
The function createNode can be applied with st, st+1, a, and r corresponding to node attributes:
.state, .parent, .action, .val.
3) Select: TopK_Select is then applied with only the highest-valued node preserved (i.e., k = 1).

Procedure 8 demonstrates a general path simulation process.

MCTS Selection However, during MCTS for planning, before going to the expansion phase, Procedure 4
(One-step UCT Selection) should be used multiple times to traverse from s0 to a leaf node sleaf.

MCTS Backpropagation - Value Update After each simulation returns a reward r, update the Q
value as:

Qnew = r + Qold · Countnew

Countnew
, (8)

• r, depending on the task, can be a reward at the terminal state. In some cases,it can be an aggregated
one, if each simulation step yields a reward. Specifically, if rewards rt are discounted by γ, then the
final sample reward r for backpropagation is:

r = G =
T −1∑
t=0

γtrt.

In many implementations (e.g., RAP (Hao et al., 2023)), the step-wise rewards are obtained via
LMPE+ or a heuristic evaluation during path simulation. These rewards from simulated nodes are
then employed to update the Q values for non-simulated nodes, including the leaf nodes and those
above.
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Procedure 8 Path Simulation
1: procedure Simulate(nt, RM, heuristic = NA)
2: path ← {}
3: while nt.state is not terminal do
4: st = nt.state
5: A← Sample_Action(nt.state)
6: if heuristic == NA then ▷ Random action sampling (M=1)
7: s∗

t+1 ← TM(st, A)
8: end if
9: if heuristic == eval_first then ▷ Evaluate-Select-Transit

10: Nnew ← {createNode(st, a, RM(st, a)) | a ∈ Acandidate}
11: n∗ ← TopK_Select(Nnew, k = 1)
12: s∗

t+1 ← TM(st, n∗.action))
13: end if
14: if heuristic == transit_first then ▷ Transit-Evaluate-Select
15: Nnew ← {createNode(st, a, RM(st, a), TM(st, a)) | a ∈ Acandidate}
16: n∗ ← TopK_Select(Nnew, k = 1)
17: end if
18: path ← path ∪ s∗

t+1
19: nt.state = s∗

t+1
20: end while
21: return path
22: end procedure

• Qold are the previous Q-value.

• Countnew is the total visit count after the current update.

During some implementations (Hao et al., 2023), each reward r ∈ Rcum propagating from the terminal node
can be stored in a list Rcum , and average them when used. The procedure of value estimate, as summarized
in Table 5, provides the initialized values for new actions or resulting states.

MCTS Backpropagation - Visit Update Except for the estimated value Q(s, a), the backpropagation
also updates the visit count for every state on the path from the root to the leaf and each edge (s, a) along
that path, denoted as Count (st) and Count (st, at+1), respectively. The increase in Count(s, a) (the action-
level visit count) reduces the exploration bonus for a in future selections, thus making ( s, a ) slightly less
likely to be chosen purely for exploration next time, assuming the same or lower estimated value. Assuming
Count (st, at+1) − > Count (st+1) in some deterministic environments, only Count (st+1) is tracked. For the
same reason, Q values can be attached as an attribute of the state node. An example is the implementation
of RAP (Hao et al., 2023) 3.

5 Frameworks Based on Search Algorithms

This section summarizes how different frameworks utilize search algorithms, leveraging the LMPRs and
search procedures introduced in Table 7. Note that, some MCTS-specific procedures (e.g., MCTS selection,
and MCTS backpropagation) are not elaborated in the table. UCT selection is highlighted to distinguish
between PUCT and UCT variants; simulation is included to clarify whether LMPT or environment-based
simulation or simulator is used. Below, we discuss perspectives that are not fully captured in Table 7.

3https://github.com/maitrix-org/llm-reasoners/blob/main/reasoners/algorithm/mcts.py
1multimodal
2fine-tuning
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Table 7: Search-based frameworks for LLM inference. We use “*” to indicate workshop publication. EAR
means Exhaustive Action Retrieval. Sel. indicates selection methods used to select from multiple candidate
actions/nodes to create branches in a tree, which can be UCT or PUCT, Multi-choice LMPE, Value-
based TopK (V-TopK), and threshold selection. Many MCTS-specific procedures are excluded, except for
path simulation (Sim.) to distinguish three types of Transition Models (TMs) and processes (Proc.).

Resemble Expansion LMPE+
Eval. Sel. Sim. Published

Date

EAR
LMPP
Exp. TM Proc.

Beam-LLM (Xie
et al., 2023)

Beam
Search

✗ ✓ ✓ V-TopK ✗ ✗ May 2023
(NIPS2023)

PathFinder
(Golovneva et al.,
2023)

Beam
Search

✗ ✓ ✗ V-TopK ✗ ✗ Dec 2023
(NeurIPS2023*)

Think-on-Graph
(Sun et al., 2024)

Beam
Search

✓ ✗ ✓ Multi-Choice
LMPE

✗ ✗ Jul 2023
(ICLR2024)

Think-on-Graph 2.0
(Ma et al., 2025)

Beam
Search

✓ ✗ ✓ Multi-Choice
LMPE

✗ ✗ Jul 2024
(ICLR2025)

ToT (Yao et al.,
2023a)

BFS
(B for
Breath);
DFS

✗ ✓ ✓ V-TopK for
BFS; Threshold
for DFS

✗ ✗ May 2023
(NIPS2023)

Best-LLM Koh et al.
(2024)

BFS
(B for
Best) 1

✗ ✓ ✓ V-TopK ✗ ✗ Jul 2024

LLM-A* (Meng
et al., 2024)

A* ✓ ✗ ✓ V-TopK ✗ ✗ Jun 2024
(EMNLP2024)

Q* (Wang et al.,
2024a)

A* ✗ ✓ optional V-TopK ✗ ✗ Jun 2024

ToolChain (Zhuang
et al., 2024)

A* ✗ ✓ ✓ V-TopK ✗ ✗ Oct 2023
(ICLR2024)

RAP (Hao et al.,
2023)

MCTS ✓ ✓ ✓ UCT LMPT EST May 2023
(EMNLP2023)

LATS (Zhou et al.,
2024a)

MCTS ✓ ✓ ✓ UCT Env TES Oct 2023
(ICML2024)

LLM-MCTS (Zhao
et al., 2023)

MCTS ✓ ✓ ✓ PUCT Simulator Greedy May 2023
(NIPS2023)

rStar (Qi et al.,
2025)

MCTS ✗ ✓ ✓ UCT LMPT Greedy Aug 2024
(ICLR2025)

MC-DML (Shi et al.,
2025)

MCTS ✗ See
para. 5.6

✓ PUCT Simulator
/Env

Greedy

PG-TD (Zhang
et al., 2023)

α-
MCTS

✗ ✓ ✓ PUCT ✗ ✗ Mar 2023
(ICLR2023)

GDP-ZERO (Yu
et al., 2023)

α-
MCTS

✓ ✓ ✓ PUCT ✗ ✗ Oct 2023
(EMNLP2023)

TS-LLM (Wan
et al., 2024)

α-
MCTS

✓ ✓ ✓ UCT ✗ ✗ Sep 2023
(ICML2024)

ReST-MCTS*
(Zhang et al.,
2024a)

α-
MCTS

✓ ✓ ✓ UCT ✗ ✗ Jun 2024
(NIPS2024)

5.1 Beam Search

Beam-LLM (Xie et al., 2023) and PathFinder (Golovneva et al., 2023) adapt beam search for reasoning
via concatenation, while Think-on-Graph (Sun et al., 2024) and Think-on-Graph 2.0 (Ma et al., 2025) are
applied for reasoning over knowledge graph. Generally, Expansion and TopK-Based Selection always
alternate iteratively until reaching a terminal state.

Beam-LLM (Xie et al., 2023)
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• LMPP Expansion: Each set of beam nodes Nt is passed to the LMPP expansion proce-
dure. Internally, Sample_LMPP calls either Sample_Actions_One_At_A_Pass or Sam-
ple_Actions_Batch, while Simulate can be a simple concatenation transition: each node
nt ∈ Nt has its parent state nt.parent expressed as a sequence of actions (a1, . . . , at−1), an ac-
tion at assigned to nt.action, and the new node’s state (nt.state) as (a1, . . . , at−1, at). The resulting
set of expanded nodes is denoted N sample

t .

• TopK-Based Selection: From N sample
t , a value-based selection procedure is applied to pick the

top-k nodes (the beam size). This subset is returned as Nt. Specifically, it uses a value function
implemented by lmpe5 + lmprpolicy&eval1.

PathFinder (Golovneva et al., 2023) This framework also applies LMPP Expansion and Value-
Based TopK Selection iteratively. However, it computes a summed similarity score as the value for each
candidate node, comparing its state with those of other beams N sample

t . The similarity function can be as
simple as n-gram overlap.

Think-on-Graph (Sun et al., 2024) In the graph traversal tasks described in Section 2, the search space
is derived directly from explicit task specifications. In contrast, when searching over a knowledge graph, the
search space is constructed from the graph itself.

• Step 1: Entity Initialization: An LLM is prompted twice to extract the topic entities in the
question, and select the top-K entities (Procedure 3), where K is the beam size. The resulting
entities E0 form the initial paths.

• Step 2: Expansion via SPARQL Queries for Candidate Relations: Unlike previous two
frameworks, LMPP expansion and sampling are not necessary because neighboring nodes N candidate

t

can be identified via simple SPARQL queries, along with candidate relations, i.e., Exhaustive
Action Retrieval is applied. The relation set can be denoted as Rentity, where topic ∈ Et−1 =
{nt−1.state.tail_entity|n ∈ Nt−1}. The queries are run for each tail entity e ∈ Et−1 to get candidate
relations. The size of Et−1 equals to beam size B.

• Step 3: TopK Selection from Candidate Relations: Procedure 3 is applied to directly select
the top K relations from candidates for each entity e ∈ Et−1. Note that both K here is not necessarily
the beam size B or B divided by K, since the final path will be formed after the following entity
expansion and selection phases.

• Step 4: Expansion via SPARQL Queries for Candidate Entities: Candidate entities are
selected via SPARQL queries for each selected relations in the last step.

• Step 5: TopK Selection from Candidate Entities: To finish each triple tailed by the K relations
selected above.lmpe6 would be used to score each triple regarding their contributions to solve the
given question. This defines ValueFunc in Procedure 5. Note that the k here is the beam size.

• Step 6: LLM Reasoning for Terminal States: At the end of each iteration, the LLM is
prompted to judge whether a terminal state is reached, where the knowledge is enough to reach the
final answer.

Think-on-Graph 2.0 (Ma et al., 2025) Think-on-Graph 2.0 (Ma et al., 2025) differs from Think-on-
Graph in the following perspectives.

• Entity Initialization: The initial entities E0 are initialized and linked to the knowledge graph via
an entity linking method.

• Context Retrieval: A dense retrieval model (DRM) is used to retrieve context with E0 as input.

• LLM Reasoning for Terminal States: Same as Step 6 in Think-on-Graph.

26



Under review as submission to TMLR

• Relation Identification: This is basically identical to Step 2-3 in Think-on-Graph. 4 One differ-
ence in Step 3 is that Procedure 3 and the LMPE in Step 3 will evaluate the candidate relations of
all the entities Et−1 in one LLM inference.

• Entity Identification: This corresponds Step 4-5 in Think-on-Graph. Step 4 still locates potential
entities on knowledge graph 5. The main difference is that the the pruning process is based on a
context retrieval process over unstructured documents.

• LLM Reasoning for Terminal States: Similar as Step 6. The only difference is that the retrieved
context for each entity is added for prompting.

5.2 Breadth-First Search

Tree-of-Thoughts (ToT) (Yao et al., 2023a)

• Similar to beam search, breadth-first search (BFS) is performed by iteratively applying LMPP
Expansion and TopK Selection.

• A key difference is that, in BFS, all nodes at depth t undergo the same number of actions before
expanding further levels. This enforces uniform depths across expansions.

5.3 Depth-First Search

Tree-of-Thoughts (ToT) (Yao et al., 2023a) Yao et al. (2023a) also apply depth-first search (DFS) for
LLM inference, relying on the LMPP Expansion and Threshold-Based Selection. Key points include:

• Threshold Selection: One action (node) is sampled at a time, but it is not compared with other
nodes. Instead, once its value is evaluated by whether it surpasses a threshold, that path is followed
to its conclusion.

• LMPE Evaluation for Deadend: The system uses a deadend judgment to halt exploration of
unpromising paths, which can be considered as another LMPE evaluation.

• Backtracking: Upon reaching a deadend, the system reverts to an earlier node and continues
exploring other previously expanded but untried branches.

• Path Maintenance: Because of backtracking, the framework must track partial paths, whereas
BFS or beam search only needs to maintain the selected nodes at each depth.

5.4 Best-First Search

Best-first search typically uses a heuristic function h(s) to estimate how promising a state will reach the
goal.

Best-LLM (Koh et al., 2024)

• Uses LMPP Expansion for the selected node or the initial root node, where actions are executed
in the environment (web interface) to simulate the next states. The generated nodes are saved in N .

• Employs TopK_Select (k=1) through LMPE+ evaluation on each node in saved nodes n ∈ N .
The node value n.val is derived from evaluating its parent’s state.

• Continues until either the search tree reaches a specified budget β or the state value exceeds a
threshold θ.

4For Step2, they do not explicitly specify SPARQL implementations.
5Still, they do not explicitly specify SPARQL implementations.
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5.5 A*

A* is similar to best-first search but augments the heuristic h(s) with the accumulated cost/utility g(s) to
reach a node from the start. The evaluation function is

f(st) = g(st) + λ h(st), (9)

where λ balances the two terms. Table 8 summarizes how two frameworks implement this formula differently:

Table 8: LMPE+ Evaluation for LLM-A* and Q*. dist(·, ·) represents the actual distance between two
points, while ∥ ·∥ denotes the Euclidean norm. s0, st, sn, sg, sllm represent the initial, current, neighbor, goal,
LMPP-generated states, respectively.

g(s) h(s) Use of LMPE

Agg R(s)/Cost(s)

LLM-A*
(Meng et al.,
2024)

∑
dist(s0, sn) ∥sn −sg∥ + ∥sn −sllm∥ lmprpolicy&eval3

(for h(s))

Q*
(Wang et al.,
2024a)

min , max ,
∑

, Last Human feedback,
ground-truth, rules,
LLM logits

maxat∈A Q∗ (st, at) lmprpolicy&eval4
(for h(s))

ToolChain
(Zhuang et al.,
2024)

∑
Self-consistency scores,
Longest Common Sub-
sequence scores

Consistency scores,
relative position scores

lmprpolicy&eval2
(for g(s)),
lmprpolicy&eval3
(for h(s))

LLM-A* (Meng et al., 2024)

• Designed for path-finding tasks (e.g., mazes).

• g(st): Computed incrementally as the path cost from s0 to st. Formally,

g(st) =
t∑

i=1
Cost(si). (10)

• h(s) under LMPE+ evaluation: The main modification beyond the typical A* is to integrate a
LMPE to the h(s). Specifically, lmprpolicy&eval3 (see Table 4) is applied to evaluate the Euclidean
distance from sn back to the recently visited sllm ∈ lmpp, along with the typical Euclidean distance
between sn (expanded neighbour node) and sg.

Q* (Wang et al., 2024a)

• Targets reasoning and code-generation tasks.

• g(st): Aggregates rewards via

g(st) = Agg (R(s1), . . . , R(st)) , (11)

where Agg ∈ {min, max,
∑

, Last}. Under this definition, R (s) in g(st) can be calculated as human
feedback, ground-truth, rules or via LMPE+ evaluation, depending on tasks.

• h(s) optionally under LMPE+ evaluation: It is initialized as the optimal Q-value of st over all the
possible actions:

max
at∈A

Q∗ (st, at) (12)

Optionally, lmprpolicy&eval4 introduces a stronger LMPP to approximate an optimal policy.
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ToolChain (Zhuang et al., 2024)

• Designed for tool-based tasks but can be generalized to language reasoning tasks (T via concatena-
tion).

• g(st): Aggregated from two terms:

1. Self-consistency scores: lmprpolicy&eval2 is used to calculate self-consistency scores, normal-
ized by the number of distinct actions.

2. Longest Common Subsequence (LCS) scores: The LCS score between the current gen-
erated path st and each completed path m in the memory is computed and normalized by the
length of the shorter path (m or st). Among the scores obtained for each memory path, only
the maximum score is used for g(st).

• h(st): Also aggregated from two terms:

1. Consistency scores based on lmprpolicy&eval3.
2. Relative position scores: Similar to the LCS scores in g(st), this metric is also based on

memory. It computes the average relative position of a candidate action appearing in memory
examples.

5.6 Monte Carlo Tree Search

Monte Carlo Tree Search typically involves MCTS Selection, expansion (LMPP Expansion or Exhaus-
tive Action Retrieval), Path Simulation, and MCTS Backpropagation, including both value and
visit update. Most frameworks under review adhere to these steps, except where noted in the highlights that
follow.

The details of each framework are specified in Table 7. Note that ReST-MCTS* (Zhang et al., 2024a)
and AlphaZero-Like Tree Search (Wan et al., 2024) feature a search process that is entangled with LLM
fine-tuning. In contrast, we decouple the integration of training from the MCTS search, with the training
component detailed in Section 7.2.

Solution Selection After MCTS completes its allotted iterations (or reaches its time/resource limit), a
tree is left where each child of the root has associated statistics. The standard practice is to pick the move
corresponding to the child node with the highest visit count. The reasoning is that more visits generally
indicate a move that has been explored more thoroughly and is statistically more promising. In frameworks
where final selection strategies are not specified, we assume this default approach.

RAP (Hao et al., 2023)

• Applicable to BlocksWorld, Crosswords, and other reasoning tasks.

• LMPP Expansion vs. Exhaustive Action Retrieval: The method of sampling actions depends
on whether the action space is finite and predefined (e.g., BlocksWorld, where exhaustive retrieval
is used) or open-ended (e.g., Crosswords, where LMPP sampling is used).

LATS (Zhou et al., 2024a)

• Targets tasks with reversible actions (e.g., certain reasoning problems, web navigation).

• Path Simulation: Executes actions in the actual environment during path simulation, requiring
actions to be reversible to allow repeated trials.

• Solution Selection: Besides reaching allotted iterations, the search is terminated when a task is
completed successfully. The corresponding path is given as the solution.
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LLM-MCTS (Zhao et al., 2023)

• Designed for robotic tasks.

• Path Simulation: Uses random sampling and a domain-specific simulator for path simulation,
producing next states and rewards.

• MCTS Selection: Adopts a domain-specific P (s, a) in PUCT, which is derived from LMPP sam-
pling to form an action distribution.

rStar (Qi et al., 2025)

• Designed for reasoning tasks. However, a more heterogeneous set of actions is defined, including
proposing an intermediate thought, generating multiple thoughts until reaching a terminal state, or
rephrasing the original question and questions.

• Acknowledging the limitations of small language models (SLMs) in serving as direct evaluators, it
employs self-consistency scores derived from multiple simulation samples (i.e., lmprpolicy&eval2).

• Solution Selection: Instead of selecting only the next action at the root node, the framework
selects an entire trajectory from all rollout trajectories. To verify candidates, the selected trajectory
is pruned to assess whether another SLM would generate the same subsequent steps.

MC-DML (Shi et al., 2025)

• Targets at embodied tasks. Specifically, they experiment on Interactive Friction (IF) games, where
reward, state and observation are given by the game environment/simulator.

• MCTS Selection: Besides lmpps
logit, it also uses another two types of lmpps in the case of black-box

LLMs, e.g., OpenAI ChatGPT.

• LMPP Expansion: This phase is integrated with the selection phase, where only lmpps generates
prior distribution. If the action chose by the PUCT selection leads to a leaf node, the environment
transits it to the next state, followed by the path simulation phase, where the uniform sampling will
be applied.

• LMPE+ Evaluation: lmpeverbalize is used to generate reflection on history failed episodes during
the simulation (i.e., cross-trial information) phrase. We denote the pair of an episode and its
reflection as (epsi, ri)

• Cross-trial Information for LMPP Generation: Besides the previous steps along the current path
(i.e., in-trial information), (epsi, ri) are also added as the prompt of the LMPP. It reminds of cross-
trial information within Reflexion (Shinn et al., 2023). However, MC-DML is first used within a LIS
framework.

5.7 AlphaZero-Like MCTS (α-MCTS)

In traditional MCTS, after expanding a node, a path simulation is run to the end of the game to estimate the
outcome. However, many modern implementations (like in AlphaGo/AlphaZero) skip the full simulation and
instead use a direct evaluation function or Process Reward Model (PRM) to estimate the reward immediately
after expansion rather than roll out the entire episode for a reward. This approach can significantly speed up
the process and provide more accurate evaluations if the evaluation function is well-tuned. In summary, the
following phases are iteratively performed: Selection, Expansion, Evaluation (replacing path simulation),
and Back-propagation.
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PG-TD (Zhang et al., 2023)

• Specializes in code generation.

• MCTS Selection: Treats the prior distribution P (a | s) in PUCT as the LMPP token probabilities
for the next token (i.e., lmpps

logit), given the partial program.

• Evaluation: Rather than direct evaluation, the phase consists of the following processes: 1) Uses
LMPT simulation to generate the rest of the program, but internally adopts beam search for trans-
former decoding to complete the program; 2) Generates a reward by running the program on the
test cases.

GDP-ZERO (Yu et al., 2023)

• Designed for goal-oriented dialogue.

• LMPP Expansion: An LMPT is configured for transition, i.e., two inference calls are performed
to simulate both the system and user responses. The pairs of responses are stored in the memory
Mresponse for each state. Hence, if the maximum number of responses for state s are reached, the
transition is sampled from Mresponse(s).

• Evaluation: LMPE Evaluation is performed. In particular, lmpe2 serves as the PRM, generating
a reward signal for MCTS backpropagation after expansion. Its profiling is similar to a simulator,
wherein the LLM is configured to emulate a user who is prompted to indicate their willingness to
perform a specific action (e.g., making a donation). However, different from the LMPT, a set of five
choices is provided for rating, each corresponding to a different reward.

Tree Search (TS)-LLM (Wan et al., 2024)

• Target Tasks: TS-LLM is designed for both combinatorial tasks (e.g., chess, Game-of-24) and
reasoning tasks via concatenation, where each action is treated as a sentence. They also define each
action as a token for general language reasoning for Reinforcement Learning from Human Feedback
(RLHF).

• Expansion: The original work briefly describes two ways to define the search space during expan-
sion: one based on an exhaustive set of possible tokens and the other using candidates sampled by
LMPP.

• Evaluation: The LLM is fine-tuned as a RM to evaluate intermediate states (see details in Sec-
tion 7.2).

• Solution Selection: The search is performed multiple times to generate candidate solutions. The
final solution is chosen according to either the majority voting or the sum of rewards, or the maximum
reward, where ORM is used to generate rewards.

• Solution Selection: The search process is repeated multiple times to generate candidate solutions.
The final solution is selected based on majority voting, the sum of rewards, or the maximum reward,
with an ORM used to produce the reward values.

ReST-MCTS* (Zhang et al., 2024a)

• Target Tasks: ReST-MCTS* is designed for reasoning tasks via concatenation, where each sentence
is treated as a discrete step.

• Evaluation: Similar to TS-LLM, the LLM is fine-tuned as a PRM to evaluate intermediate states
(see Section 7.2 for details). To estimate the value of the current state st, the rewards from the
PRM are weighted by the estimated reasoning distances, analogous to the h(st) term in A*.

• Solution Selection: After the selection phase, if the value of the selected node meets or exceeds a
predefined threshold, the corresponding solution is returned.
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6 LLM Inference + Search Beyond Sequential Decision Making

The last section focuses on LLM inference via search, where downstream tasks are formulated as sequential
decision-making problems (as detailed in Section 2), and LLMs serve as integral components in search
procedures. This section aims to explore all the other works that include both LLM inference and search
methods. However, these approaches either optimize other elements, such as model selection or inference
workflows, or do not fit in the MDP formulation.

As a result, the notions of actions and states do not exist, at least during LLM inference. This distinction leads
to several fundamental differences. For instance, the roles of LMPP and LMPT are not applicable, which
is why LLM sampling, rather than LMPP sampling, is introduced in the frameworks below. Furthermore,
state simulation is never required.

LLM for World Modeling + Search In this paradigm, LLMs are employed to generate world models
that serve as the basis for planning. In contrast, LLMs in the LIS frameworks operate as world models
(e.g., LMPEs and LMPTs). The world models can be represented by the Planning Domain Definition
Language (PDDL) (McDermott, 2000), which clearly defines action preconditions and effects, or Python
code. For example, Guan et al. (2023); Liu et al. (2023) utilize LLMs to generate PDDL-based world models
and then apply classical search-based planners (e.g., LPG) to solve tasks. In contrast, Dainese et al. (2024)
prompt LLMs to generate Python code for world modeling and then solve tasks via Monte-Carlo Tree Search
(MCTS).

Meta-Search for LLM-Inference Strategies for Problem Solving The frameworks in Section 5
directly search for (partial) solutions—using search itself as the strategy to reach a solution. In contrast,
this paragraph focuses on meta-search methods that identify the strategies to reach a solution. For example,
DOTS (Yue et al., 2025) investigate whether LMPE evaluation is necessary for a given problem, while the
LIS methods integrate LMPE evaluation into determining whether an action is optimal for achieving the
goal. Strategist (Light et al., 2025) search for optimal high-level strategies that guide the generation of task
solutions. Similarly, AFlow (Zhang et al., 2025) employs MCTS to search for optimal inference workflows
for solving downstream tasks. However, the resulting solutions may not strictly conform to a search-based
workflow. Essentially, this approach focuses on the structure and efficiency of the overall inference process.
In contrast, the LIS frameworks directly concentrate on constructing search workflows for downstream tasks.
Besides, Zheng et al. (2025) conduct a grid search over 6 reasoning strategies and 5 types of instructions.
However, their grid search is used solely to evaluate the combinations, rather than as a meta-search strategy
for problem solving.

Equilibrium Search in a Two-Player Game Generally, a discriminator (a special LMPE) and a gen-
erator (a special LMPP) are defined to engage in a game, where a correctness parameter for the generator
is selected uniformly at random. Both the discriminator and the generator receive a payoff of 1 when they
agree on the correctness parameter. This equilibrium objective is regularized by the prior, i.e., the inital
generation of large language models (LLMs), as some equilibrium solutions may not align with commonsense
reasoning. The final state is reached when the discriminator and the generator reconcile with each other.
Unlike single-player games, two-player games involve theoretical frameworks under the umbrella of game
theory and equilibrium analysis. While this aspect is beyond the scope of this survey, the fundamental
steps of LLM sampling and LMPE evaluation remain essential prerequisites before executing equilibrium
computations to achieve a regularized equilibrium.

• LLM Sampling: An LLM is prompted for sampling in batch. While this is similar to
lmprbatch_policy2, the LLM is prompted with the value of the correctness parameter, which is ei-
ther “correct” or “incorrect”.

• LMPE Evaluation: Corresponding to the values of the correctness parameter, the LMPE (or
discriminator) generates binary predictions (i.e., “correct” or “incorrect”). Specifically, the LMPE
is implemented as lmpreval1.
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Evolutionary Search EvoPrompting (Chen et al., 2023) employs evolutionary search to generate imple-
mentation code for neural architectures, while Wang et al. (2025b) perform evolutionary search over chemical
space, particularly for molecular discovery. Both re-define cross-over and mutation operations via LLMs.
However, it is not defined for sequential dicsion making, where the next step is determined by the previous
step(s). For example, the complete solution code is not required to be decomposed into smaller components.
This traces to the nature of cross-over and mutation operations requring the entire solution as the input.

The key procedures in their algorithm are:

• LLM Sampling: An LLM is used during the cross-mutation phase to generate candidate codes.
The generation process is conditioned on randomly selected codes from the population.

• Value-Based Top-K Selection: This method updates the population by selecting the top K
candidates based on a value function. The ValueFunc is implemented by training a deep learning
model with the generated code and evaluating its validation accuracy.

Search over Solution Sketches for Code Generation PlanSearch (Wang et al., 2025a) searches over
solution sketches prior to generating code—that is, it operates on a natural language description of the
correct program. Specifically, the model samples “observations” (small pieces of ideas or hints) which are
then concatenated with the task description to prompt the LLM to generate subsequent observations. Each
sequence of observations at depth two is then used to prompt the LLM to formulate a comprehensive idea.
The LLM is subsequently re-prompted to produce alternative another set of ideas by designating the initial
set as incorrect. Finally, each idea is usd to prompt the LLM to generate code.

This framework is discussed in the final section for two reasons: (1) The search space is not directly related
to code generation. However, it can be viewed as a form of language reasoning via concatenation, where each
thought constitutes an observation; and (2) the framework does not employ traditional search algorithms
(e.g., A* or MCTS).

7 Related Work

Although the primary focus of this survey is on test-time compute via search, several related directions fall
outside our current scope.

7.1 Other Frameworks for Test-Time Compute

• Search with Multi-Modal LLMs. Some work extends tree-based exploration and action selection
to multi-modal contexts by incorporating visual features alongside textual reasoning steps, e.g.,
Mulberry (Yao et al., 2024)

• Branching without Search. Some frameworks utilize branching or tree-like expansions but do not
incorporate a full-fledged search algorithm. Examples include Tree-Planner (Hu et al., 2024), Boost-
of-Thoughts (Chen et al., 2024a), and Graph-of-Thoughts (GoT) (Besta et al., 2024). Although they
adopt branching structures similar to traditional search, these methods rely on aggregation, sorting,
or heuristics rather than explicit search procedures.

• Re-Ranking Frameworks: In these frameworks, LMPP is initially employed to sample multiple
candidate solutions. However, unlike the LMPP sampling described in Section 4, here it generates
complete sequences of actions (i.e., plans) instead of just intermediate actions as seen in MDP-like
settings. These two variants of LMPP are distinguished as “actors” and “planners” in Li (2024).
An evaluation function then is used to re-rank the plans by assigning the scores over plans/final
answers. Notable examples include LEVER (Ni et al., 2023) for code generation and DiVeRSe (Li
et al., 2023) for language reasoning. It may be a normalized consistency function (Wang et al.,
2023) or a learned model like a Process Reward Model (PRM) or Outcome Reward Model (ORM)
(Lightman et al., 2024).

33



Under review as submission to TMLR

• Sequential Revision: Same as re-ranking methods, an evaluation function is applied to plans/final
answers. However, this process can be iterative. Examples include Self-refine (Madaan et al., 2023a).
Table 9 compares re-ranking methods, sequential evaluation and search-based methods for LLM
inference. Hence, it can be also defined as a MDP process (Qu et al., 2024).

7.2 LLM Fine-tuning for Test-Time Compute

Recent methods adapt LLMs via fine-tuning or preference optimization to enhance their roles in policy,
evaluation, and transition modeling. For instance, in the TS-LLM framework (Wan et al., 2024), the LLM
is fine-tuned as an Outcome Reward Model (ORM) or a Process Reward Model (PRM) that evaluates
each reasoning step. ReST-MCTS* (Zhang et al., 2024a) fine-tunes LLMs to serve both as a policy model,
generating reasoning traces, and as a PRM. Although the paper does not explicitly state that both models
start from the same checkpoint, the standard procedure implies that a pretrained LLM is duplicated into two
copies. In DeepSeek-MCTS (Guo et al., 2025), LLMs are iteratively fine-tuned for both policy and reward
roles using question–answer pairs. In this framework, questions are collected, and answers are generated by
MCTS guided by a pretrained value model. LLMs are also fine-tuned for other test-time compute tasks.
For example, Recursive IntroSpEction (RISE) (Qu et al., 2024) fine-tunes LLMs as the LMPP for sequential
revision, while the LMPE can be implemented using a stronger teacher model or via a self-consistency
approach (i.e., lmprpolicy&eval2).

Fine-Tuning LLMs for PRMs For all PRMs in the above work, except for DeepSeek-MCTS 6, the
unembedding layer, which maps hidden states to a vocabulary distribution, is replaced by an MLP that
outputs scalar values. This recalls how reward models are trained in Reinforcement Learning from Human
Feedback (RLHF) for general-purpose alignment (Ouyang et al., 2022).

Table 9: Comparisons of LLM inference via search and re-ranking. Here, At denotes the set of candidate
actions at step t along path i, P represents the candidate plans, and Ptrial_j denotes the candidate plans
at trial j. The term “Iterative?” indicates whether the sampling and evaluation processes are iteratively
executed.

Sampling Evaluation LMPE? Iterative? Fine-tuning

LIS actions {a | a ∈
At along pathi}

Often ✓ TS-LLM (Wan et al.,
2024), DeepSeek-MCTS
(Guo et al., 2025)

Re-Ranking plans {p | p ∈ P } Rarely ✗

Sequential Re-
vision

plans {p | p ∈ Ptrial_j} Always ✓ RISE (Qu et al., 2024)

8 Discussion

In this section, we analyze how search frameworks for LLM inference deviate from traditional search algo-
rithms, where they apply according to technical constraints, performance and efficiency.

8.1 Deviations from Typical Search Algorithms

Beyond Finite, Fixed Search Spaces Classical BFS or DFS typically requires enumerating all successors
at each depth, which can lead to massive memory usage in large or infinite search spaces. By contrast, LMPP
sampling (based on LLM priors) can manage successor expansions more selectively, reducing the need to
store every possibility at each level. Also, it is possible to handle tasks with an open and infinite action
space.

6Limited details are provided in the paper.
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Making “Uninformed” Search Informed Traditionally, BFS and DFS are considered uninformed,
exploring the search space without heuristics. LLM-based frameworks labeled as BFS or DFS often incor-
porate LMPP sampling or LMPE+ evaluation, effectively introducing heuristic knowledge from the
LLM. Moreover, anticipating dead ends in DFS is feasible with LLM-based heuristics. Classic DFS only
identifies dead ends when it exhausts neighbor nodes. With an LLM, the search can backtrack early if the
model predicts an unpromising or “dead-end” scenario.

Compromised Optimality in A* A* requires an admissible heuristic h(s) to guarantee optimality.
However, if h(s) partially depends on a policy-generated state sllm from lmprpolicy, the heuristic may be
overestimated. This breaks admissibility assumptions, meaning the final solution may no longer be strictly
optimal.

Terminology Deviation for Heuristic Search: Cost vs. Return/Value Many early applications
of search algorithms, such as Best-First Search and A*, focused on minimizing quantities like distance,
travel time, or energy expenditure. Generally, the cost-based evaluation can be considered as minimization
objectives or eliminating “bad” states (or unpromising actions). However, in modern applications involving
LLM-integrated search, such as web navigation or document retrieval, heuristics often reflect value estimates
(positive polarity), especially when LLMEs tend to be defined to reflect the relevance or utility of states,
which are better suited for maximization objectives or maintaining “good” states (or promising actions). We
highlight this point for rigidity. However, these terms can be abstractly defined without indicating real-world
semantics. For example, in game design, moving to a node which end up losing a life point can be given a
negative reward, while a reward from gaining a key can be granted as a negative cost.

RL vs. LMPE-Based Value Functions In traditional RL, the value function is rigorously defined via
the Bellman equation as the expected cumulative future reward (or cost) that one can obtain starting from
a given state. This formulation inherently accounts for the uncertainty of future outcomes by computing a
weighted average of rewards over all possible future trajectories (Sutton & Barto, 2018).

In contrast, when LLMs are used in tree search, the “value” assigned to a node is often generated based on
the model’s world knowledge and reasoning (Yao et al., 2023a). This evaluation serves as a heuristic and
is derived from the LLM’s internalized representations rather than being computed from a strict, recursive
future-reward formulation. As a result, while both the RL value and the LLM-based evaluation score aim to
measure the “goodness” or utility of a state, the latter does not necessarily adhere to the Bellman property
(Bellman, 1966; Watkins, 1989).

8.2 Applicability

Extending Uninformed Search to Dynamic Decision-Making BFS and DFS were originally de-
signed to explore predefined or easily generated state spaces (e.g., enumerating all children in a graph). This
can be: 1) No Need for Transition: Traditional implementations of DFS and BFS do not require an
explicit, computed transition model because they inherently rely on the graph structure where edges already
define state transitions. For example, one task is to solve a maze. 2) Only Successor Function: In some
applications, especially in implicit state-space search, a minimal form of transition function (or successor
function) is still required to generate successors when the full graph is not explicitly available.

However, when applied to LLM inference, they can be adapted for: 3) Tasks That Require Dynamic
Decision-Making: These tasks are based on state-dependent actions (as seen in planning or reinforcement
learning), e.g., solving the Game of 24 and completing crossword puzzles.

Open-Loop vs. Closed-Loop Frameworks This property is important to discuss the applicability of
frameworks for planning. 1) Open-Loop (Offline): After executing at, the open-loop agent does not adapt
its future actions based on the actual new state. Instead, it continues to follow a pre-planned sequence of
actions, which are based on the simulated state during planning. For example, ToT-DFS and ToT-BFS
(Yao et al., 2023a) produce a predefined sequence of actions based on a search through a static search
tree or graph. This sequence is intended to be executed exactly as planned. Ideally, open-loop planning
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requires that the environment will remain as anticipated throughout the execution. Such environments
satisfies the following assumptions: a) environments are static, b)(no unforeseen events or changes will affect
the execution (closed-world assumption), and c) deterministic transitions. 2) Closed-Loop (Online): In
contrast, after the closed-loop agent executes an action at, it observes the outcome in the real world (i.e.,
the resulting state) and can adjust its future action at+1 based on the new state st+1. The plan evolves
dynamically as new information becomes available. MCTS-based frameworks, except for LATS (Zhou et al.,
2024a), can be open-loop because it generates a sequence of actions based on simulations and a static model
of the environment at a given state. However, the agent can operate in a closed-loop manner if MCTS
is re-run at each new state: after a plan is generated for st, only at is selected and executed. Instead of
executing the rest at+1, . . ., the agent re-runs MCTS from the new state st+1 to determine the next best
action at+1. These frameworks are suitable for task execution in dynamic and interactive environments.

Many LIS Frameworks Requires Action Undoing In many LIS frameworks, the agent has to revisit
earlier states, including backtracking to an ancestor node in DFS (Yao et al., 2023a), selecting the next
best candidate in Best-first search (Koh et al., 2024), or retracing your steps after an environment-based
simulation in MCTS (Zhou et al., 2024a). Each of these processes relies on being able to recover the state
reached by previous actions. This limits their applicability to environments where undoing actions is viable,
as specified in Table 2.

8.3 Performance

Search Frameworks Perform Worst in Multiple Scenarios Empirical studies by Parashar et al.
(2025) also indicate that ToT and RAP perform even worse than CoT and self-consistency in various language
reasoning tasks. Also, as demonstrated by Snell et al. (2025), if a base LLM can already produce reasonable
answers for simple questions, then sequential revision suffices to ensure performance, offering an efficient
alternative to more complex re-ranking methods and search methods.

MCTS May Degenerate in Early Stages Chen et al. (2024b) observe that if all candidate steps receive
equal (or zero) scores initially, MCTS lacks a clear basis for distinguishing among branches, potentially
leading to suboptimal partial-plan selection. The performance is worse than iterative refinement (Madaan
et al., 2023b).

8.4 Efficiency

Compute and Memory Efficiency As noted by Chen et al. (2024b), tree search can be 10–20 times
slower than iterative refinement, especially if the evaluator (LMPE) has less than 90% discrimination accu-
racy. High-accuracy LMPEs are essential to prune the search tree effectively, thereby reducing the number
of iterations needed. Long-horizon tasks can become particularly expensive when each LLM inference call
is executed independently, despite many calls sharing identical prefixes. By leveraging Key-Value (KV)
caching, both computational and memory overhead in transformer-based LLMs can be significantly reduced.
Yao et al. (2025) propose a tree attention mechanism for tree search that eliminates redundancy in the I/O
of tree-structured KV caches.

LMPP Expansion and Path Simulation with Memory Finally, maintaining a memory of explored
nodes can avoid repeated sampling and simulation. If a given state s has already produced certain actions,
those child nodes can be cached for subsequent expansions. Similarly, for simulation, previously simulated
results can be stored for future simulation. By reusing these cached outcomes, the framework reduces
redundant calls to LMPP or LMPT, thereby improving both inference cost.

Unnecessary LMPP Use in Some Cases Some tasks possess a small, tractable action space (e.g., the
Game of 24). In such scenarios, exhaustive action retrieval may be cheaper than performing multiple LMPP
inferences. Designers must weigh the inference costs of LMPP against potential benefits, as LLM-based
sampling can be expensive relative to enumerating a finite set of actions. The potential cost of the following
LMPE+ evaluation should also be considered.
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8.5 Future Work

Parallel Research on LLMs’ Competence and Test-Time Computation Rather than relying
on intensive test-time computation, optimization frameworks—such as Chain of Preference Optimization
(Zhang et al., 2024b)—have been proposed to train LLMs to develop tree-like reasoning, thereby reducing
the need for real-time deliberation. In parallel with investigating the impact of base models and LMPRs on
performance, further research is needed to both enhance LLMs’ capacity for autonomous multi-path thinking
and identify complex tasks which most benefit from deliberate search during test-time computation.

Devising Frameworks for Handling Irreversible Actions Many prominent LIS frameworks do not
incorporate mechanisms for managing irreversible actions. Instead, they circumvent this issue by working
in simplified task environments where the effects of actions can be virtually simulated. For example, Tree
of Thoughts (ToT) (Yao et al., 2023a) focuses on language reasoning, while Koh et al. (2024) studies web
navigation scenarios that involve only reversible actions. This approach is in line with abstract search
methods (e.g., DFS or Best-first search on a graph), where action outcomes are computed via deterministic
transition functions, eliminating the need to physically execute or reverse actions.
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