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ABSTRACT

Discrete diffusion models have been shown to be surprisingly effective as language
models. In this work, we uncover a fundamental property of uniform state diffusion
(a specific class of discrete diffusion processes) that it emerges from an underlying
Gaussian diffusion process. This insight enables us to transfer techniques from
Gaussian diffusion to improve discrete diffusion models. Leveraging this property,
we improve both training and sampling efficiency. We introduce a curriculum
learning strategy that reduces training variance, leading to 2× faster convergence,
and adapt efficient distillation methods from continuous-state diffusion models
to accelerate sampling. As a result, our models surpass autoregressive models
in zero-shot perplexity on 3 out of 7 benchmarks while reducing the number of
sampling steps by two orders of magnitude without compromising sample quality.

1 INTRODUCTION

Figure 1: An illustration of uniform state
discrete diffusion (top) and the underly-
ing Gaussian diffusion (bottom). Apply-
ing argmax maps Gaussian latents wt ∈

Rn to discrete latents zt ∈ V , transform-
ing their marginals from q̃t(.∣x; α̃t) (6) to
qt(.∣x;T (α̃t)) (1) and adjusting diffusion
parameters from α̃t to αt = T (α̃t) (10). The
ELBOs of both processes are related by (12).

An eternal theme in mathematics is that discreteness
emerges from underlying continuity. From quantum me-
chanics, where the quantized energy states of electrons
arise as solutions to continuous wave equations, to the
Fourier decomposition of the Heaviside function, which
results in a trigonometric series, and to the binary logic
of digital circuits, fundamentally driven by smooth ana-
log currents, discreteness has repeatedly and naturally
emerged from an underlying continuum. Our work contin-
ues this tradition by demonstrating that a discrete diffusion
process is, in fact, an emergent phenomenon of an under-
lying continuous Gaussian diffusion process. This per-
spective enables the design of faster training and sampling
algorithms for discrete diffusion models.

Continuous diffusion models, particularly in the image do-
main, have had numerous advancements such as efficient
parameterizations of the denoising model that improve
upon mean-parameterization (Ho et al., 2020; Salimans &
Ho, 2022; Zheng et al., 2023) for faster training, higher-
order samplers that drastically reduce sampling steps compared to standard ancestral sampling (Karras
et al., 2022), and distillation techniques enabling single-step generation (Song et al., 2023; Song &
Dhariwal, 2023; Yin et al., 2024). In contrast, the design space of discrete diffusion models remains
less explored. Ancestral sampling (and its equivalent Tweedie sampler (Campbell et al., 2022)) is
still the standard (Austin et al., 2021; Sahoo et al., 2024a), and mean-parameterization remains the
dominant approach (Sahoo et al., 2024a; Schiff et al., 2025), with score parameterization (Lou et al.,
2023) being the only alternative. While some progress has been made in distillation (Deschenaux &
Gulcehre, 2024) and guidance techniques (Nisonoff et al., 2024; Schiff et al., 2024), discrete diffusion
remains largely underexplored.
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The main contribution of this work is threefold: (1) We establish a theoretical connection between
continuous and discrete diffusion, showing that discrete diffusion can be derived as a transformation
of continuous Gaussian diffusion. This insight enables the transfer of techniques from the continuous
domain to the discrete setting, unlocking new possibilities. (2) Leveraging this duality, we propose a
training framework that enhances efficiency by introducing a low-variance curriculum based on the
underlying Gaussian diffusion. We refer to our method as Duo. (3) We accelerate sampling by two
orders of magnitude by adapting efficient distillation techniques from Gaussian diffusion.

2 BACKGROUND

Notation. We represent scalar discrete random variables that can take K values as ‘one-hot’ column
vectors and define V ∈ {x ∈ {0,1}K ∶ ∑K

i=1 xi = 1} as the set of all such vectors. Define Cat(⋅;π) as
the categorical distribution over K classes with probabilities given by π ∈∆K , where ∆K denotes
the K-simplex. Additionally, let 1 = {1}K and ⟨a,b⟩ and a ⊙ b respectively denote the dot and
Hadamard products between two vectors a and b.

2.1 DISCRETE DIFFUSION MODELS

Consider the clean data x ∈ V drawn from the data distribution qdata. In the discrete diffusion
framework (Sohl-Dickstein et al., 2015; Austin et al., 2021) the complex data distribution qdata is
mapped to a simple distribution through a sequence of markov states. Sahoo et al. (2024a) simplify
this framework and propose an interpolating noise framework where the forward process (qt)t∈[0,1]
interpolates between the clean data distribution qdata and a prior distribution Cat(.;π) by defining a
sequence of latents zt ∈ V whose marginals conditioned on x at time t is given by:

qt(.∣x;αt) = Cat(.;αtx + (1 − αt)π), (1)

where the diffusion parameter αt ∈ [0,1] is a strictly decreasing function in t, with αt=0 ≈ 1 and
αt=1 ≈ 0; see Sahoo et al. (2024a) for details. For Uniform State Diffusion Models (USDMs),
π = 1

K
1, and for Masked Diffusion Models (MDMs) (Sahoo et al., 2024b), π =m where m ∈ V is a

special mask token. The reverse diffusion model pθt ∶ V × [0,1]→∆K is parameterized by a neural
network with parameters θ. For a given datapoint x ∼ D sampled from the dataset D, the denoising
model is trained to maximize a variational lower bound (ELBO) on the log-likelihood log pθ(x).
Given a number of discretization steps T, defining s as a shorthand for s(i) = (i − 1)/T and t for
t(i) = i/T , and using DKL[⋅] to denote the Kullback–Leibler divergence, the ELBO (q, pθ;x) for
the forward process q and the corresponding reverse process pθ equals (Sohl-Dickstein et al., 2015):

Eq

⎡
⎢
⎢
⎢
⎢
⎣

log pθt=t(1)(x∣zt(1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Lrecons

−
T

∑
i=1

DKL[qs∣t(zs∣zt,x)∥p
θ
s∣t(zs∣zt)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ldiffusion

⎤
⎥
⎥
⎥
⎥
⎦

−DKL[q(zt(T )∣x)∥p
θ
t=t(T )(zt(T ))]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Lprior

(2)

Schiff et al. (2025) demonstrate that the true reverse posterior for USDMs is given as:

qs∣t(. ∣zt,x;αs, αt) = Cat
⎛

⎝
.;
Kαtzt ⊙ x + (αt∣s − αt)zt

Kαt⟨zt,x⟩ + 1 − αt
+
(αs − αt)x + (1 − αt∣s)(1 − αs)1/K

Kαt⟨zt,x⟩ + 1 − αt

⎞

⎠

(3)

where αt∣s = αt/αs and the approximate reverse posterior as pθs∣t(.∣zt;αs, αt) = qs∣t(. ∣ zt,x =

xθ(zt, t);αt, αs). The terms Lrecons and Lprior in (2) analytically reduce to 0 by choosing αt=0 = 1
and αt=1 = 0. Furthermore, by setting T →∞, the ELBO (2) for USDMs reduces to (Schiff et al.,
2025):

ELBO (q, pθ;x) = Et∼U[0,1],qt(zt∣x;αt) f(zt,xθ(zt, t), αt;x). (4)

where

f(zt,xθ(zt, t), αt;x) =
αt
′

Kαt

⎡
⎢
⎢
⎢
⎢
⎣

K

x̄i
−

K

(x̄θ)i
− ∑

j s.t. (zt)j=0

(
x̄j

x̄i
) log(

(x̄θ)i ⋅ x̄j

(x̄θ)j ⋅ x̄i
)

⎤
⎥
⎥
⎥
⎥
⎦

. (5)

where xi denotes the ith index of a vector x, x̄ =Kαtx + (1 −αt)1, x̄θ =Kαtxθ(zt, t) + (1 −αt)1,
αt
′ denotes the time-derivative of the αt, and i = argmaxj∈[K](zt)j is the non-zero entry of zt.
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2.2 GAUSSIAN DIFFUSION MODELS

Similar to USDMs, Gaussian diffusion maps a data distribution qdata to a simple prior distribution
through a sequence of noisy latents wt ∼ q̃t(.∣x), whose marginal distribution is given by:

q̃t(.∣x; α̃t) = N (α̃tx, (1 − α̃t
2
)In), (6)

where the diffusion parameter α̃t ∈ [0,1] is a monotonically decreasing function in t. Since, by
design, α̃t=0 ≈ 1 and α̃t=1 ≈ 0, the Lrecons ≈ 0 and Lprior ≈ 0 and the ELBO is given as:

ELBO (q̃, pθ;x) = Et∼U[0,1],q̃t(wt∣x;α̃t)ν
′
(t)∥x − xθ(wt, t)∥

2
2 (7)

where ν′(t) is the time derivative of the signal-to-noise ratio ν(t) = α̃t
2/(1 − α̃t

2).

2.3 CONSISTENCY DISTILLATION

Consistency models (Song et al., 2023; Song & Dhariwal, 2023) are a class of generative models
that can be initialized from pre-trained diffusion models and generate high-quality samples in just a
few steps. They build upon deterministic samplers for Gaussian diffusion (Song et al., 2020; 2021),
specifically leveraging the Probability-Flow ODE (PF-ODE). To train a consistency model, we first
generate a noisy sample wt from the forward process q̃t(.∣x) (6) and obtain a less noisy sample ws

by numerically solving the PF-ODE for one step using the denoising model xθ. The consistency
model then trains a student model xθ (with parameters θ) to match the teacher model’s estimate of
the clean sample, given the noisy sample wt. The teacher model xθ− (with parameters θ−) provides
the less noisy sample ws, and the student model is optimized to minimize the loss:

L(θ, θ−) = λ(t)d (xθ(wt, t),xθ−(ws, s)) , (8)

where d ∶ Rn ×Rn → R+ denotes the error between the teacher model’s reconstruction xθ−(wt, t)
and the student model’s reconstruction xθ(wt, t) of the original sample and λ ∶ [0,1] → R+ is a
weighting function that scales the loss based on the diffusion time-step t. Typically, the teacher model
is set as the Exponentially Moving Average (EMA) of the student model’s parameters during training.

3 DIFFUSION DUALITY

Gaussian diffusion is well-studied. There have been many theoretically grounded advances in
improving training (Ho et al., 2020; Salimans & Ho, 2022; Zheng et al., 2023) and sampling (Karras
et al., 2022; Song et al., 2023; Song & Dhariwal, 2023; Yin et al., 2024). Our goal in this section is
to establish a theoretical connection between discrete-state diffusion and continuous-state diffusion
which will allow us to leverage tools from continuous diffusion models to improve discrete diffusion.

There are two main questions that we must answer in order to apply methods for efficient training and
sampling in continuous diffusion to discrete diffusion. The first question is how to map the continuous
valued samples from a Gaussian diffusion process to discrete valued samples from discrete diffusion
process. We answer this with a simple construction: we map Gaussian vectors to discrete space with
an argmax operation. The second question is how to relate their marginal distributions. We derive a
closed-form expression for that the diffusion parameters of Gaussian and discrete diffusion processes
which allows us to match their marginal distributions.

We begin by defining a Gaussian diffusion process on x ∈ V as per (6), with q̃t=0 ≈ qdata and
q̃t=1 = N (0, IK). Let wt ∼ q̃t(.∣x) be an intermediate latent at time t. Next, define the operation
argmax ∶ RK → V as the transformation that maps a continuous vector w ∈ RK to a one-hot vector
corresponding to the index of the largest entry in w. We define argmax(w) as argmaxz∈V z⊺w.
Let zt = argmax(wt). In Suppl. A, we demonstrate that zt is distributed as:

zt ∼ Cat(.;T (α̃t)x + (1 − T (α̃t))
1

K
) , (9)

where the function T ∶ [0,1]→ [0,1] is given as:

T (α̃t) =
K

K − 1
[∫

∞

−∞
ϕ(z −

α̃t
√
1 − α̃t

2
)ΦK−1

(z)dz −
1

K
] , (10)
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where ϕ(z) = exp(−z2)/
√
2π is the standard Normal distribution and Φ(z) =

∫
z
−∞

exp(−t2/2)dz/
√
2π is the cumulative distribution function of the normal distribution.

The implications of (9) are quite profound. The discretized latent zt follows the same distribution as
the marginal distribution of an intermediate latent in (1) when x undergoes uniform state discrete
diffusion with a diffusion parameter T (α̃t). This reveals a fundamental connection between uniform
state discrete diffusion and Gaussian diffusion:

The argmax operation transforms Gaussian diffusion into uniform state diffusion, with the
diffusion coefficients related by (10).

More formally, this can be expressed as:

qt(zt∣x;T (α̃t)) = [argmax]★q̃t(wt∣x; α̃t) (11)

where ★ operator denotes the application of the argmax operation on a Gaussian probability density
function transforming it to a categorical probability mass function. Hence, as x undergoes a uniform-
state diffusion in the discrete space, there is an underlying representation in which x undergoes
Gaussian diffusion in the continuous space, as depicted in Fig. 1.

Note that these two processes are separate Markov chains with no transitions between them, and they
induce different bounds on the log-likelihood of the data (as will be discussed later in this section).
In this work, we exploit this equivalence to design a low variance training algorithm that leads to
faster training (Sec. 4.1) and a distillation scheme that speeds up the sampling process from discrete
diffusion models by two orders of magnitude (Sec. 4.2).

Evidence Lower Bound These two processes have 2 different ELBOs– (4) for the discrete diffusion
process and (7) for the Gausssian diffusion process.

Theorem 3.1. ELBO for the uniform state discrete diffusion process is tighter than the underlying
Gaussian diffusion process.

We provide a detailed proof in Suppl. A.3. In brief, we derive the following relationship:

log pθ(x) ≥ ELBO (q, pθ;x) ≥ ELBO (q̃, pθ;x) , (12)

where the equality holds for an optimal denoiser pθ. Because the ELBO is naturally tighter in the
discrete space, it is advantageous to operate in the discrete space.

4 APPLICATIONS

We now present two applications where discrete diffusion models benefit from the underlying
Gaussian diffusion. In Sec. 4.1, we introduce a curriculum learning strategy that reduces training
variance and speeds up convergence. Then, in Sec. 4.2, we propose a distillation algorithm that cuts
the number of sampling steps by two orders of magnitude with minimal impact on sample quality.

4.1 FASTER TRAINING USING CURRICULUM LEARNING

Curriculum learning (Bengio et al., 2009) gradually exposes models to increasingly complex data,
starting with simpler, easier-to-denoise noise patterns and progressing to more challenging ones.
Here, we design a curriculum for USDMs by exploiting the underlying Gaussian diffusion.

Similar to relaxation methods in discrete gradient estimation (Jang et al., 2017; Maddison et al., 2017),
our curriculum is centered around annealing the temperature parameter of a smooth approximation
of argmax. We reformulate the ELBO for discrete diffusion in terms of argmax over Gaussian
latents (Sec. 4.1.1). We provide a lower-variance but biased estimator of the ELBO by relaxing the
argmax operator with tempered softmax (Sec. 4.1.2). At the beginning of this curriculum, training
resembles a simple Gaussian diffusion process – with the ELBO for discrete diffusion – and gradually
transitions towards the standard discrete diffusion process.
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4.1.1 DISCRETE ELBO WITH GAUSSIAN LATENTS

Consider the discrete diffusion ELBO, Ldiffusion, from (2), which marginalizes f(x,zt, αt,xθ(zt))
over x ∼ qdata and zt ∼ q(.∣x) for t ∼ [0,1]. We aim to re-express this in terms of Gaussian latents
wt ∼ q̃t(.∣x) such that marginalizing over wt yields the same value. In Suppl. B.1, we show

Ldiffusion = Et∼U[0,1],qt(zt∣x;αt) f(zt,xθ(zt), αt;x)

= Et∼U[0,1],q̃t(wt∣x;α̃t) f(zt ∶= argmax(wt),xθ(argmax(wt)), αt ∶= T (α̃t);x), (13)

where αt = T (α̃t) is obtained via (10) from the Gaussian diffusion coefficient α̃t. Importantly, this
reparameterization does not imply that we are defining a markov process between a Gaussian
latent and a discrete latent. As mentioned earlier in Sec. 3, these two are separate markov processes
whose marginals are merely connected by (11). This reparameterization underpins our curriculum
learning strategy which we present in the next section.

4.1.2 LOW VARIANCE TRAINING LOSS

To control training variance, we replace argmax(wt) with a tempered softmax. First, note that
argmax can be expressed as a limiting case of softmax (Jang et al., 2017; Maddison et al., 2017):

argmax(wt) = lim
τ→0+

softmax(
wt

τ
) . (14)

We relax the argmax operation by introducing a temperature parameter τ > 0. In the extreme case
where τ ≫ 0, the values of wt ∈ R are mapped near the center of the simplex defined by V , thereby
significantly reducing variance in the input to the denoising model. Conversely, as τ → 0, the softmax
output moves closer to the simplex vertices, introducing more variability.

Unlike previous discrete diffusion approaches (Sahoo et al., 2024a; Austin et al., 2021; Lou et al.,
2023), we design the denoising model pθt ∶ ∆

K ∪ V → ∆K to handle both continuous latents and
discrete latents ; see Suppl. C.1 for more details. We set τ as a function of the training iteration n,
annealing it from an initial value τ(n = 0) = τmax to a final value τ(n = N) = τmin ≈ 0, where N is
the total number of training steps. This ensures that softmax(wt/τ(n)) produces values closer to
the vertices of the simplex as τ(n) decreases and resembles the samples from a discrete diffusion
process. As shown in Figure 3, this approach results in lower training variance compared to previous
Absorbing and Uniform State discrete diffusion models, ultimately leading to an improved ELBO.

Thus, we define the following training loss:

Ltrain =Et∼[0,1],q̃t(wt∣x;α̃t) f
⎛

⎝
zt ∶= argmax(wt),xθ (softmax (wt/τ) , t) , αt ∶= T (α̃t);x

⎞

⎠
. (15)

This loss doesn’t correspond to a valid ELBO because the denoising model operates on a continuous-
time random variable, while the ELBO is defined for a discrete diffusion process. It only becomes a
valid ELBO in the limiting case limτ→0+ . During evaluation, we evaluate the model as a discrete
diffusion model using (5).

4.2 DUAL CONSISTENCY DISTILLATION

In this section, we introduce a method to accelerate sampling by leveraging the dual Gaussian
diffusion. Specifically, we adapt Consistency Distillation, a widely used technique for distilling
Gaussian diffusion models. This approach relies on deterministic trajectories from the teacher model,
generated via PF-ODEs. However, discrete diffusion lacks PF-ODEs, making direct application
infeasible. To address this, we propose DCD (Dual Consistency Distillation), which overcomes this
limitation by utilizing the PF-ODE of the underlying Gaussian diffusion to generate deterministic
trajectories. In Gaussian diffusion, the trained score model enables deterministic sampling via PF-
ODE simulation. In contrast, in discrete diffusion, the denoiser pθt cannot be applied to Gaussian
latents at inference since it is exclusively trained on discrete latents (as τ in (14) is annealed to 0).

Deterministic Discrete Trajectories (DDT) Given a clean data sample x ∼ qdata and a noise sample
ϵ ∼ N (0, IK), we generate a sequence of latents that follow a deterministic trajectory by reversing
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the PF-ODE using the DDIM sampler under an optimal denoiser (Song et al., 2021); see Suppl. B.2
for a detailed discussion. Let PDDIM(x, ϵ) = {α̃tx +

√
1 − α̃t

2ϵ}
t∈[0,1]

denote such a trajectory.
Next, we map this sequence of Gaussian latents to the discrete space using argmax operator in the
following manner: PDDT(x, ϵ) = {zt = argmax (α̃tx +

√
1 − α̃t

2ϵ)}
t∈[0,1]

, where PDDT represents
the mapping of PDDIM to the discrete space. In the later part of this section, we discuss how these
trajectories are used to specify the inputs to the student and the teacher model while performing
distillation.

Distillation Given a teacher model xθ− , our goal is to distill it into a student model xθ that can
generate samples of similar quality but in fewer steps. To perform distillation, we sample an adjacent
pair of latents (zs,zt) ∼ {(zj−∆,zj)∣z{.} ∈ PDDT(x, ϵ), j ∈ [∆,1]} for a given step size ∆ ∈ [0,1].
Here, zs is a less noisy sample than zt, and zt serves as the input to the student model. Let xθ−(zs)
and xθ(zt) represent the distributions of samples generated by the teacher and student models,
respectively. We train the student model to match the teacher model’s distribution by minimizing the
loss DKL(xθ(zt),xθ−(zs)) as proposed in Deschenaux & Gulcehre (2024). Thus the final distillation
loss is LDCD(θ,θ

−) = DKL(xθ(zt, t),xθ−(zs, s)). Following (Song et al., 2023), we optimize this
objective via stochastic gradient descent (SGD) on the student model parameters θ, while updating the
teacher model parameters θ− using an exponential moving average (EMA). The distillation process
consists of K rounds, each with M training steps. The full algorithm is summarized in Algorithm 1.

5 EXPERIMENTS

We evaluate Duo on standard language modeling benchmarks, training on LM1B (Chelba et al., 2014)
and OpenWebText (OWT)(Gokaslan et al., 2019) with sequence packing(Raffel et al., 2020). We
train our models for 1M steps with a batch size of 512 on both datasets. For LM1B, we use a context
length of 128 with the bert-base-uncased tokenizer (Devlin et al., 2018). Unlike Austin et al.
(2021), prior works (Sahoo et al., 2024a; Lou et al., 2023; He et al., 2022) did not use sequence
packing, making our setup more challenging and leading to higher perplexity in retrained models
(Table 3). For OWT, we use a context length of 1024 with the GPT-2 tokenizer (Radford et al., 2019).
Following Sahoo et al. (2024a), we reserve the last 100K documents for validation. Our model is a
170M-parameter modified diffusion transformer (DiT)(Peebles & Xie, 2023) with rotary positional
encoding(Su et al., 2023) and adaptive layer norm for conditioning on diffusion time, consistent with
prior work (Lou et al., 2023; Sahoo et al., 2024a). Training is conducted on 8×A100s or 8×H100s
with bfloat16 precision. We train Duo using (15), which requires computing the integral in (10).
To reduce computation overhead, we precompute and cache 100K (α̃t,T (α̃t)) tuples, significantly
smaller than the denoising network. The Gaussian diffusion parameter α̃t is parameterized using a
linear schedule i.e., (α̃t = 1 − t)t∈[0,1].

5.1 IMPROVED TRAINING

Our experiments show that (1) the proposed curriculum learning strategy (Sec. 4.1.2) accelerates
training by 2× and achieves a new state-of-the-art among USDMs (Tables 1, 3), and (2) Duo
performs competitively with Absorbing State diffusion across major language modeling benchmarks,
even surpassing AR models on 3/7 zero-shot PPL benchmarks (Table 2).

Experimental setup The primary baselines for Duo are the leading USDMs (SEDD Uniform (Lou
et al., 2023) and UDLM (Schiff et al., 2025)) and the SOTA Gaussian diffusion method, PLAID (Gul-
rajani & Hashimoto, 2024). For PLAID on LM1B, we retrained it without self-conditioning (Chen
et al., 2023) to match our denoising model’s parameter count. Due to their inefficient open-source
codebase1, we report PLAID results for LM1B at 100K steps, as further training was infeasible. For
OWT, we report results from Lou et al. (2023), where PLAID was trained with self-conditioning for
1.3M steps, favoring the baseline. Additionally, we compare Duo with autoregressive models and
absorbing state discrete diffusion models, including MDLM (Sahoo et al., 2024a) (SOTA), SEDD
Absorb (Lou et al., 2023), and D3PM Absorb (Austin et al., 2021).

1https://github.com/igul222/plaid
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Table 2: Zero-shot perplexities (↓) of models trained for 1M steps on OWT. All perplexities for
diffusion models are upper bounds. † Taken from Sahoo et al. (2024a). ¶ Taken from (Lou et al.,
2023) models were trained for 1.3Msteps as opposed to the baselines that were trained for 1Msteps.
All perplexities for diffusion models are upper bounds. Best uniform / Gaussian diffusion values are
bolded and diffusion values better than AR are underlined. ‡ denotes retrained model.

PTB Wikitext LM1B Lambada AG News Pubmed Arxiv

Autoregressive
Transformer† 82.05 25.75 51.25 51.28 52.09 49.01 41.73

Diffusion (absorbing state)
SEDD Absorb† 100.09 34.28 68.20 49.86 62.09 44.53 38.48
D3PM Absorb¶ 200.82 50.86 138.92 93.47 - - -
MDLM† 95.26 32.83 67.01 47.52 61.15 41.89 37.37

Diffusion (uniform state / Gaussian)
SEDD Uniform‡ 105.51 41.10 82.62 57.29 82.64 55.89 50.86
Plaid¶ 142.60 50.86 91.12 57.28 - - -
UDLM‡ 112.82 39.42 77.59 53.57 80.96 50.98 44.08

Duo (Ours) 89.35 33.57 73.86 49.78 67.81 44.48 40.39

Faster training We analyze the effect of τ on training loss. Figure 6 visualizes the loss on the
LM1B dataset over 150K steps for τ ∈ {0,0.001,0.01,0.1}. Here, τ = 0 (blue) corresponds to (5),
meaning no curriculum learning. A larger τ reduces training variance but introduces bias. Ideally,
τ should balance both. When τ = 0.1 (red), excessive bias causes a sharp loss drop, making it
suboptimal. Lowering τ to 0.01 (orange) and 0.001 (purple) stabilizes the loss, with τ = 0.001 being
optimal—it closely follows the blue curve (low bias) while maintaining significantly lower variance.
Thus, we set τ(n < 500K) = 0.001 for the first 500K steps, then switch to τ(n > 500K) = 0 (as in
(5)) until 1M steps to eliminate bias. After just 10K fine-tuning steps as a discrete diffusion model
(510K total steps), Duo achieves a likelihood of 35.20—almost 1.5 perplexity points better than
UDLM trained for 1M steps— curriculum learning accelerates convergence by at least 2×.

Table 1: Test perplexities (PPL; ↓) on OWT for models
trained for 262B tokens. † Reported in Sahoo et al.
(2024a). We report bounds for diffusion models. Best
diffusion value is underlined.‡ Denotes retrained model.

PPL (↓)

Autoregressive
Transformer† 17.54

Diffusion (absorbing state)
SEDD Absorb† (Lou et al., 2023) 24.10
MDLM† (Sahoo et al., 2024a) 23.21

Diffusion (uniform state)
SEDD Uniform‡ (Lou et al., 2023) 29.69
UDLM‡ (Schiff et al., 2025) 27.43
Duo (Ours) 25.20

Likelihood Evaluation To compute ppl for
Duo, we use (5) with αt = 1 − t (Schiff et al.,
2025). On LM1B (Table 3) and OWT (Table 1),
Duo outperforms previous USDMs and Gaus-
sian diffusion models notably SEDD Uniform
and UDLM and shrinks the gap with absorbing
diffusion below 2 perplexity points. On LM1B,
We retrained Plaid which attained a perplexity
of 89.91 in 100K steps while DUO achieves a
perplexity of 43.01 in the same number of steps.
We don’t report this number in the table due to
incomplete training.

Zero-Shot Likelihood Evaluation We mea-
sure the zero-shot generalization of the models
trained on OWT by evaluating their PPL on 7
other datasets. Following Sahoo et al. (2024a),
our zero-shot datasets include the validation splits of Penn Tree Bank (PTB; Marcus et al. (1993)),
WikiText (Merity et al., 2016), LM1B, Lambada (Paperno et al., 2016), AG News (Zhang et al.,
2015), and Scientific papers from ArXiv and Pubmed (Cohan et al., 2018). We observe that Duo
outperforms SEDD Uniform and Plaid across all benchmarks. More notably, it achieves a better PPL
score than SEDD Absorbing on 4 / 7 datasets, MDLM on 1 / 7, most notably, ourperforming an
autoregressive transformer on 3 / 7 datasets.
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5.2 IMPROVED SAMPLING

Figure 2: Distillation results for DUO when dis-
tilled using DCD (1) and MDLM distilled using
SDTT. After distillation, Duo dominates in the low
sampling steps regime ≤ 64.

Our sampling experiments show that for undistilled
models, (1) Duo generates higher-quality samples
than all previous diffusion models (Table 7). (2) Af-
ter distillation, Duo dominates in the low-sampling-
step regime (Fig. 2)

Experimental Setup We distill Duo on OWT, us-
ing MDLM distilled with SDTT (Deschenaux & Gul-
cehre, 2024) as our primary baseline. Similar to
SDTT, we perform K = 5 rounds of distillation, set-
ting the discretization step ∆ = 1/512 in Algorithm 1
and doubling it every M = 10k steps. To evaluate
sample quality, we use GPT-2 Large generative per-
plexity (Gen PPL) as a quality metric and average
sequence entropy as a diversity metric. As noted
by Zheng et al. (2024), low-precision sampling can
be problematic in masked diffusion models, leading
to reduced diversity and potentially misleading Gen
PPL scores. To mitigate this, we use float64 precision for all sampling experiments.
Results We observe that DUO surpasses all previous diffusion models in terms of Gen PPL across all
sampling steps T ∈ {8, . . . ,1024} (Fig. 7). Notably, the entropy of MDLM, SEDD Absorb, and SEDD
Uniform closely resembles that of the autoregressive model without nucleus sampling. Meanwhile,
for T ∈ {32, . . . ,1024}, Duo’s entropy aligns with that of the AR model using nucleus sampling with
p = 0.9. The entropies of MDLM, SEDD Absorb, and SEDD uniform and the autoregressive model
w/o nucleus sampling are surprisingly similar. Duo’s entropy for T ∈ {32, . . . ,1024} is similar to
that of the AR model with nucleus sampling p = 0.9. However, for T ∈ {8,16}, Duo’s entropy drops
to 4.9 and 5.1, indicating lower diversity in samples. Later, we show that distillation mitigates this
issue by increasing entropy and reducing Gen PPL for smaller T values.
Distillation In Fig. 2, we compare Duo (DCD-distilled) with MDLM (SDTT-distilled), where
darker shades indicate more distillation rounds. Duo outperforms for all T values up to round 2.
After five rounds, DUO dominates in the low NFE region (T ≤ 64), while MDLM excels in the high
NFE region (T ≥ 64). Notably, each distillation round increases Duo’s sample entropy and reduces
Gen PPL, improving diversity and quality (Fig. 8).

6 RELATED WORK AND CONCLUSION
Related Work Previous work attempted to use Gaussian diffusion for language modeling. Plaid
(Gulrajani & Hashimoto, 2024), DiffusionLM (Li et al., 2022) and CDCD (Dieleman et al., 2022)
inject Gaussian noise in continuous embedding vectors. However, these achieve poorer performance
than recent discrete diffusion models (Lou et al., 2023; Sahoo et al., 2024a; Shi et al., 2025). We
prove that the discrete ELBO is tighter, and therefore results in a better model. Prior work in discrete
diffusion language models adhere strictly to discrete space: D3PM (Austin et al., 2021) introduces a
discrete time, discrete space framework using Markov corruption processes, Masked diffusion models
Sahoo et al. (2024a); Ou et al. (2024); Shi et al. (2025); He et al. (2022) advance the absorbing
corruption process, Lou et al. (2023) defines the forward process in terms of a continuous time Markov
process. While previous work in this paragraph studies discrete diffusion in isolation from Gaussian
diffusion processes, our work shows that uniform discrete space diffusion emerges as the argmax
of an underlying Gaussian process, and we use this connection to improve training and sampling.
Deschenaux & Gulcehre (2024) introduce a distillation scheme for absorbing diffusion models that
doesn’t rely on deterministic samplers unlike distillation schemes in Gaussian diffusion (Salimans
& Ho, 2022; Luhman & Luhman, 2021). Our proposed DCD algorithm is a form of consistency
distillation (Song et al., 2023; Song & Dhariwal, 2023).
Conclusion In this work, we formulated a theoretical connection between continuous, Gaussian
diffusion models and discrete, uniform-state diffusion models. We exploited this connection to
achieve a 2x speed-up in training convergence, as well as two-orders of magnitude improvement
in sampling speed. We hope that our theoretical foundation inspires further connections between
efficient methods for continuous and discrete diffusion models.
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Appendices
APPENDIX A THE DIFFUSION DUALITY

Let x ∈ V s.t. xk = 1 i.e., x contains 1 at the kth index. Consider a r.v. y = α̃tx + σ̃tϵ where
ϵ ∼ N (0, IK) and σ̃t =

√
1 − α̃t

2.

A.1 DISCRETE MARGINALS

Our goal in this section is to derive the pmf of the r.v. argmax(y). The proof has three parts. In
part 1, we derive pdf of the the random variables yk and yi≠k. Next in part 2, we derive the pdf
of the random variable Z≠k = max({yi ∶ i ≠ k}). Finally in part 3, we derive the distribution of
max(Z≠k,yk) which is the key to constructing the pmf of the r.v. argmax(y).

Part 1 It can be easily seen that every entry in y is a Gaussian r.v. with

yk ∼ N (α̃t, σ̃
2
t ) (16)

yi≠k ∼ N (0, σ̃
2
t ). (17)

Part 2 Since, yi≠k follows a Gaussian distribution with 0 mean and σ̃t standard deviation, the
probability of yi≠k < l where l ∈ R is

P (yi≠k < l) = Φ(
l

σ̃t
) (18)

where Φ(z) = ∫
z
−∞

exp(−t2/2)dz/
√
2π is the cumulative distribution function of the Gaussian

distribution. This allows us to compute the pdf of the r.v. Z≠k =max({yi ∶ i ≠ k}) in the following
manner:

P (Z≠k < l) = Πi≠kP (yi < l) = Φ
K−1
(
l

σ̃t
) , (19)

where P (Z≠k < l) is the probability that Z≠k < l for l ∈ R.

Part 3 Let P (argmax(y)k = 1) denote the probability that the index k is the index of the maximum
entry in y. This is equal to the probability of every other entry yi≠k < yk. Let ϕ(z) = exp(−z2)/

√
2π

denote the standard Normal distribution. Hence,

P (argmax(y)k = 1) = P (Z≠k < yk)

= ∫

∞

−∞
P (Z≠k < l)P (yk = l)dl

= ∫

∞

−∞
P (Z≠k < l) [

1

σ̃t
ϕ(

l − α̃t

σ̃t
)]dl From (16)

= ∫

∞

−∞
ΦK−1

(
l

σ̃t
) [

1

σ̃t
ϕ(

l − α̃t

σ̃t
)]dl From (19)

= ∫

∞

−∞
ΦK−1 (l̃)ϕ(l̃ −

α̃t

σ̃t
)dl̃ Substituting l̃ = l/σ̃t

= ∫

∞

−∞
ϕ(l̃ −

α̃t
√
1 − α̃t

2
)ΦK−1 (l̃)dl̃. (20)

Note that the indices i ≠ k and j ≠ k have the same probability of being the indices of maximum
entry in y because both r.v.s yi≠k and yj≠k have the same pmf specified by (17). Thus,

P (argmax(y)i≠k = 1) = P (argmax(y)j≠k = 1) ∀0 ≤ i ≠ k <K,0 ≤ j ≠ k <K. (21)
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Thus we can compute P (argmax(y)i≠k = 1) in the following manner:

∑
i

P (argmax(y)i = 1) = 1

Ô⇒ P (argmax(y)k = 1) +∑
i≠k

P (argmax(y)i = 1) = 1

Ô⇒ P (argmax(y)k = 1) + (K − 1)P (argmax(y)i≠k = 1) = 1 From (21)

Ô⇒ P (argmax(y)i≠k = 1) =
1

K − 1
[1 − P (argmax(y)k = 1)]

Ô⇒ P (argmax(y)i≠k = 1) =
1

K − 1
[1 − ∫

∞

−∞
ϕ(l̃ −

α̃t
√
1 − α̃t

2
)ΦK−1 (l̃)dl̃] From (20) (22)

Let βt = P (argmax(y)i≠k = 1). Then, from (20) and (22) we have P (argmax(y)i=k = 1) =
βt + (1 −K)βt. Thus,

P (argmax(y)i = 1) = {
βt, i ≠ k

βt + (1 −K)βt. i = k
(23)

(23) can be written in vectorized form in the following manner:

P (argmax(y)) = Cat(.;βt1 + (1 −Kβt)x). (24)

A.2 TIME CHANGE OF DISCRETE MARGINALS

Let pt denote P (argmax(y)) in (24). It’s time-derivative d
dtpt is as follows:

d
dt
pt = β

′
t1 −Kβ′tx

= β′t(1 −Kx)

=
β′t

1 −Kβt
(1 −Kβt)(1 −Kx)

=
β′t

1 −Kβt
(βtK1 − βtK1 + (1 −Kβt)(1 −Kx))

=
β′t

1 −Kβt
(βt[11

⊺
]1 − βtK1 + (1 −Kβt)(1 −Kx))

=
β′t

1 −Kβt
(βt([11

⊺
]1 −K1) + (1 −Kβt)(1 −Kx))

=
β′t

1 −Kβt
(βt[11

⊺
−KI]1 + (1 −Kβt)(1 −Kx))

=
β′t

1 −Kβt
(βt[11

⊺
−KI]1 + (1 −Kβt)(11

⊺x −Kx))

=
β′t

1 −Kβt
(βt[11

⊺
−KI]1 + (1 −Kβt)[11

⊺
−KI]x)

=
β′t

1 −Kβt
[11⊺ −KI][βt1 + (1 −Kβt)x]

=
β′t

1 −Kβt
[11⊺ −KI]pt (25)

Let αt = 1 −Kβt. The functional form of αt is given as:

αt = 1 −Kβt

= 1 −K
1

K − 1
[1 − ∫

∞

−∞
ϕ(l̃ −

α̃t
√
1 − α̃t

2
)ΦK−1 (l̃)dl̃]

= 1 −
K

K − 1
+

K

K − 1
∫

∞

−∞
ϕ(l̃ −

α̃t
√
1 − α̃t

2
)ΦK−1 (l̃)dl̃
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=
K

K − 1
∫

∞

−∞
ϕ(l̃ −

α̃t
√
1 − α̃t

2
)ΦK−1 (l̃)dl̃ −

1

K − 1

=
K

K − 1
[∫

∞

−∞
ϕ(l̃ −

α̃t
√
1 − α̃t

2
)ΦK−1 (l̃)dl̃ −

1

K
] (26)

Substituting βt = (1 − αt)/K in (24) and (25), we get:

pt = Cat(.;αtx + (1 − αt)π) (27)
d
dt
pt = −

αt
′

Kαt
[11⊺ −KI]pt (28)

where αt
′ denotes the time-derivative of αt. Let zt = argmax(y). The pmf of zt is specified in (27)

which evolves according to an ordinary differential equation (ODE) (28). This pmf and the ODE
are the unique signatures of a uniform state discrete diffusion process (Lou et al., 2023; Schiff et al.,
2025). This concludes our proof.

A.3 GAUSSIAN ELBO VS DISCRETE ELBO

Let ws ∼ q̃t(.∣x) and wt ∼ q̃t(.∣x) be two intermediate latents for the Gaussian diffusion process
defined on x. Let zs = argmax(ws) and zt = argmax(wt). Let q(ws,zs∣wt,zt,x) denote the true
joint reverse posterior and pθ(ws,zs∣wt,zt) denote the approximate reverse joint posterior.

To derive the relationship we require the following properties:

Since, zt is a deterministic transformation of wt,

q(ws∣zs,wt,zt,x) = q(ws∣zs,wt,x) (29)

Since, the transition zt → zs is Markov,

q(zs∣wt,zt,x) = q(zs∣zt,x) (30)
pθ(zs∣wt,zt) = pθ(zs∣zt) (31)

Since, the transition wt →ws is Markov,

q(ws∣wt,zt,x) = q(ws∣wt,x) (32)

Since, zs = argmax(ws),

q(zs∣ws,wt,zt,x) = q(zs∣ws) = Cat(.; argmax(ws)) (33)

DKL(q(ws,zs∣wt,zt,x)∥pθ(ws,zs∣wt,zt))

=∑
zs

∫
ws

q(ws,zs∣wt,zt,x) log
q(ws,zs∣wt,zt,x)

pθ(ws,zs∣wt,zt)
dws

=∑
zs

∫
ws

q(ws,zs∣wt,zt,x) log
q(ws,zs∣wt,zt,x)

pθ(ws,zs∣wt,zt)
dws

=∑
zs

∫
ws

q(ws∣zs,wt,zt,x)q(zs∣wt,zt,x) log
q(ws∣zs,wt,zt,x)q(zs∣wt,zt,x)

pθ(ws∣zs,wt,zt)pθ(zs∣wt,zt)
dws

=∑
zs

∫
ws

q(ws∣zs,wt,x)q(zs∣zt,x) log
q(ws∣zs,wt,x)q(zs∣zt,x)

pθ(ws∣zs,wt)pθ(zs∣zt)
dws

= EzsDKL(q(ws∣zs,wt,x)∥pθ(ws∣zs,wt)) +DKL(q(zs∣zt,x)∥pθ(zs∣zt)) (34)

Thus, we have Also,

DKL(q(ws,zs∣wt,zt,x)∥pθ(ws,zs∣wt,zt))

= ∫
ws

∑
zs

q(ws,zs∣wt,zt,x) log
q(ws,zs∣wt,zt,x)

pθ(ws,zs∣wt,zt)
dws
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= ∫
ws

∑
zs

q(zs∣ws,wt,zt,x)q(ws∣wt,zt,x) log
q(ws∣wt,zt,x)q(zs∣ws,wt,zt,x)

p(ws∣wt,zt)pθ(zs∣wt,zt)
dws

= ∫
ws

∑
zs

q(zs∣ws,wt,zt,x)q(ws∣wt,x) log
q(ws∣wt,x)q(zs∣ws,wt,x)

pθ(ws∣wt)pθ(zs∣ws,zt)
dws

= ∫
ws

∑
zs

q(zs∣ws)q(ws∣wt,x) log
q(ws∣wt,x)q(zs∣ws)

pθ(ws∣wt)pθ(zs∣ws)
dws

= ∫
ws

q(zs = argmax(ws)∣ws)q(ws∣wt,x) log
q(ws∣wt,x)q(zs = argmax(ws)∣ws)

pθ(ws∣wt)pθ(zs = argmax(ws)∣ws)
dws

= ∫
ws

q(ws∣wt,x) log
q(ws∣wt,x)

pθ(ws∣wt)
dws

= DKL(q(ws∣wt,x)∥pθ(ws∣wt)) (35)

From (34) and (35) we get

DKL(q(ws∣wt,x)∥p(ws∣wt)) = Ezt[EzsDKL(q(ws∣zs,wt,x)∥p(ws∣zs,wt))]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥ 0

+DKL(q(zs∣zt,x)∥p(zs∣zt))

Ô⇒ DKL(q(ws∣wt,x)∥p(ws∣wt)) ≥ DKL(q(zs∣zt,x)∥p(zs∣zt))

Ô⇒ −DKL(q(ws∣wt,x)∥p(ws∣wt))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡ELBO(q̃t,pθ)(7)

≤ −DKL(q(zs∣zt,x)∥p(zs∣zt))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡ELBO(qt,pθ)(4)

Ô⇒ ELBO(q̃t, pθ;x) ≤ ELBO(qt, pθ;x)
Ô⇒ log pθ(x) ≥ ELBO(qt, pθ;x) ≥ ELBO(q̃t, pθ;x) (36)

Thus, ELBO in the Gaussian space is “looser” or lower than the ELBO in the discrete space. This
proof is inspired by Mena et al. (2018).

APPENDIX B ADDITIONAL PROOFS

B.1 ELBO EQUIVALENCE

Note that f(zt,xθ(zt, t), αt;x) is invariant to the functional form of the noise schedule αt as long as
αt=0 = 1 and αt=1 = 0 (Schiff et al., 2025).

Consider a discrete diffusion process q′ with a noise schedule T (g(t)) where g ∶ [0,1]→ [0,1] and
T .... Note that at t=0 and t=1 the noise schedule evaluates to ... Thus,

Ldiffusion = Ex,t∼U[0,1],zt∼qt(.∣x)f(zt,xθ(zt, t), αt;x) (37)

= Ex,t∼U[0,1],zt∼q′t(.∣x)
f(x,zt, αt = T (g(t)),xθ(zt)) (38)

Let the Gaussian diffusion process underlying q′ be q̃t. This Gaussian process Thus, for wt ∼ q̃t,
z̃t = argmax(wt) ∼ q

′ from (...). Thus,
= Ex,t∼U[0,1],zt∼q′t(.∣x)

f(x,zt, αt = T (g(t)),xθ(zt)) (39)

= Ex,t∼U[0,1],wt∼q̃t(.∣x)f(x,zt ∶= argmax(wt), αt = T (g(t)),xθ(zt ∶= argmax(wt))) (40)

As a sanity check, we empirically verify the equivalence of (13) and (37). To do this, we trained
UDLM (Schiff et al., 2025) on LM1B (Table 3) using the true ELBO from (37). We then evaluated
the model using Gaussian latents and (13), and recovered the same perplexity (36.71) as when using
discrete latents. For each datapoint x, we used 1000 Monte Carlo samples for t sampled using
antithetic-sampling, with a linear schedule for α̃t = 1 − t.

B.2 OPTIMAL DDIM TRAJECTORIES

For the forward diffusion process 6 and a denoising model xθ ∶ RK → ∆, the DDIM (Song et al.,
2021) update step is given as where

zs = α̃sxθ(zt) +
√
1 − α̃2

sϵθ(zt) (41)
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Algorithm 1 Dual Consistency Distillation (DCD)

Input: data x ∼ qdata, learning rate η, number of distillation rounds K, number of training iterations
per round M , ema µ, discretization step ∆.
for i = 1 to K do
θ ← stopgrad(θ−)
for i = 1 to M do

Sample x ∼ qdata, t ∼ U[0,1], and ϵ ∼ N (0, IK).
s← max(t − i ⋅∆,0)
zs ← argmax(α̃sx +

√
1 − α̃s

2ϵ)
zt ← argmax(α̃tx +

√
1 − α̃t

2ϵ)
LDCD(θ,θ

−)← DKL(xθ(zt, t),xθ−(zs, s))
θ ← θ − η∇θLDCD(θ,θ

−)

θ− ← stopgrad(µθ− + (1 − µ)θ)
end for

end for=0

Figure 3: Training loss curves for Duo (ours) with curriculum learning, UDLM, and MDLM. We see
observe that curriculum learning leads to low variance training.

where ϵθ(zt) = (zt − αtxθ(zt))/
√
1 − α2

t .

For an optimal denoiser, we assume xθ(zt) = x. Given zt=1 = ϵ̃ ∼ N (0, IK) and x ∼ qdata, it can be
easily seen that (41) reduces to zs = α̃tx +

√
1 − α̃t

2ϵ̃. This holds ∀s ∈ [0,1]. Hence the optimal
DDIM trajectory PDDT(x, ϵ) is given as PDDIM(x, ϵ) = {α̃tx +

√
1 − α̃t

2ϵ}
t∈[0,1]

APPENDIX C TRAINING DETAILS

C.1 DENOISING MODEL

Unlike prior discrete diffusion approaches, we design the denoising model pθt ∶ ∆
K ∪ V → ∆K

to handle both a continuous latent w̃ ∈ ∆K and a discrete latent z ∈ V . We implement pθt as
a transformer (Vaswani et al., 2017), with the token-to-embedding mapping defined by matrix
multiplication y⊺vocab_embeddings in the first layer, where vocab_embeddings ∈ RK×m

and m is the dimensionality of the vocabulary embeddings. Discrete inputs y ∈ V correspond to
standard embedding lookups, while continuous inputs y ∈∆K act as “soft lookups.”

APPENDIX D CURRICULUM LEARNING

D.1 CLIPPING DIFFUSION TIME

In our approach, αt = T (α̃t) is derived from the Gaussian diffusion parameter α̃t as shown in Fig. 4.
It’s important to note that the diffusion ELBO Ldiffusion is weighted by αt

′ in (5), so when αt
′ ≈ 0, the
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Figure 4: Caption

Table 3: Test perplexities (PPL; ↓) on LM1B. ∗Reported in He et al. (2022). Best uniform/Gaussian
diffusion value is bolded. ¶Denotes the dataset didn’t incorporate sentence packing. †Reported
in Arriola et al. (2025). For diffusion models, we report the bound on the likelihood. Best diffusion
value is underlined. ‡Denotes retrained models.

PPL (↓)

Autoregressive
Transformer‡ 22.32 / 22.83¶†

Diffusion (absorbing state)
BERT-Mouth∗ (Wang & Cho, 2019) 142.89
D3PM Absorb (Austin et al., 2021) 76.90
D3PM Uniform (Austin et al., 2021) 137.90
DiffusionBert (He et al., 2022) 63.78¶

SEDD Absorb‡ (Lou et al., 2023) 32.71
MDLM (Sahoo et al., 2024a) 27.03 / 31.78¶†

Diffusion (uniform state / Gaussian)
Diffusion-LM¶∗ (Li et al., 2022) 118.62
SEDD Uniform¶ (Lou et al., 2023) 40.25
UDLM‡ (Schiff et al., 2025) 31.28 / 36.71¶

Duo (Ours) 29.95 / 33.68¶

contribution of the diffusion time step t to the ELBO is negligible and hence provides little learning
signal. Prior work (Sahoo et al., 2024a; Lou et al., 2023) used a linear schedule for αt and did not face
this issue. Hence, while training on Gaussian latents, we restrict the training window t ∼ [tmin, tmax]

to exclude the region where αt
′ ≈ 0. Although this yields a slightly biased estimate of the ELBO,

it effectively reduces training variance. In Fig. 4, we observe that for t ∈ [tmin, tmax], the Gaussian
latent has a higher signal level compared to its discrete counterpart, making it easier for the denoising
model to recover the clean signal from the Gaussian latent. Consequently, the task of denoising is
easier for the denoising model for τ > 0 than in the limiting case lim τ → 0+ which corresponds to
the discrete setting. Consequently, the loss term

As discussed earlier, we set the diffusion time range such that αt = T (α̃t) ∈ [0.05,0.95] in the
discrete diffusion process. While this range depends on vocabulary size, we found it to be similar for
both the gpt-2 and bert-base-uncased tokenizers, with [tmin, tmax] = [0.03,0.15].
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APPENDIX E ADDITIONAL EXPERIMENTS

E.1 LM1B

Figure 5: Gen PPL for Duo and MDLM.

E.2 TAU ABLATIONS

Figure 6: Train loss for curriculum learning by varying τ . Models were trained on the LM1B dataset.
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E.3 SAMPLE QUALITY

Figure 7: Sample quality comparision between Duo (ours), MDLM, SEDD (Absorb / Uniform), and
AR. The numbers in brackets denote the entropy of the samples. Note that the entropy of samples for
DUO is quite similar to that of the AR model with nucleus sampling (p=0.9) while the entropy of the
samples for other methods is similar to the AR model without nucleus sampling.
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E.4 GENERATIVE PERPLEXITY AND ENTROPY OF DUO AND SDTT

Table 4: Generative perplexity and entropy for Duo distilled using Dual Distillation (DD) (1) and
MDLM distilled SDTT.

MDLM w/ SDTT DUO w/ DD
GenPPL entropy GenPPL entropy

Base Model
1024 104.85 5.63 72.05 5.22
512 104.43 5.63 71.24 5.21
256 112.70 5.66 73.59 5.22
128 120.77 5.67 74.37 5.22
64 143.88 5.70 78.19 5.23
32 196.79 5.75 84.52 5.20
16 343.33 5.81 96.89 5.14
8 830.82 5.91 121.02 4.91

Round 1
1024 79.12 5.59 63.85 5.26
512 79.40 5.59 61.69 5.26
256 84.28 5.61 63.54 5.25
128 89.97 5.62 64.01 5.26
64 105.90 5.65 68.46 5.28
32 141.78 5.69 72.65 5.26
16 249.15 5.76 84.35 5.21
8 618.15 5.85 108.88 5.02

Round 2
1024 61.75 5.53 55.03 5.27
512 62.52 5.53 54.91 5.27
256 66.80 5.56 56.20 5.29
128 70.52 5.57 57.76 5.28
64 82.51 5.60 59.95 5.30
32 107.93 5.65 65.35 5.30
16 183.41 5.71 76.00 5.25
8 458.83 5.80 100.61 5.10

Round 3
1024 49.53 5.48 49.89 5.27
512 50.42 5.49 50.99 5.28
256 52.96 5.50 51.28 5.28
128 56.70 5.52 52.55 5.30
64 65.02 5.55 55.92 5.32
32 83.85 5.59 60.30 5.32
16 135.75 5.64 68.87 5.28
8 323.56 5.71 91.56 5.15

Round 4
1024 42.53 5.44 46.44 5.27
512 43.61 5.44 47.06 5.27
256 45.27 5.46 46.98 5.28
128 49.14 5.48 48.57 5.32
64 55.72 5.50 50.60 5.33
32 70.82 5.54 54.61 5.35
16 111.40 5.59 63.59 5.32
8 253.59 5.65 84.23 5.22

Round 5
1024 36.89 5.39 42.46 5.25
512 37.16 5.40 44.05 5.25
256 38.65 5.41 44.73 5.28
128 41.98 5.43 45.69 5.31
64 47.04 5.45 47.87 5.34
32 58.29 5.49 51.74 5.36
16 89.17 5.53 59.83 5.34
8 193.05 5.58 79.24 5.25

E.5 SAMPLES

Samples from a distilled Duo.

E.5.1 T = 1024

<|endoftext|> the funds to give them by April.
n
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Figure 8: Entropy of MDLM distilled using SDTT, and of DUO distilled using CDC. The entropy of
the SDTT-distilled MDLM decreases with distillation, while the entropy of the CDC-distilled DUO
model increases. The curves corresponding to a higher number of sampling steps are displayed with
lighter colors to emphasize the low sampling step regimes.

nIt will will take the community 30 days to be ready for a camp,
on Dec. 2, and the out of the group2̆019s headquarters.
n
nThe community is coming out of a 2̆01cfairly cautious,2̆01d and
2̆01cun-vigigative2̆01d approach not coming too months in advance.
He is willing to create a new opportunity for the community to
hold meetings in share a meeting in person.
n
n2̆01cIt is great to be a community, but it is important to be en-
couraged by the community to find the best leaders,2̆01d he said in
the letter.
n
nParqua City Responders also deploy a first-class command and re-
sponse vehicle, leaving the Centennial Township Police Department
in central Pennsylvania with the equipment it will provide.
n
nOn Friday, Diencio in Congress approved federal funds to support
operations in Washington, U.S., and he will use the funds to help
global relief efforts and climate recovery efforts.
n
nFIRST REQUITMENT
n
nForbes, published last year information tech companies, review
the costs of many class claims, such as mobile insurance and mort-
gage claims, based on individual claims, and found that costouts
and cost delays could lead to a lower claim.
n
n
nTech giants Alphabet (GOOG) and Facebook (FB.O) introduced a bill
earlier this week to increase more court requirements for such
claims between public and private companies in the United States.
n
nUniversity of Minnesota (UMN) students gather at Metcalf Uni-
versity in Minneapolis, Minnesota in this March 18, file photo.
REUTERS/Kathy J. Toner
n
nAdditional reporting by Rosalee Warrington<|endoftext|>NEW YORK
(Reuters) - Public-interest group PPC Capital has agreed to re-
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duce royalty payments for the residential customers owned by the
well to 10 percent in 2012, according to a Los Angeles-based trade
union source familiar with the federal antitrust talks.
n
nThe new group, 2̆01cVibrant Public Electric2̆01d (PGP), would,
still still include some customers in the Pacific Parcel, other
parts of California owned by the, and a part-owner and owner of of
intellectual utilities.
n
nThe prospect of a reorganization, PPC and the company at least $1
billion over the option of operating without it. The 2̆01cPerties
Reduction Review2̆01d agreed Tuesday with state regulators to put a
stop to the utility from operating this year.
n
nFILE - In this this June 24, 2013 file photo, PG&T Chairman
Jerry Hayward speaks in front of Reuters Reuters reporters dur-
ing a deadline to announce proposed lawsuits with federal regula-
tors. WSDA officials met several times about the possibility of
an agreement, according to the sources.
n
n2̆01cWe will the outstanding issues including water and servicing
payments, residential rates, the property service fees, customer
services, and debt issues,2̆01d said John McAlpine, the CPUC agency
spokesman.
n
nPG&T faces a $2 billion operating loss, and despite the deal,
PG&T faces uncertainty on a combination either paying the utility
a reduction in operating revenue and losing back to shareholders
and a a partial reorganization.
n
nAt the same time, the prospects also look grim for an industry
enjoying explosive growth this year, with growing demand more
sources of electricity and with more federal government competi-
tion.
n
nThe move also put pressure on General Electric, the maker Wall
Edison and Reliant„ cut down power output by 20 percent in 2011.
n
n2̆01cBASED CUMMARY2̆01d
n
nPG&T2̆019s shares fell $1.50 per share, after a loss of $2.6 bil-
lion in the fourth quarter ended Q3.
n
nThe company in the price-per-share market have seen higher compe-
tition, higher operating costs and a cost per diluted rate that it
the the rates offered by PPC Securities.
n
n2̆01cWith revenue customers, shareholders, such higher increased
rates, and better customer service, demand a higher diluted
share price,2̆01d said David Smith, president of communications
in PG&T2̆019s public relations statement Tuesday.
n
nTheT filed suit in November against a $2 proposed combined util-
ity company and put the suit on Monday with the Federal Trade Com-
mission.
n
nThe company, PG&T2̆019s new group of utilities, also be able to
be much richer in cash coming months than possible utilities, with
more cash to go out and more moreerous reporting requirements, ac-
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cording to a Wall Street Journal report earlier this month that
said.
n
nAmong other questions about utilities2̆019 potentially toxic as-
sets, the timing of dividend dividend payments will be under
scrutiny and the way due distribution of payments to its work-
ers and retirees will be be affected by Congress under an overhaul
passed Section 18 U.S.C. 111.
n
n[Bottom: of Reforms]
n
nPG&T owns or percent of the company, make up about 40 percent of
the,<|endoftext|>

E.5.2 T = 8

<|endoftext|> at the time, also critical of that the authors used
the site promote Mideastism, the to 2̆01ccoexist.2̆01d He blamed the
Saudi authorities, for carrying out 2̆01ca Censorship Convention
on the website, which being known for censorship on this [ [.2̆01d
2̆01cThe site2̆01d are not officially known but, according the gov-
ernment officials, have provoked international criticism„ in a
number of some criticism of the university2̆019s activities the
members of the South Asia of the Gulf Cooperation Council, said
that the university had no legal right to to restrict access to
students.
n
nAh Jafar, No. correspondent at The Guardian, has noted that the
attacks further proof that Yemen is a country and can consider any
plot, or a potential terrorist plot of serious consequences, to
its own people. and, indeed, though this opinion article has se-
vere outrage in some European countries. As Ash Khan, also not
the removed by the non-The Guardian Times for this piece, a piece
purports to to be in solidarity with the terrorists2̆019s massacre
of satirical magazine Charlie Hebdo because it features a cari-
cature of a woman in a, high-color, according Mr the Times2̆019
investigative„ conctions.
n
nMs. She describes, if the piece of Charlie Hebdo that pro-
vokes readers’s outrage, of her pet children as 2̆01cbruits of
pedophiles.2̆01d But these things are not acceptable in France.
In fact, not in the context of Orthodox Jews (and I don’t’t get
a muchness at the thought of dealing to the Lat’mod and) Stamp-
sia), is know as much as I do about the film’s final act). But
The Guardian doesn’t need a correction, I guess, the page I put it
on, for condemning a cartoon and depicts her a terrorist. And she
has human speech.<|endoftext|>The Hunger Games has already been
criticized the sexism among many ways,and-g andes2̆014following the
example of actor Akji Aoki, a wting comment the Oct. 18, 2008 is-
sue of The Hollywood Reporter in which he complained about video
games led to negative discussion of gender gender people on women,
bizarrely contending to say that games are social games: T̈here
very many games that played, I would play them, but they were not
very good.Äs he said, religion in games only religious ideas of
games, and then video games came out, game was declined. While
the existence of games is„ but quite disturbing because especially
in a democratic culture shows how the extent to which it uses in
its power to maintain the respect of freedom of thought. Without
that process, the concepts of thought and speech are violated.
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n
nTurn investigation of the down issues is problematic not only be-
cause it are so able to be honest and honest about religious not
not cults are presstitutes in video popular world; it is also the
general tendency of the media to tolerate such comments of suppos-
edly the characters.
n
n[1]. Critic of the following:
n
n2̆022 Punishment because of 2̆01cincidentity an offensive and
equivocal views of a Western people.2̆01d
n
n2̆022 The tendency of people to get involved in violence. For ex-
ample, Mr. Miri vilified factory father, a a Buddhist follower,
in a speech he is an atheist act for being attacked by a proper
audience, which is, well, that bad.
n
n2̆022 Violation of orator of speech, about l̈ove, and thedom. The
wasler, too, for of the ’-do-violence was punished because the
violence was fostered by close support the victim had. Just of
this, that is, the diatoms, l̈azy peopleänd dystopism.
n
nThe The Book Translation is a collection of translations of En-
glish published on this author here. The Images are taken from
the translation.<|endoftext|>Timeing Reassignment, Love and Free-
dom is a Ph.D. film. U. began to in the Filipinos in 2001 and had
crosstexts in a film. It brought back out in 2008 and added back
back in 2010.
n
nIn the days, Latin, they scanned the country about 30„ a sec-
ond per minute. In„ the First and Vietnam war, and around the
world during the Second World War War The U U’s Center of Bi His-
tory says the footage of the Central American television shows was
short but not as continuous. The result.
n
nÏ thought I was in it like ina mediocrat. When I saw it that
I was working journalist, a situation that I was in, with half
a second of my time off. The person to give a what being out
but no one stood up for me. I would have say, 2̆018You are do-
ing your wrong. You are good it.2̆0192̆01d That2̆019s an the di-
rector John Kershaw said the first time he was making U.A.A. War.
I.<|endoftext|>",
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