
Under review as submission to TMLR

Efficient Large Language Models: A Survey

Anonymous authors
Paper under double-blind review

Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities in important
tasks such as natural language understanding, language generation, and complex reason-
ing and have the potential to make a substantial impact on our society. Such capabilities,
however, come with the considerable resources they demand, highlighting the strong need
to develop effective techniques for addressing their efficiency challenges. In this survey, we
provide a systematic and comprehensive review of efficient LLMs research. We organize
the literature in a taxonomy consisting of three main categories, covering distinct yet in-
terconnected efficient LLMs topics from model-centric, data-centric, and framework-centric
perspective, respectively. We have also created a GitHub repository where we compile
the papers featured in this survey at https://anonymous.4open.science/r/Efficient_LLM-
paper-list-5847, and will actively maintain this repository and incorporate new research as
it emerges. We hope our survey can serve as a valuable resource to help researchers and
practitioners gain a systematic understanding of the research developments in efficient LLMs
and inspire them to contribute to this important and exciting field.

1 Introduction

Large Language Models (LLMs) are a type of advanced AI models designed to understand and generate
human languages. Recently, we have witnessed a surge in LLMs include those developed by Open AI (GPT-
3 (Brown et al., 2020) and GPT-4 (OpenAI et al., 2023)), Google (Gemini (Team & Google, 2023), GLaM (Du
et al., 2022), PaLM (Chowdhery et al., 2022), PaLM-2 (Anil et al., 2023)), Meta (LLaMA-1 (Touvron et al.,
2023a) and LLaMA-2 (Touvron et al., 2023b)), and other models such as BLOOM (Workshop et al., 2023),
PanGu-

∑
(Ren et al., 2023b), and GLM (Zeng et al., 2022). These models have demonstrated remarkable

performance across a variety of tasks such as natural language understanding (NLU), language generation,
complex reasoning (Yang et al., 2023b), and domain-specific tasks related to biomedicine (He et al., 2023;
Wan et al., 2023; 2022), law (Eliot, 2021) and code generation (Wei et al., 2022b; Chen et al., 2021c). Such
performance breakthroughs can be attributed to their massive scales in model sizes and volumes of training
data, as they contain billions or even trillions of parameters while being trained on a gigantic amount of
data from diverse sources.

Although LLMs are leading the next wave of AI revolution, the remarkable capabilities of LLMs come at the
cost of their substantial resource demands (OpenAI et al., 2023; Du et al., 2022; Chowdhery et al., 2022; Ren
et al., 2023b). Figure 1 illustrates the relationship between model performance and model training time in
terms of GPU hours for LLaMA series, where the size of each circle is proportional to the number of model
parameters. As shown, although larger models are able to achieve better performance, the amounts of GPU
hours used for training them grow exponentially as model sizes scale up. In addition to training, inference
also contributes quite significantly to the operational cost of LLMs. Figure 2 depicts the relationship between
model performance and inference throughput. Similarly, scaling up the model size enables better performance
but comes at the cost of lower inference throughput (higher inference latency), presenting challenges for these
models in expanding their reach to a broader customer base and diverse applications in a cost-effective way.

The high resource demands of LLMs highlight the strong need to develop techniques to enhance the efficiency
of LLMs. As shown in Figure 2, compared to LLaMA-1-33B, Mistral-7B (Jiang et al., 2023a), which uses
grouped-query attention and sliding window attention to speed up inference, achieves comparable perfor-

1

https://anonymous.4open.science/r/Efficient_LLM-paper-list-5847
https://anonymous.4open.science/r/Efficient_LLM-paper-list-5847

Under review as submission to TMLR

60 62 64 66 68 70 72 74
Performance (Commonsense Reasoning Score)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Tr
ai

ni
ng

 T
im

e
(M

illi
on

 G
PU

 h
ou

rs
)

LLaMA-1-7B LLaMA-1-13B

LLaMA-1-33B

LLaMA-1-65B

LLaMA-2-7B
LLaMA-2-13B

LLaMA-2-34B

LLaMA-2-70B5B 10B 25B 50B 75B
Number of model parameters

Figure 1: Illustration of model performance and model training time in GPU hours of LLaMA models at dif-
ferent scales. The reported performance is the average score of several commonsense reasoning benchmarks.
The training time is based on Nvidia A100 80GB GPU. The size of each circle corresponds to the number
of model parameters. The original data can be found in Touvron et al. (2023a;b).

30 35 40 45 50 55
HuggingFace Open LLM Leaderboard Score (%)

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

LLaMA-1-33BOPT-30B
GPT-NeoX-20B

CodeGen-NL-16B
LLaMA-2-13B

LLaMA-1-13BOPT-13B

XGLM-7.5B

Mistral-7B

CodeGen-NL-6B

LLaMA-2-7BLLaMA-1-7B

OPT-6.7B
Cerebras-
GPT-6.7B

MPT-7B

Pythia-6.9B
XGLM-4.5B

OPT-2.7B
Cerebras-
GPT-2.7B

Cerebras-
GPT-1.3B

5GB 10GB 50GB 80GB
Memory

Figure 2: Performance score vs. inference throughput for various LLMs. The throughputs are measured on
Nvidia A100 80GB GPU with 16-bit floating point quantization. The size of each circle corresponds to the
memory footprint (in Gigabytes) of each model when running with batch size of 1, prompt size of 256 and
generating 1000 tokens. The original data can be found in Ilyas Moutawwakil (2023).

mance and much higher throughput. This superiority highlights the feasibility and significance of designing
efficiency techniques for LLMs.

2

Under review as submission to TMLR

E
ffi

ci
en

t
LL

M
s

M
et

ho
ds

Model-Centric (§2)

Model Compression (§2.1)

Quantization
Post-Training Quantization

Weight-Only Quantization

Weight-Activation Co-Quantization
Quantization-Aware Training

Parameter Pruning
Structured Pruning

Unstructured Pruning
Low-Rank Approximation

Knowledge Distillation
White-Box KD

Black-Box KD

Efficient Pre-Training (§2.2)

Mixed Precision Acceleration

Scaling Models

Initialization Techniques

Optimization Strategies

System-Level Pre-Training
Efficiency Optimization

Efficient Fine-Tuning (§2.3)

Parameter-Efficient
Fine-Tuning

Adapter-based Tuning

Low-Rank Adaptation

Prefix Tuning

Prompt TuningMemory-Efficient Fine-Tuning

Efficient Inference (§2.4)

Algorithm-Level
Inference Acceleration

Speculative Decoding

KV-Cache Optimization

System-Level Inference
Acceleration

Efficient Architecture (§2.5)

Efficient Attention

Sharing-based Attention

Feature Information Reduction

Kernelization or Low-Rank

Fixed Pattern Strategies

Learnable Pattern Strategies

Hardware-Assisted Attention

Mixture of Experts (MoE)

MoE-based LLMs

Algorithm-Level MoE Optimization

System-Level MoE Optimization

Long Context LLMs

Extrapolation and Interpolation

Recurrent Structure

Segmentation and Sliding Window

Memory-Retrieval Augmentation

Transformer-Alternative
Architectures

State Space Models

Other Sequential Models

Data-Centric (§3)

Data Selection (§3.1)

Data Selection for
Efficient Pre-Training

Data Selection for
Efficient Fine-Tuning

Prompt Engineering (§3.2)

Few-Shot Prompting

Demonstration Organization
Demonstration Selection

Demonstration Ordering

Template Formatting

Instruction Generation

Multi-Step Reasoning

Parallel Generation

Prompt Compression

Prompt Generation

Frameworks (§4)
DeepSpeed, Megatron, Alpa, ColossalAI, FairScale, Pax, Composer,
vLLM, OpenLLM, Ray-LLM, MLC-LLM, Sax, Mosec, LLM Foundry

Figure 3: Taxonomy of efficient large language models (LLMs) literature.

The overarching goal of this survey is to provide a holistic view of the technological advances in efficient
LLMs and summarize the existing research directions. As illustrated in Figure 3, we organize the literature
in a taxonomy consisting of three main categories, covering efficient LLMs topics from model-centric,
data-centric, and framework-centric perspective, respectively. These three categories cover distinct yet
interconnected research topics, collectively providing a systematic and comprehensive review of efficient
LLMs research. Specifically,

3

Under review as submission to TMLR

• Model-Centric Methods: Model-centric methods focus on both algorithm-level and system-level
efficient techniques where the model itself is the focal point. With billions or even trillions of
parameters, LLMs exhibit distinct characteristics (Wei et al., 2022a) compared to smaller-scale
models, necessitating the development of new techniques. In §2, we survey efficient techniques that
cover research directions related to model compression, efficient pre-training, efficient fine-tuning,
efficient inference, and efficient architecture design.

• Data-Centric Methods: In the realm of LLMs, the importance of data is as crucial as that of
the model itself. Data-centric methods focus on the role of the quality and structure of data in
enhancing the efficiency of LLMs. In §3, we survey efficient techniques that cover research directions
related to data selection and prompt engineering.

• LLM Frameworks: The advent of LLMs has necessitated the development of specialized frame-
works to efficiently handle their training, inference, and serving. While mainstream AI frameworks
such as TensorFlow, PyTorch, and JAX provide the foundations, they lack built-in support for spe-
cific optimizations and features crucial for LLMs. In §4, we survey existing frameworks specifically
designed for efficient LLMs, addressing their unique features, underlying libraries, and specializa-
tions.

In addition to the survey, we have established a GitHub repository where we compile the papers featured in
the survey, organizing them with the same taxonomy: https://anonymous.4open.science/r/Efficient_LLM-
paper-list-5847. We will actively maintain it and incorporate new research as it emerges.

Although there are a few surveys on LLMs (Zhao et al., 2023a; Chang et al., 2023; Wang et al., 2023g;
Kaddour et al., 2023), this survey provides a focused review and discussion on the literature related to the
efficiency aspect of LLMs. There are also surveys on efficient Transformers (Tay et al., 2022) and their
training methods (Zhuang et al., 2023a). In contrast, this survey specifically focuses on efficiency techniques
designed for models of more than billions of parameters. We hope this survey together with the GitHub repo
can help researchers and practitioners navigate through the literature and serve as a catalyst for inspiring
further research on efficient LLMs.

2 Model-Centric Methods

2.1 Model Compression

As summarized in Figure 4, model compression techniques for LLMs can be grouped into four categories:
quantization, parameter pruning, low-rank approximation, and knowledge distillation.

2.1.1 Quantization

Quantization compresses LLMs by converting model weights and/or activations of high-precision data types
XH such as 32-bit floating point into low-precision data types XL such as 8-bit integer (Dettmers et al.,
2023a):

XL = Round
(

absmax
(
XL)

absmax (XH) XH

)
= Round

(
K ·XH) , (1)

where Round denotes mapping a floating point number into an approximate integer; absmax denotes the
absolute maximum of the input elements; and K denotes the quantization constant. Quantization techniques
for LLMs can be classified into post-training quantization (PTQ) and quantization-aware training (QAT).

Post-Training Quantization (PTQ). PTQ quantizes LLMs after the model has been trained. To com-
pensate for the accuracy drop, PTQ uses a small calibration dataset to update the quantized weights and/or
activations. PTQ for LLMs can in general be grouped into two categories: weight-only quantization, and
weight-activation co-quantization.

4

https://anonymous.4open.science/r/Efficient_LLM-paper-list-5847
https://anonymous.4open.science/r/Efficient_LLM-paper-list-5847

Under review as submission to TMLR

M
od

el
C

om
pr

es
si

on

Quantization

Post-Training Quantization

Weight-Only Quantization

LLM.int8() (Dettmers et al., 2022), GPTQ (Frantar et al., 2023),
OBQ (Frantar & Alistarh, 2022), QuIP (Chee et al., 2023),
AWQ (Lin et al., 2023), OWQ (Lee et al., 2023),
SpQR (Dettmers et al., 2023b), FineQuant (Kim et al., 2023d)

Weight-Activation Co-Quantization

ZeroQuant (Yao et al., 2022b), ZeroQuant-V2 (Yao et al., 2023e),
ZeroQuant-FP (Wu et al., 2023b), SmoothQuant (Xiao et al., 2023a),
OliVe (Guo et al., 2023), RPTQ (Yuan et al., 2023a),
QLLM (Liu et al., 2024b), Outlier Suppression+ (Wei et al., 2023),
Ahmadian et al. (2023)

Quantization-Aware Training QuantGPT (Tao et al., 2022), LLM-QAT (Liu et al., 2023e), BitNet (Wang et al., 2023a)

Parameter Pruning

Structured Pruning
LLM-Pruner (Ma et al., 2023), Sheared LLaMA (Xia et al., 2023), LoRAPrune (Zhang et al., 2023c),
LoRAShear (Chen et al., 2023g)

Unstructured Pruning SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2023a), Shao et al. (2024)

Low-Rank Approximation TensorGPT (Xu et al., 2023a), LoSparse (Li et al., 2023f), FWSVD (Hsu et al., 2022), ASVD (Yuan et al., 2023b)

Knowledge Distillation

White-Box KD
Baby LLaMA (Timiryasov & Tastet, 2023), MiniLLM (Gu et al., 2023), GKD (Agarwal et al., 2024),
KPTD (Padmanabhan et al., 2023), TED (Liang et al., 2023), TSLD (Kim et al., 2023b),
MiniMA (Zhang et al., 2023a)

Black-Box KD

MetaICL (Min et al., 2022a), Multitask-ICT (Huang et al., 2022), Li et al. (2022), Lion (Jiang et al., 2023c),
DISCO (Chen et al., 2023l), Fu et al. (2023b), Distilling Step-by-Step (Hsieh et al., 2023),
Fine-tune-CoT (Ho et al., 2023), SOCRATIC CoT (Shridhar et al., 2022), SCOTT (Wang et al., 2023c),
SCoTD (Li et al., 2023a), Peng et al. (2023a), Zephyr (Tunstall et al., 2023)

Figure 4: Summary of model compression techniques for LLMs.

• Weight-Only Quantization focuses on quantizing model weights only for LLMs. For example,
Dettmers et al. (2022) introduce the first multi-billion-scale Int8 weight quantization method named
LLM.int8 () that significantly reduces memory usage during inference while being able to maintain
the full precision model performance. Experimental results show that LLM.int8() preserves good
accuracy for the model scaling from 125M to 13B. Frantar et al. (2023) pushes one step further and
propose GPTQ, a post-training weight quantization method that compresses LLM weights to 3 or
4 bits instead of 8 bits. GPTQ employs layer-wise quantization with Optimal Brain Quantization
(OBQ) (Frantar & Alistarh, 2022) to update weights with inverse Hessian information. This tech-
nique enables quantizing GPT models with 175 billion parameters in roughly four GPU hours with
minimal accuracy loss compared to the original model. Driven by the insights that quantization
can be more effective when model weights and proxy Hessian matrices are incoherent, Chee et al.
(2023) propose QuIP, a post-training quantization method that applies incoherence processing to
quantize LLMs to 2 bits per weight. Lin et al. (2023) observe that there exists a small portion of
model weights with larger activation magnitudes referred to as salient weights that determine the
quantization loss. Based on this observation, they propose a weight quantization approach named
activation-aware weight quantization (AWQ) to quantize LLMs while preserving the salient weights
in high precision. Experimental results demonstrate that AWQ a much better performance than
GPTQ. Similarly, Lee et al. (2023) also observe that activation outliers amplifies weight quanti-
zation loss. They propose outlier-aware weight quantization (OWQ) to identify those vulnerable
weights with activation outliers and allocate high-precision to them. Dettmers et al. (2023b) pro-
pose Sparse-Quantized Representation (SpQR) to separate outlier weights that are prone to large
quantization errors. These outlier weights are stored at higher precision levels, while the rest are
compressed to 3-4 bits. They then propose a decoding scheme designed for the SpQR format, which
accelerates the inference process on a token-by-token basis. Kim et al. (2023d) tackle the problem
of outliers skewing the distribution of quantized weights, and propose FineQuant which employs
an empirically crafted, heuristic-based approach to allocate varying levels of granularity to different
weight matrices within the model.

• Weight-Activation Co-Quantization quantizes both model weights and activations. Due to the
existence of outliers, activations are more difficult to quantize than model weights (Bondarenko
et al., 2021). Yao et al. (2022b) propose ZeroQuant, which utilizes group-wise quantization for
model weights and token-wise quantization for activations. However, ZeroQuant could not maintain

5

Under review as submission to TMLR

Teacher Model
(Transparent) Student Model

White-
Box KD

Black-
Box KD

Training Data Training Data

High-Precision Weight
with Different Values

Low-Precision Weight
with Different Values

Zero Weight /
Activation Value

Low-Precision Activation
with Different Values

update

Training
Data

QAT

PTQ (optional)

(a) Quantization

Structured Unstructured

(b) Parameter Pruning

X

VT
Decompose

U

(c) Low-Rank Approximation (d) Knowledge Distillation

+

+

High-Precision Activation
with Different Values

Calibration
Data

update

update

Calibration
Data

update

+

Teacher Model
(Hidden)

Figure 5: Illustrations of model compression techniques for LLMs.

accuracy for models with more than 175 billion parameters. To address this issue, Yao et al.
(2023e) and Wu et al. (2023b) propose ZeroQuant-FP and ZeroQuant-V2 respectively which both
utilize low-rank matrices to recover the accuracy drop. Xiao et al. (2023a) propose SmoothQuant
which introduces a per-channel scaling transformation that migrates the quantization difficulty from
activations to weights to achieve lossless quantization of weights and activations to 8 bits for LLMs up
to 530 billion parameters. Guo et al. (2023) pinpoint outliers are critical in weight and activation
quantization but their nearby normal values are not. Based on this observation, they propose
OliVe, which prunes normal values adjacent to the outliers so that the outliers can be encoded with
low precision. Yuan et al. (2023a) identify the challenge of quantizing activations when different
channels have disparate ranges. They propose RPTQ, which groups channels in activations that
display similar value ranges and applies uniform quantization parameters to the values in each
group. Wei et al. (2023) observe that the activation outliers in LLMs are asymmetric and tend
to cluster in particular channels. Based on this observation, they propose Outlier Suppression+,
which introduces operations that shift and scale channels individually to neutralize asymmetric
outliers. Liu et al. (2024b) propose QLLM, an adaptive channel reassembly method that efficiently
tackles activation outliers and utilizes calibration data to offset the information loss incurred from
quantization. Experimental result shows that QLLM achieves better compression performance than
Smoothquant and Outlier Suppression+ on LLaMA model families. Lastly, Ahmadian et al. (2023)
demonstrate that it is possible to suppress large activation outliers at scales as large as 52B. Given
the right optimization choices during pre-training, they can quantize models ranging in size from
410M to 52B with minimal accuracy degradation.

6

Under review as submission to TMLR

Quantization-Aware Training (QAT). QAT quantizes LLMs during the training process itself so as to
allow LLMs to learn quantization-friendly representations. Compared to PTQ, since QAT requires training
using the complete training set to make up for its accuracy drop, it is much more expensive and time
consuming. Tao et al. (2022) aim to address quantization challenges in models like GPT-2 caused by
uniform word embeddings, and propose QuantGPT, which combines contrastive distillation from a full-
precision teacher model and logit distillation to a quantized student model during auto-regressive pretraining.
QuantGPT achieves 14.4× and 13.4× compression rates on GPT-2 and BART with comparable performance
with the full-precision models. LLM-QAT (Liu et al., 2023e) uses data generated by LLMs itself to distill
knowledge, with the aim of quantizing a student model. Specifically, it retains the original output distribution
and is capable of quantizing any generative model, irrespective of its initial training data. Besides quantizing
weights and activations, LLM-QAT also tackles the quantization of the key-value cache, a crucial step
for enhancing throughput and accommodating long sequence dependencies in LLMs. Experiments show
that LLM-QAT achieves better performance over training-free methods, especially in the low-bit settings.
BitNet (Wang et al., 2023a) pioneers QAT for 1-bit LLMs, using low-precision binary weights and quantized
activations, while keeping optimizer states and gradients high-precision during training, requiring only a
replacement of the nn.Linear layer to train 1-bit weights from scratch. Experimental results show that BitNet
achieves competitive performance while substantially reducing memory footprint and energy consumption,
compared to FP16 Transformer baselines.

Discussion. Quantization stands out as the predominant area of investigation in model compression.
Numerous recent studies have successfully attained nearly lossless performance in compressing LLM to 4 bits
or more (Dettmers et al., 2022; Frantar et al., 2023). Yet, there remains a challenging trade-off when trying to
compress LLM to less than 4 bits, as current research suffers either significant accuracy degradation (Frantar
et al., 2023) or demands resource-intensive retraining (Wang et al., 2023a).

2.1.2 Parameter Pruning

Parameter pruning compresses LLMs by removing redundant model weights. Parameter pruning methods
for LLMs can be categorized into structured pruning and unstructured pruning.

Structured Pruning. Structured pruning focuses on pruning structured patterns such as groups of consec-
utive parameters or hierarchical structures such as rows, columns, or sub-blocks of the LLM weight matrices.
LLM-Pruner (Ma et al., 2023) is the first structured pruning paper for LLM. It introduces a task-agnostic
structured pruning strategy that selectively eliminates non-essential interconnected structures using gradi-
ent information. It utilizes a small amount of data to obtain the weight, parameter, and group importance
of the coupled structure for LLaMA (Touvron et al., 2023a), and uses LoRA (Hu et al., 2022) to recover
performance after pruning, showing competitive zero shot performance. Superior to LLM-Pruner, Sheared
LLaMA (Xia et al., 2023) proposes two techniques. The first technique is targeted structured pruning, which
prunes a larger model to a designated target shape by eliminating layers, heads, and intermediate and hidden
dimensions in a end-to-end fashion. The second technique is dynamic batch loading, which dynamically al-
ters the components of the sampled data in each training batch based on losses in various domains. Through
these two techniques, Sheared LLaMA is able to prune the LLaMA2-7B model down to 1.3B parameters,
achieving a much higher compression ratio than LLM-Pruner. LoRAPrune (Zhang et al., 2023c) targets
at improving the efficiency structured pruning. Unlike LLM-Pruner that heavily relies on LoRA to recover
its precision. LoRAPrune introduces a LoRA-based pruning criterion using LoRA’s weights and gradients
instead of pre-trained weights’ gradients for importance estimation. By employing a structured iterative
pruning process to eliminate excess channels and heads, LoRAPrune outperforms LLM-Pruner in efficiency
at a 50% compression rate.

Unstructured Pruning. Unstructured pruning, on the other hand, focuses on pruning model weights
individually, and thus has much more flexibility compared to structured pruning. Frantar & Alistarh (2023)
present SparseGPT, the first one-shot LLM unstructured pruning approach that does not require retraining.
It formulates pruning as a sparse regression problem and solves it by utilizing an approximate solver based
on the inversion of the Hessian matrix. In doing so, SparseGPT reaches 60% unstructured sparsity even
on models such as OPT-135B while experiencing only a slight reduction in perplexity. Based on the trial

7

Under review as submission to TMLR

of SparseGPT, Sun et al. (2023a) propose Wanda which prunes weights based on the product values of
weight magnitudes and their respective input activations. Compared to SparseGPT, Wanda neither relies
on second-order information nor necessitates weight update, and performs competitively against SparseGPT.
Shao et al. (2024) improves the performance of SparseGPT in another way. Specifically, instead of performing
the unstructured pruning with a unified ratio for every layer, it proposes to utilize Hessian sensitivity-aware
mixed sparsity pruning to achieve a minimum of 50% sparsity in LLMs without retraining. This method
adaptively assigns sparsity based on sensitivity to minimize the error induced by pruning while preserving
the overall level of sparsity.

2.1.3 Low-Rank Approximation

Low-rank approximation compresses LLMs by approximating the weight matrix Wm×n of LLMs with low-
rank matrices U and V such that W ≈ UV⊤, where U ∈ Rm×r, V ∈ Rn×r, and r is typically much smaller
than m, n. In doing so, low-rank approximation reduces the number of parameters and enhances compu-
tational efficiency. For example, Xu et al. (2023a) introduce TensorGPT which compresses the embedding
layers of LLMs using Tensor-Train Decomposition (TTD). It transforms and breaks down each token embed-
ding and creates an efficient embedding format named Matrix Product State (MPS) that can be efficiently
computed in a distributed manner. LoSparse (Li et al., 2023f) improve the performance of TensorGPT
via incorporating an additional sparse matrix for compressing. It aims to compress the coherent and ex-
pressive components within neurons through low-rank approximation while eliminating the incoherent and
non-expressive elements via pruning the sparse matrix. It uses iteration training to calculate the important
score of column neurons for pruning, outperforming conventional iterative pruning methods. Different from
TensorGPT, FWSVD Hsu et al. (2022) is the first paper to try to compress the weight matrix of LLM rather
than just the token embedding matrix. It uses Fisher information to weigh the importance of the weight ma-
trix for compression. Although FWSVD shows a good compression result under the low compression ratio, it
is training-required to obtain the gradient for estimating the importance, which demands huge computation
resources, especially to compress the large-scale LLM. ASVD Yuan et al. (2023b) is the most recent work
on compressing the weight matrix of LLM. It borrows the idea from smoothquant Xiao et al. (2023a) to
eliminate the impact of the variance from input activation with a diagonal matrix. Unlike FWSVD, ASVD
chooses end-to-end inference perplexity rather than the gradient to estimate the matrix importance, making
it more resource efficient for compressing large-scale LLMs.

2.1.4 Knowledge Distillation

Knowledge Distillation (KD) compresses LLMs by training a smaller student model to emulate the perfor-
mance of the LLM as the teacher model such that the student model is computationally less expansive yet
maintains a high level of performance similar to the teacher model. KD for LLMs can be categorized into
white-box KD methods and black-box KD methods.

White-Box Knowledge Distillation. White-box KD refers to KD techniques where the parameters
or logits of the teacher LLM are used in the distillation process (Gou et al., 2021). For example, Baby
LLaMA (Timiryasov & Tastet, 2023) is the first trial for white-box knowledge distillation on LLM. It trains
an ensemble of GPT-2 and a collection of smaller LLaMA models using the BabyLM dataset of 10M words.
This ensemble is then distilled into a compact LLaMA model with 58 million parameters, which outperforms
both its original teacher models as well as a comparable model that was trained without the use of distillation.
Gu et al. (2023) observe that conventional KD objectives, such as Kullback-Leibler divergence (KLD), may
not be well suited for open text generation tasks due to their more complex output spaces compared to
classification tasks. To address this issue, they propose MiniLLM that minimizes reverse KLD using the
gradient of the objective function through policy gradient techniques (Sutton et al., 1999). This approach
surpasses the performance of standard KD benchmarks on the 13-billion-parameter LLaMA model (Touvron
et al., 2023a). Experimental result shows that MiniLLM achieves better accuracy even than traditional KD or
directly fine-tuning the student models. Similarly, generalized knowledge distillation (GKD) (Agarwal et al.,
2024) addresses the issue of distribution mismatch by drawing output sequences from the student model
during training. GKD tackles the problem of model under-specification by optimizing different divergence
measures, like reverse KL. This approach aims to produce samples from the student model that are probable

8

Under review as submission to TMLR

within the teacher model’s distribution. GKD can be applied in company with other distillation methods
to improve their compression performance according to the paper. KPTD (Padmanabhan et al., 2023)
demonstrates that KD methods can successfully transfer and disseminate knowledge from entity definitions
into the parameters of a pre-trained language model. Specifically, it creates a transfer set by prompting
the language model to generate text based on the definition of the entity. Then the models’ parameters are
updated to align the distribution of the student language model with that of the teacher model. TED (Liang
et al., 2023) introduces a technique for layer-specific task distillation. It uses specially designed filters to
align the internal states of both student and teacher models in each layer. These filters extract the relevant
knowledge from the internal states that is beneficial for the specific task. TED shows considerable and
steady gains in performance on both continual pre-training and fine-tuning. TSLD (Kim et al., 2023b)
leverages token-level distillation to enhance QAT, which overcomes the limitations of layer-to-layer KD in
token prediction recovery by reforming intermediate representation and has successfully applied QAT to
LLMs. Lastly, MiniMA (Zhang et al., 2023a) proposes a viewport towards the capacity gap in distilling
LLMs, converting it into a principle through analysis and introducing a 3B Language Model that sets a new
benchmark for compute-performance pareto frontier. Experimental results show that MiniMA achieves the
best accuracy compared to other 3B distilled LLMs.

Black-Box Knowledge Distillation. Different from white-box KD, in black-box KD, only the outputs
generated from the teacher LLM are used in the distillation process. Inspired by MetaICL and Metal-
ICL (Chen et al., 2022b; Min et al., 2022a), where the language model is meta-trained in a wide range of
tasks using in-context learning objectives and then fine-tuned for unseen tasks through in-context learning,
Multitask-ICT (Huang et al., 2022) introduces a concept known as in-context learning distillation. This
method aims to transfer the few-shot learning capabilities from the LLM teacher to the student model. Ex-
perimental results show that in-context learning and language modeling objectives are complementary under
the Multitask-ICT paradigm. In-context learning objectives achieve the best performance when combined
with language modeling objectives Similarly, Li et al. (2022) introduce a hybrid prompting technique that
employs multi-task learning along with explanations generated by GPT-3 text-davinci-002 version (OpenAI,
2023). This method is used to distill explanations into smaller models, achieving consistent and signifi-
cant improvements over strong single-task fine-tuning benchmarks in different scenarios. Experiments on
multiple reasoning tasks show that this method even perform better than finetuning or prompting a 60x
larger GPT-3 (175B) model by up to 9.5% in accuracy Lion (Jiang et al., 2023c) introduces an adversarial
distillation architecture aimed at enhancing the efficiency of knowledge transfer by incrementally improving
the skill level of the student model. Specifically, it prompts LLMs to recognize challenging instructions
and create new complex instructions for the student model, thereby establishing a three-phase adversarial
cycle involving imitation, discrimination, and generation. Experimental results show that Lion-13B not only
achieves comparable open-ended generation capabilities to ChatGPT but surpasses conventional state-of-
the-art instruction-tuned models. DISCO (Chen et al., 2023l) involves prompting a general LLM to produce
phrasal perturbations. These generated perturbations are then filtered by a specialized teacher model to dis-
till high-quality counterfactual data into smaller student models, allowing the smaller models to learn causal
representations more reliably. Recently, some studies have shown that chain-of-thought (CoT) prompting
can elicit language models to solve complex reasoning tasks step by step, with the aim of transfer this ability
from LLMs into smaller models through black-box KD. For example, Fu et al. (2023b) aim to enhance the
CoT math reasoning capabilities of smaller models. Specifically, they employ a method that involves instruct-
tuning an student model (FlanT5) by distilling the reasoning pathways found in the GSM8K dataset from a
LLM teacher (GPT-3.5 code-davinci-002 (Chen et al., 2021c)). The small model is then selected based on its
average performance on three separate, withheld math reasoning datasets to confirm its ability to generalize
well to new, out-of-distribution scenarios. Likewise, Distilling Step-by-Step (Hsieh et al., 2023) claims that
to match the performance of LLMs, fine-tuning and distilling smaller models require substantial amounts
of training data. To address this, it proposes a technique that uses CoT prompting to extract LLM ratio-
nales for extra guidance in training smaller models within a multi-task setting, achieving better performance
compared to few shot prompted LLMs. Experimental results show that this method achieves better perfor-
mance with much fewer labeled or unlabeled training examples compared to both finetuning and distillation.
Fine-tune-CoT (Ho et al., 2023) utilizes existing zero-shot CoT prompting techniques (Kojima et al., 2023)
to create rationales from LLMs. These rationales are then used to fine-tune smaller student models. The

9

Under review as submission to TMLR

Table 1: Pre-training costs of representative LLMs.

Model Parameter Size Data Scale GPUs Cost Training Time

GPT-3 (Brown et al., 2020) 175B 300B tokens - -
GPT-NeoX-20B (Black et al., 2022) 20B 825GB corpus 96 A100-40G -

OPT (Zhang et al., 2022a) 175B 180B tokens 992 A100-80G -
BLOOM (Workshop et al., 2023) 176B 366B tokens 384 A100-80G 105 days

GLM (Zeng et al., 2022) 130B 400B tokens 786 A100-40G 60 days
LLaMA (Touvron et al., 2023a) 65B 1.4T tokens 2048 A100-80G 21 days

LLaMA-2 (Touvron et al., 2023b) 70B 2T tokens A100-80G 71,680 GPU days
Gopher (Rae et al., 2022) 280B 300B tokens 1024 A100 13.4 days

LaMDA (Thoppilan et al., 2022) 137B 768B tokens 1024 TPU-v3 57.7 days
GLaM (Du et al., 2022) 1200B 280B tokens 1024 TPU-v4 574 hours

PanGu-α (Zeng et al., 2021) 13B 1.1TB corpus 2048 Ascend 910 -
PanGu-

∑
(Ren et al., 2023b) 1085B 329B tokens 512 Ascend 910 100 days

PaLM (Chowdhery et al., 2022) 540B 780B tokens 6144 TPU-v4 -
PaLM-2 (Anil et al., 2023) - 3.6T tokens TPUv4 -
WeLM (Su et al., 2022b) 10B 300B tokens 128 A100-40G 24 days

Flan-PaLM (Chung et al., 2022) 540B - 512 TPU-v4 37 hours
AlexaTM (Soltan et al., 2022) 20B 1.3 tokens 128 A100 120 days
Codegeex (Zheng et al., 2023) 13B 850 tokens 1536 Ascend 910 60 days

MPT-7B (Team, 2023) 7B 1T tokens - -

approach also introduces diverse reasoning, a method that employs stochastic sampling to generate a variety
of reasoning solutions from teacher models, which serves to enrich the training data for the student models.
SOCRATIC CoT (Shridhar et al., 2022) employs a method that breaks down the original problem into a
series of smaller tasks and utilizes this decomposition to direct the intermediate steps of reasoning. This
approach is used to train a pair of smaller, distilled models: one that specializes in dissecting the problem
and another focused on solving these sub-problems. SOCRATIC COT is an effective alternative to CoT,
demonstrating cases where a much smaller model (GPT-2 large) can outperform a 10X larger model (GPT-3
6B). SCOTT (Wang et al., 2023c) uses rationales generated by LLMs to train a student model under a
counterfactual reasoning framework. This approach ensures that the student model does not overlook the
provided rationales, thereby preventing it from making inconsistent predictions. Experimental results show
that SCOTT can generate CoT rationales that are more faithful than original CoT prompting. SCoTD (Li
et al., 2023a) presents a method called symbolic CoT distillation. It involves drawing CoT rationales from
a LLM using unlabeled data instances. A smaller model is then trained to predict both the sampled ratio-
nales and the associated labels. Lastly, Peng et al. (2023a) utilize GPT-4 as a teacher model to generate
English and Chinese instruction-based datasets to refine student LLMs such as LLaMA. Their results show
that the 52K data points generated by GPT-4 are able to improve zero-shot performance compared to
instruction-following data generated from previous state-of-the-art models.

2.2 Efficient Pre-Training

As shown in Table 1, pre-training LLMs incurs high costs. Efficient pre-training aims to enhance the efficiency
and reduce the cost of the LLM pre-training process. As summarized in Figure 6, efficient pre-training
techniques can be grouped into four categories: mixed precision acceleration, scaling models, initialization
techniques, and optimization strategies.

Mixed Precision Acceleration. Mixed precision acceleration enhances pre-training efficiency by using
the low-precision model for forward and backward propagation and converting the calculated low-precision
gradients to high-precision ones for updating the original high-precision weights. For example, Micikevicius
et al. (2017) propose Automatic Mixed Precision (AMP) to keep a master copy of weights in full-precision
FP32 for updates, whereas weights, activations, and gradients are stored in FP16 for arithmetic operations.
Notably, the improved version of AMP (Facebook AI Research (FAIR), 2023) optimizer has eliminated the

10

Under review as submission to TMLR

copy of FP32 weights, but the optimizer (AdamW) still use FP32 internally. However, Rae et al. (2022)
demonstrate that FP16 results in accuracy loss. To counteract this performance drop, Brain Floating Point
(BF16) was proposed (Kalamkar et al., 2019; Burgess et al., 2019), which achieves better performance by
assigning more bits to the exponent and fewer to the significant bits. Lastly, recent studies (Pan et al.,
2021; Liu et al., 2022d) have shown that combining mixed-precision acceleration with activation compressed
training (ACT) can further facilitate memory-efficient Transformer pre-training.

Scaling Models. Techniques based on scaling models accelerate pre-training convergence and reduce train-
ing costs by using the weights of a small model to scale up to a large model. For example, Gong et al.
(2019) introduce Progressive Stacking to transfer knowledge from a simpler model to a more complex one
and then uses progressive stacking to enhance the model’s training efficiency and convergence speed. Next,
Yang et al. (2020) observe that as the depth of the model increases through progressive stacking, the training
speed however decreases. To address this issue, they propose multi-stage layer training (MSLT), which only
updates the output and newly introduced top encoder layers while keeping the previously trained layers un-
changed. Once all the layers have been trained, MSLT fine-tunes the entire model by updating each layer in
just 20% of the total steps, making it more time-efficient than the traditional progressive stacking approach.
Similarly, Gu et al. (2021) introduce CompoundGrow, which begins with the training of a small model and
incrementally expands it using a mix of model growth techniques, including increasing input length, model
breadth, and depth, leading to an acceleration in the pre-training process compared to Progressive Stacking
on wall time. Then, Qin et al. (2021) propose Knowledge Inheritance which employs knowledge distillation
as an auxiliary supervision during pre-training. This aids in effectively training a larger model from a smaller
teacher model, thereby enhancing both the speed of pre-training and the generalization ability. Shen et al.
(2022) introduce Staged Training that begins with a small model and progressively increases its depth and
breadth through a growth operator, which includes model parameters, the state of the optimizer, and the
learning rate schedule. By starting each phase with the results from the previous one, it effectively reuses
computation, leading to a more efficient training process compared to previous works like CompoundGrow
and Progressive Stacking. Chen et al. (2021b) propose function-reserving initialization (FPI) and advanced
knowledge initialization (AKI) to transfer the knowledge of a smaller pre-trained model to a large model
to improve the pre-training efficiency of the large model. Specifically, FPI gives the larger model a behav-
ior similar to that of the smaller model, laying a strong basis for optimization; and AKI promotes faster
convergence by replicating weights from higher layers. It achieves a more saving computational ratio than
Progressive Stacking and MSLT. Wang et al. (2023d) propose Linear Growth Operator (LiGO) that linearly
maps the parameters of a smaller model to initiate a larger one, using a composition of width-and depth-
growth operators, further enhanced with Kronecker factorization to capture architectural knowledge. LiGO
significantly outperforms the recent method Chen et al. (2021b) which saves about 30% computational costs.
Mango (Pan et al., 2023) introduces a technique that establishes a linear relationship between each weight of
the target model and all weights of the pretrained model to boost acceleration capabilities. It also employs
multi-linear operators to decrease computational and spatial complexity during pre-training, achieving a
59.9% acceleration ratio compared to method Chen et al. (2021b) and LiGO. Drawing from these scaling
techniques and the progressive pre-training (Yao et al., 2023c), recent LLMs like FLM-101B (Li et al., 2023d)
introduce a growth strategy to cut LLM training costs by expanding model structures offline and resuming
from the previous stage’s smaller model checkpoint.

Initialization Techniques. Initialization plays a key role in enhancing the efficiency of LLM pre-training
since a good initialization can accelerate the convergence of the model. Most LLMs employ initialization
techniques that were adopted in training smaller-scale models, such as conventional initialization techniques
like (Kumar, 2017; He et al., 2015). For example, initialization method introduced by Kumar (2017) aims to
balance input and output variances. Fixup (Zhang et al., 2019) and ZerO (Zhao et al., 2021) set the residual
stem to zero, preserving signal identity. SkipInit (De & Smith, 2020) substitutes batch normalization with
a zero-value multiplier. ReZero (Bachlechner et al., 2021) adds zero-valued parameters to maintain identity,
leading to faster convergence. T-Fixup (Huang et al., 2020) follows Fixup to adopt rescaling schemes for the
initialization of residual blocks of Transformer models. DeepNet (Wang et al., 2022c) adjusts the residual
connection in deep Transformers using Post-LN-init, ensuring stable inputs to Layer-Normalization and
mitigating gradient vanishing for stable optimization.

11

Under review as submission to TMLR

E
ffi

ci
en

t
P

re
-T

ra
in

in
g

Mixed Precision Acceleration
Automatic Mixed Precision (AMP) (Micikevicius et al., 2017; Facebook AI Research (FAIR), 2023; Rae et al., 2022),
Brain Floating Point (BF16) (Kalamkar et al., 2019; Burgess et al., 2019), GACT (Liu et al., 2022d), Mesa (Pan et al., 2021)

Scaling Models
Gong et al. (2019), MSLT (Yang et al., 2020), CompoundGrow (Gu et al., 2021), Knowledge Inheritance (Qin et al., 2021),
Staged Training (Shen et al., 2022), LiGO (Wang et al., 2023d), Mango (Pan et al., 2023), Yao et al. (2023c),
Growth Strategy (Li et al., 2023d)

Initialization Techniques
Kumar (2017), Fixup (Zhang et al., 2019), ZerO (Zhao et al., 2021), SkipInit (De & Smith, 2020),
ReZero (Bachlechner et al., 2021), T-Fixup (Huang et al., 2020), DeepNet (Wang et al., 2022c)

Optimization Strategies Lion (Chen et al., 2023i), Sophia (Liu et al., 2024a)

System-Level Pre-Training
Efficiency Optimization

ZeRO (Rajbhandari et al., 2020), FSDP (Zhao et al., 2023c), ZeRO-Offload (Ren et al., 2021), ZeRO-Infinity (Rajbhandari et al., 2021a)

Figure 6: Summary of efficient pre-training techniques for LLMs.

Update Backward

Training Data New Layer

Old Layer

Progressive Update

Forward Forward

High-Precision Weight / Gradient

0 0 0
1 1 1

Training

Training Data

Initial Model Weight:

Gradient:

Efficiency
Optimization

(a) Mixed Precision Acceleration (b) Scaling Models

(c) Initialization Techniques (d) Optimization Strategies

Low-Precision Weight / Activation / Gradient

Activation:

Convert

Figure 7: Illustrations of efficient pre-training techniques for LLM.

Optimization Strategies. Popular LLMs such as GPT-3 (Brown et al., 2020), OPT (Zhang et al., 2022a),
BLOOM (Workshop et al., 2023), and Chinchilla (Hoffmann et al., 2022) are predominately pre-trained using
Adam (Kingma & Ba, 2017) or AdamW (Loshchilov & Hutter, 2017) as optimizers. However, both Adam
and AdamW have a huge demand on memory and are computationally expensive. Some studies (Chen et al.,
2023i; Liu et al., 2024a) propose new optimizers to accelerate the pre-training of LLMs. Chen et al. (2023i)
propose to leverage search techniques to traverse a large and sparse program space to discover optimizers
for model training. The discovered optimizer, named Lion (EvoLved Sign Momentum), is more memory-
efficient than Adam as it only keeps track of the momentum. Differently, Liu et al. (2024a) propose Sophia
as a lightweight second-order optimizer that outpaces Adam with doubling the pre-training speed. Sophia
calculates the moving average of gradients and the estimated Hessian, dividing the former by the latter and
applying element-wise clipping. It effectively moderates update sizes, addresses non-convexity and rapid
hessian changes, enhancing both memory utilization and efficiency.

System-Level Pre-Training Efficiency Optimization. Due to the high demand on memory and com-
pute resources, LLMs are usually pre-trained across multiple compute nodes in a distributed manner. There-
fore, most techniques for improving pre-training efficiency at the system level focus on distributed training.
Existing efficient distributed training methods that are used for general AI model training can also be applied
to LLM pre-training. For example, data parallelism (Li et al., 2020; Shallue et al., 2019) involves splitting
the training dataset into multiple subsets on separate nodes. Each node computes gradients independently

12

Under review as submission to TMLR

E
ffi

ci
en

t
F

in
e-

T
un

in
g

Parameter-Efficient Fine-Tuning

Adapter-based Tuning

LLM-Adapters (Hu et al., 2023b), Compacter (Karimi Mahabadi et al., 2021),
(IA)3 (Liu et al., 2022a), Meta-Adapters (Bansal et al., 2022),
AdaMix (Wang et al., 2022e), OpenDelta (Hu et al., 2023a),
SparseAdapter (He et al., 2022b)

Low-Rank Adaptation

LoRA (Hu et al., 2022), LoRA-FA (Zhang et al., 2023b),
LoraHub (Huang et al., 2023), LongLoRA (Chen et al., 2023k),
Multi-Head Routing (Caccia et al., 2023), AdaLoRA (Zhang et al., 2023d),
DyLoRA (Valipour et al., 2022), CEPT (Zhao et al., 2023b),
Tied-LoRA (Renduchintala et al., 2023)

Prefix Tuning
Prefix-Tuning (Li & Liang, 2021), LLaMA-Adapter (Zhang et al., 2023e)
HyperTuning (Phang et al., 2023)

Prompt Tuning

Prompt Tuning (Lester et al., 2021), P-Tuning (Liu et al., 2023b),
P-Tuning v2 (Liu et al., 2022c), Tam et al. (2022), MP2 (Sun et al., 2022a),
PPT (Gu et al., 2022b), Multitask Prompt Tuning (Wang et al., 2023i),
Xu et al. (2023c)

Memory-Efficient Fine-Tuning
QLoRA (Dettmers et al., 2023a), QA-LoRA (Xu et al., 2023b), LoftQ (Li et al., 2024b), PEQA (Kim et al., 2023a),
Selective Fine-Tuning (Simoulin et al., 2023), LOMO (Lv et al., 2023), MeZO (Malladi et al., 2023),
Liu et al. (2023h)

Figure 8: Summary of efficient fine-tuning methods for LLMs.

and then shares them with others to update the model parameters. Pipeline parallelism (Huang et al., 2019;
Narayanan et al., 2019) divides the input minibatch into several smaller batches, and then distributes the ex-
ecution of these microbatches across multiple GPUs. Tensor parallelism (Xu & You, 2023; Narayanan et al.,
2021; Wang et al., 2022a; Bian et al., 2021) splits the model’s weight matrices across multiple nodes. Each
node is responsible for executing the forward and backward passes with a segment of the model’s weights and
their computed results are then aggregated. Although these parallelism techniques tackle the computing and
memory constraints for training LLMs, they are still limited in maintaining computation, communication
and development efficiency when fitting all of the runtime states, including gradients, optimizer states and
activation states into limited memory. To bridge this gap , Zero Redundancy Data Parallelism (ZeRO) (Ra-
jbhandari et al., 2020) provides three stages of optimization to partition the intermediate states during
pre-training across different nodes. Specifically, ZeRO-1 only partitions the optimizer states, and ZeRO-2
partitions both the optimizer states and the gradients. Both ZeRO-1 and ZeRO-2 reduce runtime memory
compared to data parallelism, while only consuming the same communication volume as data parallelism.
ZeRO-3 provides a more aggressive partitioning that also splits the model parameter across the nodes com-
pared with ZeRO-1 and ZeRO-2. Although runtime memory is further reduced through ZeRO-3, there is
a modest 50% increase in communication overhead under this stage. Therefore, it is recommended to use
ZeRO-3 within a node to minimize the communication time while using ZeRO-1 and ZeRO-2 across nodes.
Furthermore, Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023c) shares a similar idea for optimization,
and designs a hybrid sharding strategy to allow users to define which nodes or processes to partition the gra-
dients, parameter, and optimizer states across different nodes. In the case when the weight memory exceeds
the aggregated memory that can be provided by all of the compute nodes, ZeRO-Offload (Ren et al., 2021)
enables offloading to CPU for any stage of ZeRO, and ZeRO-Infinity (Rajbhandari et al., 2021a) provides
a way to offload to NVMe drives in addition to CPU memory. However, it is quite difficult to maintain
performance using these two alternatives, as the data movement between CPU and GPU is slow.

2.3 Efficient Fine-Tuning

Efficient fine-tuning aims to enhance the efficiency of the fine-tuning process for LLMs. As shown in Figure 8,
efficient fine-tuning methods can be grouped into parameter-efficient fine-tuning (PEFT), and memory-
efficient fine-tuning (MEFT).

13

Under review as submission to TMLR

fixed

tuned (added)

LLMs

reduce

reduce

backward

Large Activation Small
Activation

Large Gradient
Small

Gradient

update

forward

Fine-Tuning
Data

Fine-Tuning
Data

fixed

+ X

tuned

LLMs
Fine-Tuning

Data

fixed

(d) Prompt Tuning

(a) Adapter-based Tuning

Embedding

+

tuned
Fine-Tuning

Data

fixed

tuned

(b) Low-Rank Adaptation

(c) Prefix Tuning

(e) Memory-Efficient Fine-Tuning

Figure 9: Illustrations of Parameter-Efficient Fine-Tuning (a)-(d) and Memory-Efficient Fine-Tuning (e).

2.3.1 Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) aims to adapt an LLM to downstream tasks by freezing the whole
LLM backbone and only updating a small set of extra parameters. In general, PEFT methods can be grouped
into four categories: adapter-based tuning, low-rank adaptation, prefix tuning, and prompt tuning.

Adapter-based Tuning. Adapters are bottleneck-like trainable modules integrated into LLMs, which first
down-project the input feature vector followed by a non-linear layer and then up-project back to the original
size (Houlsby et al., 2019). Adapter-based tuning includes both series adapters and parallel adapters. In
series adapters, each LLM layer has two adapter modules added after its attention and feed-forward modules;
parallel adapters position two adapter modules alongside the attention and feed-forward modules within each
layer of the LLM. In particular, Hu et al. (2023b) propose LLM-Adapters, which integrates series or parallel
adapters into LLMs for fine-tuning on different tasks. Karimi Mahabadi et al. (2021) propose Compacter
which unifies adapters, low-rank techniques, and the latest hyper-complex multiplication layers to achieve a
balanced trade-off between the amount of trainable parameters and task performance compared to original
Adapter method (Houlsby et al., 2019). Furthermore, (IA)3 (Liu et al., 2022a) introduces a technique
that scales activations using learned vectors, which outperforms previous other parameter-efficient methods
including Adapter (Houlsby et al., 2019) and Compacter on few-shot setting with better accuracy and
computational efficiency. Following meta-learning principles, Meta-Adapters (Bansal et al., 2022) designs a
resource-efficient fine-tuning technique for the few-shot scenario where it incorporates adapter layers that
have been meta-learned into a pre-trained model, transforming the fixed pre-trained model into an efficient
few-shot learning framework. Meta-Adapters outperforms Adapter (Houlsby et al., 2019) at few-shot fine-
tuning with less parameters to fine-tune. AdaMix (Wang et al., 2022e) takes inspiration from sparsely-
activated mixture-of-experts (MoE) models (Zuo et al., 2022) and proposes a mixture of adaptation modules
to learn multiple views of the given task, showing better results on NLU and NLG tasks compared to Adapter
with less learnable parameter. Lastly, OpenDelta (Hu et al., 2023a) is an open-source software library that
offers a versatile and plug-and-play framework for implementing a range of adapter-based techniques, and is
designed to be compatible with various LLMs architectures.

Low-Rank Adaptation. Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a widely used PEFT approach
for LLMs. Instead of directly adjusting the weight matrix W ∈ Rm×n as W←W + ∆W, LoRA introduces
two trainable low-rank matrices A ∈ Rm×r and B ∈ Rr×n and expresses ∆W as ∆W = A ·B. As such, only
the small matrices A and B are updated during fine-tuning, while the original large weight matrix remains
frozen, making the fine-tuning process more efficient. Though effective, LoRA still requires the update of all
the parameters of the low-rank matrices for all the layers of the LLM at every single fine-tuning iteration.

14

Under review as submission to TMLR

To enhance the efficiency of LoRA, LoRA-FA (Zhang et al., 2023b) keeps the projection-down weights of A
fixed while updating the projection-up weights of B in each LoRA adapter so that the weight modifications
during fine-tuning are confined to a low-rank space, thereby eliminating the need to store the full-rank
input activations. It achieve close accuracy compared to full parameter fine-tuning and LoRA. Different
from above works, LoraHub (Huang et al., 2023) explores the composability of LoRA for the purpose of
generalizing across different tasks. It combines LoRA modules that have been trained on various tasks with
the goal of attaining good performance on tasks that have not been seen before. Specially, LongLoRA (Chen
et al., 2023k) extends LoRA to the long-context fine-tuning scenario. It introduces shift short attention (S2-
Attn), which effectively facilitates context expansion, showing that LoRA is effective for long context when
utilizing trainable embedding and normalization. Multi-Head Routing (MHR) (Caccia et al., 2023) extends
LoRA to Mixture-of-Experts (MoE) architectures. It outperforms Polytropon (Ponti et al., 2023) when
operating with a similar parameter allocation. Notably, it achieves competitive performance while focusing
on fine-tuning the routing function alone, without making adjustments to the adapters, demonstrating
remarkable parameter efficiency. Zhang et al. (2023d) observe that many PEFT techniques neglect the
differing significance of various weight parameters. To address this, they propose AdaLoRA which employs
singular value decomposition to parameterize incremental updates and adaptively distributes the parameter
budget based on the importance score of each weight matrix. Valipour et al. (2022) identify that the
rank in LoRA is static and cannot be adaptively adjusted during fine-tuning. To address this issue, they
propose DyLoRA, which introduces a dynamic low-rank adaptation method that trains LoRA blocks across
multiple ranks rather than just one by organizing the representations learned by the adapter module based
on their ranks. Different from the above-mentioned methods that mainly apply LoRA-based method to
full-size LLMs, CEPT (Zhao et al., 2023b) introduces a new framework that utilizes compressed LLMs.
Specifically, it assesses how prevalent LLM compression methods affect PEFT performance and subsequently
implements strategies for knowledge retention and recovery to counteract the loss of knowledge induced by
such compression techniques. Furthermore, Tied-LoRA (Renduchintala et al., 2023) uses weight tying and
selective training to further increase parameter efficiency of LoRA.

Prefix Tuning. Prefix-Tuning (Li & Liang, 2021) adds a series of trainable vectors, known as prefix tokens,
to each layer in an LLM. These prefix tokens are tailored to specific tasks and can be treated as virtual
word embeddings. Based on Prefix-Tuning, LLaMA-Adapter (Zhang et al., 2023e) incorporates a set of
trainable adaptation embeddings and attaches them to the word embeddings in the upper layers of the
LLMs. A zero-initialized attention scheme with zero gating is also introduced. It dynamically incorporates
new guiding signals into LLaMA-1 while retaining its pre-trained knowledge. Different from conventional
prefix tuning, HyperTuning (Phang et al., 2023) employs a hyper-model to produce task-specific parameters
such as soft prefixes for a downstream model, showing improved performance through initialization from
hypermodel-generated parameters for subsequent efficient fine-tuning.

Prompt Tuning. Different from prefix tuning, prompt tuning incorporates trainable prompt tokens at the
input layer. These tokens can be inserted either as a prefix or anywhere within the input tokens. Prompt
Tuning (Lester et al., 2021) keeps the entire pre-trained model fixed while adding an extra k trainable tokens
at the beginning of the input text for each downstream task. It outperforms few-shot prompts and narrows
the performance gap compared to full model fine-tuning. P-Tuning (Liu et al., 2023b) utilizes a small number
of parameters as prompts, which are processed by a prompt encoder before being used as input for pre-trained
LLMs. Instead of searching for discrete prompts, P-Tuning fine-tunes these prompts through gradient descent
and improves performance on a wide range of NLU task compared to Prompt Tuning. Then, Liu et al. (2022c)
observe that earlier versions of prefix tuning struggle with complex sequence labeling tasks. To address this,
they propose P-Tuning v2 which enhances prefix tuning by introducing continuous prompts at each layer
of the pre-trained model, rather than at the input layer only. This modification has proven effective in
boosting performance across various parameter sizes for tasks related to natural language understanding.
Furthermore, Tam et al. (2022) introduce efficient prompt tuning for text retrieval, updating just 0.1% of
parameters and outperforming traditional full-parameter update methods in diverse domains. Sun et al.
(2022a) claim that prompt tuning tends to struggle in few-shot learning scenarios, and thus propose MP2

that pre-trains a collection of modular prompts using multitask learning. These prompts are then selectively
triggered and assembled by a trainable routing mechanism for specific tasks. As a result, MP2 can quickly

15

Under review as submission to TMLR

E
ffi

ci
en

t
In

fe
re

nc
e Algorithm-Level Inference

Efficiency Optimization

Speculative Decoding

Speculative Decoding (Leviathan et al., 2022), Chen et al. (2023a),
Staged Speculative (Spector & Re, 2023), BiLD (Kim et al., 2023c),
SpecInfer (Miao et al., 2024), LLMA (Yang et al., 2023c),
Medusa (Cai et al., 2023), Santilli et al. (2023), PaSS (Monea et al., 2023)

KV-Cache Optimization
SkipDecode (Corro et al., 2023), Heavy Hitter Oracle (H2O) (Zhang et al., 2023f),
Dynamic Context Pruning (Anagnostidis et al., 2023), Scissorhands (Liu et al., 2023f),
Ge et al. (2024)

System-Level Inference
Efficiency Optimization

FlexGen (Sheng et al., 2023), Deja Vu (Liu et al., 2023g), Pope et al. (2023), S3 (Jin et al., 2023), Orca (Yu et al., 2022),
DeepSpeed-Inference (Aminabadi et al., 2022), Flash-Decoding (Dao et al., 2023), FlashDecoding++ (Hong et al., 2023)

Figure 10: Summary of efficient inference techniques for LLMs.

adapt to downstream tasks by learning how to merge and reuse pretrained modular prompts. Different from
MP2, PPT (Gu et al., 2022b) attributes the performance degradation of prompt tuning in few-shot learning
to the poor initialization of soft prompt, and thus proposes to add the soft prompt into the pre-training
stage for a better initialization. Multitask Prompt Tuning (Wang et al., 2023i) extends Prompt Tuning
and harnesses the knowledge of the various tasks through the use of prompt vectors in a multitask learning
setting. Specifically, it initially learns a single, transferable prompt by extracting knowledge from various
task-specific source prompts, and then applies multiplicative low-rank updates to this prompt to effectively
tailor it for each downstream task. By doing this, Multitask Prompt Tuning is able to attain performance
levels that are competitive compared to full fine-tuning methods.

2.3.2 Memory-Efficient Fine-Tuning

As the parameters of LLMs expand, the sizes of memory needed for fine-tuning also increase, making mem-
ory a significant hurdle in fine-tuning. Consequently, minimizing memory usage in fine-tuning for improving
efficiency has also emerged as a critical topic. Dettmers et al. (2023a) propose QLoRA which first quan-
tizes the model into a 4-bit NormalFloat data type, and then fine-tunes this quantized model with added
low-rank adapter (LoRA) weights (Hu et al., 2022). In doing so, QLoRA reduces memory usage during
fine-tuning without performance degradation compared to standard full-model fine-tuning. QA-LoRA (Xu
et al., 2023b) improves QLoRA by introducing group-wise operators that improve quantization flexibility
(each group is quantized separately) while reducing adaptation parameters (each group utilizes shared adap-
tation parameters). Similarly, LoftQ (Li et al., 2024b) combines model quantization with singular value
decomposition (SVD) to approximate the original high-precision pre-trained weights. As a result, it offers
a favorable initialization point for subsequent LoRA fine-tuning, leading to enhancements over QLoRA on
both NLU and NLG tasks. PEQA (Kim et al., 2023a) introduces a two-stage approach to quantization-aware
fine-tuning. In the first stage, the parameter matrix for each fully connected layer is quantized into a matrix
of low-bit integers along with a scalar vector. In the second stage, the low-bit matrix remains unchanged,
while fine-tuning is focused solely on the scalar vector for each specific downstream task. Employing this
two-stage approach, PEQA not only minimizes memory usage during fine-tuning but also speeds up infer-
ence time by maintaining weights in a low-bit quantized form, showing better PPL than GPTQ (Frantar
et al., 2023) with LoRA. Different from above quantitation-based fine-tuning approaches, Some studies pro-
pose memory-efficient methods based on gradient optimization. Specifically, Simoulin et al. (2023) propose
Selective Fine-Tuning which minimizes memory usage by specifically preserving a subset of intermediate
activations from the forward pass for which the calculated gradients are nonzero. Notably, this approach
delivers performance equivalent to full fine-tuning while using just up to one-third of the GPU memory
required otherwise. Then, Lv et al. (2023) introduce LOMO, which minimizes memory consumption during
fine-tuning by combining gradient calculation and parameter updating into a single step. As such, LOMO
eliminates all components of the optimizer state, lowering the memory requirements for gradient tensors to
O(1). Furthermore, MeZO (Malladi et al., 2023) improves the zeroth-order method (Spall, 1992) for gradient
estimation using only two forward passes. This enables efficient fine-tuning of LLMs with memory require-
ments similar to inference and supports both full-parameter and PEFT methods like LoRA (Hu et al., 2022)
and prefix tuning (Li & Liang, 2021), enabling MeZO to train a 30-billion parameter model on a single A100
80GB GPU.

16

Under review as submission to TMLR

Large | language | model | has | witnessed | a | huge | advance

Check & Regenerate

Generate x x x

LLMs
Small LMs

KV cache [Token]

LLMs

new query

old
key

, va
lue

new key,
value

1

2

3

4

(a) Speculative Decoding (b) KV-cache Optimization

Figure 11: Illustrations of algorithm-level efficiency optimization techniques for LLM inference.

2.4 Efficient Inference

Efficient inference aims to enhance the efficiency of the inference process for LLMs. As summarized in
Figure 10, efficient inference techniques can be grouped into techniques at the algorithm level and system
level.

Algorithm-Level Inference Efficiency Optimization. Techniques that enhance LLM inference effi-
ciency at the algorithm level include speculative decoding and KV-cache optimization.

• Speculative Decoding. Speculative decoding (i.e., speculative sampling) (Leviathan et al., 2022)
is a decoding strategy for autoregressive language models that speed up sampling by parallel token
computation through using smaller draft models to create speculative prefixes for the larger target
model. Similar to Speculative decoding, Chen et al. (2023a) focus more on the distributed serving
setting for LLMs and propose to run a faster autoregressive model K times and then evaluate the
preliminary output with the large-target LLM. A tailored rejection sampling strategy is employed
to approve a selection of the draft tokens in a left-to-right order, thereby recapturing the distri-
bution of the target model during the procedure. Then, Staged Speculative (Spector & Re, 2023)
transforms the speculative batch into a tree structure representing potential token sequences. This
restructuring aims to expedite the generation of larger and improved speculative batches. It intro-
duces an additional phase for speculative decoding of the initial model, thereby enhancing overall
performance, showing 1.36x over standard speculative sampling. BiLD (Kim et al., 2023c) optimizes
speculative decoding through two innovative strategies: the fallback policy that permits the smaller
draft model to waive control to the larger target model when it lacks sufficient confidence, and the
rollback policy that enables the target model to revisit and rectify any inaccurate predictions made
by the smaller draft model. Likewise, SpecInfer (Miao et al., 2024) extends Speculative decoding
and speeds up inference by employing speculative inference techniques and token tree validation. Its
core idea involves merging a range of small speculative models that have been fine-tuned collectively
to collaboratively forecast the output of the LLM, which is then used to validate all the predictions.
Different from Speculative Decoding that needs to introduce an additional efficient drafter model
to generate a draft for checking, LLMA (Yang et al., 2023c) chooses a text segment from a closely
related reference and duplicates its tokens into the decoder. It then concurrently assesses the suit-
ability of these tokens as the decoding output within a single decoding step. This approach results
in a speed increase of more than two times for LLMs while maintaining the same generated results
as traditional greedy decoding. Furthermore, instead of using a separate draft model to sequen-
tially generate candidate output, Medusa (Cai et al., 2023) involves freezing the LLM backbone,
fine-tuning additional heads, and using a tree-based attention mechanism to process predictions
in parallel to speed up the decoding process. Lastly, Santilli et al. (2023) propose parallel decod-
ing including the Jacobi and Gauss-Seidel fixed-point iteration methods for speculative decoding.
Among these strategies, Jacobi decoding was extended into Lookahead decoding (Fu et al., 2023c)
to enhance the efficiency of LLMs.

17

Under review as submission to TMLR

• KV-Cache Optimization. Minimizing the repeated computation of Key-Value (KV) pairs during
the inference process of LLMs is also key to enhancing the inference efficiency. Corro et al. (2023)
propose SkipDecode, a token-level early exit approach that utilizes a unique exit point for each
token in a batch at every sequence position, and skips the lower and middle layers to accelerate the
inference process. It can obtain 2x to 5x inference speedups compared to original decoding. Zhang
et al. (2023f) point out that KV-cache is scaling linearly with the sequence length and batch size.
They propose a KV cache eviction strategy that formulates the KV cache eviction as a dynamic sub-
modular problem and dynamically retains a balance between recent and important tokens, reducing
the latency for LLMs inference. Similarly, Liu et al. (2023f) underscore the Persistence of Importance
Hypothesis, suggesting that only tokens that were crucial at an earlier phase will have a significant
impact on subsequent stages. Based on this theory, they propose Scissorhands that introduces a
streamlined algorithm for LLM inference using a compact KV-cache. Different from above works
that optimize KV-cache during inference, Dynamic Context Pruning (Anagnostidis et al., 2023)
utilizes a learnable mechanism to identify and remove non-informative KV-cache tokens. In doing
so, it not only enhances efficiency during training but also improves interpretability.

System-Level Inference Efficiency Optimization. The efficiency of LLM inference can also be opti-
mized at the system level. For example, FlexGen (Sheng et al., 2023) is a high-throughput inference engine
that enables the execution of LLMs on GPUs with limited memory. It uses a linear programming-based
search approach to coordinate various hardware, combining the memory and computation from GPU, CPU,
and disk. Furthermore, FlexGen quantizes the weights and attention cache to 4 bits, increasing the in-
ference speed of OPT-175B (Zhang et al., 2022a) on a single 16GB GPU. Besides, Deja Vu (Liu et al.,
2023g) presents the notion of contextual sparsity, which is a collection of MLP and attention modules that
produce the same result as a dense model, but with fewer components. This technique trains predictors to
identify the sparsity and then uses kernel fusion and memory coalescing to speed up the inference process of
OPT-175B by over 2× compared to FasterTransformer (NVIDIA, 2023). Pope et al. (2023) develop a simple
analytical framework to select the best multi-dimensional partitioning methods optimized for TPU v4 slices
based on the application requirements. By combining this with some existing low-level optimizations, they
have achieved greater efficiency on PaLM (Chowdhery et al., 2022) in comparison to the FasterTransformer
(NVIDIA, 2023) standards. Then, Orca (Yu et al., 2022) employs iteration-level scheduling to decide batch
sizes. When a sequence in a batch is completed, it is substituted with a new one, resulting in improved
GPU utilization compared to static batching, showing 36.9× throughput improvement at the same level of
latency compared to FasterTransformer. Furthermore, S3 (Jin et al., 2023) creates a system that is aware
of the output sequence beforehand. It can anticipate the length of the sequence and arrange generation
requests accordingly, optimizing the utilization of device resources and increasing the rate of production,
showing better throughput than Orca with the same numbers of GPUs. DeepSpeed-Inference (Aminabadi
et al., 2022) is a multi-GPU inference approach that is designed to enhance the efficiency of both dense
and sparse Transformer models when they are contained within the collective GPU memory. Furthermore,
it provides a mixed inference technique that utilizes CPU and NVMe memory, in addition to GPU mem-
ory and computation, guaranteeing high-throughput inference even for models that are too large to fit in
the combined GPU memory, demonstrating lower latency than with the FasterTransformer with the same
throughput. Flash-Decoding (Dao et al., 2023) is a technique that boosts the speed of long-context inference
by breaking down keys/values into smaller pieces, computing attention on these pieces in parallel, and then
combining them to generate the final output. It outperforms FasterTransformer and FlashAttention (Dao
et al., 2022) in decoding speed for very large sequences. FlashDecoding++ (Hong et al., 2023) supports
mainstream language models and hardware backends through asynchronous softmax, double buffering for
flat GEMM optimization, and heuristic dataflow, resulting in up to 4.86x and 2.18x acceleration on NVIDIA
and AMD GPUs respectively compared to HuggingFace implementations, showing higher speed-up compared
to Flash-Decoding with the same throughput.

18

Under review as submission to TMLR

E
ffi

ci
en

t
A

rc
hi

te
ct

ur
e

D
es

ig
n

Efficient Attention

Sharing-based Attention MQA (Shazeer, 2019), GQA (Ainslie et al., 2023)

Kernelization or Low-Rank
Sumformer (Alberti et al., 2023), FluRKA (Gupta et al., 2023), Scatterbrain (Chen et al., 2021a),
LRT (Winata et al., 2020), Performer (Choromanski et al., 2021), RFA (Peng et al., 2021),
Linear Transformer (Katharopoulos et al., 2020), Linformer (Wang et al., 2020)

Fixed Pattern Strategies
Pagliardini et al. (2023), Big Bird (Zaheer et al., 2020), Poolingformer (Zhang et al., 2021),
Longformer (Beltagy et al., 2020), Blockwise Transformer (Qiu et al., 2019), Sparse Transformer (Child et al., 2019),
Lightning Attention-2 (Qin et al., 2024)

Learnable Pattern Strategies
HyperAttention (Han et al., 2023), Reformer (Kitaev et al., 2020), Sparse Sinkhorn Attention (Tay et al., 2020),
Clustered Attention (Vyas et al., 2020), ClusterFormer (Wang et al., 2022d), Routing Transformer (Roy et al., 2021)

Hardware-Assisted Attention FlashAttention (Dao et al., 2022), FlashAttention-2 (Dao, 2023), PagedAttention (Kwon et al., 2023)

Mixture of Experts (MoE)

MoE-based LLMs
GShard (Lepikhin et al., 2021), Switch Transformer (Fedus et al., 2022), Artetxe et al. (2022),
BASE Layer (Lewis et al., 2021), PanGu-

∑
(Ren et al., 2023b), Mixtral 8x7B (Jiang et al., 2023a)

Algorithm-Level MoE Optimization
StableMoE (Dai et al., 2022), Expert Choice (Zhou et al., 2022), X-MoE (Chi et al., 2022),
Lifelong-MoE (Chen et al., 2023h), Flan-MoE (Shen et al., 2024)

System-Level MoE Optimization
FastMoE (He et al., 2021), FasterMoE (He et al., 2022a), DeepSpeed-MoE (Rajbhandari et al., 2022),
TA-MoE (Chen et al., 2022a), EdgeMoE (Yi et al., 2023), Tutel (Hwang et al., 2023),
SmartMoE (Zhai et al., 2023), MegaBlocks (Gale et al., 2023)

Long Context LLMs

Extrapolation and Interpolation

ALiBi (Press et al., 2022), xPOS (Sun et al., 2022b), CLEX (Chen et al., 2023b),
RoPE-PI (Chen et al., 2023f), NTK Interpolation (bloc97, 2023),
YaRN Interpolation (Peng et al., 2023c), FIRE (Li et al., 2024a), PoSE (Zhu et al., 2023),
Newman et al. (2020), Anil et al. (2022), Liu et al. (2023c)

Recurrent Structure
Transformer-XL (Dai et al., 2019), Memformer (Wu et al., 2020), ∞-former (Martins et al., 2022),
RMT (Bulatov et al., 2022), Block-Recurrent Transformer (Hutchins et al., 2022), Retentive Network (Sun et al., 2023b)

Segmentation and Sliding Window

Mistral (Jiang et al., 2023a), StreamingLLM (Xiao et al., 2023b), PCW (Ratner et al., 2023),
LongNet (Ding et al., 2023a), SLED (Ivgi et al., 2023), Fei et al. (2023),
(Jin et al., 2024), Zhang et al. (2024), MemWalker (Chen et al., 2023d),
RAPTOR (Sarthi et al., 2024)

Memory-Retrieval Augmentation
Memorizing Transformer (Wu et al., 2022), Landmark Attention (Mohtashami & Jaggi, 2023),
LongMem (Wang et al., 2023e), Unlimiformer (Bertsch et al., 2023),
Focused Transformer (Tworkowski et al., 2023), Xu et al. (2024)

Transformer-Alternative Architecture

State Space Models
Structured State Space (Gu et al., 2022a), Diagonal State Space (Gupta et al., 2022), H3 (Fu et al., 2023a),
Gated State Space (Mehta et al., 2022), Block-State Transformer (Pilault et al., 2023),
Mamba (Gu & Dao, 2023), SMA (Ren et al., 2023a)

Other Sequential Models
RWKV (Peng et al., 2023b), Hyena (Poli et al., 2023), MEGABYTE (Yu et al., 2023),
PanGu-π(Wang et al., 2023h)

Figure 12: Summary of efficient architecture designs for LLMs.

2.5 Efficient Architecture Design

Efficient architecture design for LLMs refers to the strategic optimization of model architecture and compu-
tational processes to enhance performance and scalability while minimizing resource consumption. Figure 12
summarizes efficient architecture designs for LLMs.

2.5.1 Efficient Attention

The quadratic time and space complexity of attention modules considerably slows down the pre-training,
inference and fine-tuning of LLMs (Keles et al., 2022). A lot of techniques have been proposed to make
attention lightweight for more efficient execution. These techniques can be generally categorized as sharing-
based attention, feature information reduction, kernelization or low-rank, fixed pattern strategies, learnable
pattern strategies, and hardware-assisted attention.

Sharing-based Attention. Sharing-based attention aims to accelerate attention computation during infer-
ence through different KV heads sharing schemes. For example, LLaMA-2 (Touvron et al., 2023b) optimizes
the auto-regressive decoding process by using multi-query attention (MQA) (Shazeer, 2019) and grouped-
query attention (GQA) (Ainslie et al., 2023). In contrast to multi-head attention, which uses several atten-
tion layers (heads) simultaneously with distinct linear transformations for queries, keys, values, and outputs,
MQA has all its heads sharing one set of keys and values. While MQA utilizes only one key-value head to
speed up decoder inference, it might compromise quality. To address this, GQA offers a modified version
of MQA by employing more than one key-value heads but fewer than the total number of query heads to
enhance the inference quality.

19

Under review as submission to TMLR

W1 W2x

x x x

= (1,1)
(2,2)
(3,3)
(4,4)

Value IndexOriginal Weight

U1 V1 U2 V2

≈
=

Original Feature Learned Pattern
ML

(b) Kernelization or
Low-Rank

(c) Fixed Pattern
Strategies

(d) Learnable Pattern
Strategies

Key

Value

Query

Multi-Head Sharing-based

(a) Sharing-based
Attention

Figure 13: Illustrations of attention optimizations.

FlashAttention

Memory Hierarchy with
Bandwidth & Memory Size

Attention on GPT-2

FlashAttentionPyTorch

Ti
m

e
(m

s)

Matmul

Mask

Softmax

Dropout

Matmul

Fused
Kernel

Q: N x d V: N X d

KT: d x N

Q
KT : N

 x
 N

sm(QKT)V: N x d

Outer Loop

Copy Block to SRAM

Copy

O
uter Loop

Copy

In
ne

r L
oo

p

Compute Block
on SRAM

Output to HBM

Inner Loop

Inner Loop

Outer Loop

GPU
SRAM

GPU
HBM

Main Memory
(CPU DRAM)

SRAM: 19 TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

DRAM: 12.8 GB/s
 (>1 TB)

0

5

10

15

Figure 14: Design of FlashAttention.

Kernelization or Low-Rank. Kernelization or low-rank techniques adopted by models such as Sum-
former (Alberti et al., 2023), FluRKA (Gupta et al., 2023), Scatterbrain (Chen et al., 2021a), Low-Rank
Transformer (LRT) (Winata et al., 2020), Performer (Choromanski et al., 2021), Random Feature Attention
(RFA) (Peng et al., 2021), Linear Transformer (Katharopoulos et al., 2020), and Linformer (Wang et al.,
2020), enhance computational efficacy by utilizing low-rank representations of the self-attention matrix or
by adopting attention kernelization techniques. Specifically, low-rank methods focus on compacting the di-
mensions of attention keys and values. For example, Linformer (Wang et al., 2020) proposes to segment
scaled dot-product attention into smaller units via linear projection. Kernelization, a variant of low-rank
technique, focuses on approximating the attention matrix (Choromanski et al., 2020). For example, Per-
former (Choromanski et al., 2021) condenses softmax attention-kernels using positive orthogonal random
features, outperforming Reformer and Linformer on long protein sequence benchmark. Sumformer (Alberti
et al., 2023) approximates the equivariant sequence-to-sequence function, offering a universal solution for
both Linformer and Performer.

Fixed Pattern Strategies. Fixed pattern strategies adopted by models such as (Pagliardini et al., 2023),
Big Bird (Zaheer et al., 2020), Poolingformer (Zhang et al., 2021), Longformer (Beltagy et al., 2020), Block-
wise Transformer (Qiu et al., 2019), and Sparse Transformer (Child et al., 2019) improve efficiency by sparsi-
fying the attention matrix. This is achieved by confining the attention scope to predetermined patterns, such
as local windows or fixed-stride block patterns. For instance, Longformer (Beltagy et al., 2020)’s attention
mechanism, designed as an alternative to conventional self-attention, merges local windowed attention with
globally oriented attention tailored to specific tasks. Pagliardini et al. (2023) have expanded FlashAttention
(Dao et al., 2022) to support a broad spectrum of attention sparsity patterns, including key-query dropping
and hashing-based attention techniques, achieving a multi-fold runtime speedup on top of FlashAttention
on long text benchmark.

Learnable Pattern Strategies. Learnable pattern strategies adopted by models such as HyperAtten-
tion (Han et al., 2023), Reformer (Kitaev et al., 2020), Sparse Sinkhorn Attention (Tay et al., 2020), Clus-
tered Attention (Vyas et al., 2020), ClusterFormer (Wang et al., 2022d), and Routing Transformer (Roy
et al., 2021) improve efficiency by learning token relevance and subsequently grouping tokens into buckets
or clusters. As an example, HyperAttention (Han et al., 2023) proposes a parameterization for spectral
approximation and employs two key metrics: the maximal column norm in the normalized attention matrix
and the row norm ratio in the unnormalized matrix after large entry removal. It also utilizes the learnable
sort locality-sensitive hashing (sortLSH) technique and fast matrix multiplication via row norm sampling.
Their experiment results show that HyperAttention enhances both inference and training speeds for LLMs
with only minimal performance degradation, giving significant speed improvements compared to FlashAt-
tention (Dao et al., 2022) on long contexts.

20

Under review as submission to TMLR

LLMs

R
ou

te
r N

et
w

or
k

2

R
ou

te
r N

et
w

or
k

1

Input Output
Experts Experts

Input
sentence 1

sentence 1
sentence 2
sentence 3
sentence 4

sentence 1
sentence 2
sentence 3
sentence 4

It's short. I can do it.

It's long. I can't do it.

It's long. But I can do it.

good generation

Bad Generation

good generation

(2) window & stream structure
(4) recurrent structure

(1) Extrapolation
and Interpolation

(3) Memory-
Retrieval

Augmentation

(a) Mixture of Experts (MoE) (b) Long Context LLMs

Figure 15: Illustrations of Mixture of Experts (MoE) and Long Context LLMs.

Hardware-Assisted Attention. Besides algorithmic approaches that sparsify attentions and thereby
streamline the computation of the attention matrix, several studies concentrate on realizing efficient and
lightweight attention mechanisms from hardware aspects. For example, FlashAttention (Dao et al., 2022) and
FlashAttention-2 (Dao, 2023) aim to reduce the communication times between GPU high-bandwidth memory
(HBM) and GPU on-chip SRAM when calculating the attention module in LLMs. Instead of transmitting the
values and results between HBM and SRAM multiple times as is done in the standard attention mechanism,
which results in long latency due to the low transmitting speed, FlashAttention combines all the attention
operations into one kernel and tiles the weight matrices into smaller blocks to better fit the small SRAM
as shown in Figure 14. As a result, only one communication is required to process each attention block,
significantly increasing the efficiency for processing the entire attention block. Then, inspired by virtual
memory and paging techniques, PagedAttention (Kwon et al., 2023) enables the storage of continuous keys
and values in non-contiguous memory space. Specifically, PagedAttention divides the KV cache of each
sequence into blocks, each containing the keys and values for a fixed number of tokens. During the attention
computation, the PagedAttention kernel manages these blocks efficiently by maintaining a block table to
reduce memory fragmentation. Specifically, the contiguous logical blocks of a sequence are mapped to non-
contiguous physical blocks via the table and the table automatically allocates a new physical block for every
newly generated token. This reduces the amount of memory wasted when generating new tokens, thus
improving its efficiency, showing that PagedAttention improves the throughput of popular LLMs by 2-4×
with the same level of latency compared to FasterTransformer (NVIDIA, 2023) and Orca (Yu et al., 2022).

2.5.2 Mixture of Experts (MoE)

Mixture of Experts (MoE) represents a sparse methodology utilized prominently in large-scale models like
LLMs. It operates on the principle of segmenting a designated task into several sub-tasks, and then de-
veloping numerous smaller, specialized models, dubbed experts, with each honing in on a distinct sub-task.
Subsequently, these experts collaborate to deliver a consolidated output. For pre-traning or fine-tuning, MoE
helps to manage a huge number of parameters efficiently, enhancing the model’s capacity and potentially
its performance while keeping the computational and memory requirements relatively manageable. For in-
ference, MoE decreases the inference time by not engaging all experts simultaneously, but rather activating
only a select few. Additionally, MoE is capable of minimizing communication between devices in model-
distributed scenarios by allocating each expert to an individual accelerator; communication is only necessary
between the accelerators that host the router and the relevant expert model (Kaddour et al., 2023).

MoE-based LLMs. Several MoE-based LLMs have been proposed. For example, GShard (Lepikhin et al.,
2021) is a MoE-based LLM that offers a refined method to articulate a variety of parallel computation
frameworks with minor modifications to the existing model code. It also amplifies a multilingual neural
machine translation Transformer model with Sparsely-Gated MoE beyond 600 billion parameters through

21

Under review as submission to TMLR

automatic sharding. Switch Transformer (Fedus et al., 2022) brings forth a switch routing algorithm and
crafts intuitively enhanced models, lowering communication and computational expenditures. It encompasses
up to one trillion parameters, dividing tasks among up to 2,048 experts, thereby illustrating the scalability
and efficacy of the MoE framework. It achieves a 4x speedup over the T5-XXL model during pre-training
up to trillion parameter models. Artetxe et al. (2022) scale sparse language models to 1.1T parameters,
discerning superior performance up to this scale in language modeling, zero-shot and few-shot learning
in comparison to dense models. This suggests that sparse MoE models are a computationally efficient
substitute for traditionally employed dense architectures. Its biggest MoE model outperforms its dense
counterpart where the latter requires twice as much computation. BASE Layer (Lewis et al., 2021) defines
token-to-expert allocation as a linear assignment problem, allowing an optimal assignment where each expert
acquires an equal number of tokens, achieving lower validation perplexity during training relative to Switch
Transformer. PanGu-Σ (Ren et al., 2023b) is a MoE-based LLM with 1.085T parameters, transitioned from
the dense Transformer model to a sparse one with Random Routed Experts (RRE), and effectively trains the
model over 329B tokens utilizing Expert Computation and Storage Separation (ECSS). It outperforms dense
model like ERNIE 3.0 Titan Wang et al. (2021b) on Zero-shot test of Chinese downstream task. Lastly,
Mixtral 8x7B (Jiang et al., 2023a) is a MoE with 46.7B total parameters. By leveraging the advantage of
MoE architecture, Mixtral 8x7B outperforms LLaMA-2 70B on most benchmarks such as MMLU, MBPP,
and GSM-8K with 6x faster inference by only using 12.9B parameters of the model per token for inference.

Algorithm-Level MoE Optimization. The efficiency of MoE-based LLMs can be improved at the algo-
rithm level. The technique termed Expert Choice (Zhou et al., 2022) allows experts to pick the top-k tokens
instead of having tokens choose the top-k experts, implying that each token can be directed to a variable
number of experts while each expert maintains a fixed bucket size. This method demonstrates higher perfor-
mance in the GLUE and SuperGLUE benchmarks, and outperforms the T5 dense model in 7 out of the 11
tasks. StableMoE (Dai et al., 2022) identifies the issue of altering target experts for identical input during
training and addresses this by creating two training phases. Initially, it cultivates a balanced routing strat-
egy, which is then distilled into a decoupled lightweight router. In the following phase, this distilled router
is used for a fixed token-to-expert assignment, ensuring a stable routing strategy. It show better result than
Switch Transformer and BASE Layer with lower validation perplexity on language modeling. X-MoE (Chi
et al., 2022) notes that earlier routing mechanisms foster token clustering around expert centroids, indicating
a tendency toward representation collapse. It proposes to estimate the routing scores between tokens and
experts on a low-dimensional hyper-sphere, showing improvements over Switch Transformer on ultilingual
multi-task benchmark. Lifelong-MoE (Chen et al., 2023h) finds that MoE increases the capacity of the
model to adapt to different corpus distributions in online data streams without extra computational cost,
simply by incorporating additional expert layers and suitable expert regularization. This facilitates contin-
uous pre-training of a MoE-based LLM on sequential data distributions without losing previous knowledge.
It outperforms other MoE model like GShard on NLG and NLU tasks. Lastly, Flan-MoE (Shen et al.,
2024) promotes the amalgamation of MoE and instruction tuning, observing that MoE models gain more
from instruction tuning compared to dense models. In particular, Flan-MoE effectively enlarges language
models without demanding an increase in computational resources or memory requirements, showing better
on average zero-shot, and few-shot performance compared to FLAN-T5 dense model.

System-Level MoE Optimization. Several system-level optimization techniques have been developed
to accelerate the training and inference of MoE-based LLMs. For example, FastMoE (He et al., 2021) is a
distributed MoE training system built on PyTorch, compatible with common accelerators. This system offers
a hierarchical interface that allows both flexible model design and easy adaptation to various applications,
such as Transformer-XL and Megatron-LM. FasterMoE (He et al., 2022a) introduces a performance model
that predicts latency and analyzes end-to-end performance through a roofline-like methodology. Utilizing
this model, it presents a dynamic shadowing technique for load balancing, a concurrent fine-grained sched-
ule for operations, and a strategy to alleviate network congestion by adjusting expert selection for model
training. It outperforms FastMoE, and achieves 1.37× - 17.87× speedup compared with SOTA systems for
large models, including ZeRO, GShard, and BASE Layer. DeepSpeed-MoE (Rajbhandari et al., 2022) has
designed a Pyramid-Residual MoE (PR-MoE) to enhance both the training and the inference efficiency of
the MoE model parameter. PR-MoE is a dense-MoE hybrid that employs residual connections to optimally
utilize experts, managing to reduce the parameter size by up to 3x without sacrificing quality or compute

22

Under review as submission to TMLR

requirements. It serves massive MoE models with up to 4.5x faster and 9x cheaper inference compared
to quality-equivalent dense models. TA-MoE (Chen et al., 2022a) highlights that current MoE dispatch
patterns do not fully leverage the underlying heterogeneous network environment and thus introduces a
topology-aware routing strategy for large-scale MoE training that dynamically modifies the MoE dispatch
pattern based on the network topology, making it outperform FastMoE, FasterMoE, and DeepSpeed-MoE.
EdgeMoE (Yi et al., 2023) presents an on-device inference engine tailored for MoE-based LLMs. It optimizes
memory and computation for inference by distributing the model across different storage levels. Specifically,
non-expert model weights are stored directly on the edge device, while expert weights are kept externally
and only loaded into the device’s memory when necessary. Tutel (Hwang et al., 2023) is a scalable stack
for MoE with adaptive parallelism and pipelining features to accelerate training and inference. It employs
a consistent layout for MoE parameters and input data, supporting switchable parallelism and dynamic
pipelining without any mathematical inconsistencies or tensor migration costs, thus enabling free run-time
optimization, achieving up to 5.75× speedup for a single MoE layer. SmartMoE (Zhai et al., 2023) focuses on
distributed training for MoE. In the offline stage, SmartMoE constructs a search space of hybrid parallelism
strategies. In the online stage, it incorporates light-weight algorithms to identify the optimal parallel strat-
egy. It achieves up to 1.88× speedup in end-to-end training over FasterMoE on a distributed training setting.
Lastly, MegaBlocks (Gale et al., 2023) transforms MoE-oriented computation with block-sparse operations
and creates block-sparse GPU kernels to optimize MoE computation on hardware. This leads to training
time up to 40% faster compared to Tutel and 2.4x faster than dense DNNs trained with Megatron-LM.

2.5.3 Long Context LLMs

In many real-world applications, such as multi-turn conversations and meeting summarization, existing LLMs
are often required to comprehend or generate context sequences that are much longer than what they have
been pre-trained with and may result in a degragation in accuracy due to the poor memorization for the
long context. The most obvious and direct way to address this issue is to fine-tune LLMs with similar
long-sequence data, which is time consuming and computation intensive. Recently, various new methods
have been developed to enable LLMs to adapt to longer context lengths in a more efficient way, including
extrapolation and interpolation, recurrent structure, window segment and sliding structure, and memory-
retrieval augmentation. Notably, system optimizations like FlashAttention (Dao et al., 2022; Dao, 2023), as
mentioned in Sec 2.5.1, enhance the processing of long texts by reducing memory and computational demands
through an IO-aware exact attention algorithm, enabling more efficient training and inference on longer text
sequences. Different from system-level framework, this section focuses primarily on algorithm-level methods.

Extrapolation and Interpolation. Standard positional encoding methods like absolute positional em-
beddings (APE) (Vaswani et al., 2017), learned positional embeddings (LPE) (Wang et al., 2022b), relative
positional embeddings (RPE) (Shaw et al., 2018), relative positional bias (Raffel et al., 2020), and rotary
position embeddings (RoPE) (Su et al., 2021) have advanced the integration of positional information in
LLMs. For example, LPE has been used by GPT-3 (Brown et al., 2020) and OPT (Zhang et al., 2022a);
RPE was used by Gopher (Rae et al., 2022) and Chinchilla (Hoffmann et al., 2022), whereas RoPE was used
by LLaMA-1 and GLM-130B. However, it is still challenging to train LLMs on sequences with a limited
maximum length while still ensuring them to generalize well on significantly longer sequences during infer-
ence. Given that, techniques based on positional extrapolation (Press et al., 2022; Sun et al., 2022b; Chen
et al., 2023b) and positional interpolation (Chen et al., 2023f; Peng et al., 2023c; Li et al., 2024a) have been
proposed.

Positional extrapolation strategies extend the encoding of positional information beyond what the model
has explicitly learned during training. For example, ALiBi (Press et al., 2022) applies attention with linear
biases to attain extrapolation for sequences that exceed the maximum length seen during training. Through
applying negatively biased attention scores, with a linearly diminishing penalty based on the distance between
the pertinent key and query, as opposed to using position embeddings, it can facilitate efficient length
extrapolation. Different from ALiBi (Press et al., 2022), xPOS (Sun et al., 2022b) characterizes attention
resolution as a marker for extrapolation and utilizes a relative position embedding to enhance attention
resolution, thereby improving length extrapolation. However, these techniques have not been implemented
in some of the recent LLMs such as GPT-4 (OpenAI et al., 2023), LLaMA (Touvron et al., 2023a), or

23

Under review as submission to TMLR

LLaMA-2 (Touvron et al., 2023b). CLEX (Chen et al., 2023b) proposes to generalize position embedding
scaling with ordinary differential equations to model continuous dynamics over length scaling factors. By
doing so, CLEX gets rid of the limitations of existing positional extrapolation scaling methods to enable
long-sequence generation.

Positional interpolation strategies, on the other hand, reduce the scale of input position indices and extend
the context window sizes, allowing LLMs to maintain their performance over longer text sequences. For
example, Chen et al. (2023f) propose RoPE-PI that highlights that extending beyond the trained context
length might impair the self-attention mechanism. They suggest a method that reduces the position indices
through linear interpolation, aligning the maximum position index with the prior context window limit
encountered during the pre-training phase. NTK interpolation (bloc97, 2023) modifies the base of the
RoPE, effectively changing the rotational velocity of each RoPE dimension. YaRN interpolation (Peng
et al., 2023c) uses a ramp function to blend linear and NTK interpolation in varying proportions across
dimensions and incorporates a temperature factor to counteract distribution shifts in the attention matrix
due to long inputs. The experiment on long-text modeling shows that YaRN improves upon existing RoPE
interpolation methods, including RoPE-PI and NTK. Furthermore, FIRE (Li et al., 2024a) proposes a
functional relative position encoding using learnable mapping of input positions to biases and progressive
interpolation, ensuring bounded input for encoding functions across all sequence lengths to enable length
generalization. FIRE demonstrates competitive results compared with methods including ALiBi, RoPE,
and RoPE-PI on long text benchmarks. PoSE (Zhu et al., 2023) proposes positional skip-wise training
that smartly simulates long inputs using a fixed context window and design distinct skipping bias terms to
manipulate the position indices of each chunk. This strategy reduces memory and time overhead compared
with full-length fine-tuning.

Recurrent Structure. LLMs’ ability to manage long sequences can also be enhanced through recurrence
structure. For example, Transformer-XL (Dai et al., 2019) presents a segment-level recurrence mechanism
and utilizes enhanced relative positional encoding to capture long-term dependencies and address the long-
context fragmentation issue. Memformer (Wu et al., 2020) leverages an external dynamic memory for
encoding and retrieving past information, achieving linear time and constant memory space complexity
for long sequences. It also proposes Memory Replay Back-Propagation (MRBP) to facilitate long-range
back-propagation through time with significantly lower memory requirements, showing better results than
Transformer-XL on language modeling and image generation benchmarks. ∞-former (Martins et al., 2022)
presents a Transformer model augmented with unbounded long-term memory (LTM), employing a continuous
space attention framework to balance the quantity of information units accommodated in memory against
the granularity of their representations. likewise, ∞-former shows better result than Transformer-XL on
long text sorting and modeling. Furthermore, Recurrent Memory Transformer (RMT) (Bulatov et al.,
2022) uses a recurrence mechanism to retain information from the past segment level by incorporating
special memory tokens into the input or output sequence, demonstrating superior performance compared
to Transformer-XL in long context modeling. Block-Recurrent Transformers (BRT) (Hutchins et al., 2022)
utilize self-attention and cross-attention to execute a recurrent function across a broad set of state vectors
and tokens so as to model long sequences through parallel computation. BRT has lower perplexity and
run faster than Transformer-XL. Lastly, Retentive Network (Sun et al., 2023b) introduces a multi-scale
retention mechanism as an alternative to multi-head attention. By encompassing parallel and chunk-wise
recurrent representations, it results in effective scaling, allows for parallel training, and achieves training
parallelization and constant inference cost, while offering linear long-sequence memory complexity compared
to other Transformer models.

Segmentation and Sliding Window. Segmentation and sliding window techniques tackle the issue of
long-context processing by dividing the input data into smaller segments, or applying a moving window to
slide through the long sequence. For instance, Mistral (Jiang et al., 2023a) uses sliding window attention to
effectively handle sequences of arbitrary length with a reduced inference cost. StreamingLLM (Xiao et al.,
2023b) identifies an attention sink phenomenon, noting that retaining the Key-Value of initial tokens sig-
nificantly restores the performance of window attention. Based on this observation, it suggests an efficient
framework via merging window context and the first token, allowing LLMs trained with a finite length atten-
tion window, but have the ability to generalize to infinite sequence lengths without any fine-tuning. Parallel

24

Under review as submission to TMLR

Context Windows (PCW) (Ratner et al., 2023) segments a long context into chunks, limiting the attention
mechanism to function only within each window, and then redeploys the positional embeddings across these
windows. LongNet (Ding et al., 2023a) proposes dilated attention, which exponentially expands the atten-
tive field as the distance increases, enabling the handling of sequence lengths of more than 1 billion tokens.
LongNet can be implemented by parallelizing training by partitioning the sequence dimension. SLED (Ivgi
et al., 2023) is a straightforward method for handling long sequences that repurposes and capitalizes on
well-validated short-text language models for use in LLMs. Different from the above-mentioned works,
MemWalker (Chen et al., 2023d) transforms lengthy texts into segmented summaries within a tree structure,
leveraging the LLM as an interactive entity for guided reading through iterative prompts. It outperforms
traditional methods based on extended context, recurrence, and retrieval. Similar to MemWalker, RAP-
TOR (Sarthi et al., 2024) utilizes text chunks to construct a recursive tree, enabling information integration
from extensive documents across various abstraction levels during inference, achieving top performance in
multi-step reasoning.

Memory-Retrieval Augmentation. Several studies tackle the inference of extremely long text by em-
ploying memory-retrieval augmentation strategies. A notable example is the Memorizing Transformer (Wu
et al., 2022), which extends the attention context size by utilizing k-nearest-neighbor (KNN) lookup to fetch
previously similar context embeddings. Additionally, Landmark Attention (Mohtashami & Jaggi, 2023) em-
ploys a landmark token to represent each block of input and trains the attention mechanism to utilize it for
choosing relevant blocks. This allows the direct retrieval of blocks through the attention mechanism while
maintaining the random access flexibility of the previous context, demonstrating comparable perplexity as a
Transformer-XL while reducing FLOPs for long-context modeling. LongMem (Wang et al., 2023e) proposes
a decoupled network architecture with the original backbone LLM as a memory encoder and an adaptive
residual side network as a memory retriever and reader, efficiently caching and updating long-term past
contexts to prevent knowledge staleness. It shows better result than Memorizing Transformer on long text
modeling and NLU tasks. Unlimiformer (Bertsch et al., 2023) enhances the KNN-augmented Transformer
by outputting attention dot-product scores as KNN distances, enabling the indexing of virtually unlimited
input sequences, and outperforming Memorizing Transformer on long document summarization benchmarks.
Focused Transformer (FoT) (Tworkowski et al., 2023) highlights that the ratio of relevant keys to irrelevant
ones diminishes as the context length increases and proposes an optimized solution through contrastive learn-
ing to refine the structure of the key-value space. Unlike Memorizing Transformer and Transformer-XL, FoT
does not require training on long sequence and show better performance than it on both long-context and
short context tasks. Different from above works, Xu et al. (2024) discover that an LLM with a 4K context
window, when augmented with simple retrieval during generation, can match the performance of a fine-tuned
LLM with a 16K context window using positional interpolation (Chen et al., 2023f) on long context tasks,
while requiring significantly less computation.

2.5.4 Transformer-Alternate Architectures

While Transformer-based architectures are now at the forefront of LLMs, some studies propose new archi-
tectures to supplant Transformer-based architectures.

State Space Models. A promising approach that aims to substitute the attention mechanism is state space
models (SSMs). SSM is formulated as x′(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), which maps a single-
dimension input signal u(t) to an N-dimension latent state x(t) before projecting to a single-dimension output
signal y(t), where A, B, C, D are parameters learned by gradient descent (Gu et al., 2022a). Compared to
attention that has quadratic complexity, SSMs provide near-linear computational complexity relative to the
length of the sequence. Given such advantage, a series of techniques have been proposed to improve SSMs.
For example, the Structured State Space sequence model (S4) (Gu et al., 2022a) refines SSMs by conditioning
matrix A with a low-rank correction. This enables stable diagonalization and simplifies the SSM to the well-
studied computation of a Cauchy kernel. Diagonal State Space (DSS) (Gupta et al., 2022) improves SSMs
by proposing fully diagonal parameterization of state spaces instead of a diagonal plus low rank structure,
demonstrating greater efficiency. To bridge the gap between SSMs and attention while adapting to modern
hardware, H3 (Fu et al., 2023a) stacks two SSMs to interact with their output and input projection, allowing
it to log tokens and facilitate sequence-wide comparisons simultaneously. Mehta et al. (2022) introduce

25

Under review as submission to TMLR

D
at

a
Se

le
ct

io
n

Data Selection for Efficient Pre-Training SSPT (Glass et al., 2020), Yao et al. (2022a), DSIR (Xie et al., 2023b),DoReMi (Xie et al., 2023a)

Data Selection for Efficient Fine-Tuning
Instruction Mining (Cao et al., 2023), Ivison et al. (2023), TS-DShapley (Schoch et al., 2023),
LTD Instruction Tuning (Chen et al., 2023c), AlpaGasus (Chen et al., 2023e), LIMA (Zhou et al., 2023a),
MoDS (Du et al., 2023), Li et al. (2023g), Liu et al. (2024c)

Figure 16: Summary of data selection techniques for LLMs.

LLMs

subset subset

Training Data Fine-Tuning Data

Select SelectTraining
Fine-
Tuning

(a) Data Selection for Efficient Pre-Training (b) Data Selection for Efficient Fine-Tuning

Figure 17: Illustrations of data selection techniques for LLMs.

a more efficient layer called Gated State Space (GSS), which has been empirically shown to be 2-3 times
faster than the previous strategy (Gupta et al., 2022) while maintaining the perplexity on multiple language
modeling benchmarks. Block-State Transformer (BST) (Pilault et al., 2023) designs a hybrid layer that
combines an SSM sublayer for extended range contextualization with a Block Transformer sublayer for
short-term sequence representation. Gu & Dao (2023) propose Mamba to enhance SSMs by designing a
selection mechanism to eliminate irrelevant data and developed a hardware-aware parallel algorithm for
recurrent operation, achieving 5x higher throughput than Transformers. Ren et al. (2023a) extends SSMs
and propose a general modular activation mechanism, Sparse Modular Activation (SMA), which unifies
previous works on MoE, adaptive computation, dynamic routing and sparse attention, and further applies
SMA to develop a novel architecture, SeqBoat, to achieve state-of-the-art quality-efficiency trade-off.

Other Sequential Models. Lastly, some other architectures have been proposed to replace the Transformer
layer. Receptance Weighted Key Value (RWKV) model (Peng et al., 2023b) amalgamates the advantages
of recurring neural networks (RNN) and Transformers. This combination is designed to utilize the effective
parallelizable training feature of Transformers coupled with the efficient inference ability of RNNs, thereby
forging a model adept at managing auto-regressive text generation and effectively tackling challenges asso-
ciated with long sequence processing and outperforms Transformer-based models like BLOOM and OPT.
Poli et al. (2023) propose Hyena, a sub-quadratic alternative to the attention mechanism, mitigating the
quadratic cost in long sequences. This operator includes two efficient sub-quadratic primitives: an implicit
long convolution and multiplicative element-wise gating of the input. Through this, Hyena facilitates the
development of larger, more efficient convolutional language models for long sequences and outperforms
RWKV and GPT-Neo on SuperGLUE tasks Wang et al. (2019). Lastly, MEGABYTE (Yu et al., 2023)
breaks down long byte sequences into fixed-sized patches akin to tokens, comprising a patch embedder for
encoding, a global module acting as a large autoregressive Transformer for patch representations, and a local
module for predicting bytes within a patch.

3 Data-Centric Methods

3.1 Data Selection

Data selection for LLMs involves carefully selecting the most informative and diverse examples so that the
model can efficiently capture essential patterns and features, accelerating the learning process (Xie et al.,
2023b; Yao et al., 2022a; Santamaría & Axelrod, 2019; Glass et al., 2020). Figure 16 summarizes the latest
data selection techniques for efficient LLM pre-training and fine-tuning.

26

Under review as submission to TMLR

3.1.1 Data Selection for Efficient Pre-Training

Data selection enhances LLMs pre-training efficiency by allowing the model to focus on the most informative
and relevant examples during training. By carefully curating a subset of representative data, the model can
extract essential patterns and features, leading to a more efficient acquisition of generalized knowledge. For
example, SSPT (Glass et al., 2020) is a pre-training task based on the principles of reading comprehension. It
involves selecting answers from contextually relevant text passages, which has shown notable improvements in
performance across various Machine Reading Comprehension (MRC) benchmarks. Yao et al. (2022a) propose
a meta-learning-based method for the selection of linguistically informative sentences which significantly
elevates the quality of machine-generated translations. Xie et al. (2023b) propose DSIR, a data selection
method based on importance re-sampling for both general-purpose and specialized LLMs. It calculates
how important different pieces of data are within a simpler set of features and chooses data based on
these importance calculations. Experimental results demonstrate that DSIR achieves similar performance to
expert curation across 8 different target distributions. In the context of pretraining general-domain models,
DSIR outperforms random selection and heuristic filtering baselines by 2–2.5% on the GLUE benchmark.
Different from DSIR, Xie et al. (2023a) design DoReMi to address the distribution shift between pretraining
and downstream tasks, which is also a critical problem for training data selection.

3.1.2 Data Selection for Efficient Fine-Tuning

Data selection can also boost fine-tuning efficiency since only a curated subset of examples is employed to
refine the model. This approach ensures that the adaptation process is conducted with a focus on the specific
nuances intrinsic to the target domain or task, making the fine-tuning process more efficient. For example,
Ivison et al. (2023) propose to use a few unlabeled examples to retrieve similar labeled ones from a larger
multitask dataset, improving task-specific model training. This method outperforms standard multitask
data sampling for fine-tuning and enhances few-shot fine-tuning, yielding a 2-23% relative improvement
over current models. With the recent success of instruction tuning, many research start focusing on the
selection of instruction data with good quality to fine-tune the LLM. For example, Instruction Mining (Cao
et al., 2023) presents a linear evaluation method to assess data quality in instruction-following tasks. It
highlights the importance of high-quality data, showing that models trained with Instruction Mining-curated
datasets outperform those trained on generic datasets in 42.5% of cases. This underscores the significance of
data quality and lays the groundwork for future improvements in instruction-following model efficacy. TS-
DShapley (Schoch et al., 2023) is introduced to address the computational challenges of applying Shapley-
based data valuation to fine-tuning LLMs. It employs an efficient sampling-based method that aggregates
Shapley values computed from subsets to evaluate the entire training set. Moreover, it incorporates a
value transfer method that leverages information from a simple classifier trained using representations from
the target language model. Low Training Data Instruction Tuning (LTD Instruction Tuning) (Chen et al.,
2023c) challenges the need for large datasets in fine-tuning, showing that less than 0.5% of the original dataset
can effectively train task-specific models without compromising performance. This approach enables more
resource-efficient practices in data-scarce environments, combining selective data strategies with tailored
training protocols for optimal data efficiency. The results suggest that task-specific models can be trained
using less than 0.5% of the original dataset using this method, with a 2% improvement in performance over
those trained on full task-related data. AlpaGasus (Chen et al., 2023e) is a model fine-tuned on a mere
9k high-quality data points, which are meticulously filtered from a larger dataset of 52k. It outperforms
the original model trained on the full dataset and reduces training time by 5.7x, demonstrating the power
of high-quality data in instruction-fine-tuning. LIMA (Zhou et al., 2023a) fine-tunes LLMs with a small,
selected set of examples, showing strong performance and challenging the need for extensive tuning. It
generalizes well to new tasks and, in comparisons, matches or exceedes GPT-4 in 43% of cases, suggesting
that LLMs gain most knowledge in pre-training, requiring minimal instruction tuning.

3.2 Prompt Engineering

Prompt engineering (Liu et al., 2023a) focuses on designing effective inputs (i.e., prompts) to guide LLMs
in generating desired outputs. It enhances inference efficiency by tailoring the input prompts or queries to
better suit the capabilities and nuances of a specific language model. When used for some simple tasks, such

27

Under review as submission to TMLR

P
ro

m
pt

E
ng

in
ee

ri
ng

Few-Shot Prompting

Demonstration Organization

Demonstration Selection

KATE (Liu et al., 2022b), VoteK (Su et al., 2022a), Wang et al. (2023f),
IDS (Qin et al., 2023a), Min et al. (2022b), LENS (Li & Qiu, 2023),
MDL (Wu et al., 2023c), Zhang et al. (2022c) EPR (Rubin et al., 2022),
UDR (Li et al., 2023e), Wang et al. (2023b), Luo et al. (2023)

Demonstration Ordering Lu et al. (2022)

Template Formatting

Instruction Generation
Instruction Induction (Honovich et al., 2022),
Automatic Prompt Engineer (Zhou et al., 2023c), Self-Instruct (Wang et al., 2022f),
OPRO (Yang et al., 2023a), TeGit (Chen et al., 2023j)

Multi-Step Reasoning

Chain-of-Thought (Wei et al., 2022b), Auto-CoT (Zhang et al., 2023g), Self-Ask (Press et al., 2023),
ReAct (Yao et al., 2023b), Least-to-Most Prompting (Zhou et al., 2023b),
Tree-of-Thought (Yao et al., 2023a), CoT-SC (Wang et al., 2022f), Graph of Thoughts (Besta et al., 2023),
Contrastive CoT (Chia et al., 2023), XoT (Ding et al., 2023b)

Parallel Generation Skeleton-of-Thought (Ning et al., 2023)

Prompt Compression
Gisting (Mu et al., 2023), AutoCompressors (Chevalier et al., 2023), PCRL (Jung & Kim, 2023),
ICAE (Ge et al., 2023), Nugget 2D (Qin et al., 2023b), LongLLMLingua (Jiang et al., 2023b)

Prompt Generation AutoPrompt (Shin et al., 2020), TempLM (Zhang et al., 2022b), PromptGen (Zhang et al., 2022d)

Figure 18: Summary of prompt engineering techniques for LLMs.

This food tastes good.
The review is __

Training Data
It is a nice restaurant.

The review is positive.

This t-shirt looks cool.
The review is positive.

The dining room is dirty.
The review is negative.

embedding

generation

select
Input

It is a nice restaurant.
The review is positive.
The dining room is dirty.
The review is negative.
This t-shirt looks cool.
The review is positive.

Is the review positive or negative?

It is a nice restaurant. The review is positive.

The dining room is dirty. The review is negative.

This t-shirt looks cool. The review is positive.

Is the review positive or negative?
It is a nice restaurant. The sentence contains a positive

word "nice". The review is positive.
The dining room is dirty. The sentence contains a negative

word "dirty".The review is negative.
This t-shirt looks cool. The sentence contains a positive

word "cool". The review is positive.

assist

as
si
st

LLMs

This food tastes good.
The review is positive

Output

(a) Demonstration Selection (b) Demonstration Ordering

(c) Instruction Generation(d) Multi-Step Reasoning

LMs

Figure 19: Illustrations of few-shot prompting techniques for LLMs.

as semantic classification, prompt engineering can even substitute fine-tuning to achieve high accuracy (Liu
et al., 2022a). As summarized in Figure 18, prompt engineering techniques can be grouped into few-shot
prompting, prompt compression, and prompt generation.

3.2.1 Few-Shot Prompting

Few-shot prompting involves providing a LLM with a limited set of examples (i.e., demonstrations) to steer
its understanding to a task it is required to execute (Wei et al., 2022a). These demonstrations are selected
from the LLM’s training corpus based on their similarity to the test example, and the LLM is expected to use
the knowledge gained from these similar demonstrations to make the correct prediction (Dong et al., 2023).
Few-shot prompting provides an efficient mechanism to use LLM by guiding the LLM to perform a wide
variety of tasks without the need for additional training or fine-tuning. Furthermore, an effective few-shot
prompting approach can make the created prompt concise enough to allow LLMs to quickly adjust to the task
in high accuracy with only a slight increase of extra context, thus significantly improving inference speed.
As illustrated in Figure 19, few-shot prompting techniques can generally be grouped into demonstration
selection, demonstration ordering, instruction generation, and multi-step reasoning.

28

Under review as submission to TMLR

Demonstration Organization. Demonstration organization refers to organizing the demonstrations in an
appropriate way so as to form a suitable prompt for inference. Demonstration organization has a significant
impact on the inference speed. Improper organization may result in the processing of a considerable amount of
unnecessary information, leading to significant slowdown. The main challenges of demonstration organization
come from two perspectives: demonstration selection and demonstration ordering.

• Demonstration Selection. Demonstration selection aims to choose the good examples for few-
shot prompting (Dong et al., 2023). In order to generate a satisfactory result, a good selection of
demonstrations may only require a few number of demonstrations to be used for the prompt, thus
making the prompt concise and straightforward for a more efficient inference. Existing demonstration
selection techniques can be grouped into unsupervised methods (Liu et al., 2022b; Su et al., 2022a;
Wang et al., 2023f; Qin et al., 2023a; Min et al., 2022b; Li & Qiu, 2023; Wu et al., 2023c; Zhang
et al., 2022c) and supervised methods (Rubin et al., 2022; Li et al., 2023e; Wang et al., 2023b; Luo
et al., 2023). Unsupervised methods aim to select the nearest examples from the training set using
a predefined similarity function, such as L2 distance, cosine distance, and the minimum description
length (MDL) (Wu et al., 2023c). For example, KATE (Liu et al., 2022b) is an unsupervised
selection method that directly uses the nearest neighbors of a given test sample as the corresponding
demonstrations. VoteK (Su et al., 2022a) is an improved version of KATE to resolve its limitation
that requires a large set of examples to achieve good performance. Unlike KATE, VoteK increases
the diversity of the demonstrations by penalizing examples similar to those already selected. In
comparison, supervised methods require training a domain-specific retriever from the training set
and using it for demonstration selection. For example, EPR (Rubin et al., 2022) is trained to
select demonstrations from a small set of candidates initialized by the unsupervised retriever such as
BM25 from the training corpus. UDR (Li et al., 2023e) further enhances EPR by adopting a unified
demonstration retriever to unify the demonstration selection across different tasks. Compared to
unsupervised methods, supervised methods often lead to a more satisfying generation result but
require frequent adjustment of the retriever for handling the out-of-domain data, making them less
efficient for inference.

• Demonstration Ordering. After selecting representative samples from the training set, the next
step is ordering these samples in the prompt. The order of the demonstrations also has a significant
impact on the performance of the model. Therefore, selecting the right order of demonstrations
can help the model quickly reach a good generation quality with fewer samples, thus improving
the inference efficiency. To date, only a few studies have delved into this area. For example, Liu
et al. (2022b) suggest arranging demonstrations based on their distance from the input, placing the
closest demonstration furthest to the right. Lu et al. (2022) propose to develop both global and
local entropy metrics and use the entropy metrics to set up the demonstration order.

Template Formatting. Template formatting aims to design a suitable template to form the prompt. A
good template typically compiles all the information needed by LLMs into a brief statement, making the
prompt and the entire input context as succinct as possible, thus guaranteeing a higher inference efficiency.
Template formatting design can be divided into two parts: instruction generation and multi-step reasoning.

• Instruction Generation. The instruction of the template refers to a short description of the task.
By adding instructions to the prompt, LLMs can quickly understand the context and the task they
are currently performing, and thus may require fewer demonstrations to create a desirable prompt.
The performance of a given task is highly affected by the quality of the instructions. The instructions
vary not only between different datasets for the same task but also between different models. Unlike
demonstrations that are usually included in traditional datasets, the generation of instructions is
heavily dependent on human efforts. To enhance the efficiency of instruction generation, automatic
instruction generation techniques have been proposed. For example, Instruction Induction (Honovich
et al., 2022) and Automatic Prompt Engineer (Zhou et al., 2023c) have demonstrated that LLMs can
generate task instructions. Wang et al. (2022f) propose Self-Instruct, an approach that allows LLMs
to align with self-generated instructions, highlighting their inherent adaptability. Experimental

29

Under review as submission to TMLR

results show that it demonstrate a 33% absolute improvement over the original model when applied
on vanilla GPT3. Yang et al. (2023a) also discover that LLMs can be treated as an optimizer to
iteratively generate better instructions for the target LLM and have applied this technique to various
LLMs. Experiments demonstrate that the best prompts optimized by this method outperform
human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks. Chen
et al. (2023j) develop TeGit for training language models as task designers, which can automatically
generate inputs and outputs together with high-quality instructions to better filter the noise based
on a given human-written text for fine-tuning LLMs. Despite the promise of automatic instruction
generation methods, their complexity is still a major bottleneck for their real-world adoption.

• Multi-Step Reasoning. Multi-step reasoning (Huang & Chang, 2023) refers to guiding the LLMs
to produce a sequence of intermediate steps before outputting the final answer can greatly improve
the quality of the generation. Compared to fine-tuning, conducting specific task reasoning directly
through this way is a more efficient approach. This technique is also referred to as Chain-of-Thought
(CoT) prompting (Wei et al., 2022b). Rather than repeatedly choosing a few exemplary examples to
make the context and task more understandable to the LLMs, CoT only concentrates on a limited
number and adds the details for contemplation into the context, making the prompt more compre-
hensive and effective and guaranteeing a more efficient inference. However, despite the advantages of
CoT, it is still difficult to ensure the accuracy of every intermediate step (Dong et al., 2023). Given
that, many techniques have been proposed to address this issue. For example, Auto-CoT (Zhang
et al., 2023g) proposes to generate the CoT step by step from LLMs. Self-Ask (Press et al., 2023) in-
corporates the self-generated question of each step into the CoT. ReAct (Yao et al., 2023b) performs
dynamic reasoning to create, maintain, and adjust high-level plans for acting, while interacting with
external environments to incorporate additional information into reasoning. Least-to-Most Prompt-
ing (Zhou et al., 2023b) is a new milestone in CoT that breaks down the complex question into
smaller ones and answers them iteratively within the context of former questions and answers. Ex-
periments show that is used with least-to-most prompting can even boost the performance of GPT-3
code-davinci-002 model with chain-of-thought prompting from 16% accuracy to at least 99% using
just 14 exemplars. Tree-of-Thought (ToT) (Yao et al., 2023a) expends CoT to include exploration
over coherent units of text and deliberates decision-making processes. Experiments show that TOT
outperforms GPT-4 with chain-of-thought prompting in Game of 24 benchmark. CoT-SC (Wang
et al., 2022f) introduces a novel decoding approach called “self-consistency” to replace the simplistic
greedy decoding in CoT prompting. It starts by sampling various reasoning paths instead of just the
greedy one and then determines the most consistent answer by considering all the sampled paths.
Graph of Thoughts (GoT) (Besta et al., 2023) represent information produced by an LLM as a
generic graph, with “LLM thoughts” as vertices and edges indicating dependencies between these
vertices.Experiments demonstrate that GOT increasing the quality of sorting by 62% over ToT,
while simultaneously reducing costs by over 31%. Contrastive CoT (Chia et al., 2023) proposes
contrastive chain of thought to enhance language model reasoning by providing both valid and in-
valid reasoning demonstrations. Lastly, XoT (Ding et al., 2023b) utilizes pretrained reinforcement
learning and Monte Carlo Tree Search (MCTS) to integrate external domain knowledge into LLMs’
thought processes, thereby boosting their ability to efficiently generalize to new, unseen problems.

• Parallel Generation. Parallel generation accelerates inference by guiding LLMs to first generate
an answer template, then complete it simultaneously through parallel API calls or batch decoding.
Skeleton of Thought (SoT) (Ning et al., 2023) proposes a method that prompts the LLM to organize
the output and parallelize the generation of different segments, thus making the generation workload
more parallelizable. Therefore, it can improve hardware utilization and provides speed-ups across
LLMs. SoT reveals the possibility of exploiting data-level organization to benefit efficiency.

3.2.2 Prompt Compression

Prompt compression (Figure 20(a)) accelerates the processing of LLM inputs through either condensing
lengthy prompt inputs or learning compact prompt representations. Mu et al. (2023) propose to train LLMs

30

Under review as submission to TMLR

LMsCompress

A B C Test

A' C'B' Test

Demonstrations Input
Test
Input

A' Test
LMs

Generate

(a) Prompt Compression (b) Prompt Generation

Figure 20: Illustrations of Prompt Compression (a) and Prompt Generation (b) for LLMs.

to distill prompts into a more concise set of tokens, referred to as gist tokens. These gist tokens encapsulate
the knowledge of the original prompt and can be stored for future use. In doing so, it is able to compress
prompts by up to 26 times, leading to a reduction in floating-point operations per second (FLOPs) by up
to 40%. Chevalier et al. (2023) propose AutoCompressors to condense long textual contexts into compact
vectors, known as summary vectors, which can then be used as soft prompts for the language model. These
summary vectors extend the model’s context window, allowing it to handle longer documents with much
less computational cost. AutoCompressors can utilize long contexts to improve perplexity of both fine-tuned
OPT and LLaMA-2 on sequences of up to 30,720 tokens. Jung & Kim (2023) propose Prompt Compression
with Reinforcement Learning (PCRL) that employs a policy network to directly edit prompts, aiming to
reduce token count while preserving performance. It achieves an average reduction of 24.6% in token count
across various instruction prompts. Ge et al. (2023) propose In-context Autoencoder (ICAE), which consists
of a learnable encoder and a fixed decoder. The encoder compresses a long context into a limited number of
memory slots, which the target language model can then condition on. With such design, ICAE is able to
obtain 4x context compression. Nugget 2D (Qin et al., 2023b) represents the historical context as compact
“nuggets” that are trained to enable reconstruction. Furthermore, it has the flexibility to be initialized using
readily available models like LLaMA. Nugget 2D compresses context at a 20x compression ratio with a BLEU
score of 98% for reconstruction, achieving nearly lossless encoding. Lastly, LongLLMLingua (Jiang et al.,
2023b) introduces a prompt compression technique containing question-aware coarse-to-fine compression,
document reordering, dynamic compression ratios, and post-compression sub-sequence recovery to enhance
LLMs’ key information perception. Experimental results show that LongLLMLingua achieves 17.1% better
performance over the original prompt with 4 times fewer tokens as input to GPT-3.5-Turbo.

3.2.3 Prompt Generation

Prompt generation (Figure 20(b)) enhances the efficiency by automatically creating effective prompts that
guide the model in generating specific and relevant responses instead of manual annotated data. Auto-
Prompt (Shin et al., 2020) proposes an automated method to generate prompts for a diverse set of tasks
based on a gradient-guided search. It underscores the significance of human-written text in refining the
quality and authenticity of data, emphasizing its pivotal role in optimizing LLM performance. Experiments
demonstrate that AutoPrompt outperforms manually created prompts on the LAMA benchmark in eliciting
more precise factual knowledge from LLM. Additionally, it is shown that LLM can serve as relation extractors
more efficiently compared to supervised relation extraction models. TempLM (Zhang et al., 2022b) proposes
to combine generative and template-based methodologies to distill LLMs into template-based generators,
offering a harmonized solution for data-to-text tasks. TempLM not only reduces a finetuned BART model’s
unfaithfulness rate from 83% to 0%, but also substantially improve upon human-written ones in BERTScore
in a human study. PromptGen (Zhang et al., 2022d) is the first work considering dynamic prompt generation
for knowledge probing, based on a pre-trained LLMs. It can automatically generate prompts conditional on
the input sentence and outperforms AutoPrompt on the on the LAMA benchmark.

31

Under review as submission to TMLR

Table 2: Comparison of LLM frameworks.

Framework Training Fine-
Tuning

Inference Features

DeepSpeed ¥ ¥ ¥ Data Parallelism, Model Parallelism, Pipeline Paral-
lelism, Prompt Batching, Quantisation, Kernel Opti-
mizations, Compression, Mixture of Experts.

Megatron ¥ ¥ ¥ Data Parallelism, Model Parallelism, Pipeline Paral-
lelism, Prompt Batching, Automatic Mixed precision,
Selective activation Recomputation

Alpa ¥ ¥ ¥ Data Parallelism, Model Parallelism, Pipeline Par-
allelism, Operator Parallelism, Automated Model-
Parallel Training, Prompt Batching

Colossal AI ¥ ¥ ¥ Data Parallelism, Model Parallelism, Pipeline Paral-
lelism, Mixed Precision Training, Gradient accumu-
lation, heterogeneous Distributed Training, Prompt
Batching, Quantization

FairScale ¥ ¥ ¥ Data Parallelism, Model Parallelism, Pipeline Paral-
lelism, Activation Checkpointing, Model Offloading,
Model scaling, Adascale Optimization

Pax ¥ ¥ ¥ Data Parallelism, Model Parallelism, Kernel Opti-
mization

Composer ¥ ¥ ¥ Fully Sharded Data Parallelism, Elastic sharded
checkpointing, Flash Attention

vLLM q q ¥ Data Parallelism, Model Parallelism, Tensor Paralel-
lism, Efficient management via PagedAttention, Op-
timized CUDA kernels, Dynamic Batching, Quantiza-
tion

OpenLLM q ¥ ¥ Distributed Finetuning and Inference, Integration
with BentoML, LangChain, and Transformers Agents,
Prometheus Metrics, Token Streaming

Ray LLM q q ¥ Distributed Inference, Integration with Alpa, Prompt
Batching, Quantization, Prometheus Metrics

MLC LLM q q ¥ Distributed Inference, Compiler Acceleration,
Prompt Batching, Quantization

Sax q q ¥ Distribute Inference, Serves PaxML, JAX, and Py-
Torch models, Slice Serving, Prometheus Metrics

Mosec q q ¥ Distribute Inference, Dynamic Batching, Rust-based
Task Coordinator, Prometheus Metrics

LLM Foundry q q ¥ Distribute Inference, Dynamic Batching, Prompt
Batching

32

Under review as submission to TMLR

4 LLM Frameworks

DeepSpeed. Developed by Microsoft, DeepSpeed (Rasley et al., 2020) is an integrated framework for
both training and deploying LLMs. It has been used to train large models like Megatron-Turing NLG
530B (Smith et al., 2022) (in a joint effort with Nvidia Megatron framework) and BLOOM (Workshop
et al., 2023). Within this framework, DeepSpeed-Inference is the foundational library. A pivotal feature
of this module is ZeRO-Inference (Rajbhandari et al., 2020; 2021b), an optimization technique created to
address GPU memory constraints for large model inference. ZeRO-Inference distributes model states across
multiple GPUs and CPUs, providing an approach to managing the memory constraints of individual nodes.
Another aspect of DeepSpeed-Inference is its deep fusion mechanism, which allows for the fusion of operations
without the necessity for global synchronization by tiling computations across iteration space dimensions
(Ren et al., 2021; Tang et al., 2021; Li et al., 2021; Lu et al., 2023). Building on this, the DeepSpeed
Model Implementations for Inference (DeepSpeed MII) module provides strategies for the deployment and
management of popular deep learning models. Emphasizing performance, flexibility, and cost-efficiency,
DeepSpeed MII incorporates advanced optimization techniques to improve model inference (Rajbhandari
et al., 2021b; Yao et al., 2022b; Wu et al., 2023a). Furthermore, the introduction of DeepSpeed-Chat (Yao
et al., 2023d) adds chat support to the ecosystem. This module focuses on training chatbot models across
different scales, integrating techniques from Reinforcement Learning from Human Feedback (RLHF) (Griffith
et al., 2013) with the DeepSpeed training system. Notably, its integration of the ZeRO-Offload optimizer
(Ren et al., 2021) facilitates training on both CPUs and GPUs, irrespective of their memory capacities.

Megatron. Megatron (Shoeybi et al., 2019) constitutes Nvidia’s efforts to streamline training and deploy-
ment of LLMs such as GPT (Radford et al., 2019) and T5 (Raffel et al., 2020). It is the underlying framework
used for Nvidia’s Megatron models (Shoeybi et al., 2019; Narayanan et al., 2021; Korthikanti et al., 2023).
Megatron encompasses various specialized tools and frameworks for Nvidia GPUs. Central to Megatron’s
design is the strategic decomposition of the model’s tensor operations, distributed across multiple GPUs, to
optimize both processing speed and memory utilization, thus enhancing training throughput without com-
promising model fidelity (Shoeybi et al., 2019). Megatron also uses FasterTransformer (NVIDIA, 2023) for
optimizing the inference process for large Transformer models. Furthermore, FasterTransformer is used for
handling varying precision modes like FP16 and INT8, catering to diverse operational needs. The system
also incorporates algorithms tailored to specific GPU architectures like Turing and Volta, emphasizing per-
formance optimization (NVIDIA, 2023). Finally, Megatron uses TensorRT-LLM which provides developers
with advanced tools and optimizations specifically tailored for LLMs, aiming to significantly reduce latency
and enhance throughput for real-time applications. Notably, TensorRT-LLM integrates optimized kernels
from FasterTransformer (Timonin et al., 2022) and employs tensor parallelism, facilitating efficient inference
at scale across multiple GPUs and servers without necessitating developer intervention or model changes.

Alpa. Alpa (Zheng et al., 2022) is a library for training and serving large-scale neural networks. Alpa
strategically addresses both inter- and intra-operator parallelism, aiming for a holistic enhancement in dis-
tributed deep learning performance. It has example implementations of GPT-2 (Radford et al., 2019),
BLOOM (Workshop et al., 2023), OPT (Zhang et al., 2022a), CodeGen (Nijkamp et al., 2022) among
others. At the core of Alpa’s methodology is its automatic parallelization. By deploying an auto-tuning
framework, Alpa dynamically identifies the optimal parallelism strategy tailored to specific deep learning
models and hardware configurations. Furthermore, Alpa showcases an integrated design that combines both
data and model parallelism (Zhuang et al., 2023b; Li et al., 2023h). By doing so, Alpa harnesses the collec-
tive benefits of these parallelism techniques, leading to optimized resource utilization and enhanced training
throughput during serving.

ColossalAI. ColossalAI (Li et al., 2023b) is a framework tailored to address the challenges of large-scale
distributed training (Wang et al., 2021a). ColossalAI provides a unified solution that harmonizes scalabil-
ity, efficiency, and versatility. It has implementations for LLaMA (Touvron et al., 2023b), GPT-3 (Brown
et al., 2020), GPT-2 (Radford et al., 2019), BERT (Devlin et al., 2019), PaLM, OPT (Zhang et al., 2022a),
ViT (Dosovitskiy et al., 2021). Central to Colossal-AI’s design is its emphasis on holistic integration. By
amalgamating various components of deep learning pipelines, from data preprocessing to model training and
validation, ColossalAI provides a streamlined platform that reduces fragmentation and enhances workflow

33

Under review as submission to TMLR

efficiency (Bian et al., 2021). This integrated approach mitigates the complexities often associated with
orchestrating large-scale training in distributed environments. Furthermore, recognizing the dynamic land-
scape of deep learning research and applications, the system is architected to be inherently modular (Chen
et al., 2016). In addition, the framework integrates several other advanced optimization techniques (Bian
et al., 2021; Li et al., 2023c; Wang et al., 2022a; Fang et al., 2022; 2023; Liu et al., 2023d) and features
like quantization, gradient accumulation, and mixed precision. By leveraging state-of-the-art algorithms and
methodologies, Colossal-AI seeks to optimize both computational and communication overheads inherent in
parallel training, leading to reduced training times and enhanced model performance.

FairScale. Developed by Meta, FairScale (FairScale authors, 2021) is an extension library to PyTorch,
dedicated to high-performance and large-scale training initiatives. The ethos of FairScale is rooted in three
fundamental principles: usability, which emphasizes the ease of understanding and utilization of FairScale’s
APIs aiming to minimize cognitive overhead for users; modularity, which endorses a seamless amalgamation
of multiple FairScale APIs within the users’ training loops, thus promoting flexibility; and performance,
which is centered around delivering optimal scaling and efficiency through FairScale’s APIs. Additionally,
FairScale provides support for Fully Sharded Data Parallel (FSDP) as the preferred method for scaling the
training operations of extensive neural networks. It is therefore a powerful tool for distributed training and
inference. Additionally, it has key features for training in resource-constrained systems providing support
for activation checkpointing, efficient model offloading, and scaling.

Pax. Developed by Google, Pax (Google, 2023a) is a JAX-based efficient distributed training framework.
Pax has been used to train PaLM-2 (Anil et al., 2023) and Bard (Hsiao et al., 2023). It targets scalability
and has reference examples for large model training, including across modalities (such as text, vision, speech,
etc.). It is heavily integrated with JAX and uses many libraries in the JAX ecosystem. Pax contains many
key components, including SeqIO to handle sequential data processing, Optax for optimization, Fiddle for
configuration, Orbax for checkpointing, PyGLove for automatic differentiation, and Flax for creating high-
performance neural networks.

Composer. Designed by Mosaic ML, Composer (MosaicML, 2023a) is aimed at making the training of
neural networks faster and more efficient. It has been used to train Mosaic ML’s MPT 7B and MPT 30B
models and Replit’s Code V-1.5 3B. The library is built on top of PyTorch and provides a collection of
speedup methods that users can incorporate into their own training loops or use with the Composer trainer
for a better experience. It supports FSDP for efficient parallelism, elastic shared checkpointing for robust
intermittent training, and a dataset streaming implementation allowing to download datasets from cloud
blob storage on the fly during training. Composer is therefore designed to be versatile with a Functional
API for integrating methods directly into its training loops, as well as a Trainer API which automatically
implements a PyTorch-based training loop, reducing the workload for ML developers.

vLLM. vLLM (Kwon et al., 2023) represents a methodological shift in the approach to serving LLMs.
Central to vLLM’s design is PagedAttention, a mechanism that segments the attention key and value (KV)
cache for a set number of tokens. Unlike contiguous space storage, PagedAttention’s blocks for the KV cache
are stored flexibly, akin to the virtual memory management. This facilitates memory sharing at a block
level across various sequences tied to the same request or even different requests, thus enhancing memory
management efficiency in handling attention mechanisms. It also allows on-demand buffer allocation, while
also eliminating external fragmentation as the blocks are uniformly sized. Furthermore, vLLM incorporates
an adaptive loading technique. This technique, rooted in heuristic methodologies, discerns the number of
pages to be loaded into memory based on the input. Complementing this, vLLM integrates a parameter
compression strategy as well. By storing model parameters in a compressed state and decompressing them
during real-time serving, vLLM further optimizes memory usage. Additionally, vLLM supports state-of-the-
art quantization techniques and optimized CUDA kernels supporting fast model execution. The library also
added support for AMD’s ROCm GPUs. vLLM is therefore, not only a useful tool for distributed training,
it can also handle efficient high-throughput model serving workloads.

OpenLLM. OpenLLM (Pham et al., 2023) delineates a comprehensive approach to the deployment and
operation of LLMs within production environments. Anchored within the BentoML ecosystem, OpenLLM
is crafted to bridge the gap between the training of LLMs and their seamless integration into real-world

34

Under review as submission to TMLR

applications. A defining characteristic of OpenLLM is its emphasis on modularity and scalability. Recog-
nizing the diverse needs of production environments, OpenLLM promotes a component-based architecture.
Further enhancing its value proposition, OpenLLM integrates advanced caching mechanisms. By leveraging
these mechanisms, the system aims to optimize repetitive queries, leading to reduced operational costs and
enhanced response times. Additionally, OpenLLM’s design incorporates robust monitoring and logging tools,
ensuring that operational insights are readily available for performance tuning and troubleshooting.

Ray-LLM. Ray-LLM (Project, 2023) represents a strategic fusion of LLMs with the Ray ecosystem (Moritz
et al., 2018), aiming to optimize the deployment and operation of LLMs. Situated at the intersection of
cutting-edge model architecture and scalable infrastructure, Ray-LLM seeks to redefine the paradigms of
LLM utilization. At the core of Ray-LLM’s approach is the leveraging of Ray’s inherent distributed comput-
ing capabilities. Recognizing the computational demands of LLMs, Ray-LLM integrates Ray’s distributed
task scheduling and execution mechanisms, ensuring that LLM tasks are efficiently distributed across avail-
able resources. This seamless integration potentially leads to enhanced model performance, reduced latency,
and optimized resource utilization. Since it is built on top of the Ray Ecosystem, Ray-LLM is a good library
to quickly prototype, train and deploy large models on clusters. It also comes with advanced monitoring
support as well, enabling its usage in serving.

MLC-LLM. MLC-LLM (team, 2023) aspires to empower individuals to develop, optimize, and deploy AI
models on a diverse array of devices. Central to MLC-LLM’s approach is the concept of device-native AI.
Recognizing the vast spectrum of devices in use today, from high-end servers to smartphones, MLC-LLM
compiles models and deploys them in a process that is inherently tailored to the specific capabilities and
constraints of each device (Chen et al., 2018; Shao et al., 2022; Feng et al., 2023). This device-native focus
ensures that AI models are not only efficient but also highly optimized for the environments in which they
operate. With its strong focus on compiling and optimizing models for prototyping on edge devices, MLC-
LLM is a powerful tool for deploying on-device AI models and exhibits state-of-the-art performance in terms
of throughput across a range of devices.

Sax. Sax (Google, 2023b) is a platform designed by Google for deploying Pax, JAX, and PyTorch models
for inference tasks. Within Sax, there is a unit referred to as Sax cell (or Sax cluster) thatl is made up of
an administrative server coupled with multiple model servers. The role of the admin server is multifaceted:
it monitors the model servers, allocates published models to these servers for inference, and guides clients
in finding the appropriate model server for specific published models. Sax is essentially complementary to
the Pax framework and while Pax focuses on massively distributed workloads, Sax is geared toward model
serving.

Mosec. Mosec (Yang et al., 2021) is designed for serving large deep learning models particularly in cloud
environments. It is built to streamline the serving of machine learning models into backend services and
microservices. Key features include high performance due to Rust-built web layer and task coordination,
easy-to-use Python interface, dynamic batching, pipelined stages for handling mixed workloads, and cloud-
friendliness with model warmup, graceful shutdown, and Prometheus monitoring metrics, making it easily
manageable by Kubernetes or other container orchestration systems. Mosec is centered around cloud ecosys-
tems and is well suited for serving models efficiently with its web layer, allowing developers to focus on model
optimization and backend logic.

LLM Foundry. LLM Foundry (MosaicML, 2023b) is a library for finetuning, evaluating, and deploying
LLMs for inference with Composer and the MosaicML platform. It supports distributed inference, dynamic
batching, and prompt batching for efficient deployment. Similar to its complimentary training framework
Composer, LLM Foundry is designed to be easy to use, efficient, and flexible, aimed at enabling rapid exper-
imentation with the latest techniques in LLMs. It also provides straightforward interfaces to Mosaic’s Pre-
trained Transformers (MPT) (GPT-style models with built-in support for features like FlashAttention (Dao
et al., 2022) and ALiBi (Press et al., 2022)). It is complementary to MosaicML’s Composer framework and
while Composer focuses on distributed training, LLM Foundry provides support for deploying those models
and enabling rapid experimentation with the latest techniques.

35

Under review as submission to TMLR

5 Concluding Remarks

In this survey, we provide a systematic review of efficient LLMs, an important area of research aimed at
democratizing LLMs. We start with motivating the necessity for efficient LLMs. Guided by a taxonomy, we
review algorithm-level and system-level efficient techniques for LLMs from model-centric and data-centric
perspectives respectively. Furthermore, we review LLM frameworks with specific optimizations and features
crucial for efficient LLMs. We believe that efficiency will play an increasingly important role in LLMs and
LLMs-oriented systems. We hope this survey could enable researchers and practitioners to quickly get started
in this field and act as a catalyst to inspire new research on efficient LLMs.

References
Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu Geist, and

Olivier Bachem. Generalized knowledge distillation for auto-regressive language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
3zKtaqxLhW.

Arash Ahmadian, Saurabh Dash, Hongyu Chen, Bharat Venkitesh, Stephen Gou, Phil Blunsom, Ah-
met Üstün, and Sara Hooker. Intriguing properties of quantization at scale, 2023, arXiv preprint
arXiv:2305.19268. URL http://arxiv.org/abs/2305.19268.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sang-
hai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints, 2023, arXiv
preprint arXiv:2305.13245. URL http://arxiv.org/abs/2305.13245.

Silas Alberti, Niclas Dern, Laura Thesing, and Gitta Kutyniok. Sumformer: Universal approximation for
efficient transformers, 2023, arXiv preprint arXiv:2307.02301. URL http://arxiv.org/abs/2307.02301.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, and Yuxiong He. Deepspeed-inference: En-
abling efficient inference of transformer models at unprecedented scale. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’22, Dallas, Texas,
2022. IEEE Press. ISBN 9784665454445.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hofmann.
Dynamic context pruning for efficient and interpretable autoregressive transformers, 2023, arXiv preprint
arXiv:2305.15805. URL http://arxiv.org/abs/2305.15805.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose
Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization in large
language models. Advances in Neural Information Processing Systems, 35:38546–38556, 2022.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey,
Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson,
Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Jun-
whan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks,
Michele Catasta, Yong Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clé-
ment Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer,
Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lu-
cas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey
Hui, Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy,
Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li,
YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni,
Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric
Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope, Siyuan
Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar

36

https://openreview.net/forum?id=3zKtaqxLhW
https://openreview.net/forum?id=3zKtaqxLhW
http://arxiv.org/abs/2305.19268
http://arxiv.org/abs/2305.13245
http://arxiv.org/abs/2307.02301
http://arxiv.org/abs/2305.15805

Under review as submission to TMLR

Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha
Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John
Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and Yonghui Wu. Palm 2 technical report,
2023, arXiv preprint arXiv:2305.10403. URL http://arxiv.org/abs/2305.10403.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin,
Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman, Xian Li, Shuohui Chen, Halil
Akin, Mandeep Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian O’Horo, Jeff Wang, Luke
Zettlemoyer, Mona Diab, Zornitsa Kozareva, and Ves Stoyanov. Efficient large scale language modeling
with mixtures of experts, 2022, arXiv preprint arXiv:2112.10684. URL http://arxiv.org/abs/2112.
10684.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian McAuley.
Rezero is all you need: fast convergence at large depth. In Cassio de Campos and Marloes H. Maathuis
(eds.), Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume
161 of Proceedings of Machine Learning Research, pp. 1352–1361, online, 27–30 Jul 2021. PMLR. URL
https://proceedings.mlr.press/v161/bachlechner21a.html.

Trapit Bansal, Salaheddin Alzubi, Tong Wang, Jay-Yoon Lee, and Andrew McCallum. Meta-adapters:
Parameter efficient few-shot fine-tuning through meta-learning. In First Conference on Automated Machine
Learning (Main Track), pp. –, Baltimore, US, 2022. PMLR. URL https://openreview.net/forum?id=
BCGNf-prLg5.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer, 2020,
arXiv preprint arXiv:2004.05150. URL http://arxiv.org/abs/2004.05150.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew R. Gormley. Unlimiformer: Long-range trans-
formers with unlimited length input, 2023, arXiv preprint arXiv:2305.01625. URL http://arxiv.org/
abs/2305.01625.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph of
thoughts: Solving elaborate problems with large language models, 2023, arXiv preprint arXiv:2308.09687.
URL http://arxiv.org/abs/2308.09687.

Zhengda Bian, Qifan Xu, Boxiang Wang, and Yang You. Maximizing parallelism in distributed training for
huge neural networks, 2021, arXiv preprint arXiv:2105.14450. URL http://arxiv.org/abs/2105.14450.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, Usvsn Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-NeoX-20B: An open-source
autoregressive language model. In Angela Fan, Suzana Ilic, Thomas Wolf, and Matthias Gallé (eds.),
Proceedings of BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Lan-
guage Models, pp. 95–136, virtual+Dublin, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.bigscience-1.9. URL https://aclanthology.org/2022.bigscience-1.9.

bloc97. Ntk-aware scaled rope allows llama models to have extended (8k+) context size without any
fine-tuning and minimal perplexity degradation. https://www.reddit.com/r/LocalLLaMA/comments/
14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/, Dec 2023. Accessed: 2023-12-19.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the chal-
lenges of efficient transformer quantization. In Marie-Francine Moens, Xuanjing Huang, Lucia Spe-
cia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 7947–7969, Online and Punta Cana, Dominican Republic, Novem-
ber 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.627. URL
https://aclanthology.org/2021.emnlp-main.627.

37

http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2112.10684
http://arxiv.org/abs/2112.10684
https://proceedings.mlr.press/v161/bachlechner21a.html
https://openreview.net/forum?id=BCGNf-prLg5
https://openreview.net/forum?id=BCGNf-prLg5
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2305.01625
http://arxiv.org/abs/2305.01625
http://arxiv.org/abs/2308.09687
http://arxiv.org/abs/2105.14450
https://aclanthology.org/2022.bigscience-1.9
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://aclanthology.org/2021.emnlp-main.627

Under review as submission to TMLR

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. Advances in Neural
Information Processing Systems, 35:11079–11091, 2022.

Neil Burgess, Jelena Milanovic, Nigel Stephens, Konstantinos Monachopoulos, and David Mansell. Bfloat16
processing for neural networks. In 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), pp.
88–91, Kyoto, 2019. IEEE Press. doi: 10.1109/ARITH.2019.00022.

Lucas Caccia, Edoardo Ponti, Zhan Su, Matheus Pereira, Nicolas Le Roux, and Alessandro Sordoni. Multi-
head adapter routing for cross-task generalization, 2023, arXiv preprint arXiv:2211.03831. URL http:
//arxiv.org/abs/2211.03831.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, and Tri Dao. Medusa: Simple framework for
accelerating llm generation with multiple decoding heads, 2023.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: When data mining meets large
language model finetuning, 2023, arXiv preprint arXiv:2307.06290. URL http://arxiv.org/abs/2307.
06290.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. arXiv preprint
arXiv:2307.03109, 2023.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization of large
language models with guarantees, 2023, arXiv preprint arXiv:2307.13304. URL http://arxiv.org/abs/
2307.13304.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying sparse
and low-rank attention. Advances in Neural Information Processing Systems, 34:17413–17426, 2021a.

Chang Chen, Min Li, Zhihua Wu, Dianhai Yu, and Chao Yang. Ta-moe: Topology-aware large scale mixture-
of-expert training. Advances in Neural Information Processing Systems, 35:22173–22186, 2022a.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023a, arXiv preprint
arXiv:2302.01318. URL http://arxiv.org/abs/2302.01318.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen, Zhiyuan
Liu, and Qun Liu. bert2bert: Towards reusable pretrained language models, 2021b, arXiv preprint
arXiv:2110.07143. URL http://arxiv.org/abs/2110.07143.

Guanzheng Chen, Xin Li, Zaiqiao Meng, Shangsong Liang, and Lidong Bing. Clex: Continuous length
extrapolation for large language models, 2023b, arXiv preprint arXiv:2310.16450. URL http://arxiv.
org/abs/2310.16450.

Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xiaomeng Hu, Xuetao Ma, Yifan Yanggong, and Junbo
Zhao. Maybe only 0.5% data is needed: A preliminary exploration of low training data instruction tuning,
2023c, arXiv preprint arXiv:2305.09246. URL http://arxiv.org/abs/2305.09246.

38

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2211.03831
http://arxiv.org/abs/2211.03831
http://arxiv.org/abs/2307.06290
http://arxiv.org/abs/2307.06290
http://arxiv.org/abs/2307.13304
http://arxiv.org/abs/2307.13304
http://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2110.07143
http://arxiv.org/abs/2310.16450
http://arxiv.org/abs/2310.16450
http://arxiv.org/abs/2305.09246

Under review as submission to TMLR

Howard Chen, Ramakanth Pasunuru, Jason Weston, and Asli Celikyilmaz. Walking down the memory
maze: Beyond context limit through interactive reading, 2023d, arXiv preprint arXiv:2310.05029. URL
http://arxiv.org/abs/2310.05029.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin. Alpagasus: Training a better alpaca with fewer data,
2023e, arXiv preprint arXiv:2307.08701. URL http://arxiv.org/abs/2307.08701.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021c, arXiv preprint arXiv:2107.03374.
URL http://arxiv.org/abs/2107.03374.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation, 2023f, arXiv preprint arXiv:2306.15595. URL
http://arxiv.org/abs/2306.15595.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory
cost, 2016, arXiv preprint arXiv:1604.06174. URL http://arxiv.org/abs/1604.06174.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: An automated
End-to-End optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pp. 578–594, Carlsbad, CA, October 2018. USENIX Association.
ISBN 978-1-939133-08-3. URL https://www.usenix.org/conference/osdi18/presentation/chen.

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov, and Luming Liang. Lorashear: Efficient large
language model structured pruning and knowledge recovery, 2023g, arXiv preprint arXiv:2310.18356.
URL http://arxiv.org/abs/2310.18356.

Wuyang Chen, Yanqi Zhou, Nan Du, Yanping Huang, James Laudon, Zhifeng Chen, and Claire Cui. Life-
long language pretraining with distribution-specialized experts. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23, Honolulu, Hawaii, USA, 2023h. JMLR.org.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization algorithms,
2023i, arXiv preprint arXiv:2302.06675. URL http://arxiv.org/abs/2302.06675.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language model
in-context tuning. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
719–730, Dublin, Ireland, May 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.53. URL https://aclanthology.org/2022.acl-long.53.

Yongrui Chen, Haiyun Jiang, Xinting Huang, Shuming Shi, and Guilin Qi. Tegit: Generating high-quality
instruction-tuning data with text-grounded task design, 2023j, arXiv preprint arXiv:2309.05447. URL
http://arxiv.org/abs/2309.05447.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models, 2023k, arXiv preprint arXiv:2309.12307. URL
http://arxiv.org/abs/2309.12307.

39

http://arxiv.org/abs/2310.05029
http://arxiv.org/abs/2307.08701
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/1604.06174
https://www.usenix.org/conference/osdi18/presentation/chen
http://arxiv.org/abs/2310.18356
http://arxiv.org/abs/2302.06675
https://aclanthology.org/2022.acl-long.53
http://arxiv.org/abs/2309.05447
http://arxiv.org/abs/2309.12307

Under review as submission to TMLR

Zeming Chen, Qiyue Gao, Antoine Bosselut, Ashish Sabharwal, and Kyle Richardson. DISCO: Distilling
counterfactuals with large language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 5514–5528, Toronto, Canada, July 2023l. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.302. URL https://aclanthology.org/2023.acl-long.302.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to compress
contexts. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 3829–3846, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.232. URL https://aclanthology.
org/2023.emnlp-main.232.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal, Payal Bajaj,
Xia Song, Xian-Ling Mao, et al. On the representation collapse of sparse mixture of experts. Advances in
Neural Information Processing Systems, 35:34600–34613, 2022.

Yew Ken Chia, Guizhen Chen, Luu Anh Tuan, Soujanya Poria, and Lidong Bing. Contrastive chain-of-
thought prompting, 2023, arXiv preprint arXiv:2311.09277. URL http://arxiv.org/abs/2311.09277.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse trans-
formers, 2019, arXiv preprint arXiv:1904.10509. URL http://arxiv.org/abs/1904.10509.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Davis, David Belanger, Lucy Colwell, et al. Masked language modeling for proteins
via linearly scalable long-context transformers. arXiv preprint arXiv:2006.03555, 2020.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J Colwell, and Adrian Weller. Rethinking attention with performers, 2021. URL https:
//openreview.net/forum?id=Ua6zuk0WRH.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael
Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito,
David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022,
arXiv preprint arXiv:2204.02311. URL http://arxiv.org/abs/2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun
Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and
Jason Wei. Scaling instruction-finetuned language models, 2022, arXiv preprint arXiv:2210.11416. URL
http://arxiv.org/abs/2210.11416.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata Mukherjee.
Skipdecode: Autoregressive skip decoding with batching and caching for efficient llm inference, 2023, arXiv
preprint arXiv:2307.02628. URL http://arxiv.org/abs/2307.02628.

40

https://aclanthology.org/2023.acl-long.302
https://aclanthology.org/2023.emnlp-main.232
https://aclanthology.org/2023.emnlp-main.232
http://arxiv.org/abs/2311.09277
http://arxiv.org/abs/1904.10509
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2307.02628

Under review as submission to TMLR

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei. StableMoE: Stable
routing strategy for mixture of experts. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio
(eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 7085–7095, Dublin, Ireland, May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-long.489. URL https://aclanthology.org/2022.acl-long.489.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov. Transformer-
XL: Attentive language models beyond a fixed-length context. In Anna Korhonen, David Traum, and Lluís
Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 2978–2988, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-1285. URL https://aclanthology.org/P19-1285.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023, arXiv
preprint arXiv:2307.08691. URL http://arxiv.org/abs/2307.08691.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. Advances in Neural Information Processing Systems, 35:16344–16359,
2022.

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-decoding for long-context inference.
https://pytorch.org/blog/flash-decoding/, October 2023. Accessed: 2023-12-13.

Soham De and Sam Smith. Batch normalization biases residual blocks towards the identity function in deep
networks. Advances in Neural Information Processing Systems, 33:19964–19975, 2020.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multiplication
for transformers at scale, 2022, arXiv preprint arXiv:2208.07339. URL http://arxiv.org/abs/2208.
07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms, 2023a, arXiv preprint arXiv:2305.14314. URL http://arxiv.org/abs/2305.14314.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized representation for
near-lossless llm weight compression, 2023b, arXiv preprint arXiv:2306.03078. URL http://arxiv.org/
abs/2306.03078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.),
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning Zheng, and
Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens, 2023a, arXiv preprint arXiv:2307.02486.
URL http://arxiv.org/abs/2307.02486.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang, Si Qin, Saravan Rajmohan,
Qingwei Lin, and Dongmei Zhang. Everything of thoughts: Defying the law of penrose triangle for thought
generation, 2023b, arXiv preprint arXiv:2311.04254. URL http://arxiv.org/abs/2311.04254.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li,
and Zhifang Sui. A survey on in-context learning, 2023, arXiv preprint arXiv:2301.00234. URL http:
//arxiv.org/abs/2301.00234.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In

41

https://aclanthology.org/2022.acl-long.489
https://aclanthology.org/P19-1285
http://arxiv.org/abs/2307.08691
https://pytorch.org/blog/flash-decoding/
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2306.03078
http://arxiv.org/abs/2306.03078
https://aclanthology.org/N19-1423
http://arxiv.org/abs/2307.02486
http://arxiv.org/abs/2311.04254
http://arxiv.org/abs/2301.00234
http://arxiv.org/abs/2301.00234

Under review as submission to TMLR

International Conference on Learning Representations, Addis Ababa, Ethiopia, 2021. ICLR. URL
https://openreview.net/forum?id=YicbFdNTTy.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language models with mixture-
of-experts. In International Conference on Machine Learning, pp. 5547–5569, Baltimore, Maryland, 2022.
PMLR.

Qianlong Du, Chengqing Zong, and Jiajun Zhang. Mods: Model-oriented data selection for instruction
tuning. arXiv preprint arXiv:2311.15653, 2023.

Lance Eliot. Generative pre-trained transformers (gpt-3) pertain to ai in the law, 2021. ISSN 1556-5068.
URL http://dx.doi.org/10.2139/ssrn.3974887.

Facebook AI Research (FAIR). fairseq: Fp16 optimizer - line 468. https://github.com/facebookresearch/
fairseq/blob/main/fairseq/optim/fp16_optimizer.py, 2023. Accessed: 2023-12-13.

FairScale authors. Fairscale: A general purpose modular pytorch library for high performance and large
scale training. https://github.com/facebookresearch/fairscale, 2021.

J. Fang et al. Parallel training of pre-trained models via chunk-based dynamic memory management. IEEE
Transactions on Parallel and Distributed Systems, 34(1):304–315, 2023.

Jiarui Fang, Geng Zhang, Jiatong Han, Shenggui Li, Zhengda Bian, Yongbin Li, Jin Liu, and Yang You.
A frequency-aware software cache for large recommendation system embeddings, 2022, arXiv preprint
arXiv:2208.05321. URL http://arxiv.org/abs/2208.05321.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):5232–5270, 2022.

Weizhi Fei, Xueyan Niu, Pingyi Zhou, Lu Hou, Bo Bai, Lei Deng, and Wei Han. Extending context window
of large language models via semantic compression. arXiv preprint arXiv:2312.09571, 2023.

Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang Lai, Zihao Ye, Lianmin Zheng,
Cody Hao Yu, Yong Yu, and Tianqi Chen. Tensorir: An abstraction for automatic tensorized program
optimization. In Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS 2023, pp. 804–817, New York, NY,
USA, 2023. Association for Computing Machinery. ISBN 9781450399166. doi: 10.1145/3575693.3576933.
URL https://doi.org/10.1145/3575693.3576933.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, New Orleans, Louisiana, 2022. URL
https://openreview.net/forum?id=ksVGCOlOEba.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot,
2023, arXiv preprint arXiv:2301.00774. URL http://arxiv.org/abs/2301.00774.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization for gen-
erative pre-trained transformers. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry hungry
hippos: Towards language modeling with state space models, 2023a, arXiv preprint arXiv:2212.14052.
URL http://arxiv.org/abs/2212.14052.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language models
towards multi-step reasoning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 10421–10430, Honolulu, Hawaii,
23–29 Jul 2023b. PMLR. URL https://proceedings.mlr.press/v202/fu23d.html.

42

https://openreview.net/forum?id=YicbFdNTTy
http://dx.doi.org/10.2139/ssrn.3974887
https://github.com/facebookresearch/fairseq/blob/main/fairseq/optim/fp16_optimizer.py
https://github.com/facebookresearch/fairseq/blob/main/fairseq/optim/fp16_optimizer.py
https://github.com/facebookresearch/fairscale
http://arxiv.org/abs/2208.05321
https://doi.org/10.1145/3575693.3576933
https://openreview.net/forum?id=ksVGCOlOEba
http://arxiv.org/abs/2301.00774
https://openreview.net/forum?id=tcbBPnfwxS
http://arxiv.org/abs/2212.14052
https://proceedings.mlr.press/v202/fu23d.html

Under review as submission to TMLR

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Breaking the sequential dependency
of llm inference using lookahead decoding, November 2023c. URL https://lmsys.org/blog/
2023-11-21-lookahead-decoding/.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse training with
mixture-of-experts. Proceedings of Machine Learning and Systems, 5, 2023.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you what to
discard: Adaptive KV cache compression for LLMs. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=uNrFpDPMyo.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for context
compression in a large language model, 2023, arXiv preprint arXiv:2307.06945. URL http://arxiv.org/
abs/2307.06945.

Michael Glass, Alfio Gliozzo, Rishav Chakravarti, Anthony Ferritto, Lin Pan, G P Shrivatsa Bhargav, Dinesh
Garg, and Avi Sil. Span selection pre-training for question answering. In Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 2773–2782, Online, July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.247. URL https://aclanthology.org/2020.acl-main.247.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of BERT by
progressively stacking. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 2337–2346, Long Beach, California, 09–15 Jun 2019. PMLR. URL https://proceedings.mlr.press/
v97/gong19a.html.

Google. Pax: A jax-based machine learning framework for large scale models. https://github.com/google/
paxml, 2023a. URL https://github.com/google/paxml. GitHub repository.

Google. Sax. https://github.com/google/saxml, 2023b. Accessed: 2023-10-07.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A survey.
International Journal of Computer Vision, 129:1789–1819, 2021.

Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L Isbell, and Andrea L Thomaz. Policy
shaping: Integrating human feedback with reinforcement learning. In C.J. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, vol-
ume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper%5Ffiles/paper/
2013/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023, arXiv
preprint arXiv:2312.00752. URL http://arxiv.org/abs/2312.00752.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state
spaces. In International Conference on Learning Representations, 2022a. URL https://openreview.
net/forum?id=uYLFoz1vlAC.

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. On the transformer growth for
progressive BERT training. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-
Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 5174–5180, Online, June 2021. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2021.naacl-main.406. URL https://aclanthology.org/2021.
naacl-main.406.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. Ppt: Pre-trained prompt tuning for few-shot learning,
2022b, arXiv preprint arXiv:2109.04332. URL http://arxiv.org/abs/2109.04332.

43

https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://openreview.net/forum?id=uNrFpDPMyo
http://arxiv.org/abs/2307.06945
http://arxiv.org/abs/2307.06945
https://aclanthology.org/2020.acl-main.247
https://proceedings.mlr.press/v97/gong19a.html
https://proceedings.mlr.press/v97/gong19a.html
https://github.com/google/paxml
https://github.com/google/paxml
https://github.com/google/paxml
https://github.com/google/saxml
https://proceedings.neurips.cc/paper%5Ffiles/paper/2013/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf
https://proceedings.neurips.cc/paper%5Ffiles/paper/2013/file/e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf
http://arxiv.org/abs/2312.00752
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://aclanthology.org/2021.naacl-main.406
https://aclanthology.org/2021.naacl-main.406
http://arxiv.org/abs/2109.04332

Under review as submission to TMLR

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language models, 2023,
arXiv preprint arXiv:2306.08543. URL http://arxiv.org/abs/2306.08543.

Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng, Chen Zhang, Fan Yang, Yunxin Liu, Minyi Guo,
and Yuhao Zhu. Olive: Accelerating large language models via hardware-friendly outlier-victim pair
quantization. In Proceedings of the 50th Annual International Symposium on Computer Architecture,
ISCA ’23, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700958. doi:
10.1145/3579371.3589038. URL https://doi.org/10.1145/3579371.3589038.

Ahan Gupta, Yueming Yuan, Yanqi Zhou, and Charith Mendis. Flurka: Fast fused low-rank & kernel
attention, 2023, arXiv preprint arXiv:2306.15799. URL http://arxiv.org/abs/2306.15799.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured state
spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P. Woodruff, and Amir Zandieh. Hy-
perattention: Long-context attention in near-linear time, 2023, arXiv preprint arXiv:2310.05869. URL
http://arxiv.org/abs/2310.05869.

Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and Jie Tang. Fastmoe: A fast mixture-
of-expert training system, 2021, arXiv preprint arXiv:2103.13262. URL http://arxiv.org/abs/2103.
13262.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi, and Qin Li. Fastermoe:
modeling and optimizing training of large-scale dynamic pre-trained models. In Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 120–134, 2022a.

Kai He, Rui Mao, Qika Lin, Yucheng Ruan, Xiang Lan, Mengling Feng, and Erik Cambria. A survey of
large language models for healthcare: from data, technology, and applications to accountability and ethics,
2023, arXiv preprint arXiv:2310.05694. URL http://arxiv.org/abs/2310.05694.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

Shwai He, Liang Ding, Daize Dong, Miao Zhang, and Dacheng Tao. Sparseadapter: An easy approach
for improving the parameter-efficiency of adapters. In Findings of EMNLP, 2022b. URL https://
aclanthology.org/2022.findings-emnlp.160.

Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 14852–14882, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.830. URL https:
//aclanthology.org/2023.acl-long.830.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen
Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and Laurent Sifre. An empirical analysis of
compute-optimal large language model training. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=iBBcRUlOAPR.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Yuhan Dong, and
Yu Wang. Flashdecoding++: Faster large language model inference on gpus, 2023, arXiv preprint
arXiv:2311.01282. URL http://arxiv.org/abs/2311.01282.

44

http://arxiv.org/abs/2306.08543
https://doi.org/10.1145/3579371.3589038
http://arxiv.org/abs/2306.15799
http://arxiv.org/abs/2310.05869
http://arxiv.org/abs/2103.13262
http://arxiv.org/abs/2103.13262
http://arxiv.org/abs/2310.05694
https://aclanthology.org/2022.findings-emnlp.160
https://aclanthology.org/2022.findings-emnlp.160
https://aclanthology.org/2023.acl-long.830
https://aclanthology.org/2023.acl-long.830
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
http://arxiv.org/abs/2311.01282

Under review as submission to TMLR

Or Honovich, Uri Shaham, Samuel R. Bowman, and Omer Levy. Instruction induction: From few examples
to natural language task descriptions, 2022, arXiv preprint arXiv:2205.10782. URL http://arxiv.org/
abs/2205.10782.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/houlsby19a.html.

Sissie Hsiao, Yury Pinsky, and Sundar Pichai. Bard: Google’s generative language model. https://blog.
google/products/search/bard-updates/, 2023. Accessed: October 7, 2023.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger language models
with less training data and smaller model sizes. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp. 8003–8017, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.507.
URL https://aclanthology.org/2023.findings-acl.507.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization, 2022, arXiv preprint arXiv:2207.00112. URL http:
//arxiv.org/abs/2207.00112.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Shengding Hu, Ning Ding, Weilin Zhao, Xingtai Lv, Zhen Zhang, Zhiyuan Liu, and Maosong Sun. OpenDelta:
A plug-and-play library for parameter-efficient adaptation of pre-trained models. In Danushka Bollegala,
Ruihong Huang, and Alan Ritter (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 3: System Demonstrations), pp. 274–281, Toronto, Canada, July
2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-demo.26. URL https:
//aclanthology.org/2023.acl-demo.26.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria, and
Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large language models.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 5254–5276, Singapore, December 2023b. Association for
Computational Linguistics. URL https://aclanthology.org/2023.emnlp-main.319.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Efficient cross-
task generalization via dynamic lora composition, 2023, arXiv preprint arXiv:2307.13269. URL http:
//arxiv.org/abs/2307.13269.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. In ACL
(Findings), pp. 1049–1065. Association for Computational Linguistics, 2023.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimization through
better initialization. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4475–
4483. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/huang20f.html.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, Red Hook, NY, USA, 2019. Curran Associates Inc.

45

http://arxiv.org/abs/2205.10782
http://arxiv.org/abs/2205.10782
https://proceedings.mlr.press/v97/houlsby19a.html
https://blog.google/products/search/bard-updates/
https://blog.google/products/search/bard-updates/
https://aclanthology.org/2023.findings-acl.507
http://arxiv.org/abs/2207.00112
http://arxiv.org/abs/2207.00112
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.acl-demo.26
https://aclanthology.org/2023.acl-demo.26
https://aclanthology.org/2023.emnlp-main.319
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
https://proceedings.mlr.press/v119/huang20f.html

Under review as submission to TMLR

Yukun Huang, Yanda Chen, Zhou Yu, and Kathleen McKeown. In-context learning distillation: Transferring
few-shot learning ability of pre-trained language models, 2022, arXiv preprint arXiv:2212.10670. URL
http://arxiv.org/abs/2212.10670.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-recurrent
transformers. Advances in Neural Information Processing Systems, 35:33248–33261, 2022.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin
Jose, Prabhat Ram, et al. Tutel: Adaptive mixture-of-experts at scale. Proceedings of Machine Learning
and Systems, 5, 2023.

Régis Pierrard Ilyas Moutawwakil. Llm-perf leaderboard. https://huggingface.co/spaces/optimum/
llm-perf-leaderboard, 2023.

Maor Ivgi, Uri Shaham, and Jonathan Berant. Efficient long-text understanding with short-text models.
Transactions of the Association for Computational Linguistics, 11:284–299, 2023.

Hamish Ivison, Noah A. Smith, Hannaneh Hajishirzi, and Pradeep Dasigi. Data-efficient finetuning using
cross-task nearest neighbors. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings
of the Association for Computational Linguistics: ACL 2023, pp. 9036–9061, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.576. URL https:
//aclanthology.org/2023.findings-acl.576.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023a, arXiv preprint arXiv:2310.06825. URL http://arxiv.org/abs/
2310.06825.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Longllm-
lingua: Accelerating and enhancing llms in long context scenarios via prompt compression, 2023b, arXiv
preprint arXiv:2310.06839. URL http://arxiv.org/abs/2310.06839.

Yuxin Jiang, Chunkit Chan, Mingyang Chen, and Wei Wang. Lion: Adversarial distillation of propri-
etary large language models, 2023c, arXiv preprint arXiv:2305.12870. URL http://arxiv.org/abs/
2305.12870.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen,
and Xia Hu. Llm maybe longlm: Self-extend llm context window without tuning, 2024, arXiv preprint
arXiv:2401.01325. URL http://arxiv.org/abs/2401.01325.

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. S3: Increasing gpu utilization during generative
inference for higher throughput, 2023, arXiv preprint arXiv:2306.06000. URL http://arxiv.org/abs/
2306.06000.

Hoyoun Jung and Kyung-Joong Kim. Discrete prompt compression with reinforcement learning, 2023, arXiv
preprint arXiv:2308.08758. URL http://arxiv.org/abs/2308.08758.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert McHardy.
Challenges and applications of large language models, 2023, arXiv preprint arXiv:2307.10169. URL http:
//arxiv.org/abs/2307.10169.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee, Sasikanth
Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen, Jiyan Yang,
Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan, Abhisek Kundu, Misha
Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study of bfloat16 for deep learning training, 2019,
arXiv preprint arXiv:1905.12322. URL http://arxiv.org/abs/1905.12322.

46

http://arxiv.org/abs/2212.10670
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://aclanthology.org/2023.findings-acl.576
https://aclanthology.org/2023.findings-acl.576
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06839
http://arxiv.org/abs/2305.12870
http://arxiv.org/abs/2305.12870
http://arxiv.org/abs/2401.01325
http://arxiv.org/abs/2306.06000
http://arxiv.org/abs/2306.06000
http://arxiv.org/abs/2308.08758
http://arxiv.org/abs/2307.10169
http://arxiv.org/abs/2307.10169
http://arxiv.org/abs/1905.12322

Under review as submission to TMLR

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank hy-
percomplex adapter layers. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 1022–1035,
New Orleans, Louisiana, 2021. Curran Associates, Inc. URL https://proceedings.neurips.cc/paper%
5Ffiles/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are RNNs: Fast
autoregressive transformers with linear attention. In Hal Daumé III and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 5156–5165. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
katharopoulos20a.html.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational com-
plexity of self-attention, 2022, arXiv preprint arXiv:2209.04881. URL http://arxiv.org/abs/2209.
04881.

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon, and Dongsoo
Lee. Memory-efficient fine-tuning of compressed large language models via sub-4-bit integer quantization,
2023a, arXiv preprint arXiv:2305.14152. URL http://arxiv.org/abs/2305.14152.

Minsoo Kim, Sihwa Lee, Janghwan Lee, Sukjin Hong, Du-Seong Chang, Wonyong Sung, and Jungwook
Choi. Token-scaled logit distillation for ternary weight generative language models, 2023b, arXiv preprint
arXiv:2308.06744. URL http://arxiv.org/abs/2308.06744.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W. Mahoney, Amir Gholami,
and Kurt Keutzer. Speculative decoding with big little decoder, 2023c, arXiv preprint arXiv:2302.07863.
URL http://arxiv.org/abs/2302.07863.

Young Jin Kim, Rawn Henry, Raffy Fahim, and Hany Hassan Awadalla. Finequant: Unlocking efficiency
with fine-grained weight-only quantization for llms, 2023d, arXiv preprint arXiv:2308.09723. URL http:
//arxiv.org/abs/2308.09723.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017, arXiv preprint
arXiv:1412.6980. URL http://arxiv.org/abs/1412.6980.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer, 2020, arXiv
preprint arXiv:2001.04451. URL http://arxiv.org/abs/2001.04451.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners, 2023, arXiv preprint arXiv:2205.11916. URL http://arxiv.org/abs/
2205.11916.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer models. In
Proceedings of Machine Learning and Systems, volume 5, 2023.

Siddharth Krishna Kumar. On weight initialization in deep neural networks, 2017, arXiv preprint
arXiv:1704.08863. URL http://arxiv.org/abs/1704.08863.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles, SOSP ’23, pp.
611–626, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400702297. doi:
10.1145/3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Lessons learned from ac-
tivation outliers for weight quantization in large language models, 2023, arXiv preprint arXiv:2306.02272.
URL http://arxiv.org/abs/2306.02272.

47

https://proceedings.neurips.cc/paper%5Ffiles/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://proceedings.neurips.cc/paper%5Ffiles/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
http://arxiv.org/abs/2209.04881
http://arxiv.org/abs/2209.04881
http://arxiv.org/abs/2305.14152
http://arxiv.org/abs/2308.06744
http://arxiv.org/abs/2302.07863
http://arxiv.org/abs/2308.09723
http://arxiv.org/abs/2308.09723
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/1704.08863
https://doi.org/10.1145/3600006.3613165
http://arxiv.org/abs/2306.02272

Under review as submission to TMLR

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation
and automatic sharding. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=qrwe7XHTmYb.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3045–3059, Online
and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243.

Yaniv Leviathan, Matan Kalman, and Y. Matias. Fast inference from transformers via speculative decoding.
In International Conference on Machine Learning, 2022.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers: Simplifying
training of large, sparse models. In International Conference on Machine Learning, pp. 6265–6274. PMLR,
2021.

Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam Rajbhandari, and Yuxiong He. 1-bit lamb:
Communication efficient large-scale large-batch training with lamb’s convergence speed. In HiPC 2022,
2021.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Sym-
bolic chain-of-thought distillation: Small models can also “think” step-by-step. In Anna Rogers, Jor-
dan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 2665–2679, Toronto, Canada, July
2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.150. URL https:
//aclanthology.org/2023.acl-long.150.

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit Sanghai,
Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for relative positions
improves long context transformers. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=rR03qFesqk.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: experiences on accelerating
data parallel training. Proc. VLDB Endow., 13(12):3005–3018, aug 2020. ISSN 2150-8097. doi: 10.14778/
3415478.3415530. URL https://doi.org/10.14778/3415478.3415530.

Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, Yuliang Liu, Boxiang Wang, and
Yang You. Colossal-ai: A unified deep learning system for large-scale parallel training. In Proceedings of
the 52nd International Conference on Parallel Processing, ICPP ’23, pp. 766–775, New York, NY, USA,
2023b. Association for Computing Machinery. ISBN 9798400708435. doi: 10.1145/3605573.3605613. URL
https://doi.org/10.1145/3605573.3605613.

Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence parallelism: Long
sequence training from system perspective. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 2391–2404, Toronto, Canada, July 2023c. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.134. URL https://aclanthology.org/2023.acl-long.134.

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen, Xinlu Zhang, Zekun Li, Hong Wang, Jing Qian, Baolin
Peng, Yi Mao, Wenhu Chen, and Xifeng Yan. Explanations from large language models make small
reasoners better, 2022, arXiv preprint arXiv:2210.06726. URL http://arxiv.org/abs/2210.06726.

Xiang Li, Yiqun Yao, Xin Jiang, Xuezhi Fang, Xuying Meng, Siqi Fan, Peng Han, Jing Li, Li Du, Bowen
Qin, Zheng Zhang, Aixin Sun, and Yequan Wang. Flm-101b: An open llm and how to train it with $100k
budget, 2023d, arXiv preprint arXiv:2309.03852. URL http://arxiv.org/abs/2309.03852.

48

https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2023.acl-long.150
https://aclanthology.org/2023.acl-long.150
https://openreview.net/forum?id=rR03qFesqk
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.1145/3605573.3605613
https://aclanthology.org/2023.acl-long.134
http://arxiv.org/abs/2210.06726
http://arxiv.org/abs/2309.03852

Under review as submission to TMLR

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), abs/2101.00190, 2021.

Xiaonan Li and Xipeng Qiu. Finding support examples for in-context learning. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023,
pp. 6219–6235, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.findings-emnlp.411. URL https://aclanthology.org/2023.findings-emnlp.411.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. Unified demonstration retriever for in-context learning. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4644–4668, Toronto,
Canada, July 2023e. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.256. URL
https://aclanthology.org/2023.acl-long.256.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao. Losparse:
Structured compression of large language models based on low-rank and sparse approximation. In Inter-
national Conference on Machine Learning, 2023f. URL https://api.semanticscholar.org/CorpusID:
259203385.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo Zhao. Loftq:
LoRA-fine-tuning-aware quantization for large language models. In The Twelfth International Conference
on Learning Representations, 2024b. URL https://openreview.net/forum?id=LzPWWPAdY4.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Junhao Liu, Tongliang
Liu, Fei Huang, et al. One shot learning as instruction data prospector for large language models. arXiv
preprint arXiv:2312.10302, 2023g.

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng
Chen, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Alpaserve: Statistical multiplexing with model
parallelism for deep learning serving. In Proceedings of the 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2023h.

Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, and Tuo Zhao. Less is more: Task-
aware layer-wise distillation for language model compression. In International Conference on Machine
Learning, pp. 20852–20867. PMLR, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, Chuang Gan, and Song Han.
Awq: Activation-aware weight quantization for llm compression and acceleration, 2023, arXiv preprint
arXiv:2306.00978. URL http://arxiv.org/abs/2306.00978.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 1950–1965. Curran As-
sociates, Inc., 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. In The Twelfth International Conference on
Learning Representations, 2024a. URL https://openreview.net/forum?id=3xHDeA8Noi.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What makes
good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out (DeeLIO 2022): The
3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pp. 100–114,
Dublin, Ireland and Online, May 2022b. Association for Computational Linguistics. doi: 10.18653/v1/
2022.deelio-1.10. URL https://aclanthology.org/2022.deelio-1.10.

49

https://aclanthology.org/2023.findings-emnlp.411
https://aclanthology.org/2023.acl-long.256
https://api.semanticscholar.org/CorpusID:259203385
https://api.semanticscholar.org/CorpusID:259203385
https://openreview.net/forum?id=LzPWWPAdY4
http://arxiv.org/abs/2306.00978
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://openreview.net/forum?id=3xHDeA8Noi
https://aclanthology.org/2022.deelio-1.10

Under review as submission to TMLR

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. QLLM: Accurate and
efficient low-bitwidth quantization for large language models. In The Twelfth International Conference on
Learning Representations, 2024b. URL https://openreview.net/forum?id=FIplmUWdm3.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023a.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for alignment?
a comprehensive study of automatic data selection in instruction tuning. In The Twelfth International
Conference on Learning Representations, 2024c. URL https://openreview.net/forum?id=BTKAeLqLMw.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning: Prompt
tuning can be comparable to fine-tuning across scales and tasks. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pp. 61–68, Dublin, Ireland, May 2022c. Association for
Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8. URL https://aclanthology.org/2022.
acl-short.8.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt understands,
too, 2023b, arXiv preprint arXiv:2103.10385. URL http://arxiv.org/abs/2103.10385.

Xiaoran Liu, Hang Yan, Shuo Zhang, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of rope-based
extrapolation, 2023c, arXiv preprint arXiv:2310.05209. URL http://arxiv.org/abs/2310.05209.

Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu,
Jie Tang, Joey Gonzalez, et al. Gact: Activation compressed training for generic network architectures.
In International Conference on Machine Learning, pp. 14139–14152. PMLR, 2022d.

Yuliang Liu, Shenggui Li, Jiarui Fang, Yanjun Shao, Boyuan Yao, and Yang You. Colossal-auto: Uni-
fied automation of parallelization and activation checkpoint for large-scale models, 2023d, arXiv preprint
arXiv:2302.02599. URL http://arxiv.org/abs/2302.02599.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi,
Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware training for
large language models, 2023e, arXiv preprint arXiv:2305.17888. URL http://arxiv.org/abs/2305.
17888.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis,
and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance hypothesis for llm kv
cache compression at test time. arXiv preprint arXiv:2305.17118, 2023f.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms at inference time.
In International Conference on Machine Learning, pp. 22137–22176. PMLR, 2023g.

Zirui Liu, Guanchu Wang, Shaochen Zhong, Zhaozhuo Xu, Daochen Zha, Ruixiang Tang, Zhimeng Jiang,
Kaixiong Zhou, Vipin Chaudhary, Shuai Xu, et al. Winner-take-all column row sampling for memory
efficient adaptation of language model. arXiv preprint arXiv:2305.15265, 2023h.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered prompts
and where to find them: Overcoming few-shot prompt order sensitivity. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8086–8098, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.556. URL
https://aclanthology.org/2022.acl-long.556.

50

https://openreview.net/forum?id=FIplmUWdm3
https://openreview.net/forum?id=BTKAeLqLMw
https://aclanthology.org/2022.acl-short.8
https://aclanthology.org/2022.acl-short.8
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2310.05209
http://arxiv.org/abs/2302.02599
http://arxiv.org/abs/2305.17888
http://arxiv.org/abs/2305.17888
https://aclanthology.org/2022.acl-long.556

Under review as submission to TMLR

Yucheng Lu, Conglong Li, Minjia Zhang, Christopher De Sa, and Yuxiong He. Maximizing communication
efficiency for large-scale training via 0/1 adam. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=-CefY2EOupj.

Man Luo, Xin Xu, Zhuyun Dai, Panupong Pasupat, Mehran Kazemi, Chitta Baral, Vaiva Imbrasaite, and
Vincent Y Zhao. Dr. icl: Demonstration-retrieved in-context learning. arXiv preprint arXiv:2305.14128,
2023.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qi jie Gao, Qipeng Guo, and Xipeng Qiu. Full parameter fine-tuning
for large language models with limited resources. ArXiv, abs/2306.09782, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. arXiv preprint arXiv:2305.11627, 2023.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora.
Fine-tuning language models with just forward passes. arXiv preprint arXiv:2305.17333, 2023.

Pedro Henrique Martins, Zita Marinho, and Andre Martins. ∞-former: Infinite memory transformer. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5468–5485, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.375. URL https:
//aclanthology.org/2022.acl-long.375.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling via
gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. Specinfer: Accelerating generative large language model serving with
tree-based speculative inference and verification, 2024, arXiv preprint arXiv:2305.09781. URL http:
//arxiv.org/abs/2305.09781.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn in con-
text. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Proceedings
of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2791–2809, Seattle, United States, July 2022a. Association for Com-
putational Linguistics. doi: 10.18653/v1/2022.naacl-main.201. URL https://aclanthology.org/2022.
naacl-main.201.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. Rethinking the role of demonstrations: What makes in-context learning work? In EMNLP,
2022b.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context length for
transformers. arXiv preprint arXiv:2305.16300, 2023.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv preprint
arXiv:2311.13581, 2023.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework for emerging
ai applications. In 13th USENIX symposium on operating systems design and implementation (OSDI 18),
pp. 561–577, 2018.

MosaicML. Composer. https://github.com/mosaicml/composer, 2023a. GitHub repository.

51

https://openreview.net/forum?id=-CefY2EOupj
https://aclanthology.org/2022.acl-long.375
https://aclanthology.org/2022.acl-long.375
http://arxiv.org/abs/2305.09781
http://arxiv.org/abs/2305.09781
https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.naacl-main.201
https://github.com/mosaicml/composer

Under review as submission to TMLR

MosaicML. Llm foundry. https://github.com/mosaicml/llm-foundry, 2023b. GitHub repository.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens. arXiv preprint
arXiv:2304.08467, 2023.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R.
Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline parallelism for dnn
training. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19, pp.
1–15, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450368735. doi:
10.1145/3341301.3359646. URL https://doi.org/10.1145/3341301.3359646.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,
and Matei Zaharia. Efficient large-scale language model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’21, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384421.
doi: 10.1145/3458817.3476209. URL https://doi.org/10.1145/3458817.3476209.

Benjamin Newman, John Hewitt, Percy Liang, and Christopher D Manning. The eos decision and length
extrapolation. arXiv preprint arXiv:2010.07174, 2020.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. Codegen: An open large language model for code with multi-turn program synthesis. arXiv preprint
arXiv:2203.13474, 2022.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Large language
models can do parallel decoding. arXiv preprint arXiv:2307.15337, 2023.

NVIDIA. Fastertransformer: High performance transformer kernels. https://github.com/NVIDIA/
FasterTransformer, 2023. GitHub repository.

OpenAI. Gpt base model. https://platform.openai.com/docs/models/gpt-base, 2023. Accessed: 2023-
12-13.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine
Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai,
Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che
Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning,
Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman,
Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes
Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu,
Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz
Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael
Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin,
Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob Mc-
Grew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok

52

https://github.com/mosaicml/llm-foundry
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3458817.3476209
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://platform.openai.com/docs/models/gpt-base

Under review as submission to TMLR

Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa,
Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub
Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy
Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres,
Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr Pong,
Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya
Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez,
Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David
Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker,
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Ben-
jamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu,
Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang,
Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4
technical report, 2023, arXiv preprint arXiv:2303.08774. URL http://arxiv.org/abs/2303.08774.

Shankar Padmanabhan, Yasumasa Onoe, Michael JQ Zhang, Greg Durrett, and Eunsol Choi. Propagating
knowledge updates to lms through distillation. arXiv preprint arXiv:2306.09306, 2023.

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and François Fleuret. Fast attention over long sequences
with dynamic sparse flash attention. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=UINHuKeWUa.

Yu Pan, Ye Yuan, Yichun Yin, Zenglin Xu, Lifeng Shang, Xin Jiang, and Qun Liu. Reusing pretrained
models by multi-linear operators for efficient training. CoRR, abs/2310.10699, 2023.

Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai, and Bohan Zhuang. Mesa: A memory-saving
training framework for transformers. arXiv preprint arXiv:2111.11124, 2021.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with gpt-4,
2023a, arXiv preprint arXiv:2304.03277. URL http://arxiv.org/abs/2304.03277.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin Cheng, Michael
Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the transformer era. arXiv
preprint arXiv:2305.13048, 2023b.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window extension
of large language models. arXiv preprint arXiv:2309.00071, 2023c.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong. Random
feature attention. arXiv preprint arXiv:2103.02143, 2021.

Aaron Pham, Chaoyu Yang, Sean Sheng, Shenyang Zhao, Sauyon Lee, Bo Jiang, Fog Dong, Xipeng
Guan, and Frost Ming, OpenLLM: Operating LLMs in production, 2023, https://github.com/bentoml/
OpenLLM.

Jason Phang, Yi Mao, Pengcheng He, and Weizhu Chen. Hypertuning: Toward adapting large language
models without back-propagation. In ICML, volume 202 of Proceedings of Machine Learning Research,
pp. 27854–27875. PMLR, 2023.

Jonathan Pilault, Mahan Fathi, Orhan Firat, Christopher Pal, Pierre-Luc Bacon, and Ross Goroshin. Block-
state transformers. In Thirty-seventh Conference on Neural Information Processing Systems, New Orleans,
Louisiana, 2023. URL https://openreview.net/forum?id=XRTxIBs2eu.

53

http://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=UINHuKeWUa
http://arxiv.org/abs/2304.03277
https://github.com/bentoml/OpenLLM
https://github.com/bentoml/OpenLLM
https://openreview.net/forum?id=XRTxIBs2eu

Under review as submission to TMLR

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio,
Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models.
arXiv preprint arXiv:2302.10866, 2023.

Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining parameter-efficient
modules for task-level generalisation. In Proceedings of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pp. 687–702, 2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=R8sQPpGCv0.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring and
narrowing the compositionality gap in language models, 2023, arXiv preprint arXiv:2210.03350. URL
http://arxiv.org/abs/2210.03350.

Ray Project, RayLLM - LLMs on Ray, GitHub, GitHub repository, 2023, https://github.com/
ray-project/ray-llm, Accessed on: 2023-10-02.

Chengwei Qin, Aston Zhang, Anirudh Dagar, and Wenming Ye. In-context learning with iterative demon-
stration selection. arXiv preprint arXiv:2310.09881, 2023a.

Guanghui Qin, Corby Rosset, Ethan C. Chau, Nikhil Rao, and Benjamin Van Durme. Nugget 2d: Dynamic
contextual compression for scaling decoder-only language models, 2023b, arXiv preprint arXiv:2310.02409.
URL http://arxiv.org/abs/2310.02409.

Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han, Zhengyan Zhang, Yusheng Su, Zhiyuan Liu,
Peng Li, Maosong Sun, et al. Knowledge inheritance for pre-trained language models. arXiv preprint
arXiv:2105.13880, 2021.

Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Lightning attention-
2: A free lunch for handling unlimited sequence lengths in large language models, 2024, arXiv preprint
arXiv:2401.04658. URL http://arxiv.org/abs/2401.04658.

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise self-attention
for long document understanding. arXiv preprint arXiv:1911.02972, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob
Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh,
Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato,
John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar,
Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre,
Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic
Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev,
Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien
de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura
Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, and Ge-
offrey Irving. Scaling language models: Methods, analysis & insights from training gopher, 2022, arXiv
preprint arXiv:2112.11446. URL http://arxiv.org/abs/2112.11446.

54

https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
http://arxiv.org/abs/2210.03350
https://github.com/ray-project/ray-llm
https://github.com/ray-project/ray-llm
http://arxiv.org/abs/2310.02409
http://arxiv.org/abs/2401.04658
http://arxiv.org/abs/2112.11446

Under review as submission to TMLR

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’20. IEEE Press, 2020. ISBN 9781728199986.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity: Breaking
the gpu memory wall for extreme scale deep learning. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’21, New York, NY, USA, 2021a.
Association for Computing Machinery. ISBN 9781450384421. doi: 10.1145/3458817.3476205. URL https:
//doi.org/10.1145/3458817.3476205.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity: Breaking
the gpu memory wall for extreme scale deep learning. In SC 2021, 2021b.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts inference and training
to power next-generation ai scale. In International Conference on Machine Learning, 2022.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations
enable training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20, Tutorial), 2020.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud Karpas, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham. Parallel context windows for large language models.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 6383–6402, 2023.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia Zhang,
Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training. In USENIX ATC
2021, 2021.

Liliang Ren, Yang Liu, Shuohang Wang, Yichong Xu, Chenguang Zhu, and ChengXiang Zhai. Sparse
modular activation for efficient sequence modeling. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023a. URL https://openreview.net/forum?id=TfbzX6I14i.

Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao Wang, Pengfei Li, Xiaoda
Zhang, Alexander Podolskiy, Grigory Arshinov, Andrey Bout, Irina Piontkovskaya, Jiansheng Wei, Xin
Jiang, Teng Su, Qun Liu, and Jun Yao. Pangu-Σ: Towards trillion parameter language model with sparse
heterogeneous computing, 2023b, arXiv preprint arXiv:2303.10845. URL http://arxiv.org/abs/2303.
10845.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhacing parameter efficiency of
lora with weight tying, 2023, arXiv preprint arXiv:2311.09578. URL http://arxiv.org/abs/2311.09578.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse attention
with routing transformers. Transactions of the Association for Computational Linguistics, 9:53–68, 2021.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context learning. In
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 2655–2671, Seattle, United States, July 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.191. URL https://aclanthology.
org/2022.naacl-main.191.

Lucía Santamaría and Amittai Axelrod. Data selection with cluster-based language difference models and
cynical selection. arXiv preprint arXiv:1904.04900, 2019.

55

https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://openreview.net/forum?id=TfbzX6I14i
http://arxiv.org/abs/2303.10845
http://arxiv.org/abs/2303.10845
http://arxiv.org/abs/2311.09578
https://aclanthology.org/2022.naacl-main.191
https://aclanthology.org/2022.naacl-main.191

Under review as submission to TMLR

Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Riccardo Marin,
and Emanuele Rodola. Accelerating transformer inference for translation via parallel decoding. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 12336–12355, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.689. URL https:
//aclanthology.org/2023.acl-long.689.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning.
RAPTOR: Recursive abstractive processing for tree-organized retrieval. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=GN921JHCRw.

Stephanie Schoch, Ritwick Mishra, and Yangfeng Ji. Data selection for fine-tuning large language models
using transferred shapley values. arXiv preprint arXiv:2306.10165, 2023.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E.
Dahl. Measuring the effects of data parallelism on neural network training, 2019, arXiv preprint
arXiv:1811.03600. URL http://arxiv.org/abs/1811.03600.

Hang Shao, Bei Liu, and Yanmin Qian. One-shot sensitivity-aware mixed sparsity pruning for large language
models, 2024, arXiv preprint arXiv:2310.09499. URL http://arxiv.org/abs/2310.09499.

Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai, Hongyi Jin, Wuwei Lin, Masahiro
Masuda, Cody Hao Yu, and Tianqi Chen. Tensor program optimization with probabilistic pro-
grams. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 35783–35796. Curran As-
sociates, Inc., 2022. URL https://proceedings.neurips.cc/paper%5Ffiles/paper/2022/file/
e894eafae43e68b4c8dfdacf742bcbf3-Paper-Conference.pdf.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint arXiv:1911.02150,
2019.

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy. Staged training for
transformer language models. In International Conference on Machine Learning, pp. 19893–19908. PMLR,
2022.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Barret Zoph,
William Fedus, Xinyun Chen, Tu Vu, Yuexin Wu, Wuyang Chen, Albert Webson, Yunxuan Li, Vincent Y
Zhao, Hongkun Yu, Kurt Keutzer, Trevor Darrell, and Denny Zhou. Mixture-of-experts meets instruction
tuning: A winning combination for large language models. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=6mLjDwYte5.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie,
Beidi Chen, Clark W. Barrett, Joseph Gonzalez, Percy Liang, Christopher Ré, Ioan Cristian Stoica,
and Ce Zhang. High-throughput generative inference of large language models with a single gpu. In
International Conference on Machine Learning, 2023.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt: Eliciting
knowledge from language models with automatically generated prompts. arXiv preprint arXiv:2010.15980,
2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into smaller
language models. In Annual Meeting of the Association for Computational Linguistics, 2022.

56

https://aclanthology.org/2023.acl-long.689
https://aclanthology.org/2023.acl-long.689
https://openreview.net/forum?id=GN921JHCRw
http://arxiv.org/abs/1811.03600
http://arxiv.org/abs/2310.09499
https://proceedings.neurips.cc/paper%5Ffiles/paper/2022/file/e894eafae43e68b4c8dfdacf742bcbf3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper%5Ffiles/paper/2022/file/e894eafae43e68b4c8dfdacf742bcbf3-Paper-Conference.pdf
https://openreview.net/forum?id=6mLjDwYte5

Under review as submission to TMLR

Antoine Simoulin, Namyong Park, Xiaoyi Liu, and Grey Yang. Memory-efficient selective fine-tuning. In
Workshop on Efficient Systems for Foundation Models@ ICML2023, 2023.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared Casper,
Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Anand Korthikanti, Elton Zhang, Rewon Child,
Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael Houston,
Saurabh Tiwary, and Bryan Catanzaro. Using deepspeed and megatron to train megatron-turing nlg 530b,
a large-scale generative language model. ArXiv, abs/2201.11990, 2022.

Saleh Soltan, Shankar Ananthakrishnan, Jack FitzGerald, Rahul Gupta, Wael Hamza, Haidar Khan, Charith
Peris, Stephen Rawls, Andy Rosenbaum, Anna Rumshisky, et al. Alexatm 20b: Few-shot learning using
a large-scale multilingual seq2seq model. arXiv preprint arXiv:2208.01448, 2022.

James C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approxi-
mation. IEEE Transactions on Automatic Control, 37:332–341, 1992.

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. arXiv preprint
arXiv:2308.04623, 2023.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Selective annotation makes language models better
few-shot learners, 2022a, arXiv preprint arXiv:2209.01975. URL http://arxiv.org/abs/2209.01975.

Hui Su, Xiao Zhou, Houjin Yu, Xiaoyu Shen, Yuwen Chen, Zilin Zhu, Yang Yu, and Jie Zhou. Welm: A
well-read pre-trained language model for chinese. arXiv preprint arXiv:2209.10372, 2022b.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large
language models. ArXiv, abs/2306.11695, 2023a.

Tianxiang Sun, Zhengfu He, Qinen Zhu, Xipeng Qiu, and Xuanjing Huang. Multitask pre-training of modular
prompt for chinese few-shot learning. In Annual Meeting of the Association for Computational Linguistics,
2022a.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaudhary, Xia
Song, and Furu Wei. A length-extrapolatable transformer. arXiv preprint arXiv:2212.10554, 2022b.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. Retentive network: A successor to transformer for large language models, 2023b, arXiv preprint
arXiv:2307.08621. URL http://arxiv.org/abs/2307.08621.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In NIPS, 1999.

Weng Lam Tam, Xiao Liu, Kaixuan Ji, Lilong Xue, Xingjian Zhang, Yuxiao Dong, Jiahua Liu, Maodi Hu,
and Jie Tang. Parameter-efficient prompt tuning makes generalized and calibrated neural text retrievers.
CoRR, abs/2207.07087, 2022. doi: 10.48550/arXiv.2207.07087. URL https://doi.org/10.48550/arXiv.
2207.07087.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru Lian,
Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training with adam’s
convergence speed. In ICML 2021, 2021.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong. Compression
of generative pre-trained language models via quantization. arXiv preprint arXiv:2203.10705, 2022.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In Interna-
tional Conference on Machine Learning, pp. 9438–9447. PMLR, 2020.

57

http://arxiv.org/abs/2209.01975
http://arxiv.org/abs/2307.08621
https://doi.org/10.48550/arXiv.2207.07087
https://doi.org/10.48550/arXiv.2207.07087

Under review as submission to TMLR

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM Comput.
Surv., 55(6), dec 2022. ISSN 0360-0300. doi: 10.1145/3530811. URL https://doi.org/10.1145/3530811.

Gemini Team and Google. Gemini: A family of highly capable multimodal models. https://storage.
googleapis.com/deepmind-media/gemini/gemini_1_report.pdf, 2023.

MLC team, MLC-LLM, 2023, https://github.com/mlc-ai/mlc-llm.

The MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially usable llms.
https://www.mosaicml.com/blog/mpt-7b, May 2023. Accessed: 2023-12-13.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog applications. arXiv
preprint arXiv:2201.08239, 2022.

Inar Timiryasov and Jean-Loup Tastet. Baby llama: knowledge distillation from an ensemble of teachers
trained on a small dataset with no performance penalty. arXiv preprint arXiv:2308.02019, 2023.

Denis Timonin, Bo Yang Hsueh, and Vinh Nguyen. Accelerated inference for large transformer models using
nvidia triton inference server. NVIDIA blog, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. ArXiv,
abs/2302.13971, 2023a. URL https://api.semanticscholar.org/CorpusID:257219404.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Fer-
rer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subra-
manian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models, 2023b, arXiv preprint arXiv:2307.09288. URL http://arxiv.org/abs/2307.09288.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada, Shengyi
Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct distillation of lm
alignment. arXiv preprint arXiv:2310.16944, 2023.

Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu, Henryk Michalewski, and Piotr
MiłOś. Focused transformer: Contrastive training for context scaling. arXiv preprint arXiv:2307.03170,
2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-efficient tuning
of pre-trained models using dynamic search-free low-rank adaptation. ArXiv, abs/2210.07558, 2022.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017. URL https:
//api.semanticscholar.org/CorpusID:13756489.

Apoorv Vyas, Angelos Katharopoulos, and François Fleuret. Fast transformers with clustered attention.
Advances in Neural Information Processing Systems, 33:21665–21674, 2020.

58

https://doi.org/10.1145/3530811
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf
https://github.com/mlc-ai/mlc-llm
https://www.mosaicml.com/blog/mpt-7b
https://api.semanticscholar.org/CorpusID:257219404
http://arxiv.org/abs/2307.09288
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489

Under review as submission to TMLR

Zhongwei Wan, Yichun Yin, Wei Zhang, Jiaxin Shi, Lifeng Shang, Guangyong Chen, Xin Jiang, and
Qun Liu. G-MAP: General memory-augmented pre-trained language model for domain tasks. In Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 6585–6597, Abu Dhabi, United Arab Emirates, De-
cember 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.441. URL
https://aclanthology.org/2022.emnlp-main.441.

Zhongwei Wan, Che Liu, Mi Zhang, Jie Fu, Benyou Wang, Sibo Cheng, Lei Ma, César Quilodrán-Casas, and
Rossella Arcucci. Med-unic: Unifying cross-lingual medical vision-language pre-training by diminishing
bias. arXiv preprint arXiv:2305.19894, 2023.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language understanding sys-
tems. Advances in neural information processing systems, 32, 2019.

B. Wang, Q. Xu, Z. Bian, and Y. You. Tesseract: Parallelize the tensor parallelism efficiently. In Proceedings
of the 51th International Conference on Parallel Processing, 2022a.

Boxiang Wang, Qifan Xu, Zhengda Bian, and Yang You. 2.5-dimensional distributed model training. arXiv
e-prints, pp. arXiv–2105, 2021a.

Guoxin Wang, Yijuan Lu, Lei Cui, Tengchao Lv, Dinei Florencio, and Cha Zhang. A simple yet effective
learnable positional encoding method for improving document transformer model. In Findings of the
Association for Computational Linguistics: AACL-IJCNLP 2022, pp. 453–463, 2022b.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deepnet: Scaling
transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022c.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang, Ruiping
Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models, 2023a, arXiv
preprint arXiv:2310.11453. URL http://arxiv.org/abs/2310.11453.

Liang Wang, Nan Yang, and Furu Wei. Learning to retrieve in-context examples for large language models,
2023b, arXiv preprint arXiv:2307.07164. URL http://arxiv.org/abs/2307.07164.

Ningning Wang, Guobing Gan, Peng Zhang, Shuai Zhang, Junqiu Wei, Qun Liu, and Xin Jiang. Clus-
terformer: Neural clustering attention for efficient and effective transformer. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2390–2402,
2022d.

Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, and Xiang Ren. Scott: Self-consistent
chain-of-thought distillation. In Annual Meeting of the Association for Computational Linguistics, 2023c.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky, Rogerio
Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained models for
efficient transformer training. arXiv preprint arXiv:2303.00980, 2023d.

Shuohuan Wang, Yu Sun, Yang Xiang, Zhihua Wu, Siyu Ding, Weibao Gong, Shikun Feng, Junyuan Shang,
Yanbin Zhao, Chao Pang, Jiaxiang Liu, Xuyi Chen, Yuxiang Lu, Weixin Liu, Xi Wang, Yangfan Bai,
Qiuliang Chen, Li Zhao, Shiyong Li, Peng Sun, Dianhai Yu, Yanjun Ma, Hao Tian, Hua Wu, Tian Wu,
Wei Zeng, Ge Li, Wen Gao, and Haifeng Wang. ERNIE 3.0 titan: Exploring larger-scale knowledge
enhanced pre-training for language understanding and generation. CoRR, abs/2112.12731, 2021b.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Augmenting
language models with long-term memory. arXiv preprint arXiv:2306.07174, 2023e.

59

https://aclanthology.org/2022.emnlp-main.441
http://arxiv.org/abs/2310.11453
http://arxiv.org/abs/2307.07164

Under review as submission to TMLR

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language models
are latent variable models: Explaining and finding good demonstrations for in-context learning. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023f.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao. AdaMix: Mixture-of-adaptations for parameter-efficient model tuning. In Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 5744–5760, Abu Dhabi, United Arab Emirates, Decem-
ber 2022e. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.388. URL
https://aclanthology.org/2022.emnlp-main.388.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions. arXiv preprint
arXiv:2212.10560, 2022f.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang, Xin Jiang,
and Qun Liu. Aligning large language models with human: A survey. arXiv preprint arXiv:2307.12966,
2023g.

Yunhe Wang, Hanting Chen, Yehui Tang, Tianyu Guo, Kai Han, Ying Nie, Xutao Wang, Hailin Hu, Zheyuan
Bai, Yun Wang, et al. Pangu-π: Enhancing language model architectures via nonlinearity compensation.
arXiv preprint arXiv:2312.17276, 2023h.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Multitask prompt
tuning enables parameter-efficient transfer learning. In The Eleventh International Conference on Learning
Representations, 2023i. URL https://openreview.net/forum?id=Nk2pDtuhTq.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed Huai hsin Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. Trans. Mach.
Learn. Res., 2022, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022b. URL https://openreview.net/forum?id=_VjQlMeSB_J.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xianglong
Liu. Outlier suppression+: Accurate quantization of large language models by equivalent and effective
shifting and scaling. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 1648–1665, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.102. URL https:
//aclanthology.org/2023.emnlp-main.102.

Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang Lin, Zihan Liu, and Pascale Fung. Lightweight and effi-
cient end-to-end speech recognition using low-rank transformer. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6144–6148. IEEE, 2020.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow,
Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang,
Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz
Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel,
Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim,

60

https://aclanthology.org/2022.emnlp-main.388
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=_VjQlMeSB_J
https://aclanthology.org/2023.emnlp-main.102
https://aclanthology.org/2023.emnlp-main.102

Under review as submission to TMLR

Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsa-
har, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios,
Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing,
Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra, Leon Weber,
Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud,
María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang,
Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla
Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo,
Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro,
Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya
Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi
Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Vio-
lette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si,
Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea San-
tilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang,
Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful
Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen,
Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish
Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar
Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak
Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang,
Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von
Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi,
Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anasta-
sia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette,
Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra
Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive,
Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton
Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann,
Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena
Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bam-
berger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana
Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh
HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Daniel Mc-
Duff, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi
Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani
Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis
Sanz, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akin-
lolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani,
Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh,
Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo
Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, An-
tonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo Wang, Caio Brito, Chenxi Zhou, Chirag
Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjava-
cas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec,
Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai
Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi,
Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cul-
lan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang,
Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick
Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su,
Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott,
Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya
Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu,

61

Under review as submission to TMLR

Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, and Thomas Wolf. Bloom: A
176b-parameter open-access multilingual language model, 2023, arXiv preprint arXiv:2211.05100. URL
http://arxiv.org/abs/2211.05100.

Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Alborz Geramifard, and Zhou Yu. Memformer: A
memory-augmented transformer for sequence modeling. arXiv preprint arXiv:2010.06891, 2020.

Xiaoxia Wu, Cheng Li, Reza Yazdani Aminabadi, Zhewei Yao, and Yuxiong He. Understanding int4 quanti-
zation for language models: latency speedup, composability, and failure cases. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023a.

Xiaoxia Wu, Zhewei Yao, and Yuxiong He. Zeroquant-fp: A leap forward in llms post-training w4a8 quan-
tization using floating-point formats, 2023b, arXiv preprint arXiv:2307.09782. URL http://arxiv.org/
abs/2307.09782.

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers. arXiv
preprint arXiv:2203.08913, 2022.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learning: An
information compression perspective for in-context example selection and ordering, 2023c, arXiv preprint
arXiv:2212.10375. URL http://arxiv.org/abs/2212.10375.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating language
model pre-training via structured pruning. In Workshop on Advancing Neural Network Training: Com-
putational Efficiency, Scalability, and Resource Optimization (WANT@NeurIPS 2023), 2023. URL
https://openreview.net/forum?id=6s77hjBNfS.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. In International Conference on Machine
Learning, pp. 38087–38099. PMLR, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks. arXiv preprint arXiv:2309.17453, 2023b.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V
Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model
pretraining. In Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL https:
//openreview.net/forum?id=lXuByUeHhd.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language models via
importance resampling. arXiv preprint arXiv:2302.03169, 2023b.

Mingxue Xu, Yao Lei Xu, and Danilo P. Mandic. Tensorgpt: Efficient compression of the embedding layer
in llms based on the tensor-train decomposition. ArXiv, abs/2307.00526, 2023a.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context large language
models. In The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=xw5nxFWMlo.

Qifan Xu and Yang You. An efficient 2d method for training super-large deep learning models. In 2023
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 222–232, 2023. doi:
10.1109/IPDPS54959.2023.00031.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen, Xiaopeng
Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language models. arXiv
preprint arXiv:2309.14717, 2023b.

62

http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2307.09782
http://arxiv.org/abs/2307.09782
http://arxiv.org/abs/2212.10375
https://openreview.net/forum?id=6s77hjBNfS
https://openreview.net/forum?id=lXuByUeHhd
https://openreview.net/forum?id=lXuByUeHhd
https://openreview.net/forum?id=xw5nxFWMlo
https://openreview.net/forum?id=xw5nxFWMlo

Under review as submission to TMLR

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia Hu, and Anshumali Shri-
vastava. Compress, then prompt: Improving accuracy-efficiency trade-off of llm inference with transferable
prompt, 2023c, arXiv preprint arXiv:2305.11186. URL http://arxiv.org/abs/2305.11186.

Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan Li, Ru He, and Jingqiao Zhang. Progressively stacking
2.0: A multi-stage layerwise training method for bert training speedup. arXiv preprint arXiv:2011.13635,
2020.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen. Large
language models as optimizers, 2023a, arXiv preprint arXiv:2309.03409. URL http://arxiv.org/abs/
2309.03409.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and Xia
Hu. Harnessing the power of llms in practice: A survey on chatgpt and beyond. ArXiv, abs/2304.13712,
2023b.

Keming Yang, Zichen Liu, and Philip Cheng, MOSEC: Model Serving made Efficient in the Cloud, 2021,
https://github.com/mosecorg/mosec.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder, and Furu Wei.
Inference with reference: Lossless acceleration of large language models. ArXiv, abs/2304.04487, 2023c.
URL https://api.semanticscholar.org/CorpusID:258048436.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a, arXiv
preprint arXiv:2305.10601. URL http://arxiv.org/abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models, 2023b, arXiv preprint arXiv:2210.03629. URL http:
//arxiv.org/abs/2210.03629.

Xingcheng Yao, Yanan Zheng, Xiaocong Yang, and Zhilin Yang. Nlp from scratch without large-scale
pretraining: A simple and efficient framework. In International Conference on Machine Learning, pp.
25438–25451. PMLR, 2022a.

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. 2x faster language model pre-training via masked
structural growth, 2023c, arXiv preprint arXiv:2305.02869. URL http://arxiv.org/abs/2305.02869.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. Zeroquant:
Efficient and affordable post-training quantization for large-scale transformers. In NeurIPS 2022, 2022b.

Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajbhandari, Xiaoxia Wu, Ammar Ahmad
Awan, Jeff Rasley, Minjia Zhang, Conglong Li, Connor Holmes, Zhongzhu Zhou, Michael Wyatt, Molly
Smith, Lev Kurilenko, Heyang Qin, Masahiro Tanaka, Shuai Che, Shuaiwen Leon Song, and Yuxiong He.
Deepspeed-chat: Easy, fast and affordable rlhf training of chatgpt-like models at all scales, 2023d, arXiv
preprint arXiv:2308.01320. URL http://arxiv.org/abs/2308.01320.

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Zeroquant-v2: Exploring post-
training quantization in llms from comprehensive study to low rank compensation, 2023e, arXiv preprint
arXiv:2303.08302. URL http://arxiv.org/abs/2303.08302.

Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and Mengwei Xu. Edgemoe: Fast on-device
inference of moe-based large language models. arXiv preprint arXiv:2308.14352, 2023.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for transformer-based generative models. In 16th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis. Megabyte:
Predicting million-byte sequences with multiscale transformers. arXiv preprint arXiv:2305.07185, 2023.

63

http://arxiv.org/abs/2305.11186
http://arxiv.org/abs/2309.03409
http://arxiv.org/abs/2309.03409
https://github.com/mosecorg/mosec
https://api.semanticscholar.org/CorpusID:258048436
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2305.02869
http://arxiv.org/abs/2308.01320
http://arxiv.org/abs/2303.08302

Under review as submission to TMLR

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun, Qiang
Wu, Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization for large language
models, 2023a, arXiv preprint arXiv:2304.01089. URL http://arxiv.org/abs/2304.01089.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models, 2023b, arXiv preprint
arXiv:2312.05821. URL http://arxiv.org/abs/2312.05821.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer sequences.
Advances in neural information processing systems, 33:17283–17297, 2020.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi
Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, P. Zhang, Yuxiao
Dong, and Jie Tang. Glm-130b: An open bilingual pre-trained model. ArXiv, abs/2210.02414, 2022. URL
https://api.semanticscholar.org/CorpusID:252715691.

Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao, Zhiwei Wang, Xin Jiang, ZhenZhang Yang, Kaisheng
Wang, Xiaoda Zhang, et al. Pangu-α: Large-scale autoregressive pretrained chinese language models with
auto-parallel computation. arXiv preprint arXiv:2104.12369, 2021.

Mingshu Zhai, Jiaao He, Zixuan Ma, Zan Zong, Runqing Zhang, and Jidong Zhai. Smartmoe: Efficiently
training sparsely-activated models through combining offline and online parallelization. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23), pp. 961–975, 2023.

Chen Zhang, Dawei Song, Zheyu Ye, and Yan Gao. Towards the law of capacity gap in distilling language
models. arXiv preprint arXiv:2311.07052, 2023a.

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan, and Weizhu Chen. Pool-
ingformer: Long document modeling with pooling attention. In International Conference on Machine
Learning, pp. 12437–12446. PMLR, 2021.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without normal-
ization. arXiv preprint arXiv:1901.09321, 2019.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient low-rank
adaptation for large language models fine-tuning, 2023b, arXiv preprint arXiv:2308.03303. URL http:
//arxiv.org/abs/2308.03303.

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, Bohan Zhuang, et al. Pruning meets
low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403, 2023c.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Soaring from 4k to
400k: Extending llm’s context with activation beacon, 2024, arXiv preprint arXiv:2401.03462. URL http:
//arxiv.org/abs/2401.03462.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao.
Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International Conference
on Learning Representations, 2023d. URL https://openreview.net/forum?id=lq62uWRJjiY.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and
Yu Jiao Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init attention. ArXiv,
abs/2303.16199, 2023e.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022a.

Tianyi Zhang, Mina Lee, Lisa Li, Ende Shen, and Tatsunori B Hashimoto. Templm: Distilling language
models into template-based generators. arXiv preprint arXiv:2205.11055, 2022b.

64

http://arxiv.org/abs/2304.01089
http://arxiv.org/abs/2312.05821
https://api.semanticscholar.org/CorpusID:252715691
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462
https://openreview.net/forum?id=lq62uWRJjiY

Under review as submission to TMLR

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 9134–9148,
Abu Dhabi, United Arab Emirates, December 2022c. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.622.

Yue Zhang, Hongliang Fei, Dingcheng Li, and Ping Li. Promptgen: Automatically generate prompts using
generative models. In Findings of the Association for Computational Linguistics: NAACL 2022, pp. 30–37,
2022d.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient generative inference of
large language models. arXiv preprint arXiv:2306.14048, 2023f.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in large
language models. In The Eleventh International Conference on Learning Representations, 2023g. URL
https://openreview.net/forum?id=5NTt8GFjUHkr.

Jiawei Zhao, Florian Schäfer, and Anima Anandkumar. Zero initialization: Initializing neural networks with
only zeros and ones. arXiv preprint arXiv:2110.12661, 2021.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey
of large language models, 2023a, arXiv preprint arXiv:2303.18223. URL http://arxiv.org/abs/2303.
18223.

Weilin Zhao, Yuxiang Huang, Xu Han, Zhiyuan Liu, Zhengyan Zhang, and Maosong Sun. CPET: Effective
parameter-efficient tuning for compressed large language models, 2023b, arXiv preprint arXiv:2307.07705.
URL http://arxiv.org/abs/2307.07705.

Yanli Zhao, Andrew Gu, Rohan Varma, Liangchen Luo, Chien chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Bernard Nguyen, Geeta Chauhan,
Yuchen Hao, and Shen Li. Pytorch fsdp: Experiences on scaling fully sharded data parallel. Proc. VLDB
Endow., 16:3848–3860, 2023c. URL https://api.semanticscholar.org/CorpusID:258297871.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating
inter- and intra-operator parallelism for distributed deep learning. In Proceedings of the 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2022.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. Lima: Less is more
for alignment, 2023a, arXiv preprint arXiv:2305.11206. URL http://arxiv.org/abs/2305.11206.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire
Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning in large
language models, 2023b, arXiv preprint arXiv:2205.10625. URL http://arxiv.org/abs/2205.10625.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V Le,
James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural Information
Processing Systems, 35:7103–7114, 2022.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. Large language models are human-level prompt engineers. In The Eleventh International Conference
on Learning Representations, 2023c. URL https://openreview.net/forum?id=92gvk82DE-.

65

https://aclanthology.org/2022.emnlp-main.622
https://openreview.net/forum?id=5NTt8GFjUHkr
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2307.07705
https://api.semanticscholar.org/CorpusID:258297871
http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/2205.10625
https://openreview.net/forum?id=92gvk82DE-

Under review as submission to TMLR

Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wenhao Wu, Furu Wei, and Sujian Li. Pose: Efficient
context window extension of llms via positional skip-wise training. arXiv preprint arXiv:2309.10400,
2023.

Bohan Zhuang, Jing Liu, Zizheng Pan, Haoyu He, Yuetian Weng, and Chunhua Shen. A survey on efficient
training of transformers. arXiv preprint arXiv:2302.01107, 2023a.

Yonghao Zhuang, Hexu Zhao, Lianmin Zheng, Zhuohan Li, Eric P. Xing, Qirong Ho, Joseph E. Gonzalez,
Ion Stoica, and Hao Zhang. On optimizing the communication of model parallelism. In Proceedings of
Machine Learning and Systems (MLSys), 2023b.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Jianfeng Gao, and Tuo
Zhao. Taming sparsely activated transformer with stochastic experts. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=B72HXs80q4.

66

https://openreview.net/forum?id=B72HXs80q4

	Introduction
	Model-Centric Methods
	Model Compression
	Quantization
	Parameter Pruning
	Low-Rank Approximation
	Knowledge Distillation

	Efficient Pre-Training
	Efficient Fine-Tuning
	Parameter-Efficient Fine-Tuning
	Memory-Efficient Fine-Tuning

	Efficient Inference
	Efficient Architecture Design
	Efficient Attention
	Mixture of Experts (MoE)
	Long Context LLMs
	Transformer-Alternate Architectures

	Data-Centric Methods
	Data Selection
	Data Selection for Efficient Pre-Training
	Data Selection for Efficient Fine-Tuning

	Prompt Engineering
	Few-Shot Prompting
	Prompt Compression
	Prompt Generation

	LLM Frameworks
	Concluding Remarks

