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ABSTRACT

The Canonical Correlation Analysis (CCA) family of methods is foundational in
multiview learning. Regularised linear CCA methods can be seen to generalise
Partial Least Squares (PLS) and be unified with a Generalized Eigenvalue Problem
(GEP) framework. However, classical algorithms for these linear methods are
computationally infeasible for large-scale data. Extensions to Deep CCA show
great promise, but current training procedures are slow and complicated. First
we propose a novel unconstrained objective that characterizes the top subspace
of GEPs. Our core contribution is a family of fast algorithms for stochastic PLS,
stochastic CCA, and Deep CCA, simply obtained by applying stochastic gradient
descent (SGD) to the corresponding CCA objectives. Our algorithms show far
faster convergence and recover higher correlations than the previous state-of-the-
art on all standard CCA and Deep CCA benchmarks. These improvements allow
us to perform a first-of-its-kind PLS analysis of an extremely large biomedical
dataset from the UK Biobank, with over 33,000 individuals and 500,000 features.
Finally, we apply our algorithms to match the performance of ‘CCA-family’ Self-
Supervised Learning (SSL) methods on CIFAR-10 and CIFAR-100 with minimal
hyper-parameter tuning, and also present theory to clarify the links between these
methods and classical CCA, laying the groundwork for future insights.

1 INTRODUCTION

CCA methods learn highly correlated representations of multiview data. The original CCA method
of Hotelling (1933) learns low-dimensional representations from linear transformations. Notable
extensions to ridge-regularized CCA (Vinod, 1976), Partial Least Squares (PLS), and multiview
CCA (Wong et al., 2021) allow one to use CCA in high dimensional regimes, and with three or
more views of data. More recently, a variety of Deep CCA methods (Andrew et al., 2013) have
been proposed which learn representations obtained from non-linear transformations of the data,
parameterized by deep neural networks; Deep CCA has seen excellent empirical results, and is so
foundational for deep multiview learning that it secured a runner-up position for the test-of-time
award at ICML 2023 (ICML, 2023).

However, there are significant computational challenges when applying these CCA methods to large-
scale data. Classical algorithms for linear CCA methods require computing full covariance matri-
ces and so scale quadratically with dimension, becoming intractable for many datasets of practical
interest. There is therefore great interest in approximating solutions for CCA in stochastic or data-
streaming settings (Arora et al., 2012). Large-scale data also challenges existing full-batch algo-
rithms for Deep CCA, and their stochastic counterparts are not only complex to implement but also
difficult to train (Wang et al., 2015b).

Self-supervised learning (SSL) methods are now state-of-the-art in a range of domains, including
image classification (Balestriero et al., 2023). They also learn useful representations of data, usually
from pretext tasks or objectives that exploit some inherent structure or property of the data. Remark-
ably, SSL methods can even perform zero-shot classification: where the representations are learnt
without any explicit labels or supervision. Of particular interest to us is the so-called CCA family of

*Equal contribution.
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SSL methods (Balestriero et al., 2023). Like CCA, these methods aim to transform a pair of views
of data to a pair of similar representations, and notably include Barlow twins (Zbontar et al., 2021)
and VICReg (Bardes et al., 2021), which have become popular in light of empirical successes.

In section 2 we provide a unified approach to all the CCA methods introduced above, emphasizing
objectives which are functions of the joint distributions of the transformed variables. Versions of
all the linear CCA methods can be defined by solutions to certain Generalized Eigenvalue Problems
(GEPs); this provides a particularly convenient way to relate a large number of equivalent objectives.

Section 3 outlines our core conceptual contributions. Firstly, with proposition 3.1 we present an
unconstrained loss function that characterizes solutions to GEPs; this is based on the Eckhart–Young
inequality and has appealing geometrical properties. We apply this to the GEP formulation of CCA
and construct unbiased estimates of the loss and its gradients from mini-batches of data. These loss
functions can therefore be optimized out-of-the-box using standard frameworks for deep learning.
This immediately gives a unified family of algorithms for CCA, Deep CCA, and indeed SSL.

Our CCA algorithms dominate existing state-of-the-art methods across a wide range of benchmarks,
presented in section 5. For stochastic CCA, our method not only converges faster but also achieves
higher validation correlation scores than existing techniques. For Deep CCA and Deep Multiview
CCA, our unbiased stochastic gradients yield significantly better validation correlations and allow
the use of smaller mini-batches in memory constrained applications. We also demonstrate the prac-
tical utility of our algorithms with a pioneering real-world case study. We apply stochastic Partial
Least Squares (PLS) to an extremely high-dimensional dataset from the UK Biobank – executing a
biomedical analysis previously deemed intractable – all on a standard laptop.

Finally, our SSL method achieves comparable performance to VICReg and Barlow twins, despite
having no hyperparameters in the objective. This frees computational resources to tune more critical
hyperparameters, such as architecture, optimizer or augmentations. Our method also appears more
robust to these other hyperparameters, has a clear theoretical foundation, and naturally generalizes
to the multiview setting. In addition, we present theory in section 3.4 and appendix D which gives
a more thorough description of how the existing SSL methods of Barlow twins and VICReg relate
to CCA than in the previous work of Balestriero & LeCun (2022); we hope better understanding of
these methods may lead to more principled empirical advances.

2 A UNIFIED APPROACH TO THE CCA FAMILY

Suppose we have a sequence of vector-valued random variables X(i) ∈ RD(i)

for i ∈ {1, . . . , I}1.
We want to learn meaningful K-dimensional representations

Z(i) = f (i)(X(i); θ(i)). (1)

For convenience, define D =
∑I

i=1D
(i) and θ =

(
θ(i)
)I
i=1

. We will consistently use the super-
scripts i, j ∈ [I] for views and subscripts l, k ∈ [K] for dimensions of representations - i.e. to
subscript dimensions of Z(i), f (i). Later on, we will introduce total number of samples N and
mini-batch size M .

2.1 BACKGROUND: GEPS IN LINEAR ALGEBRA

A Generalized Eigenvalue Problem (GEP) is defined by two symmetric matrices A,B ∈ RD×D

(Stewart & Sun, 1990)2. They are usually characterized by the set of solutions to the equation:

Au = λBu (2)

with λ ∈ R, u ∈ RD, called (generalized) eigenvalue and (generalized) eigenvector respectively.
We shall only consider the case where B is positive definite to avoid degeneracy. Then the GEP
becomes equivalent to an eigen-decomposition of the symmetric matrix B91/2AB91/2. This is key
to the proof of our new characterization. In addition, one can find a basis of eigenvectors spanning
RD. We define a top-K subspace to be one spanned by some set of eigenvectors u1, . . . , uK with

1A helpful mnemonic: there are I (eye) views.
2More generally, A,B can be Hermitian, but we are only interested in the real case.
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the top-K associated eigenvalues λ1 ≥ · · · ≥ λK . We say a matrix U ∈ RD×K defines a top-K
subspace if its columns span one.

2.2 THE CCA FAMILY

The classical notion CCA (Hotelling, 1992) considers two views, I = 2, and constrains the repre-
sentations to be linear transformations

Z
(i)
k = ⟨u(i)k , X(i)⟩. (3)

The objective is to find the weights or canonical directions u(i)k which maximize the canonical
correlations ρk = Corr(Z

(1)
k , Z

(2)
k ) sequentially, subject to orthogonality with the previous pairs of

the transformed variables. It is well known that CCA is equivalent to a singular value decomposition
(SVD) of the matrix Var(X(1))9

1/2Cov(X(1), X(2))Var(X(2))9
1/2. It is slightly less well known

(Borga, 1998) that this is equivalent to a GEP where:

A =

(
0 Cov(X(1), X(2))

Cov(X(2), X(1)) 0

)
, B =

(
Var(X(1)) 0

0 Var(X(2))

)
, u =

(
u(1)

u(2)

)
. (4)

CCA therefore has notions of uniqueness similar to those for SVD or GEPs: the weights are not in
general unique, but the canonical correlations 1 ≥ ρ1 ≥ ρ2 ≥ · · · ≥ 0 are unique (Anderson, 2003).
Therefore, we can write:

CCAK(X(1), X(2)) := (ρk)
K
k=1 (5)

Sample CCA: in practice we do not have access to the population distribution but to a finite number
of samples; the classical estimator is defined by replacing the population covariances in eq. (4) with
sample covariances. Unfortunately, this estimator breaks down whenN ≤ max(D(1), D(2)); giving
arbitrary correlations of 1 and meaningless directions3.

Ridge-regularized CCA: the most straightforward way to prevent this overfitting is to add a ridge
regularizer (Vinod, 1976). Taking maximal ridge regularization recovers Partial Least Squares
PLS (Mihalik et al., 2022), a widely used technique for multiview learning. Even these simple
modifications to CCA can be very effective at preventing overfitting in high dimensions (Mihalik
et al., 2022).

multiview CCA (MCCA): extends two-view CCA to deal with three or more views of data. Unfor-
tunately, many of the different equivalent formulations of two-view CCA are no longer equivalent
in the multiview setting, so there are many different extensions to choose from; see section 4. Of
most interest to us is the formulation of Nielsen (2002); Wong et al. (2021) that extends the GEP
formulation of eq. (4), which we next make precise and will simply refer to as MCCA from now.

Unified GEP formulation: this GEP formulation of MCCA can be presented in a unified framework
generalizing CCA and ridge-regularized extensions. Indeed, we now take A,Bα ∈ RD×D to be
block matrices A = (A(ij))Ii,j=1, Bα = (B

(ij)
α )Ii,j=1 where the diagonal blocks of A are zero, the

off-diagonal blocks of Bα are zero, and the remaining blocks are defined by:
A(ij) = Cov(X(i), X(j)) for i ̸= j, B(ii)

α = αiID(i) + (1− αi)Var(X
(i)) (6)

Where α ∈ [0, 1]I is a vector of ridge penalty parameters: taking αi = 0 ∀i recovers CCA and
αi = 1 ∀i recovers PLS. We may omit the subscript α when α = 0 and we recover the ‘pure CCA’
setting; in this case, following eq. (5) we can define MCCAK(X(1), . . . , X(I)) to be the vector of
the top-K generalized eigenvalues.

Deep CCA: was originally introduced in Andrew et al. (2013); this was extended to an GEP-based
formulation of Deep multiview CCA (DMCCA) in Somandepalli et al. (2019). This can be defined
using our MCCA notation as maximizing

∥MCCAK

(
Z(1), ...Z(I)

)
∥2 (7)

over parameters θ of neural networks defining the representations Z(i) = f (i)(X(i); θ(i)) for i ∈ [I].
3WLOG take D(1) ≥ max(N,D(2)). Then for any given observations X(1) ∈ RN×K ,Z

(2)
k ∈ RN there

exists some u
(1)
k such that X(1)⊤u

(1)
k = Z

(2)
k - provided the observations of X(1) are not linearly dependent -

which is e.g. true with probability 1 when the observations are drawn from a continuous probability distribution.
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3 NOVEL OBJECTIVES AND ALGORITHMS

3.1 UNCONSTRAINED OBJECTIVE FOR GEPS

First, we present proposition 3.1, a formulation of the top-K subspace of GEP problems, which
follows by applying the Eckhart–Young–Minsky inequality (Stewart & Sun, 1990) to the eigen-
decomposition of B91/2AB91/2. However, making this rigorous requires some technical care which
we defer to the proof in supplement A.
Proposition 3.1 (Eckhart–Young inspired objective for GEPs). The top-K subspace of the GEP
(A,B) can be characterized by minimizing the following objective over U ∈ RD×K:

LGEP-EY(U) := trace
(
−2U⊤AU +

(
U⊤BU

) (
U⊤BU

))
(8)

Moreover, the minimum value is precisely −
∑K

k=1 λ
2
k, where (λk) are the generalized eigenvalues.

This objective also has appealing geometrical properties. It is closely related to a wide class of
unconstrained objectives for PCA and matrix completion which have no spurious local optima (Ge
et al., 2017), i.e. all local optima are in fact global optima. This implies that certain local search
algorithms, such as stochastic gradient descent, should indeed converge to a global optimum.
Proposition 3.2. The objective LGEP-EY has no spurious local minima. That is, any matrix Ū that is
a local minimum of LGEP-EY must in fact be a global minimum.

It is also possible to make this argument quantitative by proving a version of the strict saddle property
from Ge et al. (2017; 2015); we state an informal version here and give full details in appendix B.
Corollary 3.3 (Informal: Polynomial-time Optimization). Under certain conditions on the eigen-
values and generalized eigenvalues of (A,B), one can make quantitative the claim that: any
UK ∈ RD×K is either close to a global optimum, has a large gradient ∇LGEP-EY, or has Hessian
∇2LGEP-EY with a large negative eigenvalue.

Therefore, for appropriate step-size sequences, certain local search algorithms, such as sufficiently
noisy SGD, will converge in polynomial time with high probability.

3.2 CORRESPONDING OBJECTIVES FOR THE CCA FAMILY

For the case of linear CCA we have U⊤AU =
∑

i̸=j Cov(Z
(i), Z(j)), U⊤BU =

∑
i Var(Z

(i)).
To extend this to the general case of nonlinear transformations, eq. (1), we define the analogous
matrices of total between-view covariance and total within-view variance

C(θ) =
∑
i ̸=j

Cov(Z(i), Z(j)), V (θ) =
∑
i

Var(Z(i)) (9)

For linear transformations, eq. (3), it makes sense to add a ridge penalty so we can define

Vα(θ) =
∑
i

αiU
(i)⊤U (i) + (1− αi)Var(Z

(i)) (10)

This leads to the following unconstrained objective for the CCA-family of problems.
Definition 3.4 (Family of EY Objectives). Learn representationsZ(i) = f (i)(X(i); θ(i)) minimizing

LEY(θ) = −2 traceC(θ) + ∥Vα(θ)∥2F (11)

Unbiased estimates: since empirical covariance matrices are unbiased, we can construct unbiased
estimates to C, V from a batch of transformed variables Z.

Ĉ(θ)[Z] =
∑
i ̸=j

Ĉov(Z(i),Z(j)), V̂ (θ)[Z] =
∑
i

V̂ar(Z(i)) (12)

In the linear case we can construct V̂α(θ)[Z] analogously by plugging sample covariances into
eq. (10). Then if Z,Z′ are two independent batches of transformed variables, the batch loss

L̂EY[Z,Z
′] := −2 trace Ĉ[Z] + ⟨V̂α[Z], V̂α[Z′]⟩F (13)

gives an unbiased estimate of LEY(θ).This loss is a differentiable function of Z,Z′ and so also of θ.

Simple algorithms: We first define a general algorithm using these estimates in Algorithm 1. In the
next section we apply this algorithm to multiview stochastic CCA (CCA-EY) and PLS (PLS-EY),
Deep CCA (DCCA-EY), and SSL (SSL-EY).
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Algorithm 1: GEP-EY: General algorithm for learning correlated representations
Input: data stream of mini-batches (X(b))∞b=1 where each consists of M samples from the
original dataset. Learning rate (ηt)t. Number of time steps T . Class of functions f(·; θ) whose
outputs are differentiable with respect to θ.
Initialize: θ̂ with suitably random entries
for t = 1 to T do

Obtain two independent mini-batches X(b),X(b′) by sampling b, b′ independently
Compute batches of transformed variables Z(b) = f(X(b); θ),Z(b′) = f(X(b′); θ)

Estimate loss L̂EY(θ) using eq. (13)
Obtain gradients by back-propagation and step with your favourite optimizer.

end for

3.3 APPLICATIONS TO MULTIVIEW STOCHASTIC CCA AND PLS, AND DEEP CCA

Lemma 3.5 (Objective recovers GEP formulation of linear multiview CCA). When the f (i) are
linear, as in eq. (3), the population loss from eq. (11) recovers MCCA as defined in section 2.2.

Proof. By construction, for linear MCCA we have C = U⊤AU, Vα = U⊤BαU , where (A,Bα)
define the GEP for MCCA introduced in eq. (6). So LEY(U) = LGEP-EY(U) and by proposition 3.1
the optimal set of weights define a top-K subspace of the GEP, and so is a MCCA solution.

Moreover, by following through the chain of back-propagation, we obtain gradient estimates in
O(MKD) time. Indeed, we can obtain gradients for the transformed variables in O(MK2) time so
the dominant cost is then updating U ; we flesh this out with full details in appendix E.
Lemma 3.6. [Objective recovers Deep multiview CCA] Assume that there is a final linear layer in
each neural network f (i). Then at any local optimum, θ̂, of the population problem, we have

LEY(θ̂) = −∥MCCAK(Ẑ)∥22

where Ẑ = fθ̂(X). Therefore, θ̂ is also a local optimum of objectives from Andrew et al. (2013);
Somandepalli et al. (2019) as defined in eq. (7).

Proof sketch: see appendix C.2.1 for full details. Consider treating the penultimate-layer represen-
tations as fixed, and optimising over the weights in the final layer. This is precisely equivalent to
optimising the Eckhart-Young loss for linear CCA where the input variables are the penultimate-
layer representations. So by proposition 3.2, a local optimum is also a global optimum, and by
proposition 3.1 the optimal value is the negative sum of squared generalised eigenvalues.

3.4 APPLICATION TO SSL

We can directly apply Algorithm 1 to SSL. If we wish to have the same neural network transforming
each view, we can simply tie the weights θ(1) = θ(2). When the paired data are generated from
applying independent, identically distributed (i.i.d.) augmentations to the same original datum, it is
intuitive that tying the weights is a sensible procedure, and perhaps acts as a regulariser. We make
certain notions of this intuition precise for CCA and Deep CCA in appendix C.

To provide context for this proposal, we also explored in detail how VICReg and Barlow twins are
related to CCA. For now we focus on VICReg, whose loss can be written as

LVR(Z
(1), Z(2)) = γE∥Z(1) − Z(2)∥2 +

∑
i∈{1,2}

[
α

K∑
k=1

(
1 9
√

Var(Z
(i)
i )

)
+

+ β
K∑

k,l=1
k ̸=l

Cov(Z
(i)
k , Z

(i)
l )2

]

where α, β, γ > 0 are tuning parameters and, as in the framework of section 2, the Z(1), Z(2) are
K-dimensional representations, parameterised by neural networks in eq. (1). The heuristic behind
this loss is that the γ-term encourages the pair of representations to be similar (Invariance), the β-
term encourages different components of the representations to be uncorrelated (Covariance), and
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the α-term enforces strictly positive variance of each component (Variance). Our main conclusions
regarding optima of the population loss are as follows.

• Consider the linear setting with untied weights. Then global optimisers of the VICReg loss
define CCA subspaces, but may not be of full rank.

• Consider the linear setting with tied weights and additionally assume that the data are gen-
erated by i.i.d. augmentations. Then the same conclusion holds.

• In either of these settings, the optimal VICReg loss is a component-wise decreasing func-
tion of the vector of population canonical correlations CCAK(X(1), X(2)).

• VICReg can therefore be interpreted as a formulation of Deep CCA, but one that will not
in general recover full rank representations.

We give full mathematical details and further discussion in appendix D. The population loss for Bar-
low twins is motivated by similar heuristics, encouraging uncorrelated components and similarity
between views, but is naturally viewed as explicitly constraining each component to have unit vari-
ance one. This makes the analysis for Barlow twins more difficult, but we present a combination of
mathematical and empirical arguments which suggest all the same conclusions hold as for VICReg,
again see appendix D for full details.

4 RELATED WORK

Stochastic PLS and CCA: To the best of our knowledge, the state-of-the-art in Stochastic PLS
and CCA are the subspace Generalized Hebbian Algorithm (SGHA) of Chen et al. (2019) and γ-
EigenGame from Gemp et al. (2020; 2021), which we use as benchmarks in the following section.
Specifically, SGHA utilizes a Lagrange multiplier heuristic along with saddle-point analysis, albeit
with limited convergence guarantees. EigenGame focuses on top-K subspace learning but intro-
duces an adaptive whitening matrix in the stochastic setting with an additional hyperparameter. Like
our method, both can tackle other symmetric Generalized Eigenvalue Problems in principle.

DCCA and Deep Multiview CCA: The deep canonical correlation analysis (DCCA) landscape
comprises three principal approaches with inherent limitations. The first, known as the full-batch
approach, uses analytic gradient derivations based on the full sample covariance matrix (Andrew
et al., 2013). The second involves applying the full batch objective to large mini-batches, an ap-
proach referred to as DCCA-STOL (Wang et al., 2015a). However, this approach gives biased gra-
dients and therefore requires batch sizes much larger than the representation size in practice. This
is the approach taken by both DMCCA (Somandepalli et al., 2019) and DGCCA (Benton et al.,
2017) . The final set of approaches use an adaptive whitening matrix (Wang et al., 2015b; Chang
et al., 2018) to mitigate the bias of the Deep CCA objective. However, the authors of DCCA-NOI
highlight that the associated time constant complicates analysis and requires extensive tuning. These
limitations make existing DCCA methods less practical and resource-efficient.

Self-Supervised Learning: We are most interested in comparisons to Barlow twins and VICReg
because of their empirical success, and known relationship to CCA; we believe the most comprehen-
sive existing theoretical analysis of this relationship is in Balestriero & LeCun (2022), however this
only applies to a subset of possible VICReg parameters, appears incomplete for Barlow twins, and
does not include discussion of the rank of representations. For a wider perspective on SSL meth-
ods and their applications we recommend the review of (Balestriero et al., 2023), and the efficient
implementations available in solo-learn Da Costa et al. (2022).

5 EXPERIMENTS

5.1 EVALUATING CCA-EY FOR STOCHASTIC CCA

First, we compare our proposed method, CCA-EY, to the baselines of γ-EigenGame and SGHA.
Our experimental setup is almost identical to that of Meng et al. (2021); Gemp et al. (2022). Unlike
Gemp et al. (2022), we do not simplify the problem by first performing PCA on the data before
applying the CCA methods, which explains the decrease in performance of γ-EigenGame compared
to their work. All models are trained for a single epoch with varying mini-batch sizes ranging from
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(a) (b)

Figure 1: Stochastic CCA on MediaMill using the Proportion of Correlation Captured (PCC) metric:
(a) Across varying mini-batch sizes, trained for a single epoch, and (b) Training progress over a
single epoch for mini-batch sizes 5, 100. Shaded regions signify ± one standard deviation around
the mean of 5 runs.

(a) (b)

Figure 2: Deep CCA on SplitMNIST using the Validation TCC metric: (a) after training each model
for 50 epochs with varying batch sizes; (b) learning progress over 50 epochs.

5 to 100. We use Proportion of Correlation Captured (PCC) as our evaluation metric, defined as
PCC = (

∑K
i=k ρk)/(

∑K
k=1 ρ

∗
k) where ρk are the full batch correlations of the learnt representations,

and ρ∗k are the canonical correlations computed numerically from the full batch covariance matrices.

Observations: Figure 1 compares the algorithms on the MediaMill dataset. fig. 1a shows that CCA-
EY consistently outperforms both γ-EigenGame and SGHA in terms of PCC across all evaluated
mini-batch sizes. fig. 1b examines the learning curves for batch sizes 5 and 100 in more detail;
CCA-EY appears to learn more slowly than SGHA at the start of the epoch, but clearly outperforms
SGHA as the number of samples seen increases. γ-EigenGame significantly underperforms SGHA
and CCA-EY, particularly for small batch sizes.

Further experiments: we conduct analogous experiments on the Split CIFAR dataset in supple-
mentary material F and observe identical behaviour.

5.2 EVALUATING DCCA-EY FOR DEEP CCA

Second, we compare DCCA-EY against the DCCA methods described in section 4. The experimen-
tal setup is identical to that of Wang et al. (2015b). We learn K = 50 dimensional representations,
using mini-batch sizes ranging from 20 to 100 and train for 50 epochs. Because there is no longer
a ground truth, we have to use Total Correlation Captured (TCC), given by TCC =

∑K
i=k ρk where

ρk are now the empirical correlations between the representations on a validation set.

Observations: Figure 2 compares the methods on the splitMNIST dataset. DCCA-STOL captures
significantly less correlation than the other methods, and breaks down when the mini-batch size
is less than the dimension K = 50 due to low rank empirical covariances. DCCA-NOI performs
similarly to DCCA-EY but requires careful tuning of an additional hyperparameter, and shows sig-
nificantly slower speed to convergence (Figure 2b).

Further experiments: we conduct analogous experiments on the XRMB dataset in supplementary
material G and observe identical behaviour.
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(a) (b)

Figure 3: Deep multiview CCA on mfeat using the Validation TMCC metric: (a) after training each
model for 100 epochs with varying batch sizes; (b) learning progress over 100 epochs.

5.3 EXTENDING DCCA-EY TO THE MULTIVIEW SETTING

Third, we compare DCCA-EY to the existing DMCCA and DGCCA methods on the mfeat dataset;
this contains 2,000 handwritten numeral patterns across six distinct feature sets, including Fourier
coefficients, profile correlations, Karhunen-Love coefficients, pixel averages in 2 × 3 windows,
Zernike moments, and morphological features. We again learnK = 50 dimensional representations,
but now train for 100 epochs. We use a multiview extension of the TCC metric, which averages
correlation across views; we call this Total Multiview Correlation Captured (TMCC), defined as
TMCC =

∑K
k=1

1
I(I−1)

∑
i,j≤I,i̸=j corr(Z(i)

k , Z
(j)
k ), using the notation of section 2.

Observations: Figure 3a shows that DCCA-EY consistently outperforms both DGCCA and DM-
CCA across various mini-batch sizes in capturing validation TMCC. Just like DCCA-NOI, DMCCA
breaks down when the batch size is smaller than K. This is due to singular empirical covariances;
DGCCA does not break down, but does significantly underperform with smaller batch sizes. This
limits their practical applicability to large-scale data. Figure 3b shows learning curves for batch
sizes 50 and 100. DMCCA and DGCCA both quickly learn significant correlations but then plateau
out; our method consistently improves, and significantly outperforms them by the end of training.

5.4 SCALING PLS TO THE UK BIOBANK WITH PLS-EY

Next, we demonstrate the scalability of our methods to extremely high-dimensional data by applying
stochastic PLS to imaging genetics data from the UK Biobank (Sudlow et al., 2015). PLS is typi-
cally used for imaging-genetics studies owing to the extremely high dimensionality of genetics data
requiring lots of regularisation. PLS can reveal novel phenotypes of interest and uncover relation-
ships between genetic mechanisms of disease and brain morphometry. Previous imaging genetics
analyses using full-batch PLS were limited to much smaller datasets (Lorenzi et al., 2018; Taquet
et al., 2021; Édith Le Floch et al., 2012). The only other analysis on the UK Biobank at comparable
scale partitions the data into clusters and bootstraps local PLS solutions on these clusters (Lorenzi
et al., 2017; Altmann et al., 2023). We ran PLS-EY with mini-batch size 500 on brain imaging (82
regional volumes) and genetics (582,565 variants) data for 33,333 subjects. See supplement (Sec-
tion I.3.4) for data pre-processing details. To our knowledge, this is the largest-scale PLS analysis
of biomedical data to-date.

Observations: We see strong validation correlation between all 10 corresponding pairs of vectors
in the PLS subspace and weak cross correlation, indicating that our model learnt a coherent and or-
thogonal subspace of covariation (Figure 4a), a remarkable feat for such high-dimensional data. We
found that the PLS brain subspace was associated with genetic risk measures for several disorders
(Figure 4b), suggesting that the PLS subspace encodes relevant information for genetic disease risk,
a significant finding for biomedical research.

5.5 APPLYING SSL-EY FOR PRINCIPLED SELF-SUPERVISED LEARNING

Finally, we benchmark our self-supervised learning algorithm, SSL-EY, with Barlow twins and VI-
CReg on CIFAR-10 and CIFAR-100. Each dataset contains 60,000 labelled images, but these are
over 10 classes for CIFAR-10 and 100 classes for CIFAR-100.
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(a) (b)

Figure 4: (a) Correlations between PLS components for UK Biobank. (b) Correlations between
PLS brain components and genetic risk scores. AD=Alzheimer’s disease, SCZ=Schizophrenia,
BP=Bipolar, ADHD=Attention deficit hyperactivity disorder, ALS=Amyotrophic lateral sclerosis,
PD=Parkinson’s disease, EPI=Epilepsy. ns : 0.05 < p <= 1, ∗ : 0.01 < p <= 0.05, ∗∗ : 0.001 <
p <= 0.01, ∗ ∗ ∗ : 0.0001 < p <= 0.001.

Method CIFAR-10 Top-1 CIFAR-10 Top-5 CIFAR-100 Top-1 CIFAR-100 Top-5
Barlow twins 92.1 99.73 71.38 92.32
VICReg 91.68 99.66 68.56 90.76
SSL-EY 91.43 99.75 67.52 90.17

Table 1: Performance comparison of SSL methods on CIFAR-10 and CIFAR-100.

We follow a standard experimental design (Tong et al., 2023), and use solo-learn (Da Costa et al.,
2022), which offers optimized setups particularly tailored for VICReg and Barlow twins. All meth-
ods utilize a ResNet-18 encoder coupled with a bi-layer projector network. Training spans 1,000
epochs with batches of 256 images. For SSL-EY, we use the hyperparameters optimized for Barlow
twins, aiming not to outperform but to showcase the robustness of our method. We predict labels
via a linear probe on the learnt representations and evaluate performance with Top-1 and Top-5
accuracies on the validation set. For more details, refer to the supplementary material I.3.

Observations: Table 1 shows that SSL-EY is competitive with Barlow twins and VICReg. This is
remarkable because we used out-of-the-box hyperparameters for SSL-EY but used hyperparameters
for Barlow twins and VICReg that had been heavily optimized in previous studies.

Further experiments included in appendix H show that the learning curves for all three methods
are comparable, and that our method is much more stable when reducing the dimension of the learnt
representations.

6 CONCLUSION

In this paper, we introduced a class of efficient, scalable algorithms for Canonical Correlation Anal-
ysis and Self-Supervised Learning, rooted in a novel unconstrained loss function. These algorithms
are computationally lightweight, making them uniquely suited for large-scale problems where tra-
ditional methods struggle.

We have two distinct avenues for future research. Firstly, we aim to incorporate regularization tech-
niques to improve both generalizability and interpretability, building upon existing sparse methods
in CCA (Witten & Tibshirani, 2009). We also intend to investigate the utility of correlation as a met-
ric for measuring the quality of learnt representations. This holds the potential to replace traditional
validation methods like classification accuracy, especially in situations where validation labels are
not available.

In summary, this paper sets a new benchmark for addressing large-scale CCA problems and opens
new avenues in self-supervised learning, paving the way for more accessible and efficient solutions
in various applications.
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Gratten, Michael F Green, Tiffany A Greenwood, Olivier Guillin, Sinan Gülöksüz, Raquel E Gur,
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Gian Battista Tura, Bruce I Turetsky, Alp Üçok, Arne Vaaler, Therese van Amelsvoort, Ruud
van Winkel, Juha Veijola, John Waddington, Henrik Walter, Anna Waterreus, Bradley T Webb,
Mark Weiser, Nigel M Williams, Stephanie H Witt, Brandon K Wormley, Jing Qin Wu, Zhida
Xu, Robert Yolken, Clement C Zai, Wei Zhou, Feng Zhu, Fritz Zimprich, Eşref Cem Atbaşoğlu,
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A ECKHART-YOUNG CHARACTERIZATION OF GEP SUBSPACE

Our characterisation of the top-K subspace of GEPs with the GEP-EY loss is given in appendix A.4;
the key to the proof is the algebraic manipulation in eq. (16), which reduces our GEP-EY loss to the
form of the loss that appears in the Eckhart-Young inequality. However, we will need a non-standard
formulation of the Eckhart-Young inequality to apply to this term; we state this as corollary A.10,
and build machinery to prove it over the following two subsections.

A.1 FORMAL DEFINITIONS

There are various different notations and conventions for GEPs and SVDs. We largely follow the
standard texts on Matrix Analysis (Stewart & Sun, 1990; Bhatia, 1997) but seek a more careful han-
dling of the equality cases of certain results. To help, we use the following non-standard definitions,
largely inspired by Carlsson (2021).

Definition A.1 (Top-K subspace). Let the GEP (A,B) on RD have eigenvalues λ1 ≥ · · · ≥ λD.
Then a top-K subspace is that spanned by some u1, . . . , uK , where uk is a λk-eigenvector of (A,B)
for k = 1, . . . ,K.

Definition A.2 (B-orthonormality). LetB ∈ RD×D be strictly positive definite. Then we say a col-
lection u1, . . . , uK ∈ RD of vectors is B-orthonormal if u⊤k Bul = δkl for each k, l ∈ {1, . . . ,K}.

Definition A.3 (Top-K matrix). We say U ∈ RD×K is a top-K matrix for a GEP (A,B) if the kth

column uk of U is a λk-eigenvector for each k and the columns are B-orthonormal.

A.2 STANDARD ECKHART–YOUNG INEQUALITY

Theorem A.4 (Eckhart–Young). Let M ∈ Rp×q . Then M̂ minimises ∥M − M̃∥F over matrices M̃
of rank at most K if and only if M̂ = AKRKB

⊤
K where (AK , RK , BK) is some top-K SVD of the

target M .

Proof. Let M,M̃ have singular values σk, σ̃k respectively. Since M̃ has rank at most K we must
have σ̃k = 0 for k > K.

Then by von Neumann’s trace inequality (Carlsson, 2021),

⟨M,M̃⟩F ≤
K∑

k=1

σkσ̃k

with equality if and only if M, M̃ ‘share singular vectors’; the notion of sharing singular vectors is
defined as in Carlsson (2021) and in this case means that M̃ = AKR̃KBK where (AK , RK , BK) is
some top-K SVD of M and R̃K is a diagonal matrix with decreasing diagonal elements σ̃1 ≥ · · · ≥
σ̃K .

Expanding out the objective and applying this inequality gives

∥M̃ −M∥2F ≥
D∑

k=1

σ2
k − 2

K∑
k=1

σkσ̃k +

K∑
k=1

σ̃2
k

=

D∑
k=K+1

σ2
k +

K∑
k=1

(σk − σ̃k)
2

≥
D∑

k=K+1

σ2
k

so indeed to have equality in both cases requires σk = σ̃k for each k ≤ K so indeed R̃K = RK and
so M̂ , as defined in the statement of the theorem, minimises ∥M − M̃∥F over matrices M̃ of rank
at most K.

19



A.3 ECKHART–YOUNG FOR FACTORED ESTIMATOR OF SYMMETRIC TARGET

Lemma A.5 (Matrix square root lemma). Suppose we have two full rank matrices E,F ∈ RD×K

where K ≤ D and such that EE⊤ = FF⊤; then there exists an orthogonal matrix O ∈ RK×K

with E = FO.

Proof. Post multiplying the defining condition gives EE⊤E = FF⊤E. Then right multiplying by
(E⊤E)−1 gives

E = FF⊤E(E⊤E)−1 =: FO

to check that O as defined above is orthogonal we again use the defining condition to compute

O⊤O = (E⊤E)−1E⊤FF⊤E(E⊤E)−1 = (E⊤E)−1E⊤EE⊤E(E⊤E)−1 = IK

Remark A.6 (Tilde convention). In the rest of this section, the tildes above the quantity W̃ be-
low is to indicate that said matrix may not have orthonormal columns, whereas quantities without
tildes (WK ,W+,W−) implicitly do have orthonormal columns. A similar convention applies in the
following subsection with the matrices Ũ , UK .
Corollary A.7 (Eckhart–Young for factored estimator of PSD target). LetM ∈ RD×D be symmetric
positive semidefinite. Then

argmin
W̃∈RD×K

∥M − W̃W̃⊤∥2F

is precisely the set of W̃ of the form W̃ = WKΛ
1/2
K OK for some top-K eigenvector-matrix WK

of the GEP (M, I) and some orthogonal OK ∈ O(K), and where ΛK is a diagonal matrix of the
top-K eigenvalues.

Proof. First note that when M is positive semi-definite the SVD coincides with the eigendecompo-
sition.

Second note that taking W̃ =WKΛ
1/2
K OK attains the minimal value by the Eckhart–Young inequal-

ity, Theorem A.4.

Next note that if W̃ attains the minimal value then it must have W̃W̃⊤ = WKΛKW
⊤
K by the

equality case of Eckhart–Young. Then by matrix square root Lemma A.5 we must indeed have
W̃ =WKΛ

1/2
K OK for some orthogonal OK .

To convert this to the case of a general symmetric target (with possible negative eigenvalues), we
use the following decomposition of a matrix into a sum of matrices corresponding to its positive and
negative eigenvalues respectively. We will also find the following terminology helpful.
Definition A.8 (Non-negative eigenspace). Let M ∈ RD×D be a symmetric matrix. Then the
non-negative eigenspace of M is defined as the span of the eigenvectors of M with non-negative
eigenvalues.
Remark A.9 (Decomposition of matrix into positive and negative eigenspaces). Let M ∈ RD×D

be a symmetric matrix. Write Λ+ for the diagonal matrix containing the strictly positive eigenvalues
of M and Λ− for the strictly negative eigenvalues; let the corresponding eigenvectors be arranged
in the matrices W+,W− respectively. Define M+ := W+Λ+W

⊤
+ , M− := W−Λ−W

⊤
− . Then M+

is positive semi-definite, M− is negative semi-definite, M = M+ +M− and ⟨M+,M−⟩F = 0 by
the orthogonality of eigenvectors of M .
Corollary A.10 (Eckhart–Young for factored estimator of symmetric target). Let M ∈ RD×D be
symmetric with eigenvalues λ1 ≥ · · · ≥ λD such that λK > 0. Then

argmin
W̃∈RD×K

∥M − W̃W̃⊤∥2F

is precisely the set of W̃ of the form W̃ = WKΛ
1/2
K OK for some top-K eigenvector-matrix WK

of the GEP (M, I) and some orthogonal OK ∈ O(K), and where ΛK is a diagonal matrix of the
top-K eigenvalues.
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Proof. Let W̃ ∈ RD×K . WriteM =M++M− as in remark A.9, and suppose there areD+ strictly
positive and D− strictly negative eigenvalues of M respectively. Then we can expand out

∥M − W̃W̃⊤∥2 = ∥M+ − W̃W̃⊤∥2︸ ︷︷ ︸
≥
∑D+

k=K+1 λ2
k

+2 ⟨−M−, W̃ W̃ ⟩F︸ ︷︷ ︸
≥0

+2 ⟨M−,M+⟩F︸ ︷︷ ︸
0

+ ∥M−∥2︸ ︷︷ ︸∑D
k=D−D−+1 λ2

k

,

(14)

where the ‘underbraced’ (in)equalities below the equation follow from: applying corollary A.7 to
M+, using that −M− is positive semi-definite, the orthogonality of M− to M+, and the definition
of M− in terms of the eigenvalues of M , respectively. Combining the terms gives

∥M − W̃W̃⊤∥2 ≥
D∑

k=K+1

λ2k , (15)

as claimed.

Moreover, from the equality case of corollary A.7, equality holds in the first inequality precisely
when W̃ = WKΛ

1/2
K OK , and for such a W̃ , ⟨M−, W̃ W̃ ⟩F = 0 in fact there is also equality in the

second inequality and therefore in the whole expression, as required.

A.4 GEP-EY OBJECTIVE

Proposition A.11 (GEP-EY-Objective). Consider the GEP (A,B) withA symmetric andB positive
definite; suppose there are at least K strictly positive (generalized) eigenvalues. Then:

argmax
Ũ∈RD×k

trace
{
2
(
Ũ⊤AŨ

)
−
(
Ũ⊤BŨ

)(
Ũ⊤BŨ

)}
is precisely the set of Ũ of the form Ũ = UKΛ

1/2
K OK for some top-K matrix UK of the GEP and

some orthogonal OK ∈ O(K), where ΛK is a diagonal matrix of the top-K eigenvalues.

Moreover, the maximum value is precisely −
∑K

k=1 λ
2
k.

Proof. First note that there is a bijection between eigenvectors u for the GEP (A,B) and eigenvec-
tors w = B

1/2u for the GEP (M, I) where M := B91/2AB91/2 (e.g. see Chapman et al. (2022)).

Now consider how the Eckhart–Young objective from Corollary A.10 transforms under the corre-
sponding bijection W = B

1/2U .

We get

∥M − W̃W̃∥2F = ∥B91/2AB91/2 −B
1/2Ũ Ũ⊤B

1/2∥2F
= ∥B91/2AB91/2∥2F − 2 trace

(
B91/2AB91/2B

1/2Ũ Ũ⊤B
1/2
)

+ trace
(
B

1/2Ũ Ũ⊤B
1/2 B

1/2Ũ Ũ⊤B
1/2
)

= ∥B91/2AB91/2∥2F − trace
{
2
(
Ũ⊤AŨ

)
−
(
Ũ⊤BŨ

)(
Ũ⊤BŨ

)}
,

(16)

where the first term is independent of Ũ , so we can conclude by Corollary A.10.

The moreover conclusion can follow from computing the objective at any maximiser of the form
above. We note that

Ũ⊤AŨ = O⊤
KΛ

1/2
K U⊤

KAUKΛKOK = O⊤
KΛ2

KOK

Ũ⊤BŨ = O⊤
KΛ

1/2
K U⊤

KBUKΛKOK = O⊤
KΛKOK

plugging into the objective gives

trace
(
2 (Ũ⊤AŨ)− (Ũ⊤BŨ)2

)
= trace

(
2O⊤

KΛ2
KOK −O⊤

KΛ2
KOK

)
=

K∑
k=1

λ2k

because the trace of a symmetric matrix is equal to the sum of its eigenvalues.
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B TRACTABLE OPTIMIZATION - NO SPURIOUS LOCAL MINIMA

First in appendix B.1 we prove that for general A,B our loss LGEP-EY(U) has no spurious local
minima. Then in appendix B.3 we apply a result from Ge et al. (2017). This application is somewhat
crude, and we expect that a quantitative result with tighter constants could be obtained by adapting
the argument of appendix B.1; we leave such analysis to future work.

B.1 QUALITATIVE RESULTS

First we present our main result and its proof. This makes use of three crucial supporting lemmas,
which we will address afterwards. Throughout the subsection we will use an over-bar (Ū etc) to
denote quantities corresponding to the ‘given original point of interest’. The structure of the proof
has many similarities to the arguments of the previous appendix A, but we do not use the tilde
convention of remark A.6, instead using different letters to indicate orthonormality: matrices V, V̄
have orthonormal columns, while other matrices (U, Ū ,W, W̄ ) do not in general. Throughout this
section, as elsewhere, the 1/2 power of a positive-semi-definite matrix denotes its (unique) positive
semi-definite square root.
Proposition B.1 (No spurious local minima). The (population) objective LGEP-EY has no spurious
local minima. That is, any matrix Ū that is a local minimum of LGEP-EY must in fact be a global
minimum of the form described in proposition 3.1.

Proof. Suppose (for contradiction) that Ū is a local optimum of LGEP-EY, but not a global minimum.

As in appendix A.4, we first reduce to the B = I setting. Write M = B91/2AB91/2, W = B
1/2U

and similarly for the ‘barred’ quantity W̄ = B
1/2Ū .

Following eq. (16), our Eckhart-Young loss transforms as

LGEP-EY(U) = ∥B91/2AB91/2 −B
1/2UU⊤B

1/2U∥2F − ∥B91/2AB91/2∥2F
= ∥M −WW⊤∥2F − ∥M∥2F =: l(W )

and so since U 7→ B
1/2U is a homeomorphism, we see that W̄ is a local minimum of l that is not a

global minimum.

By lemma B.2, W̄ must lie in the space of non-negative eigenvalues of M , and therefore also that
l(W̄ ) = ∥M+ − W̄W̄⊤∥2F − ∥M+∥2F , using the notation of remark A.9.

Next take some QR decomposition W̄ = V̄ R̄. Because W̄ is a local minimum of l, we must have
that R̄ is a local minimum of l′ : R 7→ ∥M − V̄ RR⊤V̄ ⊤∥F . Therefore R̄ must be of the form
specified in lemma B.3, and the value of l at W̄ is precisely

l(W̄ ) = −∥V̄ ⊤M+V̄ ∥2F (17)

Finally we apply lemma B.4 (to the PSD matrix M+) to conclude. This gives an analytic path V (t)
with V (0) = V̄ . We now convert this to a continuous path for W . Write R̄ = (V̄ ⊤M+V̄ )

1/2Ō for
an orthogonal matrix Ō. Then let R(t) = (V ⊤M+V )

1/2(t)Ō, and W (t) = V (t)R(t). Then R(t)
is continuous since the positive definite square root is continuous on positive semi-definite matrices
and by construction, (RR⊤)(t) = V ⊤M+V . Note also from the construction in lemma B.4 that
W (t) remains in the space spanned by eigenvectors ofM with non-negative eigenvalues (we simply
rotate towards eigenvector with the largest, and so positive, eigenvalue). Therefore

l(W (t)) = −∥V ⊤M+V ∥2F < −∥V̄ ⊤M+V̄ ∥2F = l(W̄ ) (18)
contradicting local minimality.

The following lemma is stated using the notation of definition A.8 and remark A.9.
Lemma B.2. LetM ∈ RD×D be a symmetric matrix, and write l(W ) = ∥M−WW⊤∥2F −∥M∥2F .
Then firstly, any W contained within the non-negative eigenspace of M we have

l(W ) = ∥M+ −WW⊤∥2F − ∥M+∥2F
Secondly, suppose W̄ ∈ RD×K is a local minimum of l. Then span{W̄} is contained within the
non-negative eigenspace of M .
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Proof. For the first claim, following eq. (14), expand

∥M −WW⊤∥2 = ∥M+ −WW⊤∥2 − 2⟨M−,WW⊤⟩F + 2⟨M−,M+⟩F + ∥M−∥2

= ∥M+ −WW⊤∥2 + ∥M−∥2

and use that ∥M∥2 = ∥M+∥2 + ∥M−∥2.

For the second claim, let P− be a projection onto the span of eigenvectors ofM with strictly negative
eigenvalues, and P≥0. Then write W̄ = P−W̄ +P≥0W̄ =: W̄− + W̄+. Consider moving along the
continuous path W (t) = γ(t)W̄− + W̄+ where γ(t) = 1 − t for t ∈ [0, 1]. This time expand out
further

∥M −WW⊤∥2 = ∥M+∥2 + ∥M−∥2 − 2⟨WW⊤,M+⟩ − 2⟨WW⊤,M−⟩F + ∥WW⊤∥2

and then the terms involving W can be written

⟨WW⊤,M+⟩F = ⟨W̄+W̄
⊤
+ ,M+⟩

⟨WW⊤,M−⟩F = γ2⟨W̄−W̄
⊤
− ,M−⟩

∥WW⊤∥2 = ∥W⊤W∥2 = ∥W̄⊤
+ W̄+ + γ2W̄⊤

− W̄−∥2

= ∥W̄⊤
+ W̄+∥2 + 2γ2⟨W̄⊤

+ W̄+, W̄
⊤
− W̄−⟩F + γ4∥W̄⊤

− W̄−∥2

Since ⟨W̄−W̄
⊤
− ,M−⟩ ≤ 0 we see that the coefficient of γ2 is non-negative. If W̄− ̸= 0, then the

coefficient of γ4 is strictly positive and therefore increasing t decreases γ and strictly decreases the
loss.

We must therefore have W̄− = 0, as required.

Lemma B.3. Let M ∈ RD×D be a symmetric positive semi-definite matrix and let V̄ ∈ RD×K

have orthonormal columns. Consider the loss function

l(R) = ∥M − V̄ RR⊤V̄ ∥2F − ∥M∥2F

over R ∈ RK×K . Then the global minima of l are precisely the R satisfying

RR⊤ = V̄ ⊤MV̄ .

Moreover, there are no spurious local optima, and the minimum value is precisely

−∥V̄ ⊤MV̄ ∥2F . (19)

Proof. First for the global statement. Write Γ = RR⊤. Then complete the square to give

∥M − V̄ ΓV̄ ⊤∥2F = trace(V̄ ⊤V̄ )Γ⊤(V̄ ⊤V̄ )Γ− 2 trace Γ(V̄ ⊤MV̄ ) + ∥M∥2F
= trace Γ2 − 2 trace Γ(V̄ ⊤MV̄ ) + ∥M∥2F
= ∥Γ− (V̄ ⊤MV̄ )∥2F + ∥M∥2F − ∥V̄ ⊤MV̄ ∥2F

from which we can read off that the minimum is attained precisely when

Γ = V̄ ⊤MV̄

and that the optimal value is precisely the value of eq. (19) as claimed (a family of suitable square
roots R exist because V̄ ⊤MV̄ inherits positive semi-definite-ness from M ).

Finally we show there are no spurious local minima. Suppose that R̄ is not a global optima. Then
the corresponding Γ̄ is not a global optimum, and R̄ = Γ̄

1/2Ō for some orthogonal matrix Ō. But
since the objective is just quadratic in Γ, we can construct a path of positive definite matrices Γ(t)
with Γ(0) = Γ̄ and ∥M − V̄ Γ(t)V̄ ⊤∥2F strictly decreasing in t (for example following the gradient
dynamics). But then, we can simply take R(t) = Γ(t)

1/2Ō, noting that the PSD square root is
continuous, to obtain a continuous path of matrices R(t) with R(0) = R̄ and l(R(t)) < l(R̄) for all
t. Therefore, R̄ is not a local minima either, as required.
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Lemma B.4 (Rotating to capture signal, weak). Let M ∈ RD×D be a symmetric positive definite
matrix. Let V̄ ∈ RD×K have orthonormal columns, which do not span a top-K subspace for M .
Then there exists an analytic path V : [0, 1] 7→ RD×K , t → V (t) such that: V (t) has orthonormal
columns for all t, V (0) = V̄ , and the signal captured

ζ(t) = ∥V (t)⊤MV (t)∥2F
is strictly increasing in t.

Proof. Let VK = span{V̄ }. Let the eigenvectors of M be (v∗k)k with corresponding eigenvalues
(λk)k with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. For simplicity we suppose that v∗1 /∈ VK and that λ1 > λ2
(i.e. that there is a strictly separated maximal direction of signal that is not yet captured by the
estimated subspace). A very similar construction works more generally but the notation becomes
significantly more complicated (we will return to this at the end of the proof).

Now perform a CS-decomposition Stewart & Sun (1990) on the pair of subspaces (VK , span{v∗1})4.
This gives a basis q̄1, . . . , q̄K for VK where

q̄1 = cos(θ̄) v∗1 + sin(θ̄) p̄

and v∗1 , p̄, q̄2, . . . , q̄K are mutually orthogonal, and θ̄ ∈ [0, π/2].

Now we construct a path for t ∈ [0, 1] via

q1(t) = cos(θ(t)) v∗1 + sin(θ(t)) p̄, θ(t) := (1− t)θ̄

qk(t) = q̄k, for k = 2, . . .K

We can compute

q⊤1 Mq1 = λ1 cos
2 θ + (p̄⊤Mp̄) sin2 θ

q⊤1 Mqk = p̄⊤Mq̄k sin θ, for k = 2, . . .K

We obtain a corresponding path V (t) as follows. WriteQ(t) for the matrix with columns (qk(t))Kk=1,
recalling that only the first column depends on t. Then span{Q(0)} = span{q̄k : k ∈ [K]} = VK

by construction and so we have V̄ = Q(0) Ō for some orthogonal matrix Ō ∈ RK×K . We therefore
define V (t) = Q(t)Ō for t ∈ [0, 1].

To aid with subsequent algebraic manipulations we will write c2 = cos2 θ, s2 = sin2 θ = 1 −
c, τ = p̄⊤Mp̄. We can then rewrite q⊤1 Mq1 = λ1c

2 + τs2 = λ1 − (λ1 − τ)s2. We also write
σ2 =

∑K
k=2(p̄

⊤Mq̄k)
2. Note that c2, s2 depend on t through θ, but p̄, q̄k do not depend on t so

neither do τ or σ2. Therefore, up to constant term in θ, we have

ζ(t) = ∥V ⊤MV ∥2F = ∥Q⊤MQ∥2F

=

K∑
k,l=1

(q⊤k Mql)
2

= (q⊤1 Mq1)
2 + 2

K∑
k=2

(q⊤1 Mqk)
2 + cst

= (λ1 − (λ1 − τ)s2)2 +

K∑
k=2

s2(p̄⊤Mq̄k)
2 + cst

= λ21 − 2s2λ1(λ1 − τ) + s4(λ1 − τ)2 + 2s2σ2 + cst

= s4(λ1 − τ)2 + 2s2(σ2 − λ1(λ1 − τ)) + λ21 + cst

Differentiating with respect to s2 therefore gives

∂ζ

∂(s2)
= 2s2(λ1 − τ)2 + 2

(
σ2 − λ1(λ1 − τ)

)
4This may seem like magic, but can be motivated for example through the characterisation of geodesics on

the Stiefel manifold through the CS-decomposition, see the excellent monograph of Edelman et al. (1998)
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We see that this is strictly increasing in s2 because τ ≤ λ2 < λ1. Therefore, it is strictly negative for
all s2 ∈ (0, 1) if and only if it is non-positive when evaluated at s2 = 1, which gives the condition

0 ≥ (λ1 − τ)2 +
(
σ2 − λ1(λ1 − τ)

)
= λ21 − 2τλ1 + τ2 + σ2 − λ21 + τλ1

= τ2 + σ2 − τλ1.

We now show that this condition in fact follows by Pythagoras’ theorem: we have

σ2 + τ2 ≤ ∥Mp̄∥2 ≤ λ2τ ≤ λ1τ ,

as required (using τ ≥ 0 since M is postive semi-definite). The central inequality holds because
p̄ is orthogonal to the leading eigenvector v∗1 . This can be seen by v∗1 to a full orthonormal basis
of eigenvectors for M denoted (v∗k)

D
k=1 and with corresponding eigenvectors (λk)

D
k=1. Since p̄ is

orthogonal to v∗1 we can expand p̄ =
∑K

k=2 µkv
∗
k to give

∥Mp̄∥2 =

K∑
k=2

λ2kµ
2
k ≤

K∑
k=2

λ2λkµ
2
k = λ2p̄

⊤Mp̄

Finally we return to sketch the extension to the general case. Here, let k be the first index k such
that v̄k /∈ V∗

k , where V∗
k denotes the span of eigenvectors of M with eigenvalue greater than or equal

to λk (which may be of dimension larger than k when the λk eigenvalue is repeated). Then perform
the CS decomposition on the pair of subspaces (VK ,V∗

k ) to get a basis q̄l = v∗l cos θ̄l + p̄l sin θ̄l
Construct a path by taking θk(t) = (1 − t)θ̄k and leaving all other θl fixed. Then p̄k is orthogonal
to V∗

k so p̄TkMp̄k < λk, which allows the rest of the argument to proceed as before.

B.2 CONJECTURED STRONGER CONSTRUCTION

We now conjecture that a stronger version of the construction of lemma B.4 can produce an analytic
path that increases each eigenvalue of V ⊤MV individually, rather than just increasing its Frobenius
norm. We state this below as conjecture B.5. We have yet to find a complete proof of this result, but
have reduced it to a matrix analytic result that appears tractable, and which appears to hold based on
numerical simulations.

We present partial progress, because we believe this is interesting and important enough to merit
further investigation. We also need the result later when analysing Barlow twins.
Conjecture B.5 (Rotating to capture signal: each eigenvalue increases). Let M ∈ RD×D be a
symmetric positive definite matrix, with eigenvalues (λ∗k)

D
k=1. Let V̄ ∈ RD×K have orthonormal

columns such that Λ̄ := V̄ ⊤MV̄ is diagonal.

Then there exist an analytic path (V (t))t∈[0,1] of matrices in RD×K with orthonormal columns such
that V (0) = V̄ , and the matrix Λ(t) := V (t)⊤MV (t) is diagonal with entries λk(t) that are strictly
increasing for any k such that λk(0) < λ∗k.

Partial proof progress. Again we exploit the CS-decomposition. Write V∗
K for the span of eigen-

vectors of M with eigenvalue greater than or equal to λK (which may be of dimension larger than
K when the λK eigenvalue is repeated).

Now perform a CS decomposition on the pair of subspaces (VK ,V∗
K). This gives a basis q̄1, . . . , q̄K

for VK of the form

q̄k = cos(θ̄k) v
∗
k + sin(θ̄k) p̄k (20)

where v∗1 , . . . , v
∗
K form an orthonormal basis for a K-dimensional subspace of V∗

K , and the p̄k are
orthonormal to each other and also to all the v∗k. In fact the p̄k give a basis for span{VK ,V∗

K} ∩
(V∗

K)⊥.

Then as in the proof of lemma B.4, we can consider reducing the angles with some functions θk(t)
for k ∈ [K] to obtain vectors qk(t). Package the first K vectors (qk(t))Kk=1, (v

∗
k)

K
k=1, (p̄k)

K
k=1 into

the matrices Q,V ∗, P̄ each in RD×K . In addition write

C(t) = diag(cos θk(t) : k ∈ [K]), S(t) = diag(sin θk(t) : k ∈ [K]) (21)
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Then eq. (20) can be rewritten as

Q(t) = V ∗C(t) + P̄S(t)

We then convert back to a path V (t) of the form V (t) = Q(t)O(t) where O(t) is an orthogonal
matrix that diagonalises Q⊤MQ(t) (rather than having a constant matrix O as in lemma B.4). The
fact that such an orthogonal matrix can be taken to be an analytic function of t follows from Kato
(1995)[Subsection 2.6.2]5.

Next note that the eigenvalues of V ⊤MV are precisely the eigenvalues of the matrix

(Q⊤MQ)(t) = (V ∗C(t) + P̄S(t))⊤M(V ∗C(t) + P̄S(t))

= C(t)V ∗⊤MV ∗C(t) + S(t)P̄⊤MP̄S(t)

And that in addition, each of the eigenvalues of V ∗⊤MV ∗ is greater than or equal to λK , while the
eigenvalues of P̄⊤MP̄ are all strictly less than λK (and indeed less than or equal to the next biggest
eigenvalue of M ). One can therefore write V ∗⊤MV ∗ = λKIK + ∆, and P̄⊤MP̄ = λKIK − Γ,
for positive semi-definite ∆,Γ. Then using C(t)2 + S(t)2 = IK , we obtain

(Q⊤MQ)(t) = λKIK + C(t)∆C(t)− S(t)ΓS(t).

The following claim would give a way to proceed.

Claim: Let ∆,Γ be positive semi-definite. Let C(t), S(t) be constructed as in eq. (21) for some
functions θk(t) with each θk valued in [0, π/2] and decreasing in t. Then for each k the kth eigen-
value λk(C(t)∆C(t)− S(t)ΓS(t)) is increasing in t.

We have verified this numerically for a large number of random positive semi-definite matrices ∆,Γ
and decreasing functions θk. The result becomes straightforward to prove when either ∆ or Γ is
zero. However, the proof in general has eluded us.

B.3 QUANTITATIVE RESULTS

To use the results from Ge et al. (2017) we need to introduce their definition of a (θ, γ, ζ)-strict
saddle.
Definition B.6. We say function l(·) is a (θ, γ, ζ)-strict saddle if for any x, at least one of the
following holds:

1. ∥∇l(x)∥ ≥ θ

2. λmin(∇2l(x)) ≤ −γ

3. x is ζ-close to X ∗ - the set of local minima.

.

We can now state restate Lemma 13 from Ge et al. (2017) in our notation; this was used in their
analysis of robust PCA, and directly applies to our PCA-type formulation.
Lemma B.7 (Strict saddle for PCA). Let M ∈ RD×D be a symmetric PSD matrix, and define the
matrix factorization objective over Z ∈ RD×K

l(Z) = ∥M − ZZ⊤∥2

Assume that λ∗K := λK(M) ≥ 15λK+1(M). Then

1. all local minima satisfy ZZ⊤ = PK(M) - the best rank-K approximation to M

2. the objective l(Z) is (ϵ,Ω(λ∗K),O(ϵ/λ∗K)-strict saddle.
5Perturbation theory in a finite dimensional space - Perturbation of symmetric operators - Orthonormal

families of eigenvectors
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However, we do not want to show a strict saddle of l but of LGEP-EY : U 7→ l(B
1/2U). Provided

that B has strictly positive minimum and bounded maximum eigenvalues this implies that LGEP-EY
is also strict saddle, as we now make precise.
Lemma B.8 (Change of variables for strict saddle conditions). Suppose that l is (θ, γ, ζ)-strict sad-
dle and let L : U 7→ l(B

1/2U) for B with minimal and maximal eigenvalues σmin, σmax respectively.

Then L is
(
σ

1/2
maxθ, σminγ, σ

1/2
maxζ

)
-strict saddle.

Proof. Write g(U) = B
1/2U . Then L = l ◦ g, so by the chain rule:

DUL = DB1/2U l ◦DUg : δU 7→ ⟨∇l(B1/2U), B
1/2δU⟩ = ⟨B1/2∇l(B1/2U), δU⟩

Therefore

∥∇L(U)∥ = ∥B1/2∇l(B1/2U)∥ ≥ σ
1/2
min∥l(B

1/2U)∥

By a further application of the chain rule we have

D2
UL : δU, δU 7→ D2

B1/2U l(B
1/2δU,B

1/2δU)

Suppose λmin(∇2l(Z)) ≤ −γ then by the variational characterization of eigenvalues, there exists
some δZ such that ⟨δZ,∇2l(Z)δZ⟩ ≤ −γ∥δZ∥2. Then taking δU = B91/2δZ gives

⟨δU,∇2L(U)δU⟩ = ⟨B1/2δU,∇2l(B
1/2U)B

1/2δU⟩
= ⟨δZ,∇2l(Z)δZ⟩
≤ −γ∥δZ∥2

≤ −γσmin∥δU∥2

Thirdly, suppose that ∥B1/2U−Z∗∥ ≤ ζ for some local optimum Z∗ of l. Then sinceB is invertible,
U∗ := B91/2Z∗ is a local optimum of L. In addition:

∥U − U∗∥ = ∥B1/2(U − U∗)∥ ≤ σ
1/2
max∥B

1/2U − Z∗∥ ≤ ζ

Finally, consider some arbitrary point U0. Let Z0 = B
1/2U0. Then by the strict saddle property for

l one of the following must hold:

1. ∥∇l(Z0)∥ ≥ θ =⇒ ∥∇L(U0)∥ ≥ σ
1/2
minθ

2. λmin(∇2l(Z0)) ≤ −γ =⇒ λmin(∇2L(U0) ≤ −σminγ

3. Z0 is ζ-close to a local-minimum Z∗, which implies that U0 is (σ
1/2
maxζ)-close to a local

minimum B91/2Z∗ of L.

By combining lemma B.7 with lemma B.8, we can conclude that our objective does indeed satisfy
a (quantitative) strict saddle property. This is sufficient to show that certain local search algorithms
will converge in polynomial time Ge et al. (2017).

However, this version of the strict saddle property is not quite enough to prove the claim for stochas-
tic gradient descent (SGD). Certain extra conditions are given in Ge et al. (2015) to guarantee poly-
nomial time convergence of noisy SGD. These are: 1. a notion of local strict convexity near any
local minima, and 2. boundedness assumptions. The first assumption is easy to show in our setting,
but the second clearly fails. That being said, we could approximate the objective by mollifying it to
be bounded outside a large ball. Then it should be straightforward to use a supermartingale argument
to show that with high probability the sample paths are contained within said ball; and then inherit
convergence guarantees from the bounded case.
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C FURTHER BACKGROUND AND RESULTS FOR LINEAR AND DEEP CCA

This section contains an eclectic assortment of results regarding CCA. We split this into two sub-
sections corresponding to linear and deep CCA respectively. To help the reader navigate the sub-
sections, we now provide a short summary of their contents.

Firstly, we consider linear CCA. In appendix C.1.1 we show that the GEP formulation of two view
(ridge) CCA presented in the main text corresponds to the sequential, constrained formulation of
two view (ridge) CCA that is more standard in the literature. Then in appendix C.1.2 we prove
versions of eigenvalue interlacing for multiview CCA; these will be useful in appendix D. We also
consider CCA with tied weights in appendix C.1.3; we show that when paired data is generated by
applying a pair of i.i.d. augmentations to a single original datum the CCA weights can be chosen to
be tied; this is useful in appendix D and for the following analysis of the deep case.

Secondly, we consider deep CCA. We give a full proof that our objective recovers a sensible notion
of deep multiview CCA (lemma 3.6) in appendix C.2.1. Finally, we consider deep CCA with tied
weights in appendix C.2.2 and show that when the data is generated by i.i.d. augmentations tying
the weights can only help with capturing correlation; weight tying can therefore be seen as a form
of regularisation in this i.i.d. augmentation setting.

C.1 LINEAR CCA

C.1.1 2-VIEW RCCA: EQUIVALENCE OF GEP TO CONSTRAINED FORMULATIONS

The main result in this subsection is lemma C.3 which states that the standard sequential, constrained
formulation of ridge CCA (RCCA), and is equivalent to our GEP formulation eq. (6) in the 2 view
case. The proof strategy follows a standard argument, from e.g. (Anderson, 2003), but is adapted to
our notation for this more general case of ridge CCA.

Note that by taking the parameters α = 0 we recover CCA and α = 1 recovers PLS and so this
conclusion also holds for PLS and CCA, which we view as special cases of RCCA.

First, we introduce more intuitive notation for our general GEP formulation that is closer to that used
in previous expositions. Namely, in the block-matrix definitions of eq. (6) we relabel the blocks

Σ(ij) := A(ij) = Cov(X(i), X(j)); Σ(ii)
α := B(ii)

α = (1− α(i))Var(X(i)) + α(i)ID(i) .

to highlight their nature as (regularised) covariance matrices. With this notation the GEP matrices
(A,B) can be written in full as

A =

(
0 Σ(12)

Σ(21) 0

)
, B =

(
Σ

(11)
α 0

0 Σ
(22)
α

)
.

We also need the following lemma to help analyse the two-view GEP formulation of RCCA.
Lemma C.1 (2-view RCCA GEP recovers orthogonality). Let U ∈ RD×K be a matrix whose
columns form a top-K sequence of normalised gevectors for the RCCA GEP, partitioned as
(U (1), U (2)) ∈ RD(1)×K × RD(2)×K . Suppose the corresponding top-K gevalues (λk)

K
k=1 are

all strictly positive. Then in fact U (i)⊤Σ
(ii)
α U (i) = 1

2IK for i ∈ [2].

Proof. Let Λ = diag(λ1, . . . , λK) ∈ RK×K be a diagonal matrix containing the top-K gevalues of
the RCCA GEP (A,B). Then, since the columns of U form a top-K sequence of gevectors

AU =

(
Σ(12)U (2)

Σ(21)U (1)

)
= BUΛ =

(
Σ

(11)
α U (1)

Σ
(22)
α U (2)

)
Λ . (22)

Write M (i) = U (i)⊤Σ
(ii)
α U (i) for i ∈ [2]. Then each M (i) is symmetric. Plugging this definition

into eq. (22) gives

M (1)Λ = U (1)⊤Σ(11)
α U (1)Λ = U (1)⊤Σ(12)

α U (2) = ΛU (2)Σ(22)
α U (2) = ΛM (2)
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But then because Λ is diagonal this simply gives the system of equations

λkm
(1)
kl = λlm

(2)
kl for k, l ∈ [K]

In particular, since λk > 0, taking l = k yields m(2)
kk = m

(1)
kk . Taking k ̸= l with λk ̸= λl the two

sets of equations λkm
(1)
kl = λlm

(2)
kl , λlm

(1)
kl = λkm

(2)
kl have unique solution m(2)

kl = m
(1)
kl = 0.

While if k ̸= l with λk = λl then we must have m(1)
kl = m

(2)
kl by dividing through by λk = λl > 0.

By combining these 3 cases we can conclude that M (1) = M (2). Then by the assumption of B-
orthonormality we in fact have

IK = U⊤BαU =
∑
i∈[2]

U (i)⊤Σ(ii)
α U (i) =M (1) +M (2) = 2M (1)

so indeed we conclude M (1) =M (2) = 1
2IK , as claimed.

Definition C.2 (2-view Ridge CCA sequential definition). A sequence of vectors (uk)
K
k=1 parti-

tioned as uk = (u
(i)
k )2i=1 is a top-K sequence of ridge CCA directions if the successive uk solve the

successive maximisations

maximize
u=(u(1),u(2))∈RD(1)×RD(2)

u(1)A(12)u(2) subject to u(i)⊤B(ii)
α u(i) = 1 for i ∈ [2],

u(i)⊤B(ii)
α u

(i)
l = 0 for l ∈ [k − 1]

(23)

where we define [0] = ∅ to allow the same formulation to hold for the k = 1 case.

Lemma C.3 (2-view ridge recovers GEP). A sequence of vectors (uk)
K
k=1 is a top-K sequence

of normalised ridge CCA directions if and only if ( 1√
2
uk)

K
k=1 is a top-K sequence of normalised

gevectors for the GEP defined in eq. (6).

Proof. Note first that in each case there is some pair attaining the maximum because we are opti-
mising a continuous objective over a compact set (if Var(X(i)) is not full rank, then can work in its
range, and treat kernel separately).

We will prove the claim by induction over K.

Suppose that the claim holds for K − 1. Note that a sequence of vectors (uk)
K
k=1 is a top-K

sequence of normalised ridge CCA directions precisely when (uk)
K−1
k=1 are a top-K − 1 sequence

of normalised ridge CCA directions and uK solves the program 23 (taking k = K). Similarly, a
sequence of vectors (uk)Kk=1 is a top-K sequence of normalised gevectors precisely when (uk)

K−1
k=1

are a top-K−1 sequence of normalised gevectors and uK is a normalised gevector with gevalue λK ,
which is B-orthogonal to the previous (uk)K−1

k=1 . Therefore it is sufficient to show that for any fixed
sequence of normalised gevectors (equivalently normalised ridge CCA directions by the induction
hypothesis) (uk)K−1

k=1 : a vector uK solves the program 23 precisely when it is a normalised gevector
with gevalue λK , which is B-orthogonal to the previous (uk)K−1

k=1 .

Thus, suppose we are given arbitrary sequence of normalised gevectors (uk)K−1
k=1 . We will charac-

terise solutions to the program 23. By adding in appropriate Lagrange multipliers µ = (µ(1), µ(2)) ∈
R× R we obtain the Lagrangian

L(uK ;µ) = u
(1)⊤
k A(12)u

(2)
k +

∑
i∈[2]

 1
2µ

(i)
K (1− u

(i)⊤
K B(ii)

α u
(i)
K )−

∑
l∈[K−1]

µ
(i)
l u

(i)⊤
K B(ii)

α u
(i)
l

 .

This gives the first order conditions

0 = ∂
u
(i)
K

L = A(ij)u
(j)
K − µ

(i)
K B(ii)

α u
(i)
K −

∑
l∈[K−1]

µ
(i)
l B(ii)

α u
(i)
l (24)

for i ∈ [2] and where j := 3− i denotes the view-index that is not i.
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By the inductive hypothesis we have u(i)⊤l B(ii)u
(i)
l′ = δll′ for l, l′ ∈ [K − 1], and also that

A(ij)u
(j)
l = λlB

(ii)u
(i)
l . By feasibility, we also have that u(i)⊤l B(ii)u

(i)
K = 0. So taking the in-

ner product of eq. (24) with u(i)l gives

0 = u
(i)⊤
l ∂

u
(i)
K

L = u
(i)⊤
l A(ij)u

(j)
K︸ ︷︷ ︸

=λlu
(j)⊤
l B(jj)u

(j)
K =0

+0− µ
(i)
l u

(i)⊤
l B(ii)

α u
(i)
l = −µ(i)

l

Therefore the pair of first order conditions eq. (24) reduce to the pair of equations

A(ij)u
(j)
K = µ

(i)
K B(ii)

α u
(i)
K , A(ji)u

(i)
K = µ

(j)
K B(jj)

α u
(j)
K

Next we can show that in fact the remaining Lagrange multipliers for the Kth pair are equal across
views:

µ
(1)
K = µ

(1)
K u(1)⊤B(11)

α u(1) = u(1)⊤A(12)u(2) = u(2)A(21)u(1) = µ
(2)
K u(2)⊤B(22)u(2) = µ

(2)
K .

So writing µK = µ
(1)
K = µ

(2)
K we in fact have the stronger pair of first order conditions

A(12)u
(2)
K = µKB

(11)
α u

(1)
K , A(21)u

(1)
K = µKB

(22)
α u

(2)
K

which is precisely saying that uK is a gevector:(
0 A(12)

A(21) 0

)(
u
(1)
K

u
(2)
K

)
= µK

(
B

(11)
α 0

0 B
(22)
α

)(
u
(1)
K

u
(2)
K

)

Finally we can tie up the argument. If 1√
2
uK is a normalised gevector with gevalue µK , then by

lemma C.1, uK is feasible for the program 23 and attains the value u(1)⊤K Au
(2)
K = µKu

(1)⊤
K Bu

(1)
K =

µK . Since the maximal value is attained at a gevector, this maximal value is precisely the largest
remaining gevalue, namely λK . Therefore uK is optimal for program 23 precisely when 1√

2
uK is a

normalised gevector with gevalue λK , as required.

C.1.2 INTERLACING RESULTS

First we state a standard result from matrix analysis. This is simply Theorem 2.1 from Haemers
(1995), but with notation changed to match our context. We therefore omit the (straightforward)
proof.
Lemma C.4. Let V ∈ RD×K such that V ⊤V = IK and let M ∈ RD×D be symmetric with an
orthonormal set of eigenvectors v1, . . . , vD with eigenvalues λ1 ≥ · · · ≥ λD. Define C = V ⊤MV ,
and let C have eigenvalues µ1 ≥ · · · ≥ µK with respective eigenvectors y1 . . . yK .

Then

• µk ≤ λk for k = 1, . . . ,K.

• if µk = λk for some k then C has a µk-eigenvector y such that V y is a µk-eigenvector of
M .

• if µk = λk for k = 1, . . . ,K then V yk is a µk-eigenvector of M for k = 1, . . . ,K.

This immediately gives us a related result for generalized eigenvalues.
Corollary C.5 (Generalized Eigenvalue Interlacing). Consider the GEP (A,B) where A ∈ RD×D

is symmetric andB ∈ RD×D symmetric positive definite; let these haveB-orthonormal generalized
eigenvectors u1, . . . , uD with eigenvalues λ1, . . . , λD.

Let U ∈ RD×K such that U⊤BU = IK , define C = U⊤AU , and let C have eigenvalues µ1 ≥
· · · ≥ µK with respective eigenvectors y1 . . . yK .

Then
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• µk ≤ λk for k = 1, . . . ,K.

• if µk = λk for some k then (C, V ) has a µk-generalised-eigenvector y such that Uy is a
µk-generalised-eigenvector of (A,B).

• if µk = λk for k = 1, . . . ,K then Uyk is a µk-generalised-eigenvector of (A,B) for
k = 1, . . . ,K.

Proof. As in previous appendices, we convert from the GEP (A,B) to an eigenvalue problem for
M := B91/2AB91/2 by defining V = B91/2U , and vd = B

1/2ud.

We now check that the conditions and conclusions of lemma C.4 biject with the conditions and
conclusions of this present lemma.

Indeed (ud)d are B-orthonormal gevectors of (A,B) if and only if (vd)d are orthonormal evectors
of M ; the matrices C and then coincide and so so does its eigenvectors and eigenvalues.

This proves the result.

We can now apply this to the multiview CCA problem, generalising the two-view case.

Lemma C.6 (Interlacing for MCCA). Let (X(i))Ii=1 be random vectors taking values in RD(i)

respectively, as in section 2. Take arbitrary full-rank weight matrices U (i) ∈ RD(i)×K for i ∈
{1, . . . , I} and define the corresponding transformed variables Z(i) = ⟨U (i), X(i)⟩. Then we have
the element-wise inequalities

MCCAK(Z(i), . . . , Z(I)) ≤ MCCAK(X(1), . . . , X(I)) (25)

Moreover simultaneous equality in each component holds if and only if there exist matrices Y (i) ∈
RK×K for i ∈ [I] such that the (U (i)Y (i))Ii=1 are a set of top-K weights for the MCCA problem.

Proof. Let the matrices A,B be those from the MCCA GEP in eq. (6) defined by the input variables
X . By definition, MCCAK(X(1), . . . , X(I)) is precisely the vector of the top-K such generalised
eigenvalues.

Then the corresponding matrices defining the GEP for Z are block matrices Ā, B̄ defined by the
blocks

Ā(ij) = Cov(Z(i), Z(j)) = U (i)⊤Cov(X(i), X(j))U (j)

B̄(ii) = Var(Z(i)) = U (i)⊤Var(X(i))U (i)
(26)

Now define theD×(KI) block diagonal matrix Ũ to have diagonal blocks U (i). Then the definition
from eq. (26) is equivalent to the block-matrix equations Ā = Ū⊤AŪ , B̄ = Ū⊤BŪ , both in
R(KI)×(KI). Finally, we define a normalised version Û = Ū B̄91/2 (possible because B positive
definite and Ū of full rank).

We can now apply the eigenvalue interlacing result of corollary C.5 to the GEP (A,B) and B-
orthonormal matrix Û ∈ RD×IK . Let the matrix B̄91/2ĀB̄91/2 = Û⊤AÛ have top-K eigenvalues
ρ1 ≥ · · · ≥ ρK with respective eigenvectors y1, . . . , yK . Then the (ρk)

K
k=1 are precisely the first

K successive multiview correlations between the Z(i). As before, the first K successive multiview
correlations ρ∗k between theX(i) are precisely the firstK generalised eigenvalues of the GEP (A,B).
We therefore we have the element-wise inequalities ρk ≤ ρ∗k for each k = 1, . . . ,K.

Moreover, equality for each of the top-K multiview correlations implies that Ûyk is a generalised-
eigenvector of the original GEP (A,B) for k = 1, . . .K (still by corollary C.5). Letting Y (i) =(
y
(i)
1 . . . y

(i)
K

)
then gives the equality case statement.
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C.1.3 CCA WITH TIED WEIGHTS

It is intuitive that under certain symmetry between (X(1), X(2)) that the CCA weights might be tied,
i.e. u(1)k = u

(2)
k for all k with ρk > 0. One natural sort of symmetry to consider is exchangeability,

that is that (X(1), X(2))
d
= (X(2), X(1)). However, exchangeability is not sufficient to guarantee

tied weights, as the following example shows.

Example C.7. Let X(1), X(2) be a pair of R2 valued random vectors with

Var
(
X(i)

)
= I2 for i ∈ [2], Cov

(
X(1), X(2)

)
=

(
0 ρ
ρ 0

)
Then one one possible choice of canonical directions is

(u
(1)
1 , u

(2)
1 ), (u

(1)
2 , u

(2)
2 ) = (e1, e2), (e2, e1)

where e1 =

(
1
0

)
, e2 =

(
0
1

)
are standard basis vectors.

In fact, the space of canonical directions is degenerate (due to the repeated eigenvalue of ρ) but we
can use standard results to characterise possible choices of canonical directions. Take any set of
canonical directions u(i)k for k ∈ [2], i ∈ [2]. Let U (i) be a matrix whose columns are the first and
second canonical directions for the ith view, for i ∈ [2]. Then these are of the form

U (1) =

(
1 0
0 1

)
O, U (2) =

(
0 1
1 0

)
O

where O ∈ R2×2 is orthogonal.

Lemma C.8. Let (X(1), X(2)) be an exchangeable pair of random vectors, each of full rank. Sup-
pose that (u(1), u(2)) are a pair of canonical directions with u(1) ̸= u(2) and canonical correlation
ρ > 0. Then Cov(X(1), X(2)) has a strictly negative eigenvalue.

Proof. Then by the GEP formulation of CCA, we must have

Σ(12)u(2) = ρΣ(11)u(1), Σ(21)u(1) = ρΣ(22)u(2)

In the exchangeable setting we have Σ(11) = Σ(22),Σ(12) = Σ(21). Write ∆ = u(2) − u(1). Then
we can combine the two previous equations to see

Σ(12)(u(2) − u(1)) = ρΣ(11)(u(1) − u(2))

and so

∆⊤Σ(12)∆ = −ρ∆⊤Σ(11)∆ ≤ 0

Therefore, when ρ > 0 and Σ(11) is full rank then this is strict inequality and so the cross-covariance
matrix must have a negative eigenvalue.

Conveniently, under the data generating process commonly used in SSL, this cannot happen!

Lemma C.9 (Generated by augmentations). Consider a pair of random vectors (X(1), X(2)) gen-
erated via

X(0) ∼ PX

g(i) ∼ G independently, for i = 1, 2

X(i) = g(i)(X(0)) for i = 1, 2

(27)

then any canonical directions u(1)k , u
(2)
k with ρk > 0 must satisfy u(1)k = u

(2)
k .

Moreover, for any K ≤ D(1), there exist a full set of CCA weights (U,U) with U ∈ RD(1)×K .
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Proof. Write ḡ(x) = Eg∼G(g(x)). Then by the tower law

Cov(X(1), X(2)) = E(X(1)X(2)⊤)− E(X(1))E(X(2))⊤

= E
(
ḡ(X(0))ḡ(X(0))

)
− E

(
ḡ(X(0))

)
E
(
ḡ(X(0))

)⊤
= Var

(
ḡ(X(0))

)
⪰ 0

so is a symmetric positive semi-definite matrix.

Then lemma C.8 immediately implies the first conclusion, that u(1)k , u
(2)
k with ρk > 0 must satisfy

u
(1)
k = u

(2)
k .

For the final conclusion, recall that constructing CCA directions (u
(1)
k , u

(2)
k )k is equivalent to a

singular value decomposition of T = Var(X(1))9
1/2Cov(X(1), X(2))Var(X(2))9

1/2. Under the
generative model we have Var(X(1)) = Var(X(2)) so in fact the target matrix T is symmetric
positive semi-definite. Therefore, if we take an eigen-decomposition of T , this will also give a
singular value decomposition, and so mapping back through Var(X(1))9

1/2 will give a full set of
CCA weights (U,U) with U ∈ RD(1)×D(1)

, as claimed.

C.2 DEEP CCA

C.2.1 ECKHART-YOUNG LOSS RECOVERS DEEP CCA

Proof. Write f (i)(X(i); θ(i)) = U (i)⊤g(i)(X(i);ϕ(i)) where the U (i) are matrices parameterising
the final layer and g(i) defines the representations in the penultimate layer.

Because θ̂ is a local minimum of LEY(θ) we must have Û a local minimum of the map l : U 7→
LEY((U, ϕ̂)). Writing Ŷ = g(X; ϕ̂) for the corresponding penultimate-layer representations we get

l(U) := LEY((U, ϕ̂)) = −2 trace
(∑

i ̸=j

Cov(U (i)⊤Ŷ (i), U (j)⊤Ŷ (j))
)
+
∥∥∑

i

Var(U (i)⊤Ŷ (i))
∥∥2
F

= −2 trace
(
U⊤A(Ŷ )U

)
+ ∥U⊤B(Ŷ )U∥2F

where A(Ŷ ), B(Ŷ ) are as in eq. (6) with X replaced by Ŷ . This is precisely our Eckhart-Young
loss for linear CCA on the Ŷ . So by proposition 3.2, Û must also be a global minimum of l(U) and
then by proposition 3.1 the optimal value is precisely −∥MCCAK(Ŷ )∥22.

This in turn is equal to −∥MCCAK(Ẑ)∥22 by a simple sandwiching argument. Indeed, by proposi-
tion 3.1 minV LEY((V

(i)⊤X(i))i) = −∥MCCAK(Ẑ)∥22. Then we can chain inequalities

−∥MCCAK(Ŷ )∥22 = LEY(Ẑ) ≥ min
V

LEY((V
(i)⊤X(i))i)

≥ min
U

LEY((U
(i)⊤Ŷ (i))i) = −∥MCCAK(Ŷ )∥22

to conclude.

C.2.2 DEEP CCA WITH TIED WEIGHTS

Finally we are ready to analyse the Deep CCA with tied weights under this augmented-pairs-of-data
assumption.

Proposition C.10 (Deep CCA tied weights). Consider a pair of random vectors generated as in
eq. (27). Let (f̂ (1), f̂ (2)) be a pair of functions optimising (a function space version of) our Eckhart-
Young loss for population Deep CCA

(f̂ (1), f̂ (2)) ∈ argmin
f(1),f(2)∈F

LEY

(
f (1)(X(1)), f (2)(X(2))

)
(28)
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Assume that F is a class of functions f : RD(1) 7→ RK closed under left-composition with linear
maps (e.g. F defined by varying parameters of a neural network with a final linear layer): i.e.
f ∈ F , O ∈ RK×K =⇒ O ◦ f ∈ F .

Then in fact the Siamese network pairs (f̂ (1), f̂ (1)) and (f̂ (2), f̂ (2)) must both also attain that same
minimal value. Moreover, there is a constant vector c ∈ RK such that

Eg∼G
[
f̂ (1)(g(X(0)))

∣∣ X(0)
]
= c+ Eg∼G

[
f̂ (2)(g(X(0)))

∣∣ X(0)
]

a.s. (29)

Proof. For the rest of this proof (and only for this proof) define the matrix-valued functions C :
F2 → RK×K and V : F → RK×K by

C(f (1), f (2)) = Cov
(
f (1)(X(1)), f (2)(X(2))

)
, V (f) = Var

(
f(X(1))

)
The Eckhart-Young loss can be written in terms of these functions as

LEY(f
(1), f (2)) = −4

K∑
k=1

Ckk(f
(1), f (2)) + ∥V (f (1)) + V (f (2))∥2F

Firstly, we investigate how the between-view covariance term transforms under ‘tying’ the networks
for each view, for a general choice of f (1), f (2) (not necessarily optimisers). We will decompose the
covariance terms much like in the proof of lemma C.9. Write

f (i)g(x) = Eg∼G

(
f (i) ◦ g(x)

)
Then by Cauchy-Schwarz we have

Ckk(f
(1), f (2)) = Cov

(
f (1) ◦ g(1)(X(0)), f (2) ◦ g(2)(X(0))

)
= Cov

(
f
(1)
k g(X(0)), f

(2)
k g(X(0))

)
≤
{
Var

(
f
(1)
k g(X(0))

)
Var

(
f
(2)
k g(X(0))

)}1/2

(30)

=
{
Ckk(f

(1), f (1)) Ckk(f
(2), f (2))

}1/2

and so a further application of Cauchy-Schwarz, this time on RK , followed by AM-GM inequality
gives ∑

k

Ckk(f
(1), f (2)) ≤

∑
k

Ckk(f
(1), f (1))

1/2 Ckk(f
(2), f (2))

1/2

≤

(∑
k

Ckk(f
(1), f (1))

)1/2(∑
k

Ckk(f
(2), f (2))

)1/2

≤ 1

2

(∑
k

Ckk(f
(1), f (1)) +

∑
k

Ckk(f
(2), f (2))

)
(31)

Secondly, we investigate the within-view variance terms at the optimal f̂ (1), f̂ (2) from the proposi-
tion statement. This is where we need to use closure under linear maps. Note that for any matrices
U (1), U (2) ∈ RK×K we have U (1)⊤f̂ (1), U (2)⊤f̂ (2) ∈ F and we recover the original f̂ (1), f̂ (2) by
taking U (1) = U (2) = IK . Because the f̂ (i) are optimal in eq. (28) we must have

(IK , IK) ∈ argmin
U(1),U(2)∈RK×K

LEY(U
(1)⊤f̂ (1), U (2)⊤f̂ (2)).

This loss term can be expanded out as

−2 traceU⊤
(

0 C(f̂ (1), f̂ (2))

C(f̂ (2), f̂ (1)) 0

)
U + ∥U⊤

(
V (f̂ (1)) 0

0 V (f̂ (2))

)
U∥2F
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to show that it is precisely the Eckhart-Young loss for linear CCA on the representations f̂ (i)(X(i)).
Therefore, by lemma C.1 we have at the optimum that

(I⊤KV (f̂ (1))IK) = (I⊤KV (f̂ (2))IK), i.e. V (f̂ (1)) = V (f̂ (2)). (32)

Finally, we combine these two results, eq. (31) and eq. (32), to conclude:

LEY(f̂
(1), f̂ (2)) = −4

K∑
k=1

Ckk(f̂
(1), f̂ (2)) + ∥V (f̂ (1)) + V (f̂ (2))∥2F

≥ −4× 1

2

(∑
k

Ckk(f̂
(1), f̂ (1)) +

∑
k

Ckk(f̂
(2), f̂ (2))

)

+
1

2

(
∥2V (f̂ (1))∥2F + ∥2V (f̂ (2))∥2F

)
=

1

2

(
LEY(f̂

(1), f̂ (1)) + LEY(f̂
(2), f̂ (2))

)
Since we f̂ (1), f̂ (2) were constructed to minimize LEY this immediately implies that
LEY(f̂

(1), f̂ (1)) = LEY(f̂
(2), f̂ (2)) = LEY(f̂

(1), f̂ (2)) attain the same minimal value.

Moreover, by chasing back through the inequalities, equality implies that there is equality in eq. (30)
for each k ∈ [K]. These equalities directly imply eq. (29).

Remark C.11 (Extension to other formulations of Deep CCA). We note that this proof technique
yields very similar results for other formulations of Deep CCA. Firstly, it can be applied to VICReg
(interpreted as a Deep CCA method, see appendix D.3.3); this is because the VICReg objective can
be viewed as a between-view-correlation reward term of the form

∑
k Ckk(f

(1), f (2)), while the
within-view covariance matrices are equal at any global optimum by lemma D.6.

The technique could also be applied to variants of Deep CCA where the within-view covari-
ance matrices are constrained to be identity, but different correlation objectives are used, such as∑

k Ckk(f
(1), f (2)) for p > 16

6Such formulations do indeed recover classical CCA in the linear setting by Wells et al. (2024)[Section 5.1].
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D RELATIONSHIP TO VICREG AND BARLOW TWINS

D.1 INTRODUCTION AND LOSS FUNCTIONS

To compare our formulation to the VICReg and Barlow Twins methods, we synthesise notation
from the main text with that from the original works. Consider pairs of random variablesX(1), X(2)

which we think of as pairs of augmented input data (e.g. distorted images). Now consider pairs of
embeddings Z(1) = f(X(1)), Z(2) = f(X(2)). Define the covariance matrices

C(11) = Cov(Z(1)), C(22) = Cov(Z(2)), C(12) = Cov(Z(1), Z(2)). (33)

Throughout the rest of this section, as in the main text, we use K to denote the dimension of the
embeddings (and so also the dimension of the relevant covariance matrices).

Our SSL-EY loss can be conveniently written in this notation as

LSSL−EY = trace
(
−2(C(12) + C(21)) + (C(11) + C(22))2

)
= −4

K∑
k=1

C
(12)
kk +

K∑
i,j=1

(C
(11)
kl + C

(22)
kl )2.

It may be interesting to compare this to the formulations of VICReg and Barlow twins below.

The main aim of this appendix is to show that these techniques are equivalent to CCA in the linear
case. We present a complete argument for VICReg in D.3 and a partial picture for Barlow twins
in D.4. To facilitate this analysis, we first introduce certain notions of decomposition of a pair of
weights into the subspace they capture and their component non-orthogonality in subsection D.2.

We next state the loss functions for VICReg and Barlow Twins with this synthesized notation. We
warn the reader that throughout this section we use LVR,LBT to denote the VICReg and Barlow
Twins loss functions, but these may take different arguments depending on what parameterisation
we are using; we hope this simplified/overloaded notation will improve clarity.

D.1.1 VICREG LOSS

The VICReg loss is often written (Balestriero & LeCun, 2022) as

LVR = γE∥Z(1) − Z(2)∥2 +
∑

i∈{1,2}

α K∑
k=1

(
1 9
√

Var(Z
(i)
i )

)
+

+ β

K∑
k,l=1
k ̸=l

Cov(Z
(i)
i , Z

(i)
j )2


where (·)+ := max(·, 0). All of these quantities can be written in the notation of (33)

E∥Z(1) − Z(2)∥2 = trace
(
C(11) + C(22) − 2C(12)

)
Var(Z

(i)
k ) = C

(ii)
kk

Cov(Z
(i)
k , Z

(i)
l ) = C

(ii)
kl .

So in our unifying notation the VICReg loss becomes

LVR = −2γ

K∑
k=1

C
(12)
kk +

∑
i∈{1,2}

[
β∥C(ii)∥2F +

K∑
k=1

(
α

(
1 9
√

C
(ii)
kk

)
+

− βC
(ii)
kk

2
+ γC

(ii)
kk

)]

= −2γ trace(C(12)) +
∑

i∈{1,2}

lVR(C
(ii)) (34)

where we define lVR : RK×K → R by the expression in the first line. This extra notation will be
helpful in appendix D.3.

We now make some observations. Firstly, like in Deep CCA, this objective only depends on the
covariances between Z(1), Z(2) from (33). Secondly, the first term can be thought of as reward, and
the second as penalty. Thirdly, this reward term only depends on the covariance between Z(1), Z(2),
whereas the penalty term only depends on the variance matrices of Z(1), Z(2) respectively. These
observations provide key motivation behind the argument in appendix D.3.
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D.1.2 BARLOW TWINS LOSS

The Barlow Twins loss is usually written in the form

LBT(C) =

K∑
k=1

(1− Ckk)
2 + β

∑
k ̸=l

C2
kl

where C = Corr(Z(1), Z(2)) is the cross correlation matrix. Note that this objective is independent
of the scale of the columns of Z(1), Z(2). In particular, for any optimal solution, we may pick an
equivalent optimal solution such that each entry of Z(1), Z(2) has unit variance. We can therefore
write a constrained form of the Barlow Twins objective using the covariance matrices of the last two
subsections. Namely

LBT =

K∑
k=1

(1− C
(12)
kk )2 + β

∑
k ̸=l

C
(12)
kl

2
+ 1{C(11)

kk =C
(22)
kk =1 ∀i=1,...,K} (35)

where we use 1{} as in the convex optimization literature to give the formal value of ∞ when the
constraint is not satisfied, and 0 when the constraint is satisfied.

D.2 SUBSPACE-ORTHOGONALITY DECOMPOSITION

The analysis in the rest of this appendix considers both tied-weight (Siamese) and untied-weight
settings. In this subsection, we first consider the broader, untied weight setting, then apply this
result to the tied-weight setting.

D.2.1 UNTIED WEIGHTS

Since we shall only work in the linear setting, each method defines linear transformations corre-
sponding to a pair of weight matrices B(1), B(2), where the embeddings are given by

Z(i) = B(i)⊤X(i) for i ∈ {1, 2}

We now state three different ways one can re-parameterise the weight matrices B(i) for more con-
venient analysis; these are all essentially the same, but differ in their treatment of low-rank weight
matrices. Our VICReg analysis needs formulation 2, our Barlow twins analysis needs formulation
3, while we also state formulation 1 for the sake of completeness.

Lemma D.1 (CCA basis for subspace). Suppose that for each i the components of X(i) are linearly
independent. Let B(1), B(2), be an arbitrary set of weights. Define R(i) = rank(B(1)) for i = 1, 2.
Without loss of generality (WLOG), suppose that R(1) ≤ R(2) =: R. Then the following three
formulations hold:

1. Both T (i) of full rank but possibly different heights: There exist U (i) ∈ RD×R(i)

, T (i) ∈
RR(i)×K for i = 1, 2 such that B(i) = U (i)T (i), each T (i) is of full rank R(i), and

U (i)⊤Var
(
X(i)

)
U (i) = IR(i) for i ∈ {1, 2}, U (1)⊤Cov

(
X(1), X(2)

)
U (2) = Λ (36)

where Λ ∈ RR(1)×R(2)

is a diagonal matrix of canonical correlations for the subspace of trans-
formed variables.

2. At least one full rank T (i) and same height: There exist matrices U (i) ∈ RD×R, T (i) ∈ RR×K

for i = 1, 2 such that T (2) is of full rank R, B(i) = U (i)T (i) for each i, and

U (i)⊤Var
(
X(i)

)
U (i) = IR for i ∈ {1, 2}, U (1)⊤Cov

(
X(1), X(2)

)
U (2) = Λ (37)

where Λ ∈ RR×R is a diagonal matrix (of canonical correlations for some augmented subspace of
transformed variables).
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3. Square T (i) not necessarily full rank: There exist matrices U (i) ∈ RD×K , T (i) ∈ RK×K for
i = 1, 2 such that B(i) = U (i)T (i) for each i, and

U (i)⊤Var
(
X(i)

)
U (i) = IR for i ∈ {1, 2}, U (1)⊤Cov

(
X(1), X(2)

)
U (2) = Λ (38)

where Λ ∈ RK×K is a diagonal matrix (of canonical correlations for some augmented subspace of
transformed variables).

Proof. The key technical care here is to deal with possible linear dependence amongst the columns
of the B(i) matrices (i.e. when R(i) < K).

For each i, take a subset I(i) of the indices [K] such that the columnsB(i)

I(i) are linearly independent.=

By linear independence of the components of X(i), the random variables Z(i)

I(i) are also linearly
independent. We can also write

B(i) = B
(i)

I(i)M
(i) (39)

where M (i) ∈ RR(i)×R expresses the columns of B(i) in this column basis.

We now construct ‘augmented’ weight matrices B̄(i) depending on which case we want to prove.

• For Case 1 (both T (i) of full rank but possibly different heights), do not perform augmen-
tation; define B̄(i) = B

(i)

I(i)

• For Case 2 (at least one full rank T (i) and same height): for each i, if R(i) < R then
augment via the concatenation

B̄(i) =
(
B

(i)

I(i) B̃
(i)
+

)
∈ RD(i)×R

where B̃(i)
+ ∈ RD(i)×(R−R(i)) are additional columns such that the resultingR transformed

variables are linearly independent.

• For Case 3 (square T (i) not necessarily full rank): for each i, if R(i) < K then augment
via the concatenation

B̄(i) =
(
B

(i)

I(i) B̃
(i)
+

)
∈ RD(i)×K

where B̃(i)
+ ∈ RD(i)×(K−R(i)) are additional columns such that the resultingK transformed

variables are linearly independent.

We return to considering the three cases in parallel. Define Z̄(i) = B̄(i)⊤X(i) for i = 1, 2. In
each case, write S(i) for the dimension of Z̄(i); so S(i) is R(i), R, K in the three cases respec-
tively. Perform (linear) CCA on the pair of random vectors (Z̄(1), Z̄(2)). This gives weight matrices
V (i) ∈ RS(i)×S(i)

, and the diagonal matrix of correlations Λ ∈ RS(1)×S(2)

such that the transformed
representations V (i)⊤Z̄(i) have identity within-view-covariance matrices, and have maximal corre-
lation between views, i.e.

V (i)⊤Var
(
Z̄(i)

)
V (i) = IS(i) for i ∈ {1, 2}, V (1)⊤Cov

(
Z̄(1), Z̄(2)

)
V (2) = Λ (40)

The V (i) are (therefore) of full rank, so we can define

U (i) := B̄(i)V (i)

T̄ (i) := V (i)−1

which gives us

B̄(i) = U (i)T̄ (i) (41)
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And therefore also that B(i)

I(i) = B̄
(i)

:R(i) = U (i)T̄
(i)

:R(i) . Finally, define T (i) := T̄
(i)

:R(i)M
(i) ∈ RR×K .

Then by substituting in eq. (39) we immediately recover that B(i) = U (i)T (i).

Moreover we have that

U (i)⊤Cov
(
X(i), X(j)

)
U (j) = V (i)⊤B̄(i)⊤Cov

(
X(i), X(j)

)
B̄(j)V (j)

= V (i)⊤Cov
(
Z̄(i), Z̄(j)

)
V (j)

so applying eq. (40) yields the claims of eq. (36), eq. (45) and eq. (38) respectively.

Remark D.2 (Degeneracy). In Case 1, the matrices U (i) are effectively determined by the B(i).

Indeed the transformed variables U (i)
r

⊤
X = V

(i)
r

⊤
Z

(i)

:R(i) are precisely the canonical variates from
applying CCA to the pair of subspaces span{Z(1)}, span{Z(2)}. Therefore, by the linear indepen-
dence of the original variables, any degeneracy corresponds to degeneracy in the CCA solution.

In Case 2 and Case 3, we no longer have uniqueness of U,Λ, because the choice of augmentation
for Z(1) was arbitrary.

D.2.2 APPLICATION TO SSL LOSS FUNCTIONS

The power of lemma D.1 is that the covariance matrices C(ij) can be written as the following simple
functions of Λ and the T (i).

C(ij) = T (i)⊤U (i)⊤Cov
(
X(i), X(j)

)
U (j)T (j) =

{
T (i)⊤T (i) if i = j

T (i)⊤ΛT (j) if i ̸= j
(42)

Both our loss functions (34), (35) are functions of the C(ij) so can also be written as (fairly) simple
functions of T,Λ. As in the proof of lemma D.1, let the corresponding Λ have dimensions S(1)×S(2)

where S(i) takes value R(i), R, K in the three cases respectively. To simplify these expressions we
introduce the following notation for semi-inner-product-like7 bi-linear forms with respect to the
matrix Λ ∈ RS(1)×S(2)

, which generalise the Euclidean inner product for pairs of vectors m(i) ∈
RS(i)

and Frobenius inner product for pairs of matrices M (i) ∈ RS(i)×J respectively:

⟨m(1),m(2)⟩Λ := m(1)⊤Λm(2)

⟨M (1),M (2)⟩Λ := trace(M (1)⊤ΛM (2))

With this notation we obtain the expressions

L̄VR(T
(1), T (2); Λ) = −2γ ⟨T (1), T (2)⟩Λ +

∑
i∈{1,2}

lVR(T
(i)⊤T (i)) (43)

L̄BT(T
(1), T (2); Λ) =

K∑
k=1

(
1− ⟨T (1)

·k , T
(2)
·k ⟩Λ

)2
+ β

∑
k ̸=l

⟨T (1)
·k , T

(2)
·l ⟩2Λ + 1{∥T (i)

·k ∥2=1 k∈[K],i∈[2]} (44)

D.2.3 TIED WEIGHTS

Lemma D.3 (CCA basis for subspace, tied-weights). Suppose X(1), X(2) are generated by the
data-generating mechanism from eq. (27). Suppose we have tied (but otherwise arbitrary) weights
B(1) = B(2) = B of rank R ≤ K. Then the following two formulations hold:

1. T of full rank but not necessarily square: There exist matrices U ∈ RD×R, T ∈ RR×K such
that T is of full rank, B = UT and

U⊤Var
(
X(i)

)
U = IR for i ∈ {1, 2}, U⊤Cov

(
X(1), X(2)

)
U = Λ (45)

7An inner product is typically defined as satisfying a positivity assumption, which is not be satisfied if Λ is
not of full rank.
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where Λ ∈ RR×R is a diagonal matrix of canonical correlations.

2. T square but not necessarily full rank: There exist matrices U ∈ RD×K , T ∈ RK×K such that
B = UT and

U⊤Var
(
X(i)

)
U = IK for i ∈ {1, 2}, U⊤Cov

(
X(1), X(2)

)
U = Λ (46)

where Λ ∈ RK×K is a diagonal matrix (of canonical correlations for some augmented subspace of
transformed variables).

Proof. We only give a sketched argument here, because the construction is almost identical to the
proof of the untied case, lemma D.1 (just drop the superscripts and apply the symmetry).

Take a subset I ⊂ [K] such that columns BI are linearly independent. Let the matrix M be such
that B = BIM . If in Case 2 (T square but not necessarily full rank) and R < K then augment BI

with an extra column to form full-rank B̄ ∈ RD(1)×K , otherwise just set B̄ = BI .

The key observation is that the random variables Z̄(i) := B̄⊤X(i) also follow a data-generating
mechanism of eq. (27), but now with a different set of augmentations - simply defined via g̃(X(0)) =
B⊤g(X(0)). Therefore, by lemma C.9, we can pick a symmetric pair of CCA weights (V, V ) for
(Z̄(1), Z̄(2)).

We can now wrap up loose ends following the proof of lemma D.1. Define U := B̄V, T̄ :=
V −1, T := T̄:RM . The argument then concludes by analogy to proof of lemma D.1

In light of this result, we introduce short-hand for the versions of L̄VR, L̄BT arising from tying the
T -weights in eq. (43) and eq. (44). Simply write

L̄VR(T ; Λ) = L̄VR(T, T ; Λ); L̄BT(T ; Λ) = L̄BT(T, T ; Λ) (47)

D.3 VICREG ANALYSIS

We are now ready to prove that VICReg recovers CCA in the linear setting; we consider both a
general case with untied VICReg weights and a special case where the data is generated by i.i.d.
augmentations as in eq. (27) and the VICReg weights are tied. In each case, we prove that the sub-
space of random variables generated by the VICReg representations correspond to a CCA subspace,
though this subspace might have dimension strictly less than K.

The tied weight case with i.i.d. augmented data becomes straightforward with the decomposition
into T,Λ from the previous appendix D.2.3. The key is to note that when T is of full rank the reward

traceT⊤ΛT =

R∑
r=1

λr∥Tr·∥2

is strictly increasing in each λr. Therefore, the loss is minimized by maximizing each entry of
Λ, and so, by eigenvalue interlacing, we must recover the CCA solution. We give full details in
appendix D.3.1.

The untied weight case is more challenging, but reduces to the same computation. We apply Case 2
of lemma D.1 then use a symmetry argument to show that the resulting T (1), T (2) can be tied, and
have the same rank. We give full details in appendix D.3.2.

Then in appendix D.3.3 we address the final two bullet point claims from the main text.

Finally in appendix D.3.4 we present a simple computation to show that one will expect VICReg to
collapse (even in this linear case) for a wide range of tuning parameters.

D.3.1 TIED WEIGHTS

Proposition D.4 (VICReg with linear, tied weights recovers CCA under i.i.d. augmentation set-up).
Let X(1), X(2) be random vectors in RD(1)

generated as in eq. (27), with strictly positive top-K
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canonical correlations. Consider applying VICReg in the linear case with tied weights. Let B̂ be a
globally optimal weight matrix:

B̂ ∈ argmin
B∈RD(1)×K

LVR(B
⊤X(1), B⊤X(2)) (48)

Then there is some R ≤ K, some T ∈ RR×K and (tied pair of) top-R optimal CCA weights (Û , Û)

such that B̂ = Û T̂ .

Proof. By lemma D.3 there exist Û ∈ RD(1)×K , T̂ ∈ RR×K such that B̂ = Û T̂ , T̂ is of full rank
and that eq. (46) holds for the ‘hatted’ matrices Û , T̂ , Λ̂.

Now let (Ũ , Ũ) be a tied-pair of top-R CCA matrices; construct the corresponding VICReg weights
B̃ := Ũ T̂ . This gives the inequality

LVR(B̂
⊤X(1), B̂⊤X(2)) = L̄VR(T̂ , T̂ ; Λ̂) = −2γ

R∑
r=1

λ̂r∥T̂r·∥2 + 2lVR(T̂
⊤T̂ )

≥ −2γ

R∑
r=1

λ̃r∥T̂r·∥2 + 2lVR(T̂
⊤T̂ ) = L̄VR(T̂ , T̂ ; Λ̃) = LVR(B̃

⊤X(1), B̃⊤X(2)) (49)

Where inequality eq. (51) follows from CCA interlacing lemma C.6. Moreover, because T̂ is full
rank, there is equality if and only if λ̂r = λ̂r for all r ∈ [R]; by the equality case of CCA interlacing,
only happens when (Û , Û) define a top-R CCA subspace for (X(1), X(2)).

D.3.2 UNTIED WEIGHTS

Proposition D.5 (VICReg-CCA equivalence). Let X(1), X(2) be random vectors in RD(1)

,RD(2)

respectively. We consider VICReg, and CCA in the linear case; i.e. where Z(1), Z(2) are linear
functions of X(1), X(2). Then the set of optimal subspaces for VICReg corresponds to the set of
optimal subspaces for CCA.

In particular, for any optimal VICReg weights

B̂(1), B̂(2) ∈ argmin
B(1),B(2)∈RD(1)×K ,RD(2)×K

LVR(B
(1)TX(1), B(2)TX(2)) (50)

there there is some R ≤ K, some T̂ ∈ RR×K and top-R optimal CCA weights

Û (1), Û (2) ∈ argmin
U(1),U(2)∈RD(1)×R,RD(2)×R

LCCA(U
(1)TX(1), U (2)TX(2))

such that B̂(1) = Û (1)T̂ , B̂(2) = Û (2)T̂ .

Proof. Take Û (i), T̂ (i), Λ̂ as in Case 2 of lemma D.1.

By considering alternative sets of weights of the form B(i) = Û (i)T (i) for arbitrary T (i) ∈ RR×K

condition eq. (50) implies

T̂ (1), T̂ (2) ∈ argmin
T (1),T (2)∈RR×K

L̄VR(T
(1), T (2); Λ̂)

Then by applying lemma D.6 (below) to the form of L̄VR in (43) shows that L̄VR(T̂
(1), T̂ (2); Λ̂) =

L̄VR(T̂
(2), T̂ (2); Λ̂).

We next construct a corresponding set of VICReg weights spanning an optimal CCA subspace.
Let Ũ (i) be a pair of top-R CCA weight matrices, with corresponding R × R diagonal matrix of
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canonical correlations Λ̃. Then construct the VICReg weights by B̃(i) = Ũ (i)T̂ (2). This gives the
chain of inequalities

LVR(B̂
(1)⊤X(1), B̂(2)⊤X(2)) = L̄VR(T̂

(2), T̂ (2), Λ̂)

= −2γ

R∑
r=1

λ̂r∥T̂ (2)
r· ∥2 + 2lVR(T̂

(2)⊤T̂ (2))

≥ −2γ

R∑
r=1

λ̃r∥T̂ (2)
r· ∥2 + 2lVR(T̂

(2)⊤T̂ (2)) (51)

= L̄VR(T̂
(2), T̂ (2), Λ̃)

= LVR(B̃
(1)⊤X(1), B̃(2)⊤X(2))

Where inequality eq. (51) follows from CCA interlacing lemma C.6; moreover, there is equality if
and only if λ̂r = λ̂r for all r ∈ [R], which by the equality case of CCA interlacing, only happens
when Û (i) define a top-R CCA subspace for (X(1), X(2)).

Finally, since the top-K canonical correlations are strictly positive, these equalities imply that λ̂r >
0 for all r ∈ [R], so the ‘moreover’ claim of lemma D.6 shows us that in fact we have T (1)

r· = T
(2)
r·

for all r and therefore that T̂ (1) = T̂ (2) = T̂ , as required.

Lemma D.6. Consider minimizing a loss function of the form

L(T (1), T (2)) = −2⟨T (1), T (2)⟩Λ + f(T (1)) + f(T (2))

over T (1), T (2) ∈ RR×K where Λ ∈ RR×R is diagonal with entries and f : RR×K → R is some
arbitrary function. Let T̂ (1), T̂ (2) be a pair of matrices minimizing this loss function. Then we have

L(T̂ (1), T̂ (1)) = L(T̂ (2), T̂ (2)) = L(T̂ (1), T̂ (2))

Moreover any such pair of minimisers must satisfy T̂ (1)
r· = T̂

(2)
r· for all indices r where λr > 0.

Proof. We show that for any pair T (1), T (2), L(T (1), T (2)) ≥ min
(
L(T (1), T (1)),L(T (2), T (2))

)
.

By expanding out the matrix inner product

L(T (1), T (2)) = −2⟨T (1), T (2)⟩Λ + f(T (1)) + f(T (2))

= ∥T (1) − T (2)∥2Λ − ∥T (1)∥2Λ − ∥T (2)∥2Λ + f(T (1)) + f(T (2))

= ∥T (1) − T (2)∥2Λ +
1

2

(
L(T (1), T (1)) + L(T (2), T (2))

)
≥ 1

2

(
L(T (1), T (1)) + L(T (2), T (2))

)
≥ min

(
L(T (1), T (1)),L(T (2), T (2))

)
where the final line used that for any a, b ∈ R, 1

2 (a + b) ≥ min(a, b). Equality in this final line
implies the losses are all the same. Equality in the penultimate line shows that the rth rows coincide
when λr > 0.

D.3.3 INTERPRETATION AS DEEP CCA

For each K ∈ N, define ΦK : [0, 1]K → R by

ΦK(λ) = min
T∈RK×K

L̄VR(T ; diag(λ)). (52)

Lemma D.7 (Minimum is attained). The minimum in eq. (52) is always attained; in fact, for each
given λ there exists T̂ with columns ∥T̂∥k ≤ 1 ∀k ∈ [K] such that ΦK(λ) = L̄VR(T̂ ; diag(λ)).

42



Proof. Define the function ψ : RK×K → RK×K mapping an arbitrary T ∈ RK×K to a shrunken
copy whose columns all have norm less than or equal to 1 and defined by

(ψ(T ))k =
1

max(∥Tk∥2, 1)
Tk

Then ψ(T ) is contained within the set

T :=
{
T̃ ∈ RK×K

∣∣∣ ∥T̃k∥2 ≤ 1 for k ∈ [K]
}

which is a compact subset of RK×K (w.r.t. the natural topology e.g. generated by the Frobenius
inner product). And for any λ ∈ [0, 1]K , comparing term by term, and writing T̃ = ψ(T ) we have

L̄VR(T ;λ) = γ
∑
k

∥Tk∥2I−Λ + β
∑

k,l:k ̸=l

⟨Tk, Tl⟩22 + α (1 9 ∥Tk∥2)+

≥ γ
∑
k

∥T̃k∥2I−Λ + β
∑

k,l:k ̸=l

⟨T̃k, T̃l⟩22 + α
(
1 9 ∥T̃k∥2

)
+

= L̄VR(ψ(T );λ).

(53)

For any given λ, because L̄VR(·;λ) is a continuous function on the compact set T , it attains its
minimum on T at some T̂ ∈ T . But then for any T ∈ RK×K , L̄VR(T ;λ) ≥ L̄VR(ψ(T );λ) ≥
L̄VR(T̂ ;λ) by eq. (53); So T̂ is also a minimiser of L̄VR(·;λ) over the whole domain RK×K , as
claimed.

Proposition D.8 (ΦK relates VICReg to CCA). We have

1. ΦK is element-wise decreasing in λ.

2. For X(1), X(2) generated by i.i.d. augmentations (eq. (27)), we have

min
B∈RD(1)×K

LVR(B
⊤X(1), B⊤X(2)) = ΦK

(
CCAK(X(1), X(2))

)

3. For general random vectors X(1) ∈ RD(1)

, X(2) ∈ RD(2)

, we have

min
B(1),B(2)∈RD(1)×K ,RD(2)×K

LVR(B
(1)TX(1), B(2)TX(2)) = ΦK

(
CCAK(X(1), X(2))

)

Proof. Let λ ∈ [0, 1]K be fixed, and let T̂ be a corresponding minimiser from lemma D.7. Then

1. Take any k ∈ [K], λ′k ∈ (λk, 1] and fill the remaining entries of the vector λ′ by λ′l = λl
for l ∈ [K] \ {k}. Then,

ΦK(λ′) ≤ L̄VR(T̂ ;λ
′) = −2γ

L∑
l=1

λ′l∥T̂l·∥2 + 2lVR(T̂
⊤T̂ )

≤ −2γ

L∑
l=1

λl∥T̂l·∥2 + 2lVR(T̂
⊤T̂ ) = L̄VR(T̂ ;λ) = ΦK(λ)

as required.

2. This follows directly from the proof of proposition D.4.

3. This follows directly from the proof of proposition D.5.
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Interpretation: these results can help us understand the deep case, provided that there is a final
linear layer in the representations. We consider the untied case for now, and leave the tied case to
the reader. At any global optimum θ̂ with corresponding representations Ẑ(i), because there is a
final linear layer

LVR(Ẑ
(1), Ẑ(2)) = min

B(1),B(2)∈RK×K
LVR(B

(1)⊤Ẑ(1), B(2)⊤Ẑ(2)) = ΦK

(
CCAK(Ẑ(1), Ẑ(2))

)
This is very similar to our result for Deep CCA lemma 3.6 but with ΦK(·) in place of ∥·∥22. Note
however, that ΦK need not be strictly decreasing in each argument; indeed it will be constant in
arguments where the corresponding row T̂l· is zero. So (deep) VICReg may also learn low-rank
representations. In the next subsection we will show that this phenomenon is in some sense ‘generic’.

D.3.4 COLLAPSE EXAMPLE

In the previous subsections, we proved that VICReg recovers an optimal CCA subspace, but its
dimension R was allowed to be smaller than the target dimension K. We now show that it is
possible to have R < K for a wide range of choices of the VICReg penalty parameters α, β, γ. We
consider a very simple case of learning representations of dimension K = 2 that collapse to give
representations of rank R = 1. By lemma D.6 it is sufficient to consider tied T (1) = T (2) = T .

We proceed in two steps. First we require a technical lemma, lemma D.9 to show that the columns
of an optimiser ‘cannot be too small’. Then we use a quantity from this lemma in proposition D.10
to construct a broad range of parameter values for which there is collapse.
Lemma D.9. Let Λ = diag(λ1, λ2) with 1 > λ1 > λ2 ≥ 0. Consider minimisers

T̂ ∈ argmin
T∈R2×2

L̄VR(T ; Λ)

of the VICReg loss with parameters α > 0. Then there exist a constant µ = µ(α, γ; Λ) > 0 such
that ∥T̂k∥2 ≥ µ for any minimiser T̂ .

Proof. Main idea: First construct a good T ∗ of restricted diagonal form. Second, show that any T
with a very small column has higher loss than this good choice of T ∗.

First consider optimising the L̄VR over T restricted to be of the form

T =

(
m1 0
0 m2

)
(54)

Then for m1,m2 ≤ 1 because the off-diagonal terms of C(ii) are zero the orthogonality penalty is
zero and so we have

L̄VR(T ; Λ) = 2γ{m2
1(1− λ1) +m2

2(1− λ2)}+ 2 (α(1−m1) + α(1−m2) + 0)

So write

fk(mk) := m2
kγ(1− λk)−mkα (55)

to simplify

1

2
L̄VR(T ; Λ) = 2α+ f1(m1) + f2(m2).

Then by completing the square we have

fk(mk) = γ(1− λk)

(
mk − α

2γ(1− λk)

)2

− α2

2γ(1− λk)

and therefore fk has the unique minimiser

m∗
k := argmin

mk∈[0,1]

fk(mk) = min

{
1,

α

2γ(1− λk)

}
∈
(
0,

α

γ(1− λk)

)
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and moreover, at this minimiser certainly

fk(m
∗
k) = m∗

k

(
m∗

k − α

γ(1− λk)

)
γ(1− λk) < 0

Therefore take T ∗ =

(
m∗

1 0
0 m∗

2

)
to attain the minimum value 1

2 L̄VR(T
∗; Λ) = 2α + f1(m

∗
1) +

f2(m
∗
2) over diagonal T .

Second, consider an arbitrary T of form eq. (69). Since the off-diagonal penalty (β-term) is always
non-negative

1

2
L̄VR(T ; Λ) ≥

2∑
k=1

γm2
k

(
cos2 θk(1− λ1) + sin2 θk(1− λ2)

)
+

2∑
k=1

α(1−mk) + 0

≥ 2α+ f1(m1) + f1(m2)

≥ 2α+ f1(m
∗
1) + f1(m2)

Now we can construct

µ(α, γ; Λ) := min

{
m∗

1,
−f2(m∗

2)

α

}
(56)

then for m2 ∈ (0, µ) we have

f1(m2) > f1(µ) ≥ −αµ ≥ f2(m
∗
2)

where the first inequality follows because f1 is strictly decreasing on (0,m∗
1), the second follows

immediately from the definition of f1 in eq. (55), and the third by construction of µ in eq. (56).

Finally conclude that
1

2
L̄VR(T ; Λ) ≥ 2α+ f1(m

∗
1) + f1(m2) > 2α+ f1(m

∗
1) + f2(m

∗
2) =

1

2
L̄VR(T

∗; Λ)

so T cannot be a global minimum when m2 ∈ (0, µ).

Proposition D.10. Let Λ = diag(λ1, λ2) with 1 > λ1 > λ2 ≥ 0. Consider a minimiser

T̂ ∈ argmin
T∈R2×2

L̄VR(T ; Λ)

of the VICReg loss with parameters α, β, γ > 0 satisfying

2β < γ(λ1 − λ2)µ
2 (57)

where µ = µ(α, γ; Λ) gives a lower bound for the column norms ∥T̂k∥ as in eq. (56) above.

Then the bottom row of T̂ is zero: T̂ (1)
2k = 0 for k = 1, 2.

Proof. Any T ∈ R2×2 can be re-parameterised to the form

T =

(
m1 cos θ1 m2 cos θ2
m1 sin θ1 m2 sin θ2

)
(58)

Then we show that for any such T ,

L̄VR(T ; Λ) ≥ L̄VR(T
′; Λ) where T ′ =

(
m1 m2

0 0

)
with equality if and only if θ1 = θ2 = 0.

First note that for T of form eq. (69) we have It will be convenient to rewrite the original VICReg
loss eq. (34) to separate back out the terms depending on each penalty parameter

LVR = γ

K∑
k=1

(C
(11)
kk + C

(22)
kk − 2C

(12)
kk ) +

∑
i∈{1,2}

α∑
k

(1−
√
C

(ii)
kk ) + β

∑
k ̸=l

C
(ii)
kl

2
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which gives

L̄VR(T ; Λ) = 2γ (⟨T, T ⟩I − ⟨T, T ⟩Λ) + 2

α∑
k

(1− ∥T·k∥)+ + β
∑
k ̸=l

⟨T·k, T·l⟩2


= 2

γ⟨T, T ⟩I−Λ + β
∑
k ̸=l

⟨T·k, T·l⟩2 + α
∑
k

(1− ∥T·k∥)+


Indeed, we can simply expand the difference; write λ̄(θ) = λ1 cos

2 θ + λ2 sin
2 θ.

1

2

(
L̄VR(T ; Λ)− L̄VR(T

′; Λ)
)
= γ (⟨T, T ⟩I−Λ − ⟨T ′, T ′⟩I−Λ) + β

∑
k ̸=l

(
⟨T·k, T·l⟩2 − ⟨T ′

·k, T
′
·l⟩2
)

= γ

(
2∑

k=1

m2
k

{
(1− λ̄(θk))− (1− λ1)

})
+ 2β

(
m1m2

{
(cos θ1 cos θ2 + sin θ2 sin θ1)

2 − 1
})

where the α terms vanish because ∥T·k∥ = mk is preserved. Note that the first term is positive, but
that the second term is negative. We will show that in the regime of interest, the magnitude of the
negative term is small and so the net contribution is positive. Indeed, we further process the terms
separately

(1− λ̄(θk))− (1− λ1) = λ1 − λ̄(θk)

= (λ1 − λ2) sin
2 θk ≥ 0

while by standard trigonometric identities

1− (cos θ1 cos θ2 + sin θ2 sin θ1)
2 = 1− cos2(θ1 − θ2)

= sin2(θ1 − θ2)

= (sin θ1 cos θ2 − sin θ2 cos θ1)
2

≤ (sin θ1 + sin θ2)
2

≤ 2(sin2 θ1 + sin2 θ2)

We can now put these inequalities into the previous step and use the fact that µ ≤ m1,m2 ≤ 1 to
get

1

2

(
L̄VR(T ; Λ)− L̄VR(T

′; Λ)
)
≥ 2γµ2(λ1 − λ2)(sin

2 θ1 + sin2 θ2)− 2β × 2(sin2 θ1 + sin2 θ2)

= 2(sin2 θ1 + sin2 θ2)
(
γµ2(λ1 − λ2)− 2β

)
so indeed, this difference is strictly positive provided θ1, θ2 are not both zero and eq. (57) holds, as
required.

D.4 BARLOW TWINS ANALYSIS

D.4.1 TIED WEIGHTS

We present a single result whose proof is complete apart from an application of conjecture B.5. A
key tool for the partial proof is lemma D.12, which may give the reader better geometrical intuition
for the Barlow twins loss.
Conjecture D.11 (Barlow twins tied weights). LetX(1), X(2) be random vectors in RD(1)

generated
as in eq. (27), with strictly positive top-K canonical correlations. Consider applying Barlow twins
in the linear case with tied weights, with weight matrix B such that Z(i) = B⊤X(i) for i = 1, 2.
Let B̂ be a locally optimal weight matrix of rank R ≤ K such that CCAR(B̂

⊤X(1), B̂⊤X(2)) > 0

in each component. Then B̂ defines a CCA subspace of rank R.
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Note that in this tied-weight setting, T (1) = T (2) = T , the Barlow twins loss can be written as

L̄BT(T ; Λ) =

K∑
k=1

(
1− ∥T·k∥2Λ

)2
+ β

∑
k ̸=l

⟨T·k, T·l⟩2Λ + 1{∥T·k∥2=1 ∀i=1,...,K} (59)

Lemma D.12. Let 1 ≤ K ≤ S be integers and let Λ = diag(λ1, . . . , λS) be an S × S diagonal
matrix with elements λr ∈ [0, 1]∀r ∈ [S]. Let T ∈ RS×K be a stationary point of l : RS×K →
R, T̃ 7→ LBT(T̃ ; Λ). Then for each r ∈ [S] we have

λr
∂LBT(T ; Λ)

∂λr
=
∑
k

−LkT
2
rk (60)

where

Lk = (1− Ckk)Ckk − β
∑
l:l ̸=k

C2
kl and, as before, Ckl = T⊤

k ΛTl . (61)

Moreover, if in addition T is a local optimum of l and 1 > λ1 ≥ · · · ≥ λK > 0, then Lk > 0 for all
k ∈ [K].

Proof of lemma D.12. To clean up notation for this proof we will write Tk = T·k (for columns of
T ) and Ckk := C

(12)
kk (drop the superscripts). First, compute

∂L̄BT(T ; Λ)

∂λr
=
∑
k

(Ckk − 1)T 2
rk + β

∑
k ̸=l

CklTrkTrl (62)

Our proof idea is to use the first order conditions from the Lagrangian formulation of (59) to show
that the right hand side of this expression is less than zero.

The Lagrangian corresponding to the constrained program (59) is

L̄BT(T̃ , L̃; Λ) =

K∑
k=1

(
1− ∥T̃·k∥2Λ

)2
+ β

∑
k ̸=l

⟨T̃·k, T̃·l⟩2Λ + 2

K∑
k=1

L̃k(∥T̃·k∥2 − 1)

where L̃ ∈ RK is the Lagrange multiplier.

Now let T be any stationary point of LBT(T̃ ; Λ)
8. Then this is a stationary point of (59) so there

must be some Lagrange multiplier L for which it satisfies the first order conditions

0 =
∂L̄BT(T, L; Λ)

∂T·k
= 4(Ckk − 1)ΛTk + 4β

∑
l:l ̸=k

CklΛTl + 4LkTk

Rearranging gives

LkTk = (1− Ckk)ΛTk − β
∑
l:l ̸=k

CklΛTl (63)

We now take inner products of this vector equation with judicious choices of direction.

e⊤r (63) : LkTrk = (1− Ckk)λrTrk − β
∑
l:l ̸=k

CklλrTrl (64)

T⊤
k (63) : Lk = (1− Ckk)Ckk − β

∑
l:l ̸=k

C2
kl (65)

Observe that (64) looks a lot like (62) but involves the Lk nuisance parameter, while (65) and might
help us control on this nuisance parameter.

8Note that some optimiser must exist because the objective is continuous and the constraint set is compact.
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Plugging (64) into (62) gives

λr
∂LBT

∂λr
= λr

∑
k

(Ckk − 1)T 2
rk + β

∑
l:l ̸=k

CklTrkTrl

 =
∑
k

−LkT
2
rk

Argument for the moreover statement - want to show L̂k > 0 for all k ∈ [K]:

As in the statement of the lemma, assume

1 > λ1 ≥ · · · ≥ λK > 0. (66)

Fix an arbitrary k ∈ [K]. Write C = span{e1, . . . , eK} ∩ span{ΛT(−k)}
⊥; this is non-empty

because it is the orthogonal complement of a (K 9 1)-dimensional subspace in a K-dimensional
space.

If Tk ∈ C, then Tk ∈ span{ΛT(−k)}
⊥ then Clk = 0 for all l ̸= k and so eq. (65) implies that

Lk = (1 − Ckk)Ckk ≥ 0. Because Tk ∈ C ⊂ span{e1, . . . , eK} we have
∑K

s=1 T
2
sk = 1. Then

condition eq. (66) implies that Ckk =
∑K

s=1 λsT
2
sk ∈ [λK , λ1] ⊂ (0, 1) so in fact Lk > 0.

Otherwise, we can take a unit vector pk ∈ C ∩ span{Tk}⊥. Then pk is a unit vector in
span{e1, . . . , eK} but orthogonal both to Tk and span{ΛT(−k)}.

Now consider rotating Tk towards pk by an angle θ, i.e. parameterise a path

Tk(θ) = cos θ Tk + sin θ pk

then we can write

Ckk(θ) = cos2 θ T⊤
k ΛTk + 2 sin θ cos θ T⊤

k Λpk + sin2 θ p⊤k Λpk

Ckl(θ) = cos θ T⊤
k ΛTl

then differentiating these quantities gives

Ċkk(θ) = −2 cos θ sin θ Ckk(0) + 2
(
− sin2 θ + cos2 θ

)
T⊤
k Λpk + 2 cos θ sin θ p⊤k Λpk

Ċkl(θ) = − sin θ T⊤
k ΛTl

In particular, evaluating at θ = 0 gives Ċkl = 0 and Ċkk = 2 T⊤
k Λpk. Since T is stationary, the

derivative of L along this path must be zero. Plugging in these expressions gives

0 =
1

2
∂θ(L)|θ=0 = −(1− Ckk)Ċkk +

∑
l:l ̸=k

CklĊkl

= −2(1− Ckk)T
⊤
k Λpk + 0

so because Ckk ≤ λ1 < 1 we must in fact have T⊤
k Λpk = 0. This observation is necessary to

simplify the following Hessian-like calculations.

For further convenience, from now we work in terms of s2 := sin2 θ rather than θ itself and also
introduce δ := T⊤

k ΛTk − p⊤k Λpk so we can write

Ckk(θ) = Ckk(0)− sin2 θ
(
T⊤
k ΛTk − p⊤k Λpk

)
= Ckk(0)− s2δ

which gives

L(θ)− L(0) = (1− Ckk(0) + s2δ)2 − (1− Ckk(0))
2 + 2β

∑
l:l ̸=k

cos2 θCkl(0)
2 − 2β

∑
l:l ̸=k

Ckl(0)
2

= 2s2δ(1− Ckk(0)) + s4δ2 − 2s2β
∑
l:l ̸=k

Ckl(0)
2
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In particular, for T to be a local optimum we must have

0 ≤ 1

2
∂s2L(s2)− L(0)|s2=0

=

δ(1− Ckk(0))− β
∑
l:l ̸=k

Ckl(0)
2 + s2δ2

 |s2=0

= Ckk(0)(1− Ckk(0))− β
∑
l:l ̸=k

Ckl(0)
2 − p⊤k Λpk (1− Ckk(0))

= Lk − p⊤k Λpk (1− Ckk(0))

and so indeed, we in fact have

Lk ≥ p⊤k Λpk (1− Ckk(0)) ≥ 0

moreover, when 1 > λ1 ≥ λK > 0 this inequality becomes strict, as required.

Partial proof of conjecture D.11. First apply Case 1 (T of full rank but not necessarily square) of
lemma D.3 to get Û ∈ RD(1)×R, T̂ ∈ RR×K such that B̂ = Û T̂ and T̂ of full row-rank. Then since
B̂ is a local minimum, T̂ is a stationary point of l : T 7→ L̄BT(T, Λ̂). So applying lemma D.12 for
each r ∈ [R] we have

λ̂r
∂LBT(T̂ ; Λ̂)

∂λ̂r
=
∑
k

−L̂kT̂
2
rk. (67)

Now apply Case 2 (T square but not necessarily full rank) of lemma D.3 to get Û ′ ∈ RD×D, T̂ ′ ∈
RD×K such that B̂ = Û ′T̂ ′. Now T̂ ′ will not be of full row-rank, but Û ′ must give a full ba-
sis of CCA directions for (X(1), X(2)). This implies that the corresponding Λ̂′ ∈ RD×D is
a diagonal matrix whose diagonal entries are the full-vector of population canonical correlations
CCA(X(1), X(2)) ∈ RD. In particular this means that 1 > λ̂′1 ≥ · · · ≥ λ̂′K > 0.

We now apply lemma D.12 a second time, now with T̂ ′, Λ̂′. Note that, Ĉkl =

Cov(B̂⊤
k X

(1), B̂⊤
l X

(2)) and is a function of B so must is independent of the choice of decom-
position of B̂. Then eq. (61) shows that the Lagrange multipliers are identical to those from before,
so are precisely (L̂k)k. Therefore, by applying the final ‘moreover’ conclusion of lemma D.12 we
deduce that L̂k > 0 for all k ∈ [K].

Applying this into, eq. (67) for each r ∈ [R] and using the fact T̂r· ̸= 0 because of T̂ s full row-rank
implies that λ̂r > 0. Therefore we also have ∂LBT(T̂ ;Λ̂)

∂λ̂r
> 0 ∀r ∈ [R].

Suppose, for contradiction, that λ̂r < λ̃r the true rth canonical correlation. Then by conjecture B.5,
we may construct a (continuous) path Û(t) for t ∈ [0, 1] with Û(0) = Û , Û(t)⊤Var(X(1))Û(t) =

IK for all t, and Λ̂(t) := Û(t)⊤Cov(X(1), X(2))Û(t) such that for all t > 0

λ̂r(t) > λ̂r(0) and λ̂s(t) > λ̂s(0) ∀s ∈ [R] \ {r}

Correspondingly define the (continuous) path B̂(t) = Û(t)T̂ .

But then

LBT(B̂(t))− LBT(B̂(0)) = L̄BT(T̂ , Λ̂(t))− L̄BT(T̂ , Λ̂(0))

=
∑
s

∂LBT

∂λs
(λ̂s(t)− λ̂s(0)) + o

(
λ̂s(t)− λ̂s(0)

)
and so is strictly negative for sufficiently small t. This contradicts local optimality of B̂.

Therefore the top-R entries of Λ̂ must be the top-R canonical correlations, and so by lemma C.6
we must have that Û defines a CCA subspace, and so B̂ must also define a CCA subspace, as
claimed.
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D.4.2 UN-TIED WEIGHTS

For VICReg we saw that the computation for the untied weight case reduced to that of the tied weight
case provided that we could prove that minimisers of the corresponding matrix loss L̄VR(·, ·; Λ) were
symmetric. It is natural to expect that similarly any minimisers of the Barlow twins matrix loss
L̄BT(·, ·; Λ) are symmetric.

We have observed this to be the case in toy simulations (for a wide variety of values of Λ and
hyper-parameter β), but are not yet able to give a rigorous proof.

If one can prove this observation, then one can also prove notions of the remaining the bullet points
from the main text analogously to the VICReg versions: Barlow twins also recovers CCA subspaces
in the general case of untied weights, and the optimal loss is decreasing in correlation signal, so can
be interpreted as an algorithm for Deep CCA.

D.4.3 COLLAPSE EXAMPLE

Finally we give a short computation, analogous to that of appendix D.3.4, to show that collapse is a
generic phenomenon, even in a very simple setting.

Proposition D.13. Let Λ = diag(λ1, λ2) with 1 ≥ λ1 > λ2 ≥ 0. Consider minimisers

T̂ ∈ argmin
T∈R2×2

L̄BT(T ; Λ)

of the tied Barlow twins matrix loss with parameter β > 0 satisfying

β <
2(1− λ1)(λ1 − λ2)

(3λ1 − λ2)(λ1 + λ2)
=: C(λ1, λ2) (68)

Then T̂ =

(
±1 ±1
0 0

)
are the 4 global minimisers.

Proof. Any T ∈ R2×2 can be parameterised as

T =

(
cos θ1 cos θ2
sin θ1 sin θ2

)
(69)

We use the same convenient notation λ̄(θ) = λ1 cos
2 θ + λ2 sin

2 θ as in appendix D.3.4. Then the
Barlow twins loss becomes

L̄BT(θ1, θ2) =

2∑
k=1

(
1− λ̄(θk)

)2
+ 2β (λ1 cos θ1 cos θ2 + λ2 sin θ1 sin θ2)

2 (70)

We now compare each of these terms to the corresponding loss when θ1 = θ2 = 0. For convenience,
introduce the quantity ∆ := λ1 − λ2. First we bound the reward term:(

1− λ̄(θ)
)2 − (1− λ1)

2 =
(
(1− λ1) + ∆ sin2 θ

)2 − (1− λ1)
2

= 2∆(1− λ1) sin
2 θ + (∆)2 sin4 θ

≥ 2∆(1− λ1) sin
2 θ

Giving us

2∑
k=1

(
1− λ̄(θk)

)2 ≥ 2∆(1− λ1)
(
sin2 θ1 + sin2 θ2

)
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Next we bound the penalty term. To save space we use the shorthand ck = cos θk, sk = sin θk for
k = 1, 2, and introduce the quantity γ := λ2/λ1 ≤ 1.

λ21 − (λ1c1c2 + λ2s1s2)
2
= λ21

{
2∏

k=1

(c2k + s2k)
2 −

(
c21c

2
2 + 2γc1c2s1s2 + γ2s21s

2
2

)}
= λ21

{
c21s

2
2 + c22s

2
1 − 2γc1c2s1s2 + (1− γ2)s21s

2
2

}
= λ21

{
(1− γ)

(
c21s

2
2 + c22s

2
2

)
+ γ(c1s2 − s1c2)

2 + (1− γ2)s21s
2
2

}
≤ λ21

{
(1− γ)

(
s21 + s22

)
+ γ (s1 + s2)

2
+ (1− γ2)

1

2

(
s21 + s22

)}
= λ21

(
s21 + s22

)(
(1− γ) + 2γ +

1

2
(1− γ2)

)
=

1

2
λ21
(
s21 + s22

) (
3 + 2γ − γ2

)
Finally put these two inequalities into eq. (70) to get

L̄BT(θ1, θ2)− L̄BT(0, 0) ≥
(
s21 + s22

) {
2∆(1− λ1)− βλ21

(
3 + 2γ − γ2

)}
and so this will be strictly positive whenever either sin θk ̸= 0, provided that

β <
2∆(1− λ1)

λ21(3 + 2γ − γ2)
=

2(λ1 − λ2)(1− λ1)

(3λ1 − λ2)(λ1 + λ2)
=: C(λ1, λ2)

as claimed.
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E FAST UPDATES FOR (MULTIVIEW) STOCHASTIC CCA (AND PLS)

E.1 BACK-PROPAGATION FOR EMPIRICAL COVARIANCES

To help us analyse the full details of back-propagation in the linear case, we first prove a lemma
regarding the gradients of the empirical covariance operator.

Lemma E.1 (Back-prop for empirical covariance). Let e ∈ RM , f ∈ RM . Then Ĉov(e, f) and

∂Ĉov(e, f)

∂e

can both be computed in O (M) time.

Proof. Let 1M ∈ RM be a vector of ones and P⊥
1M = IM − 1

M 1⊤M1M be the projection away from
this vector, then we can write ē = P⊥

1M e, f̄ = P⊥
1M f . Moreover, exploiting the identity-plus-low-

rank structure of P⊥
1M allows us to compute these quantities in O (M) time.

Then by definition

Ĉov(e, f) =
1

M − 1
ē⊤f̄

which is again computable in O (M) time.

For the backward pass, first note that
∂ē

∂e
: δe 7→ P⊥

1M δe

So the derivative with respect to e is

∂Ĉov(e, f)

∂e
=

1

M − 1

∂ē⊤f̄

∂e
=

1

M − 1

(
∂ē

∂e
f̄

)
=

1

M − 1
P⊥
1M f̄ =

1

M − 1
f̄

because f̄ is independent of e, and already mean-centred. So all that remains is element-wise divi-
sion, which again costs O (M) time.

FORWARD PASS

1. Compute the transformed variables Z:

Z(i) = U (i)X(i), (71)

with a complexity of O(MKD).

2. Compute trace Ĉ(θ)[Z]: the diagonal elements of Ĉ are simply

Ĉkk =
∑
i ̸=j

Ĉov(Z
(i)
k ,Z

(j)
k )

which each summand can be computed in O (M) time, so summing over i, j, k gives total
complexity of O(I2KM).

3. Compute V̂ (θ)[Z]: For V̂α[Z]:

V̂α(θ)[Z] =
∑
i

αiU
(i)⊤U (i) + (1− αi)V̂ar(Z

(i)),

each U (i)⊤U (i) can be computed with a complexity of O
(
DiK

2
)

and the total cost of
evaluating all of these is O

(
K2D

)
. Each summand in the second term costs O

(
MK2

)
by

lemma E.1 so evaluating the full second term costs O
(
IMK2

)
.

4. Evaluate L̂EY[Z,Z
′]:

L̂EY[Z,Z
′] = −2 trace Ĉ[Z] + ⟨V̂α[Z], V̂α[Z′]⟩F . (72)

The dominant complexity here is the O(K2) cost of computing the Frobenius inner prod-
uct.
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BACKWARD PASS

1. Gradient with respect to Z(i): Using the chain rule, the gradient will flow back from the
final computed value, L̂EY[Z,Z

′], through the operations that produced it.

2. Gradient of trace Ĉ(θ)[Z] with respect to Z
(i)
k : Is precisely

∂Ĉkk

∂Z
(i)
k

=
2

M − 1

∑
j ̸=i

Z̄
(j)
k ,

where Z̄
(j)
k = P⊥

1M Z̄
(j)
k , from lemma E.1 and so can be computed in O(IM) time.

3. Gradients of ⟨V̂α[Z], V̂α[Z′]⟩F with respect to Z
(i)
k : By applying lemma E.1, the gradient

of the empirical variance term is

∂V̂ar(Z(i))l,l′

∂Z
(i)
k

=


2

M−1Z
(i)
k if l = l′ = k

1
M−1Z

(i)
l if l ̸= l′ = k

0 otherwise.

and so

∂⟨V̂α[Z], V̂α[Z′]⟩F
∂Z

(i)
k

=
(1− αi)

M − 1

(
2V̂α[Z

′]kkZ
(i)
k +

∑
l

(V̂α[Z
′]lkZ

(i)
l + V̂α[Z

′]klZ
(i)
k )

)

=
2(1− αi)

M − 1

K∑
l=1

V̂α[Z
′]lkZ

(i)
l

this can be computed in O(MK) time.

4. Gradients of L̂EY[Z,Z
′] with respect to Z

(i)
k : can therefore be computed for a given Z

(i)
k

in O (M(K + I)) time and so, adding up over all i, k gives total O (IM(K + I)) time.

5. Gradients of ⟨V̂α[Z], V̂α[Z′]⟩F with respect to U (i)
k : is similarly

2αi

M − 1

K∑
l=1

(V̂α[Z]lk + V̂α[Z
′]lk)U

(i)
l

so can be computed in O (DiK) time.

6. Finally compute gradients with respect to U (i)
k : simply have Z(i)

k = U
(i)
k

⊤
X(i) so the

final gradients are

∂L̂EY

∂U
(i)
k

=

(
∂L̂EY

∂Z
(i)
k

)⊤

X(i) +
∂⟨V̂α[Z], V̂α[Z′]⟩F

∂U
(i)
k

(73)

so the dominant cost is the O (MDi) multiplication.

Since D ≫ K,M , the dominant cost each final gradient is O (MDi). Summing up over i, k gives
total cost O (KM

∑
Di) = O (KMD), as claimed.
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F ADDITIONAL STOCHASTIC CCA EXPERIMENTS

F.1 SUPPLEMENTARY EXPERIMENTS: SPLIT CIFAR

In this supplementary section, we provide additional experimental results on the Split CIFAR
dataset, where the left and right halves of CIFAR-10 images are utilized as separate views for canon-
ical correlation analysis. These experiments aim to bolster the findings reported in the main paper
on the MediaMill dataset.

Observations: As shown in Figure 5, our method CCA-EY demonstrates similar advantages on the
Split CIFAR dataset as observed in the main experiments on MediaMill. Specifically, CCA-EY out-
performs both γ-EigenGame and SGHA in terms of PCC across all tested mini-batch sizes. More-
over, Figure 5a shows that CCA-EY converges faster than the baselines when using a mini-batch size
of 20. It is important to note that these trends echo the findings in our primary experiments, further
confirming the robustness and efficacy of CCA-EY across different datasets and configurations.

(a) (b)

Figure 5: Experiments onSplit CIFAR with Stochastic CCA: (a) Proportion of Correlation Captured
(PCC) across varying mini-batch sizes (left), and (b) Convergence behavior with respect to samples
seen for mini-batch size 20 (right). Both subfigures compare CCA-EY against prior methods (γ-
EigenGame and SGHA). Shaded regions signify ± one standard deviation around the mean.

G ADDITIONAL DCCA EXPERIMENTS

In this section, we delve into the performance of DCCA-EY against other DCCA methods. The
experimental setup is borrowed from Wang et al. (2015b), utilizing the XRMB dataset. We use
mini-batch sizes ranging from 20 to 100 and train the models for 50 epochs. Our metric here is the
Total Correlation Captured (TCC), given by TCC =

∑k
i=1 ρi.

Observations: As depicted in Figure 6, DCCA-STOL shows limitations in scalability, struggling
to optimize a 50-dimensional representation when the mini-batch size is less than 50. This is par-
ticularly evident in the performance curve for XRMB (Figure 6a). On the other hand, DCCA-NOI
performs similarly to DCCA-EY but only for larger mini-batch sizes and with slower speed to con-
vergence.

(a) Performance comparison on XRMB (b) Performance comparison on XRMB

Figure 6: Validation TCC by DCCA-EY vs prior work on the XRMB dataset. Subfigure (a) shows
the validation correlation for different batch sizes among various models. Subfigure (b) depicts the
validation correlation against the number of epochs for a fixed batch size of 50.
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H ADDITIONAL SSL EXPERIMENTS

H.1 JOINT EMBEDDING FOR SSL AND THE ROLE OF THE PROJECTOR

Many recent SSL methods, including Barlow Twins and VICReg use an encoder-projector setup, as
illustrated in Figure 7. Input data is mapped through some encoder g to obtain representations; these
representations are then mapped through a projector9 h to a (typically) higher-dimensional embed-
ding. Crucially, it is the representations that are used for down-stream tasks but the embeddings
that are used to train the model. Typically, the encoder is a neural network with domain appropriate
architecture, but the projector is a (relatively shallow) multi-layer perceptron.

The idea of joint embedding methods is that similar inputs should have similar embeddings. To train
them, one obtains pairs X,X ′ of similar input data through domain-specific augmentation methods;
the encoder and projector then learn to optimise some objective characterizing how close Z,Z ′ are.

Encoder-projector architectures, have had impressive empirical success, but despite recent work Ma
et al. (2023); Jing et al. (2021), there is relatively little understanding of why they work so well. Our
more principled objective opens the door for a better understanding of this phenomenon, which may
lead to improved future architectures.

Figure 7: A schematic diagram of the architecture used by Joint Embedding methods which include
VICReg, and Barlow Twins

In Figure 8, we demonstrate that our model’s performance plateaus at a much smaller projector
dimension. This serves as empirical evidence supporting our algorithm as a robust choice for a
range of scenarios.

Figure 8: Performance saturation in our model occurs at a much smaller projector size compared to
VICReg and Barlow Twins, demonstrating its robustness.

H.2 UNDERSTANDING LONG-TERM CONVERGENCE

A key insight from our learning curves in Figure 9 and Figure 10 is that the performance variation
observed at 1000 epochs is largely a function of noise in early optimization stages. All models
seem to follow similar convergence trends, underscoring that the performance differences are not
indicative of intrinsic model superiority.

9Sometimes alternatively called an expander.
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Figure 9: Learning curves for CIFAR-10 showing that the performance of models after 1000 epochs
is influenced by noise in early optimization, with all models converging similarly.

Figure 10: Learning curves for CIFAR-100 emphasizing the role of early optimization noise in the
performance after 1000 epochs, highlighting the similar convergence of all models.
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I REPRODUCIBILITY

In this section, we give further detail to allow readers to reproduce the results in the paper.

I.1 CODE

We make code for the Stochastic CCA and Stochastic Deep CCA experiments available in the at-
tached zip file. We will make this available as a public Github repository.

I.2 COMPUTER RESOURCES

Each of the four types of experiment required slightly different resources due to the relative scale of
the problems.

Experiment CPU/GPU Resources
Stochastic CCA NVIDIA GeForce RTX 2080 Ti
Deep CCA NVIDIA GeForce RTX 2080 Ti
Deep MCCA NVIDIA GeForce RTX 2080 Ti
Stochastic PLS NVIDIA GeForce GTX 1650 Ti
SSL 4-8 NVIDIA GeForce RTX 2080 Ti, Quadro RTX 8000

Quadro RTX 6000, or NVIDIA GeForce GTX 1080 Ti GPU devices

Table 2: Computer resources for each experiment type

I.3 FURTHER EXPERIMENT DETAILS

In this section, we give further details regarding the descriptions of the metrics and parameter search.

I.3.1 STOCHASTIC CCA

Parameters: For each method, we searched over a hyperparameter grid using Biewald (2020).

Parameter Values
minibatch size 5,20,50,100
components 5
epochs 1
seed 1, 2, 3, 4, 5
lr 0.01, 0.001, 0.0001
γ10 0.01,0.1,1,10

I.3.2 DEEP CCA

Further details: As in Wang et al. (2015b), we used multilayer perceptrons with two hidden layers
with size 800 and an output layer of 50 with ReLU activations. We train for 20 epochs.

Parameters: For each method, we searched over a hyperparameter grid using Biewald (2020).

Parameter Values
minibatch size 100, 50, 20
lr 1e-3, 1e-4, 1e-5
ρ11 0.6, 0.8, 0.9
epochs 50

I.3.3 DEEP MCCA

Parameters: For each method, we searched over a hyperparameter grid using Biewald (2020).
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Parameter Values
minibatch size 5,10,20,50,100,200
components 50
epochs 100
lr 0.01, 0.001, 0.0001, 0.00001

I.3.4 UK BIOBANK PLS

Partial Least Squares

Following section 2, we can combine equations 4 and 6 with αi = 1∀i in order to write Partial Least
Squares as a Generalized Eigenvalue Problem:

A =

(
0 Cov(X(1), X(2))

Cov(X(2), X(1)) 0

)
, B =

(
ID1 0
0 ID2

)
, u =

(
u(1)

u(2)

)
. (74)

Note that since B is an Identity matrix by construction, we do not need to make stochastic approxi-
mations of B during optimization.

Further details: The UK BioBank data consisted of real-valued continuous brain volumes and
ordinal, integer genetic variants. We used pre-processed (using FreeSurfer (Fischl, 2012)) grey-
matter volumes for 66 cortical (Desikan-Killiany atlas) and 16 subcortical brain regions and 582,565
autosomal genetic variants. The effects of age, age squared, intracranial volume, sex, and the first
20 genetic principal components for population structure were removed from the brain features
using linear regression to account for any confounding effects. Each brain ROI was normalized
by removing the mean and dividing the standard deviation. We processed the genetics data using
PLINK (Purcell et al., 2007) keeping genetic variants with a minor allele frequency of at least 1%
and a maximum missingness rate of 2%. We used mean imputation to fill in missing values and
centered each variant.

To generate measures of genetic disease risk, we calculated polygenic risk scores using PRSice (Eu-
esden et al., 2014). We calculated scores, with a p-value threshold of 0.05, using GWAS summary
statistics for the following diseases; Alzheimer’s (Lambert et al., 2013), Schizophrenia (Trubetskoy
et al., 2022), Bipolar (Mullins et al., 2021), ADHD (Demontis et al., 2023), ALS (van Rheenen
et al., 2021), Parkinson’s (Nalls et al., 2019), and Epilepsy (International League Against Epilepsy
Consortium on Complex Epilepsies, 2018), using the referenced GWAS studies.

The GEP-EY PLS analysis was trained for 100 epochs using a learning rate of 0.0001 with a mini-
batch size of 500.

I.3.5 SELF-SUPERVISED LEARNING

In this section, we provide a comprehensive overview of the experimental settings and configurations
used in our self-supervised experiments.

As stated before, we use the standard setup from solo-learn’s pretraining scripts. For the backbone
network, we use ResNet-18. The projector network consists of hidden dimensions and output di-
mensions both set to 2048. We employ the LARS optimizer with a learning rate of 0.3 for the
backbone and 0.1 for the classifier. The batch size is set to 256, and weight decay is set to 1× 10−4.
Additional optimizer parameters include clip lr set to True, η set to 0.02, and exclude bias n norm
set to True. The learning rate scheduler used is a warmup cosine scheduler. The models are trained
for 1000 epochs. The model’s calculations are performed with a numerical precision of 16 bits.

VICReg and Barlow Twins: Both models employ similar data augmentations, specified in Tables
3 and 4. In table 3 we show the shared augmentations while in table 4 we show the differences. Note
that Barlow Twins uses two different augmentations with 50% probability each.
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Augmentation Parameters
ColorJitter brightness = 0.4, contrast = 0.4, saturation = 0.2, hue = 0.1, prob = 0.8
Grayscale prob = 0.2
HorizontalFlip prob = 0.5
CropSize 32

Table 3: Shared augmentations for VICReg and Barlow Twins

Augmentation VICReg Barlow Twins (crop 1) Barlow Twins (crop 2)
RandomResizedCrop Yes Yes Yes
crop min scale 0.2 0.08 0.08
crop max scale 1.0 1.0 1.0
Solarization Yes No Yes

prob = 0.1 prob = 0.0 prob = 0.2
NumCrops 2 1 1

Table 4: Different augmentations for VICReg and Barlow Twins

I.4 PYTORCH PSEUDO-CODE: UNIFYING THE ALGORITHMS UNDER THE GENERALIZED
EIGENPROBLEM (GEP) FRAMEWORK

In this work, we introduce three distinct algorithms: DMCCA-EY, PLS-EY, and SSL-EY. Despite
their apparent differences, they are all specialized instances of a generalized eigenproblem (GEP).
All these algorithms maximize the objective function outlined in Proposition 3.1, making them spe-
cial cases of our main contribution.

Algorithm 2 gives a general loss for DCCA and DMCCA. Algorithm 3 shows how we can adapt the
loss function for stochastic PLS problems. Algorithm 4 gives a generic SSL loss.

Algorithm 2: DMCCA-EY Loss Function in Python
def DMCCA EY(views, views prime):

z = encode(views) # Encode the views
z prime = encode(views prime) # Encode the prime views
A, B, B prime = torch.zeros(z[0].shape[1], z[0].shape[1]),
torch.zeros(z[0].shape[1], z[0].shape[1]),
torch.zeros(z[0].shape[1], z[0].shape[1]) # Initialize
matrices
for zi, zj in all pairs(z):

A += get cross covariance(zi, zj) # Compute
cross-covariance
B += get auto covariance(zi) # Compute auto-covariance

for zi in z prime:
B prime += get auto covariance(zi) # Compute
auto-covariance for prime views

A, B, B prime = A / len(z), B / len(z), B prime / len(z prime)
# Normalize matrices
return -torch.trace(2 * A - B @ B prime) # Calculate loss
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Algorithm 3: PLS-EY Loss Function in Python
def PLS EY(views):

z, weights = encode and weights(views) # Encode the views and
get weights
A, B = torch.zeros(z[0].shape[1], z[0].shape[1]),
torch.zeros(weights[0].shape[1], weights[0].shape[1]) #
Initialize matrices
for zi, zj in all pairs(z):

A += cross covariance PLS(zi, zj) # Compute
cross-covariance for PLS

for wi in weights:
B += auto covariance weights PLS(wi) # Compute
auto-covariance for PLS

A, B = A / len(z), B / len(weights) # Normalize matrices
return -torch.trace(2 * A - B @ B) # Calculate loss

Algorithm 4: SSL-EY Loss Function in Python
def SSL EY(views, views prime):

z = encode(views) # Encode the views
z prime = encode(views prime) # Encode the prime views
A, B, B prime = torch.zeros(z[0].shape[1], z[0].shape[1]),
torch.zeros(z[0].shape[1], z[0].shape[1]),
torch.zeros(z[0].shape[1], z[0].shape[1]) # Initialize
matrices
for zi, zj in all pairs(z):

A += get cross covariance(zi, zj) # Compute
cross-covariance
B += get auto covariance(zi) # Compute auto-covariance

for zi in z prime:
B prime += get auto covariance(zi) # Compute
auto-covariance for prime views

A, B, B prime = A / len(z), B / len(z), B prime / len(z prime)
# Normalize matrices

I.4.1 SOLO-LEARN ADAPTATION

The version of SSL-EY in algorithm 5 is designed to integrate seamlessly into solo-learn, offering
support for distributed training.
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Algorithm 5: Solo-Learn Loss function for distributed SSL-EY in Python
# Define the SSL-EY loss function
# Input: Projected features from two views
def SSL EY(z1, z2):

# Get the minibatch size and feature dimension
N, D = z1.size()
# Compute the covariance matrix from the concatenated
features
C = torch.cov(torch.hstack((z1, z2)).T)
# Average the covariance matrix across all processes if
distributed training is enabled
if dist.is available() and dist.is initialized():

dist.all reduce(C)
world size = dist.get world size()
C /= world size

# Extract symmetric and anti-symmetric blocks of C
A = C[:D, D:] + C[D:, :D]
B = C[:D, :D] + C[D:, D:]
# Return the SSL-EY loss value
return -torch.trace(2 * A - B @ B)
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