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ABSTRACT

Bayesian Neural Networks (BNNs) provide a promising framework for model-
ing predictive uncertainty and enhancing out-of-distribution robustness (OOD) by
estimating the posterior distribution of network parameters. Stochastic Gradient
Markov Chain Monte Carlo (SGMCMC) is one of the most powerful methods for
scalable posterior sampling in BNNs, achieving efficiency by combining stochas-
tic gradient descent with second-order Langevin dynamics. However, SGMCMC
often suffers from limited sample diversity in practice, which affects uncertainty
estimation and model performance. We propose a simple yet effective approach
to enhance sample diversity in SGMCMC without the need for tempering or run-
ning multiple chains. Our approach reparameterizes the neural network by de-
composing each of its weight matrices into a product of matrices, resulting in a
sampling trajectory that better explores the target parameter space. This approach
produces a more diverse set of samples, allowing faster mixing within the same
computational budget. Notably, our sampler achieves these improvements with-
out increasing the inference cost compared to the standard SGMCMC. Extensive
experiments on image classification tasks, including OOD robustness, diversity,
loss surface analyses, and a comparative study with Hamiltonian Monte Carlo,
demonstrate the superiority of the proposed approach.

1 INTRODUCTION

Bayesian Neural Networks (BNNs) provide a promising framework for achieving predictive uncer-
tainty and out-of-distribution (OOD) robustness (Goan & Fookes, 2020). Instead of using a gradient-
descent optimization algorithm typical for neural networks (NNs), BNNs are trained by estimating
the posterior distribution p(θ|D), where θ represents the BNN parameters andD is the given dataset.
Variational methods (Liu & Wang, 2016; David M. Blei & McAuliffe, 2017) and sampling methods
are commonly used to estimate the posterior. A representative sampling method is Stochastic Gra-
dient Markov Chain Monte Carlo (SGMCMC; Welling & Teh, 2011; Chen et al., 2014; Ma et al.,
2015), which has been highly successful for large-scale Bayesian inference by leveraging both the
exploitation of stochastic gradient descent (SGD) and the exploration of Hamiltonian Monte Carlo
(HMC; Duane et al., 1987). Based on an appropriate stochastic differential equation, SGMCMC
approximately draws samples from the posterior, while avoiding the computation of the intractable
posterior density p(θ|D) and instead using its unnormalized tractable counterpart p(D|θ)p(θ).
However, despite its powerful performance, SGMCMC suffers from the issue of low sample di-
versity. Drawing diverse samples of the BNN parameters θ is important because it usually leads
to the diversity of the sampled functions fθ of the BNN, which in turn induces an improved ap-
proximation of the likelihood p(D|θ). As a result, SGMCMC often fails to replace less-principled
alternatives in practice, in particular, deep ensemble (DE; Lakshminarayanan et al., 2017), which
generates multiple samples of the BNN parameters θ simply by training a neural network multiple
times with different random initializations and SGD. Although DE is technically not a principled
Bayesian method, it partially approximates the posterior with high sample diversity, leading to a
good uncertainty estimation (Ovadia et al., 2019; Ashukha et al., 2020). When training time is not a
concern, DE usually outperforms SGMCMC in terms of both accuracy and uncertainty estimation.

Existing approaches for addressing the sample-diversity issue of SGMCMC mostly focus on mod-
ifying the dynamics of SGMCMC directly, e.g., by adjusting the step size schedule (Zhang et al.,
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2020), introducing preconditioning into the dynamics (Ma et al., 2015; Gong et al., 2019; Kim et al.,
2024), or running multiple SGMCMC chains to explore different regions of the loss surface (Gallego
& Insua, 2020; Deng et al., 2020). However, such a direct modification of the dynamics commonly
requires extra approximations, such as the estimation of the Fisher information, bi-level optimiza-
tion to learn appropriate preconditioning, or high computational resources, such as a large amount
of memory due to the use of multiple chains.

In this paper, we propose a simple yet effective approach for increasing the sample diversity of
SGMCMC without requiring explicit preconditioning or multiple chains. Our approach modifies
the dynamics of SGMCMC indirectly by reparameterizing the BNN parameters. In the approach,
the original parameter matrices of the BNN are decomposed into the products of matrices of new
parameters. Specifically, for a given multilayer perceptron (MLP), when W ∈ Rm×n is a parameter
matrix of an MLP layer, our approach reparameterizes W as the following matrix product:

W = PVQ, (1)

for new parameter matrices V ∈ Rm×n, P ∈ Rm×m and Q ∈ Rn×n for the same layer. We call
the approach as Parameter Expanded SGMCMC (PX-SGMCMC). In the paper, we provide theoret-
ical and empirical evidence that our reparametrization alters the dynamics of SGMCMC such that
PX-SGMCMC explores the target potential energy surface better than the original SGMCMC. The
modified dynamics introduce a preconding on the gradient of the potential energy and causes an
effect of increasing step size implicitly. While simply growing the step size often hinders the con-
vergence of gradient updates, the implicit step size scaling caused by the precondintioning improves
the convergence. Although PX-SGMCMC needs more BNN parameters during training, its infer-
ence cost remains the same as SGMCMC because the matrices P, V, Q in Eq. 1 can be reassembled
into the single weight matrix W for inference.

We evaluate the performance of PX-SGMCMC on various image classification tasks, with residual
networks (He et al., 2016), measuring both in-distribution and OOD performance. Furthermore,
we assess sample diversity in various ways, such as measuring ensemble ambiguity, comparing
PX-SGMCMC with HMC (which is considered an oracle method), and visualizing the sampling
trajectories over the loss surface. Our evaluation shows that PX-SGMCMC outperforms SGMCMC
and other baselines by a significant margin, producing more diverse function samples and achieving
better uncertainty estimation and OOD robustness than these baselines.

2 PRELIMINARIES

2.1 NOTATION

We begin by presenting the mathematical formulation of neural networks. Specifically, a multilayer
perceptron (MLP; Rosenblatt, 1958) with L layers transforms inputs x = h(0) to outputs y = h(L)

through the following transformations:

h(l) = σ(W(l)h(l−1) + b(l)), for l = 1, . . . , L− 1, and h(L) = W(L)h(L−1) + b(L), (2)

where h(l) denotes the feature at the l-th layer, W(l) and b(l) respectively are the weight and bias
parameters at the l-th layer, and σ(·) indicates the activation function applied element-wise.

2.2 BAYESIAN INFERENCE WITH STOCHASTIC GRADIENT MCMC

Bayesian model averaging. In Bayesian inference, our goal is not to find a single best estimate of
the parameters, such as the maximum a posteriori estimate, but instead to sample from the poste-
rior distribution p(θ|D) of the parameters θ given the observed data D. The prediction for a new
datapoint x is then given by Bayesian model averaging (BMA),

p(y|x,D) =
∫

p(y|x,θ)p(θ|D)dθ, (3)

which can be approximated by Monte Carlo integration p(y|x,D) ≈
∑M

m=1 p(y|x,θm)/M using
finite posterior samples θ1, . . . ,θM ∼ p(θ|D). This Monte-Carlo integration is commonly used
in Bayesian deep learning with posterior samples generated by a sampling method, as the posterior
distribution of the neural network parameters θ cannot be expressed in closed form in practice.
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Langevin dynamics for posterior simulation. Due to the intractability of the posterior p(θ|D)
for the neural network parameters θ, we often work with its unnormalized form. Specifically, we
typically introduce the potential energy, defined as the negative of the unnormalized log-posterior:

U(θ) = − log p(D|θ)− log p(θ). (4)

Simulating the following Langevin dynamics over the neural network parameters θ,

dθ = M−1rdt, dr = −γrdt−∇θU(θ)dt+M1/2
√
2γTdW, (5)

yields a trajectory distributed according to exp (−U(θ)/T ), where setting T = 1 provides posterior
samples for computing the BMA integral (Eq. 3). Here, M is the mass, γ is the damping constant,
W represents a standard Wiener process, and T is the temperature.

Langevin dynamics with stochastic gradients. Computing the gradient ∇θU(θ) over the entire
dataset D becomes intractable as the dataset size increases. Inspired by stochastic gradient meth-
ods (Robbins & Monro, 1951), SGMCMC introduces a noisy estimate of the potential energy:

Ũ(θ) = −(|D|/|B|) log p(B|θ)− log p(θ), (6)

where the log-likelihood is computed only for a mini-batch of data B ⊂ D, replacing the full-
data gradient with the mini-batch gradient. In practice, simulations rely on the semi-implicit Euler
method, with Stochastic Gradient Langevin Dynamics (SGLD; Welling & Teh, 2011) and Stochastic
Gradient Hamiltonian Monte Carlo (SGHMC; Chen et al., 2014) being two representatives:

(SGLD) θ ← θ − ϵM−1∇θŨ(θ) +N (0, 2ϵTM), (7)

(SGHMC) θ ← θ + ϵM−1r, r ← (1− ϵγ)r − ϵ∇θŨ(θ) +N (0, 2ϵγTM). (8)

3 PARAMETER EXPANDED SGMCMC

3.1 REPARAMETRIZATION

Our solution for the sample-diversity problem of SGMCMC is motivated by the intriguing prior re-
sults on deep linear neural networks (DLNNs) (Arora et al., 2018; 2019a; He et al., 2024), which are
just MLPs with a linear or even the identity activation function (i.e., σ(t) = t). Although DLNNs are
equivalent to linear models in terms of expressiveness, their training trajectories during (stochastic)
gradient descent are very different from those of the corresponding linear models. Existing results
show that, under proper assumptions, DLNNs exhibit faster convergence (Arora et al., 2018; 2019a)
and have an implicit bias (distinct from linear models) to converge to solutions that generalize bet-
ter (Woodworth et al., 2020; Arora et al., 2019b; Gunasekar et al., 2018). Observe also that all the
layers of each DLNN can be reassembled into a single linear layer so that the DLNNs do not incur
overhead during inference when compared to the linear models.

Building on these results and observation, we introduce the expanded parametrization (EP) of an
L-layer MLP f in Eq. 2 with parameters θ = (W(1), . . . ,W(L), b(1), . . . , b(L)) as

W(l) = P
(l)
1:cV

(l)Q
(l)
1:d and b(l) = P

(l)
1:ca

(l), for l = 1, . . . , L, (9)

where P
(l)
1:c ≜ P

(l)
c · · ·P(l)

1 and Q
(l)
1:d ≜ Q

(l)
1 · · ·Q

(l)
d for some new parameter matrices P

(l)
i and

Q
(l)
j , called expanded matrices. Here, c represents the number of expanded matrices on the left

side, and d on the right side, and the total number of expanded matrices is e = c + d ≥ 0 (note
that when c = d = 0, P(l)

1:0 and Q
(l)
1:0 are identity matrices). While the expanded matrices P

(l)
i

and Q
(l)
i do not need to be square, their products, P(l)

1:c and Q
(l)
1:d, must be so in order to ensure

that the base matrix V(l) retains the dimensionality of W(l). In this paper, we use square matrices
for P(l)

i ’s and Q
(l)
i ’s, which lets us minimize additional memory overhead while making sure that

the reparametrization does not introduce any additional non-global local minima; this is guaranteed
when the widths of intermediate layers in a DLNN are greater than or equal to both the input and
output dimensions (Laurent & von Brecht, 2018; Yun et al., 2019).

Under our EP, the position variable in the SGLD algorithm is given by

θ =
(
P

(1)
1 , . . . ,P(l)

c ,V(l),Q
(1)
1 , . . . ,Q

(l)
d ,a(l)

)L
l=1

, (10)
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while in the SGHMC algorithm, the momentum variable, in addition to the position, is defined as

r =
(
R

(1)
1 , . . . ,R(l)

c ,S(l),T
(1)
1 , . . . ,T

(l)
d , c(l)

)L
l=1

, (11)

where this new momentum variable is related to the original momentum variable of SGHMC as in
Eq. 9. We call SGLD and SGHMC under these EPs broadly as Parameter Expanded SGMCMC
(PX-SGMCMC) methods. Although the dynamics of such a PX-SGMCMC method follows the
update formulas in Eq. 7, it differs from the dynamics of the corresponding SGMCMC method sig-
nificantly. The former is the preconditioned variant of the latter where gradients in the SGMCMC’s
dynamics, such as ∇θorig

Ũ(θorig) for the original position variable θorig, are replaced by precondi-
tioned versions, and this preconditioning produces extraordinary directions of gradient steps in the
PX-SGMCMC. In the next section, we dive into the new dynamics induced by the preconditioning,
and analyze the effect of the preconditioning on the exploration of PX-SGMCMC in terms of the
depth of EP and the maximum singular values of matrices in it.

3.2 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the EP proposed in Section 3.1. For simplicity,
the following theorem and proof focus on the SGLD method described in Eq. 7. To highlight the
effect of EP on SGLD, we first need to understand how the combined parameter W evolves under
gradient flows when each of its components follows its own gradient flow. The following lemma
explains the preconditioning matrix induced by EP. Proofs can be found in Appendix A.
Lemma 3.1 (Dynamics of EP). For an arbitrary function F whose parameter is W1:e =
W1 · · ·We with its vectorization X = vec (W1:e), assume that the gradient update of each Wi for
i ∈ {1, . . . , e} is defined as the following PDE:

dWi(t) = −∇Wi
F(W1(t), . . . ,We(t))dt. (12)

Then, their multiplication X satisfies the following dynamics:
dX(t) = −PX(t)∇XF(X(t))dt,

where PX(t) =


I, (e = 1),

W2(t)
⊤W2(t)⊗ I + I ⊗W1(t)W1(t)

⊤, (e = 2)

W2:e(t)
⊤W2:e(t)⊗ I + I ⊗W1:e−1(t)W1:e−1(t)

⊤

+
∑e−1

j=2

(
Wj+1:e(t)

⊤Wj+1:e(t)⊗W1:j−1(t)W1:j−1(t)
⊤) (e > 2).

The operator ⊗ refers to the Kronecker product, and PX(t) denotes the symmetric and positive
semi-definite matrix.

This unique gradient flow is known to be unattainable through regularization (Arora et al., 2018)
in the standard parameterization (SP). Furthermore, the singular values or eigenvalues of PX(t) are
closely tied to the singular values of the parameters Wi. In the following, we show that the new
dynamics induced by EP promotes greater exploration of the energy surface, which scales with the
depth of EP and the maximum singular value across the EP parameters Pi(t), V (t), Qi(t) in Eq. 9.
Theorem 3.2 (Exploration). Assume the following bounds on the expectations of the norms of the
gradients, the stochastic gradients, and the Gaussian noise in Eq. 7:

E
[∥∥∥∇U(W(l)(t))

∥∥∥
2

]
≤ h, E

[∥∥∥∇U(W(l)(t))−∇Ũ(W(l)(t))
∥∥∥
2

]
≤ s, E[∥2TM∥2] ≤ C,

(13)
where the elements of M corresponding to the expanded parameters P,Q are zero. Also assume
that the maximum singular value of each parameter matrix in EP is bounded as follows:

sup
t
V(t) = M,

V(t) = max
{
σmax(P1(t)), . . . , σmax(Pc(t)),σmax(V(t)), σmax(Q1(t)), . . . , σmax(Qd(t))

}
. (14)

Then, due to the preconditioning in Lemma 3.1, the Euclidean distance of two SGLD samples at
consecutive time steps is upper-bounded by the following term, which depends on the depth c+d+1:

E [∥W(t)−W(t+ 1)∥2] ≤ ϵL2(c+ d+ 1)M (c+d)(h+ s) + ϵLC. (15)
Note that as the depth (c+d+1) and the maximum singular value M decrease, the upper bound on
the distance of two consercutive samples gets smaller.

4
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Although the bound in Theorem 3.2 is not necessarily the maximum distance between consecutive
samples, its dependency on the depth (c+d+1) of our EP suggests that the preconditioning induced
by EP may improve the exploration of the SGLD and lead to the generation of more diverse samples.
Note that the bound in Eq. 15 is also proportional to the step size ϵ. However, in practice, using a
large step size above a certain threshold rather hinders the performance. In our experiments, the
performance monotonically improved as we increased the depth of EP, while converging to a certain
fixed level in the end. This suggests that the preconditioning of our EP induces a form of implicit
step-size scaling while maintaining the stability of the gradient-descent steps.

3.3 IMPLEMENTING EP FOR DIFFERENT ARCHITECTURES

Linear layers. We follow the Eq. 9. The depth and width of each matrix Pi, V, or Qi can be
adjusted, but the width should be at least as large as that of the corresponding input dimension.

Convolution layers. There are four dimension axes in the standard convolution layer. Let k, ci, co
be the sizes of the kernel, the input channel, and the output channel, and W ∈ Rk×k×co×ci be
the kernel matrix. If we naı̈vely reparameterize W with P ∈ Rkco×kco , V ∈ Rk×k×co×ci , and
Q ∈ Rkci×kci , the memory and computation overheads become significant. Thus, we let P and
Q operate on the channel ci, co dimensions only, and each kernel dimension is multiplied by the
same matrices by defining P ∈ Rco×co , V ∈ Rk×k×co×ci , and Q ∈ Rci×ci . That is, in the index
notation, our reparameterization is:

Wabij =
∑
u,l

PiuVabulQlj , bi =
∑
u

Piuau. (16)

In contrast to the naı̈ve reparametrization, where the number of parameters roughly increases by
three folds when the depth of the reparametrization is 3 (i.e., #Params(PVQ) = 3 · #Params(W)),
the above reparametrization requires only #Params(PVQ) = (1+2/k2) ·#Params(W) in that case.

Normalization layers. Normalization layers, such as Batch Normalization (Ioffe & Szegedy, 2015),
Layer Normalization (Ba, 2016), and Filter Response Normalization (FRN; Singh & Krishnan,
2020), contain a few parameter vectors. For example, FRN used in Izmailov et al. (2021) con-
sists of the scale, bias, and threshold vectors, s ∈ Rco , b ∈ Rco , t ∈ Rco . As in the case of the linear
layer, we can simply multiply matrices on the left-hand side.

si =
∑
u,l

P s
iuQ

s
ulsl, bi =

∑
u,l

P b
iuQ

b
ulbl, ti =

∑
u,l

P t
iuQ

t
ultl. (17)

The row and column dimensions of P and Q should be at least co.

4 RELATED WORK

Linear parameter expansion. Linear parameter expansion techniques are relatively underexplored
in deep learning, as they do not inherently increase the expressivity of deep neural networks, particu-
larly in non-linear architectures. While this approach has shown some benefits in linear networks, it
is often overlooked in modern deep learning applications. A few notable works, however, have em-
ployed parameter expansion in the context of convolutional neural networks. For instance, Chollet
(2017), Guo et al. (2020), and Cao et al. (2022) have introduced techniques that either decompose
or augment convolution layers to reduce FLOPs and improve generalization. These methods pri-
marily aim at enhancing efficiency or regularization, leveraging additional layers or decompositions
to modify the structure of network without significantly increasing computational complexity. On
the other hand, Ding et al. (2019) proposed a different approach by expanding convolutional layers
through addition rather than multiplication, aiming to improve robustness against rotational distor-
tions in input images. While their method enhances robustness to certain image transformations, it
does not focus on the exploration properties of parameter expansion in non-convex problems.

SGMCMCs for diversity. Building upon the seminal work of Welling & Teh (2011), which in-
troduced SGLD as a scalable MCMC algorithm based on stochastic gradient methods (Robbins &
Monro, 1951), a range of SGMCMC methods have emerged in the past decade (Ahn et al., 2012;
Patterson & Teh, 2013; Chen et al., 2014; Ding et al., 2014; Ma et al., 2015; Li et al., 2016). De-
spite their theoretical convergence to target posteriors under the Robbins–Monro condition with a

5
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decaying step size (Teh et al., 2016; Chen et al., 2015), effectively exploring and exploiting the
posterior density of deep neural networks using a single MCMC chain remains challenging due to
their multimodal nature. In this context, Zhang et al. (2020) proposed a simple yet effective cyclical
step size schedule to enhance the exploration of SGMCMC methods. Intuitively, the larger step
size at the beginning of each sampling cycle facilitates better exploration while tolerating simulation
error, whereas the smaller step size towards the end of the cycle ensures more accurate simulation.
While the cyclical schedule helps with exploration, it often struggles to fully capture multimodality
and typically requires a significant number of update steps to transition between modes (Fort et al.,
2019; Kim et al., 2024). Thus, improving SGMCMC methods for modern deep neural networks is
still an active area of research, with recent progress using meta-learning frameworks (Gong et al.,
2019; Kim et al., 2024). To the best of our knowledge, we are the first to propose the parameter
expansion for enhancing the exploration of SGMCMC.

5 EXPERIMENTS

In this section, we present empirical results demonstrating the effectiveness of the parameter expan-
sion strategy proposed in Section 3 for image classification tasks. By integrating our strategy with
SGHMC, we introduce the parameter-expanded SGHMC (PX-SGHMC), which collects diverse pos-
terior samples and consistently outperforms baseline methods across various tasks. For comparison,
we consider the following representative SGMCMC methods as our baselines: SGLD (Welling &
Teh, 2011), pSGLD (Li et al., 2016), SGHMC (Chen et al., 2014), and SGNHT (Ding et al., 2014).
Unless otherwise specified, all the SGMCMC methods utilize the cyclical step size schedule. For
more details on their implementations and hyperparameters, please refer to Appendix C.

The conducted tasks include sampling from synthetic multimodal distribution (Section 5.1) and
applying Bayesian neural networks to image classification tasks (Sections 5.2 and 5.3). Unless stated
separately, in all result tables, (1) the reported values are represented as “mean±std” averaged over
four trials, and (2) a bold-faced underline highlights the best outcome, while an underline indicates
the second-best value. To assess the quality of the categorical predictions of the classifiers, we
compute classification error (ERR) and negative log-likelihood (NLL), while ensemble ambiguity
(AMB) quantifies the diversity of ensemble predictions. Refer to Appendix B.1 for the definitions
of the evaluation metrics.

5.1 TOY RESULTS: MIXTURE OF GAUSSIANS

Target SP EP

2.79 7.57 12.35 17.13

Figure 1: Toy results. HMC sam-
ples with SP and EP.

We begin by presenting the comparative results between SP
and EP based on the multi-modal 2D mixture of 25 Gaus-
sians (MoG), as in Zhang et al. (2020). Although the dis-
tribution is not a BNN posterior, it is enough to show a
role of the preconditioning induced by EP. The random vari-
ables of MoG, x ∈ R2 is decomposed as W3W2W1x for
W1,W2,W3 ∈ R2×2 and we use HMC whose integrator
also includes the preconditioning on the gradients. Specif-
ically, we collect 10,000 samples by running HMC with a
single chain, utilizing 10 leapfrog steps and a constant step
size of 0.05. Fig. 1 illustrates that EP resolves the issue of
SP becoming trapped in local modes without requiring additional techniques, such as tempering or
cyclical step sizes (Zhang et al., 2020). This indicates the exploration capability of EP within the
same number of iterations and step size. As explained in Section 3.2, the implicit step size scaling
induced by the preconditioning promotes to exit the modes, which implies a strong performance in
non-convex problems such as multi-modal posterior distributions.

5.2 MAIN RESULTS: IMAGE CLASSIFICATION TASKS

5.2.1 CIFAR-10

We present experimental results on CIFAR-10 (Krizhevsky et al., 2009), a benchmark that has been
widely used in the machine learning community for over a decade. In addition to the standard
test dataset evaluations in CIFAR-10, it is extensively studied in advanced tasks such as robustness

6
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Table 1: Main results on CIFAR-10 and associated distribution shifts. Evaluation results on C10
(CIFAR-10), C10.1 (CIFAR-10.1), C10.2 (CIFAR-10.2), STL, and C10-C (CIFAR-10-C). Metrics
for C10-C are computed using a total of 950,000 examples, encompassing 5 intensity levels and 19
corruption types. Please refer to Appendix B.2 for more detailed results regarding C10-C.

Distribution shifts

Metric Method C10 C10.1 C10.2 STL C10-C

ERR (↓)

SGLD 0.152±0.003 0.258±0.007 0.293±0.004 0.326±0.004 0.309±0.007

pSGLD 0.158±0.004 0.277±0.004 0.305±0.003 0.333±0.003 0.316±0.006

SGHMC 0.133±0.002 0.234±0.003 0.277±0.006 0.306±0.003 0.292±0.002

SGNHT 0.135±0.002 0.236±0.005 0.273±0.004 0.307±0.005 0.294±0.008

PX-SGHMC (ours) 0.121±0.002 0.218±0.005 0.257±0.007 0.287±0.002 0.287±0.008

NLL (↓)

SGLD 0.477±0.009 0.772±0.010 0.891±0.005 0.928±0.014 0.913±0.022

pSGLD 0.501±0.007 0.812±0.015 0.928±0.007 0.958±0.006 0.938±0.017

SGHMC 0.422±0.005 0.698±0.006 0.834±0.007 0.868±0.010 0.871±0.005

SGNHT 0.425±0.004 0.705±0.007 0.833±0.008 0.873±0.006 0.877±0.021

PX-SGHMC (ours) 0.388±0.005 0.661±0.012 0.806±0.009 0.819±0.004 0.859±0.022

Table 2: Out-of-distribution detection. Evaluation results for distinguishing in-distribution in-
puts from CIFAR-10 and out-of-distribution inputs from SVHN and LSUN based on predictive
entropy. This table summarizes evaluation metrics, including AUROC, TNR95 (TNR@TPR=95%),
and TNR99 (TNR@TPR=99%). For detailed plots, we refer readers to Appendix B.3.

SVHN LSUN

Method AUROC (↑) TNR95 (↑) TNR99 (↑) AUROC (↑) TNR95 (↑) TNR99 (↑)
SGLD 0.784±0.031 0.536±0.039 0.424±0.034 0.853±0.015 0.520±0.038 0.276±0.039

pSGLD 0.745±0.009 0.506±0.012 0.408±0.018 0.855±0.009 0.520±0.025 0.255±0.043

SGHMC 0.790±0.051 0.549±0.068 0.427±0.030 0.860±0.018 0.554±0.028 0.357±0.034

SGNHT 0.776±0.014 0.530±0.013 0.436±0.014 0.864±0.009 0.556±0.006 0.375±0.015

PX-SGHMC (ours) 0.832±0.014 0.632±0.009 0.514±0.021 0.884±0.007 0.594±0.037 0.405±0.036

analysis and OOD detection. For our experiments, we employ the R20-FRN-Swish architecture,
representing ResNet20 with FRN normalization and Swish nonlinearity and adapted from the HMC
checkpoints provided by Izmailov et al. (2021).

Results on CIFAR. Table 1 presents the evaluation results on the CIFAR-10 test split for the meth-
ods in the ‘C10’ column. It clearly demonstrates that the proposed PX-SGHMC significantly out-
performs other methods in terms of both ERR and NLL.

Robustness to distribution shifts. One of the key selling points of Bayesian methods is that models
produce reliable predictions accounting for uncertainty. To assess this aspect quantitatively, we
evaluate robustness to distribution shifts (Recht et al., 2019; Taori et al., 2020; Miller et al., 2021).
Specifically, we test on natural distribution shifts using CIFAR-like test datasets, including CIFAR-
10.1 (Recht et al., 2019), CIFAR-10.2 (Lu et al., 2020), and STL (Coates et al., 2011), as well as
on image corruptions using CIFAR-10-C (Hendrycks & Dietterich, 2019). Table 1 supports that
our approach not only outperforms the baseline methods on the in-distribution but also exhibits
significant robustness to distribution shifts. We refer readers to Appendix B.2 for further detailed
results regarding the CIFAR-10-C benchmark.

Out-of-distribution detection. Another important task for evaluating predictive uncertainty is the
OOD detection. In real-world scenarios, models are likely to encounter random OOD examples
and they are required to produce uncertain predictions for these examples (Hendrycks & Gimpel,
2017; Liang & Li, 2018). Categorical predictions of the classifiers are expected to be closer to being
uniform for OOD inputs than for in-distribution ones. Therefore, we use predictive entropy (Laksh-
minarayanan et al., 2017) to distinguish between in-distribution examples from CIFAR-10 and OOD
examples from SVHN (Netzer et al., 2011) and LSUN (Yu et al., 2015). Table 2 demonstrates that
our approach shows greater predictive uncertainty in handling OOD examples, as indicated by met-
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Table 3: Results with data augmentation. Evaluation results on C10 (CIFAR-10), C100 (CIFAR-
100), and TIN (TinyImageNet) with data augmentation. In this context, we manually set the poste-
rior temperature to 0.01 to account for the increased data resulting from augmentation.

ERR (↓) NLL (↓)
Method C10 C100 TIN C10 C100 TIN

SGLD 0.080±0.002 0.326±0.006 0.546±0.004 0.246±0.004 1.180±0.018 2.278±0.010

pSGLD 0.097±0.002 0.412±0.007 0.601±0.005 0.306±0.004 1.546±0.035 2.562±0.015

SGHMC 0.071±0.001 0.319±0.002 0.538±0.003 0.223±0.002 1.138±0.008 2.251±0.022

SGNHT 0.074±0.001 0.335±0.004 0.536±0.002 0.231±0.006 1.199±0.014 2.240±0.013

PX-SGHMC (ours) 0.069±0.001 0.290±0.004 0.498±0.004 0.217±0.005 1.030±0.011 2.089±0.008
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Figure 2: Connection between exploration and singular value dynamics. The first and second
plots illustrate exploration through unnormalized and normalized Euclidean distances, while the
third to fifth plots depict singular value dynamics, represented by the largest and smallest singular
values and condition numbers. For the 21 layers, the singular value plots feature 21 transparent lines
for each item, with the maximum (or minimum) value highlighted as the representative.

rics associated with the Receiver Operating Characteristic (ROC) curve. For a more comprehensive
overview of the ROC curves, see Appendix B.3.

5.2.2 RESULTS WITH DATA AUGMENTATIONS

While we have conducted a comprehensive evaluation on CIFAR-10 without data augmentation in
Section 5.2, practical settings often involve data augmentations. Consequently, we further present
comparative results on various image classification datasets, including CIFAR-10, CIFAR-100, and
TinyImageNet, using data augmentation that consists of random cropping and horizontal flipping.
Since these augmentations are likely to cause inaccurate likelihood estimation (Wenzel et al., 2020;
Noci et al., 2021; Nabarro et al., 2022), we introduce the notion of cold posterior in these experi-
ments, i.e., setting T < 1 in Eq. 5 and then sampling from tempered posterior p(θ|D)1/T .

Table 3 presents the results obtained by setting T = 0.01 in Eq. 7. It clearly demonstrates that
PX-SGHMC outperforms the other methods in both ERR and NLL, indicating that the enhanced
diversity is also applicable to the practical scenarios involving data augmentations and posterior
tempering across various datasets. Additionally, Appendix B.4 provides ablation results associated
with the cold posterior effect in the absence of data augmentation, showing that PX-SGHMC con-
sistently outperforms the SGHMC baseline across varying temperature values.

5.2.3 EMPIRICAL ANALYSIS

Connection between exploration and singular value dynamics. Theorem 3.2 suggests that the
update size of SGLD dynamics at each time step is constrained by the maximum singular value,
implying that small singular values may limit exploration. In this regard, a key characteristic of
EP in deep linear neural networks is the learning dynamics of singular values; Arora et al. (2019b)
showed that the evolution rates of singular values are proportional to their magnitudes raised to the
power of 2 − 2/e, where e represents the depth of the factorization. In other words, as the depth
of matrices increases, larger singular values tend to grow, while smaller singular values shrinks
close to zero. Although our setting does not fully align with the theoretical assumptions in Arora
et al. (2019b), as we do not consider DLNNs, we empirically demonstrate the connection between
exploration and singular value dynamics by varying the number of expanded matrices e = c+d+1.
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Figure 3: Trace plots for EP. It depicts training
and validation errors along with trajectory.

Expansion ERR (↓) NLL (↓) AMB (↑)
c = 0, d = 0 0.135±0.005 0.444±0.007 0.196±0.004

c = 1, d = 0 0.127±0.002 0.404±0.004 0.214±0.004

c = 1, d = 1 0.116±0.003 0.369±0.005 0.253±0.001

c = 2, d = 2 0.114±0.001 0.373±0.003 0.278±0.006

Table 4: Ablation results on EP. Metrics are
computed using the validation split.

Fig. 2 depicts our experimental findings: i) The first and second plots quantify exploration by com-
puting the Euclidean distance between consecutive posterior samples, defined as d(θm,θm+1) =
∥θm+1 − θm∥2, where θm denotes the sample at cycle index m. To exclude the effect of the scale
invariance of neural network parameters due to the normalization layers, such as the FRN used in our
experiments, we also compute their normalized version, d̄(θm,θm+1) = ∥θm+1 − θm∥2 / ∥θm∥2.
Both unnormalized and normalized Euclidean distances between consecutive samples get larger as
the number of expanded matrices e = c+d+1 increases. ii) The third and fourth plots illustrate the
dynamics of singular values by plotting the maximum and minimum singular values of the kernels
of the convolution layers. For each convolution layer, we compute the singular values of the ker-
nel tensor following Sedghi et al. (2019). In line with the theoretical argument presented in Arora
et al. (2019b), although our experimental setup does not involve DLNN, we empirically observe that
as the number of expanded matrices increases, the largest singular value rises, while the smallest
singular value decreases.

EP converges faster than SP. Another important property of EP in DLNNs is its accelerated con-
vergence toward optima or modes (Arora et al., 2019a), which has also been observed in deep convo-
lutional networks with nonlinearities (Guo et al., 2020). Building on this, we empirically investigate
the local mode convergence of EP within the SGMCMC framework, where faster convergence is
particularly crucial for BMA performance due to the slower local mode convergence caused by the
injected Gaussian noise in SGMCMC methods (Zhang et al., 2020) compared to SGD in DE. Fig. 3
presents trace plots of training and validation errors, showing that both tend to converge more rapidly
as the number of expanded matrices increases.

Based on the empirical findings, we hypothesize that EP induces a large maximum singular value,
as shown in ii), which enlarges the upper bound in Theorem 3.2 and breaks the exploration limit, as
demonstrated in i). Table 4 additionally presents the validation metrics for each setup and clearly
demonstrates that the proposed EP indeed achieves better functional diversity, as indicated by the in-
creased AMB. To sum up, PX-SGMCMC effectively enhances both the exploration and exploitation
of a single SGHMC chain, resulting in improved BMA measured by ERR and NLL.

5.3 COMPARATIVE ANALYSIS USING HMC CHECKPOINTS

While Section 5.2 presents extensive experimental results by running SGMCMC algorithms from
random initializations, we also conduct a comparative study using HMC checkpoints provided by
Izmailov et al. (2021) as an initialization of parameters in SGMCMC. Specifically, we run both
SGHMC and PX-SGHMC starting from the burn-in checkpoint of HMC, employing hyperparam-
eters aligned with those in Izmailov et al. (2021). Further details on the experimental setup can be
found in Appendix D.

5.3.1 DIVERSITY ANALYSIS

The diversity of the parameters does not necessarily imply that the diversity of the corresponding
functions they represent; for instance, certain weight permutations and sign flips can leave the func-
tion invariant (Hecht-Nielsen, 1990; Chen et al., 1993). To effectively approximate the BMA integral
in Eq. 3, functional diversity is essential (Wilson & Izmailov, 2020). Therefore, we quantify the di-
versity of posterior samples using their predictions by computing the ensemble ambiguity (Wood
et al., 2023) as well as the variance of predictions (Ortega et al., 2022).

Table 5 clearly shows that PX-SGHMC exhibits (a) superior exploration in the parameter space
compared to vanilla SGHMC, as evidenced by the average distances between consecutive samples,
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Table 5: Diversity analysis using HMC checkpoints. We measure (a) parameter diversity using
unnormalized and normalized Euclidean distances (d and d̄), (b) prediction diversity using ensemble
ambiguity (AMB) and variance (VAR), and (c) individual (IND) and ensemble (ENS) negative log-
likelihoods for 10 posterior samples from each method.

(a) (b) (c)

Method d(θm,θm+1) d̄(θm,θm+1) AMB VAR IND ENS

HMC 322.8±0.333 1.374±0.002 0.347 0.107 0.800 0.381
SGHMC 60.65±0.258 0.258±0.001 0.162 0.063 0.690 0.464
PX-SGHMC (Ours) 1290.±1.372 1.372±0.150 0.339 0.105 0.739 0.353
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Figure 4: Loss landscape analysis using HMC checkpoints. We visualize (a) linear connectivity
between consecutive posterior samples and (b) a two-dimensional subspace spanned by the 0th
(diamond), 1st (circle), and 2nd (pentagon) posterior samples. Both plots depict classification error
on 1,000 training examples. Note that the 8th HMC sample was rejected and reverted to the 7th.

and (b) higher diversity in predictions, indicated by ensemble ambiguity and variance of predictions
comparable to the gold standard HMC. Consequently, similar to HMC, (c) the BMA performance
of PX-SGHMC surpasses that of SGHMC, although individual posterior samples exhibit worse
performance in terms of negative log-likelihoods.

5.3.2 LOSS LANDSCAPE ANALYSIS

In this section, we investigate how effectively PX-SGHMC explores the posterior distribution over
parameters compared to both HMC and SGHMC, from the perspective of loss surface geometry (Li
et al., 2018). Fig. 4a visualizes the loss barrier between consecutive posterior samples, illustrat-
ing how often each method jumps over these barriers. While PX-SGHMC does not jump as high
as HMC, the larger barriers it crosses compared to SGHMC indicate significantly better explo-
ration, consistent with the discussion in Section 5.3. Fig. 4b visualizes a two-dimensional subspace
spanning the right-most initial position (0th) and two subsequent posterior samples (1st and 2nd),
demonstrating that the diversity of PX-SGHMC approaches that of the gold standard HMC when
sampling from the multi-modal BNN posterior.

6 CONCLUSION

We have presented PX-SGMCMC, a simple yet effective parameter expansion technique tailored for
SGMCMC, which decomposes each weight matrix in deep neural networks into the product of new
expanded-parameter matrices. Our theoretical analysis shows that the proposed parameter expansion
strategy provides a form of preconditioning on the gradient updates, enhancing the exploration of the
posterior energy surface. The extensive experimental results strongly support our claims regarding
the improved exploration linked to the singular value dynamics of the weight matrices explained in
our theoretical analysis. As a result, the posterior samples obtained through PX-SGMCMC demon-
strate increased diversity in both parameter and function spaces, comparable to the gold standard
HMC, leading to improved predictive uncertainty and enhanced robustness to OOD data.

Limitations. While EP does not increase inference costs, it does require additional training re-
sources in terms of memory and computation. In future work, we aim to optimize the reparameteri-
zation design to minimize these computational overheads while further enhancing diversity.
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A PROOFS

A.1 PROOF OF LEMMA 3.1

Proof. The derivative of F with respect to Wj for every j = 1, . . . , e can be decomposed as

∂F
∂Wj

(W1, . . . ,We) = W⊤
1:j−1

∂F(W1:e)

∂W1:e
W⊤

j+1:e. (18)

Substituting this in Eq. 12, we get

dWj(t)

dt
= −W⊤

1:j−1

∂F(W1:e(t))

∂W1:e
W⊤

j+1:e. (19)

Therefore, assuming that W1:0 = We+1:1 = I ,

dW1:e(t)

dt
=

e∑
j=1

W1:j−1(t)
dWj(t)

dt
Wj+1:e(t) (20)

= −
e∑

j=1

W1:j−1(t)W1:j−1(t)
⊤ ∂F(W1:e(t))

∂W1:e
Wj+1:e(t)

⊤Wj+1:e(t). (21)

By taking the vectorization on both sides,

vec

(
dW1:e(t)

dt

)
= −

e∑
j=1

(
Wj+1:e(t)

⊤Wj+1:e(t)⊗W1:j−1(t)W1:j−1(t)
⊤)vec(∂F(W1:e(t))

∂W1:e

)
(22)

= −PX(t)∇F(X(t)). (23)

A.2 PROOF OF THEOREM 3.2

Proof. For

Wj = W⊤
j+1:eWj+1:e ⊗W1:j−1W

⊤
1:j−1 (24)

in Lemma 3.1, the precondition can be described as

PX(t) =

e∑
j=1

Wj , W1:0 = We+1:e = I. (25)

Since Wj is positive semi-definite and symmetric, the singular values of Wj is the same as the
absolute eigenvalues ofWj . When Wi:j = Ui:jDi:jV

⊤
i:j by the singular value decomposition,

W⊤
j+1:eWj+1:e ⊗W1:j−1W

⊤
1:j−1 (26)

=
(
Vj+1:eD

⊤
j+1:eDj+1:eV

⊤
j+1:e

)
⊗
(
U1:j−1D

⊤
1:j−1D1:j−1U

⊤
1:j−1

)
(27)

= (Vj+1:e ⊗ U1:j−1)
(
D⊤

j+1:eDj+1:e ⊗D⊤
1:j−1D1:j−1

)
(Vj+1:e ⊗ U1:j−1)

⊤ (28)

= OΛO⊤ (29)

Therefore, the eigenvalues ofWj are

σr(Wj+1:e)
2σr′(W1:j−1)

2, for r = 1, . . . , n, and r′ = 1, . . . , n, (30)

where σr is the r-th singular value. The min-max theorem for singular values yields

σ(Wj) =
∣∣σr(Wj+1:e)

2σr′(W1:j−1)
2
∣∣ ≤ e∏

i ̸=j

σmax(Wi)
2. (31)
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Using this value, we derive the upper bound from the fact that the operator l2-norm of a matrix

is the same as the maximum singular value. For X =
(
vec
(
W

(l)
1:e

))L
l=1

such that W1:e =

W1W2 · · ·We and ∇Ũ(X(t)) = ∇U(X(t)) + s such that E[∥s∥] = s, the distance between
the two adjacent time steps is bounded as∥∥∥X(l)(t+ 1)−X(l)(t)

∥∥∥
2

= ϵ
∥∥∥−PX(l)(t)∇Ũ(X(l)(t)) +Btξ

∥∥∥
2

(32)

= ϵ

∥∥∥∥∥∥−
e∑

j=1

Wj∇Ũ(X(l)(t)) +Btξ
(l)

∥∥∥∥∥∥
2

(33)

≤ ϵ

e∑
j=1

∥Wj∥2
∥∥∥∇Ũ(X(l)(t))

∥∥∥
2
+ ϵ
∥∥∥Btξ

(l)
∥∥∥
2

(34)

≤ ϵ

e∑
j=1

e∏
i ̸=j

σmax(W
(l)
i )
(∥∥∥∇U(X(l)(t))

∥∥∥
2
+
∥∥∥s(l)∥∥∥

2

)
+ ϵ
∥∥∥Btξ

(l)
∥∥∥
2
. (35)

Note that ξ is still the zero-mean Gaussian because we set the noise corresponding
W1, . . . ,Wj−1,Wj+1, . . . ,We except for Wj zero. Once we take the all of layers and expec-
tation on both sides,

E [∥X(t+ 1)−X(t)∥]

≤ ϵ

L∑
l=1

E

 e∑
j=1

∏
i ̸=j

σmax(W
(l)
i ) (∥∇U(X(t))∥2 + ∥s∥2) + ∥Btξ∥2

 (36)

≤ ϵLe ·m(e−1)(Lh+ Ls) + ϵLC. (37)

B SUPPLEMENTARY RESULTS

B.1 EVALUATION METRICS

Let zm,i ∈ RK represent the categorical logits predicted by the mth posterior sample θs for the ith

data point. The final ensemble prediction, which approximates the BMA integral of the predictive
distribution, for the ith data point is given by:

pi =
1

M

M∑
m=1

σ(zm,i), (38)

where σ denotes the softmax function, mapping categorical logits to probabilities. Using pi and
zm,i, as well as the ground truth label yi for the ith data point, we calculate the following evaluation
metrics for a given set of N data points.

Classification error (ERR). The classification error, often referred to as 0-1 loss, is the primary
metric used to evaluate the performance of a classification model:

ERR =
1

N

N∑
i=1

[
yi ̸= argmax

k
p
(k)
i

]
, (39)

where [·] denotes the Iverson bracket.

Negative log-likelihood (NLL). The negative log-likelihood of a categorical distribution, commonly
known as cross-entropy loss, serves as the key metric for assessing classification model performance
in Bayesian literature:

NLL =
1

N

N∑
i=1

log p
(yi)
i . (40)
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Table 6: Supplementary results for CIFAR-10-C. It summarizes the classification error (ERR),
negative log-likelihood (NLL), and expected calibration error (ECE) averaged over 19 corruption
types for each intensity level. For a comprehensive overview of the results, we direct readers to
Fig. 5, which illustrates the box-and-whisker plots.

Intensity level

Metric Method AVG 1 2 3 4 5

ERR (↓)

SGLD 0.301±0.137 0.206±0.079 0.253±0.091 0.294±0.115 0.341±0.144 0.410±0.153

pSGLD 0.317±0.131 0.216±0.076 0.266±0.081 0.309±0.101 0.360±0.130 0.433±0.142

SGHMC 0.294±0.140 0.194±0.082 0.242±0.091 0.284±0.113 0.335±0.143 0.414±0.157

SGNHT 0.296±0.136 0.195±0.077 0.241±0.084 0.286±0.106 0.339±0.134 0.421±0.150

PX-SGHMC (ours) 0.275±0.126 0.180±0.073 0.224±0.081 0.264±0.098 0.315±0.120 0.394±0.134

NLL (↓)

SGLD 0.894±0.397 0.623±0.210 0.748±0.235 0.863±0.310 1.006±0.410 1.229±0.475

pSGLD 0.945±0.383 0.659±0.203 0.792±0.217 0.912±0.278 1.066±0.374 1.298±0.447

SGHMC 0.877±0.420 0.585±0.222 0.715±0.244 0.837±0.317 0.994±0.419 1.253±0.502

SGNHT 0.878±0.393 0.585±0.203 0.715±0.223 0.842±0.294 0.995±0.381 1.252±0.450

PX-SGHMC (ours) 0.826±0.371 0.550±0.194 0.673±0.220 0.784±0.276 0.934±0.347 1.189±0.420

ECE (↓)

SGLD 0.082±0.061 0.070±0.023 0.066±0.024 0.074±0.045 0.094±0.071 0.107±0.099

pSGLD 0.074±0.047 0.074±0.019 0.060±0.023 0.059±0.035 0.077±0.056 0.100±0.071

SGHMC 0.076±0.062 0.064±0.023 0.058±0.024 0.064±0.045 0.081±0.072 0.111±0.098

SGNHT 0.072±0.053 0.064±0.017 0.057±0.020 0.060±0.038 0.073±0.062 0.105±0.084

PX-SGHMC (ours) 0.066±0.031 0.067±0.017 0.059±0.021 0.059±0.019 0.063±0.031 0.084±0.049

Ensemble ambiguity (AMB). The generalized ambiguity decomposition for the cross-entropy loss
is given by (Wood et al., 2023):

AMB =
1

M

M∑
m=1

1

N

N∑
i=1

logσ(zm,i)
(y)

︸ ︷︷ ︸
average loss

− 1

N

N∑
i=1

logσ

(
1

M

M∑
m=1

zm,i

)(y)

︸ ︷︷ ︸
ensemble loss

. (41)

Notably, logit ensembling in the ensemble loss term is essentially equivalent to computing a nor-
malized geometric mean of the categorical probabilities. See Wood et al. (2023) for more details.

Expected calibration error (ECE). The expected calibration error with binning is a widely used
metric for assessing the calibration of categorical predictions (Naeini et al., 2015):

ECE =

J∑
j=1

|Bj | · |acc(Bj)− conf(Bj)|
N

, (42)

where Bj represents the jth bin that includes |Bj | data points with prediction confidence maxk p
(k)
i

falling within the interval ((j − 1)/J, j/J ]. Here, acc(Bj) indicates the classification accuracy,
while conf(Bj) refers to the average prediction confidence within the jth bin.

B.2 ROBUSTNESS TO COMMON CORRUPTION

Table 6 presents the classification error and uncertainty metrics, including negative log-likelihood
and expected calibration error (Naeini et al., 2015), for each level of corruption intensity. Our PX-
SGHMC consistently outperforms all baseline methods across all metrics, with the number of bins
for computing expected calibration error set to 15. Notably, PX-SGHMC shows lower calibration
error with increasing intensity levels, demonstrating enhanced robustness to more severely corrupted
inputs. Fig. 5 further presents box-and-whisker plots illustrating metrics across 19 corruption types
for five intensity levels. Overall, PX-SGHMC exhibits better calibration than the other methods.

B.3 OUT-OF-DISTRIBUTION DETECTION

To obtain the ROC curve and associated metrics (i.e., AUROC and TNR at TPR of 95% and 99%,
as shown in Table 2), we used 1,000 in-distribution (ID) examples as positives and 1,000 out-of-
distribution (OOD) examples as negatives. We manually balanced the number of examples, because
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Figure 5: Supplementary box-and-whisker plots for CIFAR-10-C. It illustrates the classification
error (ERR), negative log-likelihood (NLL), and expected calibration error (ECE) across 19 corrup-
tion types for five intensity levels.
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(a) CIFAR-10 as ID and SVHN as OOD.
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(b) CIFAR-10 as ID and LSUN as OOD.

Figure 6: Supplementary plots for out-of-distribution detection. Histograms of predictive en-
tropy for ID and OOD datasets, along with the receiver operating characteristic (ROC) curve mea-
suring the separability between ID and OOD.

the ROC curve becomes less reliable when there is an imbalance between positive and negative
examples. To see the perceptual differences between ID (CIFAR-10) and OOD (SVHN and LSUN)
images, please refer to Fig. 10.

In Fig. 6, histograms show how our PX-SGHMC more effectively assigns low predictive entropy to
ID inputs and high entropy to OOD inputs compared to the baseline (with SGHMC as a represen-
tative), while ROC curves assess the separability between the ID and OOD histograms. It clearly
shows that PX-SGHMC is more robust to OOD inputs, offering more reliable predictions when
encountering OOD inputs in real-world scenarios.
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B.4 ADDITIONAL RESULTS WITH COLD POSTERIOR

To obtain valid posterior samples from p(θ|D), the temperature should be one in Langevin dynamics
and its practical discretized implementations (i.e., T = 1 in Eqs. 5 and 7). However, many works in
the Bayesian deep learning literature have, in practice, considered using T < 1, which is called cold
posterior (Wenzel et al., 2020). Therefore, we further present comparative results between SGHMC
and PX-SGHMC using the cold posterior.

Fig. 7 presents the evaluation results on CIFAR-10, CIFAR-10.1, CIFAR-10.2, STL, and CIFAR-
10-C, as in Table 1. It is clear that our PX-SGHMC consistently outperforms the SGHMC baseline
across all datasets and temperature values considered. These results suggest that our EP strategy
functions orthogonally to the modification of the target posterior through posterior tempering.

B.5 ADDITIONAL RESULTS ON ACCEPTANCE PROBABILITY OF GGMC

While SGHMC omits the Metropolis-Hastings correction, Garriga-Alonso & Fortuin (2021) re-
cently argued that SGHMC effectively has an acceptance probability of zero, as the backward tra-
jectory is not realizable in practice due to discretization. Expanding on this, they revisited Gradient-
Guided Monte Carlo (GGMC; Horowitz, 1991), a method that generalizes HMC and SGLD while
ensuring a positive acceptance probability. Building on their insights, we further investigate how the
proposed EP influences the acceptance probability within the GGMC framework.

Fig. 8 illustrates the following for both EP and SP:

• As the peak step size ϵ0 increases, GGMC produces more diverse samples, as indicated
by the unnormalized Euclidean distances in (a). This diversity ultimately contributes to
improved ensemble predictions, as shown in (c).

• However, as the peak step size increases, the simulation error also grows. A step size
of ϵ0 = 3 × 10−4, which yields good performance in practical applications, results in a
relatively low acceptance probability of around 25%.

Notably, the proposed EP enhances both exploration and simulation. The implicit step size scaling
introduced by EP facilitates improved exploration without compromising the acceptance probabil-
ity due to discretization effects–indeed, it may even enhance it. This indicates that the superior
exploration capability achieved by EP cannot be replicated solely by increasing the step size.

B.6 COST ANALYSIS AND LOW-RANK VARIANT

We have compiled system logs comparing PX-SGHMC with SGHMC in Table 7. Notably, the
logs show that PX-SGHMC exhibits no significant differences both in sampling speed and memory
consumption compared to SGHMC in practice.

Moreover, we further implemented a low-rank variant of our approach which reduces memory over-
head. Specifically, we used a low-rank plus diagonal approach to construct the expanded matrices,
i.e., we compose a new expanded matrix P = D + L⊤

1 L2 for a diagonal matrix D ∈ Rp×p and
the low-rank matrices L1,L2 ∈ Rr×p with r < p, which reduces the memory from O(p2) to
O(p + 2pr). In Table 8, we set r to p/8 and p/4 for the c = d = 1 setup, resulting in 303,610 and
330,874 parameters during the sampling procedure, respectively. Even with the expanded matrices
of the low-rank plus diagonal form, PX-SGHMC continues to outperform SGHMC, highlighting a
clear direction for effectively addressing the increased parameter count of our method. Therefore,
the design of expanded parameters is left to users with limited memory resources.

B.7 ABLATION RESULTS ON BURN-IN PERIOD

In our main experiments, none of the SGMCMC methods utilize a separate burn-in phase (unlike
Izmailov et al. (2021)); in other words, even samples from the first cycle are included in the BMA
computation. To further analyze convergence, we conducted an additional ablation study on burn-in,
following Izmailov et al. (2021), by examining the performance of BMA estimates and individual
samples as a function of burn-in length. In Fig. 9, the x-axis represents the number of burn-in
samples, i.e., the length of the burn-in period, while the y-axis shows the individual performance

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

100 10 1 10 2 10 3

Posterior temperature

0.12

0.14

0.16

0.18

ER
R@

Va
lid

SGHMC
PX-SGHMC

100 10 1 10 2 10 3

Posterior temperature

0.40

0.45

0.50

NL
L@

Va
lid

SGHMC
PX-SGHMC

100 10 1 10 2 10 3

Posterior temperature

0.20

0.40

0.60

AM
B@

Va
lid

SGHMC
PX-SGHMC

(a) CIFAR-10

100 10 1 10 2 10 3

Posterior temperature

0.23

0.25

0.28

ER
R@

Va
lid

SGHMC
PX-SGHMC

100 10 1 10 2 10 3

Posterior temperature

0.70

0.80

0.90

NL
L@

Va
lid

SGHMC
PX-SGHMC

100 10 1 10 2 10 3

Posterior temperature

0.40

0.60

0.80

AM
B@

Va
lid

SGHMC
PX-SGHMC

(b) CIFAR-10.1

100 10 1 10 2 10 3

Posterior temperature

0.25

0.28

0.30

0.33

ER
R@

Va
lid

SGHMC
PX-SGHMC

100 10 1 10 2 10 3

Posterior temperature

0.80

0.90

1.00

NL
L@

Va
lid

SGHMC
PX-SGHMC

100 10 1 10 2 10 3

Posterior temperature

0.40

0.60

0.80

AM
B@

Va
lid

SGHMC
PX-SGHMC

(c) CIFAR-10.2

100 10 1 10 2 10 3

Posterior temperature

0.28

0.30

0.33

0.35

ER
R@

Va
lid

SGHMC
PX-SGHMC

100 10 1 10 2 10 3

Posterior temperature

0.80

0.90

1.00

1.10

NL
L@

Va
lid

SGHMC
PX-SGHMC

100 10 1 10 2 10 3

Posterior temperature

0.40

0.60

0.80

AM
B@

Va
lid

SGHMC
PX-SGHMC

(d) STL

100 10 1 10 2 10 3

Posterior temperature

0.25

0.28

0.30

0.33

ER
R@

Va
lid

SGHMC
PX-SGHMC

100 10 1 10 2 10 3

Posterior temperature

0.80

0.90

1.00

NL
L@

Va
lid

SGHMC
PX-SGHMC

100 10 1 10 2 10 3

Posterior temperature

0.40

0.60

0.80

AM
B@

Va
lid

SGHMC
PX-SGHMC

(e) CIFAR-10-C

Figure 7: Additional results with varying posterior temperature. It depicts evaluation results
for SGHMC and PX-SGHMC with cold posterior.

of the 50 samples (in average) obtained after the burn-in period (denoted as “IND (1)”) and the
ensemble performance (denoted as “BMA (50)”). For reference, we also plotted the performance
using 100 samples without a burn-in period, previously reported in the main text (denoted as “BMA
(100)”). It clearly demonstrates the the enhanced training dynamics introduced by our EP enable
higher BMA performance with a shorter burn-in period. In other words, when collecting the same
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Figure 8: Additional results using GGMC. Trace plots illustrating (a) Exploration (higher is
better), which measures the normalized Euclidean distance from the previous sample; (b) Simu-
lation (higher is better), which represents the acceptance ratio of the sample; and (c) Prediction
(higher is better), which assesses the final performance of the ensemble prediction.

Table 7: Cost analysis of SGHMC and PX-SGHMC. It summarizes the costs involved in the
sampling procedure for SGHMC and PX-SGHMC with c = d = 1 and c = d = 2. “Space (in
theory)” refers to the number of parameters during the sampling process, while “Space (in practice)”
represents the actual GPU memory allocated in our experimental setup using a single RTX A6000.
“Time (in practice)” denotes the wall-clock time for each cycle, consisting of 5,000 steps.

Method Space (in theory) Space (in practice) Time (in practice)

SGHMC 274,042 1818 MB 61 sec/cycle
PX-SGHMC (c = d = 1) 383,098 1838 MB 64 sec/cycle
PX-SGHMC (c = d = 2) 492,154 1852 MB 73 sec/cycle

50 samples, SGHMC requires a much longer burn-in period to achieve performance comparable to
that of PX-SGHMC.

B.8 COMPARATIVE RESULTS WITH META-LEARNING APPROACH

We further provide comparative results with the Learning to Explore (L2E; Kim et al., 2024) method.
Since they also adopted the experimental setup of Izmailov et al. (2021) using the R20-FRN-Swish
architecture, the results are largely comparable when key experimental configurations–such as data
augmentation, the number of steps per cycle, and the number of posterior samples–are aligned.

Using the official implementation of Kim et al. (2024)1, we ran the L2E method using the same setup
as in Table 3 of main text, i.e., with data augmentation, cold posterior with T = 0.01, 5000 steps
per cycle, and 100 posterior samples. Table 9 summarizes the results. Notably, our PX-SGHMC,
which applies a vanilla SGHMC sampler to the expanded parameterization, yield competitive results
compared to L2E, despite the latter relying on a more resource-intensive meta-learned sampler.

B.9 ABLATION RESULTS ON STEP SIZE SCHEDULE

In our main experiments, the cyclical step size schedule is used for all SGMCMC methods. Since the
cyclical step size schedule itself is designed to enhance exploration in SGMCMC and improve sam-
ple diversity (Zhang et al., 2020), we conducted ablation experiments on SP/EP parameterizations
and constant/cyclical step size schedules to more clearly isolate the contribution of EP.

Table 10 summarizes the performance (ERR, NLL; lower is better) and functional diversity (AMB;
higher is preferred) of SGHMC and PX-SGHMC under both constant and cyclical step size sched-
ules. Based on “SGHMC w/ constant schedule,” the results clearly show that our expanded param-
eterization (EP) contributes more significantly to performance improvements than the adoption of
the cyclical schedule (CS).

1https://github.com/ciao-seohyeon/l2e
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Table 8: Low-rank variant of PX-SGHMC. It summarizes the evaluation results for low-rank
variants of PX-SGHMC with c = d = 1. “# Params (sampling)” indicates the number of parameters
during the sampling process, while “# Params (inferece)” refers to the number of parameters after
merging expanded matrices into the base matrix.

Memory costs Evaluation metrics

Method # Params (sampling) # Params (inference) ERR (↓) NLL (↓) AMB (↑)
SGHMC 274,042 (x1.00) 274,042 (x1.00) 0.131 0.421 0.183
PX-SGHMC (r = p/8) 303,610 (x1.11) 274,042 (x1.00) 0.126 0.401 0.210
PX-SGHMC (r = p/4) 330,874 (x1.21) 274,042 (x1.00) 0.122 0.385 0.215
PX-SGHMC (r = p) 383,098 (x1.40) 274,042 (x1.00) 0.123 0.396 0.242
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Figure 9: Convergence of SGHMC and PX-SGHMC. Performance comparison of individual pos-
terior samples (IND) and Bayesian model averaging (BMA) ensembles with 50 samples from each
SGHMC and PX-SGHMC chain, evaluated as a function of burn-in length. “BMA (100)” represents
a burn-in length of 0 with a BMA ensemble of 100 samples, as used in the main experiments of this
paper. “IND (1)” and “BMA (50)” refer to average individual sample performance and ensemble
performance of 50 samples, respectively.

C ALGORITHMS

In this section, we outline the practical implementation of the SGMCMC algorithms used in our
experiments: Stochastic Gradient Langevin Dynamics (SGLD; Welling & Teh, 2011), Stochastic
Gradient Hamiltonian Monte Carlo (SGHMC; Chen et al., 2014), Stochastic Gradient Nosé-Hoover
Thermostat (SGNHT; Ding et al., 2014), and preconditioned SGLD (pSGLD; Li et al., 2016). Addi-
tionally, we experimented with Stochastic Gradient Riemann Hamiltonian Monte Carlo (SGRHMC;
Ma et al., 2015) using diagonal empirical Fisher and RMSProp estimates for the preconditioner.
However, within the hyperparameter range explored, it demonstrated significantly lower perfor-
mance than SGLD, leading us to exclude it from further experiments.

First, we present the hyperparameters that are consistent across all algorithms:

• M : the number of sampling cycles, representing the total number of posterior samples.

• T : the number of updates per cycle, resulting in C × T total updates.

• ϵt: the step size at time step t. It can follow a ‘Cyclical’ with peak learning rate of ϵ0,
defined as ϵt = ϵ0

2

[
cos
(

πmod(t,T )
T

)
+ 1
]
, or remain ‘Constant’, i.e., ∀t : ϵt = ϵ0.

• σ2: the variance of the zero-mean Gaussian prior over the neural network parameters,
where p(θ) = N (θ;σ2I).

• Bm,t: the mini-batch at the tth time step of the mth cycle, with a size of |B|.
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Table 9: Comparative results with data augmentation. Evaluation results on C10 (CIFAR-10),
C100 (CIFAR-100), and TIN (TinyImageNet) with data augmentation. In this context, we manually
set the posterior temperature to 0.01 to account for the increased data resulting from augmentation.

ERR (↓) NLL (↓)
Method C10 C100 TIN C10 C100 TIN

SGHMC 0.071±0.001 0.319±0.002 0.538±0.003 0.223±0.002 1.138±0.008 2.251±0.022

PX-SGHMC (ours) 0.069±0.001 0.290±0.004 0.498±0.004 0.217±0.005 1.030±0.011 2.089±0.008

L2E (Kim et al., 2024) 0.071±0.001 0.268±0.002 0.488±0.002 0.232±0.002 0.980±0.006 2.062±0.011

Table 10: Additional results with a constant step size. Classification error (ERR), negative log-
likelihood (NLL), and ensemble ambiguity (AMB) on the test split of CIFAR-10, comparing the use
of the cyclical schedule (CS) and our proposed expanded parameterization (EP).

Components Evaluation metrics

Label CS EP ERR (↓) NLL (↓) AMB (↑)
SGHMC w/ constant schedule 0.135±0.003 0.441±0.003 0.209±0.001

SGHMC w/ cyclical schedule ✓ 0.133±0.002 0.422±0.005 0.186±0.004

PX-SGHMC w/ constant schedule ✓ 0.115±0.002 0.379±0.002 0.232±0.003

PX-SGHMC w/ cyclical schedule ✓ ✓ 0.121±0.002 0.388±0.005 0.242±0.002

Next, we briefly summarize the additional components introduced in each method. For a more in-
depth exploration of SGMCMC methods, we refer readers to Ma et al. (2015) and references therein,
which offer a concise summary from the perspective of stochastic differential equations.

• pSGLD introduces adaptive preconditioners from optimization, e.g., RMSProp.

• SGHMC introduces the friction matrix C to mitigate the noise from mini-batch gradients.
While the friction term is originally a matrix, it is often implemented as a scalar value in
practice (C = CI). Also, the gradient noise estimate is set to zero (B̂ = 0), and the mass
matrix is defined as the identity matrix (M = I) in practical implementations.

• SGNHT introduces an auxiliary thermostat variable ξ to maintain thermal equilibrium of
the system. In practical implementations, it can be interpreted as making the friction term
used for momentum decay in SGHMC learnable. Intuitively, when the mean kinetic energy
exceeds 1/2, ξ increases, leading to greater friction on the momentum.

Algorithms 1, 3 and 4 summarize our practical implementations of SGLD, pSGLD, SGHMC, and
SGNHT, while Appendix B provides a detailed hyperparameter setup for each method used in our
experiments.

D EXPERIMENTAL DETAILS

D.1 SOFTWARE AND HARDWARE

We built our experimental code using JAX (Bradbury et al., 2018), which is licensed under Apache-
2.0.2 All experiments were conducted on machines equipped with an RTX 2080, RTX 3090, or RTX
A6000. The code will be made publicly available in the camera-ready version.

D.2 IMAGE CLASSIFICATION ON CIFAR

Dataset. CIFAR-10 (Krizhevsky et al., 2009) is a dataset comprising 32× 32× 3 images classified
into 10 categories. We utilized 40,960 training examples and 9,040 validation examples based on
the HMC settings from Izmailov et al. (2021), with the final evaluation conducted on 10,000 test

2https://www.apache.org/licenses/LICENSE-2.0
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Algorithm 1: Practical implementation of SGLD
Require: the hyperparameters mentioned above.
Ensure: a set of posterior samples Θ← {}.

Initialize position θ0,T from scratch or pre-set values.
for m = 1, 2, . . . ,M do

Initialize θm,0 ← θm−1,T .
for t = 1, 2, . . . , T do

zm,t ∼ N (0, I).
gm,t = ∇θŨ(θ;Bm,t)|θ=θm,t−1 .
θm,t = θm,t−1 − ϵtgm,t +

√
2ϵtzm,t.

end
Collect Θ← Θ ∪ {θm,T }.

end
return Θ

Algorithm 2: Practical implementation of pSGLD
Require: smoothing factor β and the hyperparameters mentioned above.
Ensure: a set of posterior samples Θ← {}.

Initialize position θ0,T from scratch or pre-set values.
for m = 1, 2, . . . ,M do

Initialize θm,0 ← θm−1,T .
for t = 1, 2, . . . , T do

zm,t ∼ N (0, I).
gm,t = ∇θŨ(θ;Bm,t)|θ=θm,t−1

.
νm,t = βνm,t−1 + (1− β)g◦2

m,t.

θm,t = θm,t−1 − ϵtgm,t ⊘ (ν
◦1/2
m,t + ε) +

√
2ϵtzm,t ⊘ (ν

◦1/2
m,t + ε)◦1/2.

end
Collect Θ← Θ ∪ {θm,T }.

end
return Θ

examples. For a comprehensive evaluation, we also employed additional datasets, including STL-
10 (Coates et al., 2011), CIFAR-10.1 (Recht et al., 2019), CIFAR-10.2 (Lu et al., 2020), and CIFAR-
10-C (Hendrycks & Dietterich, 2019). We refer readers to the corresponding papers for more details
about each dataset. In our main experiments detailed in Section 5.2.1, we did not apply any data
augmentations.

Network. We conducted our experiments using R20-FRN-Swish, as HMC checkpoints provided
by (Izmailov et al., 2021) were publicly available. The model is a modified version of the 20-layer
residual network with projection shortcuts (He et al., 2016), incorporating Filter Response Normal-
ization (FRN; Singh & Krishnan, 2020) as the normalization layer and Swish (Hendrycks & Gim-
pel, 2016; Elfwing et al., 2018; Ramachandran et al., 2017) as the activation function. Substituting
Batch Normalization (BN; Ioffe & Szegedy, 2015) with FRN removes the mini-batch dependencies
between training examples, while using Swish results in a smoother posterior surface, facilitating a
clearer Bayesian interpretation (Wenzel et al., 2020; Izmailov et al., 2021).

Running from scratch. In the first setting of the CIFAR experiments, SGMCMC is executed from
random initialization to collect posterior samples in a ‘from scratch’ manner. This represents the
most basic setup, requiring SGMCMC methods to quickly reach low posterior energy regions while
gathering functionally diverse posterior samples. Starting from the He normal initialization (He
et al., 2015), SGMCMC methods were allocated 5,000 steps per sampling cycle (approximately 31
epochs) to generate a total of 100 samples. Table 11 provides detailed hyperparameters.
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Algorithm 3: Practical implementation of SGHMC
Require: constant friction value γ and the hyperparameters mentioned above.
Ensure: a set of posterior samples Θ← {}.

Initialize position θ0,T from scratch or pre-set values.
Initialize r0,T ← 0.
for m = 1, 2, . . . ,M do

Initialize (θm,0, rm,0)← (θm−1,T ,θm−1,T ).
for t = 1, 2, . . . , T do

zm,t ∼ N (0, I).
gm,t = ∇θŨ(θ;Bm,t)|θ=θm,t−1 .
rm,t = (1− γϵt)rm,t−1 + ϵtgm,t +

√
2γϵtzm,t.

θm,t = θm,t−1 − ϵmrm,t.
end
Collect Θ← Θ ∪ {θm,T }.

end
return Θ

Algorithm 4: Practical implementation of SGNHT
Require: initial thermostat value ξ and the hyperparameters mentioned above.
Ensure: a set of posterior samples Θ← {}.

Initialize position θ0,T from scratch or pre-set values.
Initialize r0,T ← 0 and ξ0,T ← ξ.
for m = 1, 2, . . . ,M do

Initialize (θm,0, rm,0, ξm,0)← (θm−1,T ,θm−1,T , ξm−1,T ).
for t = 1, 2, . . . , T do

zm,t ∼ N (0, I).
gm,t = ∇θŨ(θ;Bm,t)|θ=θm,t−1 .
rm,t = (1− ξm,t−1ϵt)rm,t−1 + ϵtgm,t +

√
2ξϵtzm,t.

θm,t = θm,t−1 − ϵmrm,t.

ξt = ξt−1 + ϵt(
r⊤
t−1rt−1

n − 1), where n is the dimension of rt−1.
end
Collect Θ← Θ ∪ {θm,T }.

end
return Θ

Running from HMC burn-in. The second setting of the CIFAR experiments involves running
SGMCMC from HMC burn-in initialization to analyze the dynamics of SGMCMC methods in com-
parison with the gold-standard HMC. Specifically, we adopted the 50th HMC checkpoint provided
by Izmailov et al. (2021), as they designated 50 as the burn-in iteration. To minimize mini-batch
noise as much as possible within our computational constraints, a large mini-batch size of 4,096 was
employed, aligning with HMC’s use of full data to compute gradients. Consequently, using the 50th
HMC sample as the initial position, the both SGHMC and PX-SGHMC methods were allocated
70,248 steps per sampling cycle (approximately 7025 epochs), matching the 70,248 leapfrog steps
of HMC, to generate a total of 10 samples. We also use the constant step size of ϵt = 10−5 and prior
variance of σ2 = 0.2, in line with HMC.

D.3 IMAGE CLASSIFICATION WITH DATA AUGMENTATION

Dataset. For CIFAR-100, we used 40,960 training examples and 9,040 validation examples, con-
sistent with CIFAR-10. For TinyImageNet, we employed 81,920 training examples and 18,080 val-
idation examples, resizing images from 64× 64× 3 to 32× 32× 3. In Section 5.2.2, we employed

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 11: Hyperparameters for CIFAR. It summarizes the hyperparameters for each method used
in our main evaluation results on the CIFAR experiments (i.e., Tables 1 and 2). If a hyperaparameter
was manually set without tuning, it is indicated with a dash in the ‘Search Space’ column.

Method Hyperparameter Value Search Space Notation

SGLD Peak Step Size 1× 10−5 {3× 10−k, 1× 10−k}6k=4 ϵ0
Prior Variance 0.2 {0.5, 0.2, 0.1, 0.05, 0.02, 0.01} σ2

pSGLD Peak Step Size 3× 10−4 {3× 10−k, 1× 10−k}6k=4 ϵ0
Prior Variance 0.2 {0.5, 0.2, 0.1, 0.05, 0.02, 0.01} σ2

Smoothing Factor 0.99 {0.9, 0.99, 0.999} β

SGHMC Friction 100 {1, 10, 100, 1000} γ
Peak Step Size 3× 10−4 {3× 10−k, 1× 10−k}5k=3 ϵ0
Prior Variance 0.05 {0.5, 0.2, 0.1, 0.05, 0.02, 0.01} σ2

PX-SGHMC Friction for V 100 {1, 10, 100, 1000} γ
Friction for P, Q 1 - γ
Peak Step Size 1× 10−4 {3× 10−k, 1× 10−k}4k=3 ϵ0
Prior Variance 0.02 {0.5, 0.2, 0.1, 0.05, 0.02, 0.01} σ2

Shared Batch Size 256 - |B|
Step Size Schedule Cyclical - ϵt
Total Updates 5000× 100 - T
Total Samples 100 - M

a standard data augmentation policy that includes random cropping of 32 pixels with a padding of 4
pixels and random horizontal flipping.

Network. We employ R20-FRN-Swish, consistent with the CIFAR-10 experiments.

Running from scratch. We utilize the same hyperparameters as in the CIFAR-10 experiments.

D.4 DATASET DETAILS

Fig. 10 visualizes example images from datasets we considered:

• CIFAR-10 (unknown license); https://www.cs.toronto.edu/ kriz/cifar.html
• CIFAR-10.1 under the MIT license; https://github.com/modestyachts/CIFAR-10.1
• CIFAR-10.2 (unknown license); https://github.com/modestyachts/cifar-10.2
• STL (unknown license); https://cs.stanford.edu/ acoates/stl10/
• SVHN (unknown license); https://github.com/facebookresearch/odin
• LSUN (unknown license); https://github.com/facebookresearch/odin
• CIFAR-100 (unknown license); https://www.cs.toronto.edu/ kriz/cifar.html
• TinyImageNet (unknown license); https://www.kaggle.com/c/tiny-imagenet

E CONCEPTUAL ILLUSTRATION FOR EFFECT OF PARAMETER EXPANSION

The main motivation for our method is the well-known effects in deep linear neural networks, which
can be interpreted as an implicit acceleration of training induced by gradient updates in such net-
works (Arora et al., 2018). We conceptually illustrated this in Fig. 11.

At a high level, the preconditioning matrix can be understood to evoke an effect akin to adaptive step
size scaling, which varies across different components of the parameters. This contrasts with simply
increasing the step size, which scales up updates along all axes of parameters by the same factor.
Our parameter expansion scales the update along each eigenvector of the preconditioning matrix
proportionally to its eigenvalue. This not only amplifies the gradient but also changes its direction.
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(a) CIFAR-10 (b) CIFAR-10.1 (c) CIFAR-10.2

(d) STL (e) SVHN (f) LSUN

(g) CIFAR-100 (h) TinyImageNet

Figure 10: Sample images from datasets. It shows the first 16 test images from CIFAR-like
datasets, including (a) CIFAR-10, (b) CIFAR-10.1, (c) CIFAR-10.2, and (d) STL, as well as out-of-
distribution datasets such as (e) SVHN and (f) LSUN. Additionally, (g) CIFAR-100 and (h) Tiny-
ImageNet datasets are utilized in experiments involving data augmentation.

The eigenvalues of the preconditioner can be mathematically described by the singular values of the
merged weight matrix under certain assumptions, including the initialization of the weight matrices
as described in Claim 1 of Arora et al. (2018).
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(a) SP (i.e., SGHMC) (b) EP (i.e., PX-SGHMC)

Figure 11: Conceptual illustration comparing SP and EP. A simplified illustration of the up-
date rules for standard parameterization (SP) and expanded parameterization (EP). The gradient
computed in the expanded (W1,W2)-space acts as a preconditioned gradient P∇WU , where P
represents a preconditioner defined in Lemma 3.1, in the original W-space. Compared to the orig-
inal gradient ∇WU , the preconditioned gradient is expected to enable more efficient updates by
better aligning with the geometry of the parameter space.
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