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ABSTRACT

The advancement of deep learning necessitates stringent data privacy guarantees.
Dataset distillation has shown potential in preserving differential privacy while
maintaining training efficiency. This study first identifies that data generated by
state-of-the-art dataset distillation methods strongly resembles to real data, in-
dicating severe privacy leakage. We define this phenomenon as explicit privacy
leakage. We theoretically analyze that although distilled datasets can ensure dif-
ferential privacy to some extent, a high IPC1 can weaken both differential privacy
and explicit privacy. Furthermore, we reveal that the primary source of privacy
leakage in distilled data stems from the common approach of initializing distilled
images as real data. To address this, we propose a plug-and-play module, Kaleido-
scopic Transformation (KT), designed to introduce enhanced strong perturbations
to the selected real data during the initialization phase while preserving seman-
tic information. Extensive experiments demonstrate that our method ensures both
differential privacy and explicit privacy, while preserving the generalization per-
formance of the distilled data. Our code will be publicly available.

1 INTRODUCTION

Deep learning models rely heavily on vast amounts of personal data to train neural networks, making
them susceptible to various privacy attacks (Lyu et al., 2020), such as model inversion (Fredrikson
et al., 2015), membership inference (MIA) (Shokri et al., 2017), and property inference attacks
(Melis et al., 2019). These vulnerabilities increase the risk of data breaches and misuse. The con-
cerns surrounding data privacy render it impractical for data curators to share their private data
and trained models directly, as these vulnerabilities can lead to legal repercussions and heightened
security threats (Karale, 2021; Toch et al., 2018). This situation hinders the development and collab-
oration within the deep learning community. Therefore, providing principled and rigorous privacy
guarantees is essential for the ethical and sustainable advancement of deep learning research (Fan
et al., 2023; Stahl & Wright, 2018; Sharifani & Amini, 2023).

Given that private information in data influences the privacy of trained models, prior research has
focused on safeguarding data privacy to ensure the protection of both data and models. Generative
models, such as GANs (Goodfellow et al., 2014) and diffusion models (Ho et al., 2020), have been
considered alternatives to direct data sharing. However, privacy risks persist not only when training
with raw data but also with synthetic data generated by these models (Chen et al., 2020a). For in-
stance, synthetic facial images produced by GANs can often be matched to real training samples of
the same individual (Webster et al., 2021). To address this challenge, existing methodologies (Xie
et al., 2018; Wang et al., 2021; Cao et al., 2021; Harder et al., 2021) have applied differential privacy
(DP) (Dwork et al., 2006) to develop differentially private data generators (DP-generators). DP is
the de facto privacy standard, offering theoretical guarantees against privacy leakage. Data produced
by DP-generators can subsequently be used for various downstream applications, such as data anal-
ysis, visualization, and training privacy-preserving classifiers. However, the noise introduced by DP
often results in low-quality data, hindering their utility as training data and thus affecting model
accuracy. As a result, more data from DP-generators is needed to achieve satisfactory generalization
performance, which inevitably reduces training efficiency.

1IPC means the images per class of the distilled dataset.
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Figure 1: (a) When IPC ∈ {1, 10, 50}, we examine the differential privacy and explicit privacy leak-
age, comparing scenarios w/o and w/ our proposed KT. The below show visualized distilled images corre-
sponding to different IPC values. Differential privacy is assessed via the membership inference attacks using
TPR@0.1%FPR (Carlini et al., 2022a), while explicit privacy leakage is evaluated using LPIPS (Zhang et al.,
2018). (b) Overview of the Proposed KT. As a plug-and-play module, it implements enhanced perturbations
to the selected real data at the initialization stage, without participating in the distillation process.

Recently, research by Dong et al. (2022) has empirically and theoretically established that dataset
distillation, which seeks to condense a large dataset into a substantially smaller one, inherently pro-
vides a privacy guarantee for models trained on these distilled datasets. This study highlights the re-
lationship between dataset distillation and differential privacy, demonstrating that models trained on
distilled datasets adhere to differential privacy properties. Specifically, this ensures that the inclusion
or exclusion of a single element does not significantly alter the distribution of model parameters2.

However, as the field of dataset distillation advances, the distilled data generated by the state-of-
the-art dataset distillation method e.g. DATM (Guo et al., 2024) strongly resemble to the real data,
particularly with high IPC (e.g., IPC = 50), as visualized in Figure 1 (a), suggesting severely
privacy leakage. We define the phenomenon as explicit privacy leverage, characterized by a strong
visual similarity between distilled and original images.

Furthermore, with a higher IPC, the differential privacy property of models trained on distilled
datasets deteriorate, making them more susceptible to membership inference attacks, as depicted
by the solid green line in Figure 1 (a). Consequently, reducing the IPC is necessary to enhance
explicit and differential privacy, which inevitably decreases the model performance, as shown by
the purple bar in Figure 1 (a).

In this study, we aim to ensure both explicit and differential privacy of distilled data, while preserving
performance. We begin by analyzing the sources of privacy leakage within distilled data. As demon-
strated in Section 3.2 , this leakage predominantly arises from the common practice of initializing
distilled images as real data, a method known for its potential to enhance effectiveness (Dong et al.,
2022; Yu et al., 2024). Consequently, we propose a plug-and-play method—Kaleidoscopic Trans-
formation (KT)—aiming at protecting the privacy of selected real data at the initialization stage. KT
implements enhanced perturbations on these samples without engaging with the distillation process,
thereby being integrated with existing state-of-the-art dataset distillation methods, as illustrated in
Figure 1 (b). As a plug-and-play module, with IPC increases, KT ensures both differential privacy
(dashed green line) and explicit privacy (dashed red line), as depicted in Figure 1 (a).

In summary, our contribution is threefold:

(a) To the best of our knowledge, this work is the first to explore the explicit privacy of the distilled
data. We reveal that when IPC is high, the distilled images strongly resemble to the original
images, indicating a significant explicit privacy leakage. Moreover, we theoretically demonstrate
that high IPC also lead to a significantly increase in differential privacy risks.

(b) We theoretically analyze the privacy at various phases of dataset distillation, proving that
initialization with real data in high IPC leads to explicit privacy leakage and weakened
differential privacy.

2DP introduces noise to model outputs, ensuring individual data points remain unidentifiable.
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(c) Building on these insights, we propose a plug-and-play module, Kaleidoscopic Transformation
(KT), to implement enhanced perturbations to the selected real data at the initialization stage.
Extensive experiments demonstrate that our method ensures both differential privacy and
explicit privacy while maintaining the generalization performance of the distilled data.

2 RELATED WORK

To ensure data privacy, several methodologies have been developed. One category, model-centric ap-
proaches, focuses on safeguarding privacy without altering the original datasets, exemplified by dif-
ferential privacy (Dwork et al., 2006). Another line of work involves manipulating original datasets
to derive new datasets, termed data-centric, such as Data Generators (Goodfellow et al., 2014) and
Dataset Distillation (Wang et al., 2018).

2.1 MODEL-CENTRIC METHODS FOR PRIVACY PRESERVATION

Differential Privacy. Differential Privacy (Dwork et al., 2006) is a privacy-preserving technique
that introduces perturbation into the outputs to obfuscate the accurate return value, thereby prevent-
ing the adversary from learning the exact private information (Dwork et al., 2006; Farayola et al.,
2024). Shokri et al. (2017) first indicate that the learning task based on differential privacy can
reduce the success probability of the membership inference attack against this task. Jayaraman &
Evans (2019) evaluate the effectiveness of (ϵ, σ)-DP and its variants in neural network models by
using membership inference attack. The application of differential privacy spans various domains,
including health (Torfi et al., 2022; Adnan et al., 2022), as well as finance (Wang et al., 2022b).

2.2 DATA-CENTRIC METHODS FOR PRIVACY PRESERVATION

Data Generator. Generative models can serve as an alternative for data sharing (Goodfellow et al.,
2014). However, Chen et al. (2020b) demonstrate that privacy risks exist not only when training with
raw data but also when using synthetic data produced by these generative models. To address this is-
sue, researchers have applied differential privacy (DP) (Dwork et al., 2006) to develop differentially
private data generators (referred to as DP-generators) (Xie et al., 2018; Cao et al., 2021; Harder
et al., 2021; Ghalebikesabi et al., 2023). However, the noise introduced by differential privacy often
results in low-quality generated data, which impedes its effectiveness. Additionally, the training of
DP-generators can incur significant computational costs.

Dataset Distillation. Dataset distillation (Wang et al., 2018) aims to improve training efficiency
by extracting knowledge from a large-scale dataset and construct a significantly smaller distilled
dataset, enabling models trained on it achieve comparable performance to those trained on original
dataset. Current solutions can be categorized based on their optimization mechanisms (Lei & Tao,
2023), including Gradient Matching (GM) (Zhao et al., 2020; Zhao & Bilen, 2021; Kim et al., 2022),
Distribution Matching (DM) (Zhao & Bilen, 2023; Yin et al., 2023), Trajectory Matching (TM)
(Cazenavette et al., 2022; Guo et al., 2024). Remarkably, RDED (Sun et al., 2024) introduces an
optimization-free paradigm, which directly crop and select realistic patches from the original data,
and then stitch the selected patches into the new images as the distilled dataset. It achieves promising
performance, particularly for large-scale and high-resolution datasets.

As the field progresses, state-of-the-art dataset distillation methods (Yin et al., 2023; Guo et al.,
2024; Sun et al., 2024) are able to produce distilled data that achieve performance comparable to
the original data. However, these distilled data closely resemble to real data, especially at high IPC
(e.g., IPC = 50). This strong resemblance raises significant privacy concerns, necessitating urgent
measures to safeguard the privacy of the distilled datasets.

Privacy of Distilled dataset. Dong et al. (2022) first build the connection between dataset distil-
lation and differential privacy, proving that distilled data—generated via DM (Zhao & Bilen, 2023),
DSA (Zhao & Bilen, 2021), and KIP (Nguyen et al., 2020)—can satisfy the definition of differential
privacy. However, Carlini et al. (2022b) point out that Dong et al. (2022) incorrectly used Assump-
tion 4.8, thus failing to provide privacy guarantees. Furthermore, recent state-of-the-art dataset
distillation methods, including TM-based methods, such as MTT (Cazenavette et al., 2022), DATM
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(Guo et al., 2024) and non-optimization-based methods like RDED (Sun et al., 2024), have not been
considered. Therefore, we focuses on examining the privacy of distilled datasets generated by these
state-of-the-art distillation methods, from both theoretical and empirical perspectives in Section 3.2
and Section 4 .

3 PRIVACY ANALYSIS AND PROTECTION IN DATASET DISTILLATION

This section begins by introducing preliminary definitions. Subsequently, we theoretically demon-
strate that the distilled dataset with high IPC weakens differential privacy preservation and also
causes severely explicit privacy leverage. Our analysis reveals that the issues predominantly arises
from the common practice of initializing distilled imaegs as real data. To address these challenges,
we propose a plug-and-play module, named KT, which applies expanded transformations to the se-
lected real samples during initialization. KT ensures both differential privacy and explicit privacy
while maintaining the generalization performance of the distilled data.

3.1 PRELIMINARY

Dataset distillation. Given a large-scale dataset T = {xi, yi}|T |
i=1, where xi ∈ Rd is the input

sample and yi ∈ {1, . . . , C} is the corresponding label, dataset distillation (Wang et al., 2018) aims
to synthesize a smaller distilled dataset S = {x̃j , ỹj}|S|

j=1 with |S| synthetic samples (i.e., |S| ≪ |T |)
such that models trained on S will have similar test performance as models trained on T :

E(x,y)∼PD

[
ℓ
(
ϕθT

(x), y
)]
≃ E(x,y)∼PD

[
ℓ
(
ϕθS

(x), y
)]

, (1)
where PD is the test real distribution, x is a data sample, ℓ is the loss function (e.g., cross-entropy
loss), and θT and θS denote the parameters of the neural networkϕ trained on T and S , respectively.

In this paper, we decompose the dataset distillation process into two phases: initialization of the
distilled data and the subsequent matching optimization, based on a review of previous studies (Guo
et al., 2024). The first phase involves the initialization of distilled data, where the common strategy
is to utilize real data (Yin et al., 2023; Guo et al., 2024; Sun et al., 2024). The second phase focuses
on optimizing this distilled data via various matching mechanisms, as elaborated in Section 2.2 .

Privacy attack. Following prior research (Dong et al., 2022; Carlini et al., 2022b), this work
mainly focus on membership inference, as it is the most widely studied privacy attack (Hu et al.,
2022; 2023; Niu et al., 2024). These attacks aim to determine whether a specific data point was used
in training, directly impacting individual privacy.

Moreover, we conduct experiment using the state-of-the-art Likelihood Ratio Attack (LiRA) (Carlini
et al., 2022a) because of its high attack performance. LiRA utilizes multiple queries with various
data transformations to mitigate the potential privacy-enhancing effects of data augmentation tech-
niques. This approach ensures a more robust evaluation of privacy risks in the context of distilled
datasets. A detailed description of the LiRA is provided in Appendix A.2 .

Differential privacy. Differential privacy (Dwork et al., 2006) introduces perturbation into the
outputs to obfuscate the accurate return value, quantifying and limiting the exposure of individual
information. If a mechanism can achieve differential privacy, it can be defined as follows:

Definition 1 (Differential privacy) . A randomized mechanism M with range R is (ϵ, δ)-DP,
if for any two neighboring datasets D and D′ which differ in exactly one element, and for any
subset O of possible outputs ofM, the following holds:

Pr[M(D) ∈ O] ≤ eϵ · Pr[M(D′) ∈ O] + δ . (2)

Explicit Privacy. As our first contribution, we introduce the concept of explicit privacy. Explicit
privacy refers to the visual similarity between a distilled dataset and the real data used for initializa-
tion, reflecting the level of privacy protection at the data level, as shown in Figure 1 (a). It quantifies
the risk of directly observable privacy leakage in the resulting data after the distillation process, dis-
tinct from the model-level privacy concepts in traditional machine learning (Papernot et al., 2016;
Kong & Munoz Medina, 2024).
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Definition 2 (Explicit privacy) . For a distilled dataset S and a real dataset T , explicit privacy
is protected if the following condition is satisfied:

E(S, T ) = 1
|S|

∑
xS∈S minxT ∈T Sim(xS ,xT ) < τ , (3)

where E(S, T ) is the average minimum similarity between any two samples in S and T ,
Sim(xS ,xT ) is the similarity between two samples xS and xT , and τ is the threshold.

We employ the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) to quantify
similarity, thus Sim(xS ,xT ) = 1−LPIPS(xS ,xT ). Unlike pixel-based metrics (Wang et al., 2004;
Zhang et al., 2011), LPIPS captures the perceptual differences that are more relevant to privacy
concerns in the distilled datasets.

3.2 PRIVACY BOUND OF MODELS TRAINED ON DISTILLED DATA

Following Dong et al. (2022), we begin by studying the privacy bound of models trained on distilled
data in a differential privacy (DP) manner: how does removing one sample in the original dataset im-
pact models trained on distilled dataset. It is important to highlight that our demonstration diverges
from that of Dong et al. (2022) because we avoid the non-rigorous assumption in Dong et al. (2022).
Our analysis focuses on the two phases of dataset distillation: the initialization of the distilled data
and the subsequent matching optimization. We demonstrate that each phase individually satisfies
the property of differential privacy, as detailed in Proposition 1 and Theorem 1 .

Initialization can guarantee differential privacy. To enhance the performance of distilled
datasets, most dataset distillation methods use random sampling from real data as the initialization
for distilled data (Sun et al., 2024; Guo et al., 2024; Yin et al., 2023). Therefore, we analyze the dif-
ferential privacy guarantees of this initialization method using the following proposition.

Proposition 1 . Given a training dataset of size |T |, random sampling without replacement
achieves (ln |T |+1

|T |+1−|S| ,
|S|
|T | )-differential privacy, where |S| is the subsample size.

This proposition demonstrates that initializing the distilled dataset using randomly sampled real data
can adhere to the property of differential privacy (see Appendix B for proof details).

The strength of this privacy guarantee is inversely related to δ = |S|/|T |, which represents the pro-
portion of initialization samples. As δ increases, corresponding to a higher IPC, the differential
privacy guarantee weakens. This relationship is visually represented in Figure 1 (a), where a higher
IPC not only weakens the differential privacy guarantee but also correlates with increased explicit
privacy leakage.

Volatility of the matching optimization can guarantee differential privacy. The distillation
process involves matching aggregated information from the original dataset, introducing randomness
via iterative optimization with small batches of real data. The essence of differential privacy lies in
introducing randomness to protect individual data. In the process of dataset distillation, the matching
optimization inherently incorporates this randomness. We start by stating the objective function for
matching:

argmin S Eθ0∼Pθ

[∑T−1
t=0 D(ξ(S,θt), ξ(T ,θt))

]
s.t. θt+1 ← θt − η · ∇θLS(θ

t) . (4)

Here, the function ξ(·) maps datasets S or T into a common space, such as gradients, features, or
trajectories. The distance function D(·, ·) measures the difference between these mappings.

To analyze how this optimization process contributes to differential privacy, we focus on the Distri-
bution Matching (DM) approach (Zhao & Bilen, 2023), guided by recent advancements in privacy
analysis (Dong et al., 2022; Carlini et al., 2022b). In there analysis, Dong et al. (2022) employ a lin-
ear feature extractor ψθ : Rd → Rk, defined as ψθ(x) = θx for an input x, where θ ∈ Rk×d. This
extractor transforms inputs from both the distilled and original datasets into feature space, enabling
the DM approach to match their distributions. This approach reveals the relationship between the
finnal distilled dataset S∗ and the original dataset T , as shown in the following lemma:
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Lemma 1 (Connection between S∗ and T (Dong et al., 2022)) . For a real data initialization,
if the optimized distilled dataset S∗ is derived from S = s1, · · · , s|S| through distribution
matching, then:

s∗i = si +
1

|T |
∑|T |

j=1 xj −
1

|S|
∑|S|

j=1 sj ∈ span(T ) , (5)

where span(T ) := {
∑|T |

i=1 wixi|1 ≤ i ≤ |T | , wi ∈ R,xi ∈ T } denotes the linear span of the
dataset T .

Remark 1 . This lemma demonstrates that the distilled dataset S∗, when derived through
optimized matching, closely aligns with the distribution of T . The proximity of S∗ to T implies
that as the size of S approaches that of T , the distilled samples s∗i increasingly resemble the
original samples si, thereby potentially increasing explicit privacy risks.

The distilled dataset, derived through optimized matching from the initial data, can be concep-
tualized as a normal distribution with µ = si + 1/|T |

∑|T |
j=1 xj − 1/|S|

∑|S|
j=1 sj . Consequently,

by comparing the Kullback-Leibler divergence between adjacent datasets, we can ascertain the
privacy protection capabilities of the distilled dataset.

Building upon Lemma 1 , we utilize the concept of adjacent datasets from differential privacy to
compare distributional differences. Our analysis reveals that dataset distillation inherently pos-
sesses differential privacy property, as formalized in the following theorem (see our proof details
in Appendix C ):

Theorem 1 . Consider a target dataset T and a leave-one-out adjacent dataset T ′ = T \ {x},
where x is not sampled for initialization in phase 1. The distilled datasets S and S ′, with |S| =
|S ′| ≪ |T |, show that the membership privacy leakage from removing x is bounded by:

DKL(P ∥ Q) ≤ 2B|S|
|T | · λmax(Σ

−1) , (6)

where P and Q are the sample distributions of the distilled datasets S and S ′, respectively, B
is the upper bound value of the original data and λmax is the largest eigenvalue of the inverse
covariance matrix Σ.

Theorem 1 states that the differential privacy leakage introduced by the matching optimization is
limited. However, it is important to note that while the matching process itself offers some privacy
protection, the initialization phase can still pose initial data privacy risks. Notably, the majority of
state-of-the-art distillation methods (Cazenavette et al., 2022; Guo et al., 2024; Sun et al., 2024)
employ initialization with real data to improve performance, which leads to a significant privacy
concern.

3.3 METHOD FOR EXPLICIT PRIVACY PROTECTION

Figure 2: Overview of Kaleidoscopic Transforma-
tion (KT). We generate multiple augmented samples
for each single input and then average them to obtain
the final strongly augmented sample.

As previously discussed, although dataset
distillation can theoretically ensure differential
privacy, initializing distilled data using real
data significantly exposure the risk of privacy
and weaken differential privacy. To address
this issue, we propose a plug-and-play module,
termed Kaleidoscopic Transformation (KT),
which introduce strong transformations to the
selected real data during initialization. This
module builds upon Differentiable Siamese
Augmentation (DSA) (Zhao & Bilen, 2021),
a promising approach originally designed
to improve the generalization capabilities of
distilled datasets. In our study, we adapt DSA
as a transformation technique applied to the
initialized real private data. The randomness
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introduced by these transformations enhances the differential privacy property of the distilled
dataset and provides better explicit privacy protection.

Kaleidoscopic transformation. Consider the set A of all differentiable augmentations. Assume
we have a sequence of image transformations {T1, . . . , Ti, . . . , Tm} ⊂ A, such as rotation, with
each transformation Ti associated with a probability pi of being executed. By leveraging these
augmentations, we can generate a newly augmented dataset. The j-th augmented sample of the i-th
example is:

s′i,j =
(
◦mk=1T

Ui,j,k≤pk

k

)
(si) , (7)

where for each transformation Ti, we generate a random variable Ui ∼ Uniform(0, 1). If Ui ≤ pi,
Ti is applied to the input image.

To enhance the transformation process, we produce n augmented samples for each input and derive
the final augmented sample by averaging: s′i =

1
n

∑n
j=1 s

′
i,j . As illustrated in Figure 2 , employing

multiple data augmentations can substantially improve privacy protection. Therefore, we initialize
the distilled dataset using transformed samples s′, rather than the original samples s.

Note that KT not only enhances explicit privacy of the distilled dataset but also introduces additional
randomness into the distillation process, thereby strengthening the differential privacy property of
the resulting dataset. We justify this by modeling a differential transformation as a random bounded
perturbation ϵ (Rajput et al., 2019), with ∥ϵ∥ ≤ ϵ0 and ∥T (s)− s∥ ≤ ϵ0. It allows modeling the
distribution of the distilled dataset obtained through KT, therefore enabling calculating the KL diver-
gence between adjacent datasets. The comparison of differential privacy property of KT with those
of the original distillation process is demonstrated in Theorem 2 (see proof details in Appendix D ):

Theorem 2 . Consider a target dataset T and a leave-one-out dataset T ′ = T \ x, where x is
not used for initialization in phase 1. The KT initialized distilled datasets SKT and S ′KT, with
|SKT| = |S ′KT| ≪ |T |, show that the membership privacy leakage from removing x is bounded
by:

DKL(PKT ∥ QKT) ≤ 2B|S|
|T | · λmax((Σ+ 1/nΣϵ)

−1) < DKL(P ∥ Q) , (8)

where PKT and QKT are the sample distributions of the distilled datasets SKT and S ′KT.

We further demonstrate in Proposition 2 that though KT introduces perturbations to samples
during the dataset distillation initialization phase, it maintains the similar efficacy as real data
initialization.

Proposition 2 . For a sample si randomly selected from the real dataset, the bound for the
transformed data s′i is:

∥KT(si)− si∥ = ∥s′i − si∥ = 1
n

∥∥∥∑n
j=1 s

′
i,j − si

∥∥∥ ≤ 1
n

∑n
j=1

∥∥s′i,j − si
∥∥ ≤ ϵ0. (9)

Therefore, the proposed KT not only enhances explicit privacy and differential privacy property,
but also preserves the effectiveness comparable to real data initialization.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets and Neural Networks: We conduct experiments on both small-scale and large-scale
datasets. For small-scale data, we evaluate our method on CIFAR-10 (32 × 32) (Krizhevsky et al.,
2009b) and CIFAR-100 (32× 32) (Krizhevsky et al., 2009a). For large-scale data, we conduct exper-
iments on Tiny-ImageNet (64 × 64) (Le & Yang, 2015), to assess the scalability and effectiveness
of our method on more complex and varied datasets.

Following previous dataset distillation studies (Yin et al., 2023; Sun et al., 2024; Guo et al., 2024),
we employ ConvNet (Guo et al., 2024) as our backbone architectures across all datasets. For Con-
vNet, specifically, Conv-3 is employed for CIFAR-10/100, while Conv-4 is used for Tiny-ImageNet.
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Table 1: Comparison with previous dataset distillation methods on CIFAR-100 and Tiny ImageNet. Member-
ship Privacy and Explicit Privacy are evaluated via TPR@0.1% FPR and LPIPS, respectively.

Method
TPR@0.1%FPR (↓) Average LPIPS Distance (↑) Test Accuracy (↑)

1 10 50 1 10 50 1 10 50
C

IF
A

R
-1

00

Full Dataset 24.8± 0.4∗ 0∗ 61.27∗

DM 0.11± 0.02 0.18± 0.01 0.9± 0.1 0.41 0.30 0.24 11.4± 0.3 29.7± 0.3 43.6± 0.4
KT-DM 0.11± 0.01 0.16± 0.02 0.42± 0.05 0.43 0.35 0.33 7.8± 0.1 24.1± 0.2 40.2± 0.3

DSA 0.11± 0.02 0.19± 0.01 1.3± 0.1 0.41 0.27 0.19 13.9± 0.4 32.4± 0.3 38.6± 0.3
KT-DSA 0.1± 0.03 0.17± 0.02 0.45± 0.03 0.44 0.34 0.36 8.2± 0.3 26.5± 0.2 35.3± 0.2

MTT 0.1± 0.02 0.19± 0.05 1.8± 0.1 0.38 0.24 0.09 24.3± 0.3 39.7± 0.4 47.7± 0.2
KT-MTT 0.1± 0.02 0.16± 0.02 0.5± 0.2 0.39 0.35 0.33 22.1± 0.2 34.6± 0.3 42.8± 0.3
DATM 0.13± 0.03 0.4± 0.05 3.2± 0.1 0.36 0.20 0.02 27.9± 0.2 47.2± 0.4 55.0± 0.2

KT-DATM 0.1± 0.02 0.16± 0.02 0.6± 0.2 0.37 0.34 0.31 22.8± 0.2 40.2± 0.3 49.2± 0.3
RDED 0.14± 0.02 0.44± 0.05 3.4± 0.1 0.04 0.02 0.01 19.6± 0.3 48.1± 0.3 57.0± 0.1

KT-RDED 0.1± 0.02 0.17± 0.01 0.6± 0.06 0.28 0.28 0.27 13.2± 0.4 40.2± 0.3 54.1± 0.5

Ti
ny

-I
m

ag
eN

et

Full Dataset 17.3± 0.5∗ 0∗ 49.73∗

DM 0.1± 0.02 0.15± 0.05 0.9± 0.2 0.43 0.33 0.19 3.9± 0.2 12.9± 0.4 24.1± 0.3
KT-DM 0.1± 0.02 0.15± 0.02 0.3± 0.04 0.43 0.39 0.35 2.2± 0.2 9.1± 0.2 22.7± 0.3

DSA − − − − − − − − −
KT-DSA − − − − − − − − −

MTT 0.1± 0.02 0.17± 0.04 1.1± 0.2 0.41 0.23 0.05 8.8± 0.3 23.2± 0.2 28.0± 0.3
KT-MTT 0.1± 0.02 0.16± 0.02 0.5± 0.2 0.38 0.32 0.29 7.8± 0.2 20.4± 0.1 24.7± 0.2
DATM 0.12± 0.08 0.2± 0.04 2.4± 0.1 0.39 0.13 0.01 17.1± 0.3 31.1± 0.3 38.6± 0.3

KT-DATM 0.1± 0.02 0.16± 0.02 0.5± 0.2 0.34 0.29 0.25 13.3± 0.2 27.6± 0.3 35.2± 0.3
RDED 0.12± 0.04 0.23± 0.02 2.8± 0.1 0.04 0.03 0.01 12.0± 0.1 39.6± 0.1 49.6± 0.2

KT-RDED 0.11± 0.01 0.18± 0.02 0.6± 0.07 0.22 0.23 0.20 7.6± 0.3 33.5± 0.2 47.3± 0.2

Baselines: We evaluate our proposed method, KT, against a range of state-of-the-art techniques
in both dataset distillation and data generator. For all experiments, we utilize three different random
seeds and report both the mean and variance of the results.

• Dataset Distillation Methods: (1) distribution matching-based methods, such as DM (Zhao &
Bilen, 2023); (2) gradient matching-based approaches, exemplified by DSA (Zhao & Bilen,
2021); (3) trajectory matching-based strategies, including MTT (Cazenavette et al., 2022) and
DATM (Guo et al., 2024); and (4) non-optimization-based frameworks like RDED (Sun et al.,
2024).

• Data Generator Methods: (1) DP GAN-based methods, such as DP-MEPF (Harder et al., 2022);
(2) DP distillation-based methods, such as PSG (Chen et al., 2022).

MIA Settings and Attack Metrics. We consider a typical scenario where the adversary possesses
access to the distilled dataset S and employs it to train a target model fS . The objective of adversary
is to infer membership information of the original dataset T .

For our membership inference attack framework on distilled datasets, we address a critical oversight
in previous works (Dong et al., 2022; Carlini et al., 2022b) that incorrectly treated training data
not used for initialization as non-members. We consider the entire original training set as members
of the distilled dataset, as all samples contribute to the distillation process. To ensure fairness, we
employ identical test samples and shadow models across various distilled and original datasets (see
Figure 6 in Appendix E.3 for a detailed illustration of our framework). Following Carlini et al.
(2022a), we use TPR @ 0.1% FPR as the success criterion for membership inference attacks.

Further comprehensive experimental configurations, including detailed settings aligned with the
original distillation methods and specific hyperparameter choices, are provided in Appendix E .

4.2 DIFFERENTIAL PRIVACY-LIKE PROPERTIES OF DISTILLED DATASETS AGAINST
MEMBERSHIP INFERENCE

Comparison with State-of-the-Art Dataset Distillation Methods. We use TPR@0.1% FPR
(Carlini et al., 2022a) to evaluate the differential privacy of distilled datasets, focusing on attack
success at low false positive rates. It is evident that LiRA successfully attacks all three full datasets,
as shown in Table 1 . However, models trained on distilled datasets, even without employing the our
KT method, substantially reduces the attack success rate. The results confirms that distilled datasets
can ensure differential privacy, aligning with our analysis in Section 3.2 . Notably, when KT is ap-
plied, the attack success rate continues to decrease, further verifying that KT enhances differential
privacy. Detailed results for CIFAR-10 can be found in Appendix Appendix F .
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Table 2: Comparison with previous data generation methods on CIFAR-10.

Method
TPR@0.1%FPR (↓) Average LPIPS Distance (↑) Test Accuracy (↑)

1 10 50 1 10 50 1 10 50
C

IF
A

R
-1

0 DP-MEPF(ϵ = 10) 0.1± 0.01 0.13± 0.01 0.16± 0.02 0.40 0.38 0.35 16.6± 0.4 24.1± 0.3 28.0± 0.2
PSG(ϵ = 10) 0.1± 0.02 0.12± 0.03 0.15± 0.02 0.42 0.38 0.34 28.9± 0.4 40.3± 0.5 47.2± 0.2
KT-DATM 0.1± 0.02 0.14± 0.02 0.4± 0.1 0.36 0.35 0.33 43.3± 0.2 62.3± 0.1 69.2± 0.2
KT-RDED 0.12± 0.01 0.18± 0.03 0.7± 0.1 0.35 0.34 0.31 17.7± 0.2 42.2± 0.2 62.5± 0.3
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(c) IPC = 50 (w/o KT)
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(d) IPC = 50 (w/ KT)

Figure 3: ROC curve graphs of DATM on TinyImageNet at different IPC values: With higher IPC, the success
rate of attacks at low false positive rates increases. The application of KT at IPC = 50 demonstrates a
significant reduction in attack success rate.

Comparison with State-of-the-Art Data Generator Methods. We further compare our method
KT with existing data generation techniques designed for differential privacy and explicit privacy,
as illustrated in Table 2 . Our experiments focus on CIFAR-10, as it is the primary benchmark for
most DP data generation methods. Other datasets like Tiny-ImageNet are often treated as public
data by some methods (Wang et al., 2024; Lin et al., 2023), precluding a fair comparison.

Our approach demonstrates a balanced performance in privacy preservation and data utility. While
methods like PSG and DP-MEPF exhibit strong privacy guarantees due to their strict privacy budgets
and noise initialization, they struggle with data utility, particularly in downstream tasks requiring
model training from scratch under the same IPC. We conducted experiments on the baseline of the
DP-generator for more ϵ values and plotted the trade-off curves in Appendix G , demonstrating that
KT-DATM offers better data availability under comparable MIA defense.

It is important to note that dataset distillation inherently aims to generate smaller, more efficient
datasets. Our introduction of KT effectively offer a “free” improvement in privacy without signifi-
cant computational overhead.

Impact of Varying IPC on Differential Privacy. We perform experiments on the Tiny-ImageNet
dataset, utilizing DATM (Guo et al., 2024) to obtain distilled datasets with IPC values of 1, 10, and
50. Subsequently, we apply LiRA membership inference attacks, with results illustrated in Figure 3 .
As the IPC value increases, AUC of LiRA’s ROC curves show also increase, which suggests that
higher IPC values reduce the differential privacy protection of the distilled datasets. Furthermore,
for a high IPC of 50, we compare scenarios with and without our KT. The results presented in
Figure 3 (c) and (d), show that our KT reduces the AUC scores of the ROC curves, demonstrating
that our KT effectively enhances differential privacy, even at elevated IPC levels.

Membership Privacy of Initialization. We are concerned about the privacy leakage of the train-
ing samples used for initialization. In Appendix H , we experimented with the fix-target member-
ship inference attack (Ye et al., 2022). The KT plugin not only protects the explicit privacy of the
initialization samples but also defends against MIA.

4.3 ENHANCED EXPLICIT PRIVACY UNDER HIGH IPC VIA KT

Comparison with State-of-the-Art Methods. We utilize the Learned Perceptual Image Patch
Similarity (LPIPS) metric (Zhang et al., 2018) to estimate explicit privacy leakage. For a distilled
dataset, we compute the average LPIPS distance from its corresponding real sample set to quantify
privacy leakage. A larger LPIPS distance signifies enhanced explicit privacy protection.

As demonstrated in Table 1 , as the IPC increases, LPIPS significantly decrease. This suggests that
higher IPC more severely exposure explicit privacy, consistent with our analysis in Section 3.2 .
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Figure 4: DATM presents explicit privacy protection at IPC=10 and 50. The orange and green regions
represent the explicit privacy measurement results of the distilled samples without and with the KT plugin,
respectively. We selected the top 2 most similar original data points, with the values measured using LPIPS.

Furthermore, we visualize samples of the distilled dataset and identify the top-2 nearest samples
from the original dataset in Figure 4 . At IPC = 10 and 50, the distilled dataset without our method
completely leaks the private data used for initialization, indicating significant explicit privacy leak-
age. However, with the introduction of KT, the distilled samples are visually distinct from their
nearest neighbors in the original dataset, demonstrating enhanced explicit privacy.

Influence of Hyper-parameter n. To determine the optimal setting for the KT hyper-parameter n,
we conducted experiments varying n from 1 to 5 with KT-DATM on TinyImageNet using IPC = 50.
Our findings reveal a critical trade-off between privacy protection and data utility. At n = 1,
KT behaves like data augmentation, offering insufficient privacy protection. For n ≥ 4, privacy
improves but data utility sharply declines. Empirically, we found n = 3 to be the optimal balance
between enhancing privacy and maintaining utility.

5 CONCLUSION AND LIMITATION

Real 1 2 3 4 5

38.9% 38.2%
36.4%

35.2%

31.7%

28.8%

Accuracy
MIA
Explicit Privacy

Figure 5: Impact of KT Parameter n on Privacy and
Utility. The graph illustrates how varying n from 1 to
5 affects explicit privacy protection and data utility, re-
vealing an optimal trade-off at n = 3.

Conclusion. In this study, we first identify
that the distilled datasets produced by state-of-
the-art distillation methods strongly resemble
to real data, indicating significant privacy leak-
age, termed as explicit privacy leakage. We fur-
ther provide a theoretical analysis showing that
while distilled datasets can achieve differential
privacy, a high IPC can undermine both differ-
ential privacy and explicit privacy. We identify
that the primary source of privacy leakage in
distilled data is traced to the initialization of dis-
tilled images using real data. Building on these
insights, we propose a plug-and-play module,
Kaleidoscopic Transformation (KT), which in-
troduces enhanced perturbations to the selected
real data during the initialization phase. Extensive experiments have verfied that our method KT
is able to ensure both differential privacy and explicit privacy, while preserving the generalization
performance of the distilled data.

Limitation. The effectiveness of KT in downstream task accuracy is constrained by the under-
lying dataset distillation algorithm. While KT can be integrated as a plugin into existing dataset
distillation methods to provide cost-free privacy protection, it does not improve the distillation
quality for model training from scratch. Our experiments show that RDED-KT outperforms DATM-
KT in downstream accuracy, reflecting the base algorithm’s capability in preserving task-relevant
information. Thus, KT’s impact on model performance is inherently tied to the efficacy of the
chosen distillation method.
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A RELATED WORK

A.1 DATASET DISTILLATION

Current solutions can be categorized based on their optimization mechanisms (Lei & Tao, 2023): (1)
Meta-Learning Framework: Distilled data are considered as hyperparameters, which are optimized
in a nested loop according to the distilled-data-trained model’s risk with respect to (w.r.t.) the original
data, including DD (Wang et al., 2018), KIP (Nguyen et al., 2021) and FRePo (Zhou et al., 2022). (2)
Gradient Matching: Aims to match the network gradients computed by the original dataset and the
distilled dataset, including DC (Zhao et al., 2020), DSA (Zhao & Bilen, 2021), and IDC (Kim et al.,
2022). (3) Distribution Matching: Directly matches the distribution of original dataset and distilled
data. Methods in this category includ DM (Zhao & Bilen, 2023), CAFE (Wang et al., 2022a), SRe2L
(Yin et al., 2023). (4) Trajectory Matching: Matches the training trajectories of models trained on
original and distilled data over multiple steps. This category includes MTT (Cazenavette et al.,
2022) and , DATM (Guo et al., 2024). The above methods are based on optimization. Notably,
RDED (Sun et al., 2024) introduces an optimization-free paradigm, which directly crop and select
realistic patches from the original data, and then stitch the selected patches into the new images
as the distilled dataset. It achieves remarkable performance, particularly with large-scale and high-
resolution datasets.

A.2 LIRA

Specifically, the privacy attack LiRA encompasses three stages. Firstly, the adversary randomly
samples N datasets from natural distribution to train shadow models. Therefore, for each data
sample, there are N/2 shadow models trained on it (the IN models) and another N/2 that are not
trained on it (the OUT models). Secondly, the adversary estimates the means µin,µout, and the
variances σ2

in,σ
2
out of model confidence for the IN and OUT models, respectively. Finally, to attack,

the adversary queries the victim model f with a target example (x, y) to estimate the likelihood Λ,
defined as:

Λ :=
p(confobs | N (µin,σ

2
in))

p(confobs | N (µout,σ
2
out))

, (10)

where confobs = log (f(x)y/1−f(x)y) is the confidence of target model f on the test example (x, y).
Here, f(x)y represents the probability assigned by the target model f to the true membership label
y when evaluating the attack test example x.

Note that LiRA determines if a data point was part of the training set by comparing a calculated
likelihood score Λ to a predetermined threshold τ . If Λ > τ , the data point is classified as a member
of the training set.

B PROOF OF PROPOSITION 1

Proof. Suppose a full dataset T and an adjacent dataset T ′ which differ in one sample. LetM be
the random sample mechanism that randomly returns a subset of the data without replacement. Let
S0,S1 and S denote the all subsets inM(T ),M(T ′) and the joint domain of them respectively. For
a random subset S ∈ S , we have

Pr(M(T ) = S) =

{
1

(|T |
|S|)

, S ∈ S0,

0, otherwise.
(11)

Pr(M(T ′) = S) =


1

(|T
′|

|S| )
, S ∈ S1,

0, otherwise.
(12)

case 1 (|T ′| = |T |+ 1) : Due to T ⊂ T ′, then we have

Pr(M(T ) ∈ S0) = 1, (13)

Pr(M(T ′) ∈ S0) =

(|T |
|S|

)(|T ′|
|S|

) =

(|T |
|S|

)(|T |+1
|S|

) . (14)
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We calculate this case based on the definition of differential privacy.

Pr(M(T ) ∈ S) = Pr(M(T ) ∈ S0) + Pr(M(T ) ∈ S/S0)
= Pr(M(T ) ∈ S0) + 0

= Pr(M(T ′) ∈ S0) ·

(|T |+1
|S|

)(|T |
|S|

)
= Pr(M(T ′) ∈ S0) ·

|T |+ 1

|T | − |S|+ 1

≤ Pr(M(T ′) ∈ S) · |T |+ 1

|T | − |S|+ 1

(15)

case 2 (|T ′| = |T | − 1) : Due to T ′ ⊂ T , then we have

Pr(M(T ) ∈ S1) =

(|T ′|
|S|

)
(|T |
|S|

) =

(|T |−1
|S|

)(|T |
|S|

) , (16)

Pr(M(T ′) ∈ S1) = 1. (17)

We calculate this case based on the definition of differential privacy.

Pr(M(T ) ∈ S) = Pr(M(T ) ∈ S1) + Pr(M(T ) ∈ S/S1)

= Pr(M(T ) ∈ S1) +
|S|
|T |

= Pr(M(T ′) ∈ S1) ·

(|T |−1
|S|

)(|T |
|S|

) +
|S|
|T |

= Pr(M(T ′) ∈ S1) ·
|T | − |S|
|T |

+
|S|
|T |

≤ Pr(M(T ′) ∈ S) · |T | − |S|
|T |

+
|S|
|T |

(18)

We combine case 1 and case 2, and we have eϵ = max( |T |+1
|T |−|S|+1 ,

|T |−|S|
|T | ) = |T |+1

|T |−|S|+1 , and

δ = max(0, |S|
|T | ) =

|S|
|T | . Therefore, randomly sampling |S| samples from the original dataset (and

using them to initialize the distilled dataset) satisfies (ln |T |+1
|T |−|S|+1 ,

|S|
|T | )-differential privacy.

C PROOF OF THEOREM 1

Proof. The distribution of individual samples in the distilled dataset can be modeled as a normal
distribution.

Assumption 1 . We assume the data of T and S are bounded, i.e.,

∃B > 0, ∀x ∈ T ∪ S, ∥x∥2 ≤ B. (19)

For a particular sample S∗i in the distilled dataset, to account for the matching stochasticity, we
have

s∗i ∼ N (si +
1

|T |

|T |∑
j=1

xj −
1

|S|

|S|∑
j=1

sj ,Σi). (20)

Suppose a full dataset T and an adjacent dataset T ′ which differ in one sample xdiffer, such that
xdiffer is not used for initialization. The distilled dataset are S and S ′ and |S| = |S ′| ≪ |T |.
The distribution of sample s∗i within the distilled dataset can be denoted as p(s∗i ) = P(s∗i |T ) and

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

q(s∗i ) = P(s∗i |T ′). Due to the difference in xdiffer, the privacy variations introduced during the
matching process can be represented as KL divergence between the two distributions:

DKL(p ∥ q) =
1

2

(
tr(Σ−1

i Σi) + (µ′
i − µi)

TΣ−1
i (µ′

i − µi)− n− log
detΣi

detΣi

)
=

1

2
(µ′

i − µi)
TΣ−1

i (µ′
i − µi)

≤ ∥µ′
i − µi∥2 · λmax(Σ

−1
i ).

(21)

where n is the dimension of x, λmax is the largest eigenvalue of the covariance matrix Σ and

∥µ′
i − µi∥2 =

∥∥∥∥∥∥ 1

|T | − 1

|T |−1∑
j=1

xj −
1

|T |

|T |∑
j=1

xj

∥∥∥∥∥∥
2

=
1

|T |

∥∥∥∥∥∥ 1

|T | − 1

|T |−1∑
j=1

xj − xdiffer

∥∥∥∥∥∥
2

.

(22)

According to Assumption 1, we have ∥x∥2 ≤ B for all x ∈ T ∪ S . Therefore, we have∥∥∥∥∥∥ 1

|T | − 1

|T |−1∑
j=1

xj − xdiffer

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥ 1

|T | − 1

|T |−1∑
j=1

xj

∥∥∥∥∥∥
2

+ ∥xdiffer∥2 ≤ 2B. (23)

From previous analysis, it can be concluded that the KL divergence of the distillation results from
adjacent datasets is bounded:

DKL(p ∥ q) ≤
2B

|T |
· λmax(Σ

−1
i ). (24)

The total KL divergence of the distilled dataset also can be bounded:

DKL(P ∥ Q) ≤ 2B |S|
|T |

· λmax(Σ
−1). (25)

where P and Q are the joint distributions of the adjacent datasets and λmax(Σ
−1) corresponds to

the largest eigenvalue of the covariance matrix across all samples in the distilled dataset.

D PROOF OF THEOREM 2

Proof. As demonstrated in the proof of Theorem 1, T and T ′ are adjacent datasets where T ′ =
T \ xdiffer. In section 3.3, we establish the relationship between the KT-initialized distilled data s′i
and the initialized real data si.

s′i =
1

n

n∑
j=1

(
◦mk=1T

Ui,j,k≤pk

k

)
(si). (26)

where n is the We model the KT as a additive bounded noise ϵ =
∑n

j=1 ϵj , where ϵ ∼ N (0, 1
nΣϵ),

thus
s′i = si + ϵi. (27)

where n represents the number of KT candidate transformation images, and m represents the number
of types of transformations. We can obtain the KT distilled dataset, optimized for matching as in
Theorem 1, whose distribution can be represented as:

s′∗i ∼ N (s′i + ϵi +
1

|T |

|T |∑
j=1

xj −
1

|S|

|S|∑
j=1

(s′j + ϵj),Σi +
1

n
Σϵ). (28)
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Recall the KL divergence upper bound, we have

DKL(PKT ∥ QKT) ≤
2B |S|
|T |

· λmax((Σ+
1

n
Σϵ)

−1). (29)

According to the matrix inversion lemma, for positive definite matrices:

λmax((Σ+
1

n
Σϵ)−1) < λmax(Σ

−1). (30)

Therefore, we have:
DKL(PKT ∥ QKT) < DKL(P ∥ Q). (31)

After KT initialization, the distillation difference caused by a single sample difference between
adjacent datasets is smaller, thereby providing better differential privacy properties.

E EXPRIMENTAL DETIALS

E.1 IMPLEMENTATION DETAILS OF KT.

Our method use transformed data via KT instead of real samples for initialization. Notably, it
does not involve modifying any distilling datasets process. Thus, our method is a plug-and-play
approach that can be easily integrated into existing dataset distillation methods without requiring
further modification. We utilize the source code3 provided by the authors to obtain distilled data
distill with IPC ∈ {1, 10, 50}.

E.2 HYPERPARAMETER SETTINGS.

We provide detailed hyperparameter configurations for our distilled dataset evaluation in Figure 5 .
For Kaleidoscopic Transformation (KT), we empirically determined that setting n = 3 yields the
optimal generalization performance, with probability thresholds for each transformation consistent
with the DSA (Zhao & Bilen, 2021).

E.3 A NEW MIA FRAMEWORK FOR DISTILLED DATASETS

Our membership inference attack framework for distilled datasets addresses the limitations of previ-
ous approaches by treating the entire original dataset as potential members. Figure 6 illustrates our
unified evaluation method using LiRA, which employs common test samples for training shadow
models.

This framework ensures a fair comparison across different distillation methods by using identical
test samples and shadow models.

Our framework consists of three main steps:

• Target Model Training: We train the target model using the distilled dataset, following
the same training procedure across all methods. We utilize the original dataset’s training
samples, designated as members, while the test set comprises non-members.

• Shadow Model Training: We train multiple shadow models, ensuring that each sample
is treated as a member for half of the shadow models and as a non-member for the other
half. To mitigate the potential impact of data augmentation on privacy, we apply DSA with
multiple queries during this phase.

• Attack Evaluation: We input test cases into both the target and shadow models, computing
scores to determine the attack results.

3DM and DSA: https://github.com/VICO-UoE/DatasetCondensation
MTT: https://github.com/GeorgeCazenavette/mtt-distillation
DATM: https://github.com/NUS-HPC-AI-Lab/DATM
RDED: https://github.com/LINs-lab/RDED
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Target Model Training Shadow Model Training Attack Evaluation

Train set
Member Not used for 

initialization

Real

DD Methods
(e.g., DATM）

KT

Target

Eval attack set

Shadow

TPR @ 0.1% FPR
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Figure 6: Unified evaluation method of membership privacy using LiRA: training shadow models using
common test samples.

F CIFAR-10 RESULTS IN 4.2

Table 3 presents a comprehensive comparison of our method with previous dataset distillation ap-
proaches on the CIFAR-10 dataset. We evaluate performance across three key metrics: membership
privacy (measured by TPR@0.1% FPR), explicit privacy (measured by Average LPIPS Distance),
and dataset utility (measured by Test Accuracy).

Table 3: Comparison with previous dataset distillation methods on CIFAR-10. membership privacy and
explicit privacy are evaluated via TPR@0.1% FPR and LPIPS, respectively.

Method
TPR@0.1%FPR (↓) Average LPIPS Distance (↑) Test Accuracy (↑)

1 10 50 1 10 50 1 10 50

C
IF

A
R

-1
0

Full Dataset 8.4± 0.1∗ 0∗ 82.24∗

DM 0.08± 0.02 0.1± 0.02 0.6± 0.05 0.40 0.36 0.19 26.0± 0.8 48.9± 0.6 63.0± 0.4
KT-DM 0.08± 0.02 0.1± 0.03 0.3± 0.03 0.41 0.38 0.36 21.1± 0.3 41.4± 0.4 56.7± 0.4

DSA 0.10± 0.02 0.14± 0.03 1.0± 0.03 0.41 0.29 0.19 26.0± 0.8 48.9± 0.6 63.0± 0.4
KT-DSA 0.10± 0.03 0.12± 0.01 0.18± 0.03 0.40 0.37 0.36 26.0± 0.8 48.9± 0.6 63.0± 0.4

MTT 0.12± 0.01 0.15± 0.01 1.3± 0.1 0.42 0.25 0.12 46.2± 0.8 65.4± 0.7 71.6± 0.2
KT-MTT 0.1± 0.02 0.11± 0.02 0.4± 0.2 0.42 0.40 0.37 42.8± 0.2 59.8± 0.2 66.4± 0.3
DATM 0.13± 0.03 0.26± 0.02 1.6± 0.1 0.35 0.21 0.01 46.9± 0.5 66.8± 0.2 76.1± 0.3

KT-DATM 0.1± 0.02 0.14± 0.02 0.4± 0.1 0.36 0.31 0.28 43.3± 0.2 62.3± 0.1 69.2± 0.2
RDED 0.14± 0.02 0.27± 0.03 2.0± 0.2 0.02 0.01 0.01 23.3± 0.2 50.2± 0.3 68.4± 0.4

KT-RDED 0.12± 0.01 0.18± 0.03 0.7± 0.1 0.29 0.28 0.28 17.7± 0.2 42.2± 0.2 62.5± 0.3

G COMPARISON OF TRADE-OFFS WITH DP GENERATOR

To comprehensively and fairly compare the privacy protection and data availability tradeoff of
KT-DATM with other DP-generators, we conducted more comprehensive experiments on the DP-
generators. For the privacy guarantee ϵ, we selected values from {1, 5, 10, 20, 50}, and obtained
the TPR@0.1%FPR and model accuracy under LiRA, as shown in Figure 7 . In particular, for PSG,
we also conducted experiments with ϵ → ∞, i.e., without privacy protection by gradient matching
noise addition.

It can be observed that as ϵ is relaxed, the data availability obtained by the DP-generator improves.
For PSG, which is a dataset distillation algorithm with DP guarantees, relaxing ϵ allows it to achieve
higher data availability. However, due to its outdated matching paradigm, its performance still lags
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Figure 7: Trade-off Curves of Privacy Protection and Data Availability for DP-Generators under Differ-
ent ϵ. Under consistent protection against MIA, KT-DATM significantly outperforms DP-Generator methods
in terms of data availability.

behind KT-DATM. For DP-MEPF, which only has conditional data generation under DP guarantees,
the improvement in data availability is limited when relaxing ϵ. However, even when achieving
consistent inference attack protection, the model accuracy of KT-DATM far exceeds that of PSG
and DP-MEPF.

H FIX-TARGET MEMBERSHIP INFERENCE ATTACKS ON INITIAL PRIVATE
DATA

Table 4: Perform member-
ship inference on the ini-
tial real samples in Tiny-
ImageNet with IPC = 50.

Method MIA Accuracy
DATM 99.5% 38.6%

KT-DATM 54.1% 35.2%

We conduct experiments on samples both w/o and w/ our proposed KT
during initialization, as displayed in Table 4 . We choose the maximum
value of TPR-FPR as our threshold, and then determine whether a given
sample belongs to a member based on this threshold, achieving the attack
success rate. The results clearly indicate that use real data in DATM
significantly leaks membership information of the initial samples. In
contrast, KT-DATM effectively preserves initial private data membership
information while simultaneously maintaining generalization.
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