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Abstract

Denoising diffusion models are a recent class of generative models exhibiting state-of-the-art
performance in image and audio synthesis. Such models approximate the time-reversal of a
forward noising process from a target distribution to a reference density, which is usually
Gaussian. Despite their strong empirical results, the theoretical analysis of such models
remains limited. In particular, all current approaches crucially assume that the target density
admits a density w.r.t. the Lebesgue measure. This does not cover settings where the target
distribution is supported on a lower-dimensional manifold or is given by some empirical
distribution. In this paper, we bridge this gap by providing the first convergence results
for diffusion models in this more general setting. In particular, we provide quantitative
bounds on the Wasserstein distance of order one between the target data distribution and
the generative distribution of the diffusion model.

1 Introduction

Diffusion modeling, also called score-based generative modeling, is a new paradigm for generative modeling
which exhibits state-of-the-art performance in image and audio synthesis (Song and Ermon) [2019; [Song et al.,
2021b; |Ho et al, 2020 Nichol and Dhariwall, 2021} [Dhariwal and Nichol, 2021). Such models first consider a
forward stochastic process, adding noise to the data until a Gaussian distribution is reached. The model
then approximates the backward process associated with this forward noising process. It can be shown, see
(Haussmann and Pardoux, [1986) for instance, that in order to compute the drift of the backward trajectory,
the gradient of the forward logarithmic density (Stein score) must be estimated. Such an estimator is then
obtained using score matching techniques (Hyvérinen) 2005; [Vincent| |2011)) and leveraging neural network
techniques. At sampling time, the backward process is initialized with a Gaussian and run backward in time
using the approximation of the Stein score. Despite impressive empirical results, theoretical understanding
and convergence analysis of diffusion models remain limited. |De Bortoli et al.| (2021)) establish the convergence
of diffusion models in total variation under the assumption that the target distribution admits a density
w.r.t. the Lebesgue measure and under dissipativity conditions. More recently Lee et al.| (2022)) obtained
convergence results for diffusion models, including predictor-corrector schemes, under the assumption that
the target distribution admits a density w.r.t. the Lebesgue measure and satisfies a log-Sobolev inequality.

However, these works implicitly assume that the score does not explode as t — 0, by imposing that the score
of the data distribution is Lipschitz continuous or satisfies some growth property. This is not observed in
practice and experimentally the norm of the score blows up when t — 0, see (Kim et al.| |2022) for instance.
Indeed, the assumptions that the target distribution admits a density w.r.t. the Lebesgue measure and has
a Lipschitz logarithmic gradient does not hold if one assumes the manifold hypothesis (Tenenbaum et al.,
2000; |[Fefferman et al.l 2016; |Goodfellow et al., |2016) or if the target measure is an empirical measure. In
this setting, the target distribution is supported on a lower dimensional compact set. In the case of image
processing, this hypothesis is supported by empirical evidence (Weinberger and Saul, |2006} [Fefferman et al.)
2016]). Under this hypothesis, even though the forward process admits a density for all ¢ > 0 its logarithmic
gradient explodes for small ¢ — 0. Consequently, previous theoretical analyses of diffusion models do not
apply to this setting. To our knowledge, (Pidstrigach, 2022)) is the only existing work investigating the
convergence of diffusion models under such manifold assumptions by showing that the limit of the continuous
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backward process with approximate score is well-defined and that its distribution is equivalent to the one of
the target distribution under integrability conditions on the error of the score. In particular, [Pidstrigach
(2022) show that these distributions have the same support.

In this work, we go one step further and study the convergence rate of diffusion models under the manifold
hypothesis. More precisely, we derive quantitative convergence bounds in Wasserstein distance of order one
between the target distribution and the generative distribution of the diffusion model. The rest of the paper
is organized as follows. In Section [2], we recall the basics of diffusion models. We present our main results
and discuss links with the existing literature in Section [3| The rest of the paper is dedicated to the proof of
Theorem [I] in Section [d] We conclude and explore future avenues in Section [5]

2 Diffusion models for generative modeling

In this section, we recall the basics of diffusion models. Henceforth, let 7 € Z?(R?) denote the target
distribution, also known as the data distribution, and 7., = N(0,1d) the d-dimensional Gaussian distribution
with zero mean and identity covariance matrix. In what follows, we consider the forward noising process
(X¢)tefo,r) given by an OrnsteinfUlhenbeckH process as follows

dXt = *thtdt —+ 1/ 2ﬁtdBt7 XQ ~ Tr. (1)

where (By)¢>0 is a d-dimensional Brownian motion and ¢ — 3, is an non-decreasing weighting function. In
practice, setting 5y < S allows for better control of the backward diffusion near the target distribution, see
(Nichol and Dhariwal, 2021} |[Song et al., |2021b|) for instance. In what follows, we assume that admits a
strong solution. Under mild assumptions on the target distribution (Haussmann and Pardouxl, [1986; [Cattiaux
et al., [2021)), the backward process (Y¢)epo,1] = (X1—¢)tejo,7] satisfies

dY; = Br_{Y +2Vilogpr_(Yy)}dt + \/267r_,dBy, (2)

where {p;};e (0,7 the family of densities of {L£(X¢)}+e(o,7] E|W.r.t. the Lebesgue measure. Note that in order
to define we do not need to assume that 7 admits a density w.r.t. the Lebesgue measure. In practice,
instead of sampling from Yo ~ £(Xr) we sample from Yy ~ 7o = N(0,1d). For large T' > 0 the mismatch
between the distribution of X7 and 7, is small due to geometric convergence of the Ornstein—Ulhenbeck
process.

In practice, {Vlogp;}iejo,r) cannot be computed exactly and is approximated by a family of estimators
{s(t,) }+jo,r]- Those estimators minimize the denoising score matching loss function £ given by

0(s) = Jy K(DE[|s(t,Xs) = Vlog pyo(X:|Xo) || ]dt, 3)

with pyjo is the density of X; given X, i.e. the density of the transition kernel associated with and
k: [0,T] — Ry is a weighting function. In practice, is approximated using Monte Carlo samples and the
loss function is minimized over the parameters of a neural network.

A~

Once the score estimator s is learned, we introduce a continuous-time backward process (Y¢);c[o,7] approxi-
mating (Y¢)epo,7] and given by

AY, = Br_{Y: + 28(T — t,Y,) }dt + \/2Br_dBy, Yo ~ oo = N(0,Id). (4)

In practice, one needs to discretize in order to define an algorithm which can be implemented. We consider
a sequence of stepsizes {7V }refo,... x} such that Zli{:o v = T. In what follows, for any k € {0,..., K} we
denote tx41 = Z?:o v; and o = Given this sequence of stepsizes, we consider the interpolation process
(Y¢)iepo,r) defined for any k € {0,..., K} and t € [ty,tr41] by
AY; = Br—i{Y, +28(T — tg, Yy, )}t + /28r—1dB, Yo ~ oo
L Also called Variance Preserving Stochastic Differential Equation (VPSDE) in [Song et al| (2021b).

2For any R?-valued random variable X, £(X) is the distribution of X.
3Note that tky1=1T.
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This process is an Ornstein—Ulhenbeck process on the interval [ty, t511]. Denoting (Yr)keqo,...,k+1) such that
for any k € {0,..., K 4+ 1}, Y, = Yy, , we have for any k € {0,..., K}

Vi1 = Y +y10(Ye + 28(T — tr, Ya)) + /2726 Zk, (5)
T— T—
Yok =explfr " Beds] =1,z = (exp[2 [z 1" | Buds] — 1)/2.

where {Zj }ren is a sequence of independent d-dimensional Gaussian random variables with zero mean and
identity covariance matrix. The discretization approximately corresponds to the discrete-time scheme
introduced in (Ho et al. [2020)), see Appendix We call this discretization scheme the exponential integrator
(EI) discretization, similarly to |Zhang and Chen| (2022) who introduced a similar scheme in accelerated
deterministic diffusion models. |Lee et al.| (2022) analyze a slightly different scheme corresponding to replacing
BT_th by ﬂT_thk in . We summarize the processes we have introduced in Table |1{ and discuss the
links between and the classical Euler—Maruyama discretization in Appendix As emphasized in the

Description Evolution equation

Forward process dX; = —B:X;dt + +/26:dB;

Backward process (BP) dY: = Br—e{Y: + 2Viogpr_:(Y:) }dt + /28r_+dB;
Score approximate BP (SBP)  dY; = Br_+{Y: + 2s(T — t,Y)}dt + /2Br—¢

EI interpolation of SBP dY = Br—i{Y¢ + 28(T — t, Yy, ) }dt + /2B87r—dB;
EI discretization of SBP Yit1 =Y + 60 (Ye +25(T — tr, Yi)) + 272,62k

Table 1: Different processes considered in this paper.

introduction, under the manifold hypothesis or in the case where the target distribution is an empirical
measure, the true score V log p; explodes when ¢ — 0. This behavior has been observed in practice for image
synthesis (Kim et al.l [2022} [Song and Ermon, 2020). One way to deal with this explosive behavior is to
truncate the integration of the backward diffusion, i.e. instead of running (Y¢)sejo,7) we consider (Y¢)epo,r—e]
for a small hyperparameter ¢ > 0, (Vahdat et al.,|2021} |[Song and Ermon, 2020). Translating this condition on
the associated discretized process, we assume that tx =T — ¢ and study {Yx }reqo,....x} by disregarding the
last sample Yx 1. We note that versions of diffusion models defined in discrete time do not suffer from such
shortcomings as the truncation is embedded in the discretization scheme, see (Song et al.l |2021b; |Song and
Ermonl, 2020; [2019; |Ho et al., |2020) for instance. Recently [Kim et al.| (2022)) have proposed a soft probabilistic
truncation to replace the proposed hard threshold.

In the next section, we state our main results providing upper bounds on the distance between the distribution
of Y and w w.r.t. the Wasserstein distance of order one under the manifold hypothesis.

3 Main results

We first start by introducing and discussing our main assumptions. First, the only assumption that we make
on the data distribution 7 is that it is supported on a compact set M C R? (i.e. a bounded and closed subset
of RY).

A1l. 7 is supported on a compact set M and 0 € M.

The assumption 0 € M can be omitted but is kept to simplify the proofs. We denote diam(M) the diameter
of the manifold defined by diam(M) = sup{||z — y|| : =,y € M}.

An assumption of compactness is natural as images are encoded on a finite range (typically [0, 255] for each
channel). We emphasize that this assumption encompasses not only all distributions which admit a continuous
density on a lower dimensional manifolds but also all empirical densities of the form (1/N) Z].V 1 0xi. Next,

i=
we turn to the temperature schedule ¢ — 3; and make the following assumption.
A2. t— B is continuous, non-decreasing and there exists 3 > 0 such that for any t € [0, 77, 1/6_ < B <B.
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Under this assumption, the integral of ¢ — S; is well-defined and for any ¢ € [0,T] we have that
X, =mXg + 047, my = exp[— fot Bsds], 0? =1— exp[—2 fg Bsds],

where the first equality holds in distribution and Z is a Gaussian random variable with zero mean and identity
covariance. Note that is satisfied for every schedule used in practice, see Appendix [F] Finally, we make
the following assumption on the score network.

A 3. There exist s € C([0,T] x R4, RY) and M > 0 such that for any t € [0,T] and v, € R,

Is(t, 2¢) — Viogpr(ze) | <M1+ ||z} /o7

Contrary to |De Bortoli et al| (2021), we do not assume a uniform bound in time and space as we allow
growth as t — 0 and ||z|| — 0. This assumption is more realistic as ||V logp(z¢)| ~¢—0 co(xt)/0? and
[V 10g pe (@) || ~|jzy|—+oo 1(t)]|2¢] as we will show in Appendix [C] This explosive behavior as t — 0 is
accounted for in practical implementations. For example [Song et al.| (2021b) used a parameterization of
the score of the form s(t,z) = n(t,x)/o;, where n is a neural network with learnable parameters. Our
assumption is notably different from the one of Lee et al.| (2022) which assume a uniform in time L? bound
between the score estimator and the true score. Nevertheless, in Appendix [H] we derive Theorem which is
the counterpart to our main result under a L2 error assumption, extending the theory of [Lee et al. (2022) to
derive an L™ error from a L? one. Note that L? bounds are more realistic than L as the score is estimated
on the data.

Finally, we make the following assumption on the sequence of stepsizes. Recall that for any k € {0,..., N}
we have t,11 = Z?:o v; and to = 0.

A4. Forany k €{0,..., K — 1}, we have Y SUPye(r—1, | 7—1,] Bu/o2 <5< 1)/2.

In the case where 3; = S, for any t € [0, T, is implied by the following condition: for any k € {0, ..., K—1}

K _

vk (Bo + (2 Zj:k+1 Y5) 1) <. (6)

In the next section, we fix vk = € and in this case, the condition @ is satisfied if for any k € {0,..., K — 1},
Y < 56/(2 + ﬁoE).

3.1 Convergence bounds

We are now ready to state our main result.

Theorem 1. Assume that T > 2B3(1 +log(1 +diam(M)), vk = € and e,M,5 < 1/32. Then,
there exists Dg > 0 such that

W (L(Yx),m) < Dolexpli/e)(M+ 6"/2) /% + explie/e] exp[~T/ 5] + /),
with k = diam(M)2(1 + 53)/2 and
Do = D(1+ B)7(1 + d + diam(M)*)(1 + log(1 + diam(M))), (7)
and D s a numerical constant.

First, we note that letting ¢ — 0, T — 400, §,;M — 0 we get that W1 (L(Yk),7) — 0. More generally the
error bounds depend on four variables (a) e which corresponds to the truncation of the backward process,
(b) T the integration time of the forward process, (¢) & which is related to a condition on the stepsizes of
the backward discretization, see (d) M which controls the score approximation, see The dependence
w.r.t. 6'/2 and M is linear, whereas the dependence w.r.t. T is of the form exp[—7/f]. These two terms are
multiplied by a quantity depending on the truncation bound € which is exponential of the form exp[x/c]. We
conjecture that under additional assumptions on M this dependence can be improved to also be polynomial,
see Theorem [3] for an extension of Theorem [I] under general Hessian assumptions.



Under review as submission to TMLR

Proof. We provide a sketch of the proof. The detailed proof is postponed to Section [d] The distribution
of Yk is given by mRk, where Rg is the transition kernel associated with Y |Yy. In order to control
W (1R, ), we consider the following inequality

Wl (Tr(XJRK7 7T) S Wl (7TOORK) 7TOOQtK) + Wl (WOOQISK ) WPT_tK) + Wl (TrPT—tK ) 77)7 (8)

where (Py):cjo,7) is the semi-group associated with (X;)¢cjo,71 and (Q¢)¢efo,7] is the semi-group associated
with (Yt)te[[),T]- We then control each one of these terms. The first term corresponds to the discretization
error and the score approximation. It is upper bounded by a term of the form O(exp|x/e](M+ 6)/c?). The
second term correspond to the convergence of the continuous-time exact backward process and is of order
O(exp[r/e] exp[~T/f]). The last term corresponds to the error between the data distribution and a slightly
noisy version of this distribution and is of order O(¢'/2). We conclude the proof upon combining these
results. O

As an immediate corollary of Theorem [I| we have the following result.
Corollary 2. Assume . Let n € (0,1/32), T > 2B(1 + log(1 + diam(M)) and
T>B(k+1)/n? M<expl—r/nly", & <expl—w/ln", vk =1’

Then,
Wl(ﬁ(YK)a 71—) < Dgn,

with r = diam(M)*(1 + 8)/2 and Dy given in (7).

The constant Dy appearing in Theorem |1|and Corollary [2] does not depend on ¢, T', § and M but only on 3,
diam(M) and d. In particular, we highlight that the dependence of Dy w.r.t. the dimension is O(d) and the
dependence w.r.t. the diameter of M is O(diam(M)*) up to logarithmic term. Note that the diameter might
only depend on intrisic dimension p of M which satisfies p < d in some settings. For example in the case of
an hypercube of dimension p we have diam(M) = |/p.

Contrary to|De Bortoli et al.| (2021); |Lee et al. (2022)); Pidstrigachl (2022)), our results are stated w.r.t. the
Wasserstein distance and not the total variation distance or the Kullback-Leibler divergence. We emphasize
that studying the total variation or Kullback-Leibler divergence between the distribution of Y and the
one of m under with M lower dimensional than R? lead to vacuous bounds as these quantities are lower
bounded by 1 in the case of the total variation and +oo in the case of the Kullback-Leibler divergence since
the densities we are comparing are not supported on the same set. This is not the case with the Wasserstein
distance of order one. To the best of our knowledge Theorem [I]is the first convergence result for diffusion
models w.r.t. W;. We note that our result could be extended to W, for any p > 1.

We conclude this section, with an improvement upon Theorem [I]in the case where tighter bounds on the
Hessian V?log p; are available.

Theorem 3. Assume that T > 23(1 + log(1 + diam(M)), vk = ¢ and £,M,6 < 1/32. In
addition, assume that there exists I' > 0 such that for any t € (0,T] and z; € R?

IV log pi (z4)|| < T/} (9)
Then, there exists Dy > 0 such that
W1 (L(Y),m) < Do((M+6Y2) /"2 + exp[-T/B]/e" +€'/2),

with
Do = D(1 4+ d + (1 4 diam(M))*) exp[3(1 + £)*(I" + 2)(1 4 log(1 + diam(M)))].

and D is a numerical constant.
Proof. The complete proof is postponed to Appendix The crux of the proof is to derive an improved

version of Proposition [6] which provides controls on some tangent process. Indeed, in Proposition [6] we use
an upper bound of the form ||V2log p;(z;)|| < T'/o} which is a loose upper bound derived under A O
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Theorem [3] improves the bounds of Theorem [I] since the exponential dependency w.r.t. ¢ is replaced by a
polynomial dependency with exponent I'. At first sight, it is not clear when @ is satisfied. However, in
special cases we can verify this condition explicitly. For example, in Appendix [[.2] we show that this condition
is satisfied if 7 is the uniform distribution on the hypercube, with p € {1,...,d}. The condition @D has
strong geometrical implications on M. In particular, under appropriate smoothness assumptions on M, it
implies that M is convex, Appendix [[.3} Finally, we note that the proof can also be extended to work with
L? errors following the lines of Appendix

3.2 Generalization results and empirical measure targets

We emphasize that the results of Theorem (1| hold under the general assumption which only requires the
target measure to be supported on a compact set. This includes measures which are supported on a smooth
manifold of dimension p < d but also all empirical measures of the form (1/N) Zfil §xi with { X}V, ~ 7®N,
In particular if we assume that the underlying target measure 7 is supported on a manifold of dimension
p < d and that the diffusion models are trained w.r.t. some empirical measure associated with 7 then we
have the following generalization result.

Proposition 4. Assume that T > 26(1 + log(1 + diam(M)), yx = € and £,M,6 < 1/32.
Then, for any n > 0 there exist Dg,D1 > 0 such that

E[W,(L(Yk),n)] < Do(exp|r/e](M+ 61/2) /&% + exp|r/e] exp[—T/B] + €) 4+ Dy N~/ (ds(M)+m)

with dyr (M) the Minkowski dimension of M, see (L1)), k = diam(M)?(1+ 3)/2, D1 given in (Weed and Bach,
2019, Theorem 1) and

Do = D(1 + B)"(1 + d + diam(M)*)(1 + log(1 + diam(M))),

and D s a numerical constant.

Proof. For any N € N, we denote 7% = (1/N) Zil dxi. Using Theorem 1| we have that for any N € N
Wi (L(Yi),m™) < Do(expln/e](M+6'/2) /e + explr/e] exp[-T/B] + ¢),
with a constant Dy which does not depend on {X?}%¥ | and N. Therefore, we have that for any N € N
E[W 1 (L(Y),n")] < Do(expr/e] (M + 6"/2)/e* + exp[w/e] exp[~T/ 5] + ). (10)

Using (Weed and Bach| 2019, Theorem 1) and (Weed and Bachl [2019 Proposition 2), for any n > 0, there
exists D; > 0 such that

IE[VV1(7TN,7T)] < Dy N~ V{duM)+n),

which concludes the proof upon combining this result, and the triangle inequality. O

The Minkowski dimension d(M) is defined as follows:
d(M) = d — liminf._,qlog(Vol(M,))/log(1/e), (11)

with Vol(A) the volume of a (measurable) set A and M, the e-fattening of M, i.e. for any ¢ > 0, M, =
{z € R? : d(x, M) < e}. For example if M is a topological manifold of dimension p < d then its Minkowski
dimension is p, i.e. dps (M) = p. Hence, in this case the error term in Proposition 4| depends exponentially on
the dimension of M and on its diameter but depends only linearly on d, the dimension of the ambient space.
Note again that diam(M) might depend on the dimension of M. For example in the case of the hypercube
M =[-1/2,1/2]P, we have diam(M) = /p. Hence, the results of Proposition 4f show that diffusion models
take advantage of the lower-dimensional structure of the target.
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3.3 Related works

To the best of our knowledge, (De Bortoli et al.l [2021)) provided the first quantitative convergence results for
denoising diffusion models. More precisely, |De Bortoli et al. (2021)) show a bound in total variation between
the distribution of the diffusion model and the target distribution of the form

I£(Yier1) = vy < Alexp[=T] + exp[T] (/% +5'/%)). (12)

This result holds under the assumption that 7= admits a density w.r.t. Lebesgue measure which satisfies
some dissipativity conditions. Again we emphasize that such results in total variation are vacuous under
the manifold hypothesis. The upper bound in is obtained using a similar splitting of the error as in
Theorem |1} However the control of the discretization error is handled using Girsanov formula in (De Bortoli
et al., |2021)) and relies on similar techniques as (Dalalyan, [2017; Durmus and Moulines| 2017). In the
present work, this error is controlled using the interpolation formula from [Del Moral and Singh/ (2019) which,
combined with controls on stochastic flows, allows for tighter controls of the discretization error w.r.t. Wy.

Lee et al| (2022) study the convergence of diffusion models under (uniform in time) L? controls on the score
approximation. Their result is given w.r.t. the total variation and therefore suffers from the same shortcoming
as the ones of De Bortoli et al.| (2021)). In particular it is assumed that the data distribution admits a
density w.r.t. the Lebesgue measure which satisfies some regularity conditions as well as a logarithmic Sobolev
inequality. Additionally, it is required that V2 logp; is bounded uniformly in time and in space which is not
true under the manifold hypothesis and is hard to verify in practice even in simple cases.

Closer to our line of work are the results of |Pidstrigach| (2022)) who proves that the approximate backward
process converges to a random variable whose distribution is supported on the manifold of interest. In
this work, we go one step further by studying the discretization scheme and providing quantitative bounds
between the output of the diffusion model and the target distribution.

Related to the manifold hypothesis and the study of convergence of diffusion models is the work of [De Bortoli
et al.| (2022) who study the convergence of a Riemannian counterpart of diffusion models. Result are given
w.r.t. the total variation (defined on the manifold of interest). Even though such diffusion models directly
incorporate the manifold information they require the knowledge of the geodesics and the Riemannian metric
of the manifold. In the case of the manifold hypothesis these quantities are not known and therefore cannot
be used in practice. In particular, |De Bortoli et al.| (2022) focus on manifolds which have a well-known
structure such as S, T? or SO4(R).

Franzese et al.| (2022) show that there exists a trade-off between long and short time horizons T'. Their analysis
is based on a rearrangement of the Evidence Lower Bound (ELBO) obtained by [Huang et al.| (2021). This
ELBO can be decomposed in the sum of two terms: one which decreases with T' (controlling the bias between
L(X7) and 7o) and one which increases with 7" (corresponding to the loss term (3))). Their decomposition
of the ELBO is in fact equivalent to (Song et all |2021a; Theorem 1). In Appendix |G| we include a short
derivation of this result.

Finally, we highlight the earlier results of Block et al| (2020)). In this work, the authors study a version of the
Langevin algorithm in which the score term is approximated. This is different from the diffusion model E|
setting and is closer to the setting of Plug-and-Play approaches (Venkatakrishnan et al.| [2013} |Arridge et al.l
2019; |Zhang et al., [2017)).

4 Proof of Theorem [1]

In this section, we present a proof of Theorem [I| More precisely, we control each term on the right hand
side of . The bottleneck of the proof resides in the control of the discretization and approximation error
Wi (mooRK, Too Qi ) which is dealt with in Section Then, we turn to the convergence of the backward
process W1 (meoQty, mTP7_¢, ) in Section Finally, we control the noising error Wy(7Pr_¢,,m) and
conclude in Section Technical results are postponed to the appendix.

4Even though the authors provide a discussion on an annealed version of the algorithm they study which corresponds to the
original framework of |Song and Ermon| (2019)).
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4.1 Control of W1 (Moo Rk, Too Qi )

In this section, we control Wi (meo Rk, oo Qty ). To do so we are going to use the backward formula introduced
in [Del Moral and Singh| (2019). First, we recall the definition of the stochastic flows (Y% ;)s te[0,r) and the

interpolation of its discretization (?g,t)sﬁtG[O,T]a for any z € R? and s,t € [0,T] with ¢t > s
AdY?, = Br_{YZ, +2Vlogpr_(YZ,)}dt + /287 ,dBy, Yi. =,
and for any k € {0,..., K} and t € sk, tgt1)
dY?, = Br{Y2, +2s(T — s, Y2, )}t + /2Br_¢dB,, Y2 =z,
where s, = max(s,t;). We also introduce the tangent process

AVY?, = Br_{1d+2V2 logpr_ (Y2 )IVYZ,dt,  VY?, =1d. (13)

The tangent process (VYY) ef0,r] can also be defined as follows. Under mild regularity assumption, for
any s,t € [0,T] with t > s, z +— Y7, is a diffeomorphism, see (Kunita, 1981), and we denote x — VY, its
differential. Then, (Kunital [1981], Section 2) shows under mild assumptions that (VYLf,t)s,te[o,T} satisfies ([13)).
Hence, (VY¥;)s,icjo,7] encodes the local variation of the process (Y% ;)s,ccjo,r) W.-t. its initial condition. Our
bound on the approximation/discretization error relies on the following proposition which was first proven by
Del Moral and Singh! (2019).

Proposition 5. Assume . Then, for any s,t € [0,T) with s <t and v € R?
T VT t T (VT T
Ys,t - Ys,t = fs VYu,t(Ys,u)TAbu((YS,U)UG[S,T])duﬂ

where for any u € [0,T) such that u € [sg,tx11) for some k € {0,..., K} and (wy)yeps,m) € C([s, T],R?) we
have

bu(w) = Br—u(wy + 2V log pr—_y (wy)), l_)u(w) = Br—w(wy +28(T — sk, ws,,))s
Aby, (W) = by(w) — by (w),

where s, = max(s,ty).
Proof. The proof of this proposition and a discussion are postponed to Appendix [E] O

Using Propositionour goal is now to control [[VYZ, | and [|Abs((YZ,)ie(s,r))|| for any s € [0,T] and = € R<.
To do so, we introduce the time t* which is a lower bound on the supremum time so that the backward
process is contractive on [0, t*]

t* =T — 23(1 + log(1 + diam(M))). (14)

We then obtain the following controls.

Proposition 6. Assume and T > 26(1 4 log(1 + diam(M)). Let tx € [0,T). Then, for any s € [0,tx]
and € R? we have

VY20, < expl=(1/2) J7 77 Bududpo) (s)] expl(diam(M)?/2)o72, ]
Proof. Let x € R%. First, using and Lemma we have that for any s,t € [0,7] with s <t
AIVYLIP < 260 (IVYI° =200 = m7_ diam(M)?/ (207 ,)) /o7, VY S, [1*)dt.
First, assume that s < ¢t* and that ¢ > ¢*. In that case, using Lemma [D.§ we have that

I Brow(l = 2/02_, +m2_ diam(M)2/od_ )du < —(1/2) [* Br_udu.
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Therefore, using that result and the fact that VY ; = Id, we get that

T—

VY| < expl—(1/2) 175 Bud]. (15)
In addition, using Lemma we have that
ftt* Br—u(1—2/02_, +m2_, diam(M)?/o4_ )du < (diam(M)?/2)(02, — 072 ,.).

Therefore, we get that
IVY sl < expl(diam(M)?/2)072 ][V Y s,p- |-

Hence, combining this result and , in the case where s < t* we have

T T—s . _
IVY?, || < exp[—(1/2) [, Bsds] exp[(diam(M)?/2)o2 ).
The proof in the cases where s > t*, t > t* and s < t*, t < t* are similar and left to the reader. O

Our next goal is to control ||Ab||. We recall that b,b: [0,7] x C([0,T],R%) — R? where for any u € [0,T)
such that u € [sy, tg41) for some k € {0,..., K} and w = (wy)ves, 7] € C([s,T],R?) ﬂwe have

by (w) = Br—u(wy + 2V log pr—q (wy)), bu(w) = Br—u(wy +28(T — s, ws,,))s
Aby, (W) = by(w) — by (w),

where s, = max(s,t;). We now provide upper bounds on Ab. We introduce the intermediate drift functions
b(@) p® p©) p(@ such that b® = b and b® = b. In addition, for any s,u € [0,T) such that u > s,
u € [sp, tg1) for some k € {0,..., K} and for any w = (wy)ye(s,r) € C([s,T],R?) we have

(b) - (c) —
u - - —Sk ’ - - Sk /70
by (w) = Br—u(wy + 2V logpr—g, (wy)) by (w) = Br—u(wy +2V1og pr_s, (ws,))
Ay = pl@) _ p0) Ay = p®) _ple) AleDp = ple) _ pld)
where s, = max(s,tx). We have that
40| < [|AD]| 4 [ACp]| + [[ALDp). (16)

In the rest of this section, we control each term on the right hand side of .

Lemma 7. For any s,u € [0,T) such that u > s, u € [sg,tg+1) for some k € {0,...,K} and w =
(wv)vé[s,T] € C([SvT] 7Rd) we have

[A@Dby (W)]| < 28U, epr—y, 11, (B2/09) (2 + diam(M)?)(diam (M) + [[we ) Ve
Proof. Assume that s < t;. Then, we have

AL, (W) < 287V 10g pr—u(wu) — V1og pr—i, (wu) |
< 267wV SUPye[T—u,T—t,] 100V log pr—u (wu) |-
Using Lemma [C.3] we have that
A, (W] < 287w SUPye (7, 7—1,) (Bu/05) (2 + diam(M)?) (diam(M) + [lwy]) e,
which concludes the proof in the case where s < t;. The case where s > t, is similar and left to the reader. [

Lemma 8. For any s,u € [0,T) such that w > s, u € [Sg,tky1) for some k € {0,...,K} and w =
(wo)vels,r) € C([s, T], RY) we have

1A by (W) < 2(87—u/07_,) (1 + diam(M)?)||wu — ws, |,

where s, = max(s,tx).

5With a slight abuse of notation we assume that each process on C([s, T]) is extended on C([0,T]) by setting w,, = ws for any
u € [0, s].
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Proof. Assume that s < t;. We have

[AGDb, (W) < 267wV 1og pr—i) (we,) — V1og pr—i, (wa)|
< 287w WPy 1—1y) V2108 Py (wo)[[[lwu — we |-
Using Lemma we have that
IA® by ()| < 2(Br—u/0F—,)(1 + diam(M)?) wy — wy, ||,
which concludes the proof in the case where s < t;. The case where s > t;, is similar and left to the reader. [
Finally, combining Lemma [7] Lemma [8| and in (16)), we get that for any s,u € [0,T) such that u > s,
u € [sg, tr41) for some k € {0,..., K} and (wy)pefs, 1) € C([s,T],R?) we have

1Abu (W) < 25UPyerr—ty,, 70, (B2/00) (2 + diam(M)?)(diam (M) + [|wu ) vk (17)
+2(Br—u/o7_,)(1 + diam(M)?)lwy — ws, |
+ 28— M(L + |lwull) /07—,
where s = max(s, tx).

The following proposition controls the local error between the continuous-time backward process and the
interpolation of the discretized one where the true score is replaced by the approximation s.

Proposition 9. Assume , In addition, assume that §,M, vk < 1/32. Then, we have for any
s,u € [0,tk] withu > s

]E[”Abu((?s,v)vG[s,T])”] < CO(T —tx + B)Z(M + 61/2)/<T - tK)27
where Y5 ~ N(0,1d) and

Co = (14 B)7/2(4 + 256d + 43664(1 4 diam(M))*). (18)
Proof. Let s,u € [0,tx] with u > s. In what follows, for ease of notation, we denote for any k € {0,..., K}

_ 2
Kk = SUDye[T—ty 1, T—1s] Bu/oy.

There exists k € {0,..., K — 1} such that u € [t,t;41]. Assume that s < ¢;. Recall that using (17), we have
that for any w = (wy)ye(s,r) € C([s, T],R%)

[Aby ()] < 28UDye (s, ., 11, (B2/00)(2 + diam(M)?) (diam (M) + [Jwul|) 7%

+9(Brufob_ ) (1 + diam (M)l — i

+ 28— ML+ [|wull) /07—,

< 2(k} /0%y, )7k(2 + diam(M)?)(diam (M) + [|w, )
+ 267 (1 + diam(M)?) wu — wi, |/ Br—u + 26:M(1 =+ [|wul]).
Combining this result with Lemma [D5] its following remark and Lemma [D.6] we get that
E[[|Aby (Y e )velsm)ll] < 2063 /0%, )7(2 + diam(M)?) (diam (M) +Ky'®)
+262(1 + diam(M)2)L(1)/283/2’y,1/2 + 2kM(1 + K(l)/2).

Denoting C = 2(2 + diam(M)?2)(diam(M) + K/?) + 205/ ? 33/2(1 4 diam(M)?) + 2(1 +K3/?), we get that

B[l Abu((Ysw)ucism) ] < CRE /oy, e+ w4 ).
Combining this result, A4l and Lemma we have

E[[|Aby(Ys)vefs, )l < €L+ B)* (L + B/(T — tx))*(8/2 + M)

10
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+C(L+B)(1+ B/(T —tk)) (/%)
<C(L+ BT —tx + B (6 + M) /(T — tx)?
+C(1+ B)(T — tx + B)(8/0F_4, ) /(T — tx).
Finally, using Lemma we have
0% = (L= exp[=2 J§ 7 Bds]) ™! < 1+ B/(2AT — tic))-
Therefore, using that yx =T — tx < 1 we get that
E[| Abu(Ys)vers )] < €1+ B)AT — tic + B)*(8 + 62 + M) /(T — tx)?
<20(1+ B)X(T =t + B)* (6% +M) /(T — tx)?
which concludes the first part of the proof in the case where s < t;. The same bound holds in the case where

s > t},. Finally, we conclude upon noticing that 2C(1 + ) < Cq with Cy given by . O

We are now ready to control the global error between the backward process and the interpolation of the
associated discrete-time process where the true score has been replaced by its approximation s.

Proposition 10. Assume and vk = e. In addition, assume that £,0,M < 1/32. Then
Wi (7o Qi » TooRic) < Do expldiam(M)?(1 + B)/(2e)] (M + 6*/2) /<2,
where
= (14 B)"(8 + 512d + 87328(1 + diam(M))*)(1 + log(1 4 diam(M))).
Proof. Using Proposition [5] we have
IYer = Yiel = [Yeie = Yol < 3 IV Yt (Yo, 1 Abu (Yo, )vego,r) | du.
Combining this result, recalling that ¢* is defined in and Proposition |§|, we get
Yt = Yicll < Jo expl=(1/2) 7" BedisTig pe)(w)] exp[(diam( )*/2)072, N Abu(Yo0)uefo,m)lldu
< exp|(diam(M)?/2)o7%, 1 (fy - expl=(1/2) [7_* Beds)|Abu((Yo.)uepo.r))du
+ [ NAbL(Yo.0)vepor) | dw).
Using this result and Proposition [9] we get
Wi (Moo Quie, Moo Ric) S E[[[ Yy, — Y]
< expl(diam(M)?/2)o72,, 1(fy expl—(1/2) f7* BuAs|E[|AbL (Yo )ueio.r)llldu

[ Bl Aby(Yo.)veoury) 1),
< exal(diam(M)* 2007 J0 (T~ b+ D08+ 87 = 1

x(J expl—(1/2) [ Bods]du + tx — t*). (19)
We have that N . . - -
i exp[—(1/2) [, Bedsldu < [ expl[—(t* —u)/(26)]du < 2. (20)
In addition, using we have
tg —t* =T —e — T +26(1 4 log(1 + diam(M))) < 26(1 + log(1 4 diam(M))). (21)

Finally, using Lemma we have that O’T e S (1 /) /e. Combining this result, and in we
get

W1 (Moo Qi » TooRic) < 2Co exp[diam(M)2(1 + B)/(26)](1 4 5)3(1 + log(1 + diam(M)))(M + §/2) /&2

which concludes the proof.

11
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4.2 Control of W1 (oo Qs TPty )

In this section, we focus on the following error W1 (70 Q¢ , TPr_¢, ). First, note that 7Ppr_;,, = 7P7Qy, .
Therefore, using Proposition we have

Wi (Moo Qg TPT— 15 ) = W1 (Too Qi TPTQuy ) < exp[(1/2)072, Wi (7Pr, Too). (22)

—tx

To control W (mPr, T ), we use a synchronous coupling, i.e. we set (Y¢, Z¢).e[0,r) such that

dY, = =B, Y. dt + \/23,dB,, dZ; = — B Z,dt + \/25,dB,,

where (B¢)¢cjo,7] is a d-dimensional Brownian motion and Yo ~ 7, Zg ~ 7mo.. We have that for any ¢ € [0, 77,
Z; ~ Too. In addition, denoting u; = E[||Y; — Z¢||] for any ¢t € [0, T], we have that

ug < ug exp|— fot Bsds].
Therefore, combining this result and , we get that
Wi (o0 Qs TPr—iyc) < expl(1/2)072,, Jexpl— [ Bidt] Wi (7, 7oc).- (23)
Therefore, using Lemma [D.2] we have
Wi (Moo Qe TPT—1,c) < expl(1 + B)diam(M)?/(2¢)] exp[~T/B](Vd + diam(M)).

4.3 Control of Wy (7Pr_;,,7) and conclusion

In this section, we focus on the error Wy (7, 7Pp_;,. ) and conclude the proof. First, we have that

Wi (m, mPr_t,. ) < E[||X — mr_t, X + 07—t Z]|],
with X ~ 7 and Z ~ N(0,1Id). Hence, using 1 — mr_¢, < or_¢,, we have

Wi (m, mPr_ty) < diam(M)(1 — mrp_sy ) + 07—t Vd < (diam(M) + Vd)or . -

Using Lemma and this result we have

W (7, 7Pr_s,.) < (28)Y?(diam(M) + Vd)e'/2. (24)
Combining this result, and Proposition [10]in we get that

Wi (mooRuc, m) < Do(exp[(1 + B)diam(M)?/(2¢)] (M + 6'/%) />
+expl(1 + B)diam(M)?/(2¢)] exp[~T /5] +£'/?),

which concludes the proof.

5 Conclusion

In this work, we have studied the convergence of diffusion models under the manifold hypothesis and provided
convergence guarantees w.r.t. the Wasserstein distance of order one. Our theoretical results show that
diffusion models are able to recover target distributions defined on low-dimensional manifolds.

These results can be extended in several directions. First, in this work we focused on the Ornstein-Ulhenbeck
process as a forward noising process. It would be interesting to analyze other forward diffusions such as the
critically-damped one (Dockhorn et all [2021]). Another extension would be to study other discretization
frameworks such as predictor-corrector schemes (Song et al., 2021a)) and to extend our analysis to more
realistic statistical settings. Finally, it is a challenge to derive similar bounds for target distributions with R?
support and tail constraints.

Finally, we would like to deepen our study of the relationship between the geometry of the manifold M and
the properties of the score function. Preliminary results from Appendix [[.3|indicate that the convexity of M
can be recovered from the properties of the score but it remains unclear if more can be said on the geometry
of the manifold.

12
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A Organization of the appendix

The appendix is organized as follows. We start by discussing our discretization scheme in Appendix [B] In
Appendix [C] we provide upper bounds on the gradient and Hessian of the logarithmic gradient of the density
of the forward process under the manifold assumption. In Appendix [D] we control the stability of several
backward processes. In Appendix [E] we recall and adapt a stochastic interpolation formula from [Del Moral
and Singh| (2019)). We check the different assumptions on the noise schedule in Appendix [F} A short proof of
the results of |[Franzese et al.| (2022) is presented in Appendix In Appendix [H we present an extension of
our results in the case where error is controlled w.r.t. the L? norm, following the work of [Lee et al. (2022).
We improve on Theorem [I] in Appendix [[| under some Hessian conditions.

B Discretization of backward processes

In Appendix we briefly describe the links between our proposed discretization and the classical Euler-
Maruyama discretization. In Appendix [B.2] we show that the discretization is associated to the one of Ho
et al.[ (2020 under specific settings

B.1 Link with Euler-Maruyama discretization

First, we recall the Euler-Maruyama discretization. Given a sequence of stepsizes a discretization of is
given by the so-called Euler-Maruyama approximation, i.e. we define for any k € {0,..., K} and ¢ € [tg, tg41]

AYPM = Br_y {YEM + 28(T — t4,, YEM)}dt + /2871, dBy, YIM ~ 7. (25)

The associated discrete process (Y;™)ycqo, . 11y is given for any k € {0,..., K + 1} by VM = YEM and
we have for any k € {0,..., K}

VN = VM 4y B {YEM + 28(T — 6, V™) } + /2870, Z, (26)

where {Z }ren is a sequence of independent d-dimensional Gaussian random variables with zero mean and
identity covariance matrix.

Note that describes the same update as up to the first order w.r.t. v;. In practice, there is no
additional cost to replace the classical Euler-Maruyama discretization with the discretization defined in ,
provided that the integral of the temperature schedule ¢t — (; can be computed in close form, which is the
case in all the cases considered experimentally, see Appendix [F]

However, in our theoretical analysis we found out that introduces less error than when compared to the
approximate backward process . In our study we only consider the discretization scheme (Y )rego,...,k+1}
but emphasize that our analysis could be readily extended to derive similar discretization errors for the
process (YEM)cqo,. k13-
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B.2 Equivalence with |Ho et al.| (2020)

In this section, we show that the discretization scheme introduced in (2020) and the one of (5 are
equivalent up to the first order in some parameter.

Setting of [Ho et al.| (2020) We start by recalling the setting of [Ho et al| (2020). Since, there is a conflict
between our notations and the ones of [Ho et al.| (2020)), we write our constants in red and the constants of

(2020) in blue. The forward process in [Ho et al.| (2020)) is given for any ¢ € {1, ... ,T}ﬂ

q(@i|z0) = N(z4; Vo, (1 — o) Id), (27)
and we define
ﬁt =1- g, &t = Hi:l Q. (28)

In that case the loss function is given by

00) = S1_  Elle: — eo(v/arzo + vI— azer, 1), (29)

with {e;}/_; a collection of independent Gaussian random variables with zero mean and identity covariance
matrix. The backward sampling is given by the following recursion

21 = o 2@y — (B/VI = an)ea(mi, b)) + Brz, (30)

with{z;}_; a collection of independent Gaussian random variables with zero mean and identity covariance
matrixﬂ Note that using these notations, there is a conflict of notation between the forward process and the
backward process. To clarify our identification, we denote y; = x; for any t € {0,...,T}, with z; given by

, in what follows.
Identification In what follows, weset t =k +1, 7T = K and for any t € {1,...,T}

o = exp] QfT tt;(: D 3.ds] = exp| QfT b 1’“ , Bsds].
For instance, we have o = exp[—2 foT_tK 3.ds] and ap = exp[—2 f'IT—tl 3sds]. Note that in this case, using
, we have

;1% = exp|— fl TR 3 ds) = mr

Similarly, /1 —a; = op_¢, . In what follows, we identify the distribution of the forward process (27 with
the one of , the loss function with the one of and the time reversal with the one of (5]

(a) The distribution g(x¢|xg) given in is the distribution of X7, _, |Xo where (X;)ic[o,7] is given
in , since Xp_tp_, = mr—t,e , Xo+ 071, Z with Z ~ N(0,1d). Therefore, we identify x; and
X7 for any ¢ € {1,...,T}. Similarly, for any ¢t € {1,...,T}, we identify ¢t and T — t g _.

—tk—k

(b) Using that X, = m;Xo + B, for any ¢ € {0,...,T}, the loss is given by

Us) = [} w(t)Els(t,X:) — Vlogpijo(X,[Xo) [2)dt

= OTm)E (t,X,) + B,, /o,2|]dt

(
(
= Jo (0)/o%E[l —fffs(f X)) = Bg, /oi?|dt
= Jo W(T = 0)/or Bl = ors(T = t.Xr-) = Bo, for|Pldt
With a slight abuse of notation we assume that (7 —t) = ZkK:o 8, (H)or ;2 for any t € [0,7].
Hence, we get that
() = S o Ellle — (<7187~ b, X1 I

6Note that in w , T" is a number of steps and not the total time of the forward.
"We consider the case Where ot = B¢.
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= Yo Ellles = (—vT—=ars(T — ti—p,a1))|?]
= S Elller — (—vT=ars(t, /Ao + VI = ae)) ]
Hence, identifying €g(-,¢) and —/T — a;s(t,-) for any ¢ € {1,...,T}, we recover (29).

(¢) We now aim at recovering from . Using the change of variable & — K — k and noting that for
any t € (0,7], B,, /o is a Gaussian random variable with zero mean and identity covariance matrix

we have
YK—k+1 =Yr_ 1+ (exp[f;:ttfi(__kk+1 ﬁsds] - 1)(YK—k + 2S(T —tr—k, YK—k))
Hexp[2 [ /K8 Buds] = )22z,

=Ygk + (V2= 1) (Yr—p +28(1 — tg—k. Y1) + VB Zr—
= Oztil/zYK,k + 2(0@71/2 — ].)S(T — Kk, Yka) + \/EZka
=, V2V, —2(( Y2 = 1) /T — ) eo(Yie—i, t) + VBiZx—i. (31)

Finally, since oy, = 1 — ; we have o;'/2 = 1 — 3,/2 + o(3;). This implies that 2(a;,71/2 — 1) =
—B¢/\/ai + o(B//ar). Therefore, combining this result and (31)), we get that

Y1 = o V2V + (B /T = ar)eo(t, Yic—k)) + VBiZk—k + o(Bi/ /7).
This corresponds to up to a term of the form o(f5;/\/0%).

C Gradient and Hessian controls on the logarithmic density

Let m € Z(R?) be the target probability measure. We denote (p;)¢~o such that for any ¢ > 0 the density
w.r.t. the Lebesgue measure of the distribution of X; (with initialization X} ~ 7) is given by p;. Similarly,
7V € Z(R9) be an empirical version of 7, i.e. 7V = (1/N) Eszl Xk with {X*}V_ | ~ 7®N. We denote
(pN)¢>0 such that for any ¢ > 0 the density w.r.t. the Lebesgue measure of the distribution of X (with
initialization X{" ~ 7™V) is given by p;. In order to show the stability and growth of the processes at hand we
need to control quantities related to the gradient and Hessian of log ¢; where ¢; = p; or pl¥. We first show a
dissipativity condition on the gradient. We recall that for any ¢t € [0, T

my = exp[— fot Bsds], o2 =1—exp[-2 fg Bsds].
Such dissipativity conditions will allow us to control the moments of the introduced backward processes.

Lemma C.1. Assume Alll Then for any t € (0,T] and z; € R% we have that
(Viogqi(xe),ae) < — ||zl /o7 + mydiam(M) ||z]| /o7,
with q; = pl¥ or py. In addition, we have

IV log g:(2,)[1* < 2|z||* /ot + 2m7diam(M)* /7. (32)

Proof. Let N € N. We have that for any t € [0,7] and z; € R?
N
pi (2e) = (1/N) 325y exp=[lze — me X ¥ /207]/ (2707) /2,
Therefore, we get that for any ¢ € [0,7] and z; € R?
Viogpf (x:) = (=1/N) iy (r — meX*) expl— ey — me X*|2/203)/((2m03) " 203p) (2:)).

Hence, we have
2 .
(Viogpy (z1),x4) < = |lae” Jof + mypdiam(M) [z /o7

Therefore taking the limit N — +o00, the same conclusion holds for p;. The proof of follows the same
lines and is left to the reader. [
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We now provide controls on the Hessian V?1og g;. Such bounds allow to control the growth (or contraction)
of the tangent process. This will also allow us to control the growth (or contraction) of the distance between
backward processes w.r.t. the Wasserstein distance of order one.

Lemma C.2. Assume All| then we have for any t € (0,T], z; € R? and M € My(R?)
(M, 72 log g (e)M) < (1 — m3diam(MY?/(202)) o2 M2

In addition, we have

1V log gu ()| < (1 + diam(M)?) /o7

More generally, we have

V2 log py(;) = —1d /o7
+208) 7" [y (@o — 26)® expl—lwe — mewo|*/(207)] exp[—lwe — maag||*/(207)]dm (o) dr(ap)
[ expl=llwe = muzo||*/ (207)]dm (x0))*.

Proof. Let N € N. We have that for any ¢ € (0,7] and = € R, p)¥ = p /(2m02)¥/? with
_ N
pi () = (1/N) 34y exp[— [l — m X |2 /207,
Hence, we have
Viog pi () = (=1/N) 3L, (@ — me X*) expl—[lw — me X*|12/207] /(035 ().
Hence, we get that

V2logpN (z) = —1d /o?
+(1/N) 3L, (2 — me X %) @ (@ = my XF) expl— e — m, X* |2 /202)/ (ofp] (x))
—(1/N?) (X0, (= my X*) exp|— o — m X |2 /207))
(S ey (@ — m XF) expl— & — m X*|2/207]) /(02D (2))?.

For any k € {0,..., N — 1}, denote ff = —(x — m;X*)/0? and eF = exp|[—||fF||?]. Using the previous result,
we have

V2ogpp (x)= —1d /o} + o, fE® fFef ) S, ef
_(lequl ftkef/ ch\le ef) @ (Zivzl ft’fe,’f/ chvzl eff)
=—1d/o? + (1/2) SN (fF = ) @ (fF — fl)ekel | SN _y elel. (33)

In addition, using that for any ¢ € {1,..., N}, X’ € M we have that
1FE = f11 = mil|X* = X7 /o < mydiam(M) /o7
Therefore, we get that
(M, VZlog ' (2)M) < —(1 —midiam(M)?/(207)) /o7 | M]]%.
Using , the fact that M is compact and the strong law of large numbers we have that

limy 100 VZ1og pl¥ (x) = —1d /o2
+ Jra(@ = miwo) ® (z — muo) expl— ||z — meao||?/ (207)] expl—||z — miZo|*/(207)]dr (w0 )dr (Zo)
/(Jga expl=llz — m@o||?/(207)]dm (20))?.

Hence, we get that limy_, o, VZlog pY (z) = V2 log p;, which concludes the proof. O
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Finally, in order to control the local error of the time discretization, we also need to control the time derivative
of the gradient, i.e. 0;V log ¢;.

Lemma C.3. Assume . Then for any t € (0,T] and z; € R we have that
10:V log g¢ (o) || < (Be/0f) (2 + diam(M)?)(diam(M) + [|z]]).

Proof. Let N € N and t € (0,T]. Recall that for any z € R?, p¥(2) = p¥ (z)/(2m02)¥/? with

P (x) = (UN) S ef (@), ef(z) = exp[— o — meX*|2/(207)].

In what follows, we denote fF = logel for any k € {1,..., N}. For any x € R? we have

O log ¥ (z) = Yopey O fE(@)el (@) ) Tops, ef (@)
Therefore, we have for any = € R?
0V 1ogp (x) = Ypy OV fE(@)el (w)/ Yps, ef (@)
+ 30 O R (@) fE(@)el (2) ) i ef (@)
— o1 O fE @)V S (2)ef (el ()] 327 -y eF (x)el (x)
= Yl OV fE(x)ef ()] Sy ef (@)
+(1/2) 02y O fE () — 0 f] (@) (V fF(2) = VI (2))ef (2)e] (2)) Tp oy b (@)el (). (34)

In what follows, we fix k,j € {1,...,N} and provide upper bounds for |9, fF — d,f7|, |[Vf¥ — Vfi|| and
OV fF. First, we have that for any # € R, VfF(z) = —(x — m; X*)/o?. Hence, using that m; < 1, we get
that for any = € R? ,

IV fE(x) = Vfi (2)]| < midiam(M)/o7 < diam(M) /o7 (35)

In addition, we have that for any = € R?
O fE(t) = 0107 /201 [|x — me X*|* + Oymy foF (X, & — my X ).
Combining this result, the fact that 9,02 = —2m;0;m; and that dym; = —Bymy, we get that
Oeff (t) = =Bime/of[—(me/op) | — me XF|* + (& — me X*, X))
= —Bemy /ot (x — m X", —(my /o) (z — m XF) + XF)
= —Bymy /ot (x — m X", —mux 4+ XF)
= B /o (me|z]|* + m | XF|? + (1 +m?) (2, X*)). (36)
Using this result and that m; < 1, we have that for any = € R¢

00 (x) = O] ()] < 2Bm7diam(M)? /o + Bymy (1 + m7)diam (M) |l2]| /o7 (37)
< 2(B; /o) diam (M) (diam(M) + |z])).

Using , we have for any z € R¢
VO, ff(x) = 26,m7 [tz + (Beme /o) (1 +mi) XE.
Therefore, combining this result and the fact that m; < 1, we get that for any = € RY
10:V f£ (@)I| < 2(8¢ /o) (diam (M) + [|]). (38)
Combining , and in , we get that for any x € R?

10:V log 7" ()| < 2(B¢ /o)) (diam(M) + [[]]) + (Be/0F)diam(M)?(diam (M) + ||z]))
< (Be/0})(2 + diam(M)?)(diam (M) + [|[]),

which concludes the proof using that limy_, o, 9;V log pl (z;) = 9,V log p;. O
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We conclude this section with bounds on the higher-order differentials of log p;. To compute higher derivatives
we will use the following lemma.

Lemma C.4. Let E = {e;}M, be a family of functions such that for anyi € {1,..., M}, e; € C°(R% R).
Similarly, let G = {g:}M, be a family of functions such that for anyi € {1,...,M}, g; € C*°(R% RP). Let
F(E,G) such that for any x € R?

F(B,G) =), giei/ 02y ei
Then, we have
VF(E,G)=F(E,VG)+ (1/2)F(E® E,(G6G)® (Vieg E© Vieg E)),

where ® is the tensor product, ® the pointwise product and © the tensor substraction.

Proof. We assume that p = 1. The proof in the general case is similar and left to the reader. We have that

VF(E,G) = Y11 Vgie)/ Sl ei+ 1y giV log(eieie; | Yis_y eie;
M M
- Zi,j:l 9:Vlog(ej)eie;/ Zi,j:l e;e;

= Zf\il Vgiei/ sz\il €;
+(1/2) Z%Zl(giV1og(ei) + g;Vlog(e;) — g;V1og(e;) — g; Vlog(e;))eie;/ 2%21 €;€;
= 2?11 Vgiei/ Zi\il €;
+(1/2) 3121 (9 — 95)(Vloge; — Vioge;)/ 1 eie;,
which concludes the proof. O

Lemma C.5. Assume . Then, there exists C > 0 such that for any t € (0,T] we have

IV log p() || + [[V* log pe(x) || + [|V* log pe(2) || < C/a.
Proof. Let t € (0,T)]. First, remark that for any x € R4

V2logpi(z) = —1d Jo? + F(E®?,(Vlog E © Vlog E)®?),
where E = {e;}}V, and for any i € {1,..., N}, e;(x) = exp[—||z—m:X?||?/(202)]. Note that Vlog E&V log E
does not depend on x and there exists Cp > 0 such that for any ¢, j € {1,..., N}, |[Vioge;(x) —Vioge;(z)] <
Co/o?. Hence, using Lemma we have

V3logpi(z) = F(E®*, (Viog E© Viog E)®? ® (Vlog(E ® E) © Vlog(E ® E))).

Again, note that G; = (Vleg E © Vlog E)®? ® (Vlog(E ® E) © Vlog(E ® E)) does not depend on z, upon
remarking that

Vieg(E® E)oVieg(E® E) = (ViegEoViogE)® (Vleg E © Viog E).
Finally, we have V*logp;(z) = F(E®®,G3), where

G2 =[((VlegE & Vlog E)¥? ® (Vlog(E ® E) & Vlog(E ® E)))
S ((VlogES Vieg E)?? @ (Vlog(E ® E) © Vlog(E @ E)))] @ (Vleg(E®*) © Vlog(E®")).

Therefore, we get that there exists C' > 0 such that for any z € R?
IVlogpi(x)|| < C/of,  |[Viogpi(a)| < C/o}.

We conclude the proof upon using that o; < 1. O
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D Control of the backward processes
We start by introducing the different processes in Appendix We gather a few technical results in

Appendix Then, we turn to the stability and Lipschitz properties of the backward processes in
Appendix [D:3] Finally, we control the growth of the backward tangent process in Appendix [D-4]

D.1 Introduction of the processes

In this section, we study the stability of the backward process given by

dY; = fr—{Y: +2Viogqr—+(Y¢) }dt + /287 +dBy, (39)
where g; is either p; or pY. We are also going to consider the following approximate continuous-time process
dY, = Br_{Y¢ +2s(T — t,Y,)}dt + \/2Br_dBy, (40)

where s(t,-) is an approximation of either p; or pY. Note that since ¢; > 0 and ¢ € C*((0,T] x R? R?)
and that s € C1((0, 7] x R?,R?) we have that and admit strong solutions up to an explosion time.
Finally, we also consider the following interpolating process: for any ¢ € [tg,tg+1)

dY; = Br_{Y: +28(T — ty, Yy,)}dt + /267 _:dBs. (41)

This process is an interpolation of a modified Euler-Maruyama discretization of . Note that the classical
Euler-Maruyama discretization would be associated with the following interpolation

AYPM = Br_y {YEM + 28(T — t4,, YEM)}dt + /2871, dBy.

In , we take advantage of the linear part of the drift. Indeed on the interval [t,tr+1], the process is
a simple Ornstein—Ulhenbeck which can be integrated explicitly. In particular for any k € {0,..., N —1} and
t € [t tr4+1] we have

T—ty T—t

Y, = Ytk + (exp| Tt Bsds] — 1)(Ytk +2s(T — tk’?tk)) + (exp[2 fT—t Bsds] — 1)1/227

where Z is a Gaussian random variable with zero mean and identity covariance and the equality holds in
distribution independent from Yy, . Denoting {Y% }reqo,...n—1}, We get that for any k € {0,..., N — 1}
T— T—
Yierr = Vi + (exp[ i % Buds] = 1)(Yi + 28(7 — 4, Y2) + (expl2 [, Buds] - 1)1/22,,

where {Zj}ren is a collection of independent Gaussian random variables with zero mean and identity
covariance matrix. Using this scheme instead of the classical Euler-Maruyama simplifies the analysis of the
discretization. Up to the first order this scheme is equal to the classical Euler-Maruyama discretization. Once
again, we emphasize that computing this scheme is as expensive as computing the classical Euler-Maruyama
discretization provided that the integral fst Budu are available in close form for all s,¢ € [0, T] which is the
case for all the discretization schemes used in practice. We refer to Table [T] for a list of all processes used in
the proof. In what follows, we control the stability of these processes.

D.2 Some useful technical lemmas

We gather in this section some technical results.

Lemma D.1. For any s,t € [0,T] we have
I Brou/ob_ du = [(—1/2)log(expl2 [, " Bydv] — D], (42)
S Broumi_ Job_ du=[(1/2)/(1 —exp[-2 [} " B,duv])]. (43)
In particular, if 8 = By then
JY Br—u) o3 _ydu = [(—1/2) log(exp[2Bo(T — u)] — 1)]¢,
S Br—umi_, Job_,du = [(1/2)/(1 — exp[~280(T — u)))].
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Proof. We have

[2 Br—u)o?_ydu= [*Br /(1 —exp[~2 [ " Budv])du
= f Br—y €Xp 2f “ Bydv]/(exp 2]0 * Bydv] — 1)du
(—1/2) fs Oy log(exp 2f0 Y Bydv] — 1)dw.

This concludes the proof of (42)). We have
T—u
fst 6T—um%_u/0{1{_udu = fst ET—um%—u/(l - eXp[72 fo ﬂvdv])zdu

= f: Br—y exp|—2 fOT_u Bydv]/(1 — exp[—2 fOT_u Bydv])?du
= (1/2) [18,(1 — exp[-2 [}~ B,dv]) " du.

This concludes the proof of . O

Lemma D.2. Assume . We have o < 2tf and o, > <1+ (/(2t).

Proof. First, using that for any a > 0, exp[—a] > 1 — a we have
07 =1—exp[—2 fg Bsds] < 1 — exp[—2pt] < 2pt.
Second, using that for any a > 0, 1/(1 + exp[—a]) < 1+ 1/a we have
;2= (1—exp[=2 [ Buds)) ! <1+ (2[5 Buds) ™! <,
which concludes the proof. O

For any k € {0,..., K} we introduce ki = SUPyecr—q, ,, 71 Bu/T2.
Lemma D.3. Assume AR| Then, we have that for any k € {0,..., N — 1}

i < B(1+ B/t).

Proof. Recall that for any s € [0,7], 02 = 1 — exp[—2 [ Budu]. Using that for any v > 0, (1 —e™2")~! <
1+ 1/(2v) we have for any ¢ € (0, 7]

Beo? < By + Bu(2 [ Bsds) ™ < Bi(1 + B/1),

which concludes the proof. O

D.3 Stability and Lipschitz properties of the backward processes

The controls derived in Appendix [C] allow for uniform control of the moments of the backward processes.
Note that such Lyapunov techniques were used in [Fontaine et al.| (2021]) to control energy functionals in
convex optimization problems. The following lemma is not used directly in our final analysis but provides
intuitive controls on the backward process.

Lemma D.4. Assume and that there exists n > 0 such that M+ ndiam(M) < 1/4. Then, for any
t €[0,T] we have

E[|[Y:]?] < d+8(1 + M+ diam(M)/n).

In particular if M < 1/8 then for any t € [0,T] we have

E[|[Y]|2] < d + 8(1 + M+ 8diam(M)?2).
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Proof. First, using Lemma we have that for any ¢ € [0,T), E[[|Y¢]|?] < +oc. Hence, using Ito’s lemma,
we have
d(1/2)[1Y 1% = Br—e{IY)*> + 2(s(T — t,Y+), Y¢) + 2}dt + /2B7—:(Y¢, dBy).

Therefore, using Lemma and that for any a, b, > 0, 2ab < a®n + b*/n we get that for any ¢ € [0,T)
we have that (1/2)E[||Y¢]|?] < u¢, where up = d/2 and

duy = Br_i(1 = 2/02_, + 2(M + nmp_idiam(M)) /o2 )uy
+ Br_+(2 + 2M + 2mp_diam(M) /n) o3,
= Br—i(0F_y — 2+ 2 + nmy_,diam(M))) /o7 u,
+ Br_4(2 + 2M + 2mp_ diam(M) /n) o2,

For any t € [0,7] and = € R define F(¢,x) given by
F(t,x) = —(2 — 0%_, — 2(M + mp_mdiam(M))) /o2 _,x + (2 + 2M + 2mp_,diam(M) /n)/o%_,.
Using that for any t € [0, T], my,0? € [0,1], we have that for any ¢ € [0, T
2 — 04 _, — 2(M+ nmp_idiam(M)) > 1 — 2(M + ndiam(M)) > 1/2.
Using (Fontaine et al.| 2021, Lemma 3) we get that for any ¢ € [0, T]
u < d/2+2(1 + M+ diam(M)/n)/(1 — 2(M+ ndiam(M))) < d/2 + 4(1 + M + diam(M)/n),

which concludes the proof. O

Lemma D.5. Assume and . Assume that there exists 6 > 0 such that for any k € {0,..., K},
VeBr—t,/07_y, < 0. Assume that there exists n > 0 such that A(5,M,n, diam(M)) > 0 with

A(6,M, n, diam(M)) = 2 — 25 — 325(1 + M?) — 8M — 4ndiam (M),
B(6,M, 7, diam(M)) = 326(M* + diam(M)?) + 2(1 + §)(diam(M) /5 + M) + 4d.
Then, we have for any k € {0,..., K}
E[||Y]|?] < K = d + B(5,M, n, diam(M))(1/A(5,M, , diam(M)) + §). (44)
In particular if M < 1/32 and 6 < 1/32 then for any k € {0,..., K}

E[||Y%]?] < Ko = 5d + 320(1 + diam(M))>.
Proof. Recall that using 7 we have that for any k € {0,..., K — 1}

Y1 = Yi + (exp[fo* Bods] — 1)(Yi + 28(T — ty, Yi)) + (exp[2 [ *  Bods] —1)/2Z,,  (45)

tet1 tet1

For simplicity, we denote

Yok = (explfp 5 Beds] = 1)/Brse, v = (exp[2 7" Buds] = 1)/(2Br 4,).

tht1

Then, can be rewritten for any k € {0,..., K — 1} as

Yig1 = Y + v uBr—v, Vi +28(T — t0, Yi)) + /2726 87—t Zic- (46)

In what follows, we denote 41 x = 1 kBr—¢, and Y2y = Y2 1 Br—¢,. In addition, using that v;Sr_¢, < < 1/4,
we have that v < v2x < 27;,,. Indeed, we have that for any &k € {0,..., K — 1}

Yo/ Mk = (1/2)(exp [z Buds] +1) > 1,
Yo/ = (1/2)(exp[fz_," | Buds] +1) < (1/2)(explfr—s,] + 1) <2,
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Using Lemma we have that for any ¢t € [0,T], 2; € R? and n > 0

(x4, 8t 20)) < —lael?/of +mpdiam(M)]|z[| /oF +M(L+ [[])]|2e]l /o7
< (=14 2M + nmdiam(M)) th||2 Jo? + (mydiam (M) /n + M) /o?, (47)
where we have used that for any a,b > 0, 2ab < na® + b/n in the last line. In addition, using Lemma
for any t € [0,7] and z; € R? we have
Is(t, ) |* < 2[s(t, 1) — Viog py(x:)|| + 2|V log pi(w1)]|*
< AP+ [|l2)1) /o) + Allze|? /o) + dmidiam(M)? o}
< 401+ 1) a2 ot + 4092 + mdiam(M)?) /o (48)

Combining ([46)), and we have for any k € {0,..., K — 1}

E[[Yis101%] = (14 30,0) B[ Yall”] + 473 1, Ell8(T — t, i) ||’]

+ 4716 (1+ 31,6 E[(YR, (T — tg, Yi))] + 272,1d

< (142916 + 71 o) Bl YlP] + 16(31,1/0F_, )2 (1 + M2)E[[| Y]]
+16(31,6/07 4, )* (4 + mi_y, diam(M)?)
+ 4916 (1+ 31,6 E[(YR, (T — tg, Yi))] + 471,1d

< (14 291k + 95 0BV IP] + 16(1.1 /07—, )* (1 + M) E[|| Y [|?]
+16(1,1/07_¢, )* (M + m7._,, diam(M)?)
+4(1k/ 07—, )1+ F1.) (=1 + 2M + nmyp_y, diam (M))E[]| Y |*]
+ (k/ 074, ) (L4 A1) (M, diam (M) /g + M) + 471 pd.

In what follows, we let 0y = 71,x/07_,, . Using that for any ¢ € [0,T], my, 0, € [0,1] we have

E[|[Yet1 1) < (1 + 205 + 62)E[[Yal|*] + 1652 (1 +M*)E[[| Yz |*]
+ 1667 (M + diam(M)?)
4 465(1 + 6) (=1 + 2M + pdiam(M))E[[| Ve ||
+ 0r (1 4 0 ) (diam (M) /n + M) + 40.d

Since s — [ is non-decreasing, that Sr_;, v < 6 < 1/4 and that for any w € [0,1/2], ¥ — 1 < 1+ 2w, we
have
T—tg
eXp[fT,tk_'_l Bgds] -1< eXp[ﬂT—tkryk] -1< ZﬂT—tk7k~

Therefore, we get that o < 2yi8r_¢, /O’%ftk < 26. Since §; < 20 we have
Ell[Yies1]1%] < (1 + 26 + 2046)E[[[Vil|?] + 328,0(1 + ¥2)E[|[ Vi)
+ 40k (—1 + 2M + ndiam (M) E[|| Yi|*]

+ 326,6(M* + diam(M)?)
+ 20 (1 4 0)(diam(M)/n + M) + 4dxd.

Hence, we have that

E[||Visa]2] < (14 6[—2 + 26 + 325(1 + M2) + 8M + dndiam (M) E[|| Vi ||?]
+ 61,[326(M? + diam(M)?) + 2(1 + 6)(diam(M) /5 + M) + 4d].

Denote A = 2—26 —325(1+M?) — 8 — dndiam(M), B = 326(M? + diam(M)?) +2(1+§)(diam(M) /n+M) +4d.
Then, we have
E[|[Yet1]?] < (1 — 66 AE[|Y5|*] + 6k B
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Hence, if E[||Y%]|?] > B/A we have that E[||Yyi1]|?] < E[||Y|?]. In addition, if E[||Y3]|?] < B/A then,
E[||Yss1||?] < B/A + 6B. Therefore, we conclude by recursion that for any k € {0,..., K}

E[|Yill’] < d+ B(1/A+ ),

which concludes the first part of the proof. If §,M < 1/32 then, A(J,M, n, diam(M)) > 1/2 — dndiam(M). We
conclude upon setting n = 1/(16diam(M)). In that case A(d,M,n, diam(M)) > 1/4 and

B(6,M,7, diam(M)) < 326(M? + diam(M)?) + 2(1 + 6)(16diam(M) + M) + 4d
< 64(1 + diam(M) + diam(M)?) + 4d,

which concludes the proof. O

Note that the same result holds for (Y)e(o,/x]-

Lemma D.6. Assume and . In addition, assume that for any k € {0,...,K — 1},
’Yk/BT—tk/U%_tk <60 <1/4. Then, we have for any k € {0,..., K — 1} and t € [ti, tip+1]

]E[HYt - Ytk ||2} < LﬁT—tk’Y’ﬁ?a

with L = 8(1 + 6)(16(5 + M?)K + 16(4diam(M)? + M?)) + 4 and where K is defined in [{@4)). In particular if
M<1/32 and § < 1/32

E[|Y: — Y I?] < LoBr_t, v = (64d + 20544(1 + diam(M))?)Br_s, Vk-
Proof. Recall that
Yo =Y, + (explfy " Beds] = 1)(Yy, +28(T — tr, Ye,)) + (exp[2 [,* Buds] — 1)1/2Z,

where Z is a Gaussian random variable with zero mean and identity covariance and the equality holds in
distribution independent from Yy, . Therefore, we get that

E[[[Y: — Yo, |2 = 2(expl [y, * Beds] — 1)2 (B[ Yy, |I] + 4E[|s(T — tx, Ye,)[?])
+(exp[2 [ " Bods] — 1)d. (49)

In addition, using Lemma [C.1] and that for any ¢ € [0, T], m; € [0,1], we get that for any u € [0,7] and
x, € R4
Is(u, zu) | SMQ A+ [lzull)/og + 2]l /o7 + 2diam(M) /o]
< (Vo) {(M+2) [|ly]| + (M + 2diam(M))}.
Combining this result and , we get that

E[[Y, — Yo, %] = 2(expl [, " Bsds] — 1)*E[[[ Y, |1%]

T—t
T—tg

HE[|s(T — t, Yo, )IIP]) + (exp(2 [, 7" Bods] — 1)d
< 2(explfy," Buds] ~ 1)’E[[ Y, |’
+32(4 + 1) (expl [ )" Buds] = D2E[Y,[17)/0%_,,
+32(expl [ )" Bods] — 1)?(ddiam(M)2 + M) /o2,
+(exp[2 [ Bods] — 1)d. (50)
Since s — 3, is non-decreasing, that Br_, v < 6 < 1/4 and that for any w € [0,1/2], e** — 1 < 1 + 4w, we
have for any a € {1,2}

T7
expla [; " Bods] — 1 < explaBr_i ] — 1 < 208714, -
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Combining this result and , we get that

E[[Y: — Y, [I?] <867, ME[ Y, I? + 32(4 + M) | Yy, [|* /o7 _,, + 32(4diam(M)? + M%) /o7, |
+4ﬁT—tk'ka (51)
8(BF_ 1,/ 071, ) (32(5 + M)E[|[ Yy, ||I°] + 32(4diam(M)? + M?)) + 487y, Yid.

Therefore, using Lemma and , we get that

E[[Y: = Y, 1”] < 8(87_1, it/ 0F—1,)(32(5 + MK + 32(ddiam(M)? + 1)) + 487y, e
< {2560((5 + M*)K 4 4diam(M)? + M2) 4 4d} B, Vi

which concludes the first part of the proof. Now assuming that §,M < 1/32 we have

E[[Y: — Y4, |I] < (64K + 64diam(M)? + 16d)Br_t, Vi

<
< 64d 4 20544(1 + diam(M))?,

which concludes the proof. O

D.4 Control of the tangent backward process
We now introduce the tangent process associated with (Yy):cjo,77. We have
AVY, = Br_¢(Id+2V2logpr—¢(Y4))VY,dt, VY, =1d. (52)

We recall that controlling the tangent process allows to control the Wasserstein distance between the original
process and its target measure. Indeed, let (Y7);cjo,7] and (Y{).cpo, 1) be the processes given by (39) with
initial condition z and y respectively. Then we have that for any ¢t € [0, T

xT 1 1 z
Y =Y/ < [y IVYPdA|z =y, (53)

where (VY?{):co,7) is the tangent process given by and associated with (Y{*);cpo,7), where zy =
Az + (1 — A)y. Before providing controls in the general setting, we take a detour and focus on the case where
diam(M) = 0, i.e. m = §p. In the following proposition, we show that in this case the backward process
converges in finite-time. This highlights the role of the diameter of the manifold in the subsequent analysis.

Proposition D.7. Assume and that diam(M) = 0, i.e. m = 8g. Then, we have that for any z,y € R?
and t € [0,T]

Wi (8,Q:, 8,Q,) < 2exp[(1/2) fT ; Bsds](exp 2f0 Bsds] —1)"1/2(exp 2f " Byds] — 1)M2 ||z — y]|.

In particular, we have that for any x € R?, §,Qr =, i.e. the backward diffusion converges in finite time no
matter the initialization distribution.

Proof. Let t € [0,T]. Using Lemma we have that for any M € My(R)
(M, V2log g¢(2:)M) < —o;?|[M|1>.

In particular, we have that for any M € My(R)

Br—t(M,1d +2V? log g7—¢ (x4 )M) < (Br—¢ — 2ﬁT—t0'r1jEt)||M||2. (54)
Using Lemma [D.1] we have

fot(BT—s — 2Br_sop2,)ds
= fot Br—sds + log(exp[2 fOT_t Bsds] — 1) — log(exp|2 fOT Bsds] — 1)
= [, Bsds + log(exp[2 [ Bds] — 1) — log(exp[2 [ Byds] — 1).
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Finally, we have that
exp[fot(ﬁTfs - 25T750;35)d5}
< exp[ [y, Beds](exp2 [ Beds] — 1)~ (exp[2 [y " Bods] — 1).
Hence, using this result, and (54)), we get that
(1/2)[IVY ]| < explf;_, Bods|(exp2 [ Bsds] — 1)~ (exp(2 [, Byds] — 1),

which concludes the first part of the proof, using . For the second part of the proof, we first remark
that for any z,y € R, Wi(6:Qr,8,Qr) = 0. Therefore, for any probability measures p,v such that
Ja llzlldu(z) < +o0 and [, ||lz]|dv(z) < +oo, we have W1 (uQr,vQr) = 0 We conclude upon combining
this result and that (§,P7)Qr = 8. O

Note that it is also possible to explicitly write down the backward stochastic process in this case since V log p;
is available in close form. One can remark that in this case we recover an Ornstein-Ulhenbeck bridge.

In the case where the diameter is non-zero, we cannot recover such a contraction. However, it is possible to
obtain a contraction up to a certain point. The following lemma will allow us to control the growth of the
tangent process.

Lemma D.8. Assume and that T > 23(1 + log(1 + diam(M)). Let t* € [0,T)] given by
t* =T — 2B(1 + log(1 + diam(M)).
Then, for any t € [0,t*] we have
I3 Br—s(1 = 2/03_, +m3_ diam(M)?/ok_,)ds < —(1/2) [] Br—.ds.
In addition, for anyt € [t*,T]
S B o= 2/03_, + mi_ diam(M)/h_)ds < (diam(M)?/2)(072, — 072,.).
Proof. Let s € [0,T]. Note that we have
1—2/07 ,+mip_diam(M)? /o7 < —1/2, (55)

if and only if
307_y — 40F_  +2m3_ diam(M)? < 0.

Hence, using this result and the fact that 02._, =1 —m?2.__ we have that is satisfied if and only if
3my_, + 2(diam(M)? — 1)m3_, — 1 <0.
Introduce P(u) = 3u? + 2(diam(M)? — 1)u — 1. We have that P(u) < 0 for u € [0, ug] with
up = [—(diam(M)? — 1) + ((diam(M)? — 1)? + 3)1/%]/3 = (5 + (67 + 3)'/?)/3,

where § = diam(M)? — 1 € [~1, 4+00). If diam(M)? — 1 > 1 then, using this result and the fact that for any
a € [0,+00), (1+a)/? >1+a/2 — a?/8 we have

uo > 6(—1+ (1+3/6%)Y2)/3 > 6(1/(26%) — 3/(86%)) > (1/2 —3/8)/5 > 1/(86). (56)

In addition, if § < 1 then §% € [0,1]. Using this result and the fact that for any a € [0,1], V3 +a >
(2 —v/3)a + /3 we have

up > (=6 + (3 +62)1/2)/3
> (—10] + (3+[6]%)Y2)/3 > (1 — V3)|5| + v3)/3 > 1/3.
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Combining this result and , we get that
wo > 1/(3(1+ [8])).
Therefore, we get that for any ¢ € [0,77] such that m%_, < 1/(8(1 + |4]))
1—2/c%_, +mi_diam(M)?/oF_, < —1/2.
Hence, for any t € [0, T] such that exp[—2(T —t)/3] < 1/(8(1 + |d]))
1—2/c%_, +m%_diam(M)?/oF_, < —1/2.
Let tf such that exp[—2(T — t%)/5] = 1/(8(1 + |8])). We get that
t5 =T — (3/2) log(3(1 + |3])
Using that for any a > 0, 1 + |a® — 1| < 2(1 + a)? and that log(16) < 4, we get that
ty > T — (8/2)(log(16(1 + diam(M))?)) > t* = T — 2B(1 + log(1 + diam(M))).
Hence, since t — mp_; is non-decreasing, we get that for any ¢ € [0,¢*], mp—, < 1/(8(1 + |6])) and therefore
1 =2/0f_, +m7_ diam(M)?/o7_, < —1/2,
which concludes the first part of the proof. The second part of the proof follows from Lemma and
Ji Bros(1=2/0%_ +mi._ diam(M)? /o s>ds

< (diam(M)?/2)[(1 — exp[— f " Byds])~! — (1 — exp|— f ﬁsds o
< (diam(M)?/2)(072, —072,.),
which concludes the proof. O

The control of the tangent process in the case where diam(M) > 0 is given in Proposition @
Proposition D.9. Assume and T > 23(1 +log(1 + diam(M)). Then, for any x,y € R and t € [0,tx]

W1 (8:Qe, 8,Qr) < expl(diam(M)?/2)o7.2, ||z — yl.

Proof. This is a direct consequence of and Proposition @ O

E A stochastic interpolation formula

In this section, we present a formula first introduced in |Del Moral and Singh| (2019) which is a stochastic
extension of the Alekseev—Grébner formula (Alekseev, [1961). We recall the definition of the stochastic flows
(YZ,)s,te0,7) and the interpolation of its discretization (YZ ), icqo,r), for any z € R?

dY¢, = Br-{ Y5, +2Viogqr—+(Y%,)}dt + /287 dBy, Y{, =
and - B B
dYg,t = ﬂTft{Yg’t + 28( — tk, s tk }dt =+ +/ 25’]‘ td.Bt7 Y?,s =X.
The following proposition is a straightforward application of (Del Moral and Singhl |2019, Theorem 1.2). Note

that these results apply since the drift and the volatility of the backward processes have bounded differential
up to order three, see Lemma

Proposition E.1. Assume . Then, for any s,t € [0,T) with s <t and x € R?
Y Yigvt = f qu t( su)TAb (( sv)vG[s u])du

where for any u € [0,T) such that u € [ty,ti11) for some k € {0,..., K — 1} and (wy)ve[s,u) € C([s,u] ,R?)
we have

bu(w) = BTfu(wu +2V IOg QTfu<wu))’ Bu(w) = BTftu (wu + 23(T - tka wtk));
Aby (W) = by (W) — by (w).
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F Assumptions on the schedule

In what follows, we consider three schedules commonly used in practice: (a) the constant schedule, (b) the
linear schedule, (c) the cosine schedule. We show that is satisfied in all these cases. We consider a
generalized version of the cosine schedule which makes it differentiable by replacing the hard clamping by a
soft version with level » > 0 (note that letting » — 0 we recover the original cosine schedule). The constant
schedule is defined by s = 5y for all s € [0,T]. The linear schedule was introduced in [Ho et al.| (2020]) and is
defined by 85 = Bo + (B — Po)t/T with Br > Sy > 0. Finally, the cosine schedule was introduced in (Nichol
and Dhariwal, 2021, Equation (17)) in discrete-time and can be defined as follows in continuous-time

By = softminr(l,}lbirrb(@t,h — az)/(ar—ph)) = softmin, (1, f)¢, ft) = —ai/ay,
—

with & defined as
& = cos((t/T + ) /(1 +n)(m/2)?/ cos(n/ (1 + n)(m/2))%,
and where n > 0, r > 0 are parameters and for any f1, fo : [0,7] — R

softmin, (f1, fo): = —rlog(exp[— f1(t)/r] + exp[—f2(t)/T]).

In the special case where f; = 1 we have

softmin, (1, fo): = 1 — rlog(1l + exp[(1 — fa(t))/r]),

We have
a'(t)/a(t) = —m/(T(1+n)) tan((t/T +n)/(1 +n)(1/2)).

In particular, ¢ — S; is increasing and bounded above and below on [0, T7.

Finally, we end this section by remarking that if one aims at studying the Euler-Maruyama discretization
of the approximate backward, i.e. the process given by then one needs to also assume some Lipschitz
property on the schedule s — ;.

G A short proof of the results of |[Franzese et al.| (2022)

In (Franzese et al., 2022, Equation (9)), the authors show that (under mild regularity assumptionﬂ
Jralogpo.r(x)po(x)dx > [palogpo(x)po(z)de — G(sg, T) — KL(pr|peo)- (57)
To do so, they rearrange the ELBO result from Huang et al.| (2021). We have that is equivalent to
KL(polpe.r) < G(s9,T) + KL(pr|pso)- (58)
The definition of G(sg,T) is given by
T
G(so,T) = (1/2)(Jy BFElllse(t, X¢) — Vlog prjo(X:|Xo)[[?]dt
T
— Jo BZE[[[Vlog pi(Xy) — V1og pejo(X:Xo) ).
Developing the square and using that E[V log p;jo(X¢|Xo)|X;] = V log p:(Xy), we get that
G(s0,T) = [y B7E[llso(t,X,) = Vlogpy(X,)|?]dt.

Hence, combining this result and , we have that is equivalent to (Song et all 2021a, Theorem 1)
which is obtained upon combining the data-processing inequality, the decomposition of the Kullback-Leibler
via conditioning and the Girsanov theorem.

8We assume that all probability measures admit densities w.r.t. the Lebesgue measure and that all the integrals we consider
are well-defined.
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H Wasserstein controls under 1.2 errors

In this section, we replace the assumption by the following weaker control.
A5. There exist s € C([0,T] x R, R?) and M > 0 such that for any k € {0,..., K} and z; € R,

E[|s(T — ty, Yi) — Vlogpr—s, (Vi) [I”] < ME[(1 + |Y2|*)]/0T s,
where we recall that (Yy)reqo,....k} 5 given by .

Under this assumption, we have the following theorem, which is an extension of Theorem [I] To prove this
theorem, we extend (Lee et al.| 2022, Theorem 4.1) to the Wasserstein distance of order one and weaker
growth conditions.

Theorem H.1. Assume that T > 23(1 + log(1 + diam(M)), txg =T — ¢ and £,M,M/(,d <
1/32. Then, there exists Dy > 0 such that

Wi (L(Yk),7) < Do(K¢ + explr/e](M/¢ + 6/?) /e* + explr/e] exp[-T/B] +'/?),
with r = diam(M)2(1 + 3)/2 and
Do = D(1 + $)°(1 + d 4 diam(M)*)(1 + log(1 + diam(M))),
and D is a numerical constant.

We start with the following lemma, which is an extension of Lemma to the setting where A[B|is replaced
by

Lemma H.2. Assume and . Assume that there exists 6 > 0 such that for any k € {0,..., K},
VeBr—t,/07_y, < 0. Assume that there exists n > 0 such that A(6,M,n, diam(M)) > 0 with

A(6,M,n, diam(M)) = 2 — 25 — 326(1 + M?) — 8M — 4ndiam (M),
B(6,M, 7, diam(M)) = 326(M? + diam(M)?) + 2(1 + §)(diam(M) /n + M) 4 4d.

Then, we have for any k € {0,..., K}
E[||Y%]|?] < X = d + B(6,M, 7, diam(M))(1/A(6,M, n, diam(M)) + §).
In particular if M < 1/32 and 6 <1/32 then for any k € {0,..., K}

E[||Y%|I?] < Ko = 5d + 320(1 + diam(M))?.
Proof. Recall that using , we have that for any k € {0,..., K — 1}
Yierr = Yi + (expl [y " | Buds] = 1) (Vi + 28(T — 1, Yi)) + (exp[2 [, | Buds] = )22, (59)

For simplicity, we denote

T—tg

T—ty,
Yk = (expl 7 .

Bsds] —1)/Br—y,, Yo,r = (exp[2 [~
Then, can be rewritten for any k € {0,..., K — 1} as

Yit1 =Ye + v168r—t, Yie + 28(T — t1, Yi)) + /2721 B7—t,, Zk- (60)

In what follows, we denote ¥1 = 1, kB7—t, and Yo, = Y2.k07—t,. In addition, using that vy Br_¢, <9 < 1/4,
we have that v < v2.r < 271. Indeed, we have that for any k € {0,..., K — 1}

Bsds] = 1)/(281 ;)

trk41 th+1

T—
Yo/ = (1/2)(expl [~ | Beds] +1) > 1,

v/ = (1/2)(@xpl [ | Bads] +1) < (1/2)(explysBr—r,] + 1) < 2,
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In what follows, for any ¢ € [0,7] and x; € R%, we denote A; = ||s(t, x;) — Vlog p(z¢)||. Using Lemma
we have that for any ¢ € [0, 7], z, € R and > 0

(we, s(t,21)) < —l|ael|* /o7 + mydiam(M)||ze[| /o7 + Ae(we) ||
< (=1+ nmydiam(M)) |lz|* /o7 + (mediam(M) /n) /07 + Ag(e)|l, (61)

where we have used that for any a,b > 0, 2ab < na? + b?/n in the last line. In addition, using Lemma
for any ¢ € [0, 7] and x; € R? we have

Is(t,ze)|? < 2lls(t,2¢) — Viogpe(we)|* + 2]V log pe (w0 ||
<20 (24)% + 4|z || /ot + 4m2diam(M)? /o, (62)
In addition, using the Cauchy-Schwarz inequality and we have
E[(Ve, 8(T = t, Y3))] < (=1 + nme g, diam(M)E[|[Yi|[*]/0F_,, + (mr—, diam(M)/n)/0F_,,
+ E[Ar—t, (Y)Yl
< (=1 4y, diam(M)E[|Vi[2)/0%_,, + (mr—s, diam(M) /) /o_,
+EV2[Ar_y, (V) JEV2 [ Y ]?]
< (=1 -+ mm_g, diam(M)E[|Yi | /03y, + (ma—, diam(M) /) /o,
+ ML+ EVR|YRIPDEY 2 Yal P /o7y,
< (=1 4 nmy_y diam(M) +ME[|[Y5|*] /07—y, + (mr s, diam(M) /n)/oF_,, +ME?[|[V|*]/oF_,,
< (=14 nmp—g diam(M) + 20E[|Y5||*) /07, + (mr— diam(M)/n+ M) /o7, . (63)
Finally, using Al5|and we have
E[l|s(T — ti, Yi)|I] < 4E[A7—y, (Yi)?] + 4E[||Yil*] /07—y, + 4mF_y, diam(M)? /o7y,
< P+ E[Yal*) /07—y, + B[ Yil*] /07—y, +dmF_y, diam(M)* /o7y,
< A1+ M E[YRl?]) /07—y, + 407 + mi_y, diam(M)?) /o7y, . (64)

Combining (60, and we have for any k € {0,..., K — 1}
E[Yir1]?] = (1 +30,0) B Y2 |*] + 458 1 E[lls(T — tr, Yi)||’]
+ 4716 (1 + V1,8 E[(Ye, s(T — ti, Yi))] 4 272,1d
< (14 200 + 32 DLV + 16(,0/0%_,, )21+ ¥2)E[|Yi?)
T 16(71,4/03 0, )24 + m_,, diam(M)?)
+ 4716 (1 + V1,8 E[(Ye, s(T — ti, Yi))] + 4711
< (142915 + 31 o) EIYalP] + 16(3 /07—y, )* (1 +M2)E[|| Vi |?]
+16(1,1/07_¢, ) (M + mF_,, diam(M)?)
+ 41k /0F g, ) (L4 Y1) (=1 + 2M+ gy, diam(M))E[|[ Vi %]
+ (T1,/0F 0, ) (L4 A1) (M- diam (M) /1 + M) + 471 xd-
The rest of the proof is identical to the one of Lemma [D.5] O

Let ¢ > 0. For any k € {0,..., K} we define Ay such that
Ar={y R : ||8(T — ti,y) — Viogpr—i, (v)|| > (4/C) /0%y, }-

We define the process (Y )reqo,...,x} such that Yj* = Yy and for any k € {0,..., K — 1}, if Y = Y} and
Y € Ay then V' | = Yy 41, Otherwise, we define

T—tg

Yo, =Y+ (eXP[f;;tkk+l Bsds] — 1)(Yr + 2V 1og pr—y, (Y)) + (exp[2 [~ L Bsds] — 1)Y2 7.

thot
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This is similar to assuming that there exists s* such that for any k& € {0,..., K — 1}

Yy, = Y+ (exp| ff:fkﬂl Bads] — 1)(Yy + 28 (T — t, Y;*)) + (exp[2 [ *  Bods] — 1)1/2 2,

T—tp41

with s* which satisﬁe:ﬂ with M replaced by M/¢ and while Y € Ay, Y5 | = Y.

We have the following lemma which is an extension of (Lee et al.| [2022, Theorem 4.1) to the Wasserstein
setting. Note that contrary to (Lee et al., 2022, Theorem 4.1) which states results in total variation we also
need control on the moments of the distribution under a L? error, which is precisely Lemma

Lemma H.3. Assume and , Assume that there exists § > 0 such that for any k € {0,...,K},
YeBr—t,/0F_y, <0 and that M,M/C,8 < 1/32. Then, we have for any k € {0,..., K}

E[lYy = Yill]l < 4(1 +Ko)Ck,

where Ko is defined in Lemma [H.9

Proof. Using the Cauchy-Schwarz inequality we have

E{IYY = Yilll = B[V} — Vil Ly, ]
< V2EV2[| V1P + BV YIPD (o P(Y; € Aj)Y?
< V2(EV2(IY5 1P+ EVA(1Y%])
x (X1 P(|s(T = t5,Y5) = Viegpr, (Vi) > (/) /oF_, )M/, (65)
Using the Markov inequality, we have for any j € {0,..., K}

P(||s(T — t;) = Viog pr—s, (V)| > (M/¢)/0F_,)
< E[|s(T —1;,Y;) = Vg pr—, (V) |Plot,, ¢*/M* < C’E[L + [[Y;]|°].

Therefore, combining this result, and Lemma we have E[||Y} — Yi||]] < 4(1 +Ko)Ck. O
We are now ready to complete the proof of Theorem [H.]]

Proof. We have
Wi (L(Yk), ) < Wi(L(Yk), L(Y))) + Wi(L(Y)),m). (66)

Note that using Theorem [I] we have
W (L(Y;),m) < Do(explr/e](M/¢ +6'/2)/e? + explr/e] exp[~T/B] + /). (67)
In addition, using Lemma we have
Wi (L(Yk), L(Y})) <4(1 +Ko)CK.

Combining this result and in concludes the proof. O

I Improved bounds under Hessian conditions

In Appendix we prove Theorem |3| which is an improvement upon Theorem |1f under tighter conditions
on the Hessian V?log p;. In Appendix we show that this condition is satisfied in the case of a uniform
measure over [—1/2,1/2]” for some p € {1,...,d}. Finally, in Appendix we show, under appropriate
smoothness conditions, that the condition is never satisfied on non-convex sets.

9Note that we slightly abuse since s* is random (depending on the behavior of Yj) but one can check that all our proofs
remain unchanged in this slightly larger setting
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.1 Proof of Theorem [3

In this section, we prove Theorem [3] We start by deriving an improvement on Proposition [} The main
difference between Proposition@and Propositionlies into the dependency w.r.t. o 2 . In Proposition@ we

—ti
have an exponential dependency exp|(diam(M)?/ 2)0;3“(] whereas in Proposition we have a polynomial

—or
dependency o7, .

For ease of notation we introduce the following assumption.
A6. There exists T > 0 such that for any t € (0,T] and z; € R?, ||V logp(z¢)|| < T/o2.

We start with the following proposition.

Proposition I.1. Assume A@ and that T > 2B(1 + log(1 + diam(M)). Let tx € [0,T). Then, for any
t € [0,tx] and x € R? we have

- T— _ T—t*
VY, | < exp[—(1/2) [; . Bedshig e (D))o exp[(T+1) [, Budul.

Proof. Let x € R%. First, using and Lemma we have that for any s,¢ € [0,7T] with s <t
AIVYL P < 260 (IVYLI1° = 201 = mi_ydiam(M)?/ (207 _,)) /o7, [ VY S, ])dt.
First, assume that s < t* and that ¢ > t*. In that case, using Lemma we have that
S Bl = 2/03, + mi diam(M)?/oh_,)du < ~(1/2) [ Br_du.
Therefore, using that result and the fact that VYY ; = Id we get that
IV el < exp[=(1/2) [y Budul. (68)
In addition, using that for any ¢ € (0,7] and x; € R%, ||[V%log ps(z4)|| < T/o? we have
dIVYsell* < 287-¢(1 + 20 /07 _,)[VYZ,]|dt.
In addition, using Lemma [D.I] we have that
J& Br—u(1 42T /0% )du< Tflog(exp(2 [ " fr_udu] — 1)
—log(exp[2 fy " Br—udu] = D] + [77) Budu

<Tflog(03_,.) —log(or—o)] + (T +1) [z, Budu

< —Tlog(oF_ )+ (N +1) [z, Budu.
Therefore, combining this result and (68)), we get that
_ T—t*
I9Y o oll < 072 expl(T + 1) 2 Buda)| 7Y o |
_ T—t* T—s
<o exp[(C+1) [ Budu]exp[—(1/2) [ Budu].

The proof in the cases where s > t*, t > t* and s < t*, t < t* are similar and left to the reader. O

The rest of the proof follows the proof of Section @] The following proposition is the counterpart of
Proposition Again note that the exponential dependency w.r.t. 1/¢ has been replaced by a polynomial
dependency.

Proposition 1.2. . Assume A|§| and tx =T —e. In addition, assume that £,0,M < 1/32.
Then
Wi (oo Quye, TooRic) < Do(M+ 81/2) /72,

where

Do = 4(4 4 256d + 43664(1 4 diam(M))*) exp[3(1 + B)3(T +2)(1 + log(1 + diam(M))))].
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Proof. Using Proposition [p| we have
: _ _
Ve = Yiell < o™ IVY it (Yo,u) 1 Abu((Yo,0)vefo,r)lldu.

Combining this result, recalling that ¢* is defined in and Proposition we get

1Yo, = Yiell <fy ™ exp[—(1/2) [t BedsTg e (w)]opy,
x expl(T +1) [y Bads] | Abu((Yo,0)vefo >||du
<o, exp[(D+1) TT:ti ﬁst](fot* exp|—(1/2) [ Bods]Ab,((Yo,0)vejo,r)du
+ [ Aby ((Yo0)vefo,r))du).
Using this result and Proposition [9] we get
Wi (oo Qi s TooRic) < E[[[ Y4, — Yie|[]
< op2expl(T+1) f7-1 Buds](fy exp[—(1/2) f " Bsds]E| Abu((Yo,0)vefor) du
Jrft E[][Aby( YOU)UE[O 7)) |l]dw).
<o exp[(T+1) [}, Bsds]co( —tg + B)2M+ 3V (T —tg)?
x( fo exp[—(1/2) T " Bsds]du 4t — t*)
< o2, exp[(T + 1)5(751( — t*)ds]Co(T — tx + B)?(M+ 6'/2) /(T — t)?
x(fy exp[—(1/2) fp " Budsldu + tic — t*). (69)

We have that - . " ~ -
Jo exp[—(1/2) [; 7% Bsds]du < [j exp[—(t* —u)/(28)]du < 28. (70)
In addition, using we have

tg —t* =T —e—T +2B(1 + log(1 + diam(M))) < 2B(1 + log(1 + diam(M))). (71)

Finally, using Lemma m we have that o;th < (1+ B)/e. Combining this result, and in
and that for any a > 0, 1+ a < expla], we get

Wi (o0 Qi» TooRic) < 4(1+ B) (1 4 log(1 + diam(M)))
x exp[2B2(T + 1)(1 + log(1 + diam(M)))]Co(M 4 61/2)e~(+2)
<401+ B)T3(1 + log(1 + diam(M)))
x exp[282(T + 1)(1 + log(1 + diam(M)))]Co(M 4 61/2)e~(T+2)
< 4exp[332(T + 2)(1 + log(1 + diam(M)))]Co(M + §1/2)e~T+2),

which concludes the proof. O

We now state the equivalent of Proposition [D.9]
Proposition 1.3. Assume A@ and T > 2B3(1+log(1+diam(M)). Then, for any x,y € R and t € [0,tx]

Wi (8:Qr, 8,Qr) < exp[2(T" +1)52(1 + log(1 + diam(M))]o. %} [l — gl
Proof. This is a direct consequence of , Proposition and . O
Finally, we control W1 (7o Q¢ , TP7—¢, ). First, we have

Wi (TooQurs TPty ) = W1 (Moo Qe , TP Qe ) (72)
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< exp[2(T + 1)B%(1 + log(1 + diam(M)))]a}Elszl(wPT, Too)-
To control W (7mPr, 7o), we use a synchronous coupling, 4.e. we set (Y, Z¢).e[o,r) such that

dY; = -5, Y dt + /23,dBy, dZ; = —B3¢Zdt + \/23:dBy,

where (By)¢cjo,7] is a d-dimensional Brownian motion and Yo ~ 7, Zg ~ 7. We have that for any ¢ € [0, T,
Z; ~ Too. In addition, denoting u; = E[||Y: — Z¢||] for any ¢ € [0, T], we have that

duy < ug exp[— fot Bsds].
Therefore, combining this result and , we get that
Wi (Moo Qi TP1_4,. ) < exp[2(T 4 1)32(1 + log(1 + diam(./\/l)))]a;g[( exp[— fOT Bedt] W1 (7, 700 ).
Therefore, similarly as in the proof of Proposition [I0} we have

Wi (TooQtye» TP 1)) < Dy exp|—T/f]/e"

with
Dy = exp[2(T + 2)(1 + B)%(1 + log(1 + diam(M)))](Vd + diam(M)).

We conclude the proof of Theorem [3] upon combining this result, Proposition [[.2]and (24).
1.2 Hessian bounds for the uniform distribution

The goal of this section is to prove the following result.

Proposition 1.4. Assume that 7 is the uniform distribution over [—1/2,1/2]" for some p € {1,...,d}. Then,
there exists T' > 0 such that for any t € (0,T] and x € R?, ||V2logp;(24)|| < T'/o?.

Proof. Let t € (0,T). We start by deriving a closed form expression for p;. We have for any = € R?

pe(@) = [y exp[— |z — myz|2/(203)]dr(2) (2mo) =42
=exp[—zf pi1 83/ (207)] Hz L S, expl= (s — myz)? ) (207) |z (2m0y) Y2
= exp[— 20, 22/ 0D Ty [0 expl[—22/(207)]dzs(2m0) = my
= exp[~ X1, 4, 22/ (20} >]<2mt> Y2k [Ty D7 expl—22 /2 dzi(or fmy)?

= (QW)d/z(QWUt)_d/z(Ut/mt)pHi:pH o(wi/or)
< JI i {@((zi +me/2)/or) — (s — mu/2)/ov)},

where o(t) = exp[—t2/2]/v/2m and ®(t) = fioo ¢(s)ds. Note that from this expression, V2 log p; is diagonal.

Hence, we only need to compute 02 log p;(z) for any # € R? and i € {1,...,d}. Leti € {p+1,...,d}. We
have for any = € R?

D logpi(z) = —0; 2.

We now turn to the case where ¢ € {1,...,p}. In this case, we denote F;(®,a,b) = ®(a+b) — ®(a — b) and
we have

07 log pi(x) = (1/07)05 log Fy(P, 2/ o, my /o). (73)
We have that for any a,b € R with a # b

95 log Fy(®,a,b) = Fy(¢',a,0)/Fy(®,a,b) — Fy(p,a,b)*/F(®, a,b)>. (74)
In what follows, we assume that a > b and we define for any ¢t € R

erfc(t) = 1 — (2/y/m) fot exp|—s?]ds
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Note that Fy(®,a,b) = (1/2)(erfe((a — b)/2) — erfe((a + b)/2)). In addition, there exists C' > 0 such that for
any t # 0 we have

erfe(t) > exp[—t?]/(V/7t)(1 + C/t?), erfe(t) < exp[—t?]/(Vmt)(1 — /(Ct?)).

In particular, we have

Fy(®,a,b) < exp[—(a —b)?/2]/(v2m(a — b))(1 + Ro(a. b)), (75)
Fy(®,a,0) > exp[—(a —b)*/2]/(v2m(a — b))(1 — Ro(a, b)),

where

Ro(a,b) = C/(a —b)* + exp[+(a — 0)*/2 = (a +b)*/2)(a = b)/(a + b)(1 — /(C(a+b)?)),
Ro(a,b) = —C/(a — b)* + exp[+(a — b)/2 — (a + b)*/2)(a — b)/(a + b)(1 + C/(a + b)),

Note that there exists Cy > 0 such that for any a,b € R with a > b+ 1
(Ro(a,b) + Ro(a,b))(a —b)? < Co. (76)
In particular, there exists ag > 0 such that if a > b+ ag, Ro(a,b) + Ro(a,b) < 1/2. Similarly, we have
Fy(p,a,b) = (2m) "% exp[—(a — 1)?/2)(=1 + exp[—((a +b)* — (a — 1)*)/2]). (77)

We denote R;(a,b) = exp[—((a + b)? — (a — b)?)/2] and note that there exists C; > 0 such that for any
a,beRwitha>b+1
Ri(a,b)(a —b)? < Cy. (78)

Finally, we have
Fy(¢',a,0) = (2m) 72 exp[—(a = b)*/2](a — b)(1 + (a +b)/(a = b) exp[~((a +b)* = (a = 1)*)/2]).  (79)

We denote Ra(a,b) = (a+ b)/(a — b) exp[—((a + b)* — (a — b)?)/2] and note that there exists Ca > 0 such
that for any a,b € R with a > b+ 1
Ry(a,b)(a —b)* < Cs. (80)

Combining , , and , we get that for any a,b € R witha >b+1
93 log Fy(®,a,b) < (a— b)*[(1 + Ra(a,b))/(1 + Ro(a,b)) — (1 + Ri(a,b))?/(1 + Ro(a,b))?].
In addition, we have for any a,b € R with a > b+ 1

(1+ Ra(a,b))/(1 + Ro(a,b)) — (1 + Ri(a,))*/(1 + Ro(a,b))?
= (R2(a,b)(1 + Ro(a,b))* — Ri(a,b)(1 + Ro(a,b)))/[(1+ Ro(a,b))*(1 + Ro(a,b))].
Combining this result, , and , we get that for any a,b € R with a > b+ qg
Ra(a,b)(1 + Ro(a,b))? — Ry(a,b)(1 + Ro(a,b) < 4(Cy + Cs)/(a — b)%.
Therefore, there exists C3 > 0 such that for any a > b+ ag, |05 log F;(®, a,b)| < C3. Similarly there exists
Cy > 0 such that if a < —b — ag, |93 log F;(®,a,b)| < Cy. By symmetry, there exists Cs > 0 such that for
any b > a+ag or —b > —a — ag, we have |03 log F;(®,a,b)| < Cs and we conclude by continuity that there
exists C' > 0 such that for any a,b € R,
82 log Ft(q)a a, b) S Cv

which concludes the proof upon combining this result with (73). O
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1.3 The role of convexity

In this section, for any = € R?, we define f, : M — R given for any y € M by f.(y) = ||z — y||>. Before
giving our main result we need to introduce a few useful tools.

For any subset X C RY and z € R? we define P(z) = {y € X : d(x,X) = d(x,y)}. Note that P(x) can be
empty. We say that a set X is Chebyshev if for all x € R?, there exists p(z) € X such that P(z) = {p(z)}, i.e.
Chebyshev sets are the subsets of R? such that each point admits a unique projection on X. It is clear that all
closed and convex sets are Chebyshev sets. Note that all Chebyshev sets are closed since for any Chebyshev
set X and x € OX (the frontier of X) we have that there exists p(x) € X such that d(z,p(x)) = d(x,X) =0,
i.e. x € X. In addition, Chebyshev sets are also convex, see (Kritikos, |1938; [Motzkin), (1935; [Bundt, [1934)).
This result implies the following proposition.

Proposition 1.5. Let X C R%. X is a closed convex set if and only if X is a Chebyshev set.

In order to prove our main result, we introduce some basics on Morse theory. Assume that M is a smooth
manifold and f € C*°(M,R). We say that € M is a non-degenerate minimizer if € M is a minimizer of
f and the Hessian of f at z is not singular. We then have the following proposition (see (Matsumotol, [2002)
for instance).

Proposition I1.6. Let f € C*°(M,R) and z € M a non degenerate minimizer of f. Then there exist U C M
open and ¢ : U — ¢(U) CR? a local chart such that p(x) =0 and for any § € ¢o(U)

Fle™H (@) = fz) + 191>
In addition, we have Dp(x) = V2 f(x).

Note that upon considering ¢~ *(¢(U)/2) instead of U we can always assume that ¢ ~! has bounded derivatives.

Finally, we introduce the concept of shape operator (also called second fundamental form or Weingarten
form), see (Bishop and Crittenden) [2011). We assume that the metric on M is the induced Euclidean metric.
Let N € T(TM") a section on the normal bundle TM . We define 2" : I'(TM)? — C°>(M) such that for
any Vi,V € T(TM)

Q’[N(Vlv VQ) = 7<V15 szN>'

Note that 2V is symmetric, linear and the scalar product and covariant derivative V are considered w.r.t.
the ambient Euclidean metric. The shape operator encodes the local geometry of M. For example in the
case of S9=1 we have that for any N € T(TMT") and Vi, Vo € I'(TM)

AN (V1, Vo) = —(Vi, V2) (No, N), (81)
where Ny is the normal vector field pointing outward of the sphere, see (Absil et al., [2013]). We have the
following result, see (Bishop and Crittenden, [2011, Theorem 3) and (Bishop), [1974)).

Proposition 1.7. If M is convex then for any N € T(TMT) such that for any x,y € M, {y —x, N(x)) > 0,
AN s non-negative.
Finally, let f € C>°(R% R) and f its restriction to M. Using (Absil et al., [2013), we have for any V3, Vs €
I'(TM)
_ o

V2 (Vi Vo) = (Vi IH(V2F (Vo)) + 24 (VD (11, 13), (82)
where for any x € M, II, is the orthogonal projection operator on T, M. We are now ready to state our
main result.

Theorem 1.8. Assume that M C R? is a smooth manifold and that ™ admits a smooth density w.r.t. the
Hausdorff measure on M. The following hold:

(a) If M is convex then for any x € M we have limsup,_,, 07| V? log p;(mx)| < +oo.

(b) If there exists v € R such that |P(z)| > 1 and for any p(z) € P(z), Qligg_x = —Id. Then, we have

lim inf;_,q UfHVQ log p¢(myx)|| > 0.

37



Under review as submission to TMLR

Theorem implies that one can obtain information about the geometry of M by computing the Hessian of
the logarithmic gradient of the densities of (£(X¢))¢cjo,77- In the convex case the scaling w.r.t. oy is of order
o; 2 whereas in the second scenario the scaling is of order o; *. Note that the condition “there exists = € R?

such that [P(x)| > 17 is equivalent to assuming that M is not a Chebyshev set and hence a non convex set in
virtue of Proposition Therefore in Theorem I we assume that M is non convex and a curvature
condition. The condition ng(m) T —1d 1mphes that the manifold is not too “negatively curved” at the
projection points. The non-strict inequality is always true, i.e. for any p(x) € P(x), @)= = —1d since

V2f2(p(z)) = 0.

We conjecture that this curvature condition can be relaxed. Indeed, it is not satisfied in the case where
M = {z € R? : |lz|| = 1}, since the only point z € R? such that |[P(z)| > 1is 2 = 0 and in that case
P(x) = M and therefore V2 = 0, which implies that for any z € M, A% = —1Id. This formula could also
have been obtained from (81). However, one can show that we still have lim inf;_,o 0| V2 log p;(0)| > 0. In
future works, we would like to relax these curvature conditions assuming that the manifold has an analytic
structure and using results from (Combet| [2006]).

Finally, we highlight that Theorem [[.8{(a)| is weaker than the condition Al] To bridge the gap between
Theorem [ )| and A|§| one would need to strengthen Theorem [[.8H(a)| to derive uniform in space bounds.
This would requlre to use quantitative version of the Morse lemmas see (Le Loi and Phien, 2014)) for instance.
We postpone this study to future works. However, Theorem [L.§] {E] implies that Al6] does not hold. Hence,
any non convex set which is not too “negatively curved” does not satisfy

Proof. (a) First, we assume that M is convex. We show that for any 2 € R% and p(z) € P(z), V2f*(p(z)) > 0,
i.e. the Hessian of f7 is not degenerate. For any 2 € R, we define f* such that for any y € R%, f*(y) = ||lz—y||>.
Using 7 we have for any = € R¢

V2f2(p(x)) = Id4+APE) =% = 1d = 0. (83)

Since M is convex for any x € R%, P(z) = {p(z)} and note that P(z) is the set of minimizers of f*. Let
x € R?%. Using Proposition and , there exist U C M open and ¢ : U — ¢(U) C RP a local chart such
that ¢(p(x)) = 0 and for any § € (V)

lz = e~ @)1 = = — p(2)[1* + 1911, (84)

with »=1(0) = p(x). Note that Dp=1(0) = (V2f*(p(x)))~!. For any t € (0,T], denote A\, = m;/o;. Using
, we have that
Juz (o = 1) %% exp|—(mu/o0)? || — yol1? /2] exp[—(me /o) ? ||z — y1[|* /2]dm (yo)d (y1)
= Jom1 w2 (@7 (@o) = ©7 (1)) %2 expl—(ma/00)? || 0|1* /2] exp[—(me /)| 11| /2]d (o) d 71 (1)
x GXP[—(mt/Ut)2\|$ = p(x)|’]
= (/M) [, -1 0y2 (97 0/ Ae) — @7 (1/20)) 2 exp[—||go]|* /2] exp[— 141 1% /2]d7 (o) d71 (1)
x eXp[—(mt/Ut) lz = p()]%],

where 7 = @7 admits a positive density w.r.t. the Lebesgue measure. Therefore, there exists Cy > 0 such
that for any ¢ € (0,7

27/ 7P|l fuz (o — y1)®2 exp[—(my/0) ||z — yol|* /2] exp[—(my/o0)? ||z — yu][* /2]dm (yo)dm (y1) |
< Co(2m) 7207 [(aye Il — G1lI* exp[=|lgol|* /2] exp[— |11 /2]dgodi
x exp[—(me/o)? ||z — p(x)|’]
< 2Copo} exp[—(me /1) |l — (@)%, (85)

where we have used that |ja — b||> < 2(||al|? + ||b]|?) for any a,b € R? in the last line. In addition, since U is
open we have that M N U is compact and since for any y € M N UC, |ly — z||? > ||p(z) — z||?, there exists
e > 0 such that for any y € M NUS, ||y — z||*> > |p(z) — z||* + . Therefore, we have

1 sneys (Wo = y1)®* expl—(me/01)? | — yo||* /2] exp[—(me/04) |2 — ]| /2]dm (yo)dr (y1)|
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< diam(M)? exp[—(my/0¢)? |l — p(2)||*] exp[—e(mi/o0)?]. (86)
Combining and there exists C1 > 0 such that for any ¢ € (0, 7]
21/ AD) N gz (o — y1)®2 exp[—(my fo1)? (| — yol? /2] exp[—(mi/01)? ||z — y1 1% /2)dm(yo)dr (y1)
< Cio7 exp[—(my/o0)* |l — p(2)]?]. (87)
In addition, there exists Co > 0 such that for any ¢ € (0,7
21t/ 23) 7" fyy expl—(mi/o0)? |z — yl?/2ldn(y) > (1/C2) exp[—(me/04)? ||z — p()]|?]. (88)
Therefore, combining and (88)), we get that there exists C5 > 0 such that for any ¢ € (0, 7]
/g (Yo — y1)¥% exp[—(m /00)?[|x — yol|? /2] exp[—(me/00)? || — y1]1?/2)d7 (yo)dr (y1) |
/(S expl—(me/oe)? ||z — y)|*/2]dr(y))? < Cso?.

We conclude the proof in the convex case upon combining this result and Lemma [C.2]

(b) Second, we assume that there exists = € R? such that |P(x)| > 1 and for any p(z) € P(x), AP®)~* »— —1d.
Using (82), we have for any p(z) € P(z)

V2fx(p(g;)) =1Id +le(a:)—x . 0.

Using this fact and that P(z) is the set of minimizers of f* and is compact, we get that |P(x)| < +o0. Hence,
we assume that P(z) = {p;(z)}; with N > 1. Using Proposition for any ¢ € {1,..., N}, there exist
U; € M open and @; : U; = ¢;(U;) C RP a local chart such that ¢;(p;(z)) = 0 and for any § € ¢;(U;)

lz = o7 @) = llz = pi(@)II* + 191,

with ¢;*(0) = p;(z). Note that Dy; *(0) = (V2 f*(pi(x)))~!. Without loss of generality we assume that for
any ¢,j € {1,...,N}, U;NnU; = 0. We have that

Juoxu, Wo = y1)22 expl—(my/00)* |z — yol|* /2] exp[—(mu /o )? |z — yu||* /2]d7 (yo)dm (y1)

= Jo oyt un) (Po (B0) — 1 (91)) %2 exp[—(me /o) G0 /2]
x exp[—(me /o) 91]* /2)d7 (o) d71 (1) expl—(me/0v)? [l — p(2)]*]

= (1/x)?P fxwgl(uo)xxtqg;l(ul)(@51(370/)%) — o7 (01 /M) %2
x exp[=[|g0]1*/2] exp[~ 17111 /2]d7 (o) d71 (1) exp[—(me /o) ? ||z — p(x)|]. (89)

In addition, using the dominated convergence theorem we have
i 2007 Lyt (20 B0/ M) = @1 (/M) (90)
x exp[ =901 /2] exp[=[|91|1* /2147 (Go)d7t1 (§1) = ho(po ()b (p1(x)) (po() — pr(x)) ¥,

where Bl is the density of #; = (p;)xm w.r.t. the Lebesgue measure. In addition, there exists C4y > 0 such
that for any ¢ € (0,7

(2m) 7P/ [, exp[—(me/oe)? ||z — yol* /2] dm (yo)
= (2m) 772 [ -1y expl=(me/00)? 190l /2147 (o) expl—(mu/00)? ||z — p(=)|]
< Cyexp[—(my/o)?||z — p(a)|[*]A72. (91)

In addition, since Uy is open we have that M N U§ is compact and since for any y € M N Ug, |ly — z||? >
|lp(z) — x||?, there exists € > 0 such that for any y € M NUS, ||y —z||*> > |lp(z) — z||* + . Therefore, we have

Jrunug expl=(me/o2)? [z = yoll?/2]dm (yo) < Cs exp[—(me/04)? |l — p(x)|* /2] exp[—e(me/0)?].
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Combining this result and , we get that there exists Cg > 0 such that
27/ A7) 772 [ expl=(me/o0) @ — yol|*/2)dn (yo) < Cs expl—(mi/0v)?||z — p()]?/2]-
Combining this result, and , there exists C7 > 0 such that
liminf [ (yo — y1)% exp[=(mu/01)? [l = yol|*/2] exp[—(me /o) & — yu[[*/2]dm (yo)dm (y1)
[y expl=(me/oe)? ||z —yl|*/2)dm (y))? > (w0 — 21)%?/Ce.

We conclude upon combining this result and Lemma [C-2}
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