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ABSTRACT

Unlike natural images, synthetic aperture radar (SAR) images
exhibit a more scattered and uneven spatial distribution of ob-
jects, making semantic segmentation of SAR images a valu-
able topic of research. This paper presents a SAR image se-
mantic segmentation method that incorporates the attention
mechanism assisted by self-supervised scene classification.
The self-supervised scene classification provides coarse scene
classification at a higher semantic level, while the attention
mechanism utilizes high-level semantic features to guide fine-
grained classification of lower-level spatial structures. Over-
all, this approach improves the pixel-level classification per-
formance of SAR images. We validate this method on the
WHU-OPT-SAR dataset and compare its performance with
previous works, providing a detailed analysis of its effective-
ness.

Index Terms— SAR, Semantic Segmentation, Attention
Mechanism, Contrastive Learning

1. INTRODUCTION

Synthetic aperture radar (SAR) is a significant microwave
imaging technology which is widely employed on various
flight platforms such as aircraft and satellites. Its ability
of surface penetration, coupled with its ability to provide
continuous ground observation under all weather conditions,
renders it a crucial tool in remote sensing applications. Due
to the low resolution ratio of satellite imagery and the com-
plex distribution of ground objects, a single remote sensing
image often covers a large land area. Often, there is no fixed
geometric or spatial structure in the distribution of objects,
presenting a scattered pattern. These factors pose challenges
to the semantic segmentation of remote sensing images.

One of the traditional methods for semantic segmenta-
tion is the Fully Convolutional Network (FCN). It utilizes a
symmetrical encoder-decoder network architecture to extract
high-level features, which are subsequently decoded to match
the original image pixel resolution. To mitigate the loss of
spatial information in high-level features, the Deeplabv3[1]
employs dilated convolution kernels of varying scales to en-
sure a broad receptive field while minimizing downsampling

rates. Another approach, PSPNet[2], adopts global average
pooling to fuse multi-scale information, thereby enhancing
contextual understanding during high-level feature extrac-
tion. The Squeeze-and-Excitation (SE) structural block[3]
employs global pooling to generate channel attention mecha-
nisms, with the aim of strengthening distinct feature channels
to make targeted attention and context comprehension for
different target categories. However, due to the scattered
and uneven distribution of land cover in SAR images, unlike
natural images, the application of image-level pooling to re-
mote sensing images may not be able to ideally capture the
characteristics of the target area.

In this paper, in order to extract high-level semantic fea-
tures from images while implicitly constraining the distribu-
tion of categories in SAR images, we adopt the constractive
clustering method[4], using a self-supervised scene clustering
auxiliary task to further enhance the semantic representation
capability of high-level features. Additionally, we refer to the
LANet structure[5], to refine the pooling granularity by intro-
ducing local attention and fusion attention mechanisms. The
local attention mechanism enhances contextual understanding
of the scene, while the fusion attention mechanism establishes
the association between high-level semantic features and low-
level spatial features to enhance the semantic representation
capability of the latter.

2. METHODOLOGY

2.1. Unsupervised Scene Clustering Auxiliary Task

SAR images exhibit scattered terrain distribution, and there
are significant differences in pixel distribution between urban
and rural terrains. Therefore, it is necessary to perform coarse
scene classification in advance, as it can enhance the high-
level features and therefore enhance the performance of SAR
image semantic segmentation. As a result, we refer to the
method proposed by[4], using the method of contrastive clus-
tering. As shown in Fig. 1, we assume a batch of N images,
and construct their positive samples through image augmen-
tation and K nearest neighbors (KNN) clustering. As a result,
we have N positive pairs for instance-level learning. Besides,
we plan to divide M clusters for the cluster-level learning.
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Fig. 1. Overall framework of the proposed method, including the self-supervised scene clustering task and the supervised
semantic segmentation task. The self-supervised scene classification auxiliary task further enhances the semantic representation
capability of high-level features and implicitly constrains the distribution of object categories in images. The supervised pixel-
level semantic segmentation task introduces local attention mechanism and fusion attention mechanism to enhance contextual
understanding through high-level semantic features and low-level spatial features.

Subsequently, these images are passed through a feature
extraction network for instance-level contrastive learning and
cluster-level contrastive learning. Finally, we obtain two loss
functions Lins and Lclu, each derived from instance-level
contrastive learning and cluster-level contrastive learning. As
is mentioned in the work[4], the detailed definition of Lins

and Lclu are as follows:

Lins =
1

2N

N∑
i=1

(ℓai + ℓbi ) (1)

Where ℓai =
exp(s(xa

i ,x
b
i )/τI)∑N

j=1[exp(s(x
a
i ,x

a
j )/τI)+(s(xa

i ,x
b
j)/τI)]

, s(·) repre-

sents the cosine distance, τI is the temperature coefficient
used in instance-level contrastive learning to control the curve
of the loss function, and xa

i , x
a
j are the feature of positive pairs

extracted from the feature extraction network. Others on the
denominator are negative pairs. ℓbi is similarly defined as ℓai .

Lclu =
1

2M

M∑
i=1

(ℓ̂ai + ℓ̂bi )−H(Y ) (2)

Where ℓ̂ai =
exp(s(ya

k ,y
b
k)/τC)∑M

j=1[exp(s(Y
a
i ,Y a

j )/τC)+(s(ya
i ,y

b
j )/τc)]

, τC is

the temperature coefficient used in cluster-level contrastive
learning, and yai , y

a
j are the positive cluster pairs extracted

from the feature extraction network. Others on the denom-
inator are negative pairs. ℓ̂bi is similarly defined as ℓ̂ai . In

order to maintain a relatively balanced distribution of clus-
ter categories, we introduce the entropy of cluster assignment
probabilities H(Y ), as is mentioned in the work[4].

2.2. Supervised Pixel-level Semantic Segmentation Task

2.2.1. Local Attention Mechanism

The attention mechanism enables a comprehensive under-
standing of both semantic and spatial information from fea-
tures, which is particularly suitable for SAR images charac-
terized by scattered distributions and diverse semantic infor-
mation. Therefore, this paper adopts the method proposed
in[5] to address the challenge.

We assume that the feature extraction network can ex-
tract feature maps with C channels. After passing through
the feature network, a single image generates a series of
feature maps {X1, · · · , XC} of size (H × W ). Subse-
quently, the feature maps are fed into the patch-attention
module. For channel c, c ∈ [1, C], we firstly compute
its blockwise global descriptor zc using average pooling:
zc =

1
hpwp

∑hp

i=1

∑wp

j=1 xc(i, j), where hp, wp represents the
window size for average pooling.

Let H ′ = h/hp and W ′ = W/wp, after aggregating
the descriptors for each channel, we obtain a C-dimensional
feature vector zp ∈ RC×H′×W ′

. Subsequently, the features
are dimensionally reduced and restored to C dimensions
by using the convolution kernels Convd and Convu, achiev-
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Fig. 2. Comparison of the predicted results of our method with the LANet.

Table 1. Comparison of performance of different semantic segmentation methods.

Method
Accuracy

Average pixel accuracy Average class precision Average class recall Average class F1-score

FCN+SE[3] 0.7223 0.5579 0.5955 0.5631
Deeplabv3[1] 0.7473 0.5823 0.6153 0.5880

PSPNet[2] 0.7518 0.5810 0.6439 0.5955
LANet[5] 0.7347 0.5861 0.6373 0.6034

our method 0.7714 0.6162 0.6714 0.6527

ing context information exchange and fusion. Then we get
the image’s attention matrix Ap via: Ap = Sigmoid[Convu
(ReLU[Convd(zp)])].

The image’s attention matrix Ap is subsequently upsam-
pled to the original size (C ×H ×W ). It is then multiplied
with the input feature map to obtain enhanced features. The
process above constitutes the patch-attention module.

We adopt a residual structure to stabilize the training pro-
cess, where the enhanced features are added to the original
feature maps to obtain the final enhanced features.

2.2.2. Fusion Attention Mechanism

The motivation of the method is to embed semantic atten-
tion from higher-level features into lower-level features, en-
abling the low-level features of SAR images to acquire con-
textual and semantic information beyond their limited recep-
tive fields, while preserving spatial details without resolution
reduction.

Similar to the patch-attention model, through global pool-
ing and context information exchange,we obtain the attention
matrix Af , which is used to guide the enhancement of the en-
hanced spatial features XL by XL = XL + XL × As. As

represents the upsampling operation performed to adapt Af

to the dimensions of XL.

2.3. The Loss Function

By employing the conventional pixel-wise cross-entropy to
represent the loss function of supervised pixel-level semantic

segmentation Lseg , the loss function L of the whole process
can be described as: L = Lins + Lclu + Lseg .

3. EXPERIMENTS

3.1. Dataset and training details

The semantic segmentation experiments were conducted on
the WHU-OPT-SAR dataset[6], which has relatively high res-
olution and segmentation accuracy. The dataset consists of 7
semantic classes, including farmland, city, village, water, for-
est, road and others. The original WHU-OPT-SAR dataset
has images of size 5556 × 3704, which is not suitable as
direct input for deep neural networks. Therefore, we used
non-overlapping slicing to obtain image slices in the size of
256×256. This process resulted in a final dataset of 29.4k im-
age slices. In this paper, we utilized a ResNet18 architecture
as the feature extraction network. The batch size was set to
32. For the KNN clustering task, the hyperparameter K was
set to 3, and the number of clusters in constractive learning
was set to 10.

3.2. Results and Discussion

The model performance evaluation considers both pixel-level
evaluation and class-level evaluation. Pixel-level evaluation
utilizes the average pixel accuracy metric, which measures the
accuracy of individual pixels across the entire image. Class-
level evaluation employs commonly used evaluation metrics
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Table 2. Comparsion of model size and calculations.

Cost
Method

FCN+SE Deeplabv3 PSPNet LANet Our method

Number of parameters (millions) 2.83 39.05 53.38 2.83 2.91
Memory occupancy (MB) 35.87 164.27 428.78 35.87 35.87

Computation (GFlops) 1.87 11.99 50.51 1.87 1.87

Table 3. Ablation study for assistance of self-supervised auxiliary task.

Auxiliary tasks
Accuray

Average pixel accuracy Average class precision Average class recall Average class F1-score

No auxiliary tasks 0.7347 0.5861 0.6373 0.6034
Instance contrastive-level tasks 0.7702 0.6137 0.6523 0.6212
cluster-level contrastive tasks 0.7621 0.5922 0.6431 0.6085

Both contrastive tasks 0.7714 0.6162 0.6714 0.6257

such as class average precision, recall, and F1 score. Consid-
ering the relatively low proportion nature of the “others” cate-
gory in the WHU-OPT-SAR dataset, we exclude the “others”
classes when calculating class average metrics. Instead, we
focus on calculating the average values for the six other main
classes representing clear semantic categories.

We compare the performance of our proposed method
with other SAR semantic segmentation approaches, and the
results are presented in the Table 1. The comparison be-
tween our method and the LANet approach can be observed
in Fig. 2. Our method achieves more accurate semantic
segmentation due to the adoption of a self-supervised coarse
scene classification approach, which implicitly constrains
the pixel distribution within each scene. For instance, the
variations in brightness within the city (the red area) of SAR
images often lead to misclassifications as village (the yellow
area), forest (the green area), or farmland (the brown area)
by traditional semantic segmentation methods. Our method
demonstrates promising performance in addressing this issue.
Furthermore, SAR images tend to misclassify farmland area
as villages. Overall, our approach effectively incorporates se-
mantic contextual information, resulting in better intra-class
consistency at the pixel level and higher overall accuracy in
semantic segmentation.

Specially, our proposed method utilizes a ResNet18 back-
bone network, making it a relatively lightweight network. The
attention-guided and contrastive learning branches are modu-
lar and can be easily incorporated using 1x1 convolutional
layers or simple MLP layers, providing flexibility. Other net-
works compared in this paper such as Deeplabv3 and PSP-
Net, either employ ResNet50 as their backbone network or
incorporate fusion operations like feature pyramid to enhance
multi-scale feature concatenation, resulting in larger parame-
ter sizes and more complex network design. The model size
and computational complexity comparisons are shown in Ta-

ble 2, using statistics obtained from the torchstat tool library.
Table 2 shows that our method achieves superior performance
while maintaining smaller parameter sizes and computational
complexity, making it easier to train and apply.

Additionally, we investigate the impact and benefits of
instance-level self-supervised tasks and clustering-level self-
supervised tasks as auxiliary tasks for semantic segmen-
tation, as shown in Table 3. The results demonstrate that
both instance-level contrastive tasks and cluster-level con-
trastive tasks can provide auxiliary benefits to the main task,
but instance-level tasks achieve better performance improve-
ments. Instance-level contrastive tasks are more effective
in optimizing feature extraction. In the context of the se-
mantic segmentation main task, where there is a mixture of
objects and unclear separability of scene categories, the role
of clustering tasks may be somewhat limited. In contrast,
instance-level tasks provide more explicit self-supervision
signals.

4. CONCLUSIONS

In this paper, we propose a semantic segmentation method for
SAR image by applying self-supervised scene classification
assistance method and incorporating an attention mechanism
to facilitate the fusion of spatial and semantic features. Com-
pared to previous works, our approach achieves performance
improvements across multiple evaluation means. These find-
ings may inspire future research work in this field.
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