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ABSTRACT

We consider the optimization of complex performance metrics in multi-label
classification under the population utility framework. We mainly focus on metrics
linearly decomposable into a sum of binary classification utilities applied separately
to each label with an additional requirement of exactly k labels predicted for each
instance. These “macro-at-k” metrics possess desired properties for extreme
classification problems with long tail labels. Unfortunately, the at-k constraint
couples the otherwise independent binary classification tasks, leading to a much
more challenging optimization problem than standard macro-averages. We provide
a statistical framework to study this problem, prove the existence and the form of
the optimal classifier, and propose a statistically consistent and practical learning
algorithm based on the Frank-Wolfe method. Interestingly, our main results concern
even more general metrics being non-linear functions of label-wise confusion
matrices. Empirical results provide evidence for the competitive performance of
the proposed approach.

1 INTRODUCTION

Various real-world applications of machine learning require performance measures of a complex
structure, which, unlike misclassification error, do not decompose into an expectation over instance-
wise quantities. Examples of such performance measures include the area under the ROC curve
(AUC) (Drummond & Holte, 2005), geometric mean (Drummond & Holte, 2005; Wang & Yao, 2012;
Menon et al., 2013; Cao et al., 2019), the F -measure (Lewis, 1995) or precision at the top (Kar et al.,
2015). The theoretical analysis of such measures, as well as the design of consistent and efficient
algorithms for them, is a non-trivial task.

In multi-label classification, one can consider a wide spectrum of measures that are usually divided
into three categories based on the averaging scheme, namely instance-wise, micro, and macro
averaging. Instance-wise measures are defined, as the name suggests, on the level of a single instance.
Typical examples are Hamming loss, precision@k, recall@k, and the instance-wise F -measure.
Micro-averages are defined on a confusion matrix that accumulates true positives, false positives,
false negative, and true negatives from all the labels. Macro-averages require a binary metric to be
applied to each label separately and then averaged over the labels. In general, any binary metric
can be applied in any of the above averaging schemes. Not surprisingly, some of the metrics, for
example misclassification error, lead to the same form of the final metric regardless of the scheme
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used. One can also consider the wider class of measures that are defined as general aggregation
functions of label-wise confusion matrices. This includes the measures described above, but also,
e.g., the geometric mean of label-wise metrics or a specific variant of the F -measure (Opitz & Burst,
2021) being a harmonic mean of macro-precision and macro-recall.

In this paper, we target the setting of prediction with a budget. Specifically, we require the predictions
to be “budgeted-at-k,” meaning that for each instance, exactly k labels need to be predicted. The
budget of k requires the prediction algorithm to choose the labels “wisely”. It is also important
in many real-world scenarios. For instance, in recommendation systems or extreme classification,
there is a fixed number of slots (e.g., indicated by a user interface) required to be filled with related
products/searches/ads (Cremonesi et al., 2010; Chang et al., 2021). Furthermore, having a fixed
prediction budget is also interesting from a methodological perspective, as various metrics which
lead to degenerate solutions without a budget, e.g., predict nothing (macro-precision) or everything
(macro-recall), become meaningful when restricted to predict k labels per instance.

While all our theoretical results and algorithms apply to a general class of multi-label measures, we
focus in this paper on macro-averaged metrics. If no additional requirements are imposed on the classi-
fier, the linear nature of the macro-averaging means that a binary problem for each label can be solved
independently, and existing techniques (Koyejo et al., 2015; Kotłowski & Dembczyński, 2017) are suf-
ficient. In turn, if we require predictions to be budgeted-at-k, the task becomes much more difficult, as
this constraint tightly couples the different binary problems together. In general, they cannot be solved
independently for each label, requiring instead more involved techniques to find the optimal classifier.

The macro-at-k metrics seem to be very attractive in the context of multi-label classification. Macro-
averaging treats all the labels equally important. This prevents ignoring labels with a small number
of positive examples, so-called tail labels, which are very common in applications of multi-label
classification, particularly in the extreme setting when the number of all labels is very large (Schultheis
et al., 2022). Furthermore, it can be shown that one can remove tail labels from the training set with
almost no drop of performance in terms of popular metrics, such as precision@k and nDCG@k, on
extreme multi-label data sets (Wei & Li, 2019; Schultheis et al., 2023). The macro-at-k metrics, on
the other hand, are sensitive to the lack of tail labels in the training set.1

We aim at delivering consistent algorithms for macro-at-k metrics, i.e., algorithms that converge
in the limit of infinite training data to the optimal classifier for the metrics. Our main theoretical
results are stated in a very general form, concerning the large class of aggregation functions of
label-wise confusion matrices. Our starting point of the analysis are results obtained in the multi-class
setting (Narasimhan et al., 2015; 2022), concerning consistent algorithms for complex performance
measures with additional constraints. Nevertheless, they do not consider budgeted-at-k predictions,
which do not apply to multi-class classification, while they play an important role in the multi-
label setting. Furthermore, using arguments from functional analysis, we managed to significantly
simplify the line of arguments in the proofs. We first show that the problem can be transformed
from optimizing over classifiers to optimizing over the set of feasible confusion matrices, and that
the optimal classifier optimizes an unknown linear confusion-matrix metric. In the multi-label
setting, interestingly, such a classifier corresponds to a prediction rule, which has the appealingly
simple form: selecting the k highest-scoring labels based on an affine transformation of the marginal
label probabilities. Combining this result with the optimization of confusion matrices, we state a
Frank-Wolfe based algorithm that is consistent for finding the optimal classifier also for nonlinear
metrics. Empirical studies provide evidence that the proposed approach can be applied in practical
settings and obtains competitive performance in terms of the macro-at-k metrics.

2 RELATED WORK

The problem of optimizing complex performance metrics is well-known with many articles pub-
lished for a variety of metrics and different classification problems. It has been considered for
binary (Ye et al., 2012; Koyejo et al., 2014; Busa-Fekete et al., 2015; Dembczynski et al., 2017),
multi-class (Narasimhan et al., 2015; 2022), multi-label (Waegeman et al., 2014; Koyejo et al., 2015;
Kotłowski & Dembczyński, 2017), and multi-output (Wang et al., 2019) classification.

1Results and description of such an experiment are given in Appendix I.
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Initially, the main focus was on designing algorithms, without a conscious emphasis on statistical
consequences of choosing models and their asymptotic behavior. The notable examples of such
contribution are the SVMperf algorithm (Joachims, 2005), approaches suited to different types of
the F-measure (Dembczynski et al., 2011; Natarajan et al., 2016; Jasinska et al., 2016), or precision
at the top (Kar et al., 2015). Wide use of such complex metrics has caused an increasing interest
in investigating their theoretical properties, which can then serve as a guide to design practical
algorithms.

The consistency of learning algorithms is a well-established problem. The seminal work of Bartlett
et al. (2006) was studying this problem for binary classification under the misclassification error.
Since then a wide spectrum of learning problems and performance metrics has been analyzed in
terms of consistency. These results concern ranking (Duchi et al., 2010; Ravikumar et al., 2011;
Calauzenes et al., 2012; Yang & Koyejo, 2020), multi-class (Zhang, 2004; Tewari & Bartlett, 2007)
and multi-label classification (Koyejo et al., 2015; Kotłowski & Dembczyński, 2017), classification
with abstention (Yuan & Wegkamp, 2010; Ramaswamy et al., 2018), or constrained classification
problems (Agarwal et al., 2018; Kearns et al., 2018; Narasimhan et al., 2022). Nevertheless, the
problem of designing consistent algorithms for budgeted-at-k macro averages is relatively new.

Optimizing non-decomposable metrics can be considered in two distinct frameworks (Dembczynski
et al., 2017): population utility (PU) and expected test utility (ETU). The PU framework focuses on
estimation, in the sense that a consistent PU classifier is one which correctly estimates the population
optimal utility as the size of the training set increases. A consistent ETU classifier is one which
optimizes the expected prediction error over a given test set. The latter might get better results
as the optimization is performed on the test set directly. Optimization of budgeted-at-k metrics in
this framework has been recently considered in (Schultheis et al., 2023). The former framework,
which we focus on in this paper, has the advantage that prediction can be made for each test example
separately, without knowing the entire test set in advance.

3 PROBLEM STATEMENT

Let x ∈ X denote an input instance, and y ∈ {0, 1}m the vector indicating the relevant labels,
jointly distributed according to (x,y) ∼ P. Let h : X → [0, 1]m be a randomized multi-label
classifier which, given instance x, predicts a possibly randomized class label vector ŷ ∈ {0, 1}m ,
such that Eŷ|x[ŷ] = h(x). We assume that the predictions are budgeted at k, that is exactly k
relevant labels are always predicted, which means that ∥ŷ∥1 =

∑m
j=1 ŷj = k with probability 1. It

turns out that this is equivalent to assuming ∥h(x)∥1 =
∑m

j=1 hj(x) = k for all x ∈ X . Indeed,
∥h(x)∥1 = k is necessary, because k = Eŷ|x[∥ŷ∥1] = ∥h(x)∥1; but it also suffices as for any
real-valued vector π ∈ [0, 1]m with ∥π∥1 = k, one can construct a distribution over binary vectors
ŷ ∈ {0, 1}m with ∥ŷ∥1 = k and marginals Eŷ[ŷ] = π; this can be accomplished using, e.g.,
Madow’s sampling scheme (see Appendix A for the actual efficient algorithm). Thus, using notation
∆k

m = {v ∈ [0, 1]m : ∥v∥1 = k}, the randomized classifiers budgeted at k are then all (measurable)
functions of the form h : X → ∆k

m. We denote the set of such functions asH.

For any x ∈ X , let η(x) = Ey|x[y] denote the vector of conditional label marginals. Given a random-
ized classifier h ∈ H, we define its multilabel confusion tensor C(h) = (C1(h1), . . . ,C

m(hm)) as
a sequence of m binary classification confusion matrices associated with each label j ∈ [m], that is
Cj

uv(hj) = P(yj = u, ŷj = v) for u, v ∈ {0, 1}. Note that using the marginals and the definition of
the randomized classifier,

Cj(hj) =

(
Ex[(1− ηj(x))(1− hj(x))] Ex[(1− ηj(x))hj(x)]
Ex[ηj(x)(1− hj(x))] Ex[ηj(x)hj(x)]

)
. (1)

The set of all possible binary confusion matrices is written as C = {C ∈ [0, 1]
2×2 | ∥C∥1,1 = 1},

and is used to define the set of possible confusion tensors for predictions at k through Ck =
{C ∈ [0, 1]

m×2×2 | ∀j ∈ [m] : Cj ∈ C,
∑m

j=1 C
j
01 + Cj

11 = k}
In this work, we are interested in optimizing performance metrics that do not decompose into
individual instances, but are general functions of the confusion tensor of the classifier h. While in
general, given two confusion tensors, we cannot say which one is better than another without knowing
the specific application, it is possible to impose a partial order that any reasonable performance
metric should respect. To that end, define:
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Table 1: Examples of binary confusion matrix measures. For clarity, we used notation tn = C00, fp =
C01, fn = C10, tp = C11

Metric ψ(C) Metric ψ(C)

Accuracy tp + tn Recall tp
tp+fn

Precision tp
tp+fp Balanced accuracy tp

2(tp+fn) +
tn

2(tn+fp)

Fβ
(1+β2)tp

(1+β2)tp+β2fn+fp G-Mean
√

tp·tn
(tp+fn)(tn+fp)

Jaccard tp
tp+fp+fn AUC 2·tp·tn+tp·fp+fn·tn

2(tp+fn)(fp+tn)

Definition 3.1 (Binary Confusion Matrix Measure). Let C =
{
C ∈ [0, 1]

2×2 | ∥C∥1,1 = 1
}

be the

set of all possible binary confusion matrices, and C,C ′ ∈ C. Then we say that C ′ is at least as good
as C, C ′ ⪰ C, if there exists constants ϵ1, ϵ2 such that

C ′ =

(
C00 + ϵ1 C01 − ϵ1
C10 − ϵ2 C11 + ϵ2

)
, (2)

i.e., if C ′ can be generated from C by turning some false positives to true negatives and false negatives
to true positives. A function ψ : C −→ [0, 1] is called a binary confusion matrix measure (Singh &
Khim, 2022) if it respects that ordering, i.e., if for C ′ ⪰ C we have ψ(C ′) ≥ ψ(C).

Similarly, in the multilabel case we cannot compare arbitrary confusion tensors, where one is better
on some labels than on others,2 but we can recognize if one is better on all labels:
Definition 3.2 (Confusion Tensor Measure). For a given number of labels m ∈ N, and two confusion
tensors C,C′ ∈ Cm , we say that C′ is at least as good as C, C′ ⪰ C, if for all labels j ∈ [m] it
holds that Cj′ ⪰ Cj . A function Ψ : Cm −→ [0, 1] is called a confusion tensor measure if it respects
this ordering, i.e., if for C′ ⪰ C we have Ψ(C′) ≥ Ψ(C).

Of particular interest in this paper are functions which linearly decompose over the labels, that is
macro-averaged multi-label metrics (Manning et al., 2008; Parambath et al., 2014; Koyejo et al.,
2015; Kotłowski & Dembczyński, 2017) of the form:

Ψ(h) = Ψ(C(h)) = m−1
m∑
j=1

ψ
(
Cj(hj)

)
, (3)

where ψ is some binary confusion matrix measure. If one takes a binary confusion matrix measure
(e.g., any of those define in Table 1), then the resulting macro-average will be a valid confusion tensor
measure. A more thorough discussion of these conditions can be found in Appendix H.

Macro-averaged metrics find numerous applications in multi-label classification, mainly due to their
balanced emphasis put on all the labels, independent of their frequencies, and thus can potentially
alleviate the “long-tail” issues in problems with many rare labels (Schultheis et al., 2022).

Denote the optimal value of the metric among all classifiers budgeted at k as:

Ψ⋆ = sup
h∈H

Ψ(h), (4)

and let h⋆ ∈ argmaxh Ψ(h) be an optimal (Bayes) classifier for which Ψ(h⋆) = Ψ⋆, if it exists. For
any classifier h, define its Ψ -regret as ∆Ψ(h) = Ψ⋆ − Ψ(h) to measure the suboptimality of h with
respect to Ψ : from the definition, ∆Ψ(h) ≥ 0 for every classifier h, and ∆Ψ(h) = 0 if and only if h
is optimal. If the Ψ -regret of a learning algorithm converges to zero with the sample size tending to
infinity, it is called (statistically) consistent. We consider such algorithms in Section 5. Even though
the objective (3) decomposes onto m binary problems, these are still coupled by the budget constraint,
∥h(x)∥1 = k for all x ∈ X , and cannot be optimized independently as we show later in the paper.

2This is specifically the trade-off we want to achieve for tail labels!
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4 THE OPTIMAL CLASSIFIER

Finding the form of the optimal classifier for general macro-averaged performance metrics is difficult.
For instance, when ψ(C) is the Fβ measure, the objective to be optimized is a sum of linear fractional
functions, which is known to be NP-hard in general (Schaible & Shi, 2003). We are, however, able
to fully determine the optimal classifier for the specific class of linear utilities, which are metrics
depending linearly on the confusion matrix of the classifier. Furthermore, we also show that for a
general class of macro-averaged metrics, under mild assumptions on the data distribution, the optimal
classifier exists and turns out to also be the maximizer of some linear utility, whose coefficients,
however, depend on its (unknown a priori) confusion matrix.

We start with the metric of the form3 Ψ(C) = G · C =
∑m

j=1 G
j · Cj for some vector of gain

matrices G = (G1, . . . ,Gm), possibly depending on the data distribution P. We call such a utility
linear as it linearly depends on the confusion matrices of the classifier. Note that we allow the gain
matrix G to be different for each label, making this more general than linear macro-averages. We
need to consider this more general case, because it will appear as a subproblem when finding optimal
predictions for non-linear macro-averages as presented below.

Linear metrics are decomposable over instances and thus the optimal classifier has an appealingly
simple form: It boils down to simply sorting the labels by an affine function of the marginals, and
returning the top k elements.

Theorem 4.1. The optimal classifier h⋆ = argmaxh∈H Ψ(h) for Ψ(h) = G ·C(h) is given by

h⋆(x) = topk(a⊙ η(x) + b), (5)

where ⊙ denotes the coordinate-wise product of vectors, while vectors a and b are given by:

aj = Gj
00 +Gj

11 −G
j
01 −G

j
10, bj = Gj

01 −G
j
00, (6)

and topk(v) returns a k-hot vector extracting the top k largest entries of v (ties broken arbitrarily).

Proof (sketch, full proof in Appendix B). After simple algebraic manipulations, the objective can be
written as Ψ(h) = E

[∑m
j=1(ajηj(x) + bj)hj(x)

]
+R, where aj and bj are as stated in the theorem,

while R does not depend on the classifier. For each x ∈ X , the objective can thus be independently
maximized by the choice of h(x) ∈ ∆k

m which maximizes
∑m

j=1(ajηj(x) + bj)hj(x). But this is
achieved by sorting ajηj(x)+bj in descending order, and setting hj(x) = 1 for the top k coordinates,
and hj(x) = 0 for the remaining coordinates (with ties broken arbitrarily).

Examples of binary metrics for which their macro averages can be written in the linear form include:

• the accuracy ψ(C) = C00+C11 (which leads to the Hamming utility after macro-averaging)
with aj = 2, bj = −1, and thus for any x ∈ X , the optimal prediction h⋆(x) returns k
labels with the largest marginals ηj(x);

• the same prediction rule is obtained for the TP metric ψ(C) = C00 (that leads to
precision@k) with aj = 1, bj = 0;

• the recall ψ(C) = P(y = 1)
−1
C11 (macro-averaged to recall@k) has aj = P(yj =

1)−1, bj = 0, so that the optimal classifiers returns top k labels sorted according to ηj(x)
P(yj=1) ;

• the balanced accuracy ψ(C) = C11

2P(y=1) +
C00

2P(y=0) , gives aj = 1
2P(yj=1) +

1
2P(yj=0) , bj =

− 1
2P(yj=0) , with the optimal prediction sorting labels according to ηj(x)

P(yj=1) −
1−ηj(x)

1−P(yj=1) .

We now switch to general case, in which the base binary metrics are not necessarily decomposable
over instances, and optimizing their macro averages with budgeted predictors is a challenging task.
We make the following mild assumptions on the data distribution and performance metric.

3We use A ·B =
∑

uv AuvBuv to denote a dot product over matrices, and a concise notation A · B =∑
j A

j ·Bj for ‘dot product’ over matrix sequences A = (A1, . . . ,Am) and B = (B1, . . . ,Bm).
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Assumption 4.2. The label conditional marginal vector η(x) = Ey|x[y] is absolutely continuous
with respect to the Lebesgue measure on [0, 1]m (i.e., has a density over [0, 1]m ).

A similar assumption was commonly used in the past works (Koyejo et al., 2014; Narasimhan et al.,
2015; Dembczynski et al., 2017).
Assumption 4.3. The performance metric Ψ is differentiable and fulfills for all labels j ∈ [m]

∂

∂ϵ
Ψ

(
C1, . . . ,Cj + ϵ

(
1 −1
−1 1

)
, . . . ,Cm

)∣∣∣∣
ϵ=0

> 0 . (7)

Assumption 4.3 is essentially a ‘strictly monotonic and differentiable’ version of Definition 3.2, and
is satisfied by all macro-averaged metrics given in Table 1.

Our first main result concerns the form of the optimal classifier for general confusion tensor measures,
of which macro-averaged binary confusion matrix measures are special cases. To state the result, we
define CP = {C(h) : h ∈ H}, the set of confusion matrices achievable by randomized k-budgeted
classifiers on distribution P. Clearly, maximizing Ψ(h) over h ∈ H is equivalent to maximizing
Ψ(C) over C ∈ CP.
Theorem 4.4. Let the data distribution P and metric Ψ satisfy Assumption 4.2 and Assumption 4.3
respectively. Then, there exists an optimal C⋆ ∈ CP, that is Ψ(C⋆) = Ψ⋆. Moreover, any classifier h⋆

maximizing linear utility G·C(h) over h ∈ H with G = (G1, . . . ,Gm) given by Gj = ∇CjΨ(C⋆),
also maximizes Ψ(h) over h ∈ H.

Proof (sketch, full proof in Appendix C. We first prove that CP is a compact set by using certain
properties of continuous linear operators in Hilbert space. Due to continuity of Ψ and the compactness
of CP, there exists a maximizer C⋆ = argmaxC∈CP Ψ(C). By the first order optimality and convexity
of CP,∇Ψ(C⋆) ·C⋆ ≥ ∇Ψ(C⋆) ·C for all C ∈ CP, so C⋆ maximizes a linear utility G ·C⋆ with
gain matrices given by G = ∇Ψ(C⋆). A careful analysis under Assumption 4.2 shows that C⋆

uniquely maximizes G ·C over C ∈ CP.

Theorem 4.4 reveals that Ψ -optimal classifier exists and can be found by maximizing a linear utility,
that is by predicting the top k labels sorted according to an affine function of the label marginals:
h⋆(x) = topk(a

⋆ ⊙ η(x) + b⋆) for vectors a⋆ and b⋆ defined for gain matrices G = ∇Ψ(C⋆) as
in Theorem 4.1. Unfortunately, since C⋆ is unknown in advance, the coefficients a⋆, b⋆ are also
unknown, and the optimal classifier is not directly available. However, knowing that h⋆ optimizes a
linear utility induced by the gradient of Ψ leads to a consistent algorithm described in the next section.

Although the optimal solution is expressed by affine functions of label marginals, in general, it
cannot be obtained by solving the problem independently for each label, i.e., values of aj and bj may
depend on other labels than j. Let h⋆(x) and h′⋆(x) be optimal solutions for distribution P and P′,
respectively. Let distribution P′ differ from P only on single label j. If we could solve the problem
independently for each label, then h⋆(x) and h′⋆(x) would be the same up to label j, in the sense
that the ordering relation between all other labels would not change. In Appendix E we show that this
is not the case, presenting a simple counterexample showing that a different distribution on a single
label changes the solution with respect to the other labels.

5 CONSISTENT ALGORITHMS

As any algorithm we propose has to operate on a finite sample, we need to introduce empirical counter-
parts for our quantities of interest. For example, we use η̂(x) to denote the estimate of η(x) given by
a label probability estimator trained on some set of training data S = {(x1,y1), . . . , (xn,yn)}.We
also define the empirical multi-label confusion tensor Ĉ(h,S) of a classifier h with respect to some
set S of n instances. In this case, we have:

Ĉj
uv(hj ,S) =

1

n

n∑
i=1

1[yij = u, hj(xi) = v] . (8)

Following Narasimhan et al. (2015), we use the Frank-Wolfe algorithm (Frank & Wolfe, 1956) to
perform an implicit optimization over feasible confusion matrices CP, without having to explicitly
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construct CP. This is possible, because Frank-Wolfe only requires us to be able to solve two sub-
problems: First, given a classifier h, we need to calculate its empirical confusion matrix, which is
straight-forward. Second, given a classifier and its corresponding confusion matrix, we need to solve
a linearized version of the optimization problem, which is possible due to Theorem 4.1.

Consequently, our algorithm, presented in Algorithm 1, proceeds as follows: In the beginning, we
split the available training data into two subsets. One for estimating label probabilities η̂, and one for
tuning the actual classifier. After determining η̂, we initialize h to be the standard top-k classifier,
which will get iteratively refined as follows. For the confusion matrix of the current classifier, we
can determine a linear objective based on its gradient. Because we can linearly interpolate stochastic
classifiers, which will lead to linearly interpolated confusion matrices, this gives us a descent direction
over which we can optimize a step-size,4 and the confusion matrix at this classifier. Based on this
confusion matrix, we can do the next linearized optimization step, until we reach a fixed limit for the
iteration count. We represent the randomized classifier as a set of deterministic classifiers hi, and
corresponding sampling weights αi obtained across all iterations of the algorithm. The Frank-Wolfe
algorithm scales to the larger problems as it only requires O(nm) time per iteration.

Algorithm 1 Multi-label Frank-Wolfe algorithm for complex performance measures
Require: Dataset S := {(x1,y1), . . . , (xn ,yn)}, number of iterations t ∈ N, stopping condition ϵ ∈ R
1: Split dataset S into S1 and S2

2: Learn labels marginals model η̂ : X −→ Rm on S1

3: Initialize h0 : X −→ Ŷk ▷ Initial deterministic classifier
4: Initialize α0 ←− 1 ▷ Initial probability of selecting the initial classifier h0

5: C0 ←− Ĉ(h0,S2) ▷ Calculate the initial confusion tensor
6: for i ∈ {1, . . . , t} do ▷ Perform t iterations
7: Gi ←− ∇CΨ

(
Ci−1

)
▷ Calculate tensor of gradients of Ci−1 in respect to Ψ

8: a←− Gi
11 +Gi

00 −Gi
01 −Gi

10 , b←− Gi
01 −Gi

00

9: hi(x)←− topk(a⊙ η̂(x) + b) ▷ Construct the next classifier hi

10: C′ ←− Ĉ(hi,S2) ▷ Calculate the confusion tensor of the next classifier hi

11: αi ←− argmaxα∈[0,1] Ψ
(
(1−α)Ci−1+αC′) ▷ Find the best combination of Ci−1 and C′ (step-size)

12: if αi < ϵ then break ▷ Stop if the step-size αi is smaller then ϵ

13: Ci ←− (1− αi)Ci−1 + αiC′ ▷ Calculate a new confusion tensor based on the best αi

14: for j ∈ {0, . . . , i− 1} do ▷ Update all the previous
15: αj ←− αj(1− αi) ▷ probabilities of selecting corresponding h

16: return ({h0, . . . ,hi}, {α0, . . . , αi}) ▷ Return randomized classifier

This algorithm can consistently optimize a confusion tensor measure if it fulfills certain conditions:

Theorem 5.1 (Consistency of Frank-Wolfe). Assume the utility function Ψ : [0, 1]
m×2×2 −→ R≥0

is concave over CP, L-Lipschitz, and β-smooth w.r.t. the 1-norm. Let S = (S1,S2) be a sample
drawn i.i.d. from P. Further, let η̂ be a label probability estimator learned from S1, and hFW

S be
the classifier obtained after κn iterations. Then, for any δ ∈ (0, 1], with probability of at least 1− δ
over draws of S,

∆Ψ
(
hFW
S
)
≤ O(Ex[∥η(x)− η̂(x)∥1]) + Õ(m2

√
m · logm · log n − log δ

n
) (9)

The proof of this theorem, given in Appendix D, broadly follows (Narasimhan et al., 2015): First, we
show that linear metrics can be estimated consistently with a regret growing with the L1 error of the
LPE. Then, we prove a uniform convergence result for estimating the multilabel confusion matrix.
As a prerequisite, we derive the VC-dimension of the class of classifiers based on top-k scoring, i.e.,
those classifiers that minimize some linear confusion matrix metric as shown in Theorem 4.1.
Lemma 5.2 (VC dimension for linear top-k classifiers). For η : X −→ [0, 1]

m , define

Hj
η :=

⋃
a,b∈Rm

{h : X −→ {0, 1} : h(x) = 1[j ∈ topk(a⊙ η + b)]} . (10)

The VC-complexity of this class is VC(Hj
η) ≤ 6m log(em) .

4The classical version of FW uses a fixed step-size schedule of 2
t+1

instead of an inner optimization, but we
find the latter to give better results empirically. However, for the convergence result, fixed steps are assumed.
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Table 2: Results of different inference strategies on measure calculated at {3, 5, 10} Notation: P—
precision, R—recall, F1—F1-measure. The green color indicates cells in which the strategy matches
the metric. The best results are in bold and the second best are in italic. We additionally report basic
statistics of the benchmarks: number of labels and instances in train and test sets, and average number
of positive labels per instance, average number of positive instances per label.

Inference Instance @3 Macro @3 Instance @5 Macro @5 Instance @10 Macro @10
strategy P R P R F1 P R P R F1 P R P R F1

MEDIAMILL (m = 101,n train = 30993,n test = 12914,E[∥y∥1] = 4.36,E[y × n train] = 1338.8)

TOP-K 66.25 49.55 8.96 4.81 4.95 51.96 62.04 12.85 8.75 7.71 33.63 76.60 11.46 19.68 11.28
TOP-K+wPOW 57.36 42.51 15.31 11.84 10.54 47.68 56.62 13.00 17.37 12.64 32.18 72.98 9.64 29.43 13.07
TOP-K+wLOG 39.72 27.32 14.43 10.10 9.41 35.40 39.96 11.38 15.33 10.95 28.45 63.36 9.86 26.25 12.26
TOP-K+ℓFOCAL 65.87 49.60 10.08 4.87 4.94 52.08 62.16 11.99 8.93 7.90 33.61 76.65 10.76 20.08 11.37
TOP-K+ℓASYM 65.88 49.48 10.31 4.58 4.80 51.55 61.87 11.10 8.50 7.48 33.54 76.75 10.73 19.55 11.16

MACRO-PFW 7.94 6.13 19.33 6.06 2.87 6.99 8.96 17.29 8.79 3.17 6.02 14.14 17.38 17.24 5.23
MACRO-RPRIOR 6.37 3.67 8.81 19.82 5.31 7.38 7.25 8.91 26.50 6.71 8.31 17.42 10.53 39.24 8.85
MACRO-RFW 6.37 3.67 8.81 19.82 5.31 7.38 7.25 8.91 26.50 6.71 8.31 17.42 10.53 39.24 8.85
MACRO-F1FW 45.20 33.05 15.42 11.17 12.21 43.57 51.60 15.20 15.05 13.82 28.12 64.23 13.93 23.32 14.81

FLICKR (m = 195,n train = 56359,n test = 24154,E[∥y∥1] = 1.34,E[y × n train] = 412.6)

TOP-K 23.94 56.96 23.04 38.41 26.56 16.99 66.01 17.12 47.03 23.49 10.16 77.35 10.72 59.37 17.24
TOP-K+wPOW 22.35 53.44 17.96 44.26 24.21 16.10 62.80 13.76 52.39 20.68 9.77 74.54 9.08 63.98 15.08
TOP-K+wLOG 23.57 56.17 19.86 41.36 25.49 16.76 65.21 15.05 49.75 22.00 10.06 76.63 9.79 61.80 16.10
TOP-K+ℓFOCAL 23.64 56.27 24.90 36.67 26.42 16.89 65.62 18.53 45.67 24.16 10.05 76.63 11.77 57.90 18.14
TOP-K+ℓASYM 23.37 55.65 23.09 37.00 26.12 16.74 65.04 17.39 45.61 23.60 10.06 76.63 10.91 58.36 17.48

MACRO-PFW 4.65 11.49 39.34 6.63 8.06 5.66 22.75 41.74 9.70 10.57 2.83 22.26 37.59 10.68 8.50
MACRO-RPRIOR 16.14 38.62 17.58 45.50 22.27 12.17 47.48 13.98 53.83 19.72 7.89 60.42 9.57 64.66 15.07
MACRO-RFW 16.14 38.62 17.58 45.50 22.27 12.17 47.48 13.98 53.83 19.72 7.89 60.42 9.57 64.66 15.07
MACRO-F1FW 17.59 41.60 35.28 29.28 29.43 12.22 47.31 34.13 32.70 29.43 5.92 45.77 34.55 33.08 29.02

RCV1X (m = 2456,n train = 623847,n test = 155962,E[∥y∥1] = 4.80,E[y × n train] = 1218.6)

TOP-K 72.99 75.32 13.06 4.67 5.43 52.30 81.96 12.77 7.61 7.64 32.98 89.70 11.35 14.75 10.28
TOP-K+wPOW 65.99 69.11 18.58 12.78 13.09 48.48 77.18 14.69 17.66 13.64 31.43 87.14 10.63 26.05 12.82
TOP-K+wLOG 70.70 73.37 19.97 8.10 9.80 51.18 80.49 16.03 11.75 11.29 32.66 89.14 11.96 19.01 12.06
TOP-K+ℓFOCAL 71.99 74.38 14.06 4.83 5.76 51.46 80.94 12.49 7.65 7.75 32.38 88.75 10.59 14.42 10.06
TOP-K+ℓASYM 71.14 73.60 14.40 5.44 6.46 50.81 80.13 12.27 8.52 8.41 31.88 87.85 9.64 15.16 10.03

MACRO-PFW 46.36 50.11 21.11 5.61 5.84 29.40 49.81 21.69 5.72 5.31 19.45 60.40 21.66 6.03 5.78
MACRO-RPRIOR 44.26 46.10 14.60 18.24 12.04 34.77 56.28 13.13 24.59 12.77 24.08 70.51 10.66 34.34 12.39
MACRO-RFW 43.28 44.99 14.56 18.41 11.95 34.15 55.24 13.15 24.89 12.73 23.78 69.71 10.76 34.66 12.44
MACRO-F1FW 58.20 61.22 21.45 10.37 12.09 44.42 71.86 21.96 12.25 13.68 27.26 78.88 22.10 14.86 15.12

AMAZONCAT (m = 13330,n train = 1186239,n test = 306782,E[∥y∥1] = 5.04,E[y × n train] = 448.6)

TOP-K 78.29 59.29 35.73 12.44 16.52 63.63 74.54 46.43 32.72 35.06 39.16 85.18 39.52 51.69 40.39
TOP-K+wPOW 66.32 49.76 50.21 45.79 45.70 57.12 67.49 44.85 53.78 46.30 37.31 82.20 30.13 63.53 37.15
TOP-K+wLOG 72.56 54.56 50.30 32.06 36.94 61.15 71.83 48.93 42.87 43.05 38.71 84.49 36.84 56.71 40.60

MACRO-PFW 47.00 35.57 56.47 23.74 29.62 41.04 50.74 55.85 27.45 30.23 30.66 69.67 55.27 29.09 34.51
MACRO-RPRIOR 48.58 34.93 37.16 59.97 42.02 40.67 47.35 28.17 66.98 35.75 28.06 62.91 17.62 73.98 25.04
MACRO-RFW 48.58 34.93 37.15 59.97 42.02 40.67 47.35 28.17 66.98 35.75 28.06 62.91 17.62 73.98 25.04
MACRO-F1FW 68.59 51.49 56.75 34.68 40.90 55.73 65.60 56.62 36.40 41.92 35.30 78.34 54.67 39.93 43.26

6 EXPERIMENTS

In this section, we empirically evaluate the proposed Frank-Wolfe algorithm on a variety of multi-
label benchmark tasks that differ substantially in the number of labels and imbalance of the label
distribution: MEDIAMILL (Snoek et al., 2006), FLICKR (Tang & Liu, 2009), RCV1X (Lewis
et al., 2004), and AMAZONCAT (McAuley & Leskovec, 2013; Bhatia et al., 2016). For the first
three datasets we use a multi-layer neural network for estimating η̂(x). For the last and largest
dataset, we use a sparse linear label tree model, which is a common baseline in extreme multi-label
classification (Jasinska-Kobus et al., 2020).5 In Appendix F we include all the details regarding the
setup of probability estimators.

We evaluate the following classifiers optimizing the macro-at-k measures:

• MACRO-PFW, MACRO-RFW, MACRO-F1FW: randomized classifiers found by the Frank-
Wolfe algorithm (Algorithm 1) for optimizing macro precision, recall, and F1, respectively,
based on η̂(x) coming from the model trained with binary cross-entropy loss (BCE).

5A code to reproduce the experiments: https://github.com/mwydmuch/xCOLUMNs
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• MACRO-RPRIOR: implements the optimal strategy for macro recall, which selects k labels
with the highest p̂−1

j η̂j ; p̂js are estimates of label priors obtained on a training set and η̂(x)
are given by the model trained with BCE loss.

As baselines, we use the following algorithms:

• TOP-K: selects k labels with the highest η̂j coming from the model trained with BCE loss;
the optimal strategy for instance-wise precision at k (Wydmuch et al., 2018).

• TOP-K+wPOW, TOP-K+wLOG: similarly to TOP-K, selects k labels with the highest wj η̂j ,
where wj are calculated as a function of label priors corresponding to the power-law,
wpow

j = p̂−β
j , and log weights, wlog

j = − log p̂j , with p̂ estimated on the training set. For
power-law weights, we use β = 0.5. This kind of weighting aims to put more emphasis on
less frequent labels.

• TOP-K+ℓFOCAL, TOP-K+ℓASYM: multi-label focal loss and asymmetric loss (Lin et al., 2017;
Ridnik et al., 2021) are variants of BCE loss, commonly used in multi-label classification to
improve classification performance on harder, less frequent labels. Here, we train models
using these losses and select k labels with the highest output scores.

For all baselines and MACRO-RPRIOR, we always train the label probability estimator on the whole
training set. For MACRO-PFW, MACRO-RFW, and MACRO-F1FW, we tested different ratios (50/50
or 75/25) of splitting training data into sets used for training the label probability estimators and
estimating confusion matrix C, as well as a variant where we use the whole training set for both steps.
We also investigated two strategies for initialization of classifier h by either using equal weights
(resulting in a TOP-K classifier) or random weights. Finally, we terminate the algorithm if we do not
observe sufficient improvement in the objective. In practice, we found that Frank-Wolfe converges
within 3–10 iterations. Because of the nature of the random classifier, we repeat the inference on the
test set 10 times and report the mean results. In Table 2 we present the variant achieving the best
results, and report all the results including standard deviations, running times, number of Frank-Wolfe
iterations in Appendix G.

The randomized classifiers obtained via the Frank-Wolfe algorithm achieve, in most cases, the best
results for the measure they aim to optimize at the cost of loosing on some instance-wise measures.
However, they sometimes fail to obtain the best results on the largest dataset, where the majority
of labels have only a few (less than 10) positive instances in the training set, preventing them from
obtaining accurate estimates of η and C. In this case, simple heuristics like TOP-K+wPOW might
work better. Popular Focal loss and Asymmetric loss preserve the performance on instance-wise
metrics, but improvement on the macro measures is usually small. It is also worth noting that, as
expected, MACRO-RFW recovers the solution of MACRO-RPRIOR in all cases.

7 CONCLUSIONS

In this paper, we have focused on developing a consistent algorithm for complex macro-at-k metrics
in the framework of population utility (PU). Our main results have been obtained by following the
line of research conducted in the context of multi-class classification with additional constraints.
However, these previous works do not address the specific scenario of budgeted predictions at k, which
commonly arises in multi-label classification problems. For the complex macro-at-k metrics, we have
introduced a consistent Frank-Wolfe algorithm, which is capable of finding an optimal randomized
classifier by transforming the problem of optimizing over classifiers to optimizing over the set of
feasible confusion matrices and using the fact that the optimal classifier optimizes (unknown) linear
confusion-matrix. Our empirical studies show that the introduced approach effectively optimizes
macro-measures and it scales to even larger datasets with thousands of labels.
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A MADOW’S SAMPLING SCHEME

In this section we present a sampling scheme for the following sampling problem: given a real-valued
vector π ∈ [0, 1]m of marginal probabilities with ∥π∥1 = k, sample binary vectors ŷ ∈ {0, 1}m
such that the distribution of ŷ has π as the marginals, E[ŷ] = π

Theorem A.1. Let m ≥ 1. Given a vector π ∈ [0, 1]
m satisfying ∥π∥1 = k, Algorithm 2 returns a

randomized binary vector ŷ ∈ {0, 1}m of size k, ∥ŷ∥1 = k, with marginals given by π, E[ŷ] = π.
The algorithm runs in O(m) time.

Algorithm 2 Madow’s sampling scheme
Require: Vector of marginals π ∈ [0, 1]m with ∥π∥1 = k
Ensure: A random vector ŷ ∈ {0, 1}m with ∥ŷ∥1 = k such that E[ŷ] = π
1: Compute Π0 = 0 and Πj = Πj−1 + πj for j = 1, . . . ,m
2: Sample a uniformly distributed random variable U from the interval [0, 1]
3: ŷ = 0
4: for i ∈ {0, 1, . . . , k − 1} do
5: Select j such that Πj−1 < U + i ≤ Πj

6: Set ŷj = 1

7: return ŷ

The algorithm is due to Madow (Madow, 1949; Mukhopadhyay et al., 2022), and the considered
sampling problem has been studied in the statistical literature under the name unequal probability
sampling design (Hanif & Brewer, 1980). Below we give a simple proof of correctness of the
algorithm for completeness.

Proof. First note that for any i ∈ {0, 1, . . . , k − 1}, there exists unique j for which Πj−1 < U + i ≤
Πj . This is because due to

∑m
j=1 πj = k, the intervals (Π0,Π1], (Π1,Π2], . . . , (Πm−1,Πm ] are

disjoint and cover (0, k], whereas U + i ∈ (0, k] with probability one. Furthermore, the algorithm
will select distinct j’s for distinct i’s. This is because the condition Πj−1 < U + i ≤ Πj is equivalent
to i ∈ (Πj−1 − U,Πj − U ], and the interval (Πj−1 − U,Πj − U ] have width πj ≤ 1 and thus can
contain at most one integer. So the algorithm will return ŷ with exactly k ones.

Since E[ŷj ] = P(ŷj = 1), we need to show that this probability is equal to πj for each j. We have

P(ŷj = 1) = P

(
U ∈

k−1⋃
i=0

(Πj−1 − i,Πj − i]

)

= (0, 1] ∩
k−1⋃
i=0

(Πj−1 − i,Πj − i] = Πj −Πj−1 = πj . (11)

The theorem and the algorithm from its proof can then be used to generate prediction vectors
independently for any instance of interest x by setting π = h(x).

B THE OPTIMAL CLASSIFIER FOR LINEAR METRICS

Theorem 4.1. The optimal classifier h⋆ = argmaxh∈H Ψ(h) for Ψ(h) = G ·C(h) is given by

h⋆(x) = topk(a⊙ η(x) + b), (5)

where ⊙ denotes the coordinate-wise product of vectors, while vectors a and b are given by:

aj = Gj
00 +Gj

11 −G
j
01 −G

j
10, bj = Gj

01 −G
j
00, (6)

and topk(v) returns a k-hot vector extracting the top k largest entries of v (ties broken arbitrarily).
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Proof. The linear metric is decomposable over instances as:

Gj ·Cj(hj) = Gj
00E[(1− ηj(x))(1− hj(x))] +Gj

01E[(1− ηj(x))hj(x)]
+Gj

10E[ηj(x)(1− hj(x))] +Gj
11E[ηj(x)hj(x)]

= E[(ajηj(x) + bj)hj(x)] + rj , (12)

where aj and bj are as stated in the theorem, while

rj = Gj
00E[1− ηj(x)] +Gj

10E[ηj(x)]. (13)

Thus, we can rewrite the objective as:

Ψ(h) =
∑
j

Gj ·Cj(hj) = E

 m∑
j=1

(ajηj(x) + bj)hj(x)

+R, (14)

where R = r1+ . . .+ rm does not depend on h. For each x ∈ X , the objective can be independently
maximized by the choice of h(x) ∈ ∆k

m which maximizes
∑m

j=1(ajηj(x) + bj)hj(x). But this
is achieved by sorting ajηj(x) + bj in a descending order, and setting hj(x) = 1 for the top k
coordinates, and hj(x) = 0 for the remaining coordinates (with ties broken arbitrarily).

Let us notice that coefficients analogous to our aj and bj can also be found in the cost-sensitive
prediction rule in binary classification (Elkan, 2001; Natarajan et al., 2018).

C THE OPTIMAL CLASSIFIER FOR GENERAL METRICS

In this section, we prove the existence and the form of the optimal classifier. Our results extend
past results on binary classification (Koyejo et al., 2014) and multi-class classification (Narasimhan
et al., 2015). We first show that the set of confusion matrices achievable by randomized k-budgeted
classifiers is a compact set. Then, the statement of the main theorem follows from the first-order
optimality conditions as well as the absolute continuity of marginal vector η(x). We stress that the
results here are general and applicable to any mutli-label utility satisfying Assumption 4.3, which
need not necessarily be a macro-averaged utility.

We remind that the set of confusion matrices achievable by randomized k-budgeted classifiers on
distribution P, is denoted as

CP =
{
C(h) : h ∈ H

}
, (15)

and that optimizing the metric Ψ(h) over h ∈ H is equivalent to optimizing Ψ(C) over C ∈ CP.

Lemma C.1. CP is a convex set.

Proof. Take any C1,C2 ∈ CP and any λ ∈ [0, 1], and we show that Cλ = λC1 + (1− λ)C2 ∈ CP.
Since C1,C2 ∈ CP, there exist k-budgeted randomized classifiers h1 and h2, such that C1 = C(h1)
and C2 = C(h2). Take hλ defined as hλ(x) = λh1(x) + (1− λ)h2(x) for any x ∈ X . Since ∆k

m
is convex and h1(x),h2(x) ∈ ∆k

m for all x ∈ X , it also holds that hλ(x) ∈ ∆k
m for all x ∈ X , so

hλ is also k-budgeted randomized classifier. Since the confusion matrix is linear in predictions, we
have C(hλ) = λC(h1) + (1− λ)C(h2) = Cλ, which proves that Cλ ∈ CP.

We now argue that for the analysis of CP, it suffices to consider classifiers of the form h = f ◦ η, i.e.
h(x) = f(η(x)) for some function f : [0, 1]m → ∆k

m.

Lemma C.2. For any h ∈ H, there exists function f : [0, 1]m → ∆k
m such that h and f ◦ η have

the same confusion matrices.

Proof. If h is not of the form f ◦ η, we define function f as:

f(η) = E[h(x)|η(x) = η]. (16)
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Due to convexity of ∆k
m, we have f(η) ∈ ∆k

m. Moreover, it is easy to see that C(h) = C(f ◦ η);
for instance,

Cj
11(hj) = E[ηj(x)hj(x)] = E[E[ηj(x)hj(x) | η(x) = η]]

= E[ηj E[hj(x) | η(x) = η]] = E[ηjf j(η)]

= E[ηj(x)f j(η(x))] = Cj
11(f j ◦ η), (17)

etc.

Hence, any confusion matrix achievable by some h is also achievable by some f ◦ η, so that the set
of achievable confusion matrices can be written as CP = {C(f ◦ η) : f ∈ F}, where we denote
F = {f : [0, 1]m → ∆k

m}. From this moment on, we thus, without loss of generality, consider
optimizing the metrics over functions f ∈ F of random vector η, and make the relation h = f ◦ η
implicit, writing Ψ(f) for Ψ(f ◦ η) and using C(f) to denote the confusion matrices C(f ◦ η), that
is

C(f) =
(
C1(f1), . . . ,C

m(fm)
)
, (18)

where

Cj(f j) =

(
Eη[(1− ηj)(1− f j(η))] Eη[ηj(1− f j(η))]
Eη[(1− ηj)f j(η)] Eη[ηjf j(η)]

)
. (19)

Lemma C.3. Mapping f 7→ C(f) is continuous: for any f ,f ′ ∈ F

∥C(f)−C(f ′)∥F ≤
√

2Eη

[
∥f(η)− f ′(η)∥22

]
, (20)

where ∥C(f)−C(f ′)∥F :=
√∑m

j=1 ∥Cj(f j)−Cj(f j
′)∥2F

Proof. Fix j ∈ [m]. Using δj(η) = f j(η)− f j ′(η), we have from the definition:

Cj(f j)−Cj(f j
′) =

(
Eη[−(1− ηj)δj(η)] Eη[−ηjδj(η)]
Eη[(1− ηj)δj(η)] Eη[ηjδj(η)]

)
= Eη

[
δj(η)

(
−(1− ηj) −ηj
1− ηj ηj

)]
. (21)

Since the squared Frobenious norm X 7→ ∥X∥2F is convex, we can use Jensen’s inequality
∥E[X]∥2F ≤ E[∥X∥2F ] to get

∥Cj(f j)−Cj(f j
′)∥2F ≤

∥∥∥∥Eη

[
δj(η)

(
−(1− ηj) −ηj
1− ηj ηj

)]∥∥∥∥2
F

≤ Eη

[
(δj(η))

2

∥∥∥∥(−(1− ηj) −ηj
1− ηj ηj

)∥∥∥∥2
F

]
≤ 2Eη

[
(δj(η))

2
]
, (22)

where we used∥∥∥∥(−(1− ηj) −ηj
1− ηj ηj

)∥∥∥∥2
F

= 2
(
(1− ηj)2 + η2j

)
≤ 2 max

x∈[0,1]
((1− x)2 + x2) = 2 . (23)

Summing the inequality over j = 1, . . . ,m and taking square root on both sides finishes the
proof.

We will now show that the set of achievable confusion matrices CP is compact. To this end, we first
prove a result from the functional analysis.

Lemma C.4. Let L : H→ V be continuous affine operator between a Hilbert space H and a finite
dimensional vector space V . If S ⊂ H is closed, bounded, and convex, then L(S) is compact.

Proof. Observe that it suffices to prove this when L is linear since being compact is translation
invariant.
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The proof is inspired by an answer to a related question on Mathematics Stack Exchange. It suffices
to prove every L(xn) sequence in L has a convergent subsequence whose limit is in L(S).
By the Banach–Alaoglu theorem, balls in Hilbert spaces are weakly compact. For the convenience
of the reader we will sketch this proof. Recall that weak convergence xn → x in H means that for
all linear functionals ϕ ∈ H∗ there is convergence ϕ(xn)→ ϕ(x). Likewise weakly compact means
every sequence has a subsequence that converges weakly. Now onto the proof.

Let xn be a bounded sequence in H. Let {e1, e2, . . . } be a Hilbert basis for H and the dual vectors
{ϕ1, ϕ2, . . . } a Hilbert basis for H∗ where ϕi(x) = ⟨x, ei⟩. Now apply the diagonal proof method of
the as in the Arzelà-Ascoli theorem of successively passing to subsequences. Since the sequence is
bounded we know that ϕ1(xn) is bounded in R and hence we can extract a subsequence xn so that
ϕ1(xn)→ a1 where we may keep x1. Now on this subsequence do the same for ϕ2(xn)→ a2 but
keep x1 and x2. Continue this process, where at the m-th step one keeps the first m terms from the
previous subsequence. The resulting diagonal subsequence xn is such that ϕi(xn) → ai for each
i = 1, 2, . . . . The element x =

∑∞
i=1 aiei is in H (by Bessel’s inequality, the weak convergence

results, and the fact that the original sequence was bounded). It remains to verify that xn → x weakly,
but for this it suffices to check ϕi(xn)→ ϕi(x) and by design this is the case.

Now, returning to the proof of the lemma since S ⊂ H is bounded, it is contained in a ball, and hence
by passing to a subsequence we have xn → x in the weak topology for some x ∈ H. Furthermore
x ∈ S . If if wasn’t, then since S is closed and convex, by the Hahn–Banach separation theorem there
is a separating hyperplane ϕ ∈ H so ϕ(x) < inf L(S). But this contradicts that the weak convergence
xn → x since xn ∈ S.

So it remains to prove convergence L(xn) → L(x). Since L is continuous we have convergence
L(xn)→ L(x) in the weak topology, but this implies normal convergence since V is finite dimen-
sional.

Lemma C.5. CP is a compact set.

Proof. To show that CP is compact, we will invoke Lemma C.4. To place ourselves in its setting, let
the Hilbert space be H = L2([0, 1]m,Rm, µ) where µ is the probability measure on [0, 1]m associated
with random vector η(x). The inner product for f , g : [0, 1]m → Rm in H is

⟨f , g⟩ =
∫
[0,1]m

⟨f(η), g(η)⟩ dµ(η) (24)

where the inner product inside the integral is the normal dot product in Rm.

We have the affine map defined via (1)

L : H→ Rm×2×2 where L(f) = C(f ◦ η) , (25)

and let the subset S ⊂ H be

S = {f ∈ H : f([0, 1]m) ⊂ ∆k
m almost everywhere}. (26)

Since CP = L(S), it suffices to verify the assumptions in Lemma C.4.

The map L is continuous by Lemma C.3. The set S is convex since the set of ∆k
m ⊂ Rm is convex.

Likewise for bounded using also that the we are working with a probability measure: If f ∈ S , then
∥f(η)∥2 ≤ m for all η ∈ [0, 1]m and hence

∥f∥2 =

∫
[0,1]m

∥f(η)∥2dµ(η) ≤
∫
[0,1]m

mdµ(η) = m. (27)

Similarly the closedness of ∆k
m ⊂ Rm translates into the closedness of S as we now prove. Suppose

there is a sequence of fn ∈ S with fn → f and f /∈ S. This means the set of points

A = {η ∈ [0, 1]m : f(η) ̸∈ ∆k
m} (28)

that f maps out of ∆k
m has positive measure µ(A) > 0. In Rm there is a well defined distance

function d(z,∆k
m) = infv∈∆k

m
∥z − v∥ and for ϵ > 0 define the set

Aϵ = {η ∈ [0, 1]m : d(f(η),∆k
m) > ϵ} (29)
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Note that A =
⋃∞

j=1A1/j since ∆k
m is closed and hence there is some ϵ > 0 such that µ(Aϵ) > 0.

Therefore for all n

∥f − fn∥2 =

∫
[0,1]m

∥f(η)− fn(η)∥2dµ(η)

≥
∫
Aϵ

∥f(η)− fn(η)∥2dµ(η) ≥
∫
Aϵ

ϵ2 dµ(η) = ϵ2µ(Aϵ) > 0 (30)

where the second inequality uses that fn(η) ∈ ∆k
m almost everywhere. That ∥f − fn∥2 is uniformly

bounded away from 0 contradicts that fn → f in H.

Theorem 4.4. Let the data distribution P and metric Ψ satisfy Assumption 4.2 and Assumption 4.3
respectively. Then, there exists an optimal C⋆ ∈ CP, that is Ψ(C⋆) = Ψ⋆. Moreover, any classifier h⋆

maximizing linear utility G·C(h) over h ∈ H with G = (G1, . . . ,Gm) given by Gj = ∇CjΨ(C⋆),
also maximizes Ψ(h) over h ∈ H.

Proof. Let C⋆ = argmaxC∈CP Ψ(C), which exists by the compactness of CP (Lemma C.5) and the
continuity of Ψ . By the first order optimality and convexity of CP, for all C ∈ CP

∇Ψ(C⋆) ·C⋆ ≥ ∇Ψ(C⋆) ·C. (31)

which implies:
C⋆ = argmax

C∈CP
G ·C (32)

for G = ∇Ψ(C⋆).

We now show that C⋆ is the unique optimizer of (32). Using Assumption 4.3 applied to C⋆, for all
j ∈ [m]:

∂

∂ϵ
Ψ

(
C⋆1, . . . ,C⋆j + ϵ

(
1 −1
−1 1

)
, . . . ,C⋆m

)∣∣∣∣
ϵ=0

= ∇CjΨ(C⋆) ·
(

1 −1
−1 1

)
= Gj

00 +Gj
11 −G

j
01 −G

j
10 = aj > 0 , (33)

with coefficients aj , j ∈ [m] defined in Theorem 4.1.

Now, since we just showed that aj ̸= 0 for all j, and η has a density, coordinates of a⊙ η+ b are all
distinct with probability one. This means that, with probability one, topk(a⊙ η + b) is a singleton,
and thus the optimizers of the linear utility G ·C(h) can only differ on a zero measure set, so they
all have the same confusion matrix. Thus, C⋆ uniquely maximizes linear utility G ·C over C ∈ CP.

This means, however, that any classifier h⋆ maximizing G ·C(h) over h ∈ H has C(h⋆) = C⋆,
and thus maximizes Ψ .

D CONSISTENCY OF FRANK-WOLFE

In this section, we provide the formal proof of consistency for the Frank-Wolfe algorithm. We prove
convergence for a slightly modified version of Algorithm 1, in which we replace the line-search in
line 13 with a fixed schedule, setting

αi ← 2

t+ 1
. (34)

For the experiments, we used the line-search instead, as we found it to give slightly better results.

D.0.1 VC-DIMENSION LEMMA

Lemma 5.2 (VC dimension for linear top-k classifiers). For η : X −→ [0, 1]
m , define

Hj
η :=

⋃
a,b∈Rm

{h : X −→ {0, 1} : h(x) = 1[j ∈ topk(a⊙ η + b)]} . (10)

The VC-complexity of this class is VC(Hj
η) ≤ 6m log(em) .

19



Published as a conference paper at ICLR 2024

Proof. For any given a, b, the hypothesis predicts one, hj(x) = 1, iff exists a set of m − k indices
I ⊂ [m] with |I| = m − k, j /∈ I, such that for all i ∈ I the score aiηi + bi ≤ ajηj + bj is not
greater than the score of label j.

This computation can be realized as a two-layer network. In the first layer z, we calculate an indicator
to determine which labels’ scores are below the threshold, that is zi = 1[(ai − aj)ηi + (bi − bj)].
Then, for the output, we threshold the sum of all the intermediate units to determine if j is predicted:

h(x) = o(z) := 1
[∑
i ̸=j

zi ≥ m − k
]
. (35)

The resulting network has 2(m − 1) edges and m − 1 computation nodes. If we allow the output
node to be more general—a generic linear threshhold function—, the VC-dimension of this extended
function class H′ can only grow. For this extended class, we can apply (Baum & Haussler, 1988,
Corollary 3), which gives an upper bound for the VC-dimension of

VC(Hj) ≤ VC(H′) ≤ 2(m − 1 + 2(m − 1)) log(e(m − 1)) ≤ 6m log(em) . (36)

D.0.2 ADDITIONAL LEMMAS

Before going into the main proof of Theorem 5.1, we provide two more helper lemmas:
Lemma D.1 (Regret for Linear Macro Measures). Let G be a linear macro-measure, that is,

G(h;η) = m−1
m∑
j=1

Ex

[
Gj

00(1− ηj(x))(1− hj(x))

+Gj
01(1− ηj(x))hj(x) +Gj

10ηj(x)(1− hj(x)) +Gj
11ηj(x)hj(x)

]
. (37)

Let h⋆(x) := argmaxh G(h;η), and ĥ(x) := argmaxh G(h; η̂). Then

G(h⋆;η)−G(ĥ;η) ≤ m−1 max
j
∥Gj∥1,1E

x
[∥η(x)− η̂(x)∥1] . (38)

Proof. As G(h;η) is an affine function in its second argument, we can simplify differences to

G(h;η)−G(h; η̂) = m−1
m∑
j=1

Ex

[
−Gj

00(ηj − η̂j)(1− hj)−G
j
01(ηj − η̂j)hj

+Gj
10(ηj − η̂j)(1− hj) +Gj

11(ηj − η̂j)hj
]

= m−1
m∑
j=1

Ex

[
(ηj − η̂j)

(
(Gj

11 −G
j
01)hj + (Gj

10 −G
j
00)(1− hj)

)]
. (39)

We can use this property to bound the regret of ĥ as

G(h⋆;η)−G(ĥ;η) = G(h⋆;η)−G(h⋆; η̂) +G(h⋆; η̂)−G(ĥ;η)

≤ G(h⋆;η)−G(h⋆; η̂) +G(ĥ; η̂)−G(ĥ;η)

= m−1
m∑
j=1

Ex

[
(ηj − η̂j)

(
(Gj

11 −G
j
01)(h

⋆
j − ĥj) + (Gj

10 −G
j
00)(ĥj − h⋆j )

)]
= m−1

m∑
j=1

(Gj
11 −G

j
01 −G

j
10 +Gj

00)Ex

[
(ηj − η̂j)(h⋆j − ĥj)

]
(40)

As hj ∈ [0, 1], we can bound (ηj − η̂j)(h⋆j − ĥj) ≤ |(ηj − η̂j)|, resulting in

G(h⋆;η)−G(ĥ;η) ≤ m−1
m∑
j=1

(Gj
11 −G

j
01 −G

j
10 +Gj

00)Ex[|ηj − η̂j |] (41)

Using the notation of Theorem 4.1, we set aj = Gj
11 − G

j
01 − G

j
10 + Gj

00, so that we can further
bound

G(h⋆;η)−G(ĥ;η) ≤ m−1 max
j
|aj |

m∑
j=1

Ex[|ηj − η̂j |] = m−1 max
j
|aj |Ex[∥η − η̂∥1] (42)
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Using
max

j
|aj | ≤ max

j
∥Gj∥1,1 (43)

yields the claim.

Lemma D.2 (Uniform Convergence of Multilabel Confusion Matrices). For η : X −→ [0, 1]
m , let

Hη :=
⋃

a,b∈Rm

{h : X −→ {0, 1}m : h(x) = topk a⊙ η + b} , (44)

and let S ∈ (X × {0, 1}m)n be an i.i.d. sample. Then for any δ ∈ (0, 1], with probability at least
1− δ, we have

sup
h∈Hη

∥C(h,P)− Ĉ(h,S)∥∞ ≤ Õ

(√
m · logm · log n − log δ

n

)
. (45)

Proof. Instead of showing uniform convergence for the entries of the confusion matrix directly, we
show it for accuracy (0-1-error) accj = Cj

11 + Cj
00, condition positive rate qj = Cj

01 + Cj
11 and

predicted positive rate pj = Cj
10 + Cj

11, first for a fixed j ∈ [m].

To handle accuracy and predicted positives, consider

sup
h∈Hη

∣∣accj(h,P)− âccj(h,S)
∣∣ = sup

h∈Hη

∣∣∣n−1
n∑

i=1

1[Y ij = hj(xi)]− P[yj = hj(x)]
∣∣∣

= sup
h∈Hj

η

∣∣∣n−1
n∑

i=1

1[Y ij = h(xi)]− P[yj = h(x)]
∣∣∣ (46)

From Lemma 5.2, we know the VC-dimension ofHj
η is some finite number d, thus, we can employ a

standard bound for the 0-1 error to get, with probability 1− δ, that

sup
h∈Hη

|accj(h,P)− âccj(h,S)| ≤
√

2d log(2en/d) + 2 log(4/δ)

n
. (47)

As this bound holds for all distributions of targets y, it holds in particular also for y ≡ 1, in which
case accuracy turns into predicted positive rate.

Finally, we can bound the error on the condition positive rate simply using Hoeffding’s inequality, as
it does not depend on the hypothesis h. We get, with probability 1− δ

sup
h∈Hη

|q(h,P)− q̂(h,S)| ≤
√

log(δ−1)

2n
. (48)

Now we can reconstruct the actual entries of the confusion matrix. For example, the true positive rate
as tp = 1−acc−q−p

2 . Thus, we can union bound, with probability 1− δ

sup
h∈Hη

|tpj(h,P)− t̂pj(h,S)| ≤
√

2d log(2en/d) + 2 log(8/δ)

n
+

√
log(3/δ)

2n
. (49)

Similar bounds can be constructed for the other entries. Taking a union bound over all m labels:

sup
h∈Hη

∥C(h,P)− Ĉ(h,S)∥∞ ≤
√

2d log(2en/d) + 2 log(8m/δ)

n
+

√
log(3m/δ)

2n

=

√
12m log(em) log(en/(3m(log(em))) + 2 log(8m/δ)

n
+

√
log(3m/δ)

2n
. (50)

In order to combine the two square-root terms, we can apply the arithmetic-quadratic mean inequality,
to arrive at the claimed bound

sup
h∈Hη

∥C(h,P)−Ĉ(h,S)∥∞ ≤

√
48m log(em) log(en/(3m(log(em))) + 10 log(

5
√
3 · 84m/δ)

2n
.
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Finally, using 3m(log(em)) ≥ 1, we simplify

log(en/(3m(log(em))) ≤ log(en) , (51)

which results in

sup
h∈Hη

∥C(h,P)− Ĉ(h,S)∥∞ ≤
√
O(m logm log n) +O(log(m/δ))

n
. (52)

D.0.3 BOUND FOR LINEAR OPTIMIZATION STEP

The preceding results allow to prove a bound on the approximation error for each linear optimization
step that is performed as part of the Frank-Wolfe algorithm:

Lemma D.3. Let Ψ : C −→ R≥0 be concave over CP, ℓ-Lipschitz, and β-smooth w.r.t. the ℓ1-norm.
Let h ∈ H be some classifier, and denote G := ∇Ψ(Ĉ(h,S)). Let ĝ be the deterministic classifier
that empirically optimizes the linear objective induced by Ψ according to Theorem 4.1. For two
classifiers h′ and g′, define

LP(h
′, g′) := C(g′,P) · ∇Ψ(C(h′,P)), (53)

Then for any δ ∈ (0, 1], with probability at least 1− δ (over draws of S from Pn ), we have

LP(h, ĝ) ≥ max
g′

LP(h, g
′)− ϵS (54)

where

ϵS = 8ℓm−1Ex[∥η(x)− η̂(x)∥1] + 8m2β sup
h′∈H

Õ

(√
m · logm · log n − log δ

n

)
. (55)

Proof. Define an empirical counterpart to LP, the population-level utility of a classifier for an
empirically estimated gradient, as

LS(h
′, g′) := C(g′,P) · ∇Ψ(Ĉ(h′,S)) , (56)

and the (population-level) optimal classifier g⋆ ∈ argmaxg′ LP(h, g
′) for the exact gradient, whose

existence is guaranteed by Theorem 4.1. Then we can write

= max
g′

LP(h, g
′)− LP(h, ĝ) = LP(h, g

⋆)− LP(h, ĝ)

= LP(h, g
⋆)− LS(h, g

⋆) + LS(h, g
⋆)− LS(h, ĝ) + LS(h, ĝ)− LP(h, ĝ) (57)

Now we turn to bounding each of these terms. For the second, we get

LS(h, g
⋆)− LS(h, ĝ) = C(g⋆,P) ·G−C(ĝ,P) ·G
≤ max

g′
C(g′,P) ·G−C(ĝ,P) ·G ≤ 2m−1 max

j
∥Gj∥1,1Ex[∥η(x)− η̂(x)∥1], (58)

where the last step used that ĝ is the empirical maximizer of the linear measure corresponding to G,
in order to apply Lemma D.1. Now, if Ψ is ℓ-Lipschitz w.r.t. the ℓ1-norm, then

∀C′ : |∇Ψ(C) ·C′| ≤ ∥C′∥1 . (59)

Let j ∈ [m], and applying (59) to C′ = C̃ for which C̃i = 0 for all i ̸= j, and C̃i = 0.25 · 1, we get

0.25Gj · 1 ≤ ℓ ⇔ ∥Gj∥1,1 ≤ 4ℓ . (60)

As this holds for all j, the upper bound turns into

LS(h, g
⋆)− LS(h, ĝ) ≤ 8ℓm−1Ex[∥η(x)− η̂(x)∥1] (61)
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To bound the other two terms, we can use Hölder’s inequality:
LP(h, g

⋆)− LS(h, g
⋆) = C(g⋆,P) · ∇Ψ(C(h,P))−C(g⋆,P) · ∇Ψ(Ĉ(h,S))

= C(g⋆,P) · (∇Ψ(C(h,P))−∇Ψ(Ĉ(h,S)))
≤ ∥∇Ψ(C(h,P))−∇Ψ(Ĉ(h,S))∥∞ · ∥C(g⋆,P)∥1 (Hölder)
= m∥∇Ψ(C(h,P))−∇Ψ(Ĉ(h,S))∥∞ (Normalization of C)
≤ mβ∥C(h,P)− Ĉ(h,S)∥1 (β-smoothness)

≤ 4m2β∥C(h,P)− Ĉ(h,S)∥∞
≤ 4m2β sup

h′∈H
∥C(h′,P)− Ĉ(h′,S)]∥∞ (62)

The same argument can be employed to bound the third term. Thus, applying Lemma D.2, we get
with probability at least 1− δ

LP(h, g
⋆)− LP(h, ĝ) ≤ 8ℓm−1Ex[∥η(x)− η̂(x)∥1] +

8m2β sup
h′∈H

Õ

(√
m · logm · log n − log δ

n

)
. (63)

D.0.4 CONSISTENCY OF FIXED-STEP-SCHEDULE FRANK-WOLFE

Theorem 5.1 (Consistency of Frank-Wolfe). Assume the utility function Ψ : [0, 1]
m×2×2 −→ R≥0

is concave over CP, L-Lipschitz, and β-smooth w.r.t. the 1-norm. Let S = (S1,S2) be a sample
drawn i.i.d. from P. Further, let η̂ be a label probability estimator learned from S1, and hFW

S be
the classifier obtained after κn iterations. Then, for any δ ∈ (0, 1], with probability of at least 1− δ
over draws of S,

∆Ψ
(
hFW
S
)
≤ O(Ex[∥η(x)− η̂(x)∥1]) + Õ(m2

√
m · logm · log n − log δ

n
) (9)

Proof. Define a curvature constant for the loss Ψ as

CΨ := sup
C1,C2∈CP,γ∈[0,1]

2

γ2
(
Ψ
(
C1 + γ(C2 −C1)

)
− Ψ

(
C1
)
− γ

(
C2 −C1

)
· ∇Ψ

(
C1
))
, (64)

and let ϵS be defined as in Lemma D.3. Set δapx = (t+ 1)ϵS/CΨ and ĥi as in Algorithm 1. Let f̂ i
be the classifier implicitly defined in iteration i, that is,

f̂ i :=

i∑
j=1

αj ĥj . (65)

For 1 ≤ i ≤ t, we can apply Lemma D.3 to f̂ i−1 and ĥi, which gives

C(ĥi,P) · ∇ψ
(
C(f̂ i−1,P)

)
≥ max

g′
C(g′,P) · ∇ψ

(
C(f̂ i−1,P)

)
− ϵS

= max
C∈CP

C · ∇ψ
(
C(f̂ i−1,P)

)
− ϵS = max

C∈CP
C · ∇ψ

(
C(f̂ i−1,P)

)
− ϵS

= max
C∈CP

C · ∇ψ
(
C(f̂ i−1,P)

)
− 1

2
δapx

2

t+ 1
CΨ

≥ max
C∈CP

C · ∇ψ
(
C(f̂ i−1,P)

)
− 1

2
δapx

2

i+ 1
CΨ . (66)

As we consider, for the proof, a Frank-Wolfe implementation with fixed step schedule 2
i+1 , the

confusion matrices are related through

C(f̂ i,P) =

(
1− 2

i+ 1

)
C(f̂ i−1,P) +

2

i+ 1
C(ĥi,P) . (67)

With results (66) and (67), we now have the exact same situation as in Narasimhan et al. (2015, Proof
of Theorem 16). In particular, an application of Jaggi (2013, Theorem 1) gives the desired result.
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E LABEL DEPENDENCE AND OPTIMIZATION OF MACRO-AT-k METRICS

The “budgeted-at-k” constraint couples the label-wise binary problems, resulting in their inability to
be independently optimized. To demonstrate this coupling effect, we present a simple example. We
consider the macro Jaccard similarity, defined below, and assume budget k = 2:

Ψ Jaccard(C(h)) = m−1
m∑
j=1

Cj
11

Cj
11 + Cj

01 + Cj
10

. (68)

Let us consider two simple distributions, both with two different instances x of equal probability and
three labels:

Distribution A:
P (x) η1(x) η2(x) η3(x)

x1 0.5 0.4 0.2 0.6
x2 0.5 0.8 0.4 0.4

Distribution B:
P (x) η1(x) η2(x) η3(x)

x1 0.5 0.4 0.2 0.6
x2 0.5 0.8 0.4 0.8

Notice that both distributions only differ on the marginal conditional probability of the third label of
the second instance x2 (η3(x2)). We find the optimal randomized classifiers for both distributions:

Optimal h⋆
A(x) for distribution A:

π1(x) π2(x) π3(x)

x1 1.0 0.0 1.0
x2 1.0 1.0 0.0
Ψ Jaccard(C(h⋆

A, A)) ≈ 0.453962

Optimal h⋆
B(x) for distribution B:

π1(x) π2(x) π3(x)

x1 0.0 1.0 1.0
x2 1.0 0.0 1.0
Ψ Jaccard(C(h⋆

B , B)) ≈ 0.471423

We can notice that despite changing only one marginal conditional probability, the optimal solution is
different on the other instance for the two other labels. If it were possible to find the solution for each
label separately, the change in the distribution on one label would not affect the order of other labels,
as it happened in the above example.

F EXPERIMENTAL SETUP

F.1 TRAINING AND SELECTION OF MARGINAL PROBABILITY ESTIMATORS

In our experiments, we use two types of models for the estimation of marginal conditional probabilities
of labels η(x):

1. For MEDIAMILL, FLICKR, and RCV1X datasets, we use multi-layer fully connected neural
network (ranging from 1 to 3 layers with hidden layer size from (128 to 2048) implemented
in Pytorch Paszke et al. (2019). We perform a search for the best hyper-parameters (number
and size of layers, learning rate, number of epochs) using a validation set created from
the train set for each loss used (binary cross-entropy, focal and asymmetric loss). Then,
the model is retrained on the whole training set. We use Adam optimizer (Kingma & Ba,
2015). For Focal and Asymmetric loss, we use default parameters suggested by the authors
in (Ridnik et al., 2021).

2. For AMAZONCAT dataset, we use probabilistic label tree (PLT) with LIBLINEAR models
trained with L2-regularized logistic loss (Fan et al., 2008). We make it sparse by truncating
all the weights whose absolute value is above the threshold of 0.01, as introduced in (Babbar
& Schölkopf, 2017), to reduce the model size and inference time. Use the implementation
provided in NAPKINXC library (Jasinska-Kobus et al., 2020) and use the library’s default
parameters.

F.2 SPARSE MARGINALS IN FRANK-WOLFE ALGORITHM

Materializing the η̂(x) for all instances in the form of a dense matrix requires a considerable amount
of memory for datasets like AMAZONCAT (over 58 Gb using 32-bit floats). Because of that, we instead
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Table 3: Mean results with standard deviation of different inference strategies on measure calculated
at {3, 5, 10} Notation: P—precision, R—recall, F1—F1-measure. The green color indicates cells
in which the strategy matches the metric. The best results are in bold and the second best are in italic.

Inference Instance @3 Macro @3 Instance @5 Macro @5 Instance @10 Macro @10
strategy P ±std R ±std P ±std R ±std F1 ±std P ±std R ±std P ±std R ±std F1 ±std P ±std R ±std P ±std R ±std F1 ±std

MEDIAMILL

TOP-K 66.25 ±0.00 49.55 ±0.00 8.96 ±0.00 4.81 ±0.00 4.95 ±0.00 51.96 ±0.00 62.04 ±0.00 12.85 ±0.00 8.75 ±0.00 7.71 ±0.00 33.63 ±0.00 76.60 ±0.00 11.46 ±0.00 19.68 ±0.00 11.28 ±0.00
TOP-K+wPOW 57.36 ±0.00 42.51 ±0.00 15.31 ±0.00 11.84 ±0.00 10.54 ±0.00 47.68 ±0.00 56.62 ±0.00 13.00 ±0.00 17.37 ±0.00 12.64 ±0.00 32.18 ±0.00 72.98 ±0.00 9.64 ±0.00 29.43 ±0.00 13.07 ±0.00
TOP-K+wLOG 39.72 ±0.00 27.32 ±0.00 14.43 ±0.00 10.10 ±0.00 9.41 ±0.00 35.40 ±0.00 39.96 ±0.00 11.38 ±0.00 15.33 ±0.00 10.95 ±0.00 28.45 ±0.00 63.36 ±0.00 9.86 ±0.00 26.25 ±0.00 12.26 ±0.00
TOP-K+ℓFOCAL 65.87 ±0.00 49.60 ±0.00 10.08 ±0.00 4.87 ±0.00 4.94 ±0.00 52.08 ±0.00 62.16 ±0.00 11.99 ±0.00 8.93 ±0.00 7.90 ±0.00 33.61 ±0.00 76.65 ±0.00 10.76 ±0.00 20.08 ±0.00 11.37 ±0.00
TOP-K+ℓASYM 65.88 ±0.00 49.48 ±0.00 10.31 ±0.00 4.58 ±0.00 4.80 ±0.00 51.55 ±0.00 61.87 ±0.00 11.10 ±0.00 8.50 ±0.00 7.48 ±0.00 33.54 ±0.00 76.75 ±0.00 10.73 ±0.00 19.55 ±0.00 11.16 ±0.00

MACRO-PFW 7.94 ±0.09 6.13 ±0.08 19.33 ±0.92 6.06 ±0.32 2.87 ±0.13 6.99 ±0.07 8.96 ±0.09 17.29 ±1.22 8.79 ±0.20 3.17 ±0.11 6.02 ±0.03 14.14 ±0.10 17.38 ±1.60 17.24 ±0.49 5.23 ±0.09
MACRO-RPRIOR 6.37 ±0.00 3.67 ±0.00 8.81 ±0.00 19.82 ±0.00 5.31 ±0.00 7.38 ±0.00 7.25 ±0.00 8.91 ±0.00 26.50 ±0.00 6.71 ±0.00 8.31 ±0.00 17.42 ±0.00 10.53 ±0.00 39.24 ±0.00 8.85 ±0.00
MACRO-RFW 6.37 ±0.00 3.67 ±0.00 8.81 ±0.00 19.82 ±0.00 5.31 ±0.00 7.38 ±0.00 7.25 ±0.00 8.91 ±0.00 26.50 ±0.00 6.71 ±0.00 8.31 ±0.00 17.42 ±0.00 10.53 ±0.00 39.24 ±0.00 8.85 ±0.00
MACRO-F1FW 45.20 ±0.12 33.05 ±0.11 15.42 ±0.24 11.17 ±0.10 12.21 ±0.10 43.57 ±0.03 51.60 ±0.05 15.20 ±0.47 15.05 ±0.11 13.82 ±0.14 28.12 ±0.02 64.23 ±0.04 13.93 ±0.16 23.32 ±0.51 14.81 ±0.09

FLICKR

TOP-K 23.94 ±0.00 56.96 ±0.00 23.04 ±0.00 38.41 ±0.00 26.56 ±0.00 16.99 ±0.00 66.01 ±0.00 17.12 ±0.00 47.03 ±0.00 23.49 ±0.00 10.16 ±0.00 77.35 ±0.00 10.72 ±0.00 59.37 ±0.00 17.24 ±0.00
TOP-K+wPOW 22.35 ±0.00 53.44 ±0.00 17.96 ±0.00 44.26 ±0.00 24.21 ±0.00 16.10 ±0.00 62.80 ±0.00 13.76 ±0.00 52.39 ±0.00 20.68 ±0.00 9.77 ±0.00 74.54 ±0.00 9.08 ±0.00 63.98 ±0.00 15.08 ±0.00
TOP-K+wLOG 23.57 ±0.00 56.17 ±0.00 19.86 ±0.00 41.36 ±0.00 25.49 ±0.00 16.76 ±0.00 65.21 ±0.00 15.05 ±0.00 49.75 ±0.00 22.00 ±0.00 10.06 ±0.00 76.63 ±0.00 9.79 ±0.00 61.80 ±0.00 16.10 ±0.00
TOP-K+ℓFOCAL 23.64 ±0.00 56.27 ±0.00 24.90 ±0.00 36.67 ±0.00 26.42 ±0.00 16.89 ±0.00 65.62 ±0.00 18.53 ±0.00 45.67 ±0.00 24.16 ±0.00 10.05 ±0.00 76.63 ±0.00 11.77 ±0.00 57.90 ±0.00 18.14 ±0.00
TOP-K+ℓASYM 23.37 ±0.00 55.65 ±0.00 23.09 ±0.00 37.00 ±0.00 26.12 ±0.00 16.74 ±0.00 65.04 ±0.00 17.39 ±0.00 45.61 ±0.00 23.60 ±0.00 10.06 ±0.00 76.63 ±0.00 10.91 ±0.00 58.36 ±0.00 17.48 ±0.00

MACRO-PFW 4.65 ±0.03 11.49 ±0.09 39.34 ±1.25 6.63 ±0.05 8.06 ±0.12 5.66 ±0.02 22.75 ±0.07 41.74 ±1.48 9.70 ±0.11 10.57 ±0.13 2.83 ±0.01 22.26 ±0.06 37.59 ±1.21 10.68 ±0.06 8.50 ±0.09
MACRO-RPRIOR 16.14 ±0.00 38.62 ±0.00 17.58 ±0.00 45.50 ±0.00 22.27 ±0.00 12.17 ±0.00 47.48 ±0.00 13.98 ±0.00 53.83 ±0.00 19.72 ±0.00 7.89 ±0.00 60.42 ±0.00 9.57 ±0.00 64.66 ±0.00 15.07 ±0.00
MACRO-RFW 16.14 ±0.00 38.62 ±0.00 17.58 ±0.00 45.50 ±0.00 22.27 ±0.00 12.17 ±0.00 47.48 ±0.00 13.98 ±0.00 53.83 ±0.00 19.72 ±0.00 7.89 ±0.00 60.42 ±0.00 9.57 ±0.00 64.66 ±0.00 15.07 ±0.00
MACRO-F1FW 17.59 ±0.00 41.60 ±0.00 35.28 ±0.00 29.28 ±0.00 29.43 ±0.00 12.22 ±0.01 47.31 ±0.07 34.13 ±0.15 32.70 ±0.05 29.43 ±0.04 5.92 ±0.00 45.77 ±0.00 34.55 ±0.00 33.08 ±0.00 29.02 ±0.00

RCV1X

TOP-K 72.99 ±0.00 75.32 ±0.00 13.06 ±0.00 4.67 ±0.00 5.43 ±0.00 52.30 ±0.00 81.96 ±0.00 12.77 ±0.00 7.61 ±0.00 7.64 ±0.00 32.98 ±0.00 89.70 ±0.00 11.35 ±0.00 14.75 ±0.00 10.28 ±0.00
TOP-K+wPOW 65.99 ±0.00 69.11 ±0.00 18.58 ±0.00 12.78 ±0.00 13.09 ±0.00 48.48 ±0.00 77.18 ±0.00 14.69 ±0.00 17.66 ±0.00 13.64 ±0.00 31.43 ±0.00 87.14 ±0.00 10.63 ±0.00 26.05 ±0.00 12.82 ±0.00
TOP-K+wLOG 70.70 ±0.00 73.37 ±0.00 19.97 ±0.00 8.10 ±0.00 9.80 ±0.00 51.18 ±0.00 80.49 ±0.00 16.03 ±0.00 11.75 ±0.00 11.29 ±0.00 32.66 ±0.00 89.14 ±0.00 11.96 ±0.00 19.01 ±0.00 12.06 ±0.00
TOP-K+ℓFOCAL 71.99 ±0.00 74.38 ±0.00 14.06 ±0.00 4.83 ±0.00 5.76 ±0.00 51.46 ±0.00 80.94 ±0.00 12.49 ±0.00 7.65 ±0.00 7.75 ±0.00 32.38 ±0.00 88.75 ±0.00 10.59 ±0.00 14.42 ±0.00 10.06 ±0.00
TOP-K+ℓASYM 71.14 ±0.00 73.60 ±0.00 14.40 ±0.00 5.44 ±0.00 6.46 ±0.00 50.81 ±0.00 80.13 ±0.00 12.27 ±0.00 8.52 ±0.00 8.41 ±0.00 31.88 ±0.00 87.85 ±0.00 9.64 ±0.00 15.16 ±0.00 10.03 ±0.00

MACRO-PFW 46.36 ±0.03 50.11 ±0.02 21.11 ±0.32 5.61 ±0.07 5.84 ±0.07 29.40 ±0.02 49.81 ±0.03 21.69 ±0.29 5.72 ±0.05 5.31 ±0.05 19.45 ±0.01 60.40 ±0.02 21.66 ±0.21 6.03 ±0.06 5.78 ±0.05
MACRO-RPRIOR 44.26 ±0.00 46.10 ±0.00 14.60 ±0.00 18.24 ±0.00 12.04 ±0.00 34.77 ±0.00 56.28 ±0.00 13.13 ±0.00 24.59 ±0.00 12.77 ±0.00 24.08 ±0.00 70.51 ±0.00 10.66 ±0.00 34.34 ±0.00 12.39 ±0.00
MACRO-RFW 43.28 ±0.00 44.99 ±0.00 14.56 ±0.00 18.41 ±0.00 11.95 ±0.00 34.15 ±0.00 55.24 ±0.00 13.15 ±0.00 24.89 ±0.00 12.73 ±0.00 23.78 ±0.00 69.71 ±0.00 10.76 ±0.00 34.66 ±0.00 12.44 ±0.00
MACRO-F1FW 58.20 ±0.03 61.22 ±0.03 21.45 ±0.14 10.37 ±0.09 12.09 ±0.05 44.42 ±0.01 71.86 ±0.01 21.96 ±0.11 12.25 ±0.06 13.68 ±0.03 27.26 ±0.00 78.88 ±0.00 22.10 ±0.03 14.86 ±0.02 15.12 ±0.01

AMAZONCAT

TOP-K 78.29 ±0.00 59.29 ±0.00 35.73 ±0.00 12.44 ±0.00 16.52 ±0.00 63.63 ±0.00 74.54 ±0.00 46.43 ±0.00 32.72 ±0.00 35.06 ±0.00 39.16 ±0.00 85.18 ±0.00 39.52 ±0.00 51.69 ±0.00 40.39 ±0.00
TOP-K+wPOW 66.32 ±0.00 49.76 ±0.00 50.21 ±0.00 45.79 ±0.00 45.70 ±0.00 57.12 ±0.00 67.49 ±0.00 44.85 ±0.00 53.78 ±0.00 46.30 ±0.00 37.31 ±0.00 82.20 ±0.00 30.13 ±0.00 63.53 ±0.00 37.15 ±0.00
TOP-K+wLOG 72.56 ±0.00 54.56 ±0.00 50.30 ±0.00 32.06 ±0.00 36.94 ±0.00 61.15 ±0.00 71.83 ±0.00 48.93 ±0.00 42.87 ±0.00 43.05 ±0.00 38.71 ±0.00 84.49 ±0.00 36.84 ±0.00 56.71 ±0.00 40.60 ±0.00

MACRO-PFW 47.00 ±0.02 35.57 ±0.02 56.47 ±0.12 23.74 ±0.06 29.62 ±0.07 41.04 ±0.01 50.74 ±0.01 55.85 ±0.08 27.45 ±0.07 30.23 ±0.07 30.66 ±0.01 69.67 ±0.02 55.27 ±0.11 29.09 ±0.06 34.51 ±0.05
MACRO-RPRIOR 48.58 ±0.00 34.93 ±0.00 37.16 ±0.00 59.97 ±0.00 42.02 ±0.00 40.67 ±0.00 47.35 ±0.00 28.17 ±0.00 66.98 ±0.00 35.75 ±0.00 28.06 ±0.00 62.91 ±0.00 17.62 ±0.00 73.98 ±0.00 25.04 ±0.00
MACRO-RFW 48.58 ±0.00 34.93 ±0.00 37.15 ±0.00 59.97 ±0.00 42.02 ±0.00 40.67 ±0.00 47.35 ±0.00 28.17 ±0.00 66.98 ±0.00 35.75 ±0.00 28.06 ±0.00 62.91 ±0.00 17.62 ±0.00 73.98 ±0.00 25.04 ±0.00
MACRO-F1FW 68.59 ±0.01 51.49 ±0.00 56.75 ±0.04 34.68 ±0.03 40.90 ±0.02 55.73 ±0.00 65.60 ±0.00 56.62 ±0.01 36.40 ±0.01 41.92 ±0.01 35.30 ±0.00 78.34 ±0.00 54.67 ±0.01 39.93 ±0.01 43.26 ±0.01

use a sparse matrix in compressed sparse row (CSR) format with only top-k′ values of marginals
kept for each instance, where k ≪ k′ ≪ m . All the other marginals are being treated as zeros. In
CSR format, the row vectors are represented as a list of tuples acsr

i := {(index, value) : value ̸= 0}
and allow for efficient element-wise multiplication between both dense and sparse vectors needed in
Frank-Wolfe procedure. By using the sparse matrix of marginals with exactly k′ non-zero values, we
effectively reduce the complexity of one iteration from O(nk′) instead of O(nm). We use k′ = 200
for both RCV1X and AMAZONCAT datasets. We found that using k′ > 100 has no negative impact
on predictive performance compared to using a full dense matrix.

F.3 HARDWARE

All the experiments were conducted on a workstation with 64 GB of RAM and Nvidia V100 16Gb
GPU. However, the experiments can be also reproduced with smaller amount of memory.

G EXTENDED RESULTS

In this section, we include extended results of our empirical experiments. Here, we include tables
with standard deviations. In Table 3, we present the results of the main experiment from Section 6
with standard deviations. In Table 4, we present the results on balanced accuracy, for which the
introduced Frank-Wolfe algorithm retrieves the same solution as the closed form classifier described
in Section 4, similarly to the case with macro-recall. In Table 5, we present the mean number of
iterations and running time of the Frank-Wolfe algorithm for different objective measures, as well as
different values of k. The values were calculated based on 10 runs of the algorithm. We use the same
value of stopping condition ϵ = 0.001 for all the experiments. The Frank-Wolfe algorithm requires
only a small number of 3-10 iterations, and thanks to the usage of sparse matrices as described
in Section F.2, it needs, in most cases, less than a minute even for larger benchmark datasets like
AMAZONCAT. In further subsections, we also present the results for different splits and initialization
strategies for the Frank-Wolfe algorithm.
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Table 4: Comparison of two classifiers for macro-balanced accuracy calculated at {3, 5, 10} – a closed
form classifier (MACRO-BAPRIOR) and 2) classifier found using Frank-Wolfe algorithm (MACRO-
BAFW). The green color indicates cells in which the strategy matches the metric.

Inference Instance @3 Macro @3 Instance @5 Macro @5 Instance @10 Macro @10
strategy P R P R F1 BA P R P R F1 BA P R P R F1 BA

MEDIAMILL

MACRO-BAPRIOR 7.43 4.41 10.70 19.86 5.65 58.54 9.05 9.34 11.30 26.54 7.25 60.98 11.53 26.05 10.65 39.33 9.88 65.15
MACRO-BAFW 7.43 4.41 10.70 19.86 5.65 58.54 9.05 9.34 11.30 26.54 7.25 60.98 11.53 26.05 10.65 39.33 9.88 65.15

FLICKR

MACRO-BAPRIOR 16.33 39.10 17.56 45.50 22.31 72.10 12.35 48.20 13.96 53.84 19.77 75.80 7.98 61.19 9.57 64.67 15.09 79.97
MACRO-BAFW 16.33 39.10 17.56 45.50 22.31 72.10 12.35 48.20 13.96 53.84 19.77 75.80 7.98 61.19 9.57 64.67 15.09 79.97

RCV1X

MACRO-BAPRIOR 44.15 46.00 14.62 18.40 12.01 59.17 34.71 56.27 13.18 24.86 12.78 62.37 24.07 70.61 10.77 34.64 12.47 67.17
MACRO-BAFW 44.15 46.00 14.62 18.40 12.01 59.17 34.71 56.27 13.18 24.86 12.78 62.37 24.07 70.61 10.77 34.64 12.47 67.17

AMAZONCAT

MACRO-BAPRIOR 47.02 33.74 35.27 61.70 40.42 80.84 39.28 45.74 26.77 67.95 34.15 83.97 27.45 61.62 17.36 73.37 24.55 86.66
MACRO-BAFW 47.02 33.74 35.27 61.70 40.42 80.84 39.28 45.74 26.77 67.95 34.15 83.97 27.45 61.62 17.36 73.37 24.55 86.66

Table 5: Means with standard deviations of running times and numbers of iterations performed by
the Frank-Wolfe algorithm for different objective measures calculated at 3, 5, 10. Notation: T—total
time in seconds, I—number of iterations.

Inference strategy T@3 ±std I@3 ±std T@5 ±std I@5 ±std T@10 ±std I@10 ±std

MEDIAMILL

MACRO-PFW 1.21 ±0.19 9.90 ±1.87 1.15 ±0.21 8.70 ±1.27 1.57 ±0.39 10.70 ±2.69
MACRO-RFW 0.52 ±0.09 3.00 ±0.00 0.53 ±0.08 3.00 ±0.00 0.58 ±0.10 3.00 ±0.00
MACRO-F1FW 1.44 ±0.14 10.40 ±1.02 1.42 ±0.27 8.90 ±1.14 1.34 ±0.35 9.10 ±2.91

FLICKR

MACRO-PFW 2.37 ±0.65 8.30 ±1.35 2.40 ±0.52 10.20 ±1.47 2.44 ±0.42 9.40 ±1.02
MACRO-RFW 1.17 ±0.19 3.00 ±0.00 1.07 ±0.09 3.00 ±0.00 1.17 ±0.15 3.00 ±0.00
MACRO-F1FW 1.39 ±0.19 4.60 ±0.80 2.00 ±0.34 7.60 ±1.43 2.01 ±0.47 7.20 ±1.89

RCV1X

MACRO-PFW 25.33 ±3.13 7.40 ±0.92 23.08 ±1.80 6.70 ±0.46 20.04 ±2.38 5.20 ±0.40
MACRO-RFW 20.70 ±1.95 6.00 ±0.00 21.94 ±2.49 6.00 ±0.00 22.41 ±2.30 6.00 ±0.00
MACRO-F1FW 15.05 ±1.04 4.20 ±0.40 15.03 ±1.02 4.00 ±0.00 15.75 ±1.20 4.00 ±0.00

AMAZONCAT

MACRO-PFW 21.97 ±2.47 4.50 ±0.50 20.80 ±3.91 3.80 ±0.40 23.44 ±2.78 4.40 ±0.66
MACRO-RFW 30.89 ±3.86 6.00 ±0.00 29.70 ±3.33 6.00 ±0.00 32.25 ±4.10 6.00 ±0.00
MACRO-F1FW 15.76 ±0.53 3.00 ±0.00 18.18 ±3.44 3.40 ±0.92 34.02 ±6.84 6.60 ±1.20

G.1 IMPACT OF SPLITTING STRATEGY IN THE FRANK-WOLFE ALGORITHM

In this experiment, we test different ratios of splitting training datasets into the sets used for training
the η estimator and estimating confusion matrix C (50/50 or 75/25 split), as well as a variant where
we use the whole training set for both training the estimator and estimating C (100/100 split). The
initial classifier h0 is initialized with the top-k η̂j classifier for all the experiments here. We present
the result of this comparison in Table 6. The results suggest that more data used for training is
beneficial for the quality of the final randomized classifier.

G.2 TOP-K VS RANDOM-INITIALIZATION

In this experiment, we investigate the impact of the initialization strategy in the Frank-Wolfe algorithm
on the results. They consider two strategies for the initialization of initial classifier h0; one initialize
the classifier that weights η̂j by a random positive number (rnd init.), second strategy initialize h0

with the top-k η̂j classifier (top-k init.). For all the experiments here, we use the same dataset for both
training the η estimator and estimating confusion tensor C (100/100). We present the result of this
comparison in Table 7. The results show that the initialization strategy has an impact on the results
for MACRO-PFW variant of the algorithm. However it is not clear from the results which initialization
variant is better and in which circumstances for MACRO-PFW.
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Table 6: Comparison of different splitting strategies for the Frank-Wolfe algorithm on measures
calculated at {3, 5, 10}. Notation: P—precision, R—recall, F1—F1-measure. The green color
indicates cells in which the strategy matches the metric.

Inference Instance @3 Macro @3 Instance @5 Macro @5 Instance @10 Macro @10
strategy P R P R F1 P R P R F1 P R P R F1

MEDIAMILL

MACRO-PFW + 50/50 split 7.76 5.87 15.41 6.65 3.89 9.22 11.35 13.60 11.27 5.38 3.56 8.58 15.22 19.08 5.44
MACRO-PFW + 75/25 split 6.74 5.03 14.68 6.48 3.58 9.00 10.70 13.79 13.07 5.21 4.54 10.56 14.47 19.30 6.09
MACRO-PFW + 100/100 split 7.94 6.13 19.33 6.06 2.87 6.99 8.96 17.29 8.79 3.17 6.02 14.14 17.38 17.24 5.23

MACRO-RFW + 50/50 split 5.14 3.05 8.42 15.56 4.58 6.04 6.06 9.55 22.20 5.93 6.75 14.26 9.97 33.82 7.52
MACRO-RFW + 75/25 split 4.41 2.52 7.89 15.30 4.30 4.93 4.75 7.02 21.83 5.40 5.83 12.01 9.40 34.91 7.37
MACRO-RFW + 100/100 split 6.37 3.67 8.81 19.82 5.31 7.38 7.25 8.91 26.50 6.71 8.31 17.42 10.53 39.24 8.85

MACRO-F1FW + 50/50 split 45.25 33.24 14.19 10.67 10.93 41.36 49.55 12.97 15.24 12.59 26.90 62.50 12.19 23.43 13.50
MACRO-F1FW + 75/25 split 43.07 31.33 13.80 10.65 10.91 40.06 47.64 12.61 15.06 12.49 27.84 64.08 11.86 23.77 13.64
MACRO-F1FW + 100/100 split 46.77 34.21 15.61 11.16 12.35 43.48 51.65 14.93 14.98 13.69 27.92 64.11 12.14 28.42 14.63

FLICKR

MACRO-PFW + 50/50 split 5.66 13.32 37.62 12.69 12.84 4.32 17.11 37.80 15.02 13.99 2.26 17.43 36.93 16.40 12.71
MACRO-PFW + 75/25 split 6.73 16.18 39.33 16.33 16.37 3.84 15.28 38.07 15.61 15.13 2.22 17.40 37.73 17.95 14.97
MACRO-PFW + 100/100 split 4.65 11.49 39.34 6.63 8.06 5.66 22.75 41.74 9.70 10.57 2.83 22.26 37.59 10.68 8.50

MACRO-RFW + 50/50 split 14.90 35.66 18.30 42.72 21.83 11.41 44.65 14.71 51.16 19.80 7.50 57.46 9.97 62.17 15.34
MACRO-RFW + 75/25 split 15.34 36.81 17.65 43.89 21.84 11.62 45.44 13.78 52.03 19.10 7.58 58.07 9.33 63.70 14.50
MACRO-RFW + 100/100 split 16.14 38.62 17.58 45.50 22.27 12.17 47.48 13.98 53.83 19.72 7.89 60.42 9.57 64.66 15.07

MACRO-F1FW + 50/50 split 19.06 45.28 31.30 31.55 28.63 12.24 47.51 31.10 34.24 29.02 6.18 47.82 31.37 35.89 28.73
MACRO-F1FW + 75/25 split 17.33 41.28 31.93 32.64 29.65 11.46 44.54 31.62 34.78 29.74 5.86 45.22 30.52 38.03 29.37
MACRO-F1FW + 100/100 split 18.21 43.06 34.89 29.51 29.41 11.78 45.91 34.68 30.87 29.45 7.14 55.21 34.00 33.17 29.11

Table 7: Comparison of different initialization strategies for the Frank-Wolfe algorithm on measures
calculated at {3, 5, 10} Notation: P—precision, R—recall, F1—F1-measure. The green color
indicates cells in which the strategy matches the metric.

Inference Instance @3 Macro @3 Instance @5 Macro @5 Instance @10 Macro @10
strategy P R P R F1 P R P R F1 P R P R F1

MEDIAMILL

MACRO-PFW + top-k init. 7.49 5.35 16.54 9.43 3.54 9.61 11.18 17.10 11.30 4.37 5.66 12.90 17.06 17.31 5.72
MACRO-PFW + rnd init. 7.94 6.13 19.33 6.06 2.87 6.99 8.96 17.29 8.79 3.17 6.02 14.14 17.38 17.24 5.23

MACRO-RFW + top-k init. 6.37 3.67 8.81 19.82 5.31 7.38 7.25 8.91 26.50 6.71 8.31 17.42 10.53 39.24 8.85
MACRO-RFW + rnd init. 6.37 3.67 8.81 19.82 5.31 7.38 7.25 8.91 26.50 6.71 8.31 17.42 10.53 39.24 8.85

MACRO-F1FW + top-k init. 46.77 34.21 15.61 11.16 12.35 43.48 51.65 14.93 14.98 13.69 27.92 64.11 12.14 28.42 14.63
MACRO-F1FW + rnd init. 45.20 33.05 15.42 11.17 12.21 43.57 51.60 15.20 15.05 13.82 28.12 64.23 13.93 23.32 14.81

FLICKR

MACRO-PFW + top-k init. 4.46 10.84 40.41 7.87 9.33 2.53 10.44 38.11 7.84 8.04 1.75 13.99 37.31 10.69 8.42
MACRO-PFW + rnd init. 4.65 11.49 39.34 6.63 8.06 5.66 22.75 41.74 9.70 10.57 2.83 22.26 37.59 10.68 8.50

MACRO-RFW + top-k init. 16.14 38.62 17.58 45.50 22.27 12.17 47.48 13.98 53.83 19.72 7.89 60.42 9.57 64.66 15.07
MACRO-RFW + rnd init. 16.14 38.62 17.58 45.50 22.27 12.17 47.48 13.98 53.83 19.72 7.89 60.42 9.57 64.66 15.07

MACRO-F1FW + top-k init. 18.21 43.06 34.89 29.51 29.41 11.78 45.91 34.68 30.87 29.45 7.14 55.21 34.00 33.17 29.11
MACRO-F1FW + rnd init. 17.59 41.60 35.28 29.28 29.43 12.22 47.31 34.13 32.70 29.43 5.92 45.77 34.55 33.08 29.02

RCV1X

MACRO-PFW + top-k init. 32.66 34.63 20.70 3.62 3.77 31.39 52.39 21.41 5.80 6.58 16.15 49.66 21.45 7.84 5.96
MACRO-PFW + rnd init. 46.36 50.11 21.11 5.61 5.84 29.40 49.81 21.69 5.72 5.31 19.45 60.40 21.66 6.03 5.78

MACRO-RFW + top-k init. 43.28 44.99 14.56 18.41 11.95 34.15 55.24 13.15 24.89 12.73 23.78 69.71 10.76 34.66 12.44
MACRO-RFW + rnd init. 43.28 44.99 14.56 18.41 11.95 34.15 55.24 13.15 24.89 12.73 23.78 69.71 10.76 34.66 12.44

MACRO-F1FW + top-k init. 58.14 61.31 21.58 10.36 12.03 44.29 71.93 22.37 12.26 13.65 27.96 80.26 22.53 13.76 15.20
MACRO-F1FW + rnd init. 58.20 61.22 21.45 10.37 12.09 44.42 71.86 21.96 12.25 13.68 27.26 78.88 22.10 14.86 15.12

27



Published as a conference paper at ICLR 2024

4 6 8 10 12

Macro-F1@3

40

50

60

70

In
st
an

ce
-P

@
3 Pow-Kβ=0.25

Pow-Kβ=0.5

Macro-F1FW

λ = 0.9

λ = 0.7
λ = 0.5λ = 0.3

λ = 0.1
Top-K

Log-K

Mediamill

8 10 12 14

Macro-F1@5

35

40

45

50

55

In
st
an

ce
-P

@
5

Pow-Kβ=0.25

Pow-Kβ=0.5

Macro-F1FW

λ = 0.9

λ = 0.7
λ = 0.5λ = 0.3λ = 0.1Top-K

Log-K

Mediamill

11 12 13 14 15

Macro-F1@10

28

30

32

34

In
st
an

ce
-P

@
10

Pow-Kβ=0.25

Pow-Kβ=0.5

Macro-F1FW

λ = 0.9

λ = 0.7
λ = 0.5

λ = 0.3λ = 0.1Top-K

Log-K

Mediamill

24 25 26 27 28 29 30

Macro-F1@3

18

20

22

24

In
st
an

ce
-P

@
3

Pow-Kβ=0.25

Pow-Kβ=0.5

Macro-F1FW

α = 0.9

α = 0.7

α = 0.5

α = 0.3
α = 0.1Top-K

Log-K

Flickr

20 22 24 26 28 30

Macro-F1@5

10

12

14

16

18

In
st
an

ce
-P

@
5

Pow-Kβ=0.25

Pow-Kβ=0.5

Macro-F1FW

α = 0.9

α = 0.7

α = 0.5

α = 0.3

α = 0.1
Top-KLog-K

Flickr

15 20 25 30

Macro-F1@10

5

6

7

8

9

10

11

In
st
an

ce
-P

@
10

Pow-Kβ=0.25

Pow-Kβ=0.5

Macro-F1FW

α = 0.9

α = 0.7

α = 0.5

α = 0.3

α = 0.1

Top-K
Log-K

Flickr

6 8 10 12 14

Macro-F1@3

60

65

70

75

In
st
an

ce
-P

@
3

Pow-Kβ=0.25

Pow-Kβ=0.5

Macro-F1FW

λ = 0.9

λ = 0.7
λ = 0.5

λ = 0.3λ = 0.1Top-K

Log-K

RCV1X

8 10 12 14

Macro-F1@5

44

46

48

50

52

54

In
st
an

ce
-P

@
5

Pow-Kβ=0.25

Pow-Kβ=0.5

Macro-F1FW

λ = 0.9
λ = 0.7

λ = 0.5
λ = 0.3

λ = 0.1Top-K

Log-K

RCV1X

10 11 12 13 14 15 16

Macro-F1@10

28

30

32

34

In
st
an

ce
-P

@
10 Pow-Kβ=0.25

Pow-Kβ=0.5

Macro-F1FW

λ = 0.9

λ = 0.7

λ = 0.5
λ = 0.3

λ = 0.1Top-K
Log-K

RCV1X

Figure 1: Comparison of the baseline algorithms with the PU inference with mixed objectives for
k ∈ {3, 5, 10}. The green line shows the results for different interpolations between two measures.

G.3 RESULTS WITH MIXED UTILITIES

It can be noticed in the presented results that the optimization of macro-measures comes with the
cost of a significant drop in performance on instance-wise measures, which in some cases may
not be acceptable. To achieve the desired trade-off between tail and head label performance, one
can optimize a mixed utility that is a linear combination of instance-wise measures and selected
macro-measures. As an example, we present the results for such mixed utility that is a combination
of instance-wise precision@k with macro F1-measure@k:

Ψ(C) :=(1− λ)Ψ Instance-P(C) + λΨMacro-F1(C)

=

m∑
j=1

(1− λ)ψInstance-P
(
Cj
)
+ λψMacro-F1

(
Cj
)

(69)

In Figure 1, we present the plots with results on two combined measures for different values of λ.
Once again, the presented results are the mean values over 10 runs of the inference. The plots show
that the instance-vs-macro curve has a nice concave shape that dominates simple baselines in most
cases. In particular, we can initially improve macro-measures significantly with only a minor drop in
instance-measures, and only if we want to optimize even more strongly for macro-measures, we get
larger drops in instance-wise measures. A particularly notable feature of the plug-in approach is that
the curves in the figure are cheap to produce since there is no requirement for expensive re-training of
the entire architecture, so one can easily select an optimal interpolation constant according to some
criteria, such as a maximum decrease of instance-wise performance.

H CONFUSION TENSOR MEASURES

In this section, we will take a closer look at the definitions of confusion tensor metrics, and provide
some structural results. First, let us recall the definitions from the main text:
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Definition 3.1 (Binary Confusion Matrix Measure). Let C =
{
C ∈ [0, 1]

2×2 | ∥C∥1,1 = 1
}

be the

set of all possible binary confusion matrices, and C,C ′ ∈ C. Then we say that C ′ is at least as good
as C, C ′ ⪰ C, if there exists constants ϵ1, ϵ2 such that

C ′ =

(
C00 + ϵ1 C01 − ϵ1
C10 − ϵ2 C11 + ϵ2

)
, (2)

i.e., if C ′ can be generated from C by turning some false positives to true negatives and false negatives
to true positives. A function ψ : C −→ [0, 1] is called a binary confusion matrix measure (Singh &
Khim, 2022) if it respects that ordering, i.e., if for C ′ ⪰ C we have ψ(C ′) ≥ ψ(C).
Definition 3.2 (Confusion Tensor Measure). For a given number of labels m ∈ N, and two confusion
tensors C,C′ ∈ Cm , we say that C′ is at least as good as C, C′ ⪰ C, if for all labels j ∈ [m] it
holds that Cj′ ⪰ Cj . A function Ψ : Cm −→ [0, 1] is called a confusion tensor measure if it respects
this ordering, i.e., if for C′ ⪰ C we have Ψ(C′) ≥ Ψ(C).

Our first claim is that these form partial orders.
Lemma H.1 (Partial order of confusion matrices). The relation ⪰ introduced in Definition 3.1 forms
a partial order on C. Similarly, ⪰ from Definition 3.2 forms a partial order on Cm .

Proof. We start with the binary case. We need to show reflexivity, antisymmetry, and transitivity:
Reflexivity: By choosing ϵ1 = ϵ2 = 0, we see that C ⪰ C.
Antisymmetry: Let C ⪰ C ′ and C ′ ⪰ C. This implies ϵ1 = ϵ2 = 0, meaning C = C ′. Transitivity:
C ⪰ C ′ with coefficients ϵ1, ϵ2, and C ′ ⪰ C ′′ with ϵ′1, ϵ

′
2, then C ⪰ C ′′ by choosing ϵ1 + ϵ′1,

ϵ2 + ϵ′2.

The multilabel case follows directly, as it is just an m-fold Cartesian product of the binary case.

Next, we show a systematic way of turning binary confusion matrix measures into confusion tensor
measures, using either micro- or macro-aggregation.
Definition H.2 (Aggregation function). For n ∈ N, we call a function f : [0, 1]n −→ [0, 1] an
aggregation function if it is nondecreasing in each of its arguments.
Theorem H.3 (Macro-Aggregation). Let ψ1, . . . , ψm be a collection of binary confusion matrix
measures, and ϕ : [0, 1]m −→ [0, 1] be an aggregation function. Then the macro-aggregation

Ψ(C) := ϕ(ψ1

(
C1
)
, . . . , ψm(Cm)) (70)

is a confusion tensor measure.

Proof. Let C′ ⪰ C. Then, for all labels j, Cj′ ⪰ Cj , which implies ψj

(
Cj′) ≥ ψj

(
Cj
)
. As ϕ is

nondecreasing in all of its arguments, this implies Ψ(C′) ≥ Ψ(C), concluding the proof.

Theorem H.4 (Micro-Averaging). Let ψ be a binary confusion matrix measures, and ϕ be a linear
aggregation function. Define the averaged confusion matrix by applying aggregation to each entry
separately,

C = ϕ(C) :=

(
ϕ(C1

00, . . . , C
m
00) ϕ(C1

01, . . . , C
m
01)

ϕ(C1
10, . . . , C

m
10) ϕ(C1

11, . . . , C
m
11))

)
(71)

Then the micro-average
Ψ(C) := ψ(ϕ(C)) , (72)

is a confusion tensor measure.

Proof. Let C′ ⪰ C. Then, for all labels j, Cj′ ⪰ Cj , i.e., there exists a collection
(ϵ11, ϵ

1
2), . . . , (ϵ

m
1 , ϵ

m
2 ) which transform C into C′. Denote C ′ = ϕ(C′), and similarly C = ϕ(C).

Due to the linearity of ϕ, we have
C ′

00 = ϕ(C1′
00, . . . , C

m′
00 ) = ϕ(C1

00 + ϵ11, . . . , C
m
00 + ϵm1 ) = ϕ(C1

00, . . . , C
m
00) + ϕ(ϵ11, . . . ,+ϵ

m
1 ) .

Similar calculations can be done for the other components. This implies that

C ′ =

(
C00 + ϕ(ϵ11, . . . ,+ϵ

m
1 ) C01 − ϕ(ϵ11, . . . ,+ϵm1 )

C10 + ϕ(ϵ12, . . . ,+ϵ
m
2 ) C11 − ϕ(ϵ12, . . . ,+ϵm2 )

)
, (73)

i.e., C ′ ⪰ C, and thus Ψ(C′) ≥ Ψ(C).

29



Published as a conference paper at ICLR 2024

Table 8: Performance measures (%) on AmazonCat-13k of a classifier trained on the full set of labels
and a classifier trained with only 1k head labels.

Metric full labels head labels
@1 @3 @5 @1 (diff.) @3 (diff.) @5 (diff.)

Precision 93.03 78.51 63.74 93.08 (+0.05%) 76.42 (-2.66%) 58.21 (-8.67%)
nDCG 93.03 87.25 85.35 93.08 (+0.05%) 85.75 (-1.71%) 80.91 (-5.19%)
PS-Precision 49.76 62.63 70.35 49.07 (-1.39%) 57.71 (-7.84%) 57.41 (-18.40%)

Macro-Precision 13.28 32.65 44.16 4.31 (-67.54%) 5.28 (-83.82%) 4.32 (-90.21%)
Macro-Recall 1.38 11.06 30.57 0.47 (-65.61%) 2.69 (-75.71%) 4.10 (-86.59%)
Macro-F1 2.26 14.67 32.84 0.74 (-67.37%) 3.10 (-78.88%) 3.77 (-88.51%)

If the aggregation function is chosen to be the arithmetic mean, the two cases above reduce to regular
macro- and micro-averaging. This justifies our choice of (3) in the main paper, proving that this
indeed does result in an admissible confusion tensor metric.

Note that for micro-aggregation, we had to be much more strict in what aggregation functions to admit,
essentially limiting to weighted arithmetic mean, because we need to ensure that the component-wise
averaging of confusion matrices results in matrices that are comparable using the partial order.

Finally, we can also provide the following structural result:
Theorem H.5. Let Ψ1, . . . , Ψn be a collection of confusion tensor losses, and ϕ an aggregation
function. Then

Ψ(C) = ϕ(Ψ1(C), . . . , Ψn(C)) (74)
is a confusion tensor loss.

Proof. Let C′ ⪰ C, then Ψ i(C
′) ≥ Ψ i(C). Thus, by monotonicity of ϕ, we get Ψ(C′) ≥ Ψ(C).

This latter result implies that, e.g., calculating the harmonic mean of macro-precision and macro-recall
is also a confusion tensor loss.

I SENSITIVITY OF MACRO-AT-k METRICS TO TAIL LABELS

The experiment described in this section has been motivated by a similar one given in (Wei & Li,
2019). In Table 8 we compare different metrics for budgeted at k predictions. We train a probabilistic
label tree (PLT) model on the full AMAZONCAT dataset (McAuley et al., 2015) and on a reduced
version with the 1000 most popular labels only. The test is performed for both models on the full set
of labels. The standard metrics are only slightly perturbed by reducing the label space to the head
labels. This holds even for propensity-scored precision (Jain et al., 2016), a popular measure for
evaluating tail labels in extreme multi-label classification, which decreases by just 1%-20% despite
discarding over 90% of the label space. In contrast, the macro-at-k measures decrease between 60%
and 90% if tail labels are ignored.
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