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ABSTRACT

Machine learning models may capture and amplify biases present in data, leading
to disparate test performance across social groups. To better understand, evaluate,
and mitigate these possible biases, a deeper theoretical understanding of how model
design choices and data distribution properties could contribute to bias is needed.
In this work, we contribute a precise analytical theory in the context of ridge
regression, both with and without random projections, where the former models
neural networks in a simplified regime. Our theory offers a unified and rigorous
explanation of machine learning bias, providing insights into phenomena such as
bias amplification and minority-group bias in various feature and parameter regimes.
For example, we demonstrate that there may be an optimal regularization penalty or
training time to avoid bias amplification, and there can be fundamental differences
in test error between groups that do not vanish with increased parameterization.
Importantly, our theoretical predictions align with several empirical observations
reported in the literature. We extensively empirically validate our theory on diverse
synthetic and semi-synthetic datasets.

1 INTRODUCTION

Machine learning datasets encode a plethora of biases which, when used to train models, result in
systems that can cause practical harm. Datasets that encode correlations that only hold for a subset
of the data cause disparate performance when models are used more broadly, such as an X-ray
pneumonia classifier that only functions on images from certain hospitals (Zech et al., 2018). This
issue is magnified when coupled with under-representation, whereby a dataset fails to adequately
reflect parts of the underlying data distribution, often further marginalizing certain groups. Lack of
representation results in systems that might work well on average, but fail for minoritized groups,
including facial recognition systems that fail for darker-skinned women (Buolamwini & Gebru, 2018),
large language models (LLMs) that consistently misgender transgender and nonbinary people (Ovalle
et al., 2023), or image classification technology that only works in Western contexts (de Vries et al.,
2019; Richards et al., 2023).

Unfortunately, many contemporary models may exhibit bias amplification, whereby dataset biases are
not only replicated, but exacerbated (Zhao et al., 2017; Hendricks et al., 2018; Wang & Russakovsky,
2021b). While previous research has shown that amplification is a function of both dataset properties
and how we choose to construct our models (Hall et al., 2022; Sagawa et al., 2020; Bell & Sagun,
2023), it is not fully clear how bias amplification occurs mechanistically, nor do we precisely
understand which settings lead to its emergence. Thus, in this work, we propose a novel theoretical
framework that explains how model design choices and data distributional properties interact to
amplify bias, and provides an account of diverse prior work on bias amplification (Bell & Sagun,
2023) and minority-group error (Sagawa et al., 2020).

A theory of bias amplification is important for several reasons. First, as empirical research necessarily
yields only sparse data points—often focused on only the most common regimes (Bommasani
et al., 2022)—theory allows us to interpolate between past findings, and reason about how bias
emerges in under-explored settings. Second, a precise theory gives us the depth of understanding
needed in order to intervene, potentially supporting the development of both novel evaluations and
novel mitigations. Finally, beyond explaining already-known phenomena, our theory makes novel
predictions, suggesting new avenues for future research.
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1.1 MAIN CONTRIBUTIONS

In this work, we develop a unifying and rigorous theory of machine learning bias in the settings of
ridge regression with and without random projections. In particular, we precisely analyze test error
disparities between groups (e.g., different demographic or protected categories) with different data
distributions when training on a mixture of data from these groups. We characterize these disparities
in high dimensions using operator-valued free probability theory (OVFPT), thereby avoiding possibly
loose bounds on critical quantities. Our theory encompasses different parameterization regimes,
group sizes, label noise levels, and data covariance structures. Moreover, our theory has applications
to important problems in machine learning bias that have recently been empirically investigated:

• Bias amplification. Even in the absence of group imbalance and spurious correlations, a single
model that is trained on a combination of data from different groups can amplify bias beyond
separate models that are trained on data from each group (Bell & Sagun, 2023). We reproduce and
analyze the bias amplification results of Bell & Sagun (2023) in controlled settings, and additionally
provide an in-depth theoretical treatment of these results. We further observe how stopping model
training early or tuning the regularization hyperparameter can alleviate bias amplification.

• Minority-group error. Overparamaterization can hurt test performance on minority groups due
to spurious features (Sagawa et al., 2020; Khani & Liang, 2021). We theoretically analyze how
model size and extraneous features affect minority-group error.

We extensively empirically validate our theory in diverse controlled and semi-synthetic settings.
Specifically, we show that our theory aligns with practice in the cases of: (1) bias amplification
with synthetic data generated from isotropic covariance matrices and the semi-synthetic dataset
Colored MNIST (Arjovsky et al., 2019), and (2) minority-group error under different model sizes
with synthetic data generated from diatomic covariance matrices. In these applications, we expose
new, interesting phenomena in various regimes. For example, a larger number of features than
samples can amplify bias under overparameterization, there may be an optimal regularization penalty
or training time to avoid bias amplification, and there can be fundamental differences in test error
between groups that do not vanish with increased parameterization. Ultimately, our theory of machine
learning bias can inform strategies to evaluate and mitigate possible unfairness in machine learning,
or be used to caution against the usage of machine learning in certain applications.

1.2 RELATED WORK

Bias amplification. A long line of research has explored how machine learning exacerbates biases
in data. For example, a single model that is trained on a combination of data from different groups
can amplify bias (Zhao et al., 2017; Wang & Russakovsky, 2021a), even beyond what would be
expected when separate models are trained on data from each group (Bell & Sagun, 2023). Hall
et al. (2022) conduct a systematic empirical study of bias amplification in the context of image
classification, finding that amplification can vary greatly as a function of model size, training set size,
and training time. Furthermore, overparameterization, despite reducing a model’s overall test error,
can disproportionately hurt test performance on minority groups (Sagawa et al., 2020; Khani & Liang,
2021). Models can also overestimate the importance of poorly-predictive, low-signal features for
minority groups, thereby hurting performance on these groups (Leino et al., 2018). In this paper, we
distill a holistic theory of how model design choices and data distributional properties affect disparate
test performance across groups, which encompasses seemingly disparate bias phenomena.

High-dimensional analysis of machine learning. A suite of works have analyzed the expected
dynamics of machine learning in appropriate asymptotic scaling limits e.g., the rate of features d
to samples n converges to a finite values as d and n respectively scale towards infinity (Adlam &
Pennington, 2020b; Tripuraneni et al., 2021; Lee et al., 2023). Notably, Bach (2024) theoretically
analyzes the double descent phenomenon (Spigler et al., 2019; Belkin et al., 2019) in ridge regression
with random projections by computing deterministic equivalents for relevant random matrix quantities
in a proportionate scaling limit. Like Adlam & Pennington, Tripuraneni et al., and Lee et al., we
leverage the tools of OVFPT (Mingo & Speicher, 2017), which is at the intersection of random matrix
theory (RMT) and functional analysis. Our theory, however, cannot be recovered as a special case
of the theories presented in these papers. Furthermore, our theory non-trivially generalizes (Bach,
2024), which we recover in Corollary I.1, and requires more powerful analytical techniques.
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Some prior theoretical work precisely analyzes the bias of models trained on a mixture of data from
different groups in a high-dimensional setting (Mannelli et al., 2022; Jain et al., 2024). Like (Mannelli
et al., 2022; Jain et al., 2024), we study linear models that are trained with regularization, and measure
bias as the difference in test performance of a model between groups. We further consider some
similar factors that give rise to bias amplification (e.g., group imbalance, group variance, inter-group
similarity, and dataset size). We also share some theoretical conclusions, such as bias can occur even
when the groups have the same ground-truth weights (see Section 5) and are balanced (Section 4.1).

However, the main distinction between our work and (Mannelli et al., 2022; Jain et al., 2024)
is that we precisely characterize how models amplify bias in different parameterization regimes.
(Mannelli et al., 2022; Jain et al., 2024) only consider the setting where the number of samples
n and features d proportionally scale to infinity, while we consider the setting n, d → ∞ and the
number of parameters m → ∞. This enables us to expose new, richer insights into the impact
of (over/under-)parameterization on bias amplification (see Figure 1, Section 4, and Section 5).
Additionally, (Mannelli et al., 2022) employs the replica method, which is non-rigorous, while we use
OVFPT, which is entirely rigorous. Furthermore, while (Mannelli et al., 2022) discusses the paradigm
of training separate models for each group, it theoretically focuses on a single model trained for both
groups. In contrast, we theoretically treat both these paradigms (i.e., to isolate the contribution of the
model itself to bias) and validate our theory extensively. Moreover, (Mannelli et al., 2022; Jain et al.,
2024) study the application of linear classification to Gaussian data and ground-truth weights with
isotropic covariance; in contrast, we study the application of regression with random projections (a
simplified model of NNs) to Gaussian data and weights with more general covariance structure. This
allows us to analyze additional factors of bias, such as group covariance structure and label noise.

2 PRELIMINARIES

2.1 DATA DISTRIBUTIONS

We consider a ridge regression problem on a dataset from the following multivariate Gaussian mixture
with two groups s = 1 and s = 2. These groups could represent different demographic or protected
categories, for example.

(Group ID) Law(s) = Bernoulli(p), (1)
(Features) Law(x | s) = N (0,Σs), (2)
(Ground-truth weights) Law(w∗

1) = N (0,Θ/d), Law(w∗
2 − w∗

1) = N (0,∆/d), (3)

(Labels) Law(y | s, x) = N (f⋆s (x), σ
2
s), with f⋆s (x) = x⊤w∗

s . (4)

The scalar p ∈ (0, 1) controls for the relative size of the two groups (e.g., p = 1/2 in the balanced
setting). For simplicity of notation, we define p1 = p and p2 = 1− p. The d× d positive-definite
matrices Σ1 and Σ2 are the covariance matrices for the different groups. The d-dimensional vectors
w∗

1 and w∗
2 are the ground-truth weights vectors for each group. w∗

1 and w∗
2 − w∗

1 are independently
sampled from zero-mean Gaussian distributions with covariances Θ and ∆, respectively. In particular,
setting ∆ = 0 corresponds to the case that both groups have identical ground-truth weights. Finally,
σ2
s corresponds to the label-noise level for each group s. While we consider the case of two groups

only for conciseness, our theoretical analysis readily extends to any finite number of groups.

2.2 MODELS AND METRICS

Learning. A learner is given an IID sample D = {(x1, y1), . . . , (xn, yn)} = (X ∈ Rn×d, Y ∈ Rn)
of data from the above distribution and it learns a model for predicting the label y from the feature
vector x. Thus, X is the total design matrix with ith row xi, and y the total response vector with
ith component yi. Let Ds = (X ∈ Rns×d, Y ∈ Rns) be the data pertaining only to group s, so that
D = D1 ∪ D2 is a partitioning of the entire dataset. Two choices are available to the learner: (1)
learn a model a f̂s ∈ F on each dataset Ds, or (2) learn a single model f̂ ∈ F on the entire dataset
D. In practice, a choice is made based on scaling vs. personalization considerations.

We consider two solvable settings for linear models: classical ridge regression in the ambient input
space, and ridge regression in a feature space given by random projections. The latter allows us to the
study the role of model size in machine learning bias, by varying the output dimension of the random
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projection mapping. This output dimension m controls the size of a neural network in a simplified
regime (Maloney et al., 2022; Bach, 2024).

Classical Ridge Regression. We will first consider the function class F ⊆ {Rd → R} of linear ridge
regression models without random projections. For any w ∈ Rd, the model f is defined by

f(x) = x⊤w, for all x ∈ Rd, (5)

and is learned with ℓ2-regularization. We define the generalization error (a.k.a. risk) of any model f
w.r.t. to group s as

Rs(f) = E [(f(x)− f⋆s (x))
2 | s]. (6)

We consider ridge regression because in addition to its analytical tractability, it can be viewed as the
asymptotic limit of many learning problems (Dobriban & Wager, 2018; Richards et al., 2021; Hastie
et al., 2022). We now formally define some metrics related to bias amplification.

Definition 2.1 (Bias Amplification). We isolate the contribution of the model to bias when learning
from data with different groups. This intuitive conceptualization of bias amplification allows us
measurements. Further grounding it in the literature (Bell & Sagun, 2023), we define the Expected
Difficulty Disparity (EDD) as:

EDD = |ER2(f̂2)− ER1(f̂1)|, (7)

where the expectations are w.r.t. randomness in the training data and any other sources of randomness
in the models. The EDD captures the difference in test risk between models trained and evaluated
on each group separately. In contrast, we define the Observed Difficulty Disparity (ODD) as:

ODD = |ER2(f̂)− ER1(f̂)|. (8)

The ODD captures the bias (i.e., difference in test risk between groups) of a model trained on both
groups. Finally, we define the Amplification of Difficulty Disparity (ADD) as ADD = ODD

EDD . We say
that bias amplification occurs when ADD > 1.

Ridge Regression with Random Projections. We consider neural networks in a simplified regime
which can be approximated via random projections, i.e., a one-hidden-layer neural network f(x) =
v⊤Sx with a linear activation function. In particular, we extend classical ridge regression by
transforming our learned weights as ŵ = Sη̂ ∈ Rd, where S ∈ Rd×m is a random projection with
entries that are IID sampled from N (0, 1/d). Ridge regression with random projections has been
posited as a reasonable approximation for NNs in the random features regime (Yehudai & Shamir,
2019; Adlam & Pennington, 2020a). For example, it has been argued that as the number of parameters
m→ ∞ (as in our high-dimensional setting), gradient descent effectively learns a linear predictor
over m random features (Yehudai & Shamir, 2019). Furthermore, (Adlam & Pennington, 2020a;
Bach, 2024, inter alia) are able to reproduce interesting phenomena like double descent using the
random features model. Nevertheless, (Yehudai & Shamir, 2019) has shown that in practice, “random
features cannot be used to learn even a single ReLU neuron with standard Gaussian inputs,” which
suggests that some mechanisms of bias amplification could be different in nonlinear networks.

3 THEORETICAL ANALYSIS

Assumptions. Some of our theorems will require standard technical assumptions that we detail here
and in Appendix B. Assumptions 3.1 and 3.2 describe the proportionate scaling limits, standard in
RMT, in which we will work. These limits enable us to derive deterministic formulas for the expected
test risk of models. Our experiments (see Sections 4 and 5) validate our theory.

Assumption 3.1. In the case of classical ridge regression, we will work in the following proportionate
scaling limit:

n, n1, n2, d→ ∞, n1/n→ p1, n2/n→ p2, d/n1 → ϕ1, d/n2 → ϕ2, d/n→ ϕ, (9)

for some constants ϕ1, ϕ2, ϕ ∈ (0,∞). The scalar ϕ captures the rate of features to samples. Observe
that ϕ = p1ϕ1 and ϕ = p2ϕ2.

4
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Assumption 3.2. In the case of ridge regression with random projections, we will work in the
following proportionate scaling limit:

n, n1, n2, d→ ∞, n1/n→ p1, n2/n→ p2, d/n→ ϕ, m/n→ ψ, m/d→ γ, (10)
d/n1 → ϕ1, m/n1 → ψ1, d/n2 → ϕ2, m/n2 → ψ2, (11)

for some constants ϕ1, ϕ2, ϕ, ψ1, ψ2, ψ ∈ (0,∞). We note that ϕγ = ψ and ϕsγ = ψs. The scalar ψ
captures the rate of parameters to samples, and thus quantifies model capacity. The setting ψ > 1
(resp. ψ < 1) corresponds to the overparameterized (resp. underparameterized) regime.

3.1 WARM-UP: CLASSICAL LINEAR MODEL

To provide a mechanistic understanding of how machine learning models may amplify bias, our
theory elucidates differences in the test error between groups when a single model is trained on a
combination of data from both groups vs. when separate models are trained on data from each group.
We first consider the classical ridge regression model in Appendix C before studying ridge regression
with random projections in the next section.

3.2 MAIN RESULT: RIDGE REGRESSION WITH RANDOM PROJECTIONS

Single Random Projections Model Learned for Both Groups. For a more realistic but still
analytically solvable setup, we now consider the ridge regression model f̂ with random projections,
which is learned using empirical risk minimization and ℓ2-regularization with penalty λ. The
parameter ŵ of the linear model f̂ is given by the following optimization problem:

ŵ = Sη̂ ∈ Rd, with ŵ = arg min
η∈Rm

L(η) =

2∑
s=1

n−1∥XsSη − Ys∥22 + λ∥η∥22. (12)

Explicitly, one can write ŵ = S(Z⊤Z+nλIm)−1Z⊤Y , where Z := XS. As previously mentioned,
ridge regression with random projections can be viewed as a simplification of the high-dimensional
dynamics of neural networks that still captures the effect of model size on machine learning bias.
Before presenting our result for the random projections model, we provide some relevant definitions.

Definition 3.1. Let (e1, e2, τ, u1, u2, ρ) be the unique positive solution to the following fixed-point
equations:

1/τ = 1 + t̄rLK−1, 1/es = 1 + ψτ t̄r ΣsK
−1, for s = 1, 2, (13)

ρ = τ2t̄r (γρL2 + λ2D)K−2, us = ψe2s t̄r Σs(γτ
2D + ρId)K

−2, for s = 1, 2, (14)
where: L = p1e1Σ1 + p2e2Σ2, K = γτL+ λId, D = p1u1Σ1 + p2u2Σ2 +B. (15)

For deterministic d× d PSD matrices A and B, we define the following auxiliary quantities:

h
(1)
j (A) := pjγejτ t̄rAΣjK

−1, (16)

h
(2)
j (A,B) := pjγt̄rAΣj(γejτ

2B + pj′γτ
2Σj′(ejuj′ − ej′uj) + ejρId − λujτId)K

−2, (17)

h
(3)
j (A,B) := pj t̄rAΣj(γe

2
jpjΣj(pj′γτ

2uj′Σj′ + γτ2B + ρId)

+ uj(pj′γej′τΣj′ + λId)
2)K−2, (18)

h
(4)
j (A,B) := pjγpj′ t̄r ΣjΣj′A(γτ

2(ejej′B − pje
2
juj′Σj − pj′Σj′e

2
j′uj)

− λτ(ejuj′ + ej′uj)Id + ejej′ρId)K
−2. (19)

We now present Theorem 3.1, which is our main contribution. Theorem 3.1 presents a a novel
bias-variance decomposition for the test error Rs(f̂) for each group s = 1, 2 in the context of ridge
regression with random projections. It is a non-trivial generalization of theories in high-dimensional
machine learning, which requires the powerful machinery of OVFPT (see proof in Appendix F).
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Figure 1: ODD, EDD, and ADD phase diagrams for ridge regression with random projections.
We plot the bias amplification phase diagrams with respect to ϕ (rate of features to samples) andψ (rate
of parameters to samples), as predicted by our theory for ridge regression with random projections
(Theorems 3.1, 3.2). Red regions indicate theoretical predictions greater than 1 (i.e., bias amplification
in the rightmost plot), while blue regions indicate theoretical predictions less than 1 (i.e., bias
deamplification in the rightmost plot). Darkness indicates intensity. We consider isotropic covariance
matrices: Σ1 = 2Id,Σ2 = Id, Θ = 2Id, ∆ = Id. Additionally, n = 1 × 104, σ2

1 = σ2
2 = 1. We

further choose λ = λ1 = λ2 = 1× 10−6 to approximate the minimum-norm interpolator. We show
that bias amplification can occur even in the balanced data setting, i.e., when p1 = p2 = 1/2.

Theorem 3.1. Under Assumptions B.1 and 3.2, it holds that Rs(f̂) ≃ Bs(f̂) + Vs(f̂), with

Vs(f̂) =

2∑
j=1

σ2
jϕh

(2)
j (Id,Σs), (20)

Bs(f̂) = t̄rΘsΣs + h
(3)
1 (Θs,Σs) + h

(3)
2 (Θs,Σs) + 2h

(4)
1 (Θs,Σs) (21)

− 2h
(1)
1 (ΘsΣs)− 2h

(1)
2 (ΘsΣs) + h

(3)
s′ (∆,Σs) (22)

− 2

{
0, s = 1,

h
(3)
1 (∆,Σ2) + h

(4)
2 (∆,Σ2)− h

(1)
1 (∆Σ2), s = 2.

(23)

We discuss methods for and the complexity of solving the above fixed-point equations in Appendix
H. The unregularized limit corresponds to the minimum-norm interpolator, and alternatively may be
viewed as training a neural network till convergence (Ali et al., 2019).

Separate Random Projections Model Learned for Each Group. We now consider the ridge regres-
sion models f̂1 and f̂2 with random projections, which are learned using empirical risk minimization
and ℓ2-regularization with penalties λ1 and λ2, respectively. In particular, we have the following
optimization problem for each group s: argminη∈Rm L(w) = n−1

s ∥XsSη − Ys∥22 + λs∥η∥22. Alter-
natively, the reader should think of each f̂s as the limit of f̂ when ps → 1. In this setting, we deduce
Theorem 3.2, which follows from Theorem 3.1.

Theorem 3.2. Under Assumptions B.1 and 3.2, it holds that Rs(f̂s) ≃ Bs(f̂s) + Vs(f̂s), where
Vs(f̂s) = limps→1 Vs(f̂) and Bs(f̂s) = limps→1Bs(f̂). We relegate the explicit formulae for
Bs(f̂s) and Vs(f̂s) to Appendix G.

Phase Diagram. The phase diagram for the random projections model (Figure 1) offers richer
insights into how model capacity, in interaction with the number of features and samples, affects
bias amplification. In the ODD and EDD profiles, we observe apparent phase transitions at ϕ = ψ
(when ψ < 0.5) and ψ = 0.5 (i.e., ψ1 = ψ2 = 1), where these metrics begin decreasing significantly.
In contrast, at ψ = 1 and ϕ = 1, the ODD seems to drastically increase. Furthermore, at ϕ = ψ
(when ψ < 0.5) and ϕ = 0.5 (when ψ > 0.5), the EDD greatly increases. Accordingly, in the
ADD profile, we observe apparent phase transitions at ϕ = ψ (when ψ < 0.5), ψ = 0.5, ψ = 1,
and ϕ = 1, where bias amplification begins occurring (i.e., ADD > 1). However, bias seems to be
consistently deamplified (i.e., ADD < 1) at ϕ = ψ (when ψ < 0.5) and ϕ = 0.5 (when ψ > 0.5).
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4 BIAS AMPLIFICATION

We empirically show how ridge regression models with random projections may amplify bias when a
single model is trained on a combination of data from different groups vs. when separate models are
trained on data from each group (Bell & Sagun, 2023). We further show how our theory: (1) predicts
bias amplification, and (2) exposes new, interesting bias amplification phenomena in various regimes.

4.1 ISOTROPIC COVARIANCE

Setup. To be consistent with the setting of Bell & Sagun (2023), we set different ground-truth weights
for the groups (Θ = 2Id,∆ = Id). We additionally consider balanced data (p1 = p2 = 1/2) without
spurious correlations (Σ1 = a1Id,Σ2 = a2Id, for a1, a2 > 0). We further choose λ = 1× 10−6 to
approximate the minimum-norm interpolator; we henceforth set λ = λ1 = λ2 for simplicity. We
present other experimental details in Appendix J.1. We modulate a1, a2, σ2

1 , σ
2
2 , as well as ψ (rate of

parameters to samples) and ϕ (rate of features to samples) to understand the effects of model capacity
and sample size on bias amplification. We consider diverse and dense values of these variables to
obtain a clear picture of when and how models amplify bias.

Validation of Theory. Figure 2 and the figures in Appendix K reveal that Theorems 3.1 and 3.2
closely predict the ODD, EDD, and ADD of ridge regression models with random projections
under diverse settings. As indicated by the error bars, some of our empirical estimates (especially
those with larger magnitude) have higher variance and their variance is influenced by the choice of
ψ, ϕ, a1, a2, σ

2
1 , σ

2
2 . Notably, our theory predicts the observation of Bell & Sagun (2023) that

models can amplify bias even with balanced groups and without spurious correlations. We
present new phenomena predicted by our theory below.

Effect of Label Noise. In the ODD profile, the left tail is higher when the noise ratio c = σ2
2/σ

2
1

is larger (compared to when it is lower), which suggests that under overparameterization, a larger
noise ratio can increase disparities in test risk between groups when a single model is learned for
both groups. We analytically explain this phenomenon in Appendix L. In contrast, the EDD curve
is generally higher for larger c, suggesting that a larger noise ratio increases disparities in test risk
when a separate model is learned for each group. We replicate this finding on real data in Figure 3.
Additionally, we observe that the ADD grows faster close to the interpolation threshold for larger c,
which suggests that a larger noise ratio can increase the maximum possible bias amplification.

Effect of Model Size. We observe interesting divergent behavior as ψ (rate of parameters to samples)
increases for different ϕ (rate of features to samples). When ϕ > 1, as ψ increases, the ODD
increases and then decreases, peaking at the interpolation threshold at ψ = 1. Similarly, when
ϕ > 0.5 (i.e., ϕ1 = ϕ2 > 1), as ψ increases, the EDD increases and then decreases, peaking at
the interpolation threshold at ψ = 0.5 (i.e., ψ1 = ψ2 = 1). Accordingly, when ϕ > 0.5, bias is
effectively deamplified (i.e., ADD ≪ 1) at ψ = 0.5 and when ϕ > 1, bias amplification peaks (i.e.,
ADD ≫ 1) at ψ = 1. In contrast, when ϕ < 1, the ODD decreases as ψ increases, plateauing at
different finite values. Similarly, when ϕ < 0.5, the EDD decreases and plateaus as ψ increases. A
notable exception to these trends occurs when ϕ ≈ 1, with the correspondingODD andADD curves
consistently increasing as ψ increases, plateauing at a significantly larger value (i.e., ADD ≫ 1)
than the curves corresponding to other values of ψ. Hence, overparameterization can greatly amplify
bias when ϕ = 1. Regardless of the regime of ϕ, the left tail of the ADD profile appears to plateau at
1. The right tail plateaus at different finite values, with the curves corresponding to ϕ > 1 consistently
plateauing above 1. This suggests that when ϕ > 1, overparameterization amplifies bias.

Some of the peaks and valleys in Figure 2 can be attributed to double descent. However, double
descent in high dimensions has only been studied in the setting where data are drawn from single
Gaussian distribution; this corresponds to the EDD setting, where a separate model is learned for
each group. As expected, in Figure 1, we observe a double-descent peak in the EDD at ψ = 0.5
(i.e., ψ1 = ψ2 = 1). However, our work extends double descent to the setting of training a model
on a mixture of Gaussians. By doing so, we find, e.g., a series of interpolation thresholds as ψ
increases, rather than just a single pole Figure 4. However, our theory of bias amplification cannot
be reduced exclusively to double descent. For example, we note other interpolation poles in Figure
1 (e.g., at ϕ = ψ). In addition, much of Sections 4, 5, and L are devoted to studying the tails or
limiting behavior of bias amplification with respect to ψ and ϕ. Our linear activation assumption
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Figure 2: Our theory predicts that models can amplify bias even with balanced groups and
without spurious correlations. We empirically validate our theory (Theorems 3.1 and 3.2) for
ODD, EDD, and ADD under the setup described in Section 4.1, with a1 = 0.5, a2 = 1, σ2

1 = 1,
and σ2

2 = 1× 10−5. The solid lines capture empirical values while the corresponding lower-opacity
dashed lines represent what our theory predicts. We plot ODD and EDD on the same scale for
easy comparison, and include a black dashed line at ADD = 1 to contrast bias amplification vs.
deamplification. We include the remaining plots with error bars in Appendix K.

likely does not have a confounding effect here, as interpolation poles have also been observed in
nonlinear networks in the NTK regime (Adlam & Pennington, 2020b).

Effect of Number of Features. In the ODD and ADD profiles, when ϕ > 1, the right tail plateaus
at higher values (> 1) when ϕ is closer to 1. This suggests that with a similar number of features and
samples, under overparameterization, bias amplification increases and may even be inevitable. In
the EDD profile, when ϕ > 1, the right tail plateaus at higher values when ϕ is larger. In contrast,
when ϕ < 1, the right tail of the ODD and EDD curves plateaus at higher values when ϕ is larger.
Regardless of the regime of ϕ, the left tails of the ODD and EDD curves are higher for larger ϕ.

4.2 REGULARIZATION AND TRAINING DYNAMICS

We now explore how regularization and training dynamics affect bias amplification.

Setup. We revisit the setting described in Section 4.1. We modulate a1, a2, ψ (rate of parameters to
samples), as well as λ (regularization penalty) to understand the effects of regularization and early
stopping on bias amplification. We fix σ2

1 = σ2
2 = 1, and the rate of features to samples ϕ = 0.75.

Effect of Regularization and Training Time. In simplistic settings, we can simulate model learning
over training time t by setting λ = 1/t (Ali et al., 2019). In Figure 11 (in the appendix), we
observe that regardless of the regime of ψ, ADD ≈ 1 (i.e., there is neither bias amplification nor
deamplification) when there is high regularization or a short training time. When ψ > 1 (i.e., in
the overparameterized regime), the ADD is generally greater than 1 across values of λ (i.e., bias is
amplified), while when ψ < 1 (i.e., in the underparameterized regime), the ADD is less than 1 (i.e.,
bias is deamplified). Moreover, when ψ > 1, as regularization decreases (or training time increases),
bias amplification increases and plateaus. In contrast, when ψ < 1, as regularization decreases (or
training time increases), bias deamplification increases and plateaus. A notable exception to this trend
occurs when ψ is close to 1, where bias is initially deamplified and then amplified as λ decreases
(or t increases). This suggests that there may be an optimal regularization penalty or training
time to avoid bias amplification and increase bias deamplification. This aligns with the finding of
Hall et al. (2022) that bias amplification can vary substantially during training. Intuitively, as training
progresses, overparameterized models may discover “shortcut” associations that do not generalize
equally well for different groups, yielding bias amplification (Geirhos et al., 2020).

The calibration λ = 1/t may not in general yield a theoretically tight picture of how bias evolves with
t. The use of discrete gradient descent in practice rather than continuous-time gradient flows might
yield further discrepancies. However, the calibration λ = 1/t yields a ratio of gradient flow to ridge
risk that is at most 1.6862, with no assumptions on the features X (Ali et al., 2019). Moreover, in the
controlled settings considered by (Ali et al., 2019) and our work, this ratio empirically appears to be
quite close to 1, and is thus sufficient for extrapolating our results. (Jain et al., 2024) also analytically
characterizes the evolution of model bias by exactly solving a set of ODEs in their setting; their
rich analysis identifies three phases and the crossing phenomenon. However, (Jain et al., 2024) does
not consider the effect of (over/under-)parameterization on bias evolution. In contrast, our analysis,
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despite relying on the simplistic calibration λ = 1/t, reveals divergent behavior of how bias evolves
depending on whether the model is under or over-parameterized (see Appendix K).

Corroboration on Real Data. We further investigate the effect of training time on bias amplification
on a more realistic dataset. We train a convolutional neural network (CNN) on Colored MNIST (see
Appendix J.2 for more details). Colored MNIST is a semi-synthetic dataset derived from MNIST
where digits are randomly re-colored to be red or green (Arjovsky et al., 2019). We treat the color
of each digit as its group, and we manipulate the groups to have different levels of label noise. In
our experimental protocol: (1) the color of each digit (in both train and test) is chosen uniformly
at random (i.e., with probability 0.5) and independently of the label; (2) the labels of red digits are
flipped with probability 0.05 while the labels of green digits are flipped with probability 0.25; (3)
labels are binarized (i.e., digits 0-4 correspond to 0 while digits 5-9 correspond to 1); and (4) each
training step constitutes a step of gradient descent based on a batch of 250 instances. Although
Colored MNIST is a classification task and we use a complex CNN architecture, our theory correctly
predicts that as the training time t increases, the ODD of the CNN is relatively low while the
EDD is much larger, producing bias deamplification (Figure 3).

15 30 45 60 75
Training time t

0.0

0.1

0.2

0.3

0.4

Di
ffi

cu
lty

 d
isp

ar
ity

ODD
EDD

Figure 3: Our theory predicts that dis-
parate label noise between groups deam-
plifies bias on Colored MNIST. We plot
the ODD and EDD of a CNN over train-
ing time t for Colored MNIST. As t in-
creases, the ODD is relatively low while
the EDD is noticeably higher. Please refer
to Figure 6 (in the appendix) for error bars.

Taking t → ∞ corresponds to the setting of λ → 0+

in our theory (Theorems 3.1, 3.2). Because we as-
sign the colors at random, the only difference in im-
age features between groups would be color; there-
fore, we expect the covariance matrices Σ1 and Σ2

to coincide and ∆ = 0 (i.e., w∗
1 = w∗

2). Note that
we do not make any assumptions about the structure
of Σ1,Σ2. Furthermore, p1 = p2 = 1/2, and thus,
ϕ1 = ϕ2 and ψ1 = ψ2. Additionally, we analo-
gize the probability of label flipping to label noise
in ridge regression. Hence, e1 = e2, u1 = u2.
Accordingly, limλ→0+ B1(f̂) = limλ→0+ B1(f̂1) ≈
limλ→0+ B2(f̂) = limλ→0+ B2(f̂2). Simultane-
ously, limλ→0+ V1(f̂) ≈ limλ→0+ V2(f̂). However,
limλ→0+ V1(f̂1) ≈ σ2

1/2 · V = 0.05/2 · V = 0.025V

(where V = ϕ1h
(2)
1 (Id,Σ)), while limλ→0+ V2(f̂2) ≈

σ2
2/2 · V = 0.25/2 · V = 0.125V . This results in
ODD ≈ 0 while EDD ≈ 0.1|V |, which explains the
divergence of ODD and EDD in Figure 3. Intuitively,
the high label noise for group 2 prohibits the separate
model f̂2 from achieving a low test risk compared to f̂1; the single model f̂ achieves a comparable
test risk on both groups, effectively deamplifying bias, because of learning signals from both groups.
This phenomenon has been termed positive transfer in the literature (Mannelli et al., 2022). However,
our treatment of bias amplification adds nuance to the discussion of positive transfer in (Mannelli
et al., 2022), which claims that the EDD of a model generally tends to be higher than the ODD.
Instead, we show that the bias amplification ADD = ODD

EDD of a model can vary greatly (going both
below and above 1) as a function of the rate of parameters to samples ψ, even for a fixed rate of
features to samples ϕ, or α as is used in (Mannelli et al., 2022) (see Figure 2).

5 MINORITY-GROUP ERROR

Recent work has revealed that overparameterization may hurt test performance on minority groups
due to spurious features (Sagawa et al., 2020; Khani & Liang, 2021). Our theory provides new
insights into how model size and extraneous features affect minority-group error.

Setup. Please refer to Section J.1 for space reasons.

Interpolation Thresholds. The together test riskR2 for the minority group has different interpolation
thresholds as ψ increases depending on ϕ and π (fraction of core features). Notably, as ϕ increases,
the interpolation thresholds occur at larger model sizes, culminating at ψ = 1. This suggests that
for a higher rate of features to samples, a larger model size can greatly increase the together test
risk of group 2. Furthermore, the interpolation thresholds all occur closer to ψ = 1 for larger π,
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Figure 4: Minority-group test risk can peak with different model sizes depending on the rate of
features to samples. We empirically demonstrate that minority-group bias is affected by extraneous
features. We validate our theory (Theorems 3.1 and 3.2) for together R1, R2 (i.e., single model
learned for both groups) and separate R1, R2 (i.e., separate model learned per group) under the setup
described in Section 4.2, with a1 = 2, b2 = 0.2, and π = 0.5. The solid lines capture empirical
values while the corresponding lower-opacity dashed lines represent what our theory predicts. We
include a black dashed line atADD = 1 to contrast bias amplification vs. deamplification. All y-axes
are on the same scale for easy comparison. The remaining plots with error bars are in Appendix O.

collapsing to a single threshold at ψ = 1 when π → 1 as in Appendix K. Therefore, a lower fraction
of core features can yield more possible model sizes that increase the test risk of group 2. In addition,
the together R2 exhibits a steeper rate of growth around the interpolation thresholds for larger b2,
suggesting that a higher variance in the extraneous features can also increase the together test risk of
group 2. The phenomenon of different interpolation thresholds is not visible for R2 when a separate
model is trained per group, nor for R1.

Overparameterization. The right tails of the together R2 curves plateau at different horizontal
values depending on ϕ. In particular, for ϕ closer to 1, the R2 curves plateau at a higher value,
suggesting that a similar number of features and samples can exacerbate minority-group error under
overparameterization. Furthermore, when ϕ is close to 1, the together R1 curves plateau at lower
values than their corresponding together R2 curves; this suggests that there can be fundamental
differences in test error between groups, and thus fundamental model biases, that do not disappear
even with increased model capacity. This phenomenon diminishes as the fraction of core features
increases, and is not visible in the separate R2 curves. Our experiments support the finding of Sagawa
et al. (2020) that overparameterization with spurious features increases test risk disparities
between groups, and we nuance this finding by identifying that this phenomenon is most prominent
in the regime where the number of features tends towards the number of samples.

6 CONCLUSION

In this paper, we present a unifying, rigorous, and effective theory of machine learning bias in the
settings of ridge regression with and without random projections. We demonstrate that our theory
provides interesting insights into bias amplification and minority-group error in different feature
and parameter regimes. These findings can inform strategies to evaluate and mitigate unfairness in
machine learning. However, there are practical challenges to determining whether a model is prone
to bias amplification. These include robustly estimating the feature covariance matrices (Bickel &
Levina, 2008) and label noises (Frénay & Kabán, 2014) for groups from sample data, especially for
minority groups which have limited data. Even so, practitioners can use our theory to form intuition
about when disparities in the variability of features and labels across groups can amplify bias.

Our methods and theory are easily extendable to analyze the case of more than two groups and can
accommodate label noise sampled from various distributions. However, our theory is not directly
extendable to different proportionate scaling limits, e.g., d2/n has a finite limit instead of d/n.
Additionally, our theory requires approximately normally-distributed data and thus does not currently
account for missing features, which are common in the real world (Feng et al., 2024). Furthermore,
our theory implicitly assumes that group information is known, which is not always true (Coston et al.,
2019); however, because we work in an asymptotic scaling limit, having access to group information
with min(o(n1), o(n2)) noise is sufficient. As future work, we can leverage “Gaussian equivalents”
(Goldt et al., 2022) to extend our theory to wide, fully-trained networks in the NTK (Jacot et al.,
2018) and lazy (Chizat et al., 2019) regimes; this will enable us to understand how, apart from model
size, other design choices like activation functions and learning rate may affect bias amplification.
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A WARM-UP: DERIVING MARCHENKO-PASTUR LAW VIA
OPERATOR-VALUED FREE PROBABILITY THEORY

We provide a detailed example of how to apply linear pencils and operator-valued free probability
theory to derive the Marchenko-Pastur law. Let S = (1/n)X⊤X ∈ Rd×d, the empirical covariance
matrix for an n× d random matrix X with IID entries from N (0, 1). If n tends to infinity while d
is held fixed, then S converges to the population covariance matrix, here Σ = Id. If d also tends
to infinity, then the limit seizes to exist. It turns out that one can still make sense of the limiting
distribution of eigenvalues of S in case d/n stays constant, namely the behavior of the random
histogram:

µ̂n =
1

d

n∑
i=1

δλ̂i , (24)

where λ̂1, . . . , λ̂d are the eigenvalues of S. Let us state without any delay that in the aforementioned
limit, i.e.,

n, d→ ∞, d/n→ γ ∈ (0,∞), (25)

µ̂n converges to a deterministic law µMP on R called the Marchenko-Pastur law. This is central to the
field of random matrix theory (RMT), a central tool in probability theory, statistical analysis of neural
networks, finance, etc. We are interested in an even more powerful tool – free probability theory
(FPT) – is powerful enough to give a precise picture of deep learning in certain linearized regimes
(e.g., random features, NTK, etc.) and interesting phenomena (e.g., triple descent, etc.) via analytic
calculation.

A.1 STEP 1: CONSTRUCTING A LINEAR PENCIL

For any positive λ, consider the 2× 2 block matrix Q defined by:

Q =

[
In − X√

nλ
X⊤
√
nλ

Id

]
. (26)

Let t̄r be the normalized trace operator on square matrices and set φ = E ◦ t̄r . This gives random
(n + d) × (n + d) matrices the structure of a von Neumann algebra A. Define a 2 × 2 matrix
G = G(Q) by:

G = (I2 ⊗ φ)Q−1, i.e gi,j = φ([Q−1]i,j) = [φ(Q−1)]i,j for all i, j ∈ {1, 2}. (27)

Thus, the operator (I2 ⊗ φ)Q−1 extracts the expectation of the normalized trace of the blocks
of the inverse of the a 2× 2 block matrix Q.

Observe that:

E t̄r (S + λId)
−1 =

g2,2
λ
. (28)

This is a direct consequence of inverting a 2× 2 block matrix (Schur’s complement). The mechanical
advantage of equation 28 is that the resolvent (S + λId)

−1 depends quadratically on X while g2,2 is
defined via Q, which is linear in X . For this reason, Q is called a linear pencil for (S + λId)

−1. The
construction of appropriate linear pencils rational functions of random matrices is a crucial step in
leveraging FPT.

A.2 STEP 2: CONSTRUCTING THE FUNDAMENTAL EQUATION VIA FREENESS

For any B ∈ Mb(C)+ (here b × b is the number of blocks in the linear pencil QX , and so b = 2),
define a block matrix B ⊗ 1A by:

[B ⊗ 1A]i,j =

{
bi,jIp, if pi = pj ,

0, else.
(29)
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Now, observe that we can write Q = F −QX , where:

F =

[
Id 0
0 In

]
= I2 ⊗ 1A and QX =

[
0 X√

nλ

− X⊤
√
nλ

0

]
. (30)

One can then express G = (Ib ⊗ φ)Q−1 = (Ib ⊗ φ)(F −QX)−1. From operator-valued FPT, we
know that in the proportionate scaling limit equation 25, the following fixed-point equation (due to
the asymptotic freeness of QX and Z) is satisfied by G:

G = (Ib ⊗ φ)(F −R⊗ 1A)
−1, (31)

where R = RQX (G), and RQX is the R-transform of QX which maps Mb(C)+ to itself like so:

RQX (B)ij =
∑
k,ℓ

σ(i, k; l, j)αkbkℓ. (32)

Here, σ(i, k; ℓ, j) is the covariance between the entries of block (i, k) and block (ℓ, j) of QX , while
αk is the dimension of the block (k, l).

A.3 STEP 3: THE FINAL CALCULATION

Due to the structure of QX , one computes from equation 32:

r1,1 = d · −1

nλ
= −γ

λ
g2,2, (33)

r1,2 = 0, (34)
r2,1 = 0, (35)

r2,2 = n · −1

nλ
g1,1 = − 1

λ
g1,1. (36)

Combining this with equation 31, one has:

G = (I2 ⊗ φ)(Z −R⊗ 1A)
−1 = (I2 −R)−1 =

[
1 + (γ/λ)g2,2 0

0 1 + g2,2/λ

]−1

=

[
λ/(λ+ γg2,2) 0

0 λ/(λ+ g1,1)

]
.

(37)

Comparing the matrix entries, this translates to the following scalar equations:

g1,1 =
λ

λ+ γg2,2
, (38)

g2,2 =
λ

λ+ g1,1
, (39)

g2,1 = g1,2 = 0. (40)

Plugging the second equation into the first (to eliminate g1,1) gives:

g2,2 =
λ

λ+ λ/(λ+ γg2,2)
.

Setting m = g2,2/λ then gives m = (λ+ 1/(1 + γm))−1, i.e.:

1

m
= λ+

1

1 + γm
, (41)

which is precisely the functional equation characterizing the Stieltjes transform (evaluated at λ = −z)
of the Marchenko-Pastur law with shape parameter γ. By treating λ as a complex number and
applying the Cauchy-inversion formula, we can recover µMP.
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B TECHNICAL ASSUMPTIONS

Assumption B.1. The per-group covariance matrices Σ1 and Σ2 and ground-truth weight covariance
matrices Θ and ∆ are all simultaneously diagonalizable; hence, all these matrices commute.

While Assumption B.1 may appear reductive, our goal is to analyze the bias amplification phenomenon
in a sufficient setting that does not introduce complexities due to non-commutativity.
Assumption B.2. We assume the following spectral densities exist when d→ ∞:

• ν ∈ P(R+) is the limiting spectral density of Σ2Σ
−1
1 , of the ratios λ(2)j /λ

(1)
j of the eigen-

values of the respective covariance matrices,

• µ ∈ P(R+) is the joint limiting density of the spectra of Σ2Σ
−1
1 and Σ1

• π ∈ P(R+) is the limiting density of the spectrum of ∆.

18
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C WARM-UP: CLASSICAL LINEAR MODEL

To provide a mechanistic understanding of how machine learning models may amplify bias, our
theory elucidates differences in the test error between groups when a single model is trained on a
combination of data from both groups vs. when separate models are trained on data from each group.

Single Classical Linear Model Learned for Both Groups. We first consider the classical ridge
regression model f̂ , which is learned using empirical risk minimization and ℓ2-regularization with
penalty λ. The parameter vector ŵ ∈ Rd of the linear model f̂ is given by the following problem:

ŵ = arg min
w∈Rd

L(w) =

2∑
s=1

n−1∥Xsw − Ys∥22 + λ∥w∥22. (42)

The unregularized limit λ→ 0+ corresponds to ordinary least-squares (OLS).We provide in Theorem
C.1 a novel bias-variance decomposition for the test error Rs(f̂) for each group s = 1, 2. We derive
this result using linear pencils and operator-valued free probability theory (in Appendix E). We first
present some relevant definitions.

Definition C.1. For any group index s ∈ {1, 2}, we define (e1, e2, u
(s)
1 , u

(s)
2 ) to be the unique positive

solution to the following system of fixed-point equations:

1/es = 1 + ϕt̄r ΣsK
−1, u

(s)
k = ϕe2k t̄r Σk(p1u

(s)
1 Σ1 + p2u

(s)
2 Σ2 +Σs)K

−2, k ∈ 1, 2, (43)

where K = p1e1Σ1 + p2e2Σ2 + λId and t̄rA := (1/d) tr A is the normalized trace operator.

The fixed-point equations for es are non-linear and often not analytically solvable for general Σ1,Σ2.
This is typical in RMT.

Theorem C.1. Under Assumptions B.1 and 3.1, it holds that: Rs(f̂) ≃ Bs(f̂) + Vs(f̂), with

Vs(f̂) = V (1)
s (f̂) + V (2)

s (f̂), (44)

V (k)
s (f̂) = pkσ

2
kϕt̄r Σk

(
ekΣs − λu

(s)
k Id + pk′Σk′(eku

(s)
k′ − ek′u

(s)
k )
)
K−2, (45)

Bs(f̂) = B(1)
s (f̂) +B(3)

s (f̂) +

{
0, s = 1,

2B
(2)
2 (f̂), s = 2,

(46)

B(1)
s (f̂) = ps′ t̄r∆Σs′(ps′(1 + psu

(s)
s )e2s′Σs′Σs + u

(s)
s′ (psesΣs + λId)

2)K−2, (47)

B
(2)
2 (f̂) = p1λt̄r Σ1((1 + p2u

(2)
2 )e1Σ2 − u

(2)
1 (p2e2Σ2 + λId))K

−2, (48)

B(3)
s (f̂) = λ2t̄r Θs(p1u

(s)
1 Σ1 + p2u

(s)
2 Σ2 +Σs)K

−2, (49)

where 1′ = 2 and 2′ = 1. For completeness, we treat the case of fitting a separate model f̂s per
group in Appendix D.

Phase Diagram. We present the bias amplification phase diagram predicted by Theorems C.1 and
D.1 in Figure 5 (in the appendix). To obtain the precise phase diagram, we solve the scalar equations
numerically. In the ODD profile, we observe an interpolation threshold at ϕ = 1. To the right of
the threshold, we observe a tail that descends towards 1. To the left of the threshold, the ODD
descends below 1 with a local minimum at ϕ ≈ 0.2 before increasing. In contrast, we observe that
the EDD continually grows as ϕ increases, ascending from a small value towards 1 and plateauing
after ϕ = 0.5 (i.e., ϕ1 = ϕ2 = 1). Accordingly, the ADD increases significantly as ϕ decreases,
peaks at ϕ = 1, and descends towards 1 as ϕ increases (i.e., bias remains amplified in this phase).
That is, bias is most amplified when the rate of features to samples ϕ≪ 1 and ϕ = 1. Interestingly,
bias amplification consistently occurs (i.e., ADD > 1) across all observed values of ϕ.

Technical Difficulty. The analysis of the test errors (e.g., Rs(f̂)) amounts to the analysis of the trace
of rational functions of sums of random matrices. Although the limiting spectral density of sums
of random matrices is a classical computation using subordination techniques (Marčenko & Pastur,
1967; Kargin, 2015), a more involved analysis is required in our case. This difficulty is even greater in
the setting of random projections (see Section 3.2). Thus, we employ operator-valued free probability
theory (OVFPT) to compute the exact high-dimensional limits of such quantities.
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D THEOREM D.1: SEPARATE CLASSICAL MODEL LEARNED PER GROUP

Suppose that the classical ridge regression models f̂1 and f̂2 are learned using empirical risk min-
imization and ℓ2-regularization with penalties λ1 and λ2, respectively. In particular, we have the
following optimization problem for each group s:

arg min
w∈Rd

L(w) =
1

ns

∑
(xi,yi)∈Ds

(x⊤i w − yi)
2 + λs∥w∥2 =

∥Xsw − Ys∥22
ns

+ λs∥w∥2. (50)

We first present some relevant definitions.

Definition D.1. Let d̄f(s)m (t) = t̄r Σms (Σs + tId)
−m, and κs be the unique positive solution to the

equation κs − λs = κsϕsd̄f
(s)
1 (κs).

In this setting, we deduce Theorem D.1. We derive Theorems D.1 and C.1 using OVFPT, which is
sufficiently powerful to give the general case in which we are interested (i.e., two groups with general
ps,Σs). Theorems D.1 andC.1 are non-trivial generalizations of Proposition 3 from (Bach, 2024),
which can be recovered by taking ps → 1 (i.e., ps′ → 0).

Theorem D.1. Under Assumptions B.1 and 3.1, it holds that:

Rs(f̂s) ≃ Bs(f̂s) + Vs(f̂s), with (51)

Vs(f̂s) =
σ2
sϕsd̄f

(s)
2 (κs)

1− ϕsd̄f
(s)
2 (κs)

, Bs(f̂s) =
κ2s t̄r ΘsΣs (Σs + κsId)

−2

1− ϕsd̄f
(s)
2 (κs)

, Θ1 = Θ, Θ2 = Θ+∆. (52)

Proof. We defineMs = X⊤
s Xs. Note that ŵs = X†

sYs = (X⊤
s Xs+nsλsId)

−1X⊤
s (Xsw

∗
s+Es) =

(Ms + nsλsId)
−1Msw

∗
s + (Ms + nsλsId)

−1X⊤
s Es. We deduce that Rs(f̂s) = Bs(f̂s) + Vs(f̂s),

where:

Bs(f̂s) = E ∥(Ms + nsλsId)
−1Msw

∗
s − w∗

s∥2Σs , (53)

Vs(f̂s) = E ∥(Ms + nsλsId)
−1X⊤

s Es∥2Σs . (54)

D.1 VARIANCE TERM

Note that the variance term Vs(f̂) of the test error of f̂s evaluated on group s is given by:

Vs(f̂s) = σ2
sE tr Xs(Ms + nsλsId)

−1Σs(Ms + nsλsId)
−1X⊤

s (55)

= σ2
sE tr (Ms + nsλsId)

−1Ms(Ms + nsλsId)
−1Σs. (56)

We can re-express this as:

nsVs(f̂s) = σ2
sE tr (Hs + λsId)

−1Hs(Hs + λsId)
−1Σs (57)

=
σ2
s

λs
E tr (Hs/λs + Id)

−1(Hs/λs)(Hs/λs + Id)
−1Σs, (58)

where Hs = X⊤
s Xs/ns and Xs = ZsΣ

1/2
s , with Z1 ∈ Rn1×d and Z2 ∈ Rn2×d being independent

random matrices with IID entries from N (0, 1). The typical variance term is proportional to:

t̄r (Hs + λsId)
−1Hs(Hs + λsId)

−1Σs. (59)

WLOG, we consider the case where s = 1. The matrix of interest has a linear pencil representation
given by (with zero-based indexing):

(H1/λ1 + Id)
−1(H1/λ1)(H1/λ1 + Id)

−1Σ1 = Q−1
0,8, (60)
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where the linear pencil Q is defined as follows:

Q =



Id Σ
1
2
1 0 0 −Σ

1
2
1 0 0 0 0

0 Id − 1√
λ1

√
n1
Z⊤
1 0 0 0 0 0 0

0 0 In1
− 1√

λ1
√
n1
Z1 0 0 0 0 0

−Σ
1
2
1 0 0 Id 0 0 0 0 0

0 0 0 0 Id − 1√
λ1

√
n1
Z⊤
1 0 0 0

0 0 0 0 0 In1
− 1√

λ1
√
n1
Z1 0 0

0 0 0 0 0 0 Id −Σ
1
2
1 0

0 0 0 0 Σ
1
2
1 0 0 Id −Σ1

0 0 0 0 0 0 0 0 Id


. (61)

We compute Q using the NCMinimalDescriptorRealization function of the NCAlgebra
library1. We further symmetrize Q by constructing the self-adjoint matrix Q:

Q =

(
0 Q⊤

Q 0

)
. (62)

This enables us to apply known formulas for the R-transform of Gaussian block matrices (Far et al.,
2006). We note that Q

−1

0,17 = Q−1
0,8. Taking similar steps as Lee et al. (2023), we use operator-valued

free probability theory (OVFPT) on Q. Let G = (I18 ⊗ E t̄r )Q
−1 ∈ R18×18 be the matrix whose

entries are normalized traces of blocks2 of Q
−1

. We provide a detailed example of how to apply
linear pencils and operator-valued free probability theory to derive the Marchenko-Pastur law in
Appendix A. One can arrive at that, in the asymptotic limit given by equation 9, the following holds:

Et̄r (H1 + λ1Id)
−1H1(H1 + λ1Id)

−1Σ1 =
G0,17

λ1
,

with
G0,17

λ1
= (G5,14 −G2,14)t̄r (Σ1G2,11 + λ1Id)

−1
Σ1 (Σ1G5,14 + λ1Id)

−1
Σ1.

(63)

We will now obtain the fixed-point equations satisfied by G2,11 and G5,14. We observe that:

G2,11 = − λ1
−λ1 + ϕ1G3,10

, G3,10 = −λ1t̄r Σ1(Σ1G2,11 + λ1Id)
−1 (64)

=⇒ G2,11 =
1

1 + ϕ1t̄r Σ1(Σ1G2,11 + λ1Id)−1
, (65)

G5,14 = − λ1
−λ1 + ϕ1G6,13

, G6,13 = −λ1t̄r Σ1 (Σ1G5,14 + λ1Id)
−1 (66)

=⇒ G5,14 =
1

1 + ϕ1t̄r Σ1 (Σ1G5,14 + λ1Id)
−1 . (67)

We recognize that we must have the identification e1 = G2,11 = G5,14, where e1 ≥ 0. Therefore:

e1 =
e1

e1 + ϕ1d̄f
(1)
1 (λ1/e1)

(68)

i.e., 1 = e1 + ϕ1d̄f
(1)
1 (λ1/e1) = λ1/κ1 + ϕ1d̄f

(1)
1 (κ1) (69)

κ1 = λ1 + κ1ϕ1d̄f
(1)
1 (κ1), (70)

where d̄f
(s)
m (t) = t̄r Σms (Σs + tId)

−m and κ1 = λ1/e1 (Bach, 2024). Additionally:

G2,14 =
λ1ϕ1G3,13

(−λ1 + ϕ1G3,10)(−λ1 + ϕ1G6,13)
= ϕ1e

2
1

G3,13

λ1
, (71)

G3,13

λ1
= t̄r (Σ1G2,11 + λ1Id)

−2(Σ1G2,14 + λ1Id)Σ1 (72)

=
G2,14

e21
d̄f

(1)
2 (κ1) + λ1t̄r (Σ1e1 + λ1Id)

−2Σ1, (73)

G3,10

λ1
= −t̄r (Σ1e1 + λ1Id)

−1Σ1. (74)

1https://github.com/NCAlgebra/NC
2By convention, the trace of a non-square block is zero.
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Then:

G5,14 −G2,14 = e21

(
1− ϕ1

G3,10 +G3,13

λ1

)
, (75)

G3,10 +G3,13

λ1
=
G2,14

e21
d̄f

(1)
2 (κ1) + λ1t̄r (Σ1e1 + λ1Id)

−2Σ1 (76)

− t̄r (Σ1e1 + λ1Id)
−2(Σ1e1 + λ1Id)Σ1 (77)

=
G2,14

e21
d̄f

(1)
2 (κ1)−

e1
e21

d̄f
(1)
2 (κ1) (78)

= −G5,14 −G2,14

e21
d̄f

(1)
2 (κ1). (79)

We define:

c1 ≥ 1, c1 =
G5,14 −G2,14

e21
= 1 + ϕ1c1d̄f

(1)
2 (κ1), (80)

i.e., c1 =
1

1− ϕ1d̄f
(1)
2 (κ1)

. (81)

Hence:

G0,17

λ1
= c1d̄f

(1)
2 (κ1) =

d̄f
(1)
2 (κ1)

1− ϕ1d̄f
(1)
2 (κ1)

. (82)

In conclusion:

κ1 = λ1 + κ1ϕ1d̄f
(1)
1 (κ1), (83)

V1(f̂1) =
σ2
1ϕ1d̄f

(1)
2 (κ1)

1− ϕ1d̄f
(1)
2 (κ1)

. (84)

Following similar steps for V2(f̂2), we get:

κ2 = λ2 + κ2ϕ2d̄f
(2)
1 (κ2), (85)

V2(f̂2) =
σ2
2ϕ2d̄f

(2)
2 (κ2)

1− ϕ2d̄f
(2)
2 (κ2)

. (86)

To further substantiate our result, let us consider the unregularized case where λs = 0 and ϕs < 1:

κs = 0, Vs(f̂s) =
σ2
sϕs

1− ϕs
. (87)

From an alternate angle, we know that:

Rs(f̂s) = E ∥ŵs − w∗
s∥2Σs = E ∥(X⊤

s Xs)
−1X⊤

s Es∥2Σs (88)

= σ2
sE tr Xs(X

⊤
s Xs)

−1Σs(X
⊤
s Xs)

−1X⊤
s (89)

= σ2
sE tr (X⊤

s Xs)
−1Σs =

σ2
s

ns − d− 1
tr Id = σ2

s

d

ns − d− 1
≃ σ2

sϕs
1− ϕs

, (90)

where we have used Lemma D.1 below.

Lemma D.1. Let n and d be positive integers with n ≥ d+ 2. If Z is an n× d random matrix with
IID rows from N (0,Σ), then:

E(Z⊤Z)−1 =
1

n− d− 1
Σ−1. (91)
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D.2 BIAS TERM

We can compute the bias term Bs(f̂s) of the test error of f̂s evaluated on group s as:

Bs(f̂s) = E ∥(Ms + nsλsId)
−1Msw

∗
s − w∗

s∥2Σs (92)

= E ∥(Ms + nsλsId)
−1Msw

∗
s − (Ms + nsλsId)

−1(Ms + nsλsId)w
∗
s∥2Σs (93)

= E ∥(Ms + nsλsId)
−1nsλsw

∗
s∥2Σs (94)

= n2sλ
2
sE tr (Ms + nsλsId)

−1w∗
s(w

∗
s)

⊤(Ms + nsλsId)
−1Σs. (95)

We can re-express this as:

1

λ2s
Bs(f̂s) = E t̄r (Hs + λsId)

−1Θs(Hs + λsId)
−1Σs (96)

Bs(f̂s) = E t̄r (Hs/λs + Id)
−1Θs(Hs/λs + Id)

−1Σs, (97)

where Θs =

{
Θ, s = 1

Θ+∆, s = 2
. WLOG, we consider the case where s = 1. The matrix of interest

has a linear pencil representation given by (with zero-based indexing):

(H1/λ1 + Id)
−1Θ(H1/λ1 + Id)

−1Σ1 = Q−1
0,8, (98)

where the linear pencil Q is defined as follows:

Q =



Id Σ
1
2
1 0 0 −Θ 0 0 0 0

0 Id − 1√
λ
√
n
Z⊤
1 0 0 0 0 0 0

0 0 In1 − 1√
λ
√
n
Z1 0 0 0 0 0

−Σ
1
2
1 0 0 Id 0 0 0 0 0

0 0 0 0 Id Σ
1
2
1 0 0 −Σ1

0 0 0 0 0 Id − 1√
λ
√
n
Z⊤
1 0 0

0 0 0 0 0 0 In1
− 1√

λ
√
n
Z1 0

0 0 0 0 −Σ
1
2
1 0 0 Id 0

0 0 0 0 0 0 0 0 Id


. (99)

We note that Q
−1

0,17 = Q−1
0,8. Using OVFPT, we deduce that, in the limit given by equation 9, the

following holds:

E t̄r (H1/λ1 + Id)
−1Θ(H1/λ1 + Id)

−1Σ1 = G0,17, (100)

with G0,17 = λ1t̄r (Σ1G2,11 + λ1Id)
−1

(λ1Θ+Σ1G2,15) (Σ1G6,15 + λ1Id)
−1

Σ1. (101)

We will now obtain the fixed-point equations satisfied by G2,11 and G6,15. We observe that:

G2,11 = − λ1
−λ1 + ϕ1G3,10

, G3,10 = −λ1t̄r Σ1(Σ1G2,11 + λ1Id)
−1 (102)

=⇒ G2,11 =
1

1 + ϕ1t̄r Σ1(Σ1G2,11 + λ1Id)−1
, (103)

G6,15 = − λ1
−λ1 + ϕ1G7,14

, G7,14 = −λ1t̄r Σ1 (Σ1G6,15 + λ1Id)
−1 (104)

=⇒ G6,15 =
1

1 + ϕ1t̄r Σ1 (Σ1G6,15 + λ1Id)
−1 . (105)

We recognize that we must have the identification e1 = G2,11 = G6,15, where e1 ≥ 0. Therefore:

e1 =
1

1 + ϕ1t̄r Σ1 (Σ1e1 + λ1Id)
−1 , (106)

i.e., κ1 = λ1 + κ1ϕ1d̄f
(1)
1 (κ1). (107)
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Additionally:

G2,15 =
λ1ϕ1G3,14

(−λ1 + ϕ1G3,10)(−λ1 + ϕ1G7,14)
= ϕ1e

2
1

G3,14

λ1
, (108)

G3,14

λ1
= t̄r (Σ1G2,11 + λ1Id)

−2(Σ1G2,15 + λ1Θ)Σ1 (109)

=
G2,15

e21
d̄f

(1)
2 (κ1) +

λ1
e21

t̄r (Σ1 + κ1Id)
−2ΘΣ1, (110)

=⇒ G2,15 = ϕ1G2,15d̄f
(1)
2 (κ1) + λ1ϕ1t̄r (Σ1 + κ1Id)

−2ΘΣ1, (111)

i.e., G2,15 =
λ1ϕ1

1− ϕ1d̄f
(1)
2 (κ1)

t̄r (Σ1 + κ1Id)
−2ΘΣ1. (112)

Hence:

G0,17 = κ21t̄r (Σ1 + κ1Id)
−2

ΘΣ1 + κ21d̄f
(1)
2 (κ1)

G2,15

λ1
(113)

= κ21t̄r (Σ1 + κ1Id)
−2

ΘΣ1 + κ21
ϕ1d̄f

(1)
2 (κ1)

1− ϕ1d̄f
(1)
2 (κ1)

t̄r (Σ1 + κ1Id)
−2ΘΣ1 (114)

=

(
1 +

ϕ1d̄f
(1)
2 (κ1)

1− ϕ1d̄f
(1)
2 (κ1)

)
κ21t̄r (Σ1 + κ1Id)

−2
ΘΣ1. (115)

In conclusion:

B1(f̂1) =
κ21t̄r (Σ1 + κ1Id)

−2
ΘΣ1

1− ϕ1d̄f
(1)
2 (κ1)

. (116)

Following similar steps for B2(f̂2), we get:

B2(f̂2) =
κ22t̄r (Σ2 + κ2Id)

−2
(Θ +∆)Σ2

1− ϕ2d̄f
(2)
2 (κ2)

. (117)

We observe that in the unregularized case (i.e., λs = 0), κs = 0. In this setting, Bs(f̂s) = 0 as
expected.
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Figure 5: ODD, EDD, and ADD phase diagrams for classical ridge regression. We plot the bias
amplification phase diagrams with respect to ϕ (rate of features to samples), as predicted by our theory
for ridge regression without random projections (Theorems C.1, D.1). Dashed black lines indicate
theoretical predictions. We consider isotropic covariance matrices: Σ1 = 2Id,Σ2 = Id, Θ = 2Id,
∆ = Id. Additionally, n = 1× 104, σ2

1 = σ2
2 = 1. We further choose λ = λ1 = λ2 = 1× 10−6 to

approximate the minimum-norm interpolator. We show that bias amplification can occur even in the
balanced data setting, i.e., when p1 = p2 = 1/2, without spurious correlations.
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E PROOF OF THEOREM C.1

Proof. We define M = X⊤X + nλId. Note that one has:

ŵ = X†Y = X†(X1w
∗
1 + E1, X2w

∗
2 + E2) =M−1(M1w

∗
1 +X⊤

1 E1 +M2w
∗
2 +X⊤

2 E2).
(118)

We deduce that Rs(f̂) = Bs(f̂) + Vs(f̂), where:

Bs(f̂) = E ∥M−1Ms′w
∗
s′ +M−1Msw

∗
s − w∗

s∥2Σs , (119)

Vs(f̂) = E ∥M−1(X⊤
1 E1 +X⊤

2 E2)∥2Σs (120)

= E ∥M−1X⊤
1 E1∥2Σs + E ∥M−1X⊤

2 E2∥2Σs , (121)

with s′ =
{
2, s = 1

1, s = 2
.

E.1 VARIANCE TERMS

Note that Vs(f̂) of the test error of f̂ evaluated on group s is given by:

Vs(f̂) = σ2
1E tr X1M

−1ΣsM
−1X⊤

1 + σ2
2E tr X2M

−1ΣsM
−1X⊤

2 (122)

= σ2
1E tr M−1M1M

−1Σs + σ2
2E tr M−1M2M

−1Σs. (123)

We can re-express this as:

nVs(f̂) = σ2
1E tr (H + λId)

−1H1(H + λId)
−1Σs + σ2

2E tr (H + λId)
−1H2(H + λId)

−1Σs,(124)

where H = H1 + H2, Hs = X⊤
s Xs/n, and Xs = ZsΣ

1/2
s with Z1 ∈ Rn1×d and Z2 ∈ Rn2×d

being independent random matrices with IID entries from N (0, 1).

WLOG, we focus on tr (H + λId)
−1H2(H + λId)

−1Σs. The matrix of interest has a linear pencil
representation given by (with zero-based indexing):

(H1/λ+H2/λ+ Id)
−1(H2/λ)(H1/λ+H2/λ+ Id)

−1Σs = Q−1
1,8, (125)
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where the linear pencil Q is defined as follows:

Q
= 
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d
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d

 .

(126)

Using OVFPT, we deduce that, in the limit given by equation 9, the following holds:

E t̄r (H1 +H2 + λId)
−1H2(H1 +H2 + λId)

−1Σs =
G1,23

λ
, (127)

with:

G1,23

λ
= λ−1t̄r p2Σ2(λΣsG0,15 + λG0,27Id − p1Σ1G0,15G5,24 + p1Σ1G0,27G5,20) (128)

· (p1Σ1G5,20 + p2Σ2G0,15 + λId)
−2. (129)
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By identifying identical entries of Q
−1

, we must have that G5,20

λ =
G6,21

λ =
G10,25

λ ,
G0,15

λ =
G2,17

λ =
G13,28

λ . For G6,21 and G2,17, we observe that:

G6,21 = − λ

−λ+ ϕG7,20
, G7,20 = −λt̄r Σ1 (p1Σ1G6,21 + p2Σ2G2,17 + λId)

−1 (130)

=⇒ G6,21 =
1

1 + ϕt̄r Σ1 (p1Σ1G6,21 + p2Σ2G2,17 + λId)
−1 , (131)

G2,17 = − λ

−λ+ ϕG3,15
, G3,15 = −λt̄r Σ2 (p1Σ1G6,21 + p2Σ2G2,17 + λId)

−1 (132)

=⇒ G2,17 =
1

1 + ϕt̄r Σ2 (p1Σ1G6,21 + p2Σ2G2,17 + λId)
−1 . (133)

We define η1 =
G6,21

λ , η2 =
G2,17

λ , with η1 ≥ 0, η2 ≥ 0. Therefore:

ηs =
1

λ+ ϕt̄r ΣsK−1
, (134)

where K = η1p1Σ1 + η2p2Σ2 + Id. Additionally, by identifying identical entries of Q
−1

, we must
have that G5,24 = G6,25, G0,27 = G2,28. We observe that:

G10,25 =
−λ

−λ+ ϕG11,24
, (135)

G6,25 =
λϕG7,24

(−λ+ ϕG7,20)(−λ+ ϕG11,24)
= ϕλ2η21

G7,24

λ
, (136)

G7,24

λ
= λ−2t̄rK−2(p1Σ1G6,25 + p2Σ2G2,28 − λΣs)Σ1, (137)

=⇒ G6,25 = ϕη21 t̄rK
−2(p1Σ1G6,25 + p2Σ2G2,28 − λΣs)Σ1, (138)

G13,28 =
−λ

−λ+ ϕG14,27
, (139)

G2,28 =
λϕG3,27

(−λ+ ϕG3,15)(−λ+ ϕG14,27)
= ϕλ2η22

G3,27

λ
, (140)

G3,27

λ
= λ−2t̄rK−2(p1Σ1G6,25 + p2Σ2G2,28 − λΣs)Σ2, (141)

=⇒ G2,28 = ϕη22 t̄rK
−2(p1Σ1G6,25 + p2Σ2G2,28 − λΣs)Σ2. (142)

We now define v(s)1 = −G6,25, v
(s)
2 = −G2,28, with v(s)1 ≥ 0, v

(s)
2 ≥ 0. Therefore, v(s)1 , v

(s)
2 obey

the following system of equations:

v
(s)
k = ϕη2k t̄rK

−2(v
(s)
1 p1Σ1 + v

(s)
2 p2Σ2 + λΣs)Σk. (143)

We further define u(s)k =
v
(s)
k

λ . Putting all the pieces together:

G1,23

λ
= λ−1t̄r p2Σ2

(
η2Σs − u

(s)
2 Id + p1Σ1(η2u

(s)
1 − η1u

(s)
2 )
)
K−2. (144)

By symmetry, in conclusion:

Vs(f̂) = V (1)
s (f̂) + V (2)

s (f̂), (145)

V (k)
s (f̂) = λ−1ϕσ2

k t̄r pkΣk
(
ηkΣs − u

(s)
k Id + pk′Σk′(ηku

(s)
k′ − ηk′u

(s)
k )
)
K−2, (146)

with k′ =
{
2, k = 1

1, k = 2
.
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We now corroborate our result in the limit p2 → 1 (i.e., p1 → 0) and s = 2. We observe that:

ϕ→ ϕ2, λ→ λ2, (147)

V
(1)
2 (f̂) = 0, (148)

V
(2)
2 (f̂)

λ−1ϕ2σ2
2

= t̄rΣ2(η2Σ2 − u
(2)
2 Id)K

−2 (149)

v
(2)
2 = ϕ2η

2
2 t̄rK

−2(v
(2)
2 Σ2 + λ2Σ2)Σ2 (150)

= ϕ2(v
(2)
2 + λ2)d̄f

(2)
2 (κ2), (151)

u
(2)
2 =

ϕ2d̄f
(2)
2 (κ2)

1− ϕ2d̄f
(2)
2 (κ2)

, (152)

V
(2)
2 (f̂)

λ−1ϕ2σ2
2

= κ2d̄f
(2)
2 (κ2)− u

(2)
2 t̄r Σ2(η2Σ2 + Id)

−2 (153)

= κ2d̄f
(2)
2 (κ2)− κ22u

(2)
2 t̄r Σ2(Σ2 + κ2Id)

−2 (154)

= κ2d̄f
(2)
2 (κ2)− κ2u

(2)
2 (d̄f

(2)
1 (κ2)− d̄f

(2)
2 (κ2)) (155)

= κ2(1 + u
(2)
2 )d̄f

(2)
2 (κ2)− κ2u

(2)
2 d̄f

(2)
1 (κ2) (156)

=
κ2 − κ2ϕ2d̄f

(2)
1 (κ2)

1− ϕ2d̄f
(2)
2 (κ2)

· d̄f(2)2 (κ2) (157)

=
λd̄f

(2)
2 (κ2)

1− ϕ2d̄f
(2)
2 (κ2)

, (158)

V
(2)
2 (f̂) =

σ2
2ϕ2d̄f

(2)
2 (κ2)

1− ϕ2d̄f
(2)
2 (κ2)

, (159)

which exactly recovers the result for V2(f̂2) as expected.

E.2 BIAS TERMS

Recall that:

Bs(f̂) = E ∥M−1Ms′w
∗
s′ +M−1Msw

∗
s − w∗

s∥2Σs . (160)

Now, observe that M−1M1w
∗
1 − w∗

1 = M−1M1w
∗
1 −M−1Mw∗

1 = −M−1M2w
∗
1 − nλM−1w∗

1 .
Let δ = w∗

2 − w∗
1 . Then:

Bs(f̂) = E∥M−1Ms′(−1)s−1δ − nλM−1w∗
s∥2Σs (161)

= E tr δ⊤Ms′M
−1ΣsM

−1Ms′δ (162)

− 2(−1)s−1nλE tr δ⊤Ms′M
−1ΣsM

−1w∗
s (163)

+ n2λ2E tr (w∗
s)

⊤M−1ΣsM
−1w∗

s (164)

= B(1)
s (f̂)− 2(−1)s−1B(2)

s (f̂) +B(3)
s (f̂), (165)

where:

B(1)
s (f̂) = Et̄r (H1/λ+H2/λ+ Id)

−1(Hs′/λ)∆(Hs′/λ)(H1/λ+H2/λ+ Id)
−1Σs, (166)

B(2)
s (f̂) = E tr δ⊤(Hs′/λ)(H1/λ+H2/λ+ Id)

−1Σs(H1/λ+H2/λ+ Id)
−1w∗

s , (167)

B(3)
s (f̂) = Et̄r (H1/λ+H2/λ+ Id)

−1Θs(H1/λ+H2/λ+ Id)
−1Σs. (168)

Because δ and w∗
1 are independent and sampled from zero-centered distributions:

B
(2)
1 (f̂) = 0, (169)

B
(2)
2 (f̂) = Et̄r (H1/λ+H2/λ+ Id)

−1∆(H1/λ)(H1/λ+H2/λ+ Id)
−1Σ2. (170)
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WLOG, for B(1)
s , we focus on the case s = 1. The matrix of interest has a linear pencil representation

given by (with zero-based indexing):

(H1/λ+H2/λ+ Id)
−1(H2/λ)∆(H2/λ)(H1/λ+H2/λ+ Id)

−1Σ1 = Q−1
1,16, (171)

where the linear pencil Q is defined as follows:

Q
= 
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(172)

Using OVFPT, we deduce that, in the limit given by equation 9, the following holds:

Et̄r (H1/λ+H2/λ+ Id)
−1(H2/λ)∆(H2/λ)(H1/λ+H2/λ+ Id)

−1Σ1 = G1,33, (173)

with:

G1,33

= λ−1t̄r p2Σ2∆(p2Σ2G
2
2,19(λ− p1G6,27)Σ1 −G2,30(p1Σ1G6,23 + λId)

2)

· (p1Σ1G6,23 + p2Σ2G2,19 + λId)
−2.

(174)
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By identifying identical entries of Q
−1

, we must have that η1 =
G6,23

λ =
G7,24

λ =
G11,28

λ , η2 =
G2,19

λ =
G3,20

λ =
G14,31

λ . For G7,24 and G3,20, we observe that:

G7,24 = − λ

−λ+ ϕG8,23
, G8,23 = −λt̄r Σ1 (p1Σ1G7,24 + p2Σ2G3,20 + λId)

−1 (175)

=⇒ G7,24 =
1

1 + ϕt̄r Σ1 (p1Σ1G7,24 + p2Σ2G3,20 + λId)
−1 , (176)

G3,20 = − λ

−λ+ ϕG4,19
, G4,19 = −λt̄r Σ2 (p1Σ1G7,24 + p2Σ2G3,20 + λId)

−1 (177)

=⇒ G3,20 =
1

1 + ϕt̄r Σ2 (p1Σ1G7,24 + p2Σ2G3,20 + λId)
−1 . (178)

By again identifying identical entries of Q
−1

, we further have that v(1)1 = −G6,27 = −G7,28, v
(1)
2 =

−G2,30 = −G3,31. We observe that:

G7,28 = ϕλ2η21
G8,27

λ
, (179)

G8,27

λ
= λ−2t̄rK−2(p1Σ1G7,28 + p2Σ2G3,31 − λΣ1)Σ1 (180)

=⇒ v
(1)
1 = ϕη21 t̄rK

−2(v
(s)
1 p1Σ1 + v

(s)
2 p2Σ2 + λΣ1)Σ1, (181)

G3,31 = ϕλ2η22
G4,30

λ
, (182)

G4,30

λ
= λ−2t̄rK−2(p1Σ1G7,28 + p2Σ2G3,31 − λΣ1)Σ2, (183)

=⇒ v
(1)
2 = ϕη22 t̄rK

−2(v
(s)
1 p1Σ1 + v

(s)
2 p2Σ2 + λΣ1)Σ2. (184)

Putting all the pieces together:

B
(1)
1 (f̂) = t̄r p2Σ2∆(p2η

2
2Σ2(1 + p1u

(s)
1 )Σ1 + u

(s)
2 (p1η1Σ1 + Id)

2)K−2. (185)

In conclusion:

B(1)
s (f̂) = t̄r ps′Σs′∆(ps′η

2
s′Σs′(1 + psu

(s)
s )Σs + u

(s)
s′ (psηsΣs + Id)

2)K−2. (186)

Now, switching focus to B(2)
2 (f̂), the matrix of interest has a linear pencil representation given by

(with zero-based indexing):

(H1/λ+H2/λ+ Id)
−1∆(H1/λ)(H1/λ+H2/λ+ Id)

−1Σ2 = Q−1
0,15, (187)
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where the linear pencil Q is defined as follows:

Q
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(188)

Like before, the following holds:

Et̄r (H1/λ+H2/λ+ Id)
−1∆(H1/λ)(H1/λ+H2/λ+ Id)

−1Σ2 = G1,25, (189)

with:

G1,25

= t̄r p1Σ1∆(λΣ2G2,18 + λG2,26Id − p2Σ2G2,18G6,29 + p2Σ2G2,26G6,22)

· (p1Σ1G2,18 + p2Σ2G6,22 + λId)
−2

(190)
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By identifying identical entries of Q
−1

, we must have that η1 =
G2,18

λ =
G3,19

λ =
G11,27

λ , η2 =
G6,22

λ =
G7,23

λ =
G14,30

λ . For G3,19 and G7,23, we observe that:

G3,19 = − λ

−λ+ ϕG4,18
, G4,18 = −λt̄r Σ1 (p1Σ1G3,19 + p2Σ2G7,23 + λId)

−1 (191)

=⇒ G3,19 =
1

1 + ϕt̄r Σ1 (p1Σ1G3,19 + p2Σ2G7,23 + λId)
−1 , (192)

G7,23 = − λ

−λ+ ϕG8,22
, G8,22 = −λt̄r Σ2 (p1Σ1G3,19 + p2Σ2G7,23 + λId)

−1 (193)

=⇒ G7,23 =
1

1 + ϕt̄r Σ2 (p1Σ1G3,19 + p2Σ2G7,23 + λId)
−1 . (194)

By again identifying identical entries of Q
−1

, we further have that v(2)1 = −G2,26 = −G3,27, v
(2)
2 =

−G6,29 = −G7,30. We observe that:

G3,27 = ϕλ2η21
G4,26

λ
, (195)

G4,26

λ
= λ−2t̄rK−2(p1Σ1G3,27 + p2Σ2G7,30 − λΣ2)Σ1, (196)

=⇒ v
(2)
1 = ϕη21 t̄rK

−2(v
(2)
1 p1Σ1 + v

(2)
2 p2Σ2 + λΣ2)Σ1, (197)

G7,30 = ϕλ2η22
G8,29

λ
, (198)

G8,29

λ
= λ−2t̄rK−2(p1Σ1G3,27 + p2Σ2G7,30 − λΣ2)Σ2, (199)

=⇒ v
(2)
2 = ϕη22 t̄rK

−2(v
(2)
1 p1Σ1 + v

(2)
2 p2Σ2 + λΣ2)Σ2. (200)

Putting all the pieces together:

B
(1)
2 (f̂) = 0, (201)

B
(2)
2 (f̂) = t̄r p1Σ1∆

(
η1Σ2 − u

(2)
1 Id + p2Σ2(η1u

(2)
2 − η2u

(2)
1 )
)
K−2. (202)

Finally, switching focus to B(3)
1 (f̂), the matrix of interest has a linear pencil representation given by

(with zero-based indexing):

(H1/λ+H2/λ+ Id)
−1Θ(H1/λ+H2/λ+ Id)

−1Σ1 = Q−1
1,8, (203)
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where the linear pencil Q is defined as follows:

Q
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 .

(204)

The following holds:

(H1/λ+H2/λ+ Id)
−1Θ(H1/λ+H2/λ+ Id)

−1Σ1 = G1,23, (205)

with G1,23 = λt̄r Θ(−p1Σ1G2,24 − p2Σ2G5,27 + λΣ1)(p1Σ1G2,17 + p2Σ2G5,20 + λId)
−2.

By identifying identical entries of Q
−1

and following similar steps as before, we must have the
identification η1 =

G2,17

λ , η2 =
G5,20

λ , as well as v(1)1 = −G2,24, v
(1)
2 = −G5,27. Therefore, in

conclusion:

B(3)
s (f̂) = t̄rΘs(p1u

(s)
1 Σ1 + p2u

(s)
2 Σ2 +Σs)K

−2. (206)
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In the limit ps → 1 (i.e., ps′ → 0), we observe that:

ϕ→ ϕs, λ→ λs, (207)

B(1)
s (f̂) → 0, (208)

B(2)
s (f̂) → 0, (209)

B(3)
s (f̂) = t̄rΘs(u

(s)
s + 1)ΣsK

−2, (210)

v(s)s = ϕsη
2
s t̄rK

−2(v(s)s + λs)Σ
2
s (211)

= ϕs(v
(s)
s + λs)d̄f

(s)
2 (κs) (212)

u(s)s =
ϕsd̄f

(s)
2 (κs)

1− ϕsd̄f
(s)
2 (κs)

, (213)

B(3)
s (f̂) =

κ2s t̄r ΘsΣs(Σs + κsId)
−2

1− ϕsd̄f
(s)
2 (κs)

, (214)

Bs(f̂) → B(3)
s (f̂), (215)

which matches up exactly with Bs(f̂s) as expected.
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F PROOF OF THEOREM 3.1

Proof. The gradient of the loss L is given by:

∇L(η) =
∑
s

S⊤X⊤
s (XsSη − Ys)/n+ λη =

∑
s

S⊤MsSη −
∑
s

S⊤X⊤
s Ys/n+ λη

= Hη −
∑
s

S⊤X⊤
s Ys/n,

where H = S⊤MS + λIm ∈ Rm×m, with M = M1 +M2 and Ms = X⊤
s Xs/n. Thus, setting

R = H−1, we may write:

ŵ = Sη̂ = SRS⊤(X⊤
1 Y1 +X⊤

2 Y2)/n

= SRS⊤(M1w
∗
1 +M2w

∗
2) + SRS⊤X⊤

1 E1/n+ SRS⊤X⊤
2 E2/n.

We deduce the following bias-variance decomposition:

E∥ŵ − w∗
s∥2Σs = Bs(f̂) + Vs(f̂), where

Vs(f̂) = V (1)
s (f̂) + V (2)

s (f̂), with V (j)
s (f̂) = σ2

jϕEt̄rMjSRS
⊤ΣsSRS

⊤,

Bs(f̂) = E∥SRS⊤(M1w
∗
1 +M2w

∗
2)− w∗

s∥2Σs .

We can further decompose Bs(f̂), first considering the case s = 1. We define δ = w∗
2 − w∗

1 .

E∥SRS⊤(M1w
∗
1 +M2w

∗
2)− w∗

1∥2Σ1

= E∥(SRS⊤(M1 +M2)− Id)w
∗
1 + SRS⊤M2δ∥2Σ1

= E∥(SRS⊤M − Id)w
∗
1∥2Σ1

+ E∥SRS⊤M2δ∥2Σ1

= Et̄r Θ(MSRS⊤ − Id)Σ1(SRS
⊤M − Id) + Et̄r∆M2SRS

⊤Σ1SRS
⊤M2

= Et̄r ΘΣ1 + Et̄r ΘMSRS⊤Σ1SRS
⊤M − 2Et̄r ΘΣ1SRS

⊤M + Et̄r∆M2SRS
⊤Σ1SRS

⊤M2.

We can similarly decompose B2:

E∥SRS⊤(M1w
∗
1 +M2w

∗
2)− w∗

2∥2Σ2

= E∥SRS⊤(M1w
∗
1 +M2w

∗
2)− w∗

2∥2Σ2

= E∥(SRS⊤(M1 +M2)− Id)w
∗
2 − SRS⊤M1δ∥2Σ2

= E∥(SRS⊤M − Id)w
∗
2∥2Σ2

+ E∥SRS⊤M1δ∥2Σ2
− 2E tr (w∗

2)
⊤(MSRS⊤ − Id)Σ2SRS

⊤M1δ

= Et̄r Θ2(MSRS⊤ − Id)Σ2(SRS
⊤M − Id) + Et̄r∆M1SRS

⊤Σ2SRS
⊤M1

− 2Et̄r∆(MSRS⊤ − Id)Σ2SRS
⊤M1

= Et̄r Θ2Σ2 + Et̄r Θ2MSRS⊤Σ2SRS
⊤M − 2Et̄r Θ2Σ2SRS

⊤M

+ Et̄r∆M1SRS
⊤Σ2SRS

⊤M1 − 2Et̄r∆MSRS⊤Σ2SRS
⊤M1 + 2Et̄r∆Σ2SRS

⊤M1.

Furthermore, we observe that:
Et̄rAMSRS⊤BSRS⊤M (216)

= Et̄rAM1SRS
⊤BSRS⊤M1 + Et̄rAM2SRS

⊤BSRS⊤M2 + 2Et̄rAM1SRS
⊤BSRS⊤M2,

(217)

Et̄rASRS⊤M = Et̄rASRS⊤M1 + Et̄rASRS⊤M2. (218)

Hence, we desire deterministic equivalents for the following expressions:

r
(1)
j (A) = ASRS⊤M j , (219)

r
(2)
j (A,B) = AM jSRS

⊤BSRS⊤, (220)

r
(3)
j (A,B) = AM jSRS

⊤BSRS⊤M j , (221)

r
(4)
j (A,B) = AM jSRS

⊤BSRS⊤M j′ , (222)
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where:

M j = Σ
1/2
j Z⊤

j ZjΣ
1/2
j , R = (S⊤MS + Im)−1,M =M1 +M2, (223)

M j =Mj/λ,R = λR,M =M/λ. (224)

In summary:

V (j)
s (f̂) = σ2

jϕλ
−1Et̄r r(2)j (Id,Σs), (225)

Bs(f̂) = t̄rΘsΣs (226)

+ Et̄r r(3)1 (Θs,Σs) + Et̄r r(3)2 (Θs,Σs) + 2Et̄r r(4)1 (Θs,Σs) (227)

− 2Et̄r r(1)1 (ΘsΣs)− 2Et̄r r(1)2 (ΘsΣs) (228)

+ Et̄r r(3)s′ (∆,Σs) (229)

− 2

{
0, s = 1,

Et̄r r(3)1 (∆,Σ2) + Et̄r r(4)2 (∆,Σ2)− Et̄r r(1)1 (∆Σ2), s = 2
. (230)

F.1 COMPUTING Et̄r r(1)j

WLOG, we focus on r(1)1 . The matrix of interest has a linear pencil representation given by (with
zero-based indexing):

r
(1)
1 = Q−1

1,10, (231)

where the linear pencil Q is defined as follows:

Q =



Id 0 −S 0 0 0 0 0 0 0 0
−A Id 0 0 0 0 0 0 0 0 0
0 0 Im S⊤ 0 0 0 0 0 0 0

0 0 0 Id −Σ
1
2
1 0 0 −Σ

1
2
2 0 0 0

0 0 0 0 Id − 1√
λ
Z⊤
1 0 0 0 0 0

0 0 0 0 0 In1
− 1√

λ
Z1 0 0 0 0

−Σ
1
2
1 0 0 0 0 0 Id 0 0 0 Σ

1
2
1

0 0 0 0 0 0 0 Id − 1√
λ
Z⊤
2 0 0

0 0 0 0 0 0 0 0 In2
− 1√

λ
Z2 0

−Σ
1
2
2 0 0 0 0 0 0 0 0 Id 0

0 0 0 0 0 0 0 0 0 0 Id



. (232)

Using the tools of OVFPT, the following holds:

Et̄r r(1)1 = G1,21, (233)

with:

G1,21 = t̄r γp1Σ1AG2,13G5,16(γG2,13(p1Σ1G5,16 + p2G8,19) + λId)
−1. (234)

For G5,16 and G8,19, we observe that:

G5,16 =
−λ

−λ+ ϕG6,15
, G6,15 = −λγG2,13t̄r Σ1(γG2,13(p1Σ1G5,16 + p2Σ2G8,19) + λId)

−1,

(235)

=⇒ G5,16 =
1

1 + ψG2,13t̄r Σ1(γG2,13(p1Σ1G5,16 + p2Σ2G8,19) + λId)−1
, (236)

G8,19 =
−λ

−λ+ ϕG9,18
, G9,18 = −λγG2,13t̄r Σ2(γG2,13(p1Σ1G5,16 + p2Σ2G8,19) + λId)

−1,

(237)

G8,19 =
1

1 + ψG2,13t̄r Σ2(γG2,13(p1Σ1G5,16 + p2Σ2G8,19) + λId)−1
. (238)
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We define e1 = G5,16, e2 = G8,19, with e1 ≥ 0, e2 ≥ 0. We further observe that:

G2,13 =
1

1 +G3,11
, (239)

G3,11 = t̄r (p1Σ1G5,16 + p2Σ2G8,19)(γG2,13(p1Σ1G5,16 + p2Σ2G8,19) + λId)
−1. (240)

We define τ = G2,13 ≥ 0. We further define L = p1e1Σ1 + p2e2Σ2,K = γτL+ λId. Therefore,
we have the following system of equations:

es =
1

1 + ψτ t̄r ΣsK−1
, τ =

1

1 + t̄rLK−1
. (241)

In conclusion:

Et̄r r(1)j = pjγejτ t̄rAΣjK
−1. (242)

F.2 COMPUTING Et̄r r(2)j

WLOG, we focus on r(2)1 . The matrix of interest has a linear pencil representation given by (with
zero-based indexing):

r
(2)
1 = −Q−1

1,13, (243)
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where the linear pencil Q is defined as follows:

Q
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

. (244)

The following holds:

Et̄r r(2)1 = −G1,33, (245)

with:

G1,33 = −p1t̄rAΣ1P1P
−1
2 , (246)

P1 = γλBG3,23G6,26G12,32 − γp2Σ2G3,23G6,26G9,38G12,32 (247)
+ γp2Σ2G3,35G6,26G9,29G12,32 + λG3,23G6,32Id + λG3,15G12,32Id, (248)

P2 = (γG6,26(p1Σ1G3,23 + γp2Σ2G9,29) + λId) (249)
· (γG12,32(p1Σ1G15,35 + p2Σ2G18,38) + λId). (250)

Following similar steps as before and recognizing identifications, we arrive at that:

e1 = G3,23 = G15,35, (251)
e2 = G9,29 = G18,38, (252)
τ = G6,26 = G12,32. (253)

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

We now focus on the remaining terms. We observe that:

G3,35 = ϕe21
G4,14

λ
(254)

G4,14

λ
= γt̄r Σ1(γτ

2(p1Σ1G3,35 + p2Σ2G9,38 − λB)− λG6,32Id)K
−2, (255)

G9,38 = ϕe22
G10,37

λ
, (256)

G10,37

λ
= γt̄r Σ2(γτ

2(p1Σ1G3,35 + p2Σ2G9,38 − λB)− λG6,32Id)K
−2. (257)

We define u1 = −G3,35

λ , u2 = −G9,38

λ , with u1 ≤ 0, u2 ≤ 0. We further define D = p1u1Σ1 +
p2u2Σ2 +B. We now observe that:

G6,32 = − G7,31

(G7,25 + 1)(G13,31 + 1)
= −τ2G7,31, (258)

G7,31 = −t̄r (γG6,32L
2 + λ2D)K−2. (259)

Defining ρ = G6,32, we must have the following system of equations:

us = ψe2s t̄r Σs(γτ
2D + ρId)K

−2, (260)

ρ = τ2t̄r (γρL2 + λ2D)K−2. (261)

In conclusion:

P2 = K2, (262)

−P1 = λγe1τ
2B + λγτ2p2Σ2(e1u2 − e2u1) + λe1ρId − λ2u1τId, (263)

Et̄r r(2)j = λpjγt̄rAΣj(γejτ
2B + γτ2pj′Σj′(ejuj′ − ej′uj) + ejρId − λujτId)K

−2. (264)

F.3 COMPUTING Et̄r r(3)j

WLOG, we focus on r(3)1 . The matrix of interest has a linear pencil representation given by (with
zero-based indexing):

r
(3)
1 = Q−1

1,20, (265)
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where the linear pencil Q is defined as follows:
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. (266)

It holds that Et̄r r(3)1 = G1,41. We immediately observe that:

e1 = G3,24, G15,36, (267)
e2 = G9,30, G18,39, (268)
τ = G6,27, G12,33, (269)

u1 = −G3,36

λ
, (270)

u2 = −G9,39

λ
, (271)

ρ = G6,33. (272)

In conclusion:

Et̄r r(3)j = pj t̄rAΣj(γe
2
jpjΣj(γτ

2uj′pj′Σj′ + γτ2B + ρId) + uj(γej′τpj′Σj′ + λId)
2)K−2.

(273)
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F.4 COMPUTING Et̄r r(4)j

WLOG, we focus on r(4)1 . The matrix of interest has a linear pencil representation given by (with
zero-based indexing):

r
(4)
1 = Q−1

1,20, (274)

where the linear pencil Q is defined as follows:
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(275)

It holds that Et̄r r(4)1 = G1,41. We immediately observe that:

e1 = G3,24, G15,36, (276)
e2 = G9,30, G18,39, (277)
τ = G6,27, G12,33, (278)

u1 = −G3,36

λ
, (279)

u2 = −G9,39

λ
, (280)

ρ = G6,33. (281)
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In conclusion:

Et̄r r(4)j = pjγpj′ t̄r ΣjΣj′A(γτ
2(Bejej′ − pjΣje

2
juj′ − pj′Σj′e

2
j′uj) (282)

− λτ(ejuj′ + ej′uj)Id + ejej′ρId)K
−2. (283)
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G THEOREM 3.2

Definition G.1. Let (e1, e2, τ1, τ2, u1, u2, ρ1, ρ2) is be unique positive solution to the following
system of fixed-point equations:

es =
1

1 + ψsτst̄r Σs(γτsesΣs + λsId)−1
, τs =

1

1 + t̄r esΣs(γτsesΣs + λsId)−1
, (284)

us = ψse
2
s t̄r Σs(γτ

2
s (us + 1)Σs + ρsId)(γτsesΣs + λsId)

−2, (285)

ρs = τ2s t̄r (γρs(esΣs)
2 + λ2s(us + 1)Σs)(γτsesΣs + λsId)

−2. (286)

For deterministic d× d PSD matrices A and B, we define the following auxiliary quantities:

h
(1)
j (A) := γejτj t̄rAΣj(γτjejΣj + λjId)

−1, (287)

h
(2)
j (A) := γt̄rAΣj(γejτ

2
j Σj + ejρjId − λjujτjId)(γτjejΣj + λjId)

−2, (288)

h
(3)
j (A) := t̄rAΣj(γe

2
jΣj(γτ

2
j Σj + ρjId) + λ2jujId)(γτjejΣj + λjId)

−2. (289)

Under Assumptions B.1 and 3.2, it holds that:

Rs(f̂s) ≃ Bs(f̂s) + Vs(f̂s), with Vs(f̂s) = lim
ps→1

Vs(f̂), Bs(f̂s) = lim
ps→1

Bs(f̂). (290)

More explicitly:

Vs(f̂s) = σ2
sϕsh

(2)
s (Id), Bs(f̂s) = t̄rΘsΣs + h(3)s (Θs)− 2h(1)s (ΘsΣs). (291)

Proof. Theorem 3.2 follows from Theorem 3.1 in the limit ps → 1 (i.e., ps′ → 0).
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H SOLVING FIXED-POINT EQUATIONS FOR THEOREM C.1

H.1 PROPORTIONAL COVARIANCE MATRICES

When λ→ 0+, it is not possible to analytically solve the fixed-point equations for the constants in
Definition 3.1 for general Σ1,Σ2. As such, we consider a more tractable case where the covariance
matrices are proportional, i.e., Σ1 = a1Σ and Σ2 = a2Σ, for some Σ ∈ Rd×d.

We define θ = λ
γτ(a1p1e1+a2p2e2)

and η = t̄rΣ(Σ + θId)
−1. Then, we have that:

e′s = 1 + ψτ t̄r ΣsK
−1 = 1 +

ϕasη

a1p1e1 + a2p2e2
, (292)

τ ′ = 1 + t̄rLK−1 = 1 + (η/γ)τ ′ =
1

1− η/γ
. (293)

If θ0 = 0, then η0 = 1. Therefore, e′s → 1+ ϕas
a1p1e1+a2p2e2

, which is a quadratic fixed-point equation.
Accounting for the constraint that es > 0, the fixed-point equation requires that ϕ < 1. Moreover,
τ → 1 − 1/γ, which requires that γ > 1. We further observe that ρ → (τ2t̄r γL2K−2)ρ, which
implies that ρ→ 0. We can then see that, for c ∈ {a1, a2}:

us → ϕγ2τ2e2sas(a1p1u1 + a2p2u2 + c)t̄r Σ2K−2 (294)

=
ϕe2sas(a1p1u1 + a2p2u2 + c)

(a1p1e1 + a2p2e2)2
, (295)

which is a linear fixed-point equation in us.

In contrast, if θ0 > 1, we have e′s = 1 + ψτasηθ
λ and the equation:

γθ =
λ

(1− η/γ)

(
a1p1

1+
ψ(1−η/γ)a1ηθ

λ

+ a2p2

1+
ψ(1−η/γ)a2ηθ

λ

) , (296)

which is a quartic equation in η.

H.2 THE GENERAL REGULARIZED CASE

We now consider the case where the covariance structure is the same for both groups, i.e Σ1 = Σ2 =
Σ. In this setting, it is clear that e1 = e2 = e and u1 = u2 = u, where (τ, e, u, ρ) now satisfy:

1/e = 1 + ψτ t̄r ΣK−1, 1/τ = 1 + t̄rK0K
−1, where K0 := eΣ, K := γτK0 + λId, (297)

u = ψe2t̄r Σ1(γτ
2L′ + ρId)K

−2, ρ = τ2t̄r (γρK2
0 + λ2L′)K−2, L′ := (1 + u)Σ. (298)

Lemma H.1. The scalars u and ρ′ = ρ/(γτ2) solve the following pair of linear equations:

u = ϕI2,2(θ)(1 + u) + ϕI1,2(θ)ρ
′,

γρ′ = I2,2(θ)ρ
′ + θ2I1,2(θ)(1 + u).

(299)

Furthermore, the solutions can be explicitly represented as:

u =
ϕz

γ − ϕz − I2,2(θ)
, ρ′ =

θ2I2,2(θ)

γ − ϕz − I2,2(θ)
, (300)

where z = I2,2(θ)(γ − I2,2(θ)) + θ2I1,2(θ)
2.

In particular, in the limit γ → ∞, it holds that:

θ ≃ κ, ρ′ → 0, u ≃ ϕI2,2(κ)

1− ϕI2,2(κ)
≃ df2(κ)/n

1− df2(κ)/n
, (301)

where κ > 0 is uniquely satisfies the fixed-point equation κ− λ = κ tr Σ(Σ + κId)
−1/n.
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Proof. The equations defining these scalars are:

u = ψe2t̄r Σ(γτ2L′ + ρId)K
−2, (302)

ρ = τ2t̄r (γρK2
0 + λ2L′)K−2, (303)

where K0 = eΣ, K = γτK0 + λId, and L′ := uΣ + B. Further, since B = Σ, we have
L′ = (1 + u)Σ. Now, we can rewrite the previous equations like so

u = ψe2t̄r Σ(γτ2(1 + u)Σ + ρId)K
−2 = ϕγ2τ2e2(1 + u)t̄r Σ2K−2 + ϕγe2ρt̄r ΣK−2,

ρ = τ2t̄r (γρe2Σ2 + λ2(1 + u)Σ)K−2 = γτ2e2ρt̄r Σ2K−2 + λ2τ2(1 + u)t̄r ΣK−2.

This can be equivalently written as:

u = ϕ(1 + u)γ2τ2e2t̄r Σ2K−2 + ϕρ′γ2τ2e2t̄r ΣK−2, (304)

γρ′ = ρ′γ2τ2e2t̄r Σ2K−2 + (1 + u)λ2t̄r ΣK−2. (305)

Now, observe that:

τ2e2t̄r Σ2K−2 = t̄rΣ2(Σ + θId)
−2/γ2 = I2,2(θ)/γ

2, (306)

τ2e2t̄r ΣK−2 = t̄rΣ(Σ + θId)
−2/γ2 = I1,2(θ)/γ

2, (307)

λ2t̄r ΣK−2 = θ2t̄r Σ(Σ + θId)
−2 = θ2I1,2(θ), (308)

e2t̄r ΣK−2 = t̄rΣ(Σ + θId)
−2/(γτ)2 = I1,2(θ)/(γτ)

2, (309)

τ2t̄r ΣK−2 = t̄rΣ(Σ + θId)
−2/(γe)2 = I1,2(θ)/(γe)

2, (310)

where we have used the definition θ = λ/(γτe). Thus, u and ρ have limiting values u and ρ
respectively, which solve the system of linear equations:

u = ψγ · γ−2I2,2(θ)(1 + u) + ψγ · γ−2I1,2ρ
′ = ϕI2,2(θ)(1 + u) + ϕI1,2(θ)ρ

′,

γρ′ = I2,2(θ)ρ
′ + θ2I1,2(θ)(1 + u) = I2,2(θ)ρ

′ + θ2I1,2(θ)(1 + u),

where we have used the identity ϕγ = ψ. These correspond exactly to the equations given in the
lemma. This proves the first part.

For the second part, indeed, τ = 1 − η0/γ → 1 in the limit γ → ∞, and so θ ≃ λ/(γe) which
verifies the equation:

θ ≃ λ+ λψt̄r Σ(γeΣ+ λ)−1 = λ+ ϕ · λ
γe

t̄r Σ(Σ +
λ

γe
Id)

−1 ≃ λ+ θ tr Σ(Σ + θId)
−1/n,

i.e., θ ≃ λ+ θ df1(θ)/n and θ > 0. By comparing with the equation κ− λ = κdf1(κ)/n satisfied
by κ > 0 in Definition D.1, we conclude θ ≃ κ.

Now, equation 299 becomes ρ′ = 0, and u = ϕI2,2(κ)(1 + u), i.e.,

u =
ϕI2,2(κ)

1− ϕI2,2(κ)
≃ df2(κ)/n

1− df2(κ)/n
,

as claimed.

H.3 UNREGULARIZED LIMIT

Define the following auxiiliary quantities:

θ :=
λ

γτe
, χ :=

λ

τ
, κ :=

λ

e
. (311)

where τ , e, u, and ρ are as previously defined.
Lemma H.2. In the limit λ→ 0+, we have the following analytic formulae:

χ→ χ0 = (1− ψ)+ · γθ0, (312)
κ→ κ0 = (ψ − 1)+ · θ0/ϕ, (313)
τ → τ0 = 1− η0/γ, (314)
e→ e0 = 1− ϕη0. (315)
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Proof. Observe that K0 = eΣ and K = γτK0 + λId = γτe · (Σ + θId). Defining η := I1,1(θ),
one can then rewrite the equations defining e and τ as follows:

e′ =
λ

e
= λ+ ψτλt̄r ΣK−1 = λ+

ψτλ

γτe
t̄r Σ(Σ + θId)

−1 = λ+ ϕηe′, (316)

τ ′ =
λ

τ
= λ+ λt̄rK0K

−1 = λ+
λe

γτe
t̄r Σ(Σ + θId)

−1 = λ+ (η/γ)τ ′. (317)

We deduce that:

e′ =
λ

1− ϕη
, τ ′ =

λ

1− η/γ
, τ ′e′ = λγθ. (318)

In particular, the above means that η ≤ min(γ, 1/ϕ). The last part of equations equation 318 can be
rewritten as follows:

λ

(1− ϕη)(1− η/γ)
= γθ, i.e ϕη2 − (ϕγ + 1)η + γ − λ

θ
= 0. (319)

This is a quadratic equation for η as a function of λ and θ, with roots

η± =
ϕγ + 1±

√
(ϕγ + 1)2 − 4(ϕγ − (ϕ/θ)λ)

2ϕ
=
ψ + 1±

√
(ψ + 1)2 − 4(ψ − ϕ/θ′)

2ϕ
. (320)

Now, for small λ > 0 and ψ ̸= 1, we can do a Taylor expansion to get:

η± ≃ ψ + 1± |ψ − 1|
2ϕ

± 1

θ|ψ − 1|
λ+O(λ2).

More explicitly:

η+ ≃ O(λ2)

{
1/ϕ+ λ/((1− ψ)θ), if ψ < 1,

γ + λ/((ψ − 1)θ), if ψ > 1.

η− ≃ O(λ2) +

{
γ − λ/((1− ψ)θ), if ψ < 1,

1/ϕ− λ/((ψ − 1)θ), if ψ > 1,

Because η ≤ min(1, 1/ϕ, γ), we must have the expansion:

η ≃ O(λ2) +

{
γ − λ/((1− ψ)θ), if ψ < 1,

1/ϕ+ λ/((ψ − 1)θ), if ψ > 1,

= η0 −
1

(1− ψ)θ0
λ+O(λ2),

(321)

provided θ0 > 0, i.e η0 ̸= 1. in this regime, we obtain:

τ ′ =
λ

1− η/γ
≃
{
λ/(1− 1 + λ/((1− ψ)γθ0)) = (1− ψ)γθ0, if ψ ≤ 1,

λ/(1− 1/ψ + o(1)) → 0, if ψ > 1,

e′ =
λ

1− ϕη
≃
{
λ/(1− ψ + o(1)) → 0, if ψ ≤ 1,

λ/(1− 1 + λϕ/((ψ − 1)θ0) → (ψ − 1)θ0/ϕ, if ψ > 1,

τ = 1− η/γ ≃ 1− η0/γ = (1− 1/ψ)+,

e = 1− ϕη ≃ 1− ϕη0 = (1− ψ)+.

On the other hand, if θ0 = 0 (which only happens if ψ < 1 and γ > 1 OR ψ ≥ 1 and ϕ ≤ 1), it is
easy to see from equation 318 that we must have τ ′ → 0, e′ → 0, τ → 1− 1/γ, e→ 1−ϕ ≥ 0.
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I COROLLARY I.1

As a highly special case of Theorem 3.1, we recover Corollary I.1, which aligns with Proposition 4
from (Bach, 2024). Theorem 3.1 is a non-trivial generalization of Proposition 4.
Corollary I.1. Under Assumptions B.1 and 3.2, it holds in the unregularized setting λs → 0+ that

Bs(f̂s) =


θ0 t̄r ΘsΣs(Σs+θ0Id)

−1

1−ψs , γ, ψs < 1

0, ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ
θ20 t̄r ΘsΣs(Σs+θ0Id)

−2

1−ϕsI2,2(θ0) + θ0 t̄r ΘsΣs(Σs+θ0Id)
−1

ψs−1 , ψs ≥ 1, ψs ≥ γ

,

(322)

Vs(f̂s) =


σ2
sψs

1−ψs , γ, ψs < 1
σ2
sϕs

1−ϕs , ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ
σ2
sϕsI2,2(θ0)

1−ϕsI2,2(θ0) +
σ2
s

ψs−1 , ψs ≥ 1, ψs ≥ γ

, (323)

where Ia,b(θ0) = t̄r Σa(Σ + θ0Id)
−b for any positive integers a, b; and θ0 is the unique solution to

the following non-linear equation:

I1,1(θ0) =


γ, γ, ψs < 1

1, ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ

1/ϕs, ψs ≥ 1, ψs ≥ γ

. (324)

Proof. Define e′ = 1/es ≥ 0, τ ′ = 1/τs ≥ 0, θ = λsτ
′e′/γ, and η = I1,1(θ) ∈ [0, 1]. One can then

express e′ and τ ′ as:

e′ = 1 + ψτst̄r Σ(γτsesΣ+ λsId)
−1 = 1 + ϕsηe

′, (325)

τ ′ = 1 + t̄r esΣ(γτsesΣ+ λsId)
−1 = 1 + (η/γ)τ ′. (326)

We deduce that:

e′ =
1

1− ϕsη
, (327)

τ ′ =
1

1− η/γ
, (328)

λτ ′e′ = γθ. (329)

We define the following limiting values:

lim
λs→0+

θ → θ0, lim
λs→0+

η → η0, (330)

lim
λs→0+

es → e0, lim
λs→0+

τs → τ0, (331)

lim
λs→0+

us → u0, lim
λs→0+

ρs → ρ0. (332)

There are now two cases to consider.

I.1 CASE 1: θ0 = 0

This implies η0 = 1. Therefore, by simple computation, e0 = 1/e′0 = 1 − ϕsη0 = 1 − ϕs and
τ0 = 1/τ ′0 = 1− 1/γ. This requires ϕs ≤ 1 and γ ≥ 1.

I.2 CASE 2: θ0 > 0

Equation 329 can be re-written as:

λs
(1− ϕsη)(1− η/γ)

= γθ, i.e., ϕsη2 − (ψs + 1)η + γ − λs
θ

= 0. (333)
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We solve this quadratic equation for η, arriving at the solutions:

η± =
ψs + 1±

√
(ψs + 1)2 − 4(ψs − (ϕs/θ)λs)

2ϕs
=
ψs + 1±

√
(ψs + 1)2 − 4(ψs − (ϕs/θ)λs)

2ϕs
.(334)

Taking the limit of η± as λs → 0+ gives:

η+ → ψs + 1 + |ψs − 1|
2ϕs

=

{
ψs/ϕs = γ, if ψs ≥ 1,

1/ϕs, if ψs < 1,

η− → ψs + 1− |ψs − 1|
2ϕs

=

{
1/ϕs, if ψs ≥ 1,

ψs/ϕs = γ, if ψs < 1.

(335)

Recall that we have the following constraints:

• e′ ≥ 0, τ ′ ≥ 0.

• η ∈ [0, 1].

We can show that η0 = 1/ϕs is incompatible with ψs < 1. Indeed, otherwise we would have
τ ′0 = 1/(1 − η0/γ) = 1/(1 − 1/ψs) < 0. Similarly, if ψs > 1, we would have e0 = 1 − ϕsγ =
1 − ψs < 0. Therefore, η0 = η−. Furthermore, if ψs, γ < 1, it must be that θ0 > 0 and η0 = γ.
Instead, if ψs < 1, γ ≥ 1, we must have that ϕs ≤ 1, and therefore, θ0 = 0 and η0 = 1. Similarly, if
ψs ≥ 1, γ ≥ 1, and ϕs ≤ 1 (i.e., 1 ≤ ψs ≤ γ), we must have that θ0 = 0 and η0 = 1. In all other
cases where ψs ≥ 1, it must be that η0 = 1/ϕs (which additionally requires ϕs ≥ 1 or ψs ≥ γ).
Succinctly:

η0 =


γ, γ, ψs < 1

1, ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ

1/ϕs, ψs ≥ 1, ψs ≥ γ

. (336)

Plugging this into equation 327 and equation 328 gives:

e0 = 1− ϕsη0 = 1− ϕsI1,1(θ0), (337)
τ0 = 1− η0/γ = 1− I1,1(θ0)/γ. (338)

We will now solve for u0 and ρ0/τ20 . We can re-write us and ρs/τ2s as:

ρs/τ
2
s = γ−1(ρs/τ

2
s )I2,2(θ) + θ2(us + 1)I1,2(θ), (339)

τ2s us = τ2s ϕs(us + 1)I2,2(θ) + ϕsγ
−1ρsI1,2(θ). (340)

Solving for u0 and ρ0/τ20 yields:

u0 =
ϕζ

γ − ϕζ − I2,2(θ0)
, ρ0/τ

2
0 =

γθ20I2,2(θ0)

γ − ϕζ − I1,2(θ0)
, (341)

where ζ = I2,2(θ0)(γ − I2,2(θ0)) + θ20I1,2(θ0)
2. (342)

We can then see for the variance term that:

Vs(f̂s) = σ2
sϕsγt̄r Σs(γesτ

2
sΣs + esρsId − λsusτsId)(γτses)

−2(Σs + θId)
−2 (343)

= σ2
sϕs(1/es)t̄r Σ

2
s(Σs + θId)

−2 + (σ2
sϕs/γ)(1/es)(ρs/τ

2
s )t̄r Σs(Σs + θId)

−2 (344)

− σ2
sϕs(us)(1/es)θt̄r Σs(Σs + θId)

−2 (345)

= σ2
sϕsI2,2(θ)/es + σ2

sϕs(ρs/τ
2
s )I1,2(θ)/(γes)− σ2

sϕsusθI1,2(θ)/es (346)

→ σ2
sϕsI2,2(θ0)− σ2

sϕsu0θ0I1,2(θ0)

1− ϕsI1,1(θ0)
+

σ2
sϕsρ0/τ

2
0

γ(1− ϕsI1,1(θ0))
(347)

= − σ2
sϕsξ

ϕsξ + I2,2(θ0)− γ
, (348)

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

where ξ = I21,1(θ0) − 2I1,1(θ0)I2,2(θ0) + I2,2(θ0)γ and we have used the fact that I1,2(θ) =
(I1,1(θ)− I2,2(θ))/θ. Plugging in I1,1(θ0) = η0, we have that:

Vs(f̂s) →


σ2
sψs

1−ψs , γ, ψs < 1
σ2
sϕs

1−ϕs , ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ
σ2
sϕsI2,2(θ0)

1−ϕsI2,2(θ0) +
σ2
s

ψs−1 , ψs ≥ 1, ψs ≥ γ

, (349)

where we have used that I2,2(θ0) = I2,2(0) = 1 in the second case.

Likewise, for the bias term, we obtain:

Bs(f̂s) = t̄rΘsΣs + t̄rΘsΣs(γe
2
sΣs(γτ

2
sΣs + ρsId) + λ2susId)(γτsesΣs + λsId)

−2 (350)

− 2γesτst̄r ΘsΣ
2
s(γτsesΣs + λsId)

−1 (351)

→ t̄r ΘsΣs(Σ
2
s + 2θ0Σs + θ20Id)(Σs + θ0Id)

−2 (352)

+ t̄rΘsΣs(Σ
2
s)(Σs + θ0Id)

−2 (353)

+ t̄rΘsΣs((ρ0/τ
2
0 )Σs/γ)(Σs + θ0Id)

−2 (354)

+ t̄rΘsΣs(θ
2
0u0Id)(Σs + θ0Id)

−2 (355)

+ t̄rΘsΣs(−2Σ2
s − 2θ0Σs)(Σs + θ0Id)

−2 (356)

= θ20(u0 + 1)t̄rΘsΣs(Σs + θ0Id)
−2 + (1/γ)(ρ0/τ

2
0 )t̄rΘsΣ

2
s(Σs + θ0Id)

−2. (357)

Again, plugging in I1,1(θ0) = η0, we have that:

Bs(f̂s) →


θ0 t̄r ΘsΣs(Σs+θ0Id)

−1

1−ψs , γ, ψs < 1
θ20 t̄r ΘsΣs(Σs+θ0Id)

−2

1−ϕs = 0, ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ
θ20 t̄r ΘsΣs(Σs+θ0Id)

−2

1−ϕsI2,2(θ0) + θ0 t̄r ΘsΣs(Σs+θ0Id)
−1

ψs−1 , ψs ≥ 1, ψs ≥ γ

,

(358)

where we have used that t̄r ΘsΣ2
s(Σs+θ0Id)

−2 = t̄rΘsΣs(Σs+θ0Id)
−1−θ0t̄r ΘsΣs(Σs+θ0Id)−2

and in the second case, θ0 = 0 and I2,2(θ0) = 1.
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J EXPERIMENTAL DETAILS

J.1 SYNTHETIC EXPERIMENTS

Across all experiments on synthetic data, we choose n = 400. We further use 5 runs to estimate test
risks (e.g., ERs(f̂),ERs(f̂s)), and 5 runs to capture the variance of the estimators, for a total of 25
runs. We use 10,000 samples to estimate test risks.

Setup for Section 5. To be consistent with the settings of (Sagawa et al., 2020; Khani & Liang, 2021),
we consider diatomic covariance matrices consisting of core and extraneous features. In particular,

we define A ⊕ B =

(
A 0
0 B

)
, and choose Σ1 = a1Iπd ⊕ 0I(1−π)d,Σ2 = a2Iπd ⊕ b2I(1−π)d, for

π ∈ (0, 1) and a1, b2 > 0 and a1 = a2. Here, the first πd features represent common core features of
groups 1 and 2 while the latter (1− π)d features capture unshared extraneous features for group 2
(e.g., spurious features). Intuitively, this setting can model: (1) learning from data from two groups
where one group suffers from spurious features (Sagawa et al., 2020), or (2) learning from a mixture
of raw data (i.e., with spurious features) and clean data (i.e., without spurious features) for a single
population (Khani & Liang, 2021). We ask: Does our theory predict how the inclusion of different
amounts of extraneous features affect the test risk of the minority group when a single model is
trained on data from both groups vs. a separate model is trained per group?

Although Sagawa et al. (2020) consider classification instead of regression, to closely mirror their
experimental setting, we pick p1 = 0.9 (i.e., group 1 is much larger than group 2) and Θ = Id,∆ = 0
(i.e., w∗

1 = w∗
2). We additionally choose λ = 1 × 10−6 and σ2

1 = σ2
2 = 1. We modulate a1, b2,

as well as ψ (rate of parameters to samples) and ϕ (rate of features to samples). Notably, this
setting also captures learning problems with o(d) overlapping core and extraneous features in our
asymptotic scaling limit. An extremization of this setting is choosing Σ1 = a1Iπd ⊕ 0I(1−π)d,Σ2 =
0Iπd ⊕ b2I(1−π)d, where groups 1 and 2 have entirely different sets of important features.

J.2 COLORED MNIST EXPERIMENT

Train-test split. Colored MNIST has a total of 60k instances. We use the prescribed 0.67-0.33
train-test split. We do not perform validation of hyperparameters, which we mostly adopt3.

Model architecture. Our CNN architecture consists of: (1) a convolutional layer (3 in-channels, 20
out-channels, kernel size of 5, stride of 1); (2) a max pooling layer (kernel size of 2, stride of 2); (3)
a second convolutional layer (20 in-channels, 50 out-channels, kernel size of 5, stride of 1); (4) a
second max-pooling layer (kernel size of 2, stride of 2); (5) a fully-connected layer (R800 → R500);
and (6) a second fully-connected layer (R500 → R1).

Model training. We train each model with a batch size of 250 for a single epoch. We use a cross-
entropy loss and the Adam optimizer with learning rate 0.01. We run all experiments on a single
Quadro GP100. We report our results over 10 random seeds in Figure 6.

3https://colab.research.google.com/github/reiinakano/
invariant-risk-minimization/blob/master/invariant_risk_minimization_
colored_mnist.ipynb
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Figure 6: Our theory predicts that disparate label noise between groups deamplifies bias on
Colored MNIST. The error bars capture the standard deviation computed over 10 random seeds.
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K BIAS AMPLIFICATION PLOTS
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Figure 7: We empirically demonstrate that bias amplification occurs and validate our theory (Theorems
3.1 and 3.2) for ODD, EDD, and ADD under the setup described in Section 4.1. The solid lines
capture empirical values while the corresponding lower-opacity dashed lines represent what our
theory predicts. We plot ODD and EDD on the same scale for easy comparison, and include a
black dashed line at ADD = 1 to contrast bias amplification vs. deamplification. The error bars
capture the range of the estimators over 25 random seeds.
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Figure 8: We empirically demonstrate that bias amplification occurs and validate our theory (Theorems
3.1 and 3.2) for ODD, EDD, and ADD under the setup described in Section 4.1. The solid lines
capture empirical values while the corresponding lower-opacity dashed lines represent what our
theory predicts. We plot ODD and EDD on the same scale for easy comparison, and include a
black dashed line at ADD = 1 to contrast bias amplification vs. deamplification. The error bars
capture the range of the estimators over 25 random seeds.
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Figure 9: We empirically demonstrate that bias amplification occurs and validate our theory (Theorems
3.1 and 3.2) for ODD, EDD, and ADD under the setup described in Section 4.1. The solid lines
capture empirical values while the corresponding lower-opacity dashed lines represent what our
theory predicts. We plot ODD and EDD on the same scale for easy comparison, and include a
black dashed line at ADD = 1 to contrast bias amplification vs. deamplification. The error bars
capture the range of the estimators over 25 random seeds.
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L POWER-LAW COVARIANCE

To better understand how ϕ and the noise ratio c affect bias amplification, we derive explicit phase
transitions in the bias amplification profile of ridge regression with random projections in terms of
these quantities. We consider the setting of power-law covariance, as it is analytically tractable and
can be translated to the case of wide neural networks (Caponnetto & de Vito, 2007; Cui et al., 2022;
Maloney et al., 2022), where the exponents can be empirically gauged. Let the eigenvalues λ(s)k of
Σs have power-law decay, i.e., λ(s)k = k−βs , for all k and some positive constants β1 and β2. WLOG,
we will assume β1 > β2. Note that βs controls the effective dimension and ultimately the difficulty
of fitting the noiseless part of the signal from group s. If βs is large, then all the information is
concentrated in a few features, and so the learning problem is easier. We similarly assume that the
eigenvalues µk of ∆ have power-law decay µk = k−α, for all k and constant α > 0. Finally, we
consider balanced groups (i.e., p1 = p2 = 1/2). Under this setup, we have the following corollary.
Corollary L.1. Suppose ϕ < p2 and γ > 1. Under the assumptions of Theorem 3.1 and Assump-
tion B.2, as λ → 0+, we have the following approximate analytical phase transitions in the bias
amplification profile of ridge regression with random projections:

lim
d,n1,n2→∞
ϕ1,2→2ϕ

ADD → c

|c− 1|
, lim

c→0+
lim

d,n1,n2→∞
ϕ1,2→2ϕ

ADD → 0, (359)

lim
c→∞

lim
d,n1,n2→∞
ϕ1,2→2ϕ

ADD → 1, lim
c→1

lim
d,n1,n2→∞
ϕ1,2→2ϕ

ADD → ∞. (360)

We relegate the proof to Appendix M and empirically validate this result in Figure 10. The phase
transitions reveal that bias amplification peaks near c = 1, bias reduction peaks when c→ 0+, and
bias amplification does not occur when c → ∞. Furthermore, the right tail of the ODD profile
(which is proportional to c) is higher than the left tail (i.e., 0) for larger c, which aligns with our
empirical findings in Section 4.1. Interestingly, in the proof of Corollary L.1, we observe that the
bias term depends on t̄r∆Σs; therefore, the setting ∀k, λ(s)k ≥ 1/µk (e.g., common in learning from
synthetic data (Dohmatob et al., 2024)) can prevent the bias term from vanishing or even cause it to
explode. This may explain why iteratively training models on synthetic data (i.e., data previously
generated by the models) amplifies unfairness (Wyllie et al., 2024).
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M PROOF OF COROLLARY L.1

Proof. We begin by computing the ODD. We define u(s)j = uj for B = Σs. When λ→ 0+, we can
re-express the constants in Definition 3.1 in terms of the limiting spectral densities of the covariance
matrices:

e1 =
1

1 + ϕ
∫∞
0

1
p1e1+p2e2r

dν(r)
, e2 =

1

1 + ϕ
∫∞
0

r
p1e1+p2e2r

dν(r)
, (361)

τ =
1

1 + 1
γτ

= 1− 1/γ, ρ = 0, (362)

u
(1)
1 = ϕe21

∫ ∞

0

u
(1)
1 p1 + u

(1)
2 p2r + 1

(p1e1 + p2e2r)2
dν(r), u

(1)
2 = ϕe22

∫ ∞

0

u
(1)
1 p1r + u

(1)
2 p2r

2 + r

(p1e1 + p2e2r)2
dν(r),

(363)

u
(2)
1 = ϕe21

∫ ∞

0

u
(2)
1 p1 + u

(2)
2 p2r + r

(p1e1 + p2e2r)2
dν(r), u

(2)
2 = ϕe22

∫ ∞

0

u
(2)
1 p1r + u

(2)
2 p2r

2 + r2

(p1e1 + p2e2r)2
dν(r).

(364)

Since β1 > β2, −β2 − (−β1) > 0. As such, for d → ∞, the ratios rk = λ
(2)
k /λ

(1)
k have the

approximate limiting distribution ν = δr=∞, i.e., a Dirac atom at infinity. Thus:

e1 = 1, e2 = 1− ϕ

p2
= 1− ϕ2, τ = 1− 1/γ, ρ = 0, (365)

u
(1)
1 = 0, u

(1)
2 = 0, u

(2)
1 = 0, u

(2)
2 =

ϕ

p2(p2 − ϕ)
. (366)

Now, we can re-express the variance terms as:

V1(f̂) = ϕσ2
1

∫ ∞

0

p1
(p1 + p2e2r)2

dν(r) + ϕσ2
2

∫ ∞

0

p2e2r

(p1 + p2e2r)2
dν(r) = 0, (367)

V2(f̂) = ϕσ2
1

∫ ∞

0

p1r + p1p2u
(2)
2 r

(p1 + p2e2r)2
dν(r) + ϕσ2

2

∫ ∞

0

p2e2r
2

(p1e1 + p2e2r)2
dν(r) =

σ2
2ϕ

p2 − ϕ
. (368)

Likewise, we can re-express the bias terms as:

B1(f̂) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

aδe22p
2
2r

2

(e1p1 + e2p2r)2
dµ(r, a)dπ(δ) =

∫ ∞

0

∫ ∞

0

aδ dµ(a)dπ(δ), B2(f̂) = 0.

(369)

In this calculation, we observe that the adversarial setting ∀k, λ(1)k ≥ 1/µk can prevent the bias term
from vanishing. Putting these pieces together and recalling that p2 = 1/2:

ODD →
∣∣∣V1(f̂)− V2(f̂)

∣∣∣ = 2ϕσ2
1

1− 2ϕ
c. (370)

We now compute the EDD. We can once again re-express the constants in Definition G.1 in terms
of the limiting spectral densities of the covariance matrices:

es =
1

1 + ϕs/es
= 1− ϕs, τs = 1− 1/γ. (371)

Because θ0 = limλ→0+ λs/(γesτs) = 0, by Corollary I.1, Bs(f̂s) = 0 and Vs(f̂s) =
σ2
2ϕs

1−ϕs .

Therefore, because ϕ = psϕs:

EDD →
∣∣∣V1(f̂1)− V2(f̂2)

∣∣∣ = 2ϕ

1− 2ϕ

∣∣σ2
1 − σ2

2

∣∣ = 2ϕσ2
1

1− 2ϕ
|c− 1| , (372)

ADD → c

|c− 1|
. (373)
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Figure 10: Our theory predicts that bias amplification is larger for higher noise ratios than
lower noise ratios. We observe that Corollary L.1 closely predicts the bias amplification profile
with respect to the noise ratio c. The solid lines capture empirical values while the corresponding
lower-opacity dashed lines represent what our theory predicts. We plot ODD and EDD on the same
scale for easy comparison, and include a black dashed line at ADD = 1 to contrast bias amplification
vs. deamplification. The error bars capture the range of the estimators over 25 random seeds. We
consider the setup described in L with ψ = 0.5, ϕ = 0.2, and λ = 1× 10−6.
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N BIAS AMPLIFICATION DURING TRAINING
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Figure 11: Our theory reveals that there may be an optimal regularization penalty to deamplify
bias. We empirically demonstrate that bias amplification can be heavily affected by λ and validate
our theory (Theorems 3.1 and 3.2) for ODD, EDD, and ADD under setup described in Section 4.2.
The solid lines capture empirical values while the corresponding lower-opacity dashed lines represent
what our theory predicts. We include a black dashed line at ADD = 1 to contrast bias amplification
vs. deamplification. The error bars capture the range of the estimators over 25 random seeds.
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Figure 12: We empirically demonstrate that minority-group bias is affected by extraneous features.
We validate our theory (Theorems 3.1 and 3.2) for together R1, R2 (i.e., single model learned for
both groups) and separate R1, R2 (i.e., separate model learned per group) under the setup described
in Section 4.2. The solid lines capture empirical values while the corresponding lower-opacity dashed
lines represent what our theory predicts. We include a black dashed line at ADD = 1 to contrast
bias amplification vs. deamplification. All y-axes are on the same scale for easy comparison. The
error bars capture the range of the estimators over 25 random seeds.
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Figure 13: We empirically demonstrate that minority-group bias is affected by extraneous features.
We validate our theory (Theorems 3.1 and 3.2) for together R1, R2 (i.e., single model learned for
both groups) and separate R1, R2 (i.e., separate model learned per group) under the setup described
in Section 4.2. The solid lines capture empirical values while the corresponding lower-opacity dashed
lines represent what our theory predicts. We include a black dashed line at ADD = 1 to contrast
bias amplification vs. deamplification. All y-axes are on the same scale for easy comparison. The
error bars capture the range of the estimators over 25 random seeds.
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Figure 14: We empirically demonstrate that minority-group bias is affected by extraneous features.
We validate our theory (Theorems 3.1 and 3.2) for together R1, R2 (i.e., single model learned for
both groups) and separate R1, R2 (i.e., separate model learned per group) under the setup described
in Section 4.2. The solid lines capture empirical values while the corresponding lower-opacity dashed
lines represent what our theory predicts. We include a black dashed line at ADD = 1 to contrast
bias amplification vs. deamplification. All y-axes are on the same scale for easy comparison. The
error bars capture the range of the estimators over 25 random seeds.
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P ADDITIONAL EXPERIMENTS ON MNIST AND CNN
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Figure 15: Our theory predicts that more disparate label noise between groups deamplifies
bias on Colored MNIST. We plot the ODD and EDD of a CNN for different label noise ratios
c = σ2

2/σ
2
1 for Colored MNIST. As c increases, the EDD generally increases while the ODD

remains relatively low, which is predicted by our theory (see analysis in Section 4.2). In our
experiments, σ2

1 = 0.05 stays fixed while σ2
2 varies. For each value of c, the model is evaluated after

t = 80 training steps and has a penultimate layer with dimension m = 500. The error bars capture
the standard deviation computed over 10 random seeds.
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Figure 16: Our theory predicts that a larger model size reduces bias amplification on Colored
MNIST. We plot the ODD and EDD of a CNN for different model sizes m (where m is the
dimension of the penultimate CNN layer) for Colored MNIST. As m increases, the ODD tends
towards 0 while the EDD does not, which is in line with what our theory predicts in Figure 2 (in
the regime where ϕ < 1). In our experiments, σ2

1 = σ2
2 = 0.05. For each value of m, the model is

evaluated after t = 80 training steps. The error bars capture the standard deviation computed over 10
random seeds.
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