
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LET ME GROK FOR YOU: ACCELERATING GROKKING
VIA EMBEDDING TRANSFER FROM A WEAKER MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

“Grokking” (Power et al., 2022) is a phenomenon where a neural network first
memorizes training data and generalizes poorly, but then suddenly transitions to
near-perfect generalization after prolonged training. While intriguing, this delayed
generalization phenomenon compromises predictability and efficiency. Ideally,
models should generalize directly without delay. To this end, this paper proposes
GrokTransfer, a simple and principled method for accelerating grokking in
training neural networks, based on the key observation that data embedding plays a
crucial role in determining whether generalization is delayed. GrokTransfer
first trains a smaller, weaker model to reach a nontrivial (but far from optimal)
test performance. Then, the learned input embedding from this weaker model is
extracted and used to initialize the embedding in the target, stronger model. We
rigorously prove that, on a synthetic XOR task where delayed generalization always
occurs in normal training, GrokTransfer enables the target model to generalize
directly without delay. Moreover, we demonstrate that, across empirical studies of
different tasks, GrokTransfer effectively reshapes the training dynamics and
eliminates delayed generalization, for both fully-connected neural networks and
Transformers.

1 INTRODUCTION

“Grokking” is an intriguing phenomenon recently discovered by Power et al. (2022), where a neural
network first memorizes the training dataset but has poor test performance, and after much longer
training, it suddenly transitions to near-perfect generalization. Initially reported for Transformer
models trained on modular arithmetic tasks, the grokking phenomenon has since been observed in
other settings such as learning group operations (Chughtai et al., 2023), sparse parity (Barak et al.,
2022), and image classification (Liu et al., 2023).

While grokking is an interesting phenomenon, it introduces unpredictability into the training process
and compromises its practical efficiency. When the model has interpolated the training data with
small training loss but still performed poorly on the validation set, it becomes difficult to predict
whether or when the model will eventually generalize. Ideally, we would like the model to make
continuous progress during training, keeping the gap between training and validation errors minimal.
This raises the question:

How can we effectively modify the training dynamics so that the model generalizes without delay?

In this work, we show that data embedding plays a crucial role in determining the training dy-
namics; an informative embedding enables continuous progress during training. To obtain such an
informative embedding without excessive computational cost, we propose a novel method called
GrokTransfer, which leverages the embedding learned by a weaker, smaller model to accelerate
the generalization of a larger target model. See Figure 1a for an overview of GrokTransfer.

Specifically, GrokTransfer involves two main steps: (1) Train a weaker model until it groks
to non-trivial test performance; (2) Extract the weak model’s learned embedding and use a linear
mapping of this embedding to initialize the embedding of the target model. Then, proceed to train the
target model. We theoretically study GrokTransfer in the setting of a two-layer neural network
trained on a high-dimensional XOR classification task, where normal training exhibits grokking.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Training Data

Weaker Model

Target Model

2.Extract

Embedding

3.
 L

in
ea

r M
ap

New Embedding

4.Inject

input

input

(a)

1 10 100 1000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train (GrokTransfer)
Test (GrokTransfer)
Train (Standard)
Test (Standard)

1 10 100 1000
Epochs

0

2

4

6

8

Lo
ss

Train (GrokTransfer)
Test (GrokTransfer)
Train (Standard)
Test (Standard)

(b)

Figure 1: (a) Overview of the GrokTransfer framework. (b) Comparison of the training dynamics
of a model trained using GrokTransfer versus one trained from scratch. There is a clear phase
transition between memorization and generalization if we train the model from scratch (blue lines).
GrokTransfer (red lines) enables the model to make continuous progress, significantly reducing
the gap between memorization and generalization. See Appendix A.3 for the detailed experimental
setup.

We prove that GrokTransfer enables the target model to directly generalize without delay. We
further empirically verify the effectiveness of GrokTransfer on typical algorithmic tasks that
show grokking. This is done for both fully-connected neural networks with trainable embeddings
and Transformers. Figure 1b shows typical training curves of GrokTransfer vs. training a target
model from scratch, on a modular addition task. It shows that GrokTransfer effectively eliminates
grokking and significantly improves efficiency.

In summary, our contributions are as follows:

• We propose a novel method, GrokTransfer, which leverages the embedding learned from a
smaller, weaker model to accelerate grokking in the target model.

• We theoretically justify GrokTransfer in an XOR classification task. We further empirically
validate our method on several algorithmic tasks that exhibit grokking in normal training, demon-
strating that GrokTransfer can effectively eliminate delayed generalization.

1.1 RELATED WORK

Our work draws on two themes around grokking and weak-to-strong knowledge transfer.

Grokking. Liu et al. (2022) reported that the model starts grokking when it learns the hidden
structure of the data. Gromov (2023) showed that grokking is robust to different optimizers such as
vanilla gradient descent and Adam; and regularization methods including no regularization, weight
decay, and dropout. Davies et al. (2023) hypothesized that grokking and double descent, another
surprising phenomenon, are caused by the same hidden mechanism. Nanda et al. (2023) reverse-
engineered a grokked transformer model for modular addition and reported that the learned algorithm
is a composition of trigonometric and inverse trigonometric functions. Merrill et al. (2023) and Varma
et al. (2023) contributed to the occurrence of grokking to the competition of sparse (generalizing)
and dense (complementary) subnetworks during training. Zhu et al. (2024) showed that models
only grok when the training data exceeds some critical size. Liu et al. (2023) attributed grokking to
large initialization scale and induced grokking on real-world datasets such as MNIST and IMDb by
initializing models with large weight norm. Further work (Miller et al., 2023; Humayun et al., 2024)
showed that grokking can also be observed in other scenarios such as Gaussian Process regression
and multi-class classification with adversarial samples. A series of theoretical papers have established
rigorous results for grokking/delayed generalization in several settings outside of algorithmic tasks:
linear regression with linear models (Žunkovič & Ilievski, 2022), and binary classification with neural
networks (Lyu et al., 2024; Xu et al., 2024). Lyu et al. (2024) proved that grokking can be induced by
a sharp phase transition from kernel regime to rich regime. Mallinar et al. (2024) trained Recursive
Feature Machines on algorithmic tasks and found its training dynamics similar to neural networks,
showing that grokking is not restricted to neural networks. He et al. (2024); Wang et al. (2024) found
transformers achieve out-of-distribution generalization on some tasks through grokking. Doshi et al.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(2024) provided analytical solutions for complex modular arithmetic tasks and hypothesized that
some complex modular polynomial tasks cannot be learned by shallow neural networks. Mohamadi
et al. (2024) showed that learning modular addition is fundamentally hard for neural networks in the
kernel regime.

Recent work has proposed several methods to accelerate grokking. Liu et al. (2023) explained
grokking through the concept of a “Goldilocks zone”, a spherical shell of weights, and found that
restricting the weight norm to a sphere of the appropriate radius during training can accelerate
generalization. However, this method introduces instability in the training process and still involves a
phase transition. Furuta et al. (2024) suggested initializing the model with weights or embeddings
from another model that has already generalized on a different task may accelerate grokking, which
needs to train the same model on additional data, while our method do not need additional data. Lee
et al. (2024) decomposed the gradient at each step and accelerated grokking by amplifying part of the
gradient. Interestingly, Minegishi et al. (2024) demonstrated that the gap between memorization and
generalization can be nearly eliminated if a lottery ticket, a set of sparse mask matrices, is applied to
the model during training. However, this lottery ticket can only be obtained by first training the same
model under the same initialization till generalization. In contrast to these methods, our approach
can nearly eliminate the phase transition without requiring additional data or pretraining on the same
model.

Weak to strong knowledge transfer. Burns et al. (2023) proposed a method where a small model
is first fine-tuned as a teacher model. This teacher model is then used to generate pseudo-labels
to fine-tune a larger student model. Surprisingly, the student model can outperform the teacher.
Wang et al. (2023) designed a learned linear growth operator, which uses a learnable linear map of
a pretrained small model’s weights as the initialization for the large model’s weights, to accelerate
the training of large models. In contrast to these works, our method focuses on transferring the
embedding layer from a weaker model to the target model and reshaping the training dynamics to
accelerate grokking.

1.2 NOTATION

For a set S with finite elements, we denote its cardinality by |S| and use Uniform(S) to represent
the uniform distribution over S. We denote the set {1, 2, · · · , n} by [n]. We use sgn(x) to represent
the sign of a scalar x. For a matrix A ∈ Rn×m, we denote by Ai,· = [Ai,1, · · · , Ai,m] the i-th row,
Ai:j,· = [A⊤

i,·, · · · , A⊤
j,·]

⊤ ∈ R(j−i+1)×m the i-th to j-th rows, and ∥A∥F the Frobenius norm. We
use ϕ(x) = max{0, x} to represent the ReLU activation function. We denote the inner product
between two vectors a, b by ⟨a, b⟩. For two sequences {xn} and {yn}, we say xn = O(yn) if there
exists some constant C > 0 such that xn ≤ Cyn for all n and xn = Ω(yn) if yn = O(xn).

2 ACCELERATING GROKKING VIA EMBEDDING TRANSFER FROM A WEAKER
MODEL

2.1 MOTIVATION: THE ROLE OF DATA EMBEDDING

To demonstrate the pivotal role of data embedding in shaping training dynamics, we examine the
modular addition task a+ b mod p. Following settings in Nanda et al. (2023) and Liu et al. (2023),
we take p = 113. The dataset consists of {((a, b), y)}0≤a,b≤p−1 with label y = (a+ b) mod p. 25%
of the dataset is randomly sampled as the training set. We evaluate four types of embeddings:

• One-hot embedding: Each integer a ∈ [0, p− 1] is represented by its one-hot encoding.
• Binary embedding: Each a is encoded in binary, padded with zeros to the maximum length
⌊log2(p− 1)⌋+ 1.

• Fourier embedding: Each a is encoded as a vector of trigonometric functions:
[cos(2πi1ap), sin(2πi1ap), · · · , cos(2πikap), sin(2πikap)], where i1, · · · , ik ∈ N are predetermined
frequencies.

• GPT embedding: Each a is embedded using OpenAI’s text-embedding-3-small model
(OpenAI, 2024)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

100 101 102 103

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

100 101 102 103

Epoch

0

2

4

6

8

10

12

14

Lo
ss

Train Test onehot binary fourier gpt

Figure 2: FNN training dynamics using different embeddings for the modular addition task (p = 113).
The training dynamics vary significantly across different embeddings. The one-hot embedding and
GPT embedding exhibit sharp phase transition. See Appendix A.3 for details of the experimental
setup.

One-hot embeddings contain no prior information about the data, while binary embeddings capture
the ordinal information of integers. Fourier embeddings, inspired by the analytical solutions learned
by neural networks (Nanda et al., 2023; Morwani et al., 2024), encode task-specific information. GPT
embeddings encode general information about integers. Figure 2 shows the training dynamics of a
feed-forward neural network using these embeddings. The training dynamics with one-hot and GPT
embeddings exhibit clear grokking behavior, whereas those with binary and Fourier embeddings show
continuous generalization progress. Notably, Fourier embeddings enable the model to simultaneously
achieve memorization and perfect generalization. We observe that general embeddings like one-hot
and GPT embeddings suffer from generalization delay, while embeddings encoded with task-related
information allow the model to generalize continuously.

100 101 1020

10000

20000

30000

40000

50000

60000

||
t

0||
F

cos
100 101 102 103

0

2000

4000

6000

8000
onehot

100 101 102 103

Epoch

0

20000

40000

60000

||
t

0||
F

binary

100 101 102 103

Epoch

0

100000

200000

300000 gpt

Figure 3: The change of empirical NTK.

A series of works (Liu et al., 2023; Kumar et al., 2024;
Lyu et al., 2024; Mohamadi et al., 2024) found that the
default initialization scale is relatively large and causes
generalization delay. They observed that reducing the ini-
tialization scale can accelerate grokking and hypothesized
that grokking arises from a time gap between the Neural
Tangent Kernel (NTK) regime and the feature-learning
regime. However, our empirical findings indicate that
grokking persists even after carefully tuning the initializa-
tion scale (see Appendix A.3). This suggests that grokking
occurs even when the model is not initialized in the ker-
nel regime, implying that the kernel regime may not be
the sole cause of grokking. In Figure 3, we compare the
changes in the empirical NTK (Mohamadi et al., 2023) corresponding to the dynamics in Figure 2.
The change of empirical NTK evolves similarly across all four types of embeddings (see Appendix
A.3 for details).

In conclusion, the choice of embedding significantly impacts training dynamics, and an informative
embedding can close the gap between memorization and generalization. However, finding such
an informative embedding for specific tasks is not always straightforward. Binary embedding, for
example, reduces the sharp phase transition for modular addition but fails to do so for modular
multiplication. In the next section, we will show that constructing a task-specific embedding from
training data can be a promising approach to obtaining an informative embedding that can accelerate
grokking. The embedding construction can be achieved by training a much smaller, weaker model.
Here “small” refers to smaller model expressivity. This weaker model can learn an informative
embedding without achieving optimal generalization. This embedding can then be used to positively
influence the training dynamics of the larger target model.

2.2 OUR METHOD: GROKTRANSFER

We propose GrokTransfer, a simple and principled method for accelerating grokking in training
neural networks. In more detail, given a specific task and a training set G, we consider a target model

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

fT that has a trainable embedding layer ET with vocabulary size dv and embedding dimension dT .
Our proposed method GrokTransfer works as follows:

1. Train a Weaker Model: Train a weaker model fW with a trainable embedding table EW ∈
Rdv×dW on G, where dW is the embedding dimension in the weak model. Train fW until it groks
to a non-trivial performance on the validation set.

2. Train the Target Model: Initialize A = EW and randomly initialize a matrix B ∈ RdW×dT .
Train the target model with an embedding layer set to ET = A · B, where both A and B are
trainable.

By training a weaker model, the first step aims to obtain an informative embedding that aids the
training of the target model. In practice, the weak model can be much smaller than the target model
or can even have a different architecture (e.g., the weak model can be a fully-connected network
when the target model is a Transformer; see Section 4). As a result, training a weak model greatly
reduces the computational cost of acquiring an informative embedding. This contrasts with the
method proposed in Minegishi et al. (2024), which requires the target model to be trained till perfect
generalization first. In the next sections, we will demonstrate, both theoretically and empirically, that
even if the weak model only partially generalizes (i.e., has a non-trivial but non-optimal test error),
its embedding still allows the large model to generalize optimally without delay.

In the second step, we impose a low-rank structure A ·B on the embedding ET while training the
target model. This constraint alters the empirical risk landscape and provides a favorable initialization
for the embedding table. The intuition behind our method is as follows: by initializing with an
informative embedding from the weak model, the target model can bypass the initial phase of pure
memorization. Instead, it can start generalizing almost immediately as it begins to optimize the
training loss.

3 CASE STUDY: GROKTRANSFER ON XOR CLUSTER DATA

In this section, we theoretically study an XOR classification task and prove that GrokTransfer
can eliminate grokking for this task.

3.1 THE SETUP OF XOR CLUSTER DATA

We study the setting where the data x = [x1, x2, · · · , xp]
⊤ = [x⊤

signal, x
⊤
noise]

⊤ ∈ Rp, xsignal ∼
Uniform({±1}2), xnoise ∼ Uniform({±ε}p−2), and the label y = x1x2. Here ε is the parameter
that controls the scale of the noise. We denote this data distribution by P and consider n training
datapoints {(xi, yi)}ni=1 drawn i.i.d. from the distribution P . We assume the sample size n to be
sufficiently large, specifically larger than any universal constant mentioned in this paper. The data
distribution comprises four feature vectors (see Figure 5a for a projected visualization), and the model
need learn all four features to achieve perfect generalization.

We denote a width-m two-layer neural network by f(x) =
∑m

j=1 ajϕ(⟨wj , x⟩), where wj ∈ Rp, j ∈
[m] are neurons in the hidden layer and aj ∈ R, j ∈ [m] are second-layer weights. The model is
randomly initialized by

wj
i.i.d∼ N(0, w2

initIp), aj
i.i.d∼ N(0, a2init), j ∈ [m].

Define the empirical risk with the exponential loss as: L̂(f) =
∑n

i=1 l(yi, f(xi))/n, where l(y, ŷ) =
exp(−yŷ). We use gradient descent (GD) with weight decay θ

(t+1)
j = (1− λ)θ

(t)
j − α∇θj L̂(f

(t))

to update both layers {wj , aj}mj=1, where λ is the coefficient of L2 regularization.

Setting p = 80000, n = 400, ε = 0.05, this configuration approximates one of the distributions
explored in Xu et al. (2024), where grokking was observed. Under this setup, we train a two-layer
neural network on {(xi, yi)}ni=1 with default PyTorch initialization. We observe grokking, as shown
in Figure 4(a), where overfitting is achieved by the fifth epoch and generalization begins around the
80-th epoch. Below we will show how our method GrokTransfer constructs a new embedding
and eliminates the observed delay in generalization in subsequent sections.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

100 101 102

Epochs

0.6

0.8

1.0

Ac
cu

ra
cy

(a)

101 103

Epochs
0.4

0.6

0.8

Ac
cu

ra
cy

(b)

101 103 105

Weight Index

0.2

0.0

0.2

W
ei

gh
t V

al
ue

(c)

0.2

0.4

0.6

0.8

1.0

Lo
ss

0.4

0.6

0.8

1.0

Lo
ss

Train Accuracy Test Accuracy Train Loss Test Loss Neuron 0 Neuron 1 Neuron 2

Figure 4: (a) Training dynamics of a two-layer neural network with a hidden width of 2048, where
grokking is observed. (b) Training dynamics of a two-layer neural network with a hidden width of 3.
The model can only achieve around 75% validation accuracy and a phase transition near 100th epoch
is observed. (c) Visualization of individual neuron weights from the model trained in (b). It shows
three distinct patterns and each corresponds to a feature direction of the XOR data distribution. See
Appendix A.3 for details of the experimental setup.

3.2 EMPIRICAL ANALYSIS OF THE WEAKER MODEL

Applying GrokTransfer, we first train a small two-layer neural network with only 3 neurons
fS(x) =

∑3
j=1 ajϕ(⟨wj , x⟩) till convergence (Figure 4(b)). Denote the first-layer weight matrix by

W = [w1, w2, w3] ∈ Rp×3, the number of training steps by T , and the model after training by f
(T)
S .

Due to the complexity of the training dynamics, it is hard to derive the closed form of f (T)
S and W (T).

Below we empirically investigate what information the model has gained and how well it learns.

Figure 4(b) shows that, after training, this weak model has non-trivial performance with test ac-
curacy around 75%. The neurons {w(T)

j }3j=1 are visualized in Figure 4(c), displaying patterns
[−1, 1, 0, · · · , 0], [1,−1, 0, · · · , 0], and [−1,−1, 0, · · · , 0]. Note that the specific features learned by
the model are sensitive to its initialization. Nevertheless, we find that empirically, the learned features
are always three among the four features [±1,±1, 0, . . . , 0], provided the test accuracy is around
75%.

Notice that an optimal function for this classification task is

f(x) = sgn(ϕ(x1 + x2) + ϕ(−x1 − x2)− ϕ(−x1 + x2)− ϕ(x1 − x2)),

which needs four neurons to represent all features [±1,±1]. It thus follows intuitively that the weak
model fS cannot achieve better generalization with only three neurons. Formally, we establish the
following lemma regarding the expressive power of fS .

Lemma 3.1. For any f(x) =
∑3

j=1 ajϕ(w
⊤
j x), where ϕ is the ReLU activation function, we have

P(x,y)∼P (y = sgn(f(x))) ≤ 75%.

Although the model f (T)
S fails to generalize perfectly due to the inherent limitation of capacity,

it has correctly selected the subset that contains features after training as shown in Figure 4(c).
Consequently, for any input x ∼ P , W (T)⊤x becomes a high-quality embedding for x in a much
lower dimensional space. Figure 5a shows that, with this new embedding, data points are well-
separated in a three-dimensional space with a relatively high signal-to-noise ratio (SNR) compared to
the original embedding.

Next, we empirically examine the order of the ratio between the norm of the complementary sub-
network and the norm of the generalizing subnetwork. This will be used to estimate the SNR of P
with the new embedding. Given the structure of the XOR cluster data, the first two rows of W (T)

correspond to the generalizing subnetwork. We define the norm ratio between the complementary
and generalizing subnetwork as follows:

rW =
∥W (T)

3:p,·∥F/
√
p− 2

∥W (T)
1:2,·∥F/

√
2

.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5b and 5c show that the norm ratio is proportional to ε and 1/
√
n, i.e. rW ∝ ε/

√
n. We

will use this property to show that, under mild assumptions, the target model can learn this low-
dimensional XOR task with just one step of gradient descent.

X1

0.80.60.4
0.2

0.0
0.2
0.4
0.6
0.8

X2
0.6 0.4 0.2 0.0 0.2 0.4 0.6

X3

0.6
0.4
0.2

0.0
0.2
0.4
0.6

Class +1
Class -1

(a)

1054 × 104 6 × 104

Feature Dimension (p)

10 3

4 × 10 4

6 × 10 4

No
rm

 R
at

io

epsilon
1/40
1/80
1/160

(b)

1034 × 102 6 × 102 2 × 103 3 × 103

Sample Size (n)

10 3

No
rm

 R
at

io

epsilon
1/40
1/80
1/160

(c)

Figure 5: (a) 3-D Visualization of the distribution P with the embedding from the weak model. The
clusters are well-separated under the new embedding. (b) Norm ratio rW for different values of p and
ε with fixed sample size n, indicating that rW does not depend on p. (c) Norm ratio rW for different
values of n and ε with fixed feature dimension p. For each ϵ, the slope is around −1/2, indicating
that rW is proportional to 1/

√
n. See Appendix A.3 for details of the experimental setup.

3.3 THEORETICAL ANALYSIS OF THE TARGET MODEL

In this section, we theoretically analyze the behavior of GrokTransfer on the XOR clus-
ter data. We consider the target model as a large model with width m of the form fL(x) =∑m

j=1 ajϕ(⟨vj , U⊤x⟩), where U = [u1, u2, u3] ∈ Rp×3 comes from the first-layer weight matrix
W (T) learned by the weak model (visualized in Figure 4(c)). Here, U is the embedding matrix being
transferred from the weak model fS , which will then go through another linear transformation (given
by vj’s) to form the embedding in the target model. Following our observation in Section 3.2, we can
write

u1 = [µ⊤
2 , δ

⊤
1]⊤, u2 = [−µ⊤

2 , δ
⊤
2]⊤, u3 = [−µ⊤

1 , δ
⊤
3]⊤,

where µ1 = [1, 1]⊤, µ2 = [−1, 1]⊤ are two orthogonal features of P , and δj = [δj,1, · · · , δj,p−2]
⊤ ∈

Rp−2(j ∈ [3]).1 Here we let δ = [δ1, δ2, δ3] = W
(T)
3:p,·. Given a universal constant C > 1, we assume

(A1) The noise scale ε ≤ (n/(p log3 n))1/4.

(A2) The norm of the complementary subnetwork satisfies ∥δ∥F ≤ Cε
√

p/n.

(A3) The initialization scale vinit ≤ C log−
3/2(n).

(A4) The step size
√
mvinit/C ≤ α ≤

√
mvinit.

(A5) The number of neurons satisfies m ≥ 2 log3 n.

Here Assumption (A2) corresponds to the finding that rW ∝ ε/
√
n in Section 3.2. Assumptions

(A1) and (A2) together ensure that the SNR of the distribution P in the new embedding space is large
enough. Assumption (A3) controls the initial weight norm of the target model such that the empirical
risk starts within a reasonable range. Assumption (A4) guarantees that the step size is appropriately
balanced; it is neither too small to prevent meaningful updates after a single-step gradient descent nor
too large to cause overly drastic movements. Assumption (A5) ensures that the model’s width is large
enough to ensure certain concentration results about the random initialization. All assumptions are
satisfied in the empirical setup discussed in Section 3.2.

1We assume that the weak model learned three features [1, 1], [−1, 1], [−1,−1] without loss of generality.
Our result will hold the same for any three features among the four features [±1,±1].

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We denote a = [a1, · · · , am]⊤ ∈ Rm and V = [v1, · · · , vm] ∈ R3×p. We initialize a and V as
follows:

aj
i.i.d∼ Uniform({±1/

√
m}), vj

i.i.d∼ Uniform({±vinit}3), j ∈ [m],

and keep a and U fixed during the training process.2 Following the training method outlined in
Section 3.1, we use gradient descent V (t+1) = V (t)−α∇V L̂(f

(t)
L) at step t to update the linear layer

V , where α is the step size and the empirical risk L̂(·) is defined in Section 3.1. With the assumptions
and initializations, we state the theorem that characterizes the train and test error of the target model
after one step.
Theorem 3.2. Suppose that Assumptions (A1)-(A5) hold. With probability at least 1−O(1/n2) over
the generation of the training data and initial weights of fL, after one step of training, the classifier
sgn(f

(1)
L (x)) can correctly classify all training datapoints and generalize with test error no greater

than exp(−Ω(log2 n)).

Theorem 3.2 shows that with GrokTransfer, after just one step of gradient descent, the target
model overfits all training data and achieves near perfect test accuracy. Notably, this is not in a kernel
regime but a feature learning regime. Since models with normal training cannot achieve generalization
in one step (Figure 4(a)), this result indicates that our method GrokTransfer effectively boosts
the generalization speed of the target model and eliminates the time gap between overfitting and
generalization. Empirically, the model continues to generalize with further training (see Figure 9
in Appendix A.3). Given that the weaker model fS has only three neurons, the computational cost
of training fS is negligible compared to the cost of training the target model fL with sufficiently
large width. This implies that GrokTransfer may reduce the overall computational cost. In the
next section, we will compare the computational cost of our method to that of standard training
procedures.

4 EXPERIMENTS

This section empirically studies GrokTransfer in modular addition and multiplication, as well as
the sparse parity task. Our experiments verify that GrokTransfer effectively reshapes the training
dynamics and eliminate delayed generalization for both fully-connected neural networks (FNN) and
Transformers (TF). The AdamW optimizer (Loshchilov & Hutter, 2019) is used in all experiments in
this section.

4.1 FNN → FNN
We first consider a three-layer FNN as the target model and conduct GrokTransfer on tasks
including modular addition, modular multiplication, and (q, k)-parity (Barak et al., 2022). These
results are compared to training a target model from scratch. The modular addition task is introduced
in Section 2.1, and modular multiplication is defined similarly with the label y = ab mod p. The
(q, k)-parity task consists of a dataset {(x, y) : x ∈ {±1}q, y =

∏
i∈S xi, |S| = k}. Following the

setting in Merrill et al. (2023), we choose q = 40, k = 3, and S = {1, 2, 3}.

For the modular addition and multiplication tasks, we employ a two-layer neural network with a
trainable embedding as the weak model, which we train for 104 epochs. We then initialize the target
model by setting its layer A to the embedding learned by the weak model. Figure 6a and 6b show the
training dynamics of the weak model, the target model trained via GrokTransfer, and the target
model trained from scratch. Notably, GrokTransfer nearly eliminates the sharp phase transition
observed in normal training. Here all training hyperparameters (initialization scale, learning rate,
weight decay) are selected by grid search, and the best configuration is defined as the one that reaches
99% test accuracy the quickest. The oscillations of accuracies in the second row of Figure 6 are
related to the “slingshot mechanism” (Thilak et al., 2022) and training instabilities associated with
large learning rates (Wortsman et al., 2024). Since large learning rate and this kind of oscillation
are believed to help generalization (Damian et al., 2023; Lu et al., 2024), we do not change our
configuration selection criteria.

For the parity task, we use a three-layer FNN as the weak model, as empirical evidence suggests that
a two-layer FNN without bias terms cannot generalize on this task. The weak model is trained until

2Our result will not be affected if a and U are also trainable. We set them fixed to simplify the analysis while
still conveying the main ideas.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 10 100 1000 10000
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Train (Small)
Test (Small)

1 10 100 1000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train (GrokTransfer)
Test (GrokTransfer)
Train (Large)
Test (Large)

(a) Modular addition

1 10 100 1000 10000
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Train (Small)
Test (Small)

1 10 100 1000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train (GrokTransfer)
Test (GrokTransfer)
Train (Large)
Test (Large)

(b) Modular multiplication

1 10 100

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train (Small)
Test (Small)

1 10 100 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train (GrokTransfer)
Test (GrokTransfer)
Train (Large)
Test (Large)

(c) (40, 3)-parity

Figure 6: Training dynamics of FNNs on various tasks. The rows represent different models/training
methods: The first row shows the dynamics of the weak model used in GrokTransfer, the second
row shows the dynamics of the target model trained using GrokTransfer, and the target model
trained from scratch. The columns represent different tasks: the first column is for the modular
addition task, the second column is for the modular multiplication task, and the third column is for
the (40, 3)-parity task. The comparison between the first and second rows shows that the target model
trained via GrokTransfer can surpass the weak model’s performance. The comparison within the
second row shows that GrokTransfer eliminates the sharp phase transition and enables the model
to make continuous progress. See Appendix A.3 for details of the experimental setup.

it achieves 70% test accuracy, after which the first layer’s weight matrix is transferred to the target
model. As shown in Figure 6c, the weak model undergoes a generalization delay, but the large model
inheriting its embedding generalizes continuously.

Ablation study: To further understand the empirical effectiveness of GrokTransfer, we perform
an ablation study by varying the training epochs of the weak model in the modular addition task.

10
0

50
0

80
0
90

0
10

00
11

00
15

00
20

00

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy (Small)
Accuracy (Target)
1 / Time Gap

0

1/20

1/10

1/7

1/5

1/4

1
/ T

im
e

Ga
p

Figure 7: Ablation study showing the
effect of the weak model’s performance
on the test accuracy of the target model
(initialized via GrokTransfer and
trained for 104 epochs).

We extract the embeddings of the weak model at epochs
100, 500, 800, 900, 1000, 1100, 1500, and 2000. For each
embedding, we apply GrokTransfer to the target
model and train it for 104 epochs. To measure the gener-
alization delay of the target model, we define Time Gap as
the difference between the first epoch that achieves 95%
training accuracy and the first epoch that achieves 95%
test accuracy. If the target model fails to reach 95% accu-
racy, we set 1/Time Gap = 0. Figure 7 shows that the test
performance of the target model, initialized with the weak
model’s embedding, is positively correlated with the test
performance of the weak model. A grokked weak model
is essential for the target model to achieve near-perfect
generalization with minimal generalization delay. We hy-
pothesize that the target model can only generalize well
after the weak model has grokked.

4.2 FNN → TRANSFORMERS

Interestingly, we find that the embeddings extracted from the weak FNN model can be transferred
to the target model even when the target model is a Transformer comparable to the scale of GPT2-
small (Radford et al., 2019). Under this FNN → TF setting, GrokTransfer still mitigates the
generalization delay of the target model. Specifically, we choose the target model to be a Transformer
with 8 attention layers, (dembed, dmlp, nhead) = (512, 512, 4). For each sample, the input is a sequence
with two tokens (a, b). We extract the embeddings of the weak model in Figure 6a at the point that it
first reaches 30% test accuracy. Figure 8(a) shows that GrokTransfer enables the target model to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

100 101 102 103 104

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train (GrokTransfer)
Test (GrokTransfer)
Train (Large)
Test (Large)

100 101 102 103

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train (GrokTransfer)
Test (GrokTransfer)
Train (GrokFast)
Test (GrokFast)

Figure 8: Training dynamics of Transformers on Modular Addition Task. The weak model is a three-
layer FNN. (a) Dynamics of the target model (an 8-layer transformer) trained via GrokTransfer,
and the target model trained from scratch. (b) Dynamics of the target model (a two-layer Transformer)
trained via GrokTransfer, and the target model trained via GrokFast (Lee et al., 2024).

generalize much faster than training from scratch and exhibits little generalization delay. Here both
method suffer from training instability of large learning rates.

In terms of the computation cost, we use wall-clock time as the measure. The computation cost of
GrokTransfer comprises the training of weak model and the training of target model. Table 1
shows the total wall-clock time for weak model, target model with GrokTransfer, and target
model trained from scratch. The time spent training the weak FNN model is negligible compared to
training the target transformer model. The total wall-clock time of GrokTransfer is approximately
five times faster than training from scratch.

Model Weak Target (GrokTransfer) Target (scratch)

Total Wall-clock time (ms) 2828 71079 392667

Table 1: Comparison of total wall clock times (forward and backward passes) for different models.
The weak model is a three-layer FNN. The target/large model is an 8-layer transformer.

Lee et al. (2024) proposed a gradient amplification algorithm GrokFast to accelerate grokking. We
compare GrokTransfer with GrokFast in Figure 8(b). The weak model embedding we transfer
is the same as the one used in Figure 8(a). For the target model, we follow the model used in Lee et al.
(2024), which is a two-layer decoder-only transformer with (dembed, dmlp, nhead) = (128, 512, 4). The
Time Gap of GrokTransfer is 46 while the Time Gap of GrokFast is 1119.

5 CONCLUSION

To eliminate the unpredictability associated with grokking, we proposed GrokTransfer, a novel
method that effectively accelerates grokking by transferring the embedding from a weaker model. Our
method was inspired by the key observation that data embedding critically shapes training dynamics.
We theoretically justified GrokTransfer on an XOR classification task. We also empirically
evaluated it on various algorithmic tasks known to exhibit grokking under standard training. Our
results showed that GrokTransfer can effectively modify training dynamics, enabling continuous
progression in model performance.

One limitation of our work is that the theoretical result only considers a relatively simple XOR
task. For this task, after transferring the embedding from the smaller model, one step of gradient
descent suffices for both memorization and generalization. Theoretical justification for more complex
problems is an important future direction. Furthermore, our method focuses solely on accelerating
grokking and was only investigated on problems where grokking occurs. It would be interesting to
study whether similar ideas can be applied to improve training dynamics or enable weak-to-strong
generalization in a broader context.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: Sgd learns parities near the computational limit. Advances in Neural
Information Processing Systems, 35:21750–21764, 2022.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeff Wu. Weak-
to-strong generalization: Eliciting strong capabilities with weak supervision. arXiv preprint
arXiv:2312.09390, 2023.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineering
how networks learn group operations. In International Conference on Machine Learning, pp.
6243–6267. PMLR, 2023.

Alex Damian, Eshaan Nichani, and Jason D. Lee. Self-stabilization: The implicit bias of gra-
dient descent at the edge of stability. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=nhKHA59gXz.

Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent. arXiv
preprint arXiv:2303.06173, 2023.

Darshil Doshi, Tianyu He, Aritra Das, and Andrey Gromov. Grokking modular polynomials. arXiv
preprint arXiv:2406.03495, 2024.

Hiroki Furuta, Minegishi Gouki, Yusuke Iwasawa, and Yutaka Matsuo. Interpreting grokked trans-
formers in complex modular arithmetic. arXiv preprint arXiv:2402.16726, 2024.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence
of in-context learning and skill composition in modular arithmetic tasks. arXiv preprint
arXiv:2406.02550, 2024.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always grok
and here is why. arXiv preprint arXiv:2402.15555, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the
transition from lazy to rich training dynamics. In The Twelfth International Conference on
Learning Representations, 2024.

Jaerin Lee, Bong Gyun Kang, Kihoon Kim, and Kyoung Mu Lee. Grokfast: Accelerated grokking by
amplifying slow gradients. arXiv preprint arXiv:2405.20233, 2024.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651–34663, 2022.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In
The Eleventh International Conference on Learning Representations, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Miao Lu, Beining Wu, Xiaodong Yang, and Difan Zou. Benign oscillation of stochastic gradient
descent with large learning rate. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=wYmvN3sQpG.

11

https://openreview.net/forum?id=nhKHA59gXz
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=wYmvN3sQpG

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon Shaolei Du, Jason D Lee, and Wei Hu. Dichotomy of
early and late phase implicit biases can provably induce grokking. In The Twelfth International
Conference on Learning Representations, 2024.

Neil Mallinar, Daniel Beaglehole, Libin Zhu, Adityanarayanan Radhakrishnan, Parthe Pandit, and
Mikhail Belkin. Emergence in non-neural models: grokking modular arithmetic via average
gradient outer product. arXiv preprint arXiv:2407.20199, 2024.

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition
of sparse and dense subnetworks. arXiv preprint arXiv:2303.11873, 2023.

Jack Miller, Charles O’Neill, and Thang Bui. Grokking beyond neural networks: An empirical
exploration with model complexity. arXiv preprint arXiv:2310.17247, 2023.

Gouki Minegishi, Yusuke Iwasawa, and Yutaka Matsuo. Bridging lottery ticket and grokking: Is
weight norm sufficient to explain delayed generalization? In ICLR 2024 Workshop on Bridging the
Gap Between Practice and Theory in Deep Learning, 2024.

Mohamad Amin Mohamadi, Wonho Bae, and Danica J Sutherland. A fast, well-founded approxima-
tion to the empirical neural tangent kernel. In International Conference on Machine Learning, pp.
25061–25081. PMLR, 2023.

Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica J Sutherland. Why do you grok? a
theoretical analysis of grokking modular addition. arXiv preprint arXiv:2407.12332, 2024.

Depen Morwani, Benjamin L. Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham M. Kakade.
Feature emergence via margin maximization: case studies in algebraic tasks. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=i9wDX850jR.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations, 2023.

OpenAI. text-embedding-3-small model. https://platform.openai.com/docs/
models/embedding-3, 2024.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv:2206.04817, 2022.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. arXiv preprint arXiv:2309.02390, 2023.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked transformers are implicit reasoners: A
mechanistic journey to the edge of generalization. arXiv preprint arXiv:2405.15071, 2024.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=cDYRS5iZ16f.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie E Everett, Alexander A Alemi, Ben Adlam,
John D Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-
Dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for
large-scale transformer training instabilities. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=d8w0pmvXbZ.

12

https://openreview.net/forum?id=i9wDX850jR
https://openreview.net/forum?id=i9wDX850jR
https://platform.openai.com/docs/models/embedding-3
https://platform.openai.com/docs/models/embedding-3
https://openreview.net/forum?id=cDYRS5iZ16f
https://openreview.net/forum?id=d8w0pmvXbZ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and grokking
in ReLU networks for XOR cluster data. In The Twelfth International Conference on Learning
Representations, 2024.

Xuekai Zhu, Yao Fu, Bowen Zhou, and Zhouhan Lin. Critical data size of language models from a
grokking perspective. arXiv preprint arXiv:2401.10463, 2024.

Bojan Žunkovič and Enej Ilievski. Grokking phase transitions in learning local rules with gradient
descent. arXiv preprint arXiv:2210.15435, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 Proofs . 14

A.1.1 Proof of Lemma 3.1 . 14

A.1.2 Proof of Theorem 3.2 . 14

A.2 Additional Experiments . 24

A.3 Experimental details . 24

A.3.1 Experiments in Section 1 and 2.1 . 24

A.3.2 Experiments in Section 3 . 25

A.3.3 Experiments in Section 4 . 25

A.4 Rebuttal Supplemental . 26

A.4.1 Forward Pass FLOPs estimation for Models in Figure 8 Left 26

A.4.2 Additional Experiments . 26

A.1 PROOFS

A.1.1 PROOF OF LEMMA 3.1

Lemma 3.1. For any f(x) =
∑3

j=1 ajϕ(w
⊤
j x), where ϕ is the ReLU activation function, we have

P(x,y)∼P (y = sgn(f(x))) ≤ 75%.

Proof. For any (x, y) ∼ P , define x′ = (x1,−x2, x3, · · · , xp) and y′ = sgn(x′
1x

′
2) = −y. It is

sufficient to show that if y = sgn(f(x)), y = sgn(f(−x)), y′ = sgn(f(x′)), then y′ ̸= sgn(f(−x′))
with probability 1.

Assume y = sgn(f(x)) and y = sgn(f(−x)). Given ϕ(z) ≥ 0,∀z, y = sgn(f(x)) implies that
there exists at least one i ∈ [3] such that ai has the same sign as y and w⊤

i x > 0. Without loss of
generality, assume sgn(a1) = y, w⊤

1 x > 0. Then for (−x,−y), it follows that

f(−x) =

3∑
j=1

ajϕ(−w⊤
j x) = a2ϕ(−w⊤

2 x) + a3ϕ(−w⊤
3 x)

has the same sign as y. Again without loss of generality, we assume sgn(a2) = y.

If y′ = sgn(f(x′)) and y′ ̸= sgn(f(−x′)) hold, following the same discussion, we have that at
least two ai’s have the same sign as y′ = −y, which contradicts the previous assumption that
sgn(a1) = sgn(a2) = y.

A.1.2 PROOF OF THEOREM 3.2

Additional notations: For training dataset {(xi, yi)}ni=1, we denote the signal of xi by x̄i =
[xi,1, xi,2]

⊤ ∈ {±µ1,±µ2}. For each µ ∈ {±µ1,±µ2}, define

Iµ = {i ∈ [n] : x̄i = µ}

and nµ = |Iµ|. Denote the new embedding of the i-th datapoint by zi = U⊤xi, i ∈ [n]. Define

νi = [µ2,−µ2,−µ1]
⊤µi, i = 1, 2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Then ν1 = [0, 0,−2], ν2 = [2,−2, 0], and {±ν1,±ν2} becomes the features for P with the new
embedding. Denote the signal of zi by z̄i = [µ2,−µ2,−µ1]

⊤x̄i. Define the set of training data

Gdata = {{(xi, yi)}ni=1 : ∥zi − z̄i∥ ≤ ε2
√

p

n
log n, for all i ∈ [n]}.

By Lemma A.2, P({(xi, yi)}ni=1 ∈ Gdata) ≥ 1−exp(−Ω(log2 n)). We further define sets to separate
the second-layer coefficients for the ease of discussion:

JPos = {j ∈ [m] : aj > 0}; JNeg = {j ∈ [m] : aj < 0}.

We divide the index of neurons by its initialization and define Je = {j ∈ [m] : v
(0)
j = vinite} for

e ∈ Uniform({±1})3. We further define

JPos,e = JPos ∩ Je; JNeg,e = JNeg ∩ Je.

For each initialization of v(0)j , we denote the set of datapoints which have positive inner product with
it by

Ie,µ = {i ∈ Iµ : ⟨e, zi⟩ > 0}, e ∈ Uniform({±1}3), µ ∈ {±µ1,±µ2}.
Theorem 3.2. Suppose that Assumptions (A1)-(A5) hold. With probability at least 1−O(1/n2) over
the generation of the training data and initial weights of fL, after one step of training, the classifier
sgn(f

(1)
L (x)) can correctly classify all training datapoints and generalize with test error no greater

than exp(−Ω(log2 n)).

Proof. For brevity, we omit the subscript L in fL in the proof below.

At step t = 0: for each (xi, yi), we have

f (0)(xi) =

m∑
j=1

ajϕ(⟨v(0)j , zi⟩),

where ajϕ(⟨v(0)j , zi⟩), j ∈ [m] are bounded random variables with zero mean. The absolute bound is

|ajϕ(⟨v(0)j , zi⟩)| ≤
√
3vinit√
m

(max
i

∥z̄i∥+ ε2
√

p/n log n) ≤ 5vinit/
√
m,

where the first inequality uses Lemma A.2 and the second inequality uses maxi ∥z̄i∥ = 2
√
2 and

Assumption (A1). Then by Hoeffding’s inequality and law of total probability,

P(|f (0)(xi)| > t) ≤ P(|f (0)(xi)| > t|Gdata) +P(Gdata) ≤ 2 exp
(
− 2t2

25v2init

)
+exp(−Ω(log2 n)).

Let t = vinit log n. It follows that

P(max
i∈[n]

|f (0)(xi)| ≤ t) ≥ 1−
n∑

i=1

P(|f (0)(xi)| > t)

≥ 1− 2n exp(−2 log2 n

25
)− n exp(−Ω(log2 n)) = 1− exp(−Ω(log2 n)).

(1)

We define a set of training data and initial weights:

G =
{
({(xi, yi)}ni=1, a, V

(0)) : {(xi, yi)}ni=1 ∈ Gdata, condition (1) and

all conditions in Lemma A.1 and A.4 hold
}
.

Combining (1), Lemma A.1, A.2, and A.4 then applying the union bound, we have

P(({(xi, yi)}ni=1, a, V
(0)) ∈ G) ≥ 1− exp(−Ω(log2 n))−O(

1

n2
)−O(

1

n4
) = 1−O(

1

n2
).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Denote l
(t)
i = l(yi, f

(t)(xi)) = exp(−yif
(t)(xi)). Conditioning on G, the ratio between the maxi-

mum and minimum loss is bounded by:

R(0) :=
maxi∈[n] l

(0)
i

mini∈[n] l
(0)
i

≤ exp(2vinit log n). (2)

For each j, below we will analyze the gradient descent update for all possible combinations of
a
(0)
j , v

(0)
j conditioning on the event G.

(1) When aj > 0: If v(0)j = vinit[1, 1, 1], then according to Lemma A.1, we have

I[1,1,1],+µ1
= ∅; I[1,1,1],−µ1

= I−µ1
;

∣∣∣|I[1,1,1],µ| − nµ

2

∣∣∣ ≤ √
n log n, µ = ±µ2. (3)

Recall that the gradient descent update of v(t)j is

v
(t+1)
j = v

(t)
j +

α

n
aj

n∑
i=1

yi exp(−yif
(t)(xi))ϕ

′(⟨v(t)j , zi⟩)zi. (4)

It follows that

v
(1)
j,3 = v

(0)
j,3 +

α

n
aj

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j , zi⟩)zi,3

= v
(0)
j,3 +

α

n
aj

∑
i∈I−µ1

yil
(0)
i zi,3 +

α

n
aj

∑
i∈I[1,1,1],µ2

∪I[1,1,1],−µ2

yil
(0)
i zi,3

≥ vinit +
2α

n
√
m

∑
i∈I−µ1

l
(0)
i −O(

α√
m

max
i

l
(0)
i ε2

√
p

n
log n)

≥ vinit +
1.9α|I−µ1

|
n
√
m

exp(−vinit log n) ≥ vinit +
1.9α

4
√
m
(1− 4

log n
)(1− vinit log n)

≥ vinit +
2α

5
√
m
,

(5)

where the first inequality uses Lemma A.2 and z̄i,3 = 0, i ∈ I±µ2
; the second inequality uses

Assumption (A1), (A3) and (A4); the third inequality uses Lemma A.4 and exp(x) ≥ 1 + x. Further
for l = 1, 2, we have∣∣v(1)j,l − v

(0)
j,l

∣∣ = ∣∣∣α
n
aj

∑
i∈I−µ1

yil
(0)
i zi,l +

α

n
aj

∑
i∈I[1,1,1],µ2

∪I[1,1,1],−µ2

yil
(0)
i zi,l

∣∣∣
=

α

n
aj

∣∣∣ ∑
i∈I−µ1

∪I[1,1,1],µ2
∪I[1,1,1],−µ2

yil
(0)
i (zi,l − z̄i,l)

−
[∑
i∈I[1,1,1],µ2

l
(0)
i z̄i,l +

∑
i∈I[1,1,1],−µ2

l
(0)
i z̄i,l

]∣∣∣
≤ α√

m
exp(vinit log n)ε

2

√
p

n
log n+

2α

n
√
m

∣∣∣ ∑
i∈I[1,1,1],µ2

l
(0)
i −

∑
i∈I[1,1,1],−µ2

l
(0)
i

∣∣∣
≤ α√

m
exp(vinit log n)ε

2

√
p

n
log n+

2α

n
√
m

exp(vinit log n)
(n
8
+

n

2 log n

+
√
n log n− exp(−2vinit log n)(

n

8
− n

2 log n
−

√
n log n)

)
≤ C

αε2
√
p

√
mn

log n+ C
α

n
√
m

(n

log n
+ vinitn log n

)
≤ C

α√
m log n

,

(6)

where the first inequality uses (2) and z̄i,l = −z̄j,l for i ∈ I[1,1,1],µ2
, j ∈ I[1,1,1],−µ2

; the second
inequality uses (2), (3), and (B4) in Lemma A.4; the third inequality uses Assumption (A1)-(A5);
and the last inequality uses Assumption (A1), (A3) and (A4).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For a datapoint (x, y) ∼ P , define z = [z1, z2, z3]
⊤ = U⊤x. Applying Lemma A.3 we obtain

P(∥z − z̄∥ ≤ ε2
√

p

n
log n) ≥ 1− exp(−Ω(log2 n)).

Conditioning on

∥z − z̄∥ ≤ ε2
√

p

n
log n, (7)

if xsignal = −µ1, we combine (5) and (6) and have

⟨v(1)j , z⟩ = ⟨v(1)j , z̄⟩+⟨v(1)j , z − z̄⟩ ≥ 2(vinit+
2α

5
√
m
)−Cvinitε

2

√
p

n
log n ≥ 3

2
(vinit+

2α

5
√
m
). (8)

Further for any pair j1, j2 with v
(0)
j1

= v
(0)
j2

= vinit[1, 1, 1] and aj1 > 0, aj2 < 0:

If ⟨v(1)j2
, z⟩ < 0, it follows that

z3
α

n
√
m

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j2

, zi⟩)zi,3 = −⟨v(1)j2
, z⟩+ z3v

(0)
j2,3

+

2∑
l=1

zlv
(1)
j1,l

≥ z3vinit −
2∑

l=1

|zl − z̄l||v(1)j2,l
|

≥ z3vinit − 2ε2
√

p

n
log n

(
vinit + C

α√
m log n

)
≥ z3

2
vinit,

(9)

where the first inequality uses v(0)j2,3
= vinit and z̄l = 0, l = 1, 2; the second inequality uses (7); and

the last inequality uses condition (7), z̄3 = 2, and Assumption (A1), (A3) and (A4). Combining (5)
and (9), we have

α

n
√
m

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j2

, zi⟩)zi,3 ≥ max{vinit

2
,

2α

5
√
m
},

which together with (6) yield that

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = aj1⟨v
(1)
j1

, z⟩

=
1√
m

[
⟨v(0)j1

, z⟩+ α

n
√
m
z3

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j2

, zi⟩)zi,3 +
2∑

l=1

(v
(1)
j1,l

− v
(0)
j1,l

)zl

]
≥ 1√

m

[
vinit +max{vinit

2
,

2α

5
√
m
} − Cvinitε

2

√
p

n
log n− C

α√
m log n

ε2
√

p

n
log n

]
≥ 1√

m

[
vinit +

vinit

4
+

α

5
√
m

− Cvinitε
2

√
p

n
log n− C

α√
m log n

ε2
√

p

n
log n

]
≥ vinit√

m
+

α

10m
,

(10)

where the second inequality uses max(x, y) ≥ (x+ y)/2 and the last inequality uses the fact that n
is sufficiently large.

If ⟨v(1)j2
, z⟩ > 0, we have

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = 1√
m
⟨v(1)j1

− v
(1)
j2

, z⟩

=
1√
m
⟨v(1)j1

− v
(0)
j1

, z⟩ − 1√
m
⟨v(1)j2

− v
(0)
j2

, z⟩

=
1√
m

[
2

α

n
√
m
z3

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j1

, zi⟩)zi,3 +
2∑

l=1

(v
(1)
j1,l

− v
(1)
j2,l

)(zl − z̄l)
]

≥ 1√
m

[4α

5
√
m

− C
α√

m log n
ε2
√

p

n
log n

]
≥ 2α

5m
,

(11)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where the second equation uses v(0)j1
= v

(0)
j2

; the third equation uses (4); the first inequality uses (5);
and the second inequality uses Assumption (A1). Combining (10) and (11), it follows that

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) ≥ 2α

5m
(12)

when v
(0)
j1

= v
(0)
j2

= vinit[1, 1, 1] and xsignal = −µ1.

If xsignal = +µ1, following the same procedure, we obtain that ⟨v(1)j , z⟩ < 0 for aj > 0. For aj < 0,
similar to (5), we have

v
(1)
j,3 = v

(0)
j,3 +

α

n
aj

∑
i∈I−µ1

yil
(0)
i zi,3 +

α

n
aj

∑
i∈I[1,1,1],µ2

∪I[1,1,1],−µ2

yil
(0)
i zi,3

≥ vinit −
2α

n
√
m

∑
i∈I−µ1

l
(0)
i −O(

α√
m

max
i

l
(0)
i ε2

√
p

n
log n)

≥ vinit −
2.1α|I−µ1

|
n
√
m

exp(vinit log n) ≥ vinit −
2.1α

4
√
m
(1 +

4

log n
)(1 + 2vinit log n)

≥ vinit −
3α

4
√
m

≥ vinit

4
,

(13)

where the last inequality comes from Assumption (A4). Then ⟨v(1)j , z⟩ < 0 also hold for aj < 0
following the same analysis. Thus we have

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = 0 (14)

when v
(0)
j1

= v
(0)
j2

= vinit[1, 1, 1] and xsignal = +µ1.

If xsignal ∈ {±µ2}, combining (5) and (6), we have

|⟨v(1)j , z⟩| ≤ |⟨v(0)j , z̄⟩|+ |⟨v(0)j , z − z̄⟩|+ |⟨v(1)j − v
(0)
j , z̄⟩|+ |⟨v(1)j − v

(0)
j , z − z̄⟩|

≤ 0 + vinitε
2

√
p

n
log n+ 0 + C

α√
m
ε2
√

p

n
log n ≤ 2vinitε

2

√
p

n
log n,

where the last inequality uses Assumption (A3) and (A4). Thus

|aj⟨v(1)j , z⟩| ≤ 2vinitε
2

√
p

nm
log n ≤ 2vinit√

m log n
. (15)

Note that neurons initialized with vinit[i, i, k], i, k ∈ {±1} share very similar dynamics and following
the same procedure, specifically, if k = +1 (resp. −1), the neurons align well with −µ1 (resp. +µ1).
Additionally, the neurons do not align well with ±µ2 for both i = +1 and i = −1. For brevity, we
omit the analysis for v(0)j = vinit[i, i, k], i, k ∈ {±1}\{vinit[1, 1, 1]}.

Next we analyze the one-step update of neuron vj with initialization vinit[1,−1, 1].

(2) If v(0)j = vinit[1,−1, 1], then according to Lemma A.1, we have

I[1,−1,1],+µ1
= ∅; I[1,−1,1],−µ1

= I−µ1 ; I[1,−1,1],µ2
= I+µ2 ; I[1,−1,1],−µ2

= ∅. (16)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Similar to (5), we have∣∣∣v(1)j,3 −
(
v
(0)
j,3 +

α

2
aj
)∣∣∣ = ∣∣∣α

n
aj

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j , zi⟩)zi,3 −

α

2
aj

∣∣∣
=

∣∣∣α
n
aj

[∑
i∈I−µ1

yil
(0)
i zi,3 +

∑
i∈I+µ2

yil
(0)
i zi,3

]
− α

2
aj

∣∣∣
=

∣∣∣ α

n
√
m

[∑
i∈I−µ1

l
(0)
i zi,3 −

∑
i∈I+µ2

l
(0)
i zi,3

]
− α

2
√
m

∣∣∣
=

∣∣∣ α

n
√
m

[∑
i∈I−µ1

l
(0)
i z̄i,3 +

∑
i∈I−µ1

l
(0)
i (zi,3 − z̄i,3)−

∑
i∈I+µ2

l
(0)
i (zi,3 − z̄i,3)

]
− α

2
√
m

∣∣∣
≤ 2α

n
√
m

∣∣n
4
− n−µ1

exp(−vinit log n)
∣∣+ α

n
√
m

(
n−µ1

+ n+µ2

)
exp(vinit log n)ε

2

√
p

n
log n

= O(
α√
m
(ε2

√
p

n
+ vinit) log n) = O(

α√
m log n

),

(17)

where the first equation comes from the GD update; the second equation uses (16); the third equation
uses |aj | = 1/

√
m; the fourth equation uses z̄i,3 = 0 for i ∈ I+µ2

; the first inequality uses
z̄i,3 = 2, i ∈ I−µ1

, (2) and the definition of G; the fifth equation uses |nµ − n/4| ≤ n/ log n and
| exp(−vinit log n)− 1| ≤ 2vinit log n ≤ 2/

√
log n by Assumption (A3); and the last equation uses

Assumption (A1) and (A3). Further for the first entry of vj , we have∣∣∣v(1)j,1 −
(
v
(0)
j,1 − α

2
aj
)∣∣∣ = ∣∣∣α

n
aj

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j , zi⟩)zi,1 +

α

2
aj

∣∣∣
=

∣∣∣α
n
aj

[∑
i∈I−µ1

yil
(0)
i zi,1 +

∑
i∈I+µ2

yil
(0)
i zi,1

]
+

α

2
aj

∣∣∣
=

∣∣∣ α

n
√
m

[∑
i∈I−µ1

l
(0)
i zi,1 −

∑
i∈I+µ2

l
(0)
i zi,1

]
+

α

2
√
m

∣∣∣
=

∣∣∣ α

n
√
m

[
−

∑
i∈I+µ2

l
(0)
i z̄i,1 +

∑
i∈I−µ1

l
(0)
i (zi,1 − z̄i,1)−

∑
i∈I+µ2

l
(0)
i (zi,1 − z̄i,1)

]
+

α

2
√
m

∣∣∣
≤ 2α

n
√
m

∣∣1− n+µ2
exp(−vinit log n)

∣∣+ α

n
√
m

(
n−µ1

+ n+µ2

)
exp(vinit log n)ε

2

√
p

n
log n

= O(
α√
m
(ε2

√
p

n
+ vinit) log n) = O(

α√
m log n

),

(18)

where the inequality uses z̄i,1 = 2 for i ∈ I+µ2
. And for the second entry of vj , it follows similarly

that∣∣∣v(1)j,2 −
(
v
(0)
j,2 +

α

2
aj
)∣∣∣ = ∣∣∣ α

n
√
m

[∑
i∈I−µ1

l
(0)
i zi,2 −

∑
i∈I+µ2

l
(0)
i zi,2

]
− α

2
√
m

∣∣∣ = O(
α√

m log n
).

(19)
Unifying (17), (17) and (18), we obtain∣∣∣v(1)j,l −

(
v
(0)
j,l +

α

2
aj sgn(v

(0)
j,l)ξl

)∣∣∣ = O(
α√

m log n
) (20)

for l = 1, 2, 3. Here {ξl} are defined as ξl = −1, l = 1, 2 and ξ3 = 1.

For a datapoint (x, y) ∼ P with z = [z1, z2, z3]
⊤ = U⊤x. We condition on the event

∥z − z̄∥ ≤ ε2
√

p

n
log n.

If xsignal = −µ1: for each pair j1, j2 with v
(0)
j1

= v
(0)
j2

= vinit[1,−1, 1] and aj1 > 0, aj2 < 0, we have

⟨v(1)jl
, z⟩ > 0, l = 1, 2, and

∥v(1)j1
−v

(1)
j2

− α√
m
[−1, 1, 1]⊤∥ = ∥(v(1)j1

−v
(0)
j1

)−(v
(1)
j2

−v
(0)
j2

)− α√
m
[−1, 1, 1]⊤∥ = O(

α√
m log n

)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

by (20). It follows that

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = 1√
m
⟨v(1)j1

− v
(1)
j2

, z⟩

=
1√
m

(
⟨ α√

m
[−1, 1, 1], z̄⟩+ ⟨v(1)j1

− v
(1)
j2

− α√
m
[−1, 1, 1], z̄⟩+ ⟨v(1)j1

− v
(1)
j2

, z − z̄⟩
)

≥ 1√
m

(2α√
m

−O(
α√

m log n
)−O(

α√
m log n

ε2
√

p

n
log n)

)
≥ α

m
.

(21)

If xsignal = +µ1: we have ⟨v(1)jl
, z⟩ < 0, l = 1, 2, thus

aj1ϕ(⟨v
(1)
j1

, z⟩) = aj2ϕ(⟨v
(1)
j2

, z⟩) = 0

If xsignal = +µ2: we have ⟨v(0)jl
, z⟩ > 0, l = 1, 2. Applying (20) and Assumption (A4), we have

⟨v(1)jl
, z⟩ > 0, l = 1, 2. It follows that

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = 1√
m
⟨v(1)j1

− v
(1)
j2

, z⟩

=
1√
m

(
⟨ α√

m
[−1, 1, 1], z̄⟩+ ⟨v(1)j1

− v
(1)
j2

− α√
m
[−1, 1, 1], z̄⟩+ ⟨v(1)j1

− v
(1)
j2

, z − z̄⟩
)

≤
(
− 2α√

m
+O(

α√
m log n

) +O(
α√

m log n
ε2
√

p

n
log n)

)
≤ − α

m

(22)

for sufficiently large n. Here the last inequality uses Assumption (A1).

If xsignal = −µ2: we have ⟨v(0)jl
, z⟩ < 0, l = 1, 2. Applying (20) and Assumption (A4), we have

⟨v(1)jl
, z⟩ < 0, l = 1, 2. It follows that

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = 0. (23)

In conclusion, for datapoint (x, y) with xsignal = −µ1, conditioning on (7), the output of f (1) is

f (1)(x) =

m∑
j=1

ajϕ(⟨v(1)j , z⟩) =
∑

e∈Uniform({±1}3)

∑
j∈Je

ajϕ(⟨v(1)j , z⟩)

=
∑

e:e3=1

[∑
j∈JPos,e

ajϕ(⟨v(1)j , z⟩)−
∑

j∈JNeg,e

ajϕ(⟨v(1)j , z⟩)
]

≥
∑

e:e3=1

[
min{|JPos,e|, |JNeg,e|}

2α

5m
− 4

√
m

log n
(vinit +

α√
m
)
]

≥
∑

e:e3=1

[α

40
− 4

√
m

log n
(C

α√
m

+
α√
m
)
]
> 0

(24)

for sufficiently large n. Here the first inequality uses (12) and (21), the property that ||JPos,e| −
|JNeg,e|| ≤ 2m/ log n from (B3) in Lemma A.4 and the property that ϕ(⟨v(1)j , z⟩) ≤ 2(vinit +

α/
√
m); the second inequality uses (B3) and Assumption (A4). Similarly, we have that for datapoint

(x, y) with xsignal = +µ1, conditioning on (7), the output of f (1) is

f (1)(x) =
∑

e:e3=−1

[∑
j∈JPos,e

ajϕ(⟨v(1)j , z⟩)−
∑

j∈JNeg,e

ajϕ(⟨v(1)j , z⟩)
]
> 0. (25)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For datapoint (x, y) with xsignal = +µ2, conditioning on (7), the output of f (1) is

f (1)(x) =

m∑
j=1

ajϕ(⟨v(1)j , z⟩) =
∑

e∈Uniform({±1}3)

∑
j∈Je

ajϕ(⟨v(1)j , z⟩)

= (
∑

e:[e1,e2]=[1,−1]

+
∑

e:e1=e2

)
[∑
j∈JPos,e

ajϕ(⟨v(1)j , z⟩)−
∑

j∈JNeg,e

ajϕ(⟨v(1)j , z⟩)
]

≤
∑

e:[e1,e2]=[1,−1]

[
−min{|JPos,e|, |JNeg,e|}

α

m
+

4
√
m

log n
(vinit +

α√
m
)
]
+

∑
e:e1=e2

2vinit|JNeg,e|√
m log n

≤ 2
(
− α

16
+

5
√
m

log n
(vinit +

α√
m
)
)
+

vinit
√
m√

log n
≤ −α

8
+

10(C + 1)α

log n
+

Cα√
log n

< 0,

(26)

where the first inequality uses (15) , (22), (B3) and the property that ϕ(⟨v(1)j , z⟩) ≤ 2(vinit +α/
√
m);

the second inequality uses (B3); and the third inequality uses Assumption (A4). Similarly, we have
that for datapoint (x, y) with xsignal = −µ2, conditioning on (7), f (1)(x) < 0, which combined with
(24), (25) and (26), yields that

sgn(f (1)(x)) = y

for any (x, y) ∼ P, z = U⊤x satisfying

∥z − z̄∥ ≤ ε2
√

p

n
log n.

According to the definition of Gdata, all (xi, yi) satisfy this condition. Thus conditioning on the
event G, the model f (1) can correctly classify all training data points. And applying the law of total
probability, we obtain that the test error is bounded by:

P(x,y)∼P (y ̸= sgn(f (1)(x))) ≤ P(x,y)∼P

(
y ̸= sgn(f (1)(x)) | ∥z − z̄∥ ≤ ε2

√
p

n
log n

)
+ P(x,y)∼P

(
∥z − z̄∥ ≤ ε2

√
p

n
log n

)
= P(x,y)∼P

(
∥z − z̄∥ ≤ ε2

√
p

n
log n

)
≤ exp(−Ω(log2 n)),

where the last inequality uses Lemma A.3.

Lemma A.1. Suppose that Assumption (A2) holds. With probability at least 1−O(1
n2), the following

conditions hold:

I[i,j,−1],+µ1
= I+µ1

; I[i,j,−1],−µ1
= ∅, i, j ∈ {±1};

I[i,j,+1],+µ1
= ∅; I[i,j,+1],−µ1

= I−µ1 , i, j ∈ {±1};
I[+1,−1,k],+µ2

= I+µ2
; I[+1,−1,k],−µ2

= ∅, k ∈ {±1};
(27)

I[−1,+1,k],+µ2
= ∅; I[−1,+1,k],−µ2

= I−µ2
, k ∈ {±1};∣∣∣|I[i,i,k],µ| − nµ

2

∣∣∣ ≤ √
n log n, i, k ∈ {±1}, µ ∈ {±µ2}.

(28)

Proof. For simplicity, we denote P(· | {(xi, yi)}ni=1 ∈ Gdata) as P(·) in the proof below.

For v(0)j = [vinit, vinit, vinit], we first show that for {(xi, yi)}ni=1 ∈ Gdata,

⟨v(0)j , zi⟩ > 0, ∀i ∈ I−µ1 .

According to the definition of Gdata, ∥zi − z̄i∥ ≤ ε2
√

p/n log n for all i ∈ I−µ1 . Thus

⟨v(0)j , zi⟩ = ⟨v(0)j , z̄i⟩+ ⟨v(0)j , zi − z̄i⟩ ≥ vinit(2− ∥zi − z̄i∥) > 0,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where the first inequality uses z̄i = [0, 0, 2] when i ∈ I−µ1
and the second inequality uses Assumption

(A1). Similarly, we have
⟨v(0)j , zi⟩ < 0, ∀i ∈ I+µ1 .

Thus conditioning on {(xi, yi)}ni=1 ∈ Gdata, we have

I[1,1,1],−µ1
= I−µ1

; I[1,1,1],+µ1
= ∅.

For i ∈ I±µ2
, recall that xi = [x⊤

i,signal, x
⊤
i,noise]

⊤ with xi,signal = [xi,1, xi,2]
⊤ and xi,noise =

[xi,3, · · · , xi,p]
⊤. We have

⟨v(0)j , zi⟩ = vinit

3∑
l=1

zi,l = vinit(

3∑
l=1

ul)
⊤xi = vinit[−µ⊤

1 , (

3∑
l=1

δl)
⊤]xi = vinit(

3∑
l=1

δl)
⊤xi,noise.

It follows that
P(⟨v(0)j , zi⟩ > 0) =

1

2
.

Applying Hoeffding’s inequality, we obtain

P(
∣∣∣|I[1,1,1],+µ2

| − |I+µ2 |
2

∣∣∣ > t) ≤ 2 exp(−2t2

n
).

Similarly we have

P(
∣∣∣|I[1,1,1],−µ2

| − |I−µ2
|

2

∣∣∣ > t) ≤ 2 exp(−2t2

n
).

Let t =
√
n log n. We have∣∣∣|I[1,1,1],µ| − nµ

2

∣∣∣ ≤ √
n log n, µ ∈ {±µ2}

with probability at least 1− 4/n2. Following similar discussion, we have that

I[i,j,−1],+µ1
= I+µ1 ; I[i,j,−1],−µ1

= ∅, i, j ∈ {±1};

I[i,j,+1],+µ1
= ∅; I[i,j,+1],−µ1

= I−µ1 , i, j ∈ {±1};
I[+1,−1,k],+µ2

= I+µ2
; I[+1,−1,k],−µ2

= ∅, k ∈ {±1};
I[−1,+1,k],+µ2

= ∅; I[−1,+1,k],−µ2
= I−µ2

, k ∈ {±1}
hold with probability 1 given {(xi, yi)}ni=1 ∈ Gdata. And∣∣∣|I[i,i,k],µ| − nµ

2

∣∣∣ ≤ √
n log n, i, k ∈ {±1}, µ ∈ {±µ2}

hold with probability at least 1− 16/n2. In total, the conditions above hold with probability at least
1− exp(−Ω(log2 n))−O(1

n2) = 1−O(1
n2).

Lemma A.2. Suppose that Assumption (A2) holds. Let the training data {xi, yi}ni=1 for model fL be
sampled i.i.d from P . With probability at least 1− exp(−Ω(log2 n)), we have

∥zi − z̄i∥ ≤ ε2
√

p

n
log n, for all i ∈ [n]. (29)

Proof. Applying Lemma A.3, we obtain

P(∥zi − z̄i∥ ≤ ε2
√

p

n
log n, ∀i ∈ [n]) ≥ 1−

n∑
i=1

P(∥zi − z̄i∥ > ε2
√

p

n
log n)

≥ 1− n exp(−Ω(log2 n)) = 1− exp(−Ω(log2 n)).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Lemma A.3. Suppose that Assumption (A2) holds. For x = [x1, x2, · · · , xp] ∼ P with [x1, x2]
⊤ =

µ, µ ∈ {±µ1,±µ2}, we have

P(∥U⊤x− ν∥max > ε2
√

p

n
log n) ≤ exp(−Ω(log2 n)), (30)

where ν = [µ2,−µ2,−µ1]
⊤µ ∈ R3.

Proof. We start our analysis with [x1, x2]
⊤ = µ1. Note that

u⊤
1 x =

p−2∑
i=1

δ1,ixi+2

is a summation of independent bounded random variables with zero mean. By Hoeffding’s inequality,
we have

P(|u⊤
1 x| ≥ t) ≤ 2 exp

(
− t2

2
∑p−2

i=1 δ21,iε
2

)
≤ 2 exp

(
− t2

2∥δ∥2Fε2
)
.

Similarly, the concentration for u⊤
2 x and u⊤

3 x+ 2 are as follows:

P(|u⊤
2 x| ≥ t) ≤ 2 exp

(
− t2

2∥δ∥2Fε2
)
;

P(|u⊤
3 x+ 2| ≥ t) ≤ 2 exp

(
− t2

2∥δ∥2Fε2
)
.

Combining these inequalities yields

P(∥U⊤x− ν1∥max > t) ≤ 6 exp
(
− t2

2∥δ∥2Fε2
)
≤ 6 exp

(
− nt2

2C2ε4p

)
, (31)

where the last inequality uses Assumption (A2). The proof concludes by letting t = ε2
√

p/n log n.
The analysis for other values of [x1, x2]

⊤ follows similarly.

Lemma A.4. Suppose that Assumption (A5) holds. Then the following conditions hold with probabil-
ity at least 1−O(1/n4):

(B1) maxk∈{Pos,Neg} ||Jk| − m
2 | ≤

m
logn .

(B2) maxe∈Uniform({±1}3) |Je − m
8 | ≤

m
logn

(B3) maxk∈{Pos,Neg},e∈Uniform({±1}3) |Jk,e − m
16 | ≤

m
logn .

(B4) maxµ∈{±µ1,±µ2} |nµ − n
4 | ≤

n
logn .

Proof. Note that |JPos| ∼ Bin(m, 1/2). Applying Hoeffding’s inequality, we have

P
(∣∣∣|JPos| −

m

2

∣∣∣ ≤ m

log n

)
≤ 2 exp

(
− 2m

log2 n

)
≤ 2

n4
,

where the last inequality comes from Assumption (A5). And similarly

P
(∣∣∣|JNeg| −

m

2

∣∣∣ ≤ 2 exp
(
− 2m

log2 n

)
≤ 2

n4
,

which completes the proof of (B1). Note that |nµ| ∼ Bin(n, 1/4). Applying Hoeffding’s inequality,
we have

P
(∣∣∣|nµ| −

n

4

∣∣∣ ≤ n

log n
) ≤ 2 exp

(
− 2n

log2 n

)
= O(

1

n4
), ∀µ ∈ {±µ1,±µ2}.

(B2)-(B3) can be proved following the same procedure. We omit the proof here.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

100 101 102 103

Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train Accuracy Test Accuracy Train Loss Test Loss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Figure 9: Training dynamics of the model fL discussed in Section 3.3.

A.2 ADDITIONAL EXPERIMENTS

A.3 EXPERIMENTAL DETAILS

All experiments in the paper can be run on a single NVIDIA A100 GPU. The loss function for
modular arithmetic tasks is cross-entropy loss and for (40, 3)-parity task is logistic loss. All models
used in the paper, unless stated otherwise, set dmlp = 4dembed, where dmlp is the MLP dimension
and dembed is the embedding dimension. All FNN models used are in the paper are homogeneous
and do not have bias terms.

A.3.1 EXPERIMENTS IN SECTION 1 AND 2.1

In Figure 1b, we use a two-layer FNN with trainable embedding layer as the weak model. We choose
(dembed, width) = (4, 16) for the weak model. The target model is a three-layer FNN with trainable
embedding layer. We choose (dembed, width) = (128, 512) for the target model. The hyperparameters
(init scale, learning rate,weight decay) are selected by the following grid search:

init scale: [0.1, 0.2, · · · , 1.5]
learning rate: [10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 10−1]

weight decay: [10−4, 10−3, 10−2, 10−1, 1, 2, 3, 4, 5].

We select the configuration that first achieves 90% accuracy on the validation set. The best configu-
ration for GrokTransfer is (0.3, 0.005, 3). For standard training, only learning rate and weight
decay are tuned. They are selected by the following grid search:

learning rate: [10−3, 5× 10−3, 10−2, 5× 10−2, 10−1]

weight decay: [10−2, 10−1, 1, 2, 3, 4, 5],

and the optimal configuration is (0.05, 3).

In Figure 2, we set the dimension of the GPT embedding to be 128. For the Fourier embedding,
we choose k = 7 frequencies, and let ij to be the j-th smallest prime number. For each type of
embedding, we normalize the embedding of each integer to be 1. The FNN used in Figure 2 is a three
layer dense neural network

f(x) = W3ϕ(W2ϕ(W1x)),

where W1 ∈ Rwidth×embed dim,W2 ∈ Rwidth×width,W3 ∈ Rp×width, width= 512. The hyperparameters
(init scale, learning rate,weight decay) are selected by the following grid search:

init scale: [0.1, 0.2, · · · , 1.5]
learning rate: [10−4, 10−3, 10−2, 10−1, 1]

weight decay: [10−4, 10−3, 10−2, 10−1, 1, 5, 10].

We select the configuration that first achieves 90% accuracy on the validation set. The best configura-
tion (init, lr,wd) for the four embeddings are:

One-hot: (0.2, 0.01, 5); Binary: (0.3, 0.01, 1); Fourier: (0.5, 0.1, 0.1) Text: (1.3, 0.01, 1).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

In Figure 3, the empirical NTK is calculated following the method in Mohamadi et al. (2023). We
denote Θ̂t as the NTK of the model at epoch t.

A.3.2 EXPERIMENTS IN SECTION 3

For experiments in Section 3, we let the sample size n = 400, feature dimension p = 80000, and
noise level ε = 0.05. For Figure 4(a), the model is a two-layer neural network with width 2048. The
optimizer is full-batch gradient descent with learning rate 0.1 and weight decay 0.1. In Figure 4(b),
we train a small model with only three neurons. The initialization of the hidden layer follows i.i.d
N(0, 0.01), and the initialization of the second layer follows i.i.d N(0, 10−4). The learning rate is
0.1 and weight decay is 0, 1. Figure 4(c) visualizes the hidden layer of that small model after training.

Figure 5a generates 4000 i.i.d datapoints from the distribution P , and visualizes Ux for each
x. Figure 5b fixes n = 1000 and train the weak model for p = [4 × 104, 8 × 104, 16 ×
104,], ϵ = [1/40, 1/80, 1/160]. Figure 5c fixes p = 8 × 104 and train the weak model for
n = [400, 800, 1600, 3200], ϵ = [1/40, 1/80, 1/160]. Figure 9 takes vinit = 0.4, learning rate
2.0 and zero weight decay.

A.3.3 EXPERIMENTS IN SECTION 4

The attention layer used in this paper follows the same structure as that in Nanda et al. (2023). While
Nanda et al. (2023) also suggested to set the precision to be float64 to mitigate the Slingshot
phenomenon (Thilak et al., 2022), a fluctuation of accuracy and loss during training process, we still
use float32 to control the computation cost.

All modular tasks set p = 113 and the fraction of training data being 25%.

For the (40, 3)-parity task, we set the sample size n = 1000.

Unless otherwise specified, we use the AdamW optimizer (Loshchilov & Hutter, 2019) for all
experiments; we initialize the weights using the default PyTorch initialization scaled by a factor
init scale > 0 to control the initial weight norm, as proposed by Liu et al. (2023).

The hyperparameters (init scale, learning rate,weight decay) are selected by the following grid
search:

init scale: [0.05, 0.1, 0.2, 0.3, · · · , 1.5]
learning rate: [10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 10−1, 0.5, 1.0]

weight decay: [10−4, 10−3, 10−2, 10−1, 1, 2, 3, 4, 5].

In Figure 6(a),(b), the structure of weak and target model are the same as those in Figure 1b. In Figure
6(c), the weak model is a three-layer width = 16 FNN, the target model is a three-layer width =
512 FNN with dembed = 128. In Figure 6(a), the optimal configuration for GrokTransfer is
(0.3, 0.001, 1) and the optimal one for training from scratch is (0.1, 0.1, 2). In Figure 6(b), the
optimal configuration for GrokTransfer is (0.3, 0.005, 3) and the optimal one for training from
scratch is (0.1, 0.1, 2). In Figure 6(b), we have the number of training samples n = 1000. The model
trained via GrokTransfer uses learning rate 10−3 and weight decay 10−3; the model trained from
scratch uses learning rate 10−2 and weight decay 1.

In Figure 8(a), the weak model is a two-layer width-4 FNN, and the target model is an 8-layer trans-
former with dembed = 512, dmlp = 512, nhead = 4, dhead = 128. The optimal configuration for tar-
get model trained via GrokTransfer is (0.7, 0.001, 1). The optimal configuration for target model
trained from scratch is (0.4, 0.0005, 1). In Figure 8(b), the weak model remains the same, and the tar-
get model becomes an 2-layer transformer with dembed = 128, dmlp = 128, nhead = 4, dhead = 32.
The optimal configuration for target model trained via GrokTransfer is (0.6, 0.005, 0.1). The
optimal configuration for GrokFast is (lr, wd) = (0.01, 1.0).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.4 REBUTTAL SUPPLEMENTAL

A.4.1 FORWARD PASS FLOPS ESTIMATION FOR MODELS IN FIGURE 8 LEFT

For the weak model, a two-layer width-4 MLP:

Cforward ≈ 2 ∗ (8 ∗ 4 + 8 + 4 ∗ 113 + 226) = 1436 ∼ 103.

For the target model, an 8-layer transformer, following Table 1 in Kaplan et al. (2020), we have

N = 2dembednlayer(2dattn+dmlp) = 2∗512∗8∗(256+512) = 6291456, Cforward = 2(N+8∗2∗128) ∼ 107.

Two-layer FNN takes around 2000 epochs to generalize. Target model trained by GrokTransfer
takes around 1000 epochs and target model trained from scratch takes around 10000 epochs. Thus,
the total flops of GrokTransfer is around 1010 + 2 ∗ 106 and the total flops of training from
scratch is around 1011.

A.4.2 ADDITIONAL EXPERIMENTS

100 101 102 103 104

Epochs

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

Ac
cu

ra
cy

Train Accuracy Test Accuracy Train Loss Test Loss

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Lo
ss

100 101 102 103

Weight Index

0.4

0.2

0.0

0.2

0.4

0.6

W
ei

gh
t V

al
ue

100 101 102 103 104

Epochs

0.5076

0.5078

0.5080

0.5082

0.5084

0.5086

0.5088

Ac
cu

ra
cy

Train Accuracy Test Accuracy Train Loss Test Loss

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Figure 10: Left: Training dynamics of the one neuron weak model. Middle: Visualization of the
neuron in the weak model. We can see it has learned the feature [1,−1]. Right: training dynamics of
the target model with embedding transferred from the one-neuron weak model.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X1

Class +1
Class -1

0.6 0.4 0.2 0.0 0.2 0.4 0.6
X1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

X2

Class +1
Class -1

100 101

Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Train Accuracy Test Accuracy Train Loss Test Loss

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Figure 11: Left: Visualization of the distribution P with the embedding from the one-neuron weak
model. Middle: Visualization of the distribution P with the embedding from the two-neuron weak
model. Right: Training dynamics of the target model with embedding transferred from a two-neuron
weak model.

When the weak model only has one neuron, the target model has the form:

fL(x) =

m∑
j=1

ajϕ(vj · u⊤x).

Denote z = u⊤x. Equivalently, we have

fL(z) =

m∑
j=1

ajϕ(vj · z).

Note that sign(fL(z1)) = sign(fL(z2)) if sign(z1) = sign(z2). Since both positive and negative
classes locate on both sides of the original point (Figure 11 Left), it is impossible for fL to correctly
classify these points (Figure 10 Right).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

2 1 0 1 2
PCA 1

2

1

0

1

2

PC
A

2

01

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17
18

19

20

21

22

23
24

25
26

27

28

29 30

31

32

33
34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49
50

51

52

53

54

55

5657

58 59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80
81

8283
84

85

86

87

88 89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109
110

111

112

2D PCA of learned Embeddings

6 4 2 0 2 4 6 8
t-SNE 1

8

6

4

2

0

2

4

6

8

t-S
NE

 2

0

12

3

4

5

6

7

8
9

10

11

12

13

14

15

16
17

18

19

20
21

22

23

24

25

26

27

2829

30

31

32

33

34

35

3637

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

5556

57

58

59

60

61

62

63
64

65

66

6768

69

70

71

72

73

74

75
76

77
78

79

80

81

82

8384

85

86

87

88

89

90

91

92

93

94
95

96

97

98

99

100

101

102103

104

105

106

107

108

109

110

111

112

2D t-SNE of learned Embeddings

Figure 12: 2D Visualization of the 4D embedding from the weak model trained on modular addition
task.

100 101 102 103 104

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train (GrokTransfer)
Test (GrokTransfer)
Train (Large)
Test (Large)

100 101 102

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train (4-Layer)
Test (4-Layer)
Train (2-Layer)
Test (2-Layer)

Figure 13: Left: Training dynamics of an 8-layer transformer on modular multiplication task. Right:
Training dynamics of a 2-layer transformer and a 4-layer transformer trained on the (40, 3)-parity
task. Both do not have delayed generalization.

100 101 102 103 104 105

Epochs

20

40

60

80

100

Ac
cu

ra
cy Train (GrokTransfer)

Test (GrokTransfer)
Train (Large)
Test (Large)

Figure 14: Training dynamics of a four-layer MLP on MNIST dataset. 200 samples are randomly
selected as the training data, and 400 samples are randomly selected as the test data. The weak model
is a two-layer MLP with 40% test accuracy.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

100 101 102 103

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train (MLP)
Test (MLP)
Train (TF)
Test (TF)

100 101 102 103 104

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy Train (GrokTransfer, merge at 100th)

Test (GrokTransfer, merge at 100th)
Train (Large)
Test (Large)

100 101 102 103 104

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train (GrokTransfer)
Test (GrokTransfer)
Train (Large)
Test (Large)

Figure 15: (a)Training dynamics of the target models used in Figure 6a and Figure 8 Right, but with
low-rank embedding A · B, both A and B are randomly initialized. MLP represents a three-layer
MLP and TF represents a two-layer transformer. (b) Merge A and B into ET at 100-th epoch and
keep training. (c) Set the embedding dimension of the weak model to be the same as that of the target
model.

100 101 102 103

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train (GrokTransfer)
Test (GrokTransfer)
Train (GrokFast)
Test (GrokFast)

Figure 16: Dynamics of the target model (a two-layer Transformer) trained via GrokTransfer,
and the target model trained via GrokFast on modular multiplication task.

28

	Introduction
	Related Work
	Notation

	Accelerating Grokking via Embedding Transfer from a Weaker Model
	Motivation: The Role of Data Embedding
	Our Method: GrokTransfer

	Case Study: GrokTransfer on XOR Cluster Data
	The Setup of XOR Cluster Data
	Empirical Analysis of the Weaker Model
	Theoretical Analysis of the Target Model

	Experiments
	FNN FNN
	FNN Transformers

	Conclusion
	Appendix
	Proofs
	Proof of Lemma 3.1
	Proof of Theorem 3.2

	Additional Experiments
	Experimental details
	Experiments in Section 1 and 2.1
	Experiments in Section 3
	Experiments in Section 4

	Rebuttal Supplemental
	Forward Pass FLOPs estimation for Models in Figure 8 Left
	Additional Experiments

