
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LET ME GROK FOR YOU: ACCELERATING GROKKING
VIA EMBEDDING TRANSFER FROM A WEAKER MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

“Grokking” (Power et al., 2022) is a phenomenon where a neural network first
memorizes training data and generalizes poorly, but then suddenly transitions to
near-perfect generalization after prolonged training. While intriguing, this delayed
generalization phenomenon compromises predictability and efficiency. Ideally,
models should generalize directly without delay. To this end, this paper proposes
GrokTransfer, a simple and principled method for accelerating grokking in
training neural networks, based on the key observation that data embedding plays a
crucial role in determining whether generalization is delayed. GrokTransfer
first trains a smaller, weaker model to reach a nontrivial (but far from optimal)
test performance. Then, the learned input embedding from this weaker model is
extracted and used to initialize the embedding in the target, stronger model. We
rigorously prove that, on a synthetic XOR task where delayed generalization always
occurs in normal training, GrokTransfer enables the target model to generalize
directly without delay. Moreover, we demonstrate that, across empirical studies of
different tasks, GrokTransfer effectively reshapes the training dynamics and
eliminates delayed generalization, for both fully-connected neural networks and
Transformers.

1 INTRODUCTION

“Grokking” is an intriguing phenomenon recently discovered by Power et al. (2022), where a neural
network first memorizes the training dataset but has poor test performance, and after much longer
training, it suddenly transitions to near-perfect generalization. Initially reported for Transformer
models trained on modular arithmetic tasks, the grokking phenomenon has since been observed in
other settings such as learning group operations (Chughtai et al., 2023), sparse parity (Barak et al.,
2022), and image classification (Liu et al., 2023).

While grokking is an interesting phenomenon, it introduces unpredictability into the training process
and compromises its practical efficiency. When the model has interpolated the training data with
small training loss but still performed poorly on the validation set, it becomes difficult to predict
whether or when the model will eventually generalize. Ideally, we would like the model to make
continuous progress during training, keeping the gap between training and validation errors minimal.
This raises the question:

How can we effectively modify the training dynamics so that the model generalizes without delay?

In this work, we show that data embedding plays a crucial role in determining the training dy-
namics; an informative embedding enables continuous progress during training. To obtain such an
informative embedding without excessive computational cost, we propose a novel method called
GrokTransfer, which leverages the embedding learned by a weaker, smaller model to accelerate
the generalization of a larger target model. See Figure 1a for an overview of GrokTransfer.

Specifically, GrokTransfer involves two main steps: (1) Train a weaker model until it groks
to non-trivial test performance; (2) Extract the weak model’s learned embedding and use a linear
mapping of this embedding to initialize the embedding of the target model. Then, proceed to train the
target model. We theoretically study GrokTransfer in the setting of a two-layer neural network
trained on a high-dimensional XOR classification task, where normal training exhibits grokking.
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Figure 1: (a) Overview of the GrokTransfer framework. (b) Comparison of the training dynamics
of a model trained using GrokTransfer versus one trained from scratch. There is a clear phase
transition between memorization and generalization if we train the model from scratch (blue lines).
GrokTransfer (red lines) enables the model to make continuous progress, significantly reducing
the gap between memorization and generalization. See Appendix A.3 for the detailed experimental
setup.

We prove that GrokTransfer enables the target model to directly generalize without delay. We
further empirically verify the effectiveness of GrokTransfer on typical algorithmic tasks that
show grokking. This is done for both fully-connected neural networks with trainable embeddings
and Transformers. Figure 1b shows typical training curves of GrokTransfer vs. training a target
model from scratch, on a modular addition task. It shows that GrokTransfer effectively eliminates
grokking and significantly improves efficiency.

In summary, our contributions are as follows:

• We propose a novel method, GrokTransfer, which leverages the embedding learned from a
smaller, weaker model to accelerate grokking in the target model.

• We theoretically justify GrokTransfer in an XOR classification task. We further empirically
validate our method on several algorithmic tasks that exhibit grokking in normal training, demon-
strating that GrokTransfer can effectively eliminate delayed generalization.

1.1 RELATED WORK

Our work draws on two themes around grokking and weak-to-strong knowledge transfer.

Grokking. Liu et al. (2022) reported that the model starts grokking when it learns the hidden
structure of the data. Gromov (2023) showed that grokking is robust to different optimizers such as
vanilla gradient descent and Adam; and regularization methods including no regularization, weight
decay, and dropout. Davies et al. (2023) hypothesized that grokking and double descent, another
surprising phenomenon, are caused by the same hidden mechanism. Nanda et al. (2023) reverse-
engineered a grokked transformer model for modular addition and reported that the learned algorithm
is a composition of trigonometric and inverse trigonometric functions. Merrill et al. (2023) and Varma
et al. (2023) contributed to the occurrence of grokking to the competition of sparse (generalizing)
and dense (complementary) subnetworks during training. Zhu et al. (2024) showed that models
only grok when the training data exceeds some critical size. Liu et al. (2023) attributed grokking to
large initialization scale and induced grokking on real-world datasets such as MNIST and IMDb by
initializing models with large weight norm. Further work (Miller et al., 2023; Humayun et al., 2024)
showed that grokking can also be observed in other scenarios such as Gaussian Process regression
and multi-class classification with adversarial samples. A series of theoretical papers have established
rigorous results for grokking/delayed generalization in several settings outside of algorithmic tasks:
linear regression with linear models (Žunkovič & Ilievski, 2022), and binary classification with neural
networks (Lyu et al., 2024; Xu et al., 2024). Lyu et al. (2024) proved that grokking can be induced by
a sharp phase transition from kernel regime to rich regime. Mallinar et al. (2024) trained Recursive
Feature Machines on algorithmic tasks and found its training dynamics similar to neural networks,
showing that grokking is not restricted to neural networks. He et al. (2024); Wang et al. (2024) found
transformers achieve out-of-distribution generalization on some tasks through grokking. Doshi et al.
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(2024) provided analytical solutions for complex modular arithmetic tasks and hypothesized that
some complex modular polynomial tasks cannot be learned by shallow neural networks. Mohamadi
et al. (2024) showed that learning modular addition is fundamentally hard for neural networks in the
kernel regime.

Recent work has proposed several methods to accelerate grokking. Liu et al. (2023) explained
grokking through the concept of a “Goldilocks zone”, a spherical shell of weights, and found that
restricting the weight norm to a sphere of the appropriate radius during training can accelerate
generalization. However, this method introduces instability in the training process and still involves a
phase transition. Furuta et al. (2024) suggested initializing the model with weights or embeddings
from another model that has already generalized on a different task may accelerate grokking, which
needs to train the same model on additional data, while our method do not need additional data. Lee
et al. (2024) decomposed the gradient at each step and accelerated grokking by amplifying part of the
gradient. Interestingly, Minegishi et al. (2024) demonstrated that the gap between memorization and
generalization can be nearly eliminated if a lottery ticket, a set of sparse mask matrices, is applied to
the model during training. However, this lottery ticket can only be obtained by first training the same
model under the same initialization till generalization. In contrast to these methods, our approach
can nearly eliminate the phase transition without requiring additional data or pretraining on the same
model.

Weak to strong knowledge transfer. Burns et al. (2023) proposed a method where a small model
is first fine-tuned as a teacher model. This teacher model is then used to generate pseudo-labels
to fine-tune a larger student model. Surprisingly, the student model can outperform the teacher.
Wang et al. (2023) designed a learned linear growth operator, which uses a learnable linear map of
a pretrained small model’s weights as the initialization for the large model’s weights, to accelerate
the training of large models. In contrast to these works, our method focuses on transferring the
embedding layer from a weaker model to the target model and reshaping the training dynamics to
accelerate grokking.

1.2 NOTATION

For a set S with finite elements, we denote its cardinality by |S| and use Uniform(S) to represent
the uniform distribution over S. We denote the set {1, 2, · · · , n} by [n]. We use sgn(x) to represent
the sign of a scalar x. For a matrix A ∈ Rn×m, we denote by Ai,· = [Ai,1, · · · , Ai,m] the i-th row,
Ai:j,· = [A⊤

i,·, · · · , A⊤
j,·]

⊤ ∈ R(j−i+1)×m the i-th to j-th rows, and ∥A∥F the Frobenius norm. We
use ϕ(x) = max{0, x} to represent the ReLU activation function. We denote the inner product
between two vectors a, b by ⟨a, b⟩. For two sequences {xn} and {yn}, we say xn = O(yn) if there
exists some constant C > 0 such that xn ≤ Cyn for all n and xn = Ω(yn) if yn = O(xn).

2 ACCELERATING GROKKING VIA EMBEDDING TRANSFER FROM A WEAKER
MODEL

2.1 MOTIVATION: THE ROLE OF DATA EMBEDDING

To demonstrate the pivotal role of data embedding in shaping training dynamics, we examine the
modular addition task a+ b mod p. Following settings in Nanda et al. (2023) and Liu et al. (2023),
we take p = 113. The dataset consists of {((a, b), y)}0≤a,b≤p−1 with label y = (a+ b) mod p. 25%
of the dataset is randomly sampled as the training set. We evaluate four types of embeddings:

• One-hot embedding: Each integer a ∈ [0, p− 1] is represented by its one-hot encoding.
• Binary embedding: Each a is encoded in binary, padded with zeros to the maximum length
⌊log2(p− 1)⌋+ 1.

• Fourier embedding: Each a is encoded as a vector of trigonometric functions:
[cos( 2πi1ap ), sin( 2πi1ap ), · · · , cos( 2πikap ), sin( 2πikap )], where i1, · · · , ik ∈ N are predetermined
frequencies.

• GPT embedding: Each a is embedded using OpenAI’s text-embedding-3-small model
(OpenAI, 2024)
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Figure 2: FNN training dynamics using different embeddings for the modular addition task (p = 113).
The training dynamics vary significantly across different embeddings. The one-hot embedding and
GPT embedding exhibit sharp phase transition. See Appendix A.3 for details of the experimental
setup.

One-hot embeddings contain no prior information about the data, while binary embeddings capture
the ordinal information of integers. Fourier embeddings, inspired by the analytical solutions learned
by neural networks (Nanda et al., 2023; Morwani et al., 2024), encode task-specific information. GPT
embeddings encode general information about integers. Figure 2 shows the training dynamics of a
feed-forward neural network using these embeddings. The training dynamics with one-hot and GPT
embeddings exhibit clear grokking behavior, whereas those with binary and Fourier embeddings show
continuous generalization progress. Notably, Fourier embeddings enable the model to simultaneously
achieve memorization and perfect generalization. We observe that general embeddings like one-hot
and GPT embeddings suffer from generalization delay, while embeddings encoded with task-related
information allow the model to generalize continuously.
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Figure 3: The change of empirical NTK.

A series of works (Liu et al., 2023; Kumar et al., 2024;
Lyu et al., 2024; Mohamadi et al., 2024) found that the
default initialization scale is relatively large and causes
generalization delay. They observed that reducing the ini-
tialization scale can accelerate grokking and hypothesized
that grokking arises from a time gap between the Neural
Tangent Kernel (NTK) regime and the feature-learning
regime. However, our empirical findings indicate that
grokking persists even after carefully tuning the initializa-
tion scale (see Appendix A.3). This suggests that grokking
occurs even when the model is not initialized in the ker-
nel regime, implying that the kernel regime may not be
the sole cause of grokking. In Figure 3, we compare the
changes in the empirical NTK (Mohamadi et al., 2023) corresponding to the dynamics in Figure 2.
The change of empirical NTK evolves similarly across all four types of embeddings (see Appendix
A.3 for details).

In conclusion, the choice of embedding significantly impacts training dynamics, and an informative
embedding can close the gap between memorization and generalization. However, finding such
an informative embedding for specific tasks is not always straightforward. Binary embedding, for
example, reduces the sharp phase transition for modular addition but fails to do so for modular
multiplication. In the next section, we will show that constructing a task-specific embedding from
training data can be a promising approach to obtaining an informative embedding that can accelerate
grokking. The embedding construction can be achieved by training a much smaller, weaker model.
Here “small” refers to smaller model expressivity. This weaker model can learn an informative
embedding without achieving optimal generalization. This embedding can then be used to positively
influence the training dynamics of the larger target model.

2.2 OUR METHOD: GROKTRANSFER

We propose GrokTransfer, a simple and principled method for accelerating grokking in training
neural networks. In more detail, given a specific task and a training set G, we consider a target model
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fT that has a trainable embedding layer ET with vocabulary size dv and embedding dimension dT .
Our proposed method GrokTransfer works as follows:

1. Train a Weaker Model: Train a weaker model fW with a trainable embedding table EW ∈
Rdv×dW on G, where dW is the embedding dimension in the weak model. Train fW until it groks
to a non-trivial performance on the validation set.

2. Train the Target Model: Initialize A = EW and randomly initialize a matrix B ∈ RdW×dT .
Train the target model with an embedding layer set to ET = A · B, where both A and B are
trainable.

By training a weaker model, the first step aims to obtain an informative embedding that aids the
training of the target model. In practice, the weak model can be much smaller than the target model
or can even have a different architecture (e.g., the weak model can be a fully-connected network
when the target model is a Transformer; see Section 4). As a result, training a weak model greatly
reduces the computational cost of acquiring an informative embedding. This contrasts with the
method proposed in Minegishi et al. (2024), which requires the target model to be trained till perfect
generalization first. In the next sections, we will demonstrate, both theoretically and empirically, that
even if the weak model only partially generalizes (i.e., has a non-trivial but non-optimal test error),
its embedding still allows the large model to generalize optimally without delay.

In the second step, we impose a low-rank structure A ·B on the embedding ET while training the
target model. This constraint alters the empirical risk landscape and provides a favorable initialization
for the embedding table. The intuition behind our method is as follows: by initializing with an
informative embedding from the weak model, the target model can bypass the initial phase of pure
memorization. Instead, it can start generalizing almost immediately as it begins to optimize the
training loss.

3 CASE STUDY: GROKTRANSFER ON XOR CLUSTER DATA

In this section, we theoretically study an XOR classification task and prove that GrokTransfer
can eliminate grokking for this task.

3.1 THE SETUP OF XOR CLUSTER DATA

We study the setting where the data x = [x1, x2, · · · , xp]
⊤ = [x⊤

signal, x
⊤
noise]

⊤ ∈ Rp, xsignal ∼
Uniform({±1}2), xnoise ∼ Uniform({±ε}p−2), and the label y = x1x2. Here ε is the parameter
that controls the scale of the noise. We denote this data distribution by P and consider n training
datapoints {(xi, yi)}ni=1 drawn i.i.d. from the distribution P . We assume the sample size n to be
sufficiently large, specifically larger than any universal constant mentioned in this paper. The data
distribution comprises four feature vectors (see Figure 5a for a projected visualization), and the model
need learn all four features to achieve perfect generalization.

We denote a width-m two-layer neural network by f(x) =
∑m

j=1 ajϕ(⟨wj , x⟩), where wj ∈ Rp, j ∈
[m] are neurons in the hidden layer and aj ∈ R, j ∈ [m] are second-layer weights. The model is
randomly initialized by

wj
i.i.d∼ N(0, w2

initIp), aj
i.i.d∼ N(0, a2init), j ∈ [m].

Define the empirical risk with the exponential loss as: L̂(f) =
∑n

i=1 l(yi, f(xi))/n, where l(y, ŷ) =
exp(−yŷ). We use gradient descent (GD) with weight decay θ

(t+1)
j = (1− λ)θ

(t)
j − α∇θj L̂(f

(t))

to update both layers {wj , aj}mj=1, where λ is the coefficient of L2 regularization.

Setting p = 80000, n = 400, ε = 0.05, this configuration approximates one of the distributions
explored in Xu et al. (2024), where grokking was observed. Under this setup, we train a two-layer
neural network on {(xi, yi)}ni=1 with default PyTorch initialization. We observe grokking, as shown
in Figure 4(a), where overfitting is achieved by the fifth epoch and generalization begins around the
80-th epoch. Below we will show how our method GrokTransfer constructs a new embedding
and eliminates the observed delay in generalization in subsequent sections.
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Figure 4: (a) Training dynamics of a two-layer neural network with a hidden width of 2048, where
grokking is observed. (b) Training dynamics of a two-layer neural network with a hidden width of 3.
The model can only achieve around 75% validation accuracy and a phase transition near 100th epoch
is observed. (c) Visualization of individual neuron weights from the model trained in (b). It shows
three distinct patterns and each corresponds to a feature direction of the XOR data distribution. See
Appendix A.3 for details of the experimental setup.

3.2 EMPIRICAL ANALYSIS OF THE WEAKER MODEL

Applying GrokTransfer, we first train a small two-layer neural network with only 3 neurons
fS(x) =

∑3
j=1 ajϕ(⟨wj , x⟩) till convergence (Figure 4(b)). Denote the first-layer weight matrix by

W = [w1, w2, w3] ∈ Rp×3, the number of training steps by T , and the model after training by f
(T )
S .

Due to the complexity of the training dynamics, it is hard to derive the closed form of f (T )
S and W (T ).

Below we empirically investigate what information the model has gained and how well it learns.

Figure 4(b) shows that, after training, this weak model has non-trivial performance with test ac-
curacy around 75%. The neurons {w(T )

j }3j=1 are visualized in Figure 4(c), displaying patterns
[−1, 1, 0, · · · , 0], [1,−1, 0, · · · , 0], and [−1,−1, 0, · · · , 0]. Note that the specific features learned by
the model are sensitive to its initialization. Nevertheless, we find that empirically, the learned features
are always three among the four features [±1,±1, 0, . . . , 0], provided the test accuracy is around
75%.

Notice that an optimal function for this classification task is

f(x) = sgn(ϕ(x1 + x2) + ϕ(−x1 − x2)− ϕ(−x1 + x2)− ϕ(x1 − x2)),

which needs four neurons to represent all features [±1,±1]. It thus follows intuitively that the weak
model fS cannot achieve better generalization with only three neurons. Formally, we establish the
following lemma regarding the expressive power of fS .

Lemma 3.1. For any f(x) =
∑3

j=1 ajϕ(w
⊤
j x), where ϕ is the ReLU activation function, we have

P(x,y)∼P (y = sgn(f(x))) ≤ 75%.

Although the model f (T )
S fails to generalize perfectly due to the inherent limitation of capacity,

it has correctly selected the subset that contains features after training as shown in Figure 4(c).
Consequently, for any input x ∼ P , W (T )⊤x becomes a high-quality embedding for x in a much
lower dimensional space. Figure 5a shows that, with this new embedding, data points are well-
separated in a three-dimensional space with a relatively high signal-to-noise ratio (SNR) compared to
the original embedding.

Next, we empirically examine the order of the ratio between the norm of the complementary sub-
network and the norm of the generalizing subnetwork. This will be used to estimate the SNR of P
with the new embedding. Given the structure of the XOR cluster data, the first two rows of W (T )

correspond to the generalizing subnetwork. We define the norm ratio between the complementary
and generalizing subnetwork as follows:

rW =
∥W (T )

3:p,·∥F/
√
p− 2

∥W (T )
1:2,·∥F/

√
2

.
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Figure 5b and 5c show that the norm ratio is proportional to ε and 1/
√
n, i.e. rW ∝ ε/

√
n. We

will use this property to show that, under mild assumptions, the target model can learn this low-
dimensional XOR task with just one step of gradient descent.
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Figure 5: (a) 3-D Visualization of the distribution P with the embedding from the weak model. The
clusters are well-separated under the new embedding. (b) Norm ratio rW for different values of p and
ε with fixed sample size n, indicating that rW does not depend on p. (c) Norm ratio rW for different
values of n and ε with fixed feature dimension p. For each ϵ, the slope is around −1/2, indicating
that rW is proportional to 1/

√
n. See Appendix A.3 for details of the experimental setup.

3.3 THEORETICAL ANALYSIS OF THE TARGET MODEL

In this section, we theoretically analyze the behavior of GrokTransfer on the XOR clus-
ter data. We consider the target model as a large model with width m of the form fL(x) =∑m

j=1 ajϕ(⟨vj , U⊤x⟩), where U = [u1, u2, u3] ∈ Rp×3 comes from the first-layer weight matrix
W (T ) learned by the weak model (visualized in Figure 4(c)). Here, U is the embedding matrix being
transferred from the weak model fS , which will then go through another linear transformation (given
by vj’s) to form the embedding in the target model. Following our observation in Section 3.2, we can
write

u1 = [µ⊤
2 , δ

⊤
1 ]⊤, u2 = [−µ⊤

2 , δ
⊤
2 ]⊤, u3 = [−µ⊤

1 , δ
⊤
3 ]⊤,

where µ1 = [1, 1]⊤, µ2 = [−1, 1]⊤ are two orthogonal features of P , and δj = [δj,1, · · · , δj,p−2]
⊤ ∈

Rp−2(j ∈ [3]).1 Here we let δ = [δ1, δ2, δ3] = W
(T )
3:p,·. Given a universal constant C > 1, we assume

(A1) The noise scale ε ≤ (n/(p log3 n))1/4.

(A2) The norm of the complementary subnetwork satisfies ∥δ∥F ≤ Cε
√

p/n.

(A3) The initialization scale vinit ≤ C log−
3/2(n).

(A4) The step size
√
mvinit/C ≤ α ≤

√
mvinit.

(A5) The number of neurons satisfies m ≥ 2 log3 n.

Here Assumption (A2) corresponds to the finding that rW ∝ ε/
√
n in Section 3.2. Assumptions

(A1) and (A2) together ensure that the SNR of the distribution P in the new embedding space is large
enough. Assumption (A3) controls the initial weight norm of the target model such that the empirical
risk starts within a reasonable range. Assumption (A4) guarantees that the step size is appropriately
balanced; it is neither too small to prevent meaningful updates after a single-step gradient descent nor
too large to cause overly drastic movements. Assumption (A5) ensures that the model’s width is large
enough to ensure certain concentration results about the random initialization. All assumptions are
satisfied in the empirical setup discussed in Section 3.2.

1We assume that the weak model learned three features [1, 1], [−1, 1], [−1,−1] without loss of generality.
Our result will hold the same for any three features among the four features [±1,±1].
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We denote a = [a1, · · · , am]⊤ ∈ Rm and V = [v1, · · · , vm] ∈ R3×p. We initialize a and V as
follows:

aj
i.i.d∼ Uniform({±1/

√
m}), vj

i.i.d∼ Uniform({±vinit}3), j ∈ [m],

and keep a and U fixed during the training process.2 Following the training method outlined in
Section 3.1, we use gradient descent V (t+1) = V (t)−α∇V L̂(f

(t)
L ) at step t to update the linear layer

V , where α is the step size and the empirical risk L̂(·) is defined in Section 3.1. With the assumptions
and initializations, we state the theorem that characterizes the train and test error of the target model
after one step.
Theorem 3.2. Suppose that Assumptions (A1)-(A5) hold. With probability at least 1−O(1/n2) over
the generation of the training data and initial weights of fL, after one step of training, the classifier
sgn(f

(1)
L (x)) can correctly classify all training datapoints and generalize with test error no greater

than exp(−Ω(log2 n)).

Theorem 3.2 shows that with GrokTransfer, after just one step of gradient descent, the target
model overfits all training data and achieves near perfect test accuracy. Notably, this is not in a kernel
regime but a feature learning regime. Since models with normal training cannot achieve generalization
in one step (Figure 4(a)), this result indicates that our method GrokTransfer effectively boosts
the generalization speed of the target model and eliminates the time gap between overfitting and
generalization. Empirically, the model continues to generalize with further training (see Figure 9
in Appendix A.3). Given that the weaker model fS has only three neurons, the computational cost
of training fS is negligible compared to the cost of training the target model fL with sufficiently
large width. This implies that GrokTransfer may reduce the overall computational cost. In the
next section, we will compare the computational cost of our method to that of standard training
procedures.

4 EXPERIMENTS

This section empirically studies GrokTransfer in modular addition and multiplication, as well as
the sparse parity task. Our experiments verify that GrokTransfer effectively reshapes the training
dynamics and eliminate delayed generalization for both fully-connected neural networks (FNN) and
Transformers (TF). The AdamW optimizer (Loshchilov & Hutter, 2019) is used in all experiments in
this section.

4.1 FNN → FNN
We first consider a three-layer FNN as the target model and conduct GrokTransfer on tasks
including modular addition, modular multiplication, and (q, k)-parity (Barak et al., 2022). These
results are compared to training a target model from scratch. The modular addition task is introduced
in Section 2.1, and modular multiplication is defined similarly with the label y = ab mod p. The
(q, k)-parity task consists of a dataset {(x, y) : x ∈ {±1}q, y =

∏
i∈S xi, |S| = k}. Following the

setting in Merrill et al. (2023), we choose q = 40, k = 3, and S = {1, 2, 3}.

For the modular addition and multiplication tasks, we employ a two-layer neural network with a
trainable embedding as the weak model, which we train for 104 epochs. We then initialize the target
model by setting its layer A to the embedding learned by the weak model. Figure 6a and 6b show the
training dynamics of the weak model, the target model trained via GrokTransfer, and the target
model trained from scratch. Notably, GrokTransfer nearly eliminates the sharp phase transition
observed in normal training. Here all training hyperparameters (initialization scale, learning rate,
weight decay) are selected by grid search, and the best configuration is defined as the one that reaches
99% test accuracy the quickest. The oscillations of accuracies in the second row of Figure 6 are
related to the “slingshot mechanism” (Thilak et al., 2022) and training instabilities associated with
large learning rates (Wortsman et al., 2024). Since large learning rate and this kind of oscillation
are believed to help generalization (Damian et al., 2023; Lu et al., 2024), we do not change our
configuration selection criteria.

For the parity task, we use a three-layer FNN as the weak model, as empirical evidence suggests that
a two-layer FNN without bias terms cannot generalize on this task. The weak model is trained until

2Our result will not be affected if a and U are also trainable. We set them fixed to simplify the analysis while
still conveying the main ideas.
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(a) Modular addition
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(b) Modular multiplication
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(c) (40, 3)-parity

Figure 6: Training dynamics of FNNs on various tasks. The rows represent different models/training
methods: The first row shows the dynamics of the weak model used in GrokTransfer, the second
row shows the dynamics of the target model trained using GrokTransfer, and the target model
trained from scratch. The columns represent different tasks: the first column is for the modular
addition task, the second column is for the modular multiplication task, and the third column is for
the (40, 3)-parity task. The comparison between the first and second rows shows that the target model
trained via GrokTransfer can surpass the weak model’s performance. The comparison within the
second row shows that GrokTransfer eliminates the sharp phase transition and enables the model
to make continuous progress. See Appendix A.3 for details of the experimental setup.

it achieves 70% test accuracy, after which the first layer’s weight matrix is transferred to the target
model. As shown in Figure 6c, the weak model undergoes a generalization delay, but the large model
inheriting its embedding generalizes continuously.

Ablation study: To further understand the empirical effectiveness of GrokTransfer, we perform
an ablation study by varying the training epochs of the weak model in the modular addition task.
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Figure 7: Ablation study showing the
effect of the weak model’s performance
on the test accuracy of the target model
(initialized via GrokTransfer and
trained for 104 epochs).

We extract the embeddings of the weak model at epochs
100, 500, 800, 900, 1000, 1100, 1500, and 2000. For each
embedding, we apply GrokTransfer to the target
model and train it for 104 epochs. To measure the gener-
alization delay of the target model, we define Time Gap as
the difference between the first epoch that achieves 95%
training accuracy and the first epoch that achieves 95%
test accuracy. If the target model fails to reach 95% accu-
racy, we set 1/Time Gap = 0. Figure 7 shows that the test
performance of the target model, initialized with the weak
model’s embedding, is positively correlated with the test
performance of the weak model. A grokked weak model
is essential for the target model to achieve near-perfect
generalization with minimal generalization delay. We hy-
pothesize that the target model can only generalize well
after the weak model has grokked.

4.2 FNN → TRANSFORMERS

Interestingly, we find that the embeddings extracted from the weak FNN model can be transferred
to the target model even when the target model is a Transformer comparable to the scale of GPT2-
small (Radford et al., 2019). Under this FNN → TF setting, GrokTransfer still mitigates the
generalization delay of the target model. Specifically, we choose the target model to be a Transformer
with 8 attention layers, (dembed, dmlp, nhead) = (512, 512, 4). For each sample, the input is a sequence
with two tokens (a, b). We extract the embeddings of the weak model in Figure 6a at the point that it
first reaches 30% test accuracy. Figure 8(a) shows that GrokTransfer enables the target model to
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Figure 8: Training dynamics of Transformers on Modular Addition Task. The weak model is a three-
layer FNN. (a) Dynamics of the target model (an 8-layer transformer) trained via GrokTransfer,
and the target model trained from scratch. (b) Dynamics of the target model (a two-layer Transformer)
trained via GrokTransfer, and the target model trained via GrokFast (Lee et al., 2024).

generalize much faster than training from scratch and exhibits little generalization delay. Here both
method suffer from training instability of large learning rates.

In terms of the computation cost, we use wall-clock time as the measure. The computation cost of
GrokTransfer comprises the training of weak model and the training of target model. Table 1
shows the total wall-clock time for weak model, target model with GrokTransfer, and target
model trained from scratch. The time spent training the weak FNN model is negligible compared to
training the target transformer model. The total wall-clock time of GrokTransfer is approximately
five times faster than training from scratch.

Model Weak Target (GrokTransfer) Target (scratch)

Total Wall-clock time (ms) 2828 71079 392667

Table 1: Comparison of total wall clock times (forward and backward passes) for different models.
The weak model is a three-layer FNN. The target/large model is an 8-layer transformer.

Lee et al. (2024) proposed a gradient amplification algorithm GrokFast to accelerate grokking. We
compare GrokTransfer with GrokFast in Figure 8(b). The weak model embedding we transfer
is the same as the one used in Figure 8(a). For the target model, we follow the model used in Lee et al.
(2024), which is a two-layer decoder-only transformer with (dembed, dmlp, nhead) = (128, 512, 4). The
Time Gap of GrokTransfer is 46 while the Time Gap of GrokFast is 1119.

5 CONCLUSION

To eliminate the unpredictability associated with grokking, we proposed GrokTransfer, a novel
method that effectively accelerates grokking by transferring the embedding from a weaker model. Our
method was inspired by the key observation that data embedding critically shapes training dynamics.
We theoretically justified GrokTransfer on an XOR classification task. We also empirically
evaluated it on various algorithmic tasks known to exhibit grokking under standard training. Our
results showed that GrokTransfer can effectively modify training dynamics, enabling continuous
progression in model performance.

One limitation of our work is that the theoretical result only considers a relatively simple XOR
task. For this task, after transferring the embedding from the smaller model, one step of gradient
descent suffices for both memorization and generalization. Theoretical justification for more complex
problems is an important future direction. Furthermore, our method focuses solely on accelerating
grokking and was only investigated on problems where grokking occurs. It would be interesting to
study whether similar ideas can be applied to improve training dynamics or enable weak-to-strong
generalization in a broader context.
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A.1 PROOFS

A.1.1 PROOF OF LEMMA 3.1

Lemma 3.1. For any f(x) =
∑3

j=1 ajϕ(w
⊤
j x), where ϕ is the ReLU activation function, we have

P(x,y)∼P (y = sgn(f(x))) ≤ 75%.

Proof. For any (x, y) ∼ P , define x′ = (x1,−x2, x3, · · · , xp) and y′ = sgn(x′
1x

′
2) = −y. It is

sufficient to show that if y = sgn(f(x)), y = sgn(f(−x)), y′ = sgn(f(x′)), then y′ ̸= sgn(f(−x′))
with probability 1.

Assume y = sgn(f(x)) and y = sgn(f(−x)). Given ϕ(z) ≥ 0,∀z, y = sgn(f(x)) implies that
there exists at least one i ∈ [3] such that ai has the same sign as y and w⊤

i x > 0. Without loss of
generality, assume sgn(a1) = y, w⊤

1 x > 0. Then for (−x,−y), it follows that

f(−x) =

3∑
j=1

ajϕ(−w⊤
j x) = a2ϕ(−w⊤

2 x) + a3ϕ(−w⊤
3 x)

has the same sign as y. Again without loss of generality, we assume sgn(a2) = y.

If y′ = sgn(f(x′)) and y′ ̸= sgn(f(−x′)) hold, following the same discussion, we have that at
least two ai’s have the same sign as y′ = −y, which contradicts the previous assumption that
sgn(a1) = sgn(a2) = y.

A.1.2 PROOF OF THEOREM 3.2

Additional notations: For training dataset {(xi, yi)}ni=1, we denote the signal of xi by x̄i =
[xi,1, xi,2]

⊤ ∈ {±µ1,±µ2}. For each µ ∈ {±µ1,±µ2}, define

Iµ = {i ∈ [n] : x̄i = µ}

and nµ = |Iµ|. Denote the new embedding of the i-th datapoint by zi = U⊤xi, i ∈ [n]. Define

νi = [µ2,−µ2,−µ1]
⊤µi, i = 1, 2.
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Then ν1 = [0, 0,−2], ν2 = [2,−2, 0], and {±ν1,±ν2} becomes the features for P with the new
embedding. Denote the signal of zi by z̄i = [µ2,−µ2,−µ1]

⊤x̄i. Define the set of training data

Gdata = {{(xi, yi)}ni=1 : ∥zi − z̄i∥ ≤ ε2
√

p

n
log n, for all i ∈ [n]}.

By Lemma A.2, P({(xi, yi)}ni=1 ∈ Gdata) ≥ 1−exp(−Ω(log2 n)). We further define sets to separate
the second-layer coefficients for the ease of discussion:

JPos = {j ∈ [m] : aj > 0}; JNeg = {j ∈ [m] : aj < 0}.

We divide the index of neurons by its initialization and define Je = {j ∈ [m] : v
(0)
j = vinite} for

e ∈ Uniform({±1})3. We further define

JPos,e = JPos ∩ Je; JNeg,e = JNeg ∩ Je.

For each initialization of v(0)j , we denote the set of datapoints which have positive inner product with
it by

Ie,µ = {i ∈ Iµ : ⟨e, zi⟩ > 0}, e ∈ Uniform({±1}3), µ ∈ {±µ1,±µ2}.
Theorem 3.2. Suppose that Assumptions (A1)-(A5) hold. With probability at least 1−O(1/n2) over
the generation of the training data and initial weights of fL, after one step of training, the classifier
sgn(f

(1)
L (x)) can correctly classify all training datapoints and generalize with test error no greater

than exp(−Ω(log2 n)).

Proof. For brevity, we omit the subscript L in fL in the proof below.

At step t = 0: for each (xi, yi), we have

f (0)(xi) =

m∑
j=1

ajϕ(⟨v(0)j , zi⟩),

where ajϕ(⟨v(0)j , zi⟩), j ∈ [m] are bounded random variables with zero mean. The absolute bound is

|ajϕ(⟨v(0)j , zi⟩)| ≤
√
3vinit√
m

(max
i

∥z̄i∥+ ε2
√

p/n log n) ≤ 5vinit/
√
m,

where the first inequality uses Lemma A.2 and the second inequality uses maxi ∥z̄i∥ = 2
√
2 and

Assumption (A1). Then by Hoeffding’s inequality and law of total probability,

P(|f (0)(xi)| > t) ≤ P(|f (0)(xi)| > t|Gdata) +P(Gdata) ≤ 2 exp
(
− 2t2

25v2init

)
+exp(−Ω(log2 n)).

Let t = vinit log n. It follows that

P(max
i∈[n]

|f (0)(xi)| ≤ t) ≥ 1−
n∑

i=1

P(|f (0)(xi)| > t)

≥ 1− 2n exp(−2 log2 n

25
)− n exp(−Ω(log2 n)) = 1− exp(−Ω(log2 n)).

(1)

We define a set of training data and initial weights:

G =
{
({(xi, yi)}ni=1, a, V

(0)) : {(xi, yi)}ni=1 ∈ Gdata, condition (1) and

all conditions in Lemma A.1 and A.4 hold
}
.

Combining (1), Lemma A.1, A.2, and A.4 then applying the union bound, we have

P(({(xi, yi)}ni=1, a, V
(0)) ∈ G) ≥ 1− exp(−Ω(log2 n))−O(

1

n2
)−O(

1

n4
) = 1−O(

1

n2
).
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Denote l
(t)
i = l(yi, f

(t)(xi)) = exp(−yif
(t)(xi)). Conditioning on G, the ratio between the maxi-

mum and minimum loss is bounded by:

R(0) :=
maxi∈[n] l

(0)
i

mini∈[n] l
(0)
i

≤ exp(2vinit log n). (2)

For each j, below we will analyze the gradient descent update for all possible combinations of
a
(0)
j , v

(0)
j conditioning on the event G.

(1) When aj > 0: If v(0)j = vinit[1, 1, 1], then according to Lemma A.1, we have

I[1,1,1],+µ1
= ∅; I[1,1,1],−µ1

= I−µ1
;

∣∣∣|I[1,1,1],µ| − nµ

2

∣∣∣ ≤ √
n log n, µ = ±µ2. (3)

Recall that the gradient descent update of v(t)j is

v
(t+1)
j = v

(t)
j +

α

n
aj

n∑
i=1

yi exp(−yif
(t)(xi))ϕ

′(⟨v(t)j , zi⟩)zi. (4)

It follows that

v
(1)
j,3 = v

(0)
j,3 +

α

n
aj

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j , zi⟩)zi,3

= v
(0)
j,3 +

α

n
aj

∑
i∈I−µ1

yil
(0)
i zi,3 +

α

n
aj

∑
i∈I[1,1,1],µ2

∪I[1,1,1],−µ2

yil
(0)
i zi,3

≥ vinit +
2α

n
√
m

∑
i∈I−µ1

l
(0)
i −O(

α√
m

max
i

l
(0)
i ε2

√
p

n
log n)

≥ vinit +
1.9α|I−µ1

|
n
√
m

exp(−vinit log n) ≥ vinit +
1.9α

4
√
m
(1− 4

log n
)(1− vinit log n)

≥ vinit +
2α

5
√
m
,

(5)

where the first inequality uses Lemma A.2 and z̄i,3 = 0, i ∈ I±µ2
; the second inequality uses

Assumption (A1), (A3) and (A4); the third inequality uses Lemma A.4 and exp(x) ≥ 1 + x. Further
for l = 1, 2, we have∣∣v(1)j,l − v

(0)
j,l

∣∣ = ∣∣∣α
n
aj

∑
i∈I−µ1

yil
(0)
i zi,l +

α

n
aj

∑
i∈I[1,1,1],µ2

∪I[1,1,1],−µ2

yil
(0)
i zi,l

∣∣∣
=

α

n
aj

∣∣∣ ∑
i∈I−µ1

∪I[1,1,1],µ2
∪I[1,1,1],−µ2

yil
(0)
i (zi,l − z̄i,l)

−
[ ∑
i∈I[1,1,1],µ2

l
(0)
i z̄i,l +

∑
i∈I[1,1,1],−µ2

l
(0)
i z̄i,l

]∣∣∣
≤ α√

m
exp(vinit log n)ε

2

√
p

n
log n+

2α

n
√
m

∣∣∣ ∑
i∈I[1,1,1],µ2

l
(0)
i −

∑
i∈I[1,1,1],−µ2

l
(0)
i

∣∣∣
≤ α√

m
exp(vinit log n)ε

2

√
p

n
log n+

2α

n
√
m

exp(vinit log n)
(n
8
+

n

2 log n

+
√
n log n− exp(−2vinit log n)(

n

8
− n

2 log n
−

√
n log n)

)
≤ C

αε2
√
p

√
mn

log n+ C
α

n
√
m

( n

log n
+ vinitn log n

)
≤ C

α√
m log n

,

(6)

where the first inequality uses (2) and z̄i,l = −z̄j,l for i ∈ I[1,1,1],µ2
, j ∈ I[1,1,1],−µ2

; the second
inequality uses (2), (3), and (B4) in Lemma A.4; the third inequality uses Assumption (A1)-(A5);
and the last inequality uses Assumption (A1), (A3) and (A4).
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For a datapoint (x, y) ∼ P , define z = [z1, z2, z3]
⊤ = U⊤x. Applying Lemma A.3 we obtain

P(∥z − z̄∥ ≤ ε2
√

p

n
log n) ≥ 1− exp(−Ω(log2 n)).

Conditioning on

∥z − z̄∥ ≤ ε2
√

p

n
log n, (7)

if xsignal = −µ1, we combine (5) and (6) and have

⟨v(1)j , z⟩ = ⟨v(1)j , z̄⟩+⟨v(1)j , z − z̄⟩ ≥ 2(vinit+
2α

5
√
m
)−Cvinitε

2

√
p

n
log n ≥ 3

2
(vinit+

2α

5
√
m
). (8)

Further for any pair j1, j2 with v
(0)
j1

= v
(0)
j2

= vinit[1, 1, 1] and aj1 > 0, aj2 < 0:

If ⟨v(1)j2
, z⟩ < 0, it follows that

z3
α

n
√
m

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j2

, zi⟩)zi,3 = −⟨v(1)j2
, z⟩+ z3v

(0)
j2,3

+

2∑
l=1

zlv
(1)
j1,l

≥ z3vinit −
2∑

l=1

|zl − z̄l||v(1)j2,l
|

≥ z3vinit − 2ε2
√

p

n
log n

(
vinit + C

α√
m log n

)
≥ z3

2
vinit,

(9)

where the first inequality uses v(0)j2,3
= vinit and z̄l = 0, l = 1, 2; the second inequality uses (7); and

the last inequality uses condition (7), z̄3 = 2, and Assumption (A1), (A3) and (A4). Combining (5)
and (9), we have

α

n
√
m

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j2

, zi⟩)zi,3 ≥ max{vinit

2
,

2α

5
√
m
},

which together with (6) yield that

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = aj1⟨v
(1)
j1

, z⟩

=
1√
m

[
⟨v(0)j1

, z⟩+ α

n
√
m
z3

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j2

, zi⟩)zi,3 +
2∑

l=1

(v
(1)
j1,l

− v
(0)
j1,l

)zl

]
≥ 1√

m

[
vinit +max{vinit

2
,

2α

5
√
m
} − Cvinitε

2

√
p

n
log n− C

α√
m log n

ε2
√

p

n
log n

]
≥ 1√

m

[
vinit +

vinit

4
+

α

5
√
m

− Cvinitε
2

√
p

n
log n− C

α√
m log n

ε2
√

p

n
log n

]
≥ vinit√

m
+

α

10m
,

(10)

where the second inequality uses max(x, y) ≥ (x+ y)/2 and the last inequality uses the fact that n
is sufficiently large.

If ⟨v(1)j2
, z⟩ > 0, we have

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = 1√
m
⟨v(1)j1

− v
(1)
j2

, z⟩

=
1√
m
⟨v(1)j1

− v
(0)
j1

, z⟩ − 1√
m
⟨v(1)j2

− v
(0)
j2

, z⟩

=
1√
m

[
2

α

n
√
m
z3

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j1

, zi⟩)zi,3 +
2∑

l=1

(v
(1)
j1,l

− v
(1)
j2,l

)(zl − z̄l)
]

≥ 1√
m

[ 4α

5
√
m

− C
α√

m log n
ε2
√

p

n
log n

]
≥ 2α

5m
,

(11)
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where the second equation uses v(0)j1
= v

(0)
j2

; the third equation uses (4); the first inequality uses (5);
and the second inequality uses Assumption (A1). Combining (10) and (11), it follows that

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) ≥ 2α

5m
(12)

when v
(0)
j1

= v
(0)
j2

= vinit[1, 1, 1] and xsignal = −µ1.

If xsignal = +µ1, following the same procedure, we obtain that ⟨v(1)j , z⟩ < 0 for aj > 0. For aj < 0,
similar to (5), we have

v
(1)
j,3 = v

(0)
j,3 +

α

n
aj

∑
i∈I−µ1

yil
(0)
i zi,3 +

α

n
aj

∑
i∈I[1,1,1],µ2

∪I[1,1,1],−µ2

yil
(0)
i zi,3

≥ vinit −
2α

n
√
m

∑
i∈I−µ1

l
(0)
i −O(

α√
m

max
i

l
(0)
i ε2

√
p

n
log n)

≥ vinit −
2.1α|I−µ1

|
n
√
m

exp(vinit log n) ≥ vinit −
2.1α

4
√
m
(1 +

4

log n
)(1 + 2vinit log n)

≥ vinit −
3α

4
√
m

≥ vinit

4
,

(13)

where the last inequality comes from Assumption (A4). Then ⟨v(1)j , z⟩ < 0 also hold for aj < 0
following the same analysis. Thus we have

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = 0 (14)

when v
(0)
j1

= v
(0)
j2

= vinit[1, 1, 1] and xsignal = +µ1.

If xsignal ∈ {±µ2}, combining (5) and (6), we have

|⟨v(1)j , z⟩| ≤ |⟨v(0)j , z̄⟩|+ |⟨v(0)j , z − z̄⟩|+ |⟨v(1)j − v
(0)
j , z̄⟩|+ |⟨v(1)j − v

(0)
j , z − z̄⟩|

≤ 0 + vinitε
2

√
p

n
log n+ 0 + C

α√
m
ε2
√

p

n
log n ≤ 2vinitε

2

√
p

n
log n,

where the last inequality uses Assumption (A3) and (A4). Thus

|aj⟨v(1)j , z⟩| ≤ 2vinitε
2

√
p

nm
log n ≤ 2vinit√

m log n
. (15)

Note that neurons initialized with vinit[i, i, k], i, k ∈ {±1} share very similar dynamics and following
the same procedure, specifically, if k = +1 (resp. −1), the neurons align well with −µ1 (resp. +µ1).
Additionally, the neurons do not align well with ±µ2 for both i = +1 and i = −1. For brevity, we
omit the analysis for v(0)j = vinit[i, i, k], i, k ∈ {±1}\{vinit[1, 1, 1]}.

Next we analyze the one-step update of neuron vj with initialization vinit[1,−1, 1].

(2) If v(0)j = vinit[1,−1, 1], then according to Lemma A.1, we have

I[1,−1,1],+µ1
= ∅; I[1,−1,1],−µ1

= I−µ1 ; I[1,−1,1],µ2
= I+µ2 ; I[1,−1,1],−µ2

= ∅. (16)
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Similar to (5), we have∣∣∣v(1)j,3 −
(
v
(0)
j,3 +

α

2
aj
)∣∣∣ = ∣∣∣α

n
aj

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j , zi⟩)zi,3 −

α

2
aj

∣∣∣
=

∣∣∣α
n
aj

[ ∑
i∈I−µ1

yil
(0)
i zi,3 +

∑
i∈I+µ2

yil
(0)
i zi,3

]
− α

2
aj

∣∣∣
=

∣∣∣ α

n
√
m

[ ∑
i∈I−µ1

l
(0)
i zi,3 −

∑
i∈I+µ2

l
(0)
i zi,3

]
− α

2
√
m

∣∣∣
=

∣∣∣ α

n
√
m

[ ∑
i∈I−µ1

l
(0)
i z̄i,3 +

∑
i∈I−µ1

l
(0)
i (zi,3 − z̄i,3)−

∑
i∈I+µ2

l
(0)
i (zi,3 − z̄i,3)

]
− α

2
√
m

∣∣∣
≤ 2α

n
√
m

∣∣n
4
− n−µ1

exp(−vinit log n)
∣∣+ α

n
√
m

(
n−µ1

+ n+µ2

)
exp(vinit log n)ε

2

√
p

n
log n

= O(
α√
m
(ε2

√
p

n
+ vinit) log n) = O(

α√
m log n

),

(17)

where the first equation comes from the GD update; the second equation uses (16); the third equation
uses |aj | = 1/

√
m; the fourth equation uses z̄i,3 = 0 for i ∈ I+µ2

; the first inequality uses
z̄i,3 = 2, i ∈ I−µ1

, (2) and the definition of G; the fifth equation uses |nµ − n/4| ≤ n/ log n and
| exp(−vinit log n)− 1| ≤ 2vinit log n ≤ 2/

√
log n by Assumption (A3); and the last equation uses

Assumption (A1) and (A3). Further for the first entry of vj , we have∣∣∣v(1)j,1 −
(
v
(0)
j,1 − α

2
aj
)∣∣∣ = ∣∣∣α

n
aj

n∑
i=1

yil
(0)
i ϕ′(⟨v(0)j , zi⟩)zi,1 +

α

2
aj

∣∣∣
=

∣∣∣α
n
aj

[ ∑
i∈I−µ1

yil
(0)
i zi,1 +

∑
i∈I+µ2

yil
(0)
i zi,1

]
+

α

2
aj

∣∣∣
=

∣∣∣ α

n
√
m

[ ∑
i∈I−µ1

l
(0)
i zi,1 −

∑
i∈I+µ2

l
(0)
i zi,1

]
+

α

2
√
m

∣∣∣
=

∣∣∣ α

n
√
m

[
−

∑
i∈I+µ2

l
(0)
i z̄i,1 +

∑
i∈I−µ1

l
(0)
i (zi,1 − z̄i,1)−

∑
i∈I+µ2

l
(0)
i (zi,1 − z̄i,1)

]
+

α

2
√
m

∣∣∣
≤ 2α

n
√
m

∣∣1− n+µ2
exp(−vinit log n)

∣∣+ α

n
√
m

(
n−µ1

+ n+µ2

)
exp(vinit log n)ε

2

√
p

n
log n

= O(
α√
m
(ε2

√
p

n
+ vinit) log n) = O(

α√
m log n

),

(18)

where the inequality uses z̄i,1 = 2 for i ∈ I+µ2
. And for the second entry of vj , it follows similarly

that∣∣∣v(1)j,2 −
(
v
(0)
j,2 +

α

2
aj
)∣∣∣ = ∣∣∣ α

n
√
m

[ ∑
i∈I−µ1

l
(0)
i zi,2 −

∑
i∈I+µ2

l
(0)
i zi,2

]
− α

2
√
m

∣∣∣ = O(
α√

m log n
).

(19)
Unifying (17), (17) and (18), we obtain∣∣∣v(1)j,l −

(
v
(0)
j,l +

α

2
aj sgn(v

(0)
j,l )ξl

)∣∣∣ = O(
α√

m log n
) (20)

for l = 1, 2, 3. Here {ξl} are defined as ξl = −1, l = 1, 2 and ξ3 = 1.

For a datapoint (x, y) ∼ P with z = [z1, z2, z3]
⊤ = U⊤x. We condition on the event

∥z − z̄∥ ≤ ε2
√

p

n
log n.

If xsignal = −µ1: for each pair j1, j2 with v
(0)
j1

= v
(0)
j2

= vinit[1,−1, 1] and aj1 > 0, aj2 < 0, we have

⟨v(1)jl
, z⟩ > 0, l = 1, 2, and

∥v(1)j1
−v

(1)
j2

− α√
m
[−1, 1, 1]⊤∥ = ∥(v(1)j1

−v
(0)
j1

)−(v
(1)
j2

−v
(0)
j2

)− α√
m
[−1, 1, 1]⊤∥ = O(

α√
m log n

)
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by (20). It follows that

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = 1√
m
⟨v(1)j1

− v
(1)
j2

, z⟩

=
1√
m

(
⟨ α√

m
[−1, 1, 1], z̄⟩+ ⟨v(1)j1

− v
(1)
j2

− α√
m
[−1, 1, 1], z̄⟩+ ⟨v(1)j1

− v
(1)
j2

, z − z̄⟩
)

≥ 1√
m

( 2α√
m

−O(
α√

m log n
)−O(

α√
m log n

ε2
√

p

n
log n)

)
≥ α

m
.

(21)

If xsignal = +µ1: we have ⟨v(1)jl
, z⟩ < 0, l = 1, 2, thus

aj1ϕ(⟨v
(1)
j1

, z⟩) = aj2ϕ(⟨v
(1)
j2

, z⟩) = 0

If xsignal = +µ2: we have ⟨v(0)jl
, z⟩ > 0, l = 1, 2. Applying (20) and Assumption (A4), we have

⟨v(1)jl
, z⟩ > 0, l = 1, 2. It follows that

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = 1√
m
⟨v(1)j1

− v
(1)
j2

, z⟩

=
1√
m

(
⟨ α√

m
[−1, 1, 1], z̄⟩+ ⟨v(1)j1

− v
(1)
j2

− α√
m
[−1, 1, 1], z̄⟩+ ⟨v(1)j1

− v
(1)
j2

, z − z̄⟩
)

≤
(
− 2α√

m
+O(

α√
m log n

) +O(
α√

m log n
ε2
√

p

n
log n)

)
≤ − α

m

(22)

for sufficiently large n. Here the last inequality uses Assumption (A1).

If xsignal = −µ2: we have ⟨v(0)jl
, z⟩ < 0, l = 1, 2. Applying (20) and Assumption (A4), we have

⟨v(1)jl
, z⟩ < 0, l = 1, 2. It follows that

aj1ϕ(⟨v
(1)
j1

, z⟩) + aj2ϕ(⟨v
(1)
j2

, z⟩) = 0. (23)

In conclusion, for datapoint (x, y) with xsignal = −µ1, conditioning on (7), the output of f (1) is

f (1)(x) =

m∑
j=1

ajϕ(⟨v(1)j , z⟩) =
∑

e∈Uniform({±1}3)

∑
j∈Je

ajϕ(⟨v(1)j , z⟩)

=
∑

e:e3=1

[ ∑
j∈JPos,e

ajϕ(⟨v(1)j , z⟩)−
∑

j∈JNeg,e

ajϕ(⟨v(1)j , z⟩)
]

≥
∑

e:e3=1

[
min{|JPos,e|, |JNeg,e|}

2α

5m
− 4

√
m

log n
(vinit +

α√
m
)
]

≥
∑

e:e3=1

[ α

40
− 4

√
m

log n
(C

α√
m

+
α√
m
)
]
> 0

(24)

for sufficiently large n. Here the first inequality uses (12) and (21), the property that ||JPos,e| −
|JNeg,e|| ≤ 2m/ log n from (B3) in Lemma A.4 and the property that ϕ(⟨v(1)j , z⟩) ≤ 2(vinit +

α/
√
m); the second inequality uses (B3) and Assumption (A4). Similarly, we have that for datapoint

(x, y) with xsignal = +µ1, conditioning on (7), the output of f (1) is

f (1)(x) =
∑

e:e3=−1

[ ∑
j∈JPos,e

ajϕ(⟨v(1)j , z⟩)−
∑

j∈JNeg,e

ajϕ(⟨v(1)j , z⟩)
]
> 0. (25)
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For datapoint (x, y) with xsignal = +µ2, conditioning on (7), the output of f (1) is

f (1)(x) =

m∑
j=1

ajϕ(⟨v(1)j , z⟩) =
∑

e∈Uniform({±1}3)

∑
j∈Je

ajϕ(⟨v(1)j , z⟩)

= (
∑

e:[e1,e2]=[1,−1]

+
∑

e:e1=e2

)
[ ∑
j∈JPos,e

ajϕ(⟨v(1)j , z⟩)−
∑

j∈JNeg,e

ajϕ(⟨v(1)j , z⟩)
]

≤
∑

e:[e1,e2]=[1,−1]

[
−min{|JPos,e|, |JNeg,e|}

α

m
+

4
√
m

log n
(vinit +

α√
m
)
]
+

∑
e:e1=e2

2vinit|JNeg,e|√
m log n

≤ 2
(
− α

16
+

5
√
m

log n
(vinit +

α√
m
)
)
+

vinit
√
m√

log n
≤ −α

8
+

10(C + 1)α

log n
+

Cα√
log n

< 0,

(26)

where the first inequality uses (15) , (22), (B3) and the property that ϕ(⟨v(1)j , z⟩) ≤ 2(vinit +α/
√
m);

the second inequality uses (B3); and the third inequality uses Assumption (A4). Similarly, we have
that for datapoint (x, y) with xsignal = −µ2, conditioning on (7), f (1)(x) < 0, which combined with
(24), (25) and (26), yields that

sgn(f (1)(x)) = y

for any (x, y) ∼ P, z = U⊤x satisfying

∥z − z̄∥ ≤ ε2
√

p

n
log n.

According to the definition of Gdata, all (xi, yi) satisfy this condition. Thus conditioning on the
event G, the model f (1) can correctly classify all training data points. And applying the law of total
probability, we obtain that the test error is bounded by:

P(x,y)∼P (y ̸= sgn(f (1)(x))) ≤ P(x,y)∼P

(
y ̸= sgn(f (1)(x)) | ∥z − z̄∥ ≤ ε2

√
p

n
log n

)
+ P(x,y)∼P

(
∥z − z̄∥ ≤ ε2

√
p

n
log n

)
= P(x,y)∼P

(
∥z − z̄∥ ≤ ε2

√
p

n
log n

)
≤ exp(−Ω(log2 n)),

where the last inequality uses Lemma A.3.

Lemma A.1. Suppose that Assumption (A2) holds. With probability at least 1−O( 1
n2 ), the following

conditions hold:

I[i,j,−1],+µ1
= I+µ1

; I[i,j,−1],−µ1
= ∅, i, j ∈ {±1};

I[i,j,+1],+µ1
= ∅; I[i,j,+1],−µ1

= I−µ1 , i, j ∈ {±1};
I[+1,−1,k],+µ2

= I+µ2
; I[+1,−1,k],−µ2

= ∅, k ∈ {±1};
(27)

I[−1,+1,k],+µ2
= ∅; I[−1,+1,k],−µ2

= I−µ2
, k ∈ {±1};∣∣∣|I[i,i,k],µ| − nµ

2

∣∣∣ ≤ √
n log n, i, k ∈ {±1}, µ ∈ {±µ2}.

(28)

Proof. For simplicity, we denote P(· | {(xi, yi)}ni=1 ∈ Gdata) as P(·) in the proof below.

For v(0)j = [vinit, vinit, vinit], we first show that for {(xi, yi)}ni=1 ∈ Gdata,

⟨v(0)j , zi⟩ > 0, ∀i ∈ I−µ1 .

According to the definition of Gdata, ∥zi − z̄i∥ ≤ ε2
√

p/n log n for all i ∈ I−µ1 . Thus

⟨v(0)j , zi⟩ = ⟨v(0)j , z̄i⟩+ ⟨v(0)j , zi − z̄i⟩ ≥ vinit(2− ∥zi − z̄i∥) > 0,
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where the first inequality uses z̄i = [0, 0, 2] when i ∈ I−µ1
and the second inequality uses Assumption

(A1). Similarly, we have
⟨v(0)j , zi⟩ < 0, ∀i ∈ I+µ1 .

Thus conditioning on {(xi, yi)}ni=1 ∈ Gdata, we have

I[1,1,1],−µ1
= I−µ1

; I[1,1,1],+µ1
= ∅.

For i ∈ I±µ2
, recall that xi = [x⊤

i,signal, x
⊤
i,noise]

⊤ with xi,signal = [xi,1, xi,2]
⊤ and xi,noise =

[xi,3, · · · , xi,p]
⊤. We have

⟨v(0)j , zi⟩ = vinit

3∑
l=1

zi,l = vinit(

3∑
l=1

ul)
⊤xi = vinit[−µ⊤

1 , (

3∑
l=1

δl)
⊤]xi = vinit(

3∑
l=1

δl)
⊤xi,noise.

It follows that
P(⟨v(0)j , zi⟩ > 0) =

1

2
.

Applying Hoeffding’s inequality, we obtain

P(
∣∣∣|I[1,1,1],+µ2

| − |I+µ2 |
2

∣∣∣ > t) ≤ 2 exp(−2t2

n
).

Similarly we have

P(
∣∣∣|I[1,1,1],−µ2

| − |I−µ2
|

2

∣∣∣ > t) ≤ 2 exp(−2t2

n
).

Let t =
√
n log n. We have∣∣∣|I[1,1,1],µ| − nµ

2

∣∣∣ ≤ √
n log n, µ ∈ {±µ2}

with probability at least 1− 4/n2. Following similar discussion, we have that

I[i,j,−1],+µ1
= I+µ1 ; I[i,j,−1],−µ1

= ∅, i, j ∈ {±1};

I[i,j,+1],+µ1
= ∅; I[i,j,+1],−µ1

= I−µ1 , i, j ∈ {±1};
I[+1,−1,k],+µ2

= I+µ2
; I[+1,−1,k],−µ2

= ∅, k ∈ {±1};
I[−1,+1,k],+µ2

= ∅; I[−1,+1,k],−µ2
= I−µ2

, k ∈ {±1}
hold with probability 1 given {(xi, yi)}ni=1 ∈ Gdata. And∣∣∣|I[i,i,k],µ| − nµ

2

∣∣∣ ≤ √
n log n, i, k ∈ {±1}, µ ∈ {±µ2}

hold with probability at least 1− 16/n2. In total, the conditions above hold with probability at least
1− exp(−Ω(log2 n))−O( 1

n2 ) = 1−O( 1
n2 ).

Lemma A.2. Suppose that Assumption (A2) holds. Let the training data {xi, yi}ni=1 for model fL be
sampled i.i.d from P . With probability at least 1− exp(−Ω(log2 n)), we have

∥zi − z̄i∥ ≤ ε2
√

p

n
log n, for all i ∈ [n]. (29)

Proof. Applying Lemma A.3, we obtain

P(∥zi − z̄i∥ ≤ ε2
√

p

n
log n, ∀i ∈ [n]) ≥ 1−

n∑
i=1

P(∥zi − z̄i∥ > ε2
√

p

n
log n)

≥ 1− n exp(−Ω(log2 n)) = 1− exp(−Ω(log2 n)).
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Lemma A.3. Suppose that Assumption (A2) holds. For x = [x1, x2, · · · , xp] ∼ P with [x1, x2]
⊤ =

µ, µ ∈ {±µ1,±µ2}, we have

P(∥U⊤x− ν∥max > ε2
√

p

n
log n) ≤ exp(−Ω(log2 n)), (30)

where ν = [µ2,−µ2,−µ1]
⊤µ ∈ R3.

Proof. We start our analysis with [x1, x2]
⊤ = µ1. Note that

u⊤
1 x =

p−2∑
i=1

δ1,ixi+2

is a summation of independent bounded random variables with zero mean. By Hoeffding’s inequality,
we have

P(|u⊤
1 x| ≥ t) ≤ 2 exp

(
− t2

2
∑p−2

i=1 δ21,iε
2

)
≤ 2 exp

(
− t2

2∥δ∥2Fε2
)
.

Similarly, the concentration for u⊤
2 x and u⊤

3 x+ 2 are as follows:

P(|u⊤
2 x| ≥ t) ≤ 2 exp

(
− t2

2∥δ∥2Fε2
)
;

P(|u⊤
3 x+ 2| ≥ t) ≤ 2 exp

(
− t2

2∥δ∥2Fε2
)
.

Combining these inequalities yields

P(∥U⊤x− ν1∥max > t) ≤ 6 exp
(
− t2

2∥δ∥2Fε2
)
≤ 6 exp

(
− nt2

2C2ε4p

)
, (31)

where the last inequality uses Assumption (A2). The proof concludes by letting t = ε2
√

p/n log n.
The analysis for other values of [x1, x2]

⊤ follows similarly.

Lemma A.4. Suppose that Assumption (A5) holds. Then the following conditions hold with probabil-
ity at least 1−O(1/n4):

(B1) maxk∈{Pos,Neg} ||Jk| − m
2 | ≤

m
logn .

(B2) maxe∈Uniform({±1}3) |Je − m
8 | ≤

m
logn

(B3) maxk∈{Pos,Neg},e∈Uniform({±1}3) |Jk,e − m
16 | ≤

m
logn .

(B4) maxµ∈{±µ1,±µ2} |nµ − n
4 | ≤

n
logn .

Proof. Note that |JPos| ∼ Bin(m, 1/2). Applying Hoeffding’s inequality, we have

P
(∣∣∣|JPos| −

m

2

∣∣∣ ≤ m

log n

)
≤ 2 exp

(
− 2m

log2 n

)
≤ 2

n4
,

where the last inequality comes from Assumption (A5). And similarly

P
(∣∣∣|JNeg| −

m

2

∣∣∣ ≤ 2 exp
(
− 2m

log2 n

)
≤ 2

n4
,

which completes the proof of (B1). Note that |nµ| ∼ Bin(n, 1/4). Applying Hoeffding’s inequality,
we have

P
(∣∣∣|nµ| −

n

4

∣∣∣ ≤ n

log n
) ≤ 2 exp

(
− 2n

log2 n

)
= O(

1

n4
), ∀µ ∈ {±µ1,±µ2}.

(B2)-(B3) can be proved following the same procedure. We omit the proof here.
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Figure 9: Training dynamics of the model fL discussed in Section 3.3.

A.2 ADDITIONAL EXPERIMENTS

A.3 EXPERIMENTAL DETAILS

All experiments in the paper can be run on a single NVIDIA A100 GPU. The loss function for
modular arithmetic tasks is cross-entropy loss and for (40, 3)-parity task is logistic loss. All models
used in the paper, unless stated otherwise, set dmlp = 4dembed, where dmlp is the MLP dimension
and dembed is the embedding dimension. All FNN models used are in the paper are homogeneous
and do not have bias terms.

A.3.1 EXPERIMENTS IN SECTION 1 AND 2.1

In Figure 1b, we use a two-layer FNN with trainable embedding layer as the weak model. We choose
(dembed, width) = (4, 16) for the weak model. The target model is a three-layer FNN with trainable
embedding layer. We choose (dembed, width) = (128, 512) for the target model. The hyperparameters
(init scale, learning rate,weight decay) are selected by the following grid search:

init scale: [0.1, 0.2, · · · , 1.5]
learning rate: [10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 10−1]

weight decay: [10−4, 10−3, 10−2, 10−1, 1, 2, 3, 4, 5].

We select the configuration that first achieves 90% accuracy on the validation set. The best configu-
ration for GrokTransfer is (0.3, 0.005, 3). For standard training, only learning rate and weight
decay are tuned. They are selected by the following grid search:

learning rate: [10−3, 5× 10−3, 10−2, 5× 10−2, 10−1]

weight decay: [10−2, 10−1, 1, 2, 3, 4, 5],

and the optimal configuration is (0.05, 3).

In Figure 2, we set the dimension of the GPT embedding to be 128. For the Fourier embedding,
we choose k = 7 frequencies, and let ij to be the j-th smallest prime number. For each type of
embedding, we normalize the embedding of each integer to be 1. The FNN used in Figure 2 is a three
layer dense neural network

f(x) = W3ϕ(W2ϕ(W1x)),

where W1 ∈ Rwidth×embed dim,W2 ∈ Rwidth×width,W3 ∈ Rp×width, width= 512. The hyperparameters
(init scale, learning rate,weight decay) are selected by the following grid search:

init scale: [0.1, 0.2, · · · , 1.5]
learning rate: [10−4, 10−3, 10−2, 10−1, 1]

weight decay: [10−4, 10−3, 10−2, 10−1, 1, 5, 10].

We select the configuration that first achieves 90% accuracy on the validation set. The best configura-
tion (init, lr,wd) for the four embeddings are:

One-hot: (0.2, 0.01, 5); Binary: (0.3, 0.01, 1); Fourier: (0.5, 0.1, 0.1) Text: (1.3, 0.01, 1).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

In Figure 3, the empirical NTK is calculated following the method in Mohamadi et al. (2023). We
denote Θ̂t as the NTK of the model at epoch t.

A.3.2 EXPERIMENTS IN SECTION 3

For experiments in Section 3, we let the sample size n = 400, feature dimension p = 80000, and
noise level ε = 0.05. For Figure 4(a), the model is a two-layer neural network with width 2048. The
optimizer is full-batch gradient descent with learning rate 0.1 and weight decay 0.1. In Figure 4(b),
we train a small model with only three neurons. The initialization of the hidden layer follows i.i.d
N(0, 0.01), and the initialization of the second layer follows i.i.d N(0, 10−4). The learning rate is
0.1 and weight decay is 0, 1. Figure 4(c) visualizes the hidden layer of that small model after training.

Figure 5a generates 4000 i.i.d datapoints from the distribution P , and visualizes Ux for each
x. Figure 5b fixes n = 1000 and train the weak model for p = [4 × 104, 8 × 104, 16 ×
104, ], ϵ = [1/40, 1/80, 1/160]. Figure 5c fixes p = 8 × 104 and train the weak model for
n = [400, 800, 1600, 3200], ϵ = [1/40, 1/80, 1/160]. Figure 9 takes vinit = 0.4, learning rate
2.0 and zero weight decay.

A.3.3 EXPERIMENTS IN SECTION 4

The attention layer used in this paper follows the same structure as that in Nanda et al. (2023). While
Nanda et al. (2023) also suggested to set the precision to be float64 to mitigate the Slingshot
phenomenon (Thilak et al., 2022), a fluctuation of accuracy and loss during training process, we still
use float32 to control the computation cost.

All modular tasks set p = 113 and the fraction of training data being 25%.

For the (40, 3)-parity task, we set the sample size n = 1000.

Unless otherwise specified, we use the AdamW optimizer (Loshchilov & Hutter, 2019) for all
experiments; we initialize the weights using the default PyTorch initialization scaled by a factor
init scale > 0 to control the initial weight norm, as proposed by Liu et al. (2023).

The hyperparameters (init scale, learning rate,weight decay) are selected by the following grid
search:

init scale: [0.05, 0.1, 0.2, 0.3, · · · , 1.5]
learning rate: [10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 10−1, 0.5, 1.0]

weight decay: [10−4, 10−3, 10−2, 10−1, 1, 2, 3, 4, 5].

In Figure 6(a),(b), the structure of weak and target model are the same as those in Figure 1b. In Figure
6(c), the weak model is a three-layer width = 16 FNN, the target model is a three-layer width =
512 FNN with dembed = 128. In Figure 6(a), the optimal configuration for GrokTransfer is
(0.3, 0.001, 1) and the optimal one for training from scratch is (0.1, 0.1, 2). In Figure 6(b), the
optimal configuration for GrokTransfer is (0.3, 0.005, 3) and the optimal one for training from
scratch is (0.1, 0.1, 2). In Figure 6(b), we have the number of training samples n = 1000. The model
trained via GrokTransfer uses learning rate 10−3 and weight decay 10−3; the model trained from
scratch uses learning rate 10−2 and weight decay 1.

In Figure 8(a), the weak model is a two-layer width-4 FNN, and the target model is an 8-layer trans-
former with dembed = 512, dmlp = 512, nhead = 4, dhead = 128. The optimal configuration for tar-
get model trained via GrokTransfer is (0.7, 0.001, 1). The optimal configuration for target model
trained from scratch is (0.4, 0.0005, 1). In Figure 8(b), the weak model remains the same, and the tar-
get model becomes an 2-layer transformer with dembed = 128, dmlp = 128, nhead = 4, dhead = 32.
The optimal configuration for target model trained via GrokTransfer is (0.6, 0.005, 0.1). The
optimal configuration for GrokFast is (lr, wd) = (0.01, 1.0).
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A.4 REBUTTAL SUPPLEMENTAL

A.4.1 FORWARD PASS FLOPS ESTIMATION FOR MODELS IN FIGURE 8 LEFT

For the weak model, a two-layer width-4 MLP:

Cforward ≈ 2 ∗ (8 ∗ 4 + 8 + 4 ∗ 113 + 226) = 1436 ∼ 103.

For the target model, an 8-layer transformer, following Table 1 in Kaplan et al. (2020), we have

N = 2dembednlayer(2dattn+dmlp) = 2∗512∗8∗(256+512) = 6291456, Cforward = 2(N+8∗2∗128) ∼ 107.

Two-layer FNN takes around 2000 epochs to generalize. Target model trained by GrokTransfer
takes around 1000 epochs and target model trained from scratch takes around 10000 epochs. Thus,
the total flops of GrokTransfer is around 1010 + 2 ∗ 106 and the total flops of training from
scratch is around 1011.

A.4.2 ADDITIONAL EXPERIMENTS
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Figure 10: Left: Training dynamics of the one neuron weak model. Middle: Visualization of the
neuron in the weak model. We can see it has learned the feature [1,−1]. Right: training dynamics of
the target model with embedding transferred from the one-neuron weak model.
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Figure 11: Left: Visualization of the distribution P with the embedding from the one-neuron weak
model. Middle: Visualization of the distribution P with the embedding from the two-neuron weak
model. Right: Training dynamics of the target model with embedding transferred from a two-neuron
weak model.

When the weak model only has one neuron, the target model has the form:

fL(x) =

m∑
j=1

ajϕ(vj · u⊤x).

Denote z = u⊤x. Equivalently, we have

fL(z) =

m∑
j=1

ajϕ(vj · z).

Note that sign(fL(z1)) = sign(fL(z2)) if sign(z1) = sign(z2). Since both positive and negative
classes locate on both sides of the original point (Figure 11 Left), it is impossible for fL to correctly
classify these points (Figure 10 Right).
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Figure 12: 2D Visualization of the 4D embedding from the weak model trained on modular addition
task.
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Figure 13: Left: Training dynamics of an 8-layer transformer on modular multiplication task. Right:
Training dynamics of a 2-layer transformer and a 4-layer transformer trained on the (40, 3)-parity
task. Both do not have delayed generalization.
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Figure 14: Training dynamics of a four-layer MLP on MNIST dataset. 200 samples are randomly
selected as the training data, and 400 samples are randomly selected as the test data. The weak model
is a two-layer MLP with 40% test accuracy.
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Figure 15: (a)Training dynamics of the target models used in Figure 6a and Figure 8 Right, but with
low-rank embedding A · B, both A and B are randomly initialized. MLP represents a three-layer
MLP and TF represents a two-layer transformer. (b) Merge A and B into ET at 100-th epoch and
keep training. (c) Set the embedding dimension of the weak model to be the same as that of the target
model.
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Figure 16: Dynamics of the target model (a two-layer Transformer) trained via GrokTransfer,
and the target model trained via GrokFast on modular multiplication task.
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