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Abstract

Preference learning provides a promising solution to address the limitations of supervised
fine-tuning (SFT) for code language models, where the model is not explicitly trained
to differentiate between correct and incorrect code. Recent findings demonstrate that
on-policy data is the key to successful preference learning, where the preference data is
collected using the same policy LM being trained. Inspired by this, we propose PLUM,
an on-policy Preference Learning framework Augmented with test cases for code LMs.
The framework operates in three key stages: (1) automatic generation of test cases from
natural language instructions, (2) creation of a preference data by evaluating candidate code
solutions sampled from the policy, which can then be used to (3) train the policy LM. PLUM
levitates the need to train reward models, allowing for large scale on-policy and online
preference data collation. PLUM is evaluated on both standard benchmarks (HumanEval,
MBPP) and more challenging ones (LiveCodeBench), delivering substantial improvements
over original SFT’ed models and other execution-feedback-driven approaches. We show
PLUM’s benefits are consistent across various widely-used code LMs even they have been
well-trained with SFT. For example, PLUM increases pass rates by up to 4.8% on average
on standard benchmarks and 11.8% on LiveCodeBench, demonstrating its effectiveness
and generalizability. We also demonstrate the benefits of on-policy and online preference
learning by comprehensive experimentation.

1 INTRODUCTION

Language models pre-trained on code corpora have excelled at code generation (Rozière et al.,
2024; Li et al., 2023). Supervised Fine-Tuning (SFT) enhances their ability to follow natural
language prompts but focuses on reproducing patterns from training data rather than ensuring code
correctness (Wei et al., 2023; Zheng et al., 2024). This leads to models that generate syntactically
correct but functionally flawed code, unable to meet real-world requirements like edge cases or
algorithmic accuracy (Chen et al., 2024). Works like AlphaCode (Li et al., 2022) and LeTI (Wang
et al., 2024b) have introduced test outcomes as a means to define functional correctness in code
generation. Building on the insights from these efforts, we propose leveraging preference learning for
refining model behavior. Preference learning trains models to prefer certain solutions (e.g., factual,
helpful, or harmless) over undesirable ones (e.g., inaccurate, unhelpful, or harmful). Despite its
success in aligning models with human values and improving reasoning in other domains (Dong et al.,
2023; Guo et al., 2024a; Yuan et al., 2024; Wang et al., 2024a; Pang et al., 2024), the application of
preference learning as a principled and efficient approach in code generation remains under-explored,
largely due to the lack of high-quality training data.

Recent research shows that reducing the likelihood of incorrect outputs is more effective for improving
model performance than simply maximizing correct responses (Setlur et al., 2024; Tajwar et al.,
2024). Mode-seeking objectives, which prioritize minimizing errors, have been found to outperform
maximum likelihood methods by more efficiently redistributing probability mass across potential
outputs. This underscores the importance of applying on-policy and online approaches to enhance
preference learning algorithms (Tajwar et al., 2024; Guo et al., 2024b; Setlur et al., 2024; Liu et al.,
2024). Unlike offline preference data, on-policy data remains in-distribution with the model, reducing
the risk of misalignment (Guo et al., 2024b; Zhang et al., 2024; Tang et al., 2024; Fisch et al., 2024).
The main challenge now is how to efficiently obtain preference labels for on-policy data at scale (Yang
et al., 2024b). In programming tasks, test cases present as a native and powerful candidate solution to
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address this issue. Being able to automatically produce high-quality test cases unlocks the possibility
of collecting preference data over programming questions at any scale.

Prompt for Test Case Generation

You are a teaching assistant helping to write reference solutions and tests for programming questions.
Given a programming question, you need to first analyze the problem, then write a reference solution
(code), followed by assertions that test student solutions. The test code must be runnable when
concatenated at the end of student solutions to check the correctness.

Programming Question:
{Question}

Follow the format below:
[Analysis]
{{Natural language analysis of the problem.}}
[Solution]
{{Your solution to the problem}}
[Start Code]
{{Start code for students so that they can follow the I/O protocol.
E.g. Function signatures, class names etc.}}
[Test Code]
{{Test code that is immediately runnable if concatenated with
student code to check the correctness.}}

To this end, we propose preference learning framework augmented with test cases for training code
language models (PLUM), which integrates the process of deriving test cases from natural language
specifications into the training process to obtain preference labels for model’s on-policy candidate
solutions. PLUM utilizes natural language instructions from well-established datasets such as OSS-
Instruct (Wei et al., 2023), Evol-Instruct-Code (Luo et al., 2023), and ShareGPT (Cleston, 2023). For
each instruction, high-quality test cases are constructed, and multiple solutions are sampled from the
model. These solutions are evaluated using the generated test cases, with preference labels assigned
based on the results: solutions passing the tests are preferred, while failures are dis-preferred. This
dataset then trains the policy using established preference learning algorithms (Rafailov et al., 2023;
Ethayarajh et al., 2024; Azar et al., 2023). By relying solely on policy model’s self-generated solutions,
PLUM eliminates the need for external, synthetic off-policy data, reducing the risk of distributional
shifts and poor generalization commonly observed for synthetic off-policy data, enhancing the
model’s robustness and improving its ability to differentiate between correct and incorrect solutions.
In addition, by showcasing the effectiveness of our framework, we demonstrated the feasibility of
bypassing tedious (and potentially unstable) reward model training (Liu et al., 2023a; Le et al., 2022)
and manual labeling, by automating the process of test case synthesis. These simplicity advantages
of PLUM makes online preference training of language models possible.

We evaluate PLUM on a diverse set of state-of-the-art code language models under different set-ups,
on commonly used benchmarks: HumanEval(+) and MBPP(+) (Chen et al., 2021; Austin et al.,
2021; Liu et al., 2023b) as well as more challenging code generation datasets like LiveCodeBench
and LeetCode (Jain et al., 2024; Guo et al., 2024a). We demonstrate that our approach seamlessly
integrates with various models in a plug-and-play manner, relying solely on coding instructions to
enhance models’ code generation capabilities. Furthermore, we show that online training, facilitated
by automated test case generation, further boosts model performance particularly on difficult coding
benchmarks, echoing findings from other domains (Xiong et al., 2024b).

2 PREFERENCE LEARNING AUGMENTED WITH TEST CASES FOR CODE LMS
(PLUM)

The core of PLUM lies in leveraging recent advancements in on-policy and online preference learning,
which have proven effective across various domains (Xiong et al., 2024b;a; Mitra et al., 2024). In
the context of code generation, PLUM simplifies and scales the preference data collection process
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by using test cases. These test cases act as a lightweight yet robust mechanism to evaluate model
outputs.

Algorithm 1 outlines the core mechanism of PLUM, demonstrating how test case generation is
embedded into the preference learning loop. This process allows model-generated outputs to be
evaluated in real-time using automatically generated test cases, which serve as direct feedback
mechanisms for the learning process. By using test cases rather than complex reward models, PLUM
simplifies the collection of preference data, maintaining high feedback quality while reducing the
complexity associated with reward model training.

Algorithm 1 PLUM.
Input: Natural language instructions I = {qi}, policy model to be trained πθ , generator model G, update

frequency T , chunk size M ▷ Unified for both offline and online alignment
Output: Trained policy model π′

θ

1: Initialize preference datasets D+ and D−

2: for each chunk IM ⊂ I, where IM contains M instructions do
3: for each qi ∈ IM do
4: Generate n pairs of reference code and test case {(rij , tij)}nj=1 using G ▷ Test collection
5: for each pair (rij , tij) do
6: if rij passes tij then
7: Add (qi, tij) to D ▷ Self-consistency filtering
8: end if
9: end for

10: Sik ∼ πθ for k = 1 to K (sample K solutions for qi) ▷ On-policy sampling
11: for each solution sik ∈ Sik do
12: for each test case tij in D do
13: if sik fails tij then
14: Add (qi, sik) to D− ▷ Negative case
15: end if
16: Add (qi, sik) to D+ ▷ Positive case
17: end for
18: end for
19: end for
20: Filter out instances with no correct solutions from D+ and D−

21: if iteration count %T = 0 then ▷ Policy Update
22: Train the policy model πθ using D+ and D− with preference learning to get π′

θ

23: Update policy model πθ = π′
θ

24: end if
25: end for
26: return π′

θ

2.1 THE PLUM

As illustrated in Algorithm 1 and Figure 1, our approach takes in a base policy model, a set of natural
language programming instructions, and a test case generator. For each iteration, it produces multiple
test cases for the batch of instructions. Then we sample solutions from policy πθ, and execute them
against the generated test suite to obtain preference labels. We then update the policy πθ := π′

θ.

2.2 GENERATING TEST CASES

A crucial factor in making PLUM successful is the ability to synthesize high-quality test cases for
programming questions. In the following subsections, we provide a detailed explanation of the test
case generation process, outlining how it contributes to the overall effectiveness of PLUM.

The test cases in PLUM are generated with a test-case generator model over natural instructions
from established code generation datasets.1 In automated testing, ensuring the correctness and
completeness of test cases is a persistent challenge due to the lack of reliable oracles to validate
test outputs. We adopt two strategic principles: 1) employing self-consistency as an approximate

1We use GPT-4-1106 as the generator model.
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oracle, and 2) generating diverse test suites to minimize overfitting to any particular test instance and
mitigate under-specification.

Collecting instructions from established datasets We collect natural language instructions from
established datasets including OSS-Instruct (Wei et al., 2023), Evol-Instruct-Code (Luo et al., 2023),
and ShareGPT (Cleston, 2023). 2These datasets provide a diverse range of programming tasks and
instructions. Although they come with gold/silver solutions in the training splits, these solutions are
never used in PLUM. Instead, they allow us to directly compare PLUM’s performance against SFT,
which relies on gold solutions, as we investigate in our experiments. Not requiring gold solutions for
training broadens the applicability of PLUM to a wide variety of real-world coding tasks and user
requirements.

Generating high-quality test cases Given a training instruction in natural language, we prompt
a generator model to produce a reference solution, a starter code snippet specifying the function
signature, and a suite of test cases using the prompt in Figure 1. The generated test cases are critical
for ensuring that the solutions meet the functional requirements specified in the instructions. The
correctness of the test cases is central to the success of preference learning. We adopt a consistency-
based approach inspired by Chen et al. (2023) and Rozière et al. (2024) for quality control.

We check for consistency between the generated reference solution and the test cases. Pairs where the
test cases do not accurately reflect the solution, or the solution does not pass the test cases, are filtered
out. This process helps minimize potential noise and enhances the quality of the test cases used in the
following stages. The generated reference solutions serve only to control the quality of the test cases
and are never used in training. Similarly, the solutions provided with the instruction data are never
used in PLUM. On average, each instruction is paired with 3–5 test cases depending on the dataset.

2.3 SAMPLING SOLUTIONS FROM THE POLICY TO CREATE THE PREFERENCE DATA

Many preference learning algorithms assume that the preference data is in-distribution for the policy,
i.e., the solutions are sampled from the policy model to be trained Rafailov et al. (2023); Ethayarajh
et al. (2024); Azar et al. (2023). In practice, however, preference data often contains solutions
sampled from different models than the policy, leaving the data out of distribution Bai et al. (2022);
Yuan et al. (2024). A common workaround is to first perform supervised fine-tuning (SFT) on the
same instructions before applying preference learning (Rafailov et al., 2023; Yuan et al., 2024). This
ensures that the policy has a similar distribution to that from which the preference data are sampled.

Dataset Self-Consistency
Pass Rate(%)

OSS-INSTRUCT 63.76
EVOL-INSTRUCT 42.38
SHAREGPT 45.69

Table 1: Self-Consistency Pass Rate Us-
ing GPT-4-1106.

One of the research questions we aim to answer through
PLUM is the standalone effect of preference learning on
LMs’ coding capability, with or without first performing
SFT. To this end, we sample solutions from the policy to
be trained and run them against the test cases to create
the preference data. For each instruction, we sample K
solutions from the policy and evaluate them against the
generated test cases. K is set to 20 based on the findings
from our preliminary experiments. With static and execution checks,3 we identify and filter out
solutions that contain syntactic errors and fail to execute, as our focus is on functional correctness.

Moreover, as a recent work points out, training with code snippets containing syntax errors may hurt
the model’s performance (Wang et al., 2024b). Solutions passing all test cases are used as the chosen
solutions, and those failing at least one the rejected solutions.

An instruction is filtered out if it has no chosen solution after this process.

This aims to ensure that the learned policy does not drift too far from the original one as drastic
changes might cause the model to forget previously learned information or to perform poorly on tasks
it was previously adept at Rafailov et al. (2023).

2We focus on Python due to its wide use and the availability of well-established training and evaluation
resources.

3We use mypy for the static check: https://mypy-lang.org/.
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Model Item MBPP MBPP+ HE HE+ Avg.
Baseline 77.7 67.2 83.5 78.7 76.8
Cond.Token 71.9 57.1 68.3 57.9 63.8
RFT 81.2 67.9 84.1 81.1 78.6
Cond.Err.Msg 79.4 68.7 84.1 79.3 77.9
PLUM-DPO 81.2 70.2 86.0 81.1 79.6
PLUM-KTO 81.0 69.0 86.0 81.1 79.3

CODEQWEN-1.5-CHAT (Bai et al., 2023)

Rel. + 4.3 2.7 3.0 3.1 3.3
Baseline 74.9 65.6 75.4 71.3 71.8
Cond.Token 73.4 62.9 76.8 70.7 71.0
RFT 74.7 64.9 74.4 66.5 70.1
Cond.Err.Msg 74.7 64.2 80.5 75.0 73.6
PLUM-DPO 76.4 65.9 80.5 76.8 77.4
PLUM-KTO 78.2 67.9 81.7 76.8 76.2

DS-CODER-INSTRUCT (Guo et al., 2024a)

Rel. + 4.4 3.5 8.4 7.7 6.0
Baseline 75.4 61.9 66.5 60.4 66.1
Cond.Token 75.9 62.4 68.3 62.2 67.2
RFT 76.2 62.2 67.7 62.2 67.1
Cond.Err.Msg 74.2 62.2 66.5 59.8 65.7
PLUM-DPO 75.9 63.7 67.7 61.6 67.2
PLUM-KTO 79.6 66.7 71.3 65.9 70.9

MAGICODER-DS (Wei et al., 2023)

Rel. + 5.6 7.8 7.2 9.1 7.4
Baseline 75.7 64.4 76.8 70.7 71.9
Cond.Token 73.9 63.7 75.0 71.3 71.0
RFT 75.4 64.4 73.2 69.5 70.6
Cond.Err.Msg 75.2 65.4 75.6 70.7 71.7
PLUM-DPO 76.2 64.7 78.7 73.8 73.4
PLUM-KTO 80.4 69.3 80.5 73.8 76.0

MAGICODER-S-DS (Wei et al., 2023)

Rel. + 4.4 7.4 4.4 4.5 5.2
Baseline 73.9 63.7 77.4 72.0 71.8
Cond.Token 73.9 62.9 75.6 71.3 70.9
RFT 74.2 63.7 76.8 72.0 71.7
Cond.Err.Msg 75.0 70.7 74.4 64.7 71.2
PLUM-DPO 76.4 66.4 80.5 76.2 74.9
PLUM-KTO 78.2 66.4 80.5 76.2 75.3

OCI-DS (Zheng et al., 2024)

Rel. + 5.8 4.2 4.0 5.8 5.0
Baseline 66.4 55.4 72.6 65.2 64.9
Cond.Token 59.6 48.4 23.2 21.3 38.1
RFT 63.2 52.6 60.4 56.7 58.2
Cond.Err.Msg 67.9 55.9 68.9 65.2 64.5
PLUM-DPO 66.4 55.9 71.3 65.2 64.7
PLUM-KTO 66.7 55.4 73.8 67.7 65.9

OCI-CL (Zheng et al., 2024)

Rel. + 0.5 0.0 1.7 3.8 1.5

Table 2: %Pass@1 on HumanEval (HE) and MBPP, and their enhanced versions (HE+ and MBPP+) when
PLUM is applied to OSS-Instruct. The Rel. + is computed as the relative percentage increase of PLUM-KTO
over baseline. PLUM brings consistent improvements over SFT-ed baseline and outperforms other methods that
leverage execution feedback when applied to the same SFT-ed models.

2.4 PREFERENCE LEARNING

We then proceed to train the model on the on-policy sampled candidate solutions using preference
learning algorithm. In this process, we do not need golden solutions paired in the original dataset
or GPT-4 during test-generation process. We mainly consider two popular preference learning
algorithms - Direct Preference Optimization Rafailov et al. (2023) and Kahneman-Tversky Optimiza-
tion (Ethayarajh et al., 2024) that have been shown to bring improvements for reasoning tasks (Mitra
et al., 2024; Yuan et al., 2024; Dubey et al., 2024). For DPO, we subsample redundant classes and
randomly pair positive and negative responses for each programming question. In contrast, we use all
available responses when training with KTO.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Programming Questions Dataset

Step 1: Generating Test Cases
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Generator
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No

Yes

Unit Tests
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Signature Policy 
Model
!!

""

"#

"$Step 2: Sample Solutions
From Model Policy &
Run Test Suite

Discard un-runnable code

Unit 
Tests

On-Policy
Preference 

Dataset

Step 3: (Iterative) Preference Learning Using
Self-Generated Responses

Policy Update

Pos

Neg

Figure 1: Overview of PLUM. It involves three steps: (1) Generating the test cases; (2) Sampling solutions from
the policy and evaluating them against the test cases to collect the preference data for (3) preference learning.

3 EXPERIMENTS

To demonstrate the effectiveness of PLUM, we evaluate it on established benchmarks: Hu-
manEval (Chen et al., 2021), MBPP (Austin et al., 2021), and EvalPlus (a widely-adopted augmented
version (Liu et al., 2023b) of them). We also use the more challenging LiveCodeBench (Jain et al.,
2024).

Datasets To demonstrate the generality of our approach across different datasets, we evaluated it
on three distinct collections of open datasets: OSS-Instruct (GPT-3.5 generated), EvolInstruct, and a
Python code generation subset of ShareGPT. We showed that PLUM can significantly enhance model
performance in various settings with high data efficiency, even when using only a small, randomly
selected subset of SFT datasets.

Preference Data Collection We use powerful language models to generate test cases for each
programming question. The results reported in the main text use test cases generated by GPT-
4 OpenAI et al. (2024). An ablation of test case generators is in Appendix A.5. For the OSS-
Instruct dataset and ShareGPT dataset, we query GPT-4 for 3 responses for a randomly cho-
sen subset of 1500 questions, and due to the comparatively more complex nature of the natural
language instruction, we generate 6 for each of the EvolInstruct instances for a subset of 1000.

Model Item MBPP/(+) HE/(+)
Base 75/66 75/71

Reflexion 34/- 43/-DS-CODER
-INSTRUCT PLUM 78/68 82/77

Base 78/67 84/79
Reflexion 74/- 83/-CODEQWEN

-7B-CHAT PLUM 81/69 86/81

Table 3: Comparison with Reflexion (Shinn et al., 2023)

We then sample 20 outputs from the policy us-
ing temperature T = 1 for the former two and
50 outputs for the latter. This yields around
∼ 60, 000 examples for ShareGPT and OSS-
Instruct, and around ∼ 120, 000 for EvolIn-
struct before any filtering. We present the statis-
tics on the pass ratio of sampled solutions over
OSS-Instruct in Figure 3. We included the self-
consistency pass rate of the test-generation pro-
cess with GPT-4-1106 in Table 1.

Models We consider a diverse set of strong
open language models: MagiCoder (Wei et al., 2023), OpenCodeIntepreter (Zheng et al., 2024),
CodeQwen (Bai et al., 2023), DeepSeek Coder (Guo et al., 2024a) and StarCoder2 (Li et al., 2023).
MagiCoder and OpenCodeIntepreter contain instruction-tuned checkpoints from DeepSeek Coder
and CodeLlama (Rozière et al., 2024) base models. In the main text, we focus on instruction-tuned
language models, while differing results from directly training base models to Appendix A.4

Baselines We evaluate our approach against a variety of baselines, including both prompting-based
and fine-tuning techniques. To compare methods that incorporate program correctness through
execution feedback, we benchmark our approach against Reflexion (Shinn et al., 2023), using

6
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Model Families Data Item MBPP MBPP+ HE HE+ Avg.
Baseline 48.2 40.9 56.6 47.1 48.2
PLUM-KTO 54.3 48.8 65.9 52.9 55.5WIZARDCODER

(Luo et al., 2023) Rel. + 16.4 12.3 12.7 19.3 15.2
Baseline 74.9 65.6 75.4 71.3 71.8
PLUM-KTO 77.7 67.7 81.7 76.8 76.0DS-CODER-INSTRUCT

EVOLINSTRUCT

Rel. + 3.7 3.2 8.4 7.7 5.8
Baseline 74.9 65.6 75.4 71.3 71.8
PLUM-KTO 79.2 67.9 77.4 73.8 74.6DS-CODER-INSTRUCT
Rel. + 5.7 3.5 2.8 3.5 3.9
Baseline 73.9 63.7 77.4 72.0 71.8
PLUM-KTO 77.7 64.4 79.9 75.6 74.4OCI-DS
Rel. + 5.1 1.1 3.2 5.0 3.6
Baseline 77.7 67.2 83.5 78.7 76.8
PLUM-KTO 81.2 69.7 85.4 79.3 78.9CODEQWEN-1.5-CHAT

SHAREGPT
-PYTHON

Rel. + 4.5 3.7 2.3 0.8 2.8

Table 4: PLUM on other datasets.

instruction-tuned (SFT) models and value-conditioning techniques (Li et al., 2022; Wang et al.,
2024b). Additionally, to contrast preference-learning techniques with the SFT approach, we perform
experiments using rejection-sampling-based SFT, utilizing the same set of positive examples as used
in KTO. In these experiments, the solutions are also generated on-policy.

3.1 TRAINING

In order to demonstrate the generality of the approach when applied to various models and code
instruction tuning data distributions, we experimented with different data-model pairs. We followed
the procedure described earlier in the paper, and used all positive and negative responses when
training with KTO objective.

3.2 RESULTS

HumanEval(+) and MBPP(+) Table 2 presents the results of PLUM when applied to a subset of
1K instances of the OSS-Instruct-75K dataset.

MagiCoder models (-DS, -S-CL, and -S-DS) and OpenCodeIntepreter models (-CL and -DS) have
already seen these instructions during supervised fine-tuning, while DeepSeekCoder-Instruct has
not, as it was released earlier than the dataset. CodeQwen chat model uses proprietary data. PLUM-
ShareGPT data for preference learning is generated with the same setting. Similarly, Table 4
corresponds to the results when we apply PLUM to EvolInstruct (Luo et al., 2023) dataset. Since
the instructions are comparatively less clear than the OSS-Instruct dataset, we control the number of
initial samples to be the same by generating 50 samples for each problem and use about 400 instances
in total.

PLUM consistently improves the performance of a wide range of code language models across all
three settings, regardless of the base models’ performance. Remarkably, PLUM can even improve
the state-of-the-art 7B model, CodeQwen-7B-Chat, relatively by 3% on average, using either OSS-
Instruct or ShareGPT data. These results demonstrate that PLUM is broadly applicable in different
datasets and settings.

We noticed that PLUM-KTO consistently out-performs the baseline, and that PLUM-DPO some-
times under-perform PLUM-KTO. Prior works (Mitra et al., 2024; Yuan et al., 2024) noticed the
phenomenon where DPO can exhibit instability due to reducing reward for the positive class.

LiveCodeBench We further evaluate PLUM using strong instruction-tuned models on the more
challenging LiveCodeBench dataset. As shown in Table 5, the models demonstrate overall per-
formance improvements over their respective baselines across the board. Despite the increased
difficulty and reasoning required, we show that PLUM can enhance the base models’ overall coding
performance on interview-level coding problems from LiveCodeBench.
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Figure 2: Ablation studies on preference training signals show that merely using un-runnable code as negative
instances does not consistently enhance performance. In contrast, PLUM effectively improves the model by
introducing functional correctness signals. Baseline results refer to the SFT model without PLUM.

Model Item Easy Medium Hard Overall
Baseline 29.9 1.0 0 11.4
PLUM-KTO 38.1 1.8 0 14.3MAGICODER-S-CL
Rel. + 27.4 80 0 25.4
Baseline 35.2 3.6 0.0 14.0
PLUM-KTO 55.6 13.1 2.2 25.8MAGICODER-DS
Rel. + 58.0 266.7 - 83.9
Baseline 48.6 12.1 0.1 22.6
PLUM-KTO 52.1 15.5 0.1 25.0MAGICODER-S-DS
Rel. + 7.2 28.1 0.1 10.6
Baseline 49.6 9.9 0.4 21.9
PLUM-KTO 45.8 13.7 1.2 22.3OCI-DS
Rel. + -7.7 38.4 200 1.8
Baseline 42.7 18.8 0.9 23.2
PLUM-KTO 43 23.2 3 25.8CODEQWEN-1.5-CHAT
Rel. + 0.7 20 230 11.2

Table 5: %Pass@1 on LiveCodeBench.

PLUM proves particularly beneficial for medium-level interview questions, which are often quite
challenging for models, especially those with around 7B parameters. This demonstrates that PLUM
does more than simply fitting to commonly tested benchmarks; it enhances the models’ general
coding capabilities in more complex and diverse coding scenarios.

Comparison Against Baselines As shown in Table 3, verbal reinforcement learning like Reflex-
ion (Shinn et al., 2023), does not perform well on code language models fine-tuned for code at the
scale relevant to our work. This is partly due to the limitations of smaller LLMs in handling various
types of instructions effectively.

Approaches like LeTI (Wang et al., 2024b) implicitly optimizes the model for generating correct
programs solely through input prompt, without directly enforcing such distinction with its training
objective. Unlike preference learning algorithms ,approaches like LeTI Wang et al. (2024b) optimize
models to generate correct programs based solely on the input prompt, without explicitly enforcing
correctness through the training objective. As a result, we observe inconsistent outcomes when
applying these methods to our tested SFT models, as shown in Table 2. Additionally, our results show
that using value-token-conditioned approaches often lead to reduced performance, likely due to the
token addition to tokenizer and the absence of clear labels distinguishing good from bad outputs.
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On-Policy Off-Policy

PLUM
DS-Coder

-1.3B
-Instruct

Qwen2.5-
Coder-1.5B

-Instruct

Codestral
-22B

DeepSeek
-Coder-33B

-Instruct

Syn.
-Neg.

CODEQWEN1.5-CHAT 79.3 78.4 78.1 77.3 79.0 73.9
DS-CODER-INSTRUCT 76.2 76.0 75.2 74.6 74.0 69.4

MAGICODER-DS 70.9 68.4 68.6 68.3 67.0 61.2
MAGICODER-S-DS 76.0 75.8 75.3 74.1 73.8 71.6

Table 6: Comparison between on-/off-policy preference learning using KTO on CODEQWEN-1.5-CHAT.

Easy Medium Hard Average Rel. Gain
CODEQWEN1.5-CHAT 66.7 27.5 13.6 33.9 -

+PLUM-DPO 66.7 31.9 15.9 36.7 8.3
+PLUM-DPO-Iter 66.7 31.9 18.2 37.2 9.7

+PLUM-KTO 68.9 30.8 11.4 35.6 5.0
+PLUM-KTO-Iter 66.7 31.9 18.2 37.2 9.7

MAGICODER-DS 33.3 17.6 9.1 19.4 -
+PLUM-DPO 44.4 15.4 13.6 22.2 14.4

+PLUM-DPO-Iter 46.7 17.6 11.4 23.3 20.1
+PLUM-KTO 48.9 16.5 9.1 22.8 17.5

+PLUM-KTO-Iter 44.4 17.6 11.4 22.8 17.5

Table 7: Results on iterative PLUM following Algorithm 1.

On-Policy vs Off-Policy We now address whether "on-policy" training makes a significant differ-
ence. To test this, we apply the same method but use preference data sampled from other models (i.e.,
off-policy). We selected models of varying sizes, including DeepSeek-Coder-1.3B-Instruct, Qwen-
2.5-Coder-1.5B-Instruct, CodeStral-22B (MistralAI, 2024), and DeepSeek-Coder-33B-Instruct. We
followed the exact same data collection and training processes. Our results show that while off-policy
training still improves model performance, it generally underperforms compared to on-policy training.
These findings are consistent with prior research (Xiong et al., 2024a; Dong et al., 2024; Tajwar
et al., 2024; Xu et al., 2024).

Further, we investigate the effect of synthetic negatives. To this effect, we use a mutation-based
approach for synthetically introducing errors into Python code while maintaining its syntactic
correctness, as detailed in Appendix A.8. This method uses Abstract Syntax Tree (AST) manipulation
to apply mutations like argument swapping, operator replacement, control flow changes, off-by-one
errors, and return value modification. By injecting these errors, it generates valid but behaviorally
altered code. We apply this to on-policy positive examples, creating off-policy negatives for model
training under the same setup. Observing that the synthetic negatives could even potentially harm
the performance, we confirmed the importance of preference training with more natural, and ideally
on-policy negative samples.

This highlights our contribution in demonstrating a method empowered by automated test cases and
efficient on-policy preference learning. This approach can be easily adopted to scale the collection of
test cases, providing a robust supervision signal for model training.

Importance of Test Case-Based Preference Learning We experiment with including only non-
executable samples as rejected solutions, while using the same set of chosen solutions. As shown
in Figure 2, we observe that this is worse than PLUM in most cases. More importantly, it does not
always improve the model’s performance and may even hurt. This has also been noted in previous
studies (Wang et al., 2024b). Although the positive examples used are the same as our oracle-based
preference learning, lower-quality negative examples do not necessarily help the model improve due
to the additional noise in the preference signal.

Test Cases Allow By-passing Reward Model Training For Iterative Alignment We demonstrate
in Table 7 that PLUM enables iterative on-policy alignment while providing accurate preference
signals without requiring reward model training. Notably, iterative preference learning, facilitated by
the online feedback loops generated through the test case collection procedure, outperforms offline
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methods on the challenging LeetCode benchmark, using the same data. This finding aligns with
results from other domains (Xiong et al., 2024a;b), further confirming the advantages of online
learning. This demonstrates the further potential of PLUM in advancing code language models
especially in more challenging problems by its support for efficient online policy improvement.

4 RELATED WORKS

Reinforcement Learning and Preference Learning For Reasoning-Related Tasks Preference
learning algorithms like Direct Preference Optimization (DPO) (Rafailov et al., 2023) and Kahneman
& Tversky’s Optimization(KTO) (Ethayarajh et al., 2024) are popular for their cost efficiency and
training stability. Beyond controlling model-user interactions, these methods are now applied to more
complex reasoning tasks. Ocra-Math (Mitra et al., 2024) uses iterative preference learning to improve
math reasoning in SFT-ed language models, while Eurus (Yuan et al., 2024) leverages preference
trees for solving complex problems through multi-step interactions with external feedback.

Code Generation with Large Language Models Code generation has become a key application
of generative language models. Pre-training on code corpora has led to strong performance in models
like StarCoder (Li et al., 2023), StarCoder2 (Lozhkov et al., 2024), and DeepSeek-Coder (Guo et al.,
2024a), while others like CodeQwen (Bai et al., 2023) and CodeLlama (Rozière et al., 2024) benefit
from continued pre-training on additional code data. To enhance these models, supervised fine-tuning
on instruction-response pairs has been employed (Luo et al., 2023; Wei et al., 2023; Zheng et al.,
2024). Reinforcement learning techniques, like those in CodeRL (Le et al., 2022; Shojaee et al.,
2023; ?), and reward models used in DeepSeek-Coder-V2 (DeepSeek-AI et al., 2024) also improve
performance using test feedback.

Test Case Generation with Language Models Automated test case generation (Pacheco et al.,
2007; Fraser & Arcuri, 2011; Panichella et al., 2015) is crucial for ensuring software quality and
safety and has long been a key topic in software engineering. The advent of LLMs has inspired
works using transformer models for test generation, either by training models (Tufano et al., 2021; Li
et al., 2022) or prompting them (Chen et al., 2023). Test cases also help clarify user intent, aligning
model-generated programs with user requirements (Fakhoury et al., 2024; Endres et al., 2024).

The synergy between test cases and code generation Programming-by-examples (Gulwani, 2016)
and test-driven programming (Perelman et al., 2014) focus on using test cases to automatically refine
programs to meet specifications. This concept has been adapted to enhance deep learning approaches
to code synthesis (Kulal et al., 2019; Chen et al., 2023; Zelikman et al., 2023). Recent methods, like
CodeT (Chen et al., 2023) and Parsel (Zelikman et al., 2023), use test cases to reduce the search
space during inference, while ALGO (Zhang et al., 2023) employs brute-force solutions as oracles to
generate test outputs for competitive programming. Our approach, similar to Haluptzok et al. (2023),
leverages test cases during training to improve models’ inherent programming capabilities.

5 CONCLUSION

In this paper, we introduced PLUM, a novel preference learning framework designed to improve
the ability of code language models (LMs) to distinguish between correct and incorrect code by
leveraging test cases. Our framework tackles the limitations of traditional supervised fine-tuning
approaches by embedding on-policy learning directly into the training process. Through the automatic
generation and evaluation of test cases, PLUM enables models to learn from their own outputs without
requiring separate reward models or manual labeling, offering a scalable and flexible solution.

The results from our experiments demonstrate the effectiveness and generalizability of PLUM.
Furthermore, we performed careful experiments and showed that on-policy preference learning
outperforms various off-policy methods, highlighting the crucial role played by on-policy training.
Further, we demonstrated PLUM allows for effective online preference learning that further pushes
the performance on challenging coding benchmarks.
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A APPENDIX

A.1 TEST CASE GENERATION

To produce test cases for each programming instruction, we queried OpenAI GPT-4 with temperature
0 and max response token 4096.

A.2 TRAINING DETAILS

We trained the model using the KTO objective, with a learning rate 5 × 10−7, linear scheduler,
β = 0.1, and maintained the desirable-to-undesirable ratio to be 1. We train each model using 8-bit
quantized LoRA for 3 epochs on a Nvidia A-100 GPU with 40 GB memory.

A.3 ADDITIONAL RESULTS: WHAT IF DIRECTLY USING COMPETITIVE CODING DATASETS?

There are existing competitive coding datasets like CODE CONTESTS Li et al. (2022) which are
equipped with test cases. Using more general datasets like OSS-INSTRUCT (Wei et al., 2023),
paired with synthetic test cases, is more advantageous for preference learning in code language
models than using competitive coding datasets like Code Contests. Competitive coding datasets
present complex problems with intricate edge cases, which can overwhelm the model and obscure
fundamental instruction-following and preference-learning goals. In contrast, OSS-Instruct provides
more accessible, more uniform instructions that allow for cleaner and more straightforward alignment.
This helps models learn functional correctness more effectively without being distracted by the
nuances of competitive coding. Additionally, OSS-Instruct, sourced from real-world open-source
projects, avoids domain-specific biases that can arise from competitive coding, making it more
generalizable and applicable across diverse programming environments.

We also conducted experiments to repeat the same process using CODECONTESTS dataset. Due
to the challenging nature of this dataset, we sampled more to get the same number of positive and
negative cases as in OSS-INSTRUCT and SHAREGPT etc. As shown in Table 8, training on this
dataset seems ineffective.

Item MBPP MBPP+ HE HE+ Avg.
Baseline 75.7 64.4 76.8 70.7 71.9
KTO 74.9 64.7 75.4 72.6 71.9MAGICODER-S-DS
DPO 74.9 64.9 76.8 71.3 72.0
Baseline 75.4 61.9 66.5 60.4 66.1
KTO 75.7 63.2 65.2 59.8 66.0MAGICODER-DS
DPO 75.7 63.2 65.2 59.8 66.0

Table 8: Training on Code Contests

A.4 RESULTS ON BASE MODELS

Below we present the results of directly applying PLUM on base models without performing super-
vised fine-tuning and the comparison with training using SFT in Tables 9 and 10.
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Model Type MBPP MBPP+ HE HE+ Avg.
(Base)

Avg.
(+)

Avg.
(All)

STARCODER2-BASE
Baseline 54.4 45.6 35.4 29.9 44.9 37.8 41.3
SFT 62.2 49.4 41.5 35.4 51.9 50.6 47.1
PLUM-KTO 60.4 49.1 46.3 39.6 53.4 51.2 62.2

CODEQWEN-BASE
Baseline 72.2 60.2 51.8 45.7 62.0 53.0 57.5
SFT 73.4 62.4 67.7 59.1 70.6 66.5 65.7
PLUM-KTO 75.4 62.9 70.1 62.2 72.8 67.8 67.7

DS-CODER-BASE
Baseline 70.2 56.6 47.6 39.6 58.9 57.8 53.5
SFT 71.7 57.1 56.1 48.8 63.9 60.5 58.4
PLUM-KTO 72.9 58.9 56.7 48.8 64.8 61.9 59.3

Table 10: PLUM vs. SFT for base models.

Model Families Item MBPP MBPP+ HE HE+
Base 72.2 60.2 51.8 45.7
OSS-Instruct 75.4 62.9 70.1 62.2
Rel. + 4.4 4.5 35.3 36.1
ShareGPT-Python 76.4 64.9 73.2 67.1

CODEQWEN-BASE

Rel. + 5.8 7.8 41.3 46.8
Base 70.2 56.6 47.6 39.6
OSS-Instruct 72.9 58.9 56.7 48.8
Rel. + 3.9 4.1 19.1 23.2
ShareGPT-Python 75.4 60.7 64 53.7

DS-CODER-BASE

Rel. + 6.4 7.2 34.5 35.6
Base 54.4 45.6 35.4 29.9
OSS-Instruct 60.4 49.1 46.3 39.6
Rel. + 11 7.7 30.8 32.4
ShareGPT-Python 63.9 51.9 50 42.1

STARCODER2-BASE

Rel. + 17.5 13.8 41.2 40.8

Table 9: Results on base model training.

A.5 DISTRIBUTION OF POLICY MODEL CORRECTNESS

Figure 3 shows the pass ratio on OSS-Instruct dataset of models we consider in this study.
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Figure 3: Distribution of policy model correctness ratio on OSS-Instruct dataset.
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Test Generator Algorithm MBPP MBPP+ HE HE+ Avg. LeetCode LCB
- Baseine 77.7 67.2 83.5 78.7 76.8 33.9 23.2

KTO 81.0 69.0 86.0 81.1 79.3 35.2 25.8GPT-4 DPO 81.2 70.2 86.0 81.1 79.6 36.7 25.8
KTO 79.4 69.9 84.8 80 78.5 36.7 24.5LLAMA3-70B DPO 79.4 66.2 84.1 79.3 77.3 36.1 24.5
KTO 79.4 67.7 84.1 79.9 77.8 36.1 23.8LLAMA3-405B DPO 79.2 66.9 85.4 80.5 78.0 36.6 25.5
KTO 80.2 67.9 84.8 79.9 78.2 36.1 24.0GPT-3.5-TURBO DPO 79.7 67.7 84.8 79.9 78.0 36.1 23.8
KTO 81.2 69.2 85.4 80.5 79.1 36.7 24.0GPT4O-MINI DPO 80.5 67.6 85.4 81.1 78.7 36.7 23.8
KTO 79.7 67.2 85.4 81.7 78.5 36 24.0CLAUDE-3-HAIKU DPO 79.9 67.2 86 81.7 78.7 36 25.5

Table 11: Ablation of test case generator models. We used CODEQWEN-1.5-CHAT as the policy
model. LCB stands for LiveCodeBench.

Model Item LeetCode LiveCodeBench
QWEN-2.5-INSTRUCT-14B Baseline 55.0 46.0

PLUM-DPO 58.3 47.0
QWEN-2.5-CODER-14B Baseline 58.3 32.2

PLUM-DPO 61.7 35.0

Table 12: PLUM on more powerful policy models.

A.6 ABLATION ON TEST CASE GENERATOR

To demonstrate the robustness of PLUM across different models as test case generators, and more
specifically, to showcase its ability to boost the policy model’s performance with more efficient
options for test case generator thus proving its scalability, we conduct extensive experiments with
multiple other test case generator models. We considered proprietary models with much more
affordable API access and presumably less powerful than GPT-4 (GPT-3.5-Turbo, GPT4o-mini,
Claude-3-Haiku). and Open-weight models (Llama 3.1 70B and 405B).

Table 11 displays the results of the ablation study.Consistent performance gains were observed across
the experiments.

Importantly, the use of more cost-efficient test case generators does not compromise PLUM’s
effectiveness. This demonstrates the scalability of our approach, enabling its practical application
across a wide range of test generators and resource constraints.

A.7 IMPROVING STRONGER LANGUAGE MODELS

To validate the generalizability of the approach to more powerful post-trained models with larger pa-
rameter size and more sophisticated training, we conducted experiments with QWEN-2.5-INSTRUCT-
14B Yang et al. (2024a) and QWEN-2.5-CODER-14B Hui et al. (2024) models. These models
are fine-tuned from larger and stronger pre-trained models have undergone more sophisticated
post-training including reinforcement learning and preference alignment.

As presented in Table 12, PLUM can further improve these models’ performance especially on
challenging programming benchmarks like LeetCode and LiveCodeBench. This not only validates
the effectiveness of our approach, but highlights the potential of PLUM to be applied to complement
other post-training techniques.

A.8 GENERATION OF SYNTHETIC NEGATIVES

We present the algorithm we used to generate synthetic negatives below in Algorithm A.8.
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Algorithm 2 MutateCode Algorithm

Require: source_code as a string, mutation probability P
Ensure: mutated_code as a string

1: Parse the source code into an AST: tree← ParseAST(source_code)
2: Initialize mutation rules:
3: Swap function arguments
4: Change arithmetic/logical operators
5: Modify control flow (negate conditions, swap if-else blocks)
6: Introduce off-by-one errors in loops
7: Remove exception handling blocks
8: Alter return values
9: Define Mutator class:

10: Function visit_FunctionDef(node):
11: Store function signatures, recursively traverse AST
12: Function visit_Assign(node):
13: Track variable types, recursively traverse AST
14: Function visit_Call(node):
15: With probability P , swap arguments if types match
16: With probability P , replace function call with another compatible one
17: Function visit_If(node):
18: With probability P , negate the condition or swap if-else blocks
19: Function visit_For(node):
20: With probability P , introduce off-by-one error in loop range
21: Function visit_Try(node):
22: With probability P , remove exception handling block
23: Function visit_Return(node):
24: With probability P , alter the return value
25: Apply the Mutator to the AST: mutated_tree←Mutator().visit(tree)
26: Perform syntactic validation: is_valid← SyntaxCheck(mutated_tree)
27: if is_valid = False then
28: return original source code or error
29: end if
30: Convert the mutated AST back to code: mutated_code← ASTtoSource(mutated_tree)
31: return mutated_code
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