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ABSTRACT

We present SWE-Gym, the first environment for training software engineering
(SWE) agents. SWE-Gym contains 2,438 real-world task instances, each com-
prising a Python codebase with an executable runtime environment, unit tests,
and a task specified in natural language. We use SWE-Gym to train language
model based SWE agents, and achieve up to 19% absolute gains in resolve rate
on the popular SWE-Bench Verified and Lite test sets. We also experiment with
inference-time scaling through verifiers trained on agent trajectories sampled from
SWE-Gym. When combined with our fine-tuned SWE agents, we achieve 32.0%
and 26.0% on SWE-Bench Verified and Lite, respectively, reflecting a new state-
of-the-art for open-weight SWE agents. To facilitate further research, we publicly
release SWE-Gym, models, and agent trajectories.

1 INTRODUCTION
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Figure 1: SWE-Gym enables scalable improvements for software engineering agents. Left: Scaling
the amount of training data shows consistent performance improvements as we obtain more training
trajectories, with no signs of saturation at 491 trajectories. We use temperature t = 0 for evaluation.
Right: For inference time scaling, we generate a number of candidate trajectories per task and
select the best using a verifier trained on SWE-Gym. This approach demonstrates roughly log-linear
gains with the number of sampled solutions. t = 0 (excluded from regression) is used as the first
hypothesis to be consistent with the top figure; later rollouts use t = 0.5.

Language models (LMs) have remarkable promise in automating software engineering (SWE) tasks,
as most clearly measured by recent progress on recent benchmarks like SWE-Bench (?) and Com-
mit0 ?. While LM-based SWE agents have shown significant performance gains through improving
agent-computer interfaces ? and prompting strategies (?), advances in SWE agents have been limited
by a reliance on proprietary models, with limited research to improve underlying LM itself.
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Table 1: SWE-Gym is the first publicly available training environment combining real-world
SWE tasks from GitHub issues with pre-installed dependencies and executable test verification.
Repository-level: whether each task is situated in a sophisticated repository; Executable Environ-
ment: whether each task instance comes with an executable environment with all relevant depen-
dencies pre-installed; Real task: whether task instruction is collected from human developers.

Dataset (split) Repository-Level Executable Environment Real task # Instances (total) # Instances (train)

CodeFeedback ? ✗ ✗ ✓ 66,383 66,383

APPS ? ✗ ✓ ✓ 10,000 5,000
HumanEval ? ✗ ✓ ✓ 164 0
MBPP ? ✗ ✓ ✓ 974 374

R2E ? ✓ ✓ ✗ 246 0
SWE-Bench (train) ? ✓ ✗ ✓ 19,008 19,008
SWE-Gym Raw ✓ ✗ ✓ 64,689 64,689

SWE-Bench (test) ? ✓ ✓ ✓ 2,294 0
SWE-Gym ✓ ✓ ✓ 2,438 2,438

Unlike other domains where supervised fine-tuning and reinforcement learning have significantly
improved LM capabilities, such as chat (?), math reasoning (??), and web navigation (?), soft-
ware engineering currently lack suitable training environments. Creating such an environment for
SWE agents is uniquely challenging. Real-world software engineering requires interaction with
an executable runtime that has been prepared with the appropriate software dependencies and re-
producible test suites, among other requirements. These challenges are reflected in the existing
resources (Tab. 1). For example, the SWE-Bench (?) training split contains only solutions (git
patches that solve the task), missing the step-by-step actions taken by the developer to create each
solution, and executable environments and reward signals. R2E (?) uses synthetic tasks that are very
far from real-world problems, while datasets such as APPS (?) focus only on isolated tasks rather
than realistic repository-level coding problems.

To bridge this gap, we present SWE-Gym, the first training environment combining real-world
software engineering tasks from GitHub issues with pre-installed dependencies and executable test
verification. SWE-Gym contains 2,438 Python tasks sourced from 11 popular open-source reposi-
tories (Tab. 2), providing useful environments for training LMs as agents and verifiers.

SWE-Gym supports training state-of-the-art open-weight SWE agents. With OpenHands ?
scaffold for general-purpose software development (§2), we fine-tune a 32B Qwen-2.5 coder model
? using only 491 agent-environment interaction trajectories sampled using SWE-Gym, and achieve
substantial absolute improvements of +12.3% (to 15.3%) and +13.6% (to 20.6%) in resolve rate on
SWE-Bench Lite and SWE-Bench Verified respectively (§4.2).

SWE-Gym is effective across agent scaffolds. In another agent scaffold based on a specialized
workflow (MoatlessTools; ?; §2), we experiment with self-improvement, where the LM interacts
with SWE-Gym, receives reward from it, and learns to improve itself through rejection sampling
fine-tuning. This self-improvement boosts performance up to 19.7% on SWE-Bench Lite.

SWE-Gym supports training verifier models to enable inference-time scaling. We use test suites
included in SWE-Gym to determine whether sampled agent trajectories are successful or not. Given
these samples, we train a verifier model (i.e., an outcome-supervised reward model; ?) that estimates
a trajectory’s probability of success. This enables inference-time scaling, where we sample multiple
agent trajectories, and select the one with the highest estimated reward according to the verifier.
This approach further improves the resolve rate to 32.0% (+11.4% absolute improvement) on SWE-
Bench Verified (§5.1.1; Fig. 1 bottom) and 26.0% on SWE-Bench Lite (§5.1.2), establishing a new
state-of-the-art among systems with publicly accessible weights (Tab. 9).

Our baseline training and inference-time scaling methods on SWE-Gym yield continuously
improved results with increasing compute (Fig. 1). In the training phase, performance scales
with the number of sampled trajectories up to our current limit of 491 trajectories, suggesting that
performance is currently limited by the compute budget for sampling rather than the number of tasks
in SWE-Gym. Similarly, using the agent and verifier trained by SWE-Gym, the bottom panel shows
that using more compute during inference time steadily improves the performance.
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2 RELATED WORK

Agents that solve GitHub issues. We focus on software engineering agents designed to auto-
matically resolve GitHub issues within the SWE-Bench framework ?. These agents take a GitHub
issue and its associated code repository as input and generate a valid code modification (i.e., a git
diff patch) to address the issue. The correctness of these modifications is verified using a human-
written test suite. Existing agent designs are categorized by the extent of human priors integrated
into their workflows: Specialized workflows ???? involve human-defined stages (e.g., localization,
code editing, patch re-ranking), where a LM is iteratively prompted for each stage to produce the
final result. This approach reduces the task horizon and minimizes the need for long-term planning.
However, specialized workflows require significant human engineering, may not generalize to novel
issue types, and can fail if intermediate steps encounter problems. In contrast, general-purpose
prompting (??) rely on LM’s ability to plan over long horizons and generate actions based on a his-
tory of interactions without heavily pre-defined workflows. While more flexible, general approaches
demand higher capabilities from the underlying LM and can be computationally expensive due to
multiple interaction rounds. The most successful existing SWE agents are built on proprietary lan-
guage models like GPT-4 or Claude and utilize specialized workflows to overcome these models’
limitations. This contrasts with other sequential decision-making domains (??), where learning-
based approaches, such as reinforcement learning, drive success by enabling systems to learn from
interactions and rewards to develop task competence. A key barrier in the SWE agent domain is the
lack of appropriate training environments. Our experiments show that SWE-Gym can be used to
build strong learning-based agents, accelerating research in this area.

Environments for training software agents. There is no existing dataset suitable for training
software engineering agents. SWE-Bench (?) is widely used for evaluating software engineering
performance, but its training split lacks executable environments and success signals present in
the evaluation split, making it useful only for imitation learning approaches. HumanEval (?) is
designed for standalone code generation tasks, akin to coding competitions. Therefore, it falls short
of addressing the complex challenges inherent in real-world, repository-level software engineering
tasks, which involve thousands of files, millions of lines of code, and tasks such as bug fixing, feature
development, and system optimization. Similarly, R2E ? is a small evaluation dataset with 246
instances and, due to its synthetic nature, lacks the realism and complexity in real-world software
engineering scenario. Our proposed SWE-Gym instead uses real-world GitHub issues as task, and
executable unit tests for evaluation. This results in realistic and complex task formulations, aligning
closely with real-world challenges.

Post-training: From chatbots and reasoners to agents. Post-training, which fine-tunes pre-
trained LMs using supervised or reinforcement learning, significantly improves model performance
across domains. RLHF (?) improves LMs as chatbots in both performance and alignment (?). In
math reasoning, datasets such as MATH (?) facilitate the training and evaluation of policy and ver-
ifier models (??). Earlier works (????) demonstrate that distilling agent trajectories from stronger
models improve weaker models. Recent studies (???) explore self-improving methods, showing that
reinforcement learning or rejection sampling fine-tuning guided by reward enables LMs to enhance
themselves without more capable teachers.

However, post-training typically depends on expert demonstration data or training environments
with reliable reward signals, which are largely absent in the software engineering domain. This has
led to a reliance on prompting-based methods with proprietary language models. Our work addresses
this gap with SWE-Gym, a training environment based on real-world software engineering tasks that
uses expert-written tests as reward signals. Our experiments demonstrate that SWE-Gym can build
strong SWE agents without prompt engineering.

3 SWE-GYM ENVIRONMENT

SWE-Gym comprises 2,438 real-world software engineering tasks sourced from pull requests in 11
popular Python repositories, with pre-configured executable environments and expert-validated test
cases, constructed in close alignment with SWE-Bench (?). These repositories are separate from
those used in SWE-Bench to avoid contamination. These tasks require SWE agents to develop
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Category Metric SWE-Gym SWE-Gym Lite

Size # Instances 2,438 (2,294) 230 (300)
# Repos 11 (12) 11 (12)

Issue Text Length by Words 239.8 (195.1) 186.2 (175.9)

Codebase # Non-test Files 971.2 (2944.2) 818.8 (2988.5)
# Non-test Lines 340675.0 (363728.4) 340626.2 (377562.4)

Gold Patch
# Lines edited 69.8 (32.8) 10.6 (10.1)
# Files edited 2.5 (1.7) 1.0 (1.0)
# Func. edited 4.1 (3.0) 1.4 (1.34)

Tests # Fail to Pass 10.0 (9.0) 2.04 (3.5)
# Total 760.8 (132.5) 99.9 (85.2)

Table 2: Statistics comparing SWE-Gym with SWE-Bench test split (in
parenthesis). Except for size metrics, we report the average value.
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Figure 2: Repository
distribution of SWE-
Gym instances.

test-passing solutions for real-world GitHub issues using provided codebases and executable envi-
ronments. Such agents must map from natural language descriptions of the issue, as well as the
initial state of the repository, to a pull request represented as a git patch.

We also identify a subset of 230 tasks, SWE-Gym Lite, which contains generally easier and more
self-contained tasks that are suitable for rapid prototyping, in alignment with SWE-Bench Lite (?).
To support future research in SWE agent development and automatic dataset synthesis, we also re-
lease SWE-Gym Raw, a large set of Python GitHub issues without executable environments (64,689
instances spanning 358 Python repositories).

3.1 DATASET CONSTRUCTION

Identify Repositories. We first use SEART GitHub search1 to filter a list of initial repositories.
Unlike SWE-Bench, which focuses on the top 5k most downloaded PyPI libraries ?, we select
Python repositories that were created before 7/1/2022 and have more than 500 stars, with at least
300 lines of code, more than 500 pull requests (PRs) and 100 contributors. This results in 358
repositories.

Extract Training Instances from Repositories. We use SWE-Bench’s instance extraction script
to convert these repositories into task instances, each corresponding to a GitHub issue including
the natural language description of the issue, a snapshot of the repository in which the issue was
created, and a set of unit tests. Over the 358 repositories, we extract 64,689 task instances. We refer
to this dataset as SWE-Gym Raw, which is over three times larger than the 19k instances gathered
in previous work (?) and includes nearly ten times as many repositories.

While SWE-Gym Raw instances contain code, issue descriptions, and the solution, they do not
contain executable environments or a guarantee that its unit tests are effective in evaluating the
correctness of a solution. Thus, we focus on 11 repositories with numerous instances and semi-
manually create executable environments for them.

Version Training Instances. Associating instances with their respective version numbers (e.g.
1.2.3) and setting up environments version-by-version makes the environment collection process
more practical by avoiding redundant setup work. We generalize SWE-Bench’s versioning script to
support versioning via script execution, and semi-automatically collect versions for each instance
based on information available in the repository (e.g., pyproject.toml, git tag, etc).

Setup Executable Environments and Verify Instances. Creating executable environments with
pre-installed dependencies is crucial for developing software engineering agents, as it mirrors de-
ployment settings and allows for incremental unit test feedback. Configuring dependencies for
specific codebase versions is challenging due to the lack of a universal Python package installa-
tion method and backward compatibility issues, especially for older GitHub issues. Ignoring these
environments could introduce distribution bias, diminishing SWE-Gym’s utility. To address this,
we manually configure dependencies for each task instance using relevant configuration files (e.g.,

1https://seart-ghs.si.usi.ch/

4

https://seart-ghs.si.usi.ch/


Published as a conference paper at ICLR 2025

requirements.txt), CI scripts, or documentation from the repository snapshot at the time of
issue creation. We then use SWE-Bench’s execution-based validation script to ensure that the gold
patch (the human-submitted code diff) passes more unit tests than the original code. This process
required approximately 200 human annotation hours2 and 10,000 CPU core hours. After validation
and filtering out failed instances, we obtained 2,438 unit-test-validated instances from 11 reposito-
ries. For full reproducibility, we release pre-built Docker images, totaling 6 TB.

3.2 SWE-GYM LITE

To improve research efficiency via faster agent evaluation, ? introduce SWE-Bench Lite, a canon-
ical subset of 300 instances from SWE-Bench. Following the SWE-Bench Lite filtering pipeline,3
we delineate the SWE-Gym Lite split, comprising 230 instances. Similar to SWE-Bench Lite, this
subset excludes tasks that require editing more than one file, tasks with poorly described problem
statements, those with excessively complex ground-truth code diffs, and tests focused on error mes-
sage validation.

3.3 DATASET STATISTICS

Our analysis suggests that tasks in SWE-Gym are on average harder than those included in SWE-
Bench. Tab. 2 shows that SWE-Gym has statistics similar to SWE-Bench, with several key dif-
ferences. Codebases in SWE-Gym, on average, have relatively fewer files than SWE-Bench, but a
similar number of total lines of code. However, gold patches in SWE-Gym have significantly more
lines and files edited when compared to SWE-Bench’s gold patches. Additionally, we find models
have consistently lower performance on SWE-Gym compared to SWE-Bench.4 Beyond models and
scaffolds overfitting to SWE-Bench, the decreased performance on SWE-Gym may also be due to
our inclusion of sophisticated repositories like pandas and MONAI.

4 TRAINING LMS AS AGENTS WITH SWE-GYM

We experiment with training language model agents using SWE-Gym. We use two agent scaffolds
(OpenHands, ?, §4.2; Moatless Tools, ?, §4.3).

4.1 SETTING

Agent Scaffolds. Recent SWE agents comprise a base language model, and a set of tools and
prompts this base model has access to. This set of tools and prompting strategies is referred to as
an agent scaffold, and recent work has developed numerous scaffolds (refer to §2 for examples).
We experiment with two types of agent scaffolds: one for general-purpose prompting (OpenHands
CodeAct; ?) and one for specialized workflows (MoatlessTools; ?), which allows us to measure the
efficacy of SWE-Gym across diverse deployment settings.

Policy Improvement Algorithm. We use SWE-Gym to improve the underlying LM for a given
SWE agent. As a baseline, we employ a simple policy improvement algorithm: rejection sampling
fine-tuning, where we fine-tune the base LM on success trajectories sampled from SWE-Gym.

Evaluation Metrics. We use the standard SWE agent benchmarks SWE-Bench Lite and Verified (?)
for evaluation. We report (1) Resolve Rate (%), the proportion of resolved task instances, and (2)
Empty Patch (%), the proportion of trajectories where none of the code in the repository is edited.
We use OpenHands remote runtime (?) to parallelize evaluation (e.g., execute unit tests).

Technical Details. For base LMs, we use Qwen-2.5-Coder-Instruct (?) 7B, 14B, and 32B.
§B.2 contains training run details.
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Table 3: Model performance (fine-tuned on 491 SWE-Gym-sampled trajectories) on SWE-Bench
using OpenHands as agent scaffold. We use Qwen-2.5-Coder-Instruct as the base model.

Model Empty Patch (%, ↓) Stuck in Loop (%, ↓) Avg. Turn(s) Resolve Rate (%, ↑)
Size zero-shot fine-tuned ∆ zero-shot fine-tuned ∆ zero-shot fine-tuned ∆ zero-shot fine-tuned ∆

SWE-Bench Lite (300 instances)
7B 40.3 29.7 -10.7 47.0 31.0 -16.0 20.3 22.2 +1.9 1.0 (± 1.0) 10.0 (± 2.4) +9.0

14B 49.7 18.1 -31.6 31.7 27.1 -4.6 23.2 21.4 -1.8 2.7 (± 1.9) 12.7 (± 2.3) +10.0
32B 27.0 18.1 -8.9 16.7 18.1 +1.5 15.5 29.3 +13.9 3.0 (± 1.4) 15.3 (± 2.5) +12.3

SWE-Bench Verified (500 instances)
7B 45.8 33.8 -12.0 39.6 21.0 -18.6 21.9 35.3 +13.4 1.8 (± 1.1) 10.6 (± 2.1) +8.8

14B 44.9 14.5 -30.4 32.1 21.3 -10.7 25.5 30.1 +4.6 4.0 (± 1.6) 16.4 (± 2.0) +12.4
32B 9.5 13.8 +4.3 29.4 23.8 -5.6 24.6 31.6 +7.0 7.0 (± 1.3) 20.6 (± 2.1) +13.6

4.2 TRAINING GENERAL-PURPOSE PROMPTING AGENTS

In this section, we use OpenHands (version CodeActAgent 2.1, ??) as our agent scaffold, which
is based on general-purpose ReAct-style prompting ?. In contrast to specialized-workflows-agents
(§2), it relies on the LM to generate actions and do planning. It equips the base LM with a bash
terminal and a file editor. We disable the browser feature of OpenHands.

Trajectory Collection. By rejection sampling, we obtain 491 successful trajectories
from SWE-Gym,. These trajectories are sampled from gpt-4o-2024-08-06 and
claude-3-5-sonnet-20241022 with different temperature settings. Each successful trajec-
tory, on average, has roughly 19 turns and 19K tokens.5 Although SWE-Gym offers many more
tasks and allows repeated sampling, our 491 trajectories are limited primarily by compute budget.

Training on SWE-Gym trajectories turns LM into effective agents to fix issues. As shown in
Tab. 3, the pre-trained base model achieves resolve rates of 3.0% and 7.0% on SWE-Bench Lite and
Verified, respectively. After fine-tuning on 491 trajectories6, it improves by up to 12.3% (3.0% →
15.3%) and 13.6% (7.0% → 20.6%).

Training reduces stuck-in-loop behavior. As shown in Tab. 3, zero-shot pre-trained models of-
ten get stuck in loops; even the largest 32B model is trapped in 29.4% of SWE-Bench Verified
tasks. Fine-tuning on trajectories from SWE-Gym consistently reduces the stuck-in-loop rate by
4.6–18.6% across both SWE-Bench Lite and Verified tasks, except for the 32B model on SWE-
Bench Lite, which increases by 1.5% due to its already low loop rate.

Performance scales with model size. Rather unsurprisingly, larger base models consistently im-
prove the resolve rate, empty patch rate, and stuck-in-loop rate (Tab. 3).

Self-improvement is not yet working. In addition to fine-tuning on trajectories sampled from
strong teacher models, we also experiment with fine-tuning on trajectories sampled directly from
the policy being updated. We use the fine-tuned 32B model to sample 6 trajectories per SWE-
Gym instance (using temperature t = 0.5), obtaining 868 successful trajectories (i.e., on-policy
trajectories). We further fine-tune the base 32B model on a mixture of 868 on-policy trajectories and
the previously collected 491 off-policy trajectories. When evaluating this fine-tuned model on SWE-
Bench Lite, we observe the resolve rate drop from 15.3 to 8.7%, suggesting that self-improvement
is not yet working. We hypothesize that we could achieve improved results using more advanced
policy optimization methods, such as proximal policy optimization (PPO) ?, or with a stronger base
model. These directions remain promising avenues for future investigation.

2Annotations are done by a subset of the authors.
3For details on its construction process, see https://www.swebench.com/lite.html.
4§B.4 contains details of these experiments.
5Tab. 8 contains more statistics of the sampled trajectories.
6We use a sampling temperature of 0 unless otherwise specified.
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4.3 SELF-IMPROVEMENT WITH SPECIALIZED WORKFLOW

Unlike OpenHands, which offers freedom in long-horizon planning, MoatlessTools constrains the
language model’s action space to pre-defined specialized workflows, reducing task horizons. Spe-
cialized workflows outperform general-purpose prompting for open-weight LMs. In Tab. 3 and
Tab. 4, the 7B and 32B LM achieve zero-shot resolve rates of 7% and 19% with MoatlessTools,
compared to 1.0% and 3.0% with OpenHands on SWE-Bench Lite.

Given MoatlessTools’ improved zero-shot performance and shorter task horizon, we hypothesize
that self-improvement is achievable using this scaffold and training on SWE-Gym. With a limited
compute budget, we conduct this experiment with only 7B and 32B models, using LoRA ? for the
32B model for improved efficiency. We use the 7B model for ablation experiments.

We use iterative rejection sampling fine-tuning for policy improvement. Each iteration involves (a)
performing 30 high-temperature (1.0) rollouts per task on SWE-Gym-Lite and adding successful
trajectories to the fine-tuning dataset, and (b) fine-tuning the policy on these filtered trajectories.
After two iterations, further improvements are negligible.

Data Bias Impacts Performance. Repeated sampling, as in ?, shows that task success rate follows
a long-tail distribution (Fig. 5), where more samples increase solved instances. While wider task
coverage benefits training, it introduces a bias toward easier tasks, making it suboptimal to train on
all successful trajectories, as first observed in math reasoning ?.

Mitigating Bias with Per-Instance Capping. We introduce per-instance capping—a method that
limits the maximum number of selected samples per task. As illustrated in Fig. 5, this balances
dataset bias and size. A low cap reduces dataset size and performance (§5.2), while a high cap
skews the distribution toward easier tasks. Empirically, a threshold of 2 achieves a good balance,
slightly outperforming the full dataset and improving training speed (Tab. 6). We rank trajectories
by the number of model response rounds required, preferring fewer.

Results. Results. After two policy improvement iterations (Tab. 4), the 7B model’s resolve rate
increased from 7.0% to 9.0% after the first iteration and to 10.0% after the second. In contrast,
the 32B model improved from 19.0% to 19.7% after the first iteration with no further gains. We
attribute the limited gains in the 32B model to the scaffold’s restricted action space and the rejection
sampling fine-tuning method.

Table 4: Resolve rate (RR) and Empty patch rate (EP) on SWE-Bench Lite with the MoatlessTools Scaffold
after online rejection sampling fine-tuning (temperature t = 0).

Setting 7B Model 32B Model

EP(%, ↓) RR(%, ↑) EP(%, ↓) RR(%, ↑)

Zero-Shot 56.3% 7.0% 24.3% 19.0%
Iteration 1 29.0% 9.0% 18.3% 19.7%
Iteration 2 23.3% 10.0% 9.7% 19.7%

5 SCALING AGENT PERFORMANCE WITH SWE-GYM

We explore two scaling directions enabled by SWE-Gym to enhance agent performance: inference-
time scaling (§5.1) and training-time data scaling (§5.2).

5.1 INFERENCE-TIME SCALING WITH VERIFIERS

Trajectories sampled from SWE-Gym can be used not only for training a policy, but also for training
a verifier (i.e., reward) model. We train an outcome-supervised reward model (ORM) ? that, given
the relevant context of the task execution (including the problem statement, agent trajectory, and
current git diff), generates a score that estimates the probability that the agent has solved the prob-
lem. We experiment with using this model to rerank candidate trajectories sampled from a SWE
agent policy, and show that such learned verifiers enable effective inference-time scaling for further
performance improvement.

7
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5.1.1 VERIFIER FOR GENERAL-PURPOSE PROMPTING

For OpenHands agents ?? with general-purpose prompting (§2), we train a verifier (ORM) that
takes as input the trajectory τ = [o1, a1, o2, a2, . . . , on, an], represented as an interleaved sequence
of observations and actions, and generates a scalar reward r ∈ [0, 1]. Observations ok include the
task problem statement, command execution output, error messages, etc; action ak can be bash
command or file operations (e.g., edit, view) from the agent.

Training and Inference. We fine-tune 32B Qwen2.5-Coder-Instruct to label trajectories as
successful or unsuccessful using output tokens <YES> and <NO> respectively.7 For training data,
we re-use two sets of trajectories we sampled on SWE-Gym for agent training in §4.2: (1) off-policy
trajectories which contain 443 successful trajectories; (2) on-policy trajectories which contain
875 successful trajectories sampled from the fine-tuned Qwen2.5-Coder-Instruct-32B.8 We
combine both on-policy and off-policy trajectories, randomly sample the same amount of unsuccess-
ful trajectories from each subset (1,318 each), and combine them as our dataset for verifier training
(total 2,636 trajectories). We fine-tune the model to predict <YES> for successful trajectories and
<NO> for unsuccessful ones and use this probability to rank trajectories at inference time.

Metrics. We report two metrics: (1) Pass@k, the proportion of tasks with at least one successful
solution among k samples, and (2) Best@k, the success rate of the highest-reward trajectories se-
lected by the verifier from k samples per task. Pass@k measures solution discovery (upper bound
for Best@k); Best@k evaluates verifier accuracy. Mean and variance calculation are detailed in
§B.1, following ?.
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Figure 3: Scaling inference-time compute for SWE Agents with learnt verifier. All agents and
verifiers are Qwen2.5-Coder-Instruct-32B model fine-tuned on corresponding dataset.

Results. Fig. 3a shows how Pass@k and Best@K scale with the number of sampled agent trajecto-
ries using the fine-tuned 32B model as the agent model. Pass@k demonstrates strong improvement,
rising from 20.6 to 37.8% resolve rate as k increases from 1 to 8, and up to 42.8@k=16. The Best@k
metric, which relies on our verifier’s ability to select the best trajectory, demonstrates more modest
but steady progress, improving from a resolve rate of 20.6@1 to 29.8@8, and up to 32.0@16. The
gap between Pass@k and Best@k, due to the imperfect performance of our trained verifier, indi-
cates there is room for improvements in reward modeling for coding agents. Surprisingly, we found
that fine-tuning the verifier model using LoRA ? (29.8@8) with Unsloth ? performs better than
full-parameter fine-tuning (27.2@8), potentially due regularization. Furthermore, as shown in Fig. 1
(bottom), the Best@k curve exhibits strong linearity on a logarithmic scale, indicating a promising
scaling behavior.

Training with a mixture of off-policy and on-policy data yields the best results (our default setting),
with a resolve rate of 27@8. Ablations are detailed in §B.2. Our findings indicate that verifier
training benefits most from a diverse dataset combining both off-policy and on-policy examples.

7§B.6 includes the verifier prompt template.
8We keep only trajectories within 32k-token length for training, which may reduce their number compared

to Section 4.2.
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5.1.2 VERIFIER FOR SPECIALIZED WORKFLOW

For MoatlessTools agents with specialized workflows, given that it doesn’t have a turn-taking action-
observation trajectory like OpenHands CodeActAgent, we prepare verifier inputs through a parsing
process adopted from ?, which combines task descriptions, relevant agent context, and the patches.
We provide the prompt template in §B.5. We train the verifier to map from this input to a single
token indicating task success.

Results. We evaluate the verifiers by sampling from an agent policy with k = 8 at temperature 0.5.
As shown in Fig. 3b and Fig. 6, these verifiers enable effective scaling across verifier and policy
sizes: the 7B verifier improves from 10 to 13.3% resolve rate on SWE-Bench Lite when paired
with a 7B policy, while the 32B verifier improves from 19.7 to 26.3% when paired with a 32B
policy. The 7B verifier plateaus after k = 4 samples when ranking trajectories from both 7B and
32B agents. In contrast, the 32B verifier continues improving even at k = 8, suggesting that verifier
size significantly affects scaling behavior.

5.2 TRAINING-TIME SCALING WITH DATA

We then examine how scaling the amount of training data affects agent performance. We simu-
late three scaling methods through subsampling: (1) Scaling trajectories, where trajectories are
randomly dropped; (2) Scaling unique task instances, where only one successful trajectory per
task is selected; and (3) Scaling repositories, which sequentially includes all instances from each
repository to assess repository-level diversity.

Setup. Using OpenHands ? and the fine-tuning approach described in §4.2, we evaluate these
scaling approaches on SWE-Bench Verified: scaling the number of trajectories, by subsampling
from the full trajectory dataset from §4.2 (at most 491 trajectories); unique instance scaling on these
trajectories deduplicated by instance ID (at most 294 trajectories), and repository-based scaling
where we sort repositories alphabetically and include all trajectories from each repository in order
(e.g., first 25% contains complete trajectories from the first N repositories). We compare models
trained on 25%, 50%, and 100% of the full dataset for each approach.

Scaling trends suggest instance and repository diversity is not yet a bottleneck. Fig. 4(left)
demonstrates consistent improvements in resolve rate as the number of training trajectories randomly
increases, particularly for the 32B model. These results suggest that SWE-Gym’s current size and
repository diversity are likely not performance bottlenecks - further improvements could likely be
achieved by simply sampling more training trajectories.
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Figure 4: (left) Scaling effects with an increasing number of trajectories for training; (right) Com-
parison of different data scaling approaches.

Fig. 4 (right) reveals comparable overall performance between different scaling approaches. While
Random Scaling (No Dedup.) achieves higher final performance, this is due to having more tra-
jectories (491 vs 294). Among deduplicated approaches, Repository Scaling shows stronger initial
performance at 25% data, suggesting that complete repository coverage provides more coherent
learning signals early in training. These results suggest that the repository and instance diversity
of SWE-Gym is not yet a bottleneck - further improvements could likely be achieved by simply
sampling more agent trajectory data for training, regardless of duplication or repository distribution.
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6 CONCLUSIONS

In this paper, we introduce SWE-Gym, the first training environment that bridges critical gaps in
enabling scalable learning for software engineering agents. By combining real-world Python tasks
with repository-level context, pre-configured execution environments, and test verifications, SWE-
Gym provides a foundation for advancing LM agent training research. Our experiments demonstrate
that SWE-Gym enables both agent and verifier models to achieve significant improvements in re-
solving complex software tasks, with potential for continuous performance gains with increased
compute.

A COMPARISON WITH CONCURRENT WORKS

? trains an LM agent, Lingma SWE-GPT, using a method similar to our rejection sampling fine-
tuning baseline, with a dataset comparable to our SWE-Gym Raw splits. Without executable unit
test feedback, they rely on manually defined heuristics to filter out low-quality trajectories, such as
comparing similarity between submitted patches and edit locations with gold patches. The model
weights are publicly accessible but not the training pipeline or the dataset.

Most relevant to our work are two consecutive blog posts by ? and ?, who also construct an exe-
cutable training environment with real-world tasks from GitHub. Instead of manual configuration,
they employ a general environment setup script and simply discard instances that fail the setup pro-
cess. This approach leads to key differences in dataset size and distribution: while it biases the
environment away from tasks with complex dependencies, they successfully collect 6,415 instances,
about 1.5 times larger than our dataset. In ?, they also study training agents and verifiers with the en-
vironment. Additionally, they explore a lookahead setting where a trained verifier ranks and selects
the best next action. With a substantially large collection of agent trajectories (80,036 compared to
thousands in our experiments) and model size (72B compared to 32B), Their best system achieves
40% accuracy on SWE-Bench Verified. While their dataset and agent trajectories are publicly ac-
cessible, the model is not.

In comparison, with a comparable dataset size, our SWE-Gym has executable feedback, avoids
potential dataset bias through manual configuration of environments, while providing comprehen-
sive analysis of agent and verifier training, their scaling behaviors, and positive results on agent
self-improvement. Our system achieves competitive results with significantly lower compute and
a smaller model size (32B vs 72B). Lastly, we open source all artifacts of the project, including
dataset, model weights, agent trajectory data and the training pipeline.

Model SWE-Bench Openness
Name, Model Size Lite Verified Model Environment
?, 72B 22.0 30.2 ✓ ✗
? Agent and Verifier, 72B - 40.6 ✗ ✓
Our SWE-Gym Agent and Verifier, 32B 26.0 32.0 ✓ ✓

Table 5: Comparison of model performance on SWE-Bench benchmark and if the model weights
and environments are publically accessible (openness).

Cap # Traj Empty Patch (%, ↓) Resolve Rate (%, ↑)

0 (Zero-shot) 0 56.3 7.0
1 36 37.3 9.0
2 62 29.0 9.7
3 82 43.7 7.7
No Cap (All) 172 30.7 9.3

Table 6: Resolve rate and empty patch rate on SWE-Bench Lite with a 7B model trained using
different instance capping strategies (Cap).
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Figure 5: Success distribution over 30 rounds on SWE-Gym Lite with 7B model in zero-shot. The
distribution is naturally biased toward easy tasks. Per instance capping reduces this bias but lowers
the total trajectory count for training. We set temperature t = 1 during sampling.

Original Dedup. Sorted by Random (Dedup.) Sorted by Repo (Dedup.)
First 25% First 50% First 25% First 50%

getmoto/moto 155 72 12 33 0 46
Project-MONAI/MONAI 95 53 17 25 53 53
pandas-dev/pandas 70 61 14 30 0 0
python/mypy 46 27 7 12 0 0
dask/dask 45 29 8 17 6 29
iterative/dvc 36 24 8 12 0 0
conan-io/conan 20 12 1 7 12 12
pydantic/pydantic 11 7 2 4 0 0
facebookresearch/hydra 7 5 2 5 0 5
bokeh/bokeh 3 2 1 1 2 2
modin-project/modin 3 2 1 1 0 0

Total 491 294 73 147 73 147

Table 7: Distribution of success trajectories used in training-time scaling experiments (§5.2).
Dedup. denotes that the trajectories are deduplicated by randomly select ONE success trajectory
per instance ID; Sorted by random (repo) X% (Dedup.) denotes a subset of trajectories taken
from the first X% from dedup. instances that are sorted randomly (by repository name).

Percentiles
Resolved Count Mean Std Min Max 5% 10% 25% 50% 75% 90% 95%

Num. of Messages ✗ 5, 557.0 39.2 31.9 7.0 101.0 9.0 9.0 9.0 29.0 61.0 100.0 101.0
✓ 491.0 39.9 19.9 13.0 101.0 19.0 21.0 25.0 33.0 47.5 65.0 87.0

Num. of Tokens ✗ 5, 557.0 17, 218.3 17, 761.6 1, 615.0 167, 834.0 1, 833.0 1, 907.0 2, 268.0 12, 305.0 26, 434.0 41, 182.2 51, 780.6
✓ 491.0 18, 578.5 11, 361.4 2, 560.0 81, 245.0 5, 813.0 8, 357.0 11, 559.5 15, 999.0 22, 040.5 31, 632.0 39, 512.5

Table 8: Statistics of SWE-Gym-sampled trajectories. We use the tokenizer from
Qwen-2.5-Coder-Instruct-7B to estimate the number of tokens.
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Figure 6: Scaling inference-time compute for MoatlessTools Agents (7B and 32B) with their corre-
sponding learned verifiers. Temperature t = 0.5.

B EXPERIMENT DETAILS

B.1 MEAN AND VARIANCE FOR PASS@N AND BEST@N.

We mostly follow ? for obtaining the mean and variance for the Pass@N and Best@N curve. Given
a total of M rounds of rollouts, for N < M , we calculate the mean and variance across 100 randomly
selected sub-samples of size N from the M rollouts. For the OpenHands CodeActAgent inference-
time scaling curve at §3a, we exclude this calculation for N=1 , as we use a temperature of 0 for the
first attempt.
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Figure 7: Ablation study for verifier training (§5.1.1). Performances are evaluated on SWE-Bench
Verified. Both the agent and the verifier are Qwen2.5-Coder-Instruct-32Bmodel fine-tuned
on the corresponding dataset. OpenHands ? is used as the agent scaffold.

Agent Model Model Size Training Data Resolved (%)

SWE-Bench Verified (500 instances)
RAG SWE-Llama ? 7B 10K instances 1.4
RAG SWE-Llama ? 13B 10K instances 1.2

Lingma Agent ? Lingma SWE-GPT (v0925) 7B 90K PRs from 4K repos 18.2

Lingma Agent ? Lingma SWE-GPT (v0925) 72B 90K PRs from 4K repos 28.8

OpenHands ? (Ours) fine-tuned Qwen2.5-Coder-Instruct 32B 491 agent trajectories from 11 repos 20.6

OpenHands w/ Verifier ? (Ours) fine-tuned Qwen2.5-Coder-Instruct 32B (Agent & Verifier) 491 agent trajectories from 11 repos
for agent + 1318×2 success/failure
agent trajectories for verifier

32.0

Table 9: Performance comparison with SWE-Bench ? baselines with publicly accessible weights.
Data source: https://www.swebench.com/, Accessed on Dec 21, 2024.

B.2 OPENHANDS AGENT EXPERIMENTS

During training, we use OpenHands’s remote runtime (?) feature to execute agent trajectories in
parallel on SWE-Gym. We use torchtune ? for full parameter fine-tuning with a learning rate
of 1e-4, maximum 5 epochs, global batch size of 8, max context length of 32768. We fine-tuned
both 7B, 14B, and 32B variant of the model, and experiments were performed with 2-8x NVIDIA
H100 80G GPU on modal ?. The only exception is in the main experiment of §5.1.1, where we
use LoRA ? (29.8% @8) via Unsloth library ? to train the verifier for max 2 epochs, while other
hyper-parameter stays the same.

Inference during evaluation is bounded by either 100 interaction turns or the base LM’s 32k context
window length, whichever is reached first.

At inference time, conditioned on the prompt and the agent trajectory τ , we use SGLang ? to obtain
the log probability of the next token being <YES> (ly) or <NO> (ln). We then calculate the reward
as the probability of success by normalizing the log probability: r = exp(ly)/(exp(ly) + exp(ln)).

Training data matters for verifier. We experiment with variations on the choice of training data for
our verifier model. Using full-parameter fine-tuning on Qwen-2.5-Coder-Instruct-32B,

13
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Trajectory Set Sampled from Model Sampled on Dataset Temperature Max Turns Success trajectories
D0 gpt-4o-2024-08-06 SWE-Gym Lite 0 30 19 (8.26%)

(Cumulative) Total D0 19

D1 \D0

gpt-4o-2024-08-06 SWE-Gym Lite 0.2 30 11 (4.78%)
gpt-4o-2024-08-06 SWE-Gym Lite 0.3 30 17 (7.39%)
gpt-4o-2024-08-06 SWE-Gym Lite 0.4 30 21 (9.13%)
gpt-4o-2024-08-06 SWE-Gym Lite 0.5 30 18 (7.83%)
gpt-4o-2024-08-06 SWE-Gym Lite 0.8 30 20 (8.70%)

(Cumulative) Total D1 106

D2 \D1

gpt-4o-2024-08-06 SWE-Gym Lite 0 50 19 (8.26%)
claude-3-5-sonnet-20241022 SWE-Gym Lite 0 50 67 (29.1%)
gpt-4o-2024-08-06 SWE-Gym Full 0 50 ∗111 (4.55%)
gpt-4o-2024-08-06 SWE-Gym Full 1 50 188 (7.71%)

(Cumulative) Total D2 491

* Run into infrastructure-related error where some instances failed to complete, this number might be under estimate of actual number of success trajectories.
Table 10: Summary of trajectories sampled from SWE-Gym.

we use different mixtures of on- and off-policy trajectories, as well as different distributions of
successful and unsuccessful trajectories.

As shown in Fig. 7, our ablation study demonstrates that the choice of training data can significantly
impact verifier performance. Training with a mixture of off-policy and on-policy data yields the best
results (our default setting), reaching a resolve rate of 27@8. In contrast, using only on-policy data
from the fine-tuned model shows moderate but limited improvement, while training exclusively on
off-policy data from Claude and GPT leads to early performance plateaus around 22% resolve rate.

B.3 MOATLESSTOOLS AGENT EXPERIMENTS

All MoatlessTools models are trained with a context window of 10240. For experiments with the
7B model, we use torchtune to train the policy model with full-finetuning using 4 H100 GPUs. We
set batch size to 8, learning rate to 2× 10−5, and train for 5 epochs.

For the 32B model, we use Unsloth ? with a single H100 GPU for LoRA fine-tuning. We set the
number of epochs to 5, batch size to 8, LoRA rank to 64, and learning rate to 5× 10−4. We use the
same configuration for verifier training.

For MoatlessAgent experiments, we serve the agent with FP8 quantization for improved throughput,
which we found to have minimal effects on model performance. But we keep the verifier inference
in BF16.

Following the training procedure described in §5.1.1, we train 7B and 32B verifiers using on-policy
trajectories from the last (2nd round of sampling, applying LoRA ?. To address the easy-data bias
in the training dataset, we cap the number of successful trajectories per instance at two and balance
the data by subsampling failure cases to match the same number of successful ones.

B.4 DETAILS OF OPENHANDS TRAJECTORY SAMPLING

As detailed in Tab. 10, we collect a few sets of trajectories for fine-tuning experiments. We collect
dataset D0 by sample gpt-4o-2024-08-06 on SWE-Gym Lite with temperature 0 and collected
19 trajectories that eventually solve the task (evaluated by unit test in SWE-Gym). We then varied
the temperatures (setting t={0.2, 0.3, 0.4, 0.5, 0.8}) and sample on SWE-Gym Lite.
Combining these instances with D0, we get 106 trajectories that solve the given problem (D1). We
set the maximum number of turns to be 30 for both D0 and D1. To experiment on the effect of
max turn, we set max number of turns to 50 and sample gpt-4o-2024-08-06 (19 resolved out
of 230) and claude-3-5-sonnet-20241022 (67 resolved out of 230) with temperature 0 on
SWE-Gym Lite, and sample gpt-4o-2024-08-06 (temperature t={0, 1}) on SWE-Gym full
set (in total 299 resolved out of 4876 instances). This gives us in in total 106 + 19 + 67 + 299 = 491
success trajectories, which forms our final training trajectories D2.
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B.5 MOATLESSTOOLS ORM PROMPT

The following is a pseudo-code that generates a prompt for MoatlessTools Verifier (ORM), which is
modified from ?. Unlike ?, which relies on proprietary models like Claude-3.5-Sonnet for context
extraction, we obtain context directly from the agent’s trajectory being evaluated.

SYSTEM_MESSAGE = """You are an expert in python for software
engineering and code review. Your responsibility is to review
the patches generated by language models to fix some issues
and provide feedback on the quality of their code."""

↪→

↪→

↪→

USER_MESSAGE="""I want you to evaluate an LLM-generated candidate
patch that tries to resolve an issue in a codebase.↪→

To assist you in this task, you are provided with the following
information:↪→

- You are given an issue text on a github repository (wrapped
with <issue_description></issue_description>).↪→

- You are also given some identified code spans that are relevant
to the issue.↪→

Each code span is wrapped with <code_span file_path=FILE_PATH
span_id=SPAN_ID></code_span> tags, where FILE_PATH is the
path to the file containing the code span, and SPAN_ID is
the unique identifier for the code span.

↪→

↪→

↪→

Each code span also comes with the line numbers for you to
better understand the context. It's possible that the code
span are not sufficient to fix the issue, adjust your
score accordingly.

↪→

↪→

↪→

- You are given the candidate patch that tries to resolve the
target issue.↪→

For your convenience, you are given the hunks of original code
and the code after applying the patch.↪→

The code before the patch is wrapped with
<before_patch></before_patch> and the code after the patch
is wrapped with <after_patch></after_patch>.

↪→

↪→

Note that the file names in before_patch starts with 'a/' and
the file names in after_patch starts with 'b/'.↪→

<issue_description>
{issue_text}
</issue_description>

<before_patch>
{before_patch}
</before_patch>

<after_patch>
{after_patch}
</after_patch>

{code_spans}

Response in "True" or "False" for whether the patch has resolved
the issue."""↪→

B.6 OPENHANDS ORM PROMPT

The following is a pseudo-code that generates a prompt for OpenHands Verifier (ORM).
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SYSTEM_MESSAGE = '''You are an expert judge evaluating AI
assistant interactions. Your task is to determine if the
assistant successfully resolved the user's request.

↪→

↪→

Key evaluation criteria:
1. Did the assistant complete the main task requested by the user?
2. Did the assistant handle all edge cases and requirements

specified?↪→

3. Were there any errors or issues in the final solution?
4. Did the assistant verify the solution works as intended?

Respond only with "<judgement>YES</judgement>" or
"<judgement>NO</judgement>".'''↪→

USER_MESSAGE = '''Please evaluate the following interaction
between an AI assistant and a user:↪→

=== INTERACTION LOG ===
''' + traj_str + '''
=== END INTERACTION ===

Based on the above interaction, did the assistant successfully
resolve the user's initial request? Respond with YES or NO.'''↪→

messages = [
{'role': 'system', 'content': SYSTEM_MESSAGE},
{'role': 'user', 'content': USER_MESSAGE},
{'role': 'assistant', 'content': '<judgement>' + ("YES" if

resolved else "NO") + '</judgement>'}↪→

]

The last assistant messages that contains judgement is only provided during training time. At infer-
ence time, the trained verifier is responsible predicting the probability of ‘Yes’ and ‘No’.
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