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Abstract

This paper presents new Bayesian Optimization (BO) algorithms for optimal portfolio al-
location problems, which seek to minimize a portfolio risk measure, such as conditional
value-at-risk, under a minimum expected return constraint. The proposed BO algorithms
include a new two-stage approach, which significantly reduces the number of evaluations of
the expensive-to-evaluate objective function, and a new acquisition function, which drives
sampling towards the optimal region. The proposed algorithm’s competitive performance is
demonstrated through practical examples.

1 Introduction

Portfolio optimization is the process of determining the best strategy to allocate certain resouces. While
it is probably best known for its applications in finance, it also has important applications in many other
areas, such as energy |[Fleischhacker et al.| (2019), healthcare [Kheybari et al.| (2023]), suply chain [Hamdi et al.
(2018) and artifical intellegence |(Ghosh et al.| (2022). Significant research has gone into developing methods
which seek to find an optimal portfolio allocation based on certain risk measures, such as value-at-risk (VaR)
or conditional value-at-risk (CVaR). A typical formulation for such problems is to minimize a risk measure,
subject to a minimum expected return requirement, or constraint.

When the objective and constraint functions are assumed to be linear and accessible (that is, not black-
box), they can easily be solved using classic Linear Programming methods, as demonstrated in [Rockafellar
and Uryasev| (2000) and Krokhmal et al.|(2002). Furthermore, when the functions are non-linear, but still
accessible, one can use alternate traditional optimization methods (see e.g., |Gaivoronski and Pflug (2005);
Ghaoui et al.| (2003); Alexander et al.| (2006)). The assumptions of linearity, differentiability, or accessible
objective and constraint functions underlie many traditional portfolio optimization algorithms. In many
practical settings, however, the objective (i.e., the risk measure) and/or constraint functions are nonlinear,
noisy and expensive black-boxes, making these approaches infeasible.

Recently, considerable attention has been devoted to developing methods based on Bayesian Optimization
(BO) for minimizing risk measures, primarily due to their ability to deal with noisy, expensive and black-box
functions. In this regard, Cakmak et al.[(2020) proposed a BO algorithm for the unconstrained optimization
of VaR and CVaR of black-box expensive-to-evaluate functions, with randomness induced by an environmen-
tal random variable. Instead of modelling the objective function directly, the paper proposes modelling the
underlying function f as a GP and applying a BO method which jointly selects both a portfolio weight x and
realisation of the environmental variable Z, using a one-step look-ahead approach based on the knowledge
gradient acquisition function [Frazier et al. (2008)). Furthermore, Nguyen et al propose two alternate BO
approaches respectively for the optimization of VaR [Nguyen et al.| (2021b)) and CVaR [Nguyen et al.| (2021a),
which provide certain desirable computational and theoretical properties. More recent work includes/Daulton
et al. (2022a)), which aimed to tackle multivariate value-at-risk problems, that is, where the optimization
problem has multiple objectives with input noise, and [Picheny et al.| (2022)) which studied the situation that
the distribution of Z is unavailable.

The aforementioned methods are designed for unconstrained minimization of risk measures. To date, no
BO algorithm has been designed specifically for constrained portfolio optimization problems. For general
constrained optimization problems, a popular class of BO methods incorporate the constraints into the
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acquisition function design (see, i.e., Gramacy and Lee| (2011); |Gardner et al.|(2014); |Gelbart et al|(2014)).
More recent advances include Lam and Willcox| (2017)), [Letham et al.| (2019) and |[Eriksson and Poloczek
(2021), among others. Whilst these methods are effective, they often require frequent evaluation of the risk
measure functions, which is unsuitable for complex allocation problems - as detailed shortly.

The main purpose of this work is to design a constrained BO algorithm specifically for the portfolio allocation
problem. In this paper, we introduce a new BO method building on |Gardner et al.| (2014)); |Gelbart et al.
(2014)), designed to take advantage of two key properties which hold in portfolio allocation problems: 1) the
expected return constraint functions are much cheaper to evaluate than the objective function, i.e., the risk
measures; 2) the expected return constraints are typically active — namely, the optimal solution lies on the
boundary of the feasible region defined by the constraints, where a theoretical justification is provided.

Firstly, this paper introduces a two-stage BO adaptation, which reduces the number of full-function evalua-
tions needed to find an optimal solution, significantly reducing the computational cost of the algorithm. Only
samples that meet certain criteria are fully evaluated in the second stage; this differs from cascade-based BO
approaches (Kusakawa et al., 2022) where all samples in the first stage are used in the second, regardless of
their feasibility or promise. Secondly, this work proposes a new acquisition function that encourages more
samples to be generated in the near-optimal region, improving the algorithm’s performance. The paper also
details how the proposed methods can be adapted for batch implementation to take advantage of parallel
computing.

As the numerical examples demonstrate, the proposed BO algorithms are highly effective for solving con-
strained portfolio allocation problems, outperforming existing approaches with lower computational cost and
faster convergence. These improvements are achieved by combining a new acquisition function, a two-stage
procedure and the potential for parallel batch implementation.

2 Optimal Portfolio Allocation

Suppose an investor seeks to find an optimal allocation to N-assets. For the target portfolio, we define
an N-dimensional vector w = (ws,...,wn) to represent the capital allocation or portfolio weights. Each
component w; corresponds to the fraction of the total capital allocated to the i*" asset. The vector w is
defined within the constraints of a feasible set W = {w € R¥ |w; > 0, vazl w; < 1}, to ensure that the sum
of all weights does not exceed the total available capital, which, without loss of generality, is taken to be 1.

To account for the uncertainty in future asset returns, we introduce an environmental random vector Z =
(Z1,...,Zn), where Z; represents the probability distribution of forecasted returns for asset ¢. The return
function f(w,z) represents the forecasted portfolio return for an allocation w and realisation z from Z.
As such, f(w,Z) is a probability distribution for a portfolio w, obtained as the sum of the product of the
portfolio weights and their respective forecasted return distributions.

For clarity: f(0,Z) = 0, as no capital invested means no returns; f(w,z) < 0 if the portfolio is forecasted
to lose money and f(w,z) > 0 if the portfolio is forecasted to gain money. As an example, f(w,z) = 0.1
means a forecasted gain of 10%; f(w,z) = —0.2 means a forecasted loss of 20%.

2.1 Risk Measures
VaR is defined as the threshold value w such that the probability of the loss exceeding w is at most (1 — «).
Formally, VaR is defined as:
ve(w;a) = inf{w : P(f(w,Z) < —w) <1—a}
CVaR at a specified risk level « € (0, 1) is the expected loss, assuming that the loss is worse than the VaR
threshold. It represents the average of the worst-case losses. Formally, CVaR is defined as:
CVaRa[f(w,Z)] = —E[f(w,Z)|f(w,Z) < —vf(w; )]

Artzner et al.| (1999)) establish key desirable properties for risk measures. Of those, CVaR meets many,
including subadditivity, translation invariance, positive homogeneity, and monotonicity. In contrast, VaR
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often exhibits multiple local extrema and unpredictable behaviour as a function of portfolio positions, limiting
its usefulness in portfolio optimization problems, limitations which do not apply to CVaR (Mausser and
Rosenl, 1999, McKay and Keefer, |1996]).

Within portfolio optimization, the chosen risk measure must be able to handle and account for uncertainty
induced by the environmental random variable Z. [Embrechts et al.| (2022 establishes a framework for
considering the effect of uncertainty around an a-quantile level, concluding that (unlike VaR) CVaR remains
stable and robust in simulation-based optimization methods with uncertainty. Within this study, we choose
CVaR as the objective function risk measure.

2.2 Problem Set-up

The underlying principle in investing is that to compensate investors for taking on greater risk, a riskier asset
should generate higher returns. A robust risk measure should reflect this feature. Research (see, i.e., Bali
and Cakici (2004); [Igbal et al.| (2010))) proved a positive relationship between CVaR and expected returns.
A higher expected return can only be obtained by increasing risk exposure; conversely, if an investor wishes
to reduce the CVaR of their portfolio, the expected return will reduce too.

A key property of CVaR is that it is monotonic with respect to stochastic dominance of order 1 and order
2 (Pflug) [2000)). In financial risk management, this property is essential as it implies that when comparing
two investment options, if one demonstrates a lower risk (as indicated by CVaR) while providing equal or
higher expected returns, it is universally more favourable regarding the risk-return balance - as expected
in the practical context. This feature enables us to use CVaR as a reliable and robust risk measure within
portfolio optimization.

Additionally, stochastic dominance means that for a chosen expected return requirement, an investor can
identify an optimal portfolio that meets or exceeds this return with the lowest possible risk, as measured by
CVaR. Therefore, in this context, the optimal portfolio offers the desired expected return with the lowest
possible CVaR. This relationship lays the groundwork for the problem set-up.

For a minimum expected return threshold value 7™, the complete constrained portfolio optimization prob-
lem is as follows:

m“i,n F(w) := CVaR,[f(w, Z)] (1a)

st. R(w):=Egz[f(w,Z)] > r™n (1b)
N

0<w; <1l,i=1,...,N, Zwigl. (1c)

3 Bayesian Optimization

Bayesian Optimization - introduced in [Mockus| (1975) - is a powerful method for solving global optimization
problems. The method is applicable to scenarios where the objective function does not have a closed-form
expression, but noisy evaluations can be obtained at sampled points (Brochu et al., 2010). In this section,
we present an adaptation to the BO methods developed in |Gardner et al.| (2014) and |Gelbart et al.| (2014),
to handle the uncertainty caused by an environmental random variable Z.

3.1 Bayesian Optimization

BO is a probabilistic framework for optimizing black-box functions based on the Gaussian Process (GP)
model. In the unconstrained setting, BO sequentially evaluates the objective function at selected points, from
which a GP model of the objective function is constructed. The design point(s) are selected by maximizing
an acquisition function, which quantifies a desired trade-off between the exploration and exploitation of the
GP model. Commonly used acquisition functions include expected improvement, probability of improvement
and upper confidence bounds. The standard BO procedure for the unconstrained global minimization of a
function g(x) is given in Alg.
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Algorithm 1 Bayesian Optimization

Require: objective function g(z), acquisition function a(z, §)
Ensure: a global minimizer of g(x)
initialize the training data set Dy using an initial design

let t = 0;
while stopping criteria not met do
let t =t+1;

construct a GP model §;—1 using Dy_1;
let z; = argmax, a(x, §i—1);
let Dy = Dy 1 U{wy, g(at)};

end while

3.2 Bayesian Optimization with Constraints

In this section, we present the BO method for optimization problems with inequality constraints, largely
following |Gardner et al.| (2014) and |Gelbart et al.| (2014). Suppose that we have the following constrained
optimization problem:

mwin g(x) st ep(z) <0,k=1,.. K. (2)

To solve Eq.equation [2] with the BO method, we need to model all the constraint functions c(z) as
GPs. Namely, the GP model for the k-th constraint ci(z) is obtained from the constraint training set
Ck = {(x1,cx(1))s oy (Tm,cr(zm))}, where the constraint functions are evaluated at each design point.
Therefore, when selecting the design points, both the objective and constraints need to be considered, which
is accomplished by incorporating the constraints into the acquisition function.

Gardner et al.| (2014) propose modifying the Ezpected Improvement (EI) acquisition function. Let zT be
the current best-evaluated point, that is, g(z™) is the smallest in the current training set. We define the
improvement as

I(z) = max{0, g(z*) — g(z)} (3)
where g(x) is the GP model constructed with the current objective training set D. The EI acquisition
function is defined as

El(z) = E[I(z)|D],

where the expectation is taken over the posterior of g(x). We further adapt this acquisition function to
account for the constraints. Let é(z) be the GP model for the constraint function cx(x), conditional on the
training set C*, for k =1, ..., K and let

PF(x) =P(é1(z) <0, é2(z) <0, ..., éx(z) <0) (4)

which is the probability that a candidate point = satisfies all the constraints. In our present problem, we
only need to consider the case where the constraints are conditionally independent given x, as such, we have:

K
PF(z) = [[ P((x) <0). (5)
k=1

Finally, we define the new acquisition function to be
acw.g1(x) = El(z)PF(z), (6)

which is referred to as the constraint-weighted expected improvement (CW-EI) acquisition function in |Gard-
ner et al.| (2014). The constrained BO algorithm proceeds largely the same as the unconstrained version
(Alg. , except the following two main differences: (1) the constrained acquisition function in Eq. equation |§|
is used to select the new design points; (2) for each design point, both the objective and constraint functions
are evaluated. We hereafter refer to this constrained BO method as CW-EI BO.

Finally we note that in a class of BO approaches Frohlich et al.| (2020); |Cakmak et al.| (2020)); |[Daulton et al.
(2022D)), the underlying function f is modelled as a single GP for a fixed environmental variable Z during the
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optimization procedure and then Z is only random at implementation time. Whilst this may be appropriate
for many unconstrained problems, it is not for portfolio allocation problems. As will be explained later, we
intend to deal with the CVaR function and the expected return constraint seperately, and thus we cannot
use this single GP model framework.

4 BO for Portfolio Optimization

It is possible to directly apply the existing CW-EI BO algorithm to the portfolio optimization problem. This
is achieved through modelling the CVaR objective and expected return constraint functions as separate GPs.
To be specific, the CW-EI acquisition function is utilised to propose new portfolio weights w, from which a
standard Monte Carlo (MC) simulation obtains the distribution f(w,Z), to obtain the expected return and
CVaR for w - further detailed in the Appendix. The CVaR and expected return values for the proposed
weights w are then used to update the objective and constraint GPs, respectively. Therefore, in the standard
CW-EI BO procedure, a full evaluation of the objective and constraint functions must be performed for each
proposed design point to update the respective GPs.

As shown in Appendix A, it is possible to obtain an accurate estimate of the expected return with a relatively
low MC sample size, while a large number of MC samples is required to obtain an accurate estimate of the
CVaR (from the distribution f(w,Z)). As such, the computational cost of calculating CVaR, i.e., the
objective function, is significantly higher than the expected return constraint. In the numerical examples
provided in Section the cost for evaluating the expected return is around 1% of that for evaluating
CVaR. Therefore, the computational efficiency of BO algorithms can be enhanced by reducing the number
of CVaR evaluations.

4.1 Activeness of the Constraint

This section formalises several assumptions related to the portfolio optimization problem. These assumptions
and the subsequent Theorem, allow us to develop a new BO algorithm procedure to take advantage of the
computational efficiency gained by reducing the number of objective CVaR evaluations.

Before presenting the assumptions, we clarify our notation. It is important to note that f(w,z) < 0 indicates
losses, whereas VaR and CVaR are statements about the losses, so vy(w; ) > 0 and CVaR,[f(w,Z)] > 0
represent negative returns, or losses.

Now, let us introduce and prove several assumptions concerning the return function f(w,z) and the distri-
bution of Z - which are critical to our proposed method.

Assumption 1. (a) f(w,z) is a continuous function of w for any fized z; (b) f(0,2) = 0; (c) for a given
w € W and any fized z, if f(w,z) < 0, f(pw,2z) is a decreasing function of p € [0,1]; (d) there exists
a € (0,1) such that ve(w;a) >0V we W.

o Assumption 1.(a) ensures that small changes in portfolio allocation do not lead to abrupt or unpre-
dictable changes in outcomes; a reasonable expectation in most financial models.

o Assumption 1.(b) is straightforward; an absence of investment will result in a neutral (zero) financial
return.

o Assumption 1.(c) implies that, if a chosen portfolio allocation results in a loss for a certain scenario,
this loss does not increase if the total capital is proportionally reducedﬂ this reflects the intuitive
notion that if investing a certain amount leads to a loss, investing less should not lead to a greater
loss.

o Assumption 1.(d) implies that there always exists a choice of o € (0,1) so that no matter the
allocation w € W, vs(w; ) is positive, i.e., a loss. In simpler terms, no matter the allocation, there

LFor clarity, as p goes from 0 to 1, f goes from f(0,z) = 0 to f(w,z). As f(w,z) < 0, the function value f(pw,z) gets more
negative, so f is a decreasing function w.r.t. p € [0, 1].
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always exists some level of risk (represented by «), which can be chosen to ensure there is always
some risk of loss (as indicated by VaR). This is important, as it allows us - through the appropriate
choice of « - to just consider the loss scenarios when evaluating the associated CVaR.

From this, we obtain the following theorem:

Theorem 1 If function f(w,Z) and distribution p,(-) satisify Assumptions 1, « is chosen such that
ve(w,a) > 0V w € W, and solutions to the constrained optimization problem exist, then there must
exist a solution to problem denoted as w*, such that R(w*) = r™m,

Proof. First, assume that w’ is a solution to the constrained optimisation problem It follows directly
that R(w’) > r™i%. Obviously if R(w’) = r™i the theorem holds.

Now consider the case that R(w’) > r™ i.e., it does not lie on the boundary of the feasible region. From
Assumption 1.(a), R(w) is a continuous function of w in W. Next define a function

h(p) = R(pw')
for p € [0,1]. As R(w) is a continuous function in W, h(p) is a continuous function too.
From Assumption 1.(b), we know that h(0) = 0, and therefore,
h(0) =0 < r™™ < h(1) = R(wW')

According to the intermediate value theorem on continuous functions, there exists some p* € (0, 1) such that
h(p*) = R(p*w') = r™. Let w* = p*w’ denote this point, which lies on the constraint boundary - we wish
to compare F'(w*) and F(w'), i.e., the CVaR values at these two points for a fixed a.

From the Theorem’s assumption, we have vs(w’,a) > 0 and vg(w*,a) > 0. From Assumption 1.(c), we
know that for any z, if f(w',z) <0, then f(w',z) < f(w*,z) <0.

It follows that for any z € {z|f(w’,z) < —vs(w’, )}, we have

fw' z) < f(w*,z) < —vp(w*,a) <0.

As such, we can derive vy (w*, o) < vp(W', ), and obtain,

CVaRo[f(w", Z)] = ~E[f(w", Z)|f(W", Z) < —vy(
< -E[f(w", Z)|f(W",Z) < —vp(W'; )]
< -E[f(W,Z)[f(W,Z) < —vs(w'; )]
CVaR, [f(W, Z)].

wa)]

min

Therefore, x* is also a minimal solution w.r.t. the objective function and R(x*) = r™®. The proof is thus
complete. O

Simply put, Theorem 1 states that under some reasonable assumptions, the constraint [I] is active for at
least one solution. The result is rather intuitive, as it infers that a higher expected return can only be
obtained by increasing risk exposure and, as such, the CVaR. The optimal solution to our problem will likely
arise from an active constraint, where the minimum expected return requirement limits our ability to reduce
the CVaR further. This aligns with our earlier analysis of CVaR’s properties of stochastic dominance and
its relationship to returns. These observations provide a useful heuristic and motivate us to drive sampling
towards the active region.

4.2 Two-Stage Point Selection

Intuitively, Theorem 1 suggests that a solution to problem can be found close to the boundary of the
constraint. Therefore, based on the expected return value for a proposed portfolio weight w, evaluating the
CVaR objective function is unnecessary under the following two situations.
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Firstly, if the expected return is lower than the minimum constraint threshold, the proposed design point is
not feasible, so the CVaR function does not need to be evaluated. Secondly, if the expected return is too
high (i.e., not approximately active), the corresponding CVaR is likely far from optimal, so the objective
does not need to be evaluated.

We introduce a maximum expected return parameter, denoted by r™2*, set on the basis that those points

with expected returns higher than this parameter value are highly unlikely to be optimal for our objective.
Based on these observations, we propose a two-stage point selection procedure. The first stage selects a
design point based on the acquisition function. In the second stage, the expected return is calculated. If the
expected return satisfies the requirement that

r™t < R(x) = Eg[f(x, Z)] < 1™, (7)

the more expensive evaluation of our objective function is completed to determine the CVaR value. Then,
the GPs for both the constraint and objective functions are updated. If Eq. [7]is not satisfied, the proposed
point is rejected, the objective function is not evaluated, and only the GP for the constraint is updated to
ensure this point is not re-proposed.

This two-stage (2S) adaptation has the advantage of only fully evaluating those feasible and (approximately)
active points. As such, it reduces the number of evaluations of the expensive-to-evaluate CVaR objective.
The algorithm obtains two training sets, one for the CVaR objective and one for the expected return, with
the former being a subset of the latter.

4.3 New Acquisition Function

With the two-stage selection procedure, many more evaluations of the expected return constraint will be
completed than the CVaR objective; as such, the GP for the constraint will be more accurate than that of
the objective function. As a result, the CW-EI acquisition function will be effective at proposing feasible
points due to the quality of the constraint GP but may be poor at proposing points with low CVaR due to
the lower quality of the objective GP. To address this issue, we propose a new acquisition function based on
the active constraint assumption.

Namely, as the CW-EI acquisition function only accounts for the feasibility of the constraint, it should be
adapted to incorporate the activeness as well. Let R(w) be a GP model of the expected return R(w), define

PF(w) = P(r™" < R(w) < r=) (8)
as the probability that a chosen weight w is feasible and approximately active. Therefore, for w,
PF(wW) = PFpin(W) X PFax(W)
PFomin(W) = P(R(w) > r™™) (9)
PFimax(w) = P(R(w) <)

Combining Eq. [0 with the Expected Improvement, obtains:
AACW-EI (W) - EI(W)Plen (W)PFmax(W)a (10)

which is hereafter referred to as the active constraint-weighted expected improvement (ACW-EI) acquisition
function. Note that this acquisition function depends on both the GP models for CVaR and the expected
return. In this paper, it is written as acw.gr(w, F, R).

The new term PF, .« in the acquisition function encourages the proposed points to be approximately active,
which, by proxy, increases the likelihood that such a point is near-optimal with respect to the risk measure
objective function. The choice of r™#* is explored through additional numerical examples. Including this
parameter is a crucial aspect of our proposed BO algorithms. Two feasible points with different true objective
function values will likely have similar expected improvement values (before a full evaluation) due to the
low-quality GP for the objective function and equal probability of feasibility for the constraint. As such, the
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two points may be considered equal in the existing methodology. By introducing the new r™2* term - based
on the more accurate expected return GP - our proposed BO procedure can differentiate between these two
points during the selection procedure.

4.4 The Complete Algorithm

To complete our proposed algorithm, we must discuss the summation constraint:

0<w; <1,i=1,..,N, YN w <1,
which will be denoted as w € S in what follows. It is possible to deal with these constraints in the same
manner as the expected return, i.e., as GP models. However, unlike the expected return constraint, which is
probabilistic, the summation constraint is deterministic and easy to evaluate. As such, the constraint is im-
posed during the maximization of the acquisition function, by solving the following constrained maximization
problem: maxywes aacw-g1(w), which in this work is solved with the barrier method.

Finally, by combining the two-stage point selection, the ACW-EI acquisition function, and the constrained
acquisition maximization, our complete 25-ACW-EI BO algorithm is obtained, detailed in Alg.

Algorithm 2 The 2S-ACW-EI BO algorithm
Initialize the training data sets D (for the objective) and C' (for the constraint), using an initial design;
Lett=1;
while stopping criteria not met do
Construct a GP model F;_; using D;
Construct a GP model ]?Et,l using C';

Let W = arg maxwes aacw-er(W, Fr—1, R¢—1);
Evaluate the constraint R(w);
Let C = C U {w, R(W)};
if rmin < R(W) < r™2X then
Evaluate the objective F'(W);
Let D = DU{w,F(w)};
lett=t+1;
end if
end while

4.5 Batch Implementation

In most BO approaches, one uses an acquisition function to select a single point to evaluate. From which,
the posterior GPs are updated and the process is repeated. This is sequential, as each point is selected and
evaluated one at a time.

It is expensive to evaluate the objective function, and as such, it may be advantageous to evaluate several
points simultaneously, for example using parallel computers. In this regard, a batch implementation of
BO is desirable, where several design points are selected using the acquisition function and then evaluated
simultaneously in parallel. This section discusses a batch implementation for our proposed algorithms.

In most batch BO methods, the batch of design points is determined sequentially via a given point-selection
procedure, from which the objective and constraint functions are evaluated after the whole batch is obtained.
The batch implementation of the constraint-weighted expected improvement BO using the new acquisition
function (‘ACW-EI BO’) is henceforth denoted KB-ACW-EI BO.

To adapt our two-stage BO algorithm for batch implementation, we include the evaluation of the expected
return constraint in the point-selection procedure. Once the whole batch is obtained, the CVaR objective
is evaluated in parallel. More specifically, the expected return is evaluated for each new proposed point.
If the expected return satisfies Eq. [7], it is added to the batch and the constraint GP is updated. If the
expected return does not satisfy Eq.[7] the point is not added to our batch, but the GP for the constraint
is updated to ensure that the point is not proposed again. Once a batch has been determined, each point is
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fully evaluated - knowing that all batch points are both feasible and approximately active. The pseudo-code
for our two-stage batch selection is provided in Alg. [3|- henceforth, denoted by 25-KB-ACW-EL

The batch approach can be implemented in parallel, so it has a lower computational cost. However, the batch
approach requires a greater total number of samples to converge to the optimal solution - as demonstrated
in our numerical examples - due to the GPs being updated less frequently, so each sample is chosen based
on a less accurate GP compared to at the equivalent stage in the sequential approach.

Algorithm 3 Two-Stage Batch Selection
Require: a training set for the CVaR objective function D, a training set for the expected return constraint
C
Ensure: a batch of b design points,
let B=10
let « = 0;
while i < b do
propose a new design point w based on a prescribed selection rule;
evaluate the constraint R(w);
if rmin < R(W) < r™2X then
let B=BU{w};
let i =14 1;
end if
let C =CU{w,R(W)};
update the GP model for the constraint using C
end while

5 Numerical Experiments

We implement our proposed algorithms for two numerical examples and compare their results, and we also
provided an additional application example in Appendix C. In all examples, BO was implemented using
Trieste Berkeley et al.| (2023), a BO Python package built on TensorFlow. Within the package, we used the
default Matern 52 Kernel, with length scale 1.0 and noise variance 10~7. For acquisition maximization, we
include the summation constraint as a barrier function. The resulting problem is solved using the Efficient
Global Optimization (EGO) method provided by the package.

5.1 Mathematical example

We first consider a simple mathematical example, to demonstrate how the design points are selected by
the different methods. Adapted from |Gramacy et al.| (2016]), we seek to solve the following constrained
optimization problem:

min f(x) = —x1; — x9
X

3 1 (11)
s.t. ¢(x) =g - 229 — isin(Qw(x% —223)) >0

The solution to the problem is x = (0.918,0.540), where f(x) = 1.458. The original CW-EI method, ACW-
EI (i.e. the new acquisition function without the 2S process), and 2S-ACW-EI each use 10 initial points and
then a further 50 iterations. Figure [I] shows the design points obtained by each of the three algorithms.

The CW-EI and ACW-EIs methods perform similarly in this task, where the algorithms generate a significant
number of infeasible samples with high objective value, before moving towards the feasible region. Both
methods first establish a good GP for the objective function, encouraging samples to be generated in the
high objective region, before the GP for the constraint is fully formed. In contrast, in the 2S-ACW-EI
method, samples are only fully evaluated if they are in the active region, therefore after a few iterations, the
GP for the objective and constraint functions are weak and strong respectively. Thanks to the well-formed
GP model for the constraint, the acquisition function prioritises the generation of points in the feasible
region, in particular, in the active region, before finding those feasible points which are maximised for the
objective.
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CW-EI Method

ACW-El Method 28-ACW-EI Method

Figure 1: Plots showing the optimal solution (green-x) for numerical example one and the design points
generated by each of the three methods. The figures include both the fully evaluated points (red) and those
for which only the constraint was evaluated (blue). The feasible region is dark grey, the active region is light
grey and the infeasible region is white. The objective function contours are shown too.

5.2 Portfolio allocation examples
5.2.1 Problem setup

The following three examples are based on an investor seeking to optimally allocate capital to stock or
stock options, related to the twenty largest technology companies listed on American stock exchanges (both
the NYSE & Nasdaq) by market capitalisation. We take Z to be the stock price at the future time, the
distribution of which is determined by historical data. The parameter values are detailed in Appendix B.

In all three examples, the return function is

f(x,z) = inyi(zi)u (12)

where y; is the asset return - stated as a ratio, rather than absolute value - corresponding to the i-th company,
a function of its future stock price z;. In the three examples, we alter the asset type — namely the function
yi(z;) varies. In each example, we consider a lower and higher return constraint.

Example One. We seek to optimally allocate the investor’s capital directly to the twenty stocks, which
corresponds to setting y; = z;/z; with Z; being the stock’s purchase price. Example 1 has a constraint for
a = 0.0001 of r™" = (a) 1.45 and (b) 1.55.

Example Two. We seek to allocate the investor’s capital to European Call options, based on the

twenty stocks, held till expiry. A FEuropean Call option gives the owner the right to purchase the un-

derlying asset, for a pre-agreed strike price on a specified future date. Suppose that the present bid

price of the call option for the i-th stock is b; and the strike price is K;, then the asset return is
Yi = (max'(O, Zi — Kz) - bz)/bz

Example 2 has a constraint for o = 0.0001 of ™" = (a) 5.30 and (b) 5.40.

Example Three. We consider European Call options, but where the return is derived from selling the
option after six months rather than holding it to maturity. As such, the return depends on the change in
the option price. Option prices can be modelled using quadratic functions of the underlying asset returns,
realised through a delta-gamma approximation, that is, a second-order Taylor expansion of the portfolio
return [Zymler et al.| (2013)). Namely, at a particular future time, the associated call option return becomes

1
yi=Aie+ T e
2
with € = z; — z;. Example 3 has a constraint for a = 0.0001 of 7™ = (a) 2.90 and (b) 3.00.

10
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Sequential BO Methods Batch BO Methods

CW-EI ‘ ACW-EI ‘ 2S-ACW-EI KB-ACW-EI ‘ 2S-KB-ACW-EI
la CVaR (SD) 0.202 (0.013) 0.199 (0.013) 0.184 (0.012) 0.199 (0.012) 0.191 (0.012)
la Ex Return (SD) | 1.473 (0.012) 1.485 (0.012) 1.473 (0.012) 1.479 (0.012) 1.478 (0.012)
1b CVaR (SD) 0.266 (0.012) 0.253 (0.012) 0.247 (0.012) 0.263 (0.014) 0.249 (0.013)
1b Ex Return (SD) | 1.581 (0.012) 1.577 (0.012) 1.561 (0.012) 1.580 (0.012) 1.567 (0.012)
2a CVaR (SD) 0.317 (0.013) 0.291 (0.015) 0.275 (0.014) 0.302 (0.013) 0.287 (0.013)
2a Ex Return (SD) | 5.335 (0.013) 5.320 (0.012) 5.302 (0.013) 5.341 (0.012) 5.322 (0.012)
2b CVaR (SD) 0.336 (0.014) 0.320 (0.014) 0.303 (0.013) 0.322 (0.013) 0.308 (0.013)
2b Ex Return (SD) | 5.427 (0.013) 5.428 (0.012) 5.417 (0.013) 5.433 (0.013) 5.420 (0.012)
3a CVaR (SD) —0.094 (0.012) | —0.122 (0.014) | —0.132 (0.013) | —0.102 (0.012) | —0.131 (0.014)
3a Ex Return (SD) | 3.105 (0.013) 3.030 (0.013) 2.938 (0.012) 3.082 (0.013) 2.97 (0.013)
3b CVaR (SD) —0.075 (0.013) | —0.083 (0.013) | —0.094 (0.014) | —0.064 (0.012) | —0.075 (0.013)
3b Ex Return (SD) | 3.113 (0.013) 3.075 (0.013) 3.056 (0.012) 3.125 (0.012) 3.089 (0.013)

Table 1: Average of the best objective and constraint values across repeated experiments: in each case, the
best result among the methods is shown in bold. The standard deviations are given in parentheses.

Sequential BO Methods Batch BO Methods

CW-EI [ ACW-EI [2S-ACW-EI | KB-ACW-EI | 25-KB-ACW-EI
la CVaR (SD) 0.202 (0.013) | 0.198 (0.011) | 0.188 (0.014) | 0.201 (0.0.014) | 0.194 (0.011)
1la Ex Return (SD) | 1.473 (0.012) | 1.473 (0.018) | 1.471 (0.013) | 1.477 (0.016) | 1.474 (0.017)
2a CVaR (SD) 0.317 (0.013) | 0.299 (0.014) | 0.281 (0.014) | 0.308 (0.011) | 0.293 (0.017)

2a Ex Return (SD)

5.335 (0.013)

5.324 (0.013)

5.317 (0.016)

5.331 (0.012)

5.323 (0.013)

3a CVaR (SD)

—0.094 (0.012)

—0.115 (0.016)

—0.125 (0.013)

—0.112 (0.014)

—0.128 (0.015)

3a Ex Return (SD)

3.105 (0.013)

3.103 (0.014)

3.083 (0.018)

3.102 (0.018)

3.061 (0.013)

Table 2: Same results as those in Table [1} but obtained with ™% = 105%™,

5.2.2 Experimental Results

In all three examples, we applied the three sequential methods and two batch methods: one based on
standard CW-EI and also our proposed 2S batch method. We used 10 initial points, 110 iterations for the
sequential methods and 11 batches of size 10 for the batch methods. In our numerical experiments, we set
rmax = 110%r™" (i.e., r™a is 10% higher than the minimal expected return r™®). All the experiments are
repeated 20 times and the results are given in Table

For all three examples, our proposed sequential methods outperform the standard BO approach, finding a
lower CVaR objective value whilst meeting the feasibility condition. In addition, the two-stage approach
produces better results than the one-stage approach. The same is true for the batch methods, where the
two-stage method outperforms the one-stage method. The batch methods obtain better results than the
standard sequential BO method but perform worse than the best sequential implementations. This is as
expected, due to the GP only being updated after a full batch of samples has been identified, in contrast
to the GP being updated after each new sample is proposed - as in the sequential approach. Using parallel
implementation the batch method is significantly faster than the sequential approach. To further illustrate
the results, we plot the best solution’s objective value after each iteration in Figure Consistently, the
best solution of 25-ACW-EI decreases faster than the other two sequential methods. The two-stage batch
method performs better than the standard implementation, in all test cases.

Finally we want to note that a key parameter in the proposed algorithm is 7™*. Our numerical experiments
found that setting ™% = 110%™ generally works well. To test more rigorously how sensitive our proposed
BO algorithm is to this parameter, we provide further numerical results obtained with r™a = 105%™,
in Table These results are quantatively similar to those in Table [I| and thus show that our proposed
algorithms are not highly sensitive to the choice of r™&*.

11
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Figure 2: The best objective value obtained after each iteration for the portfolio allocation problems across
the existing method (CW-EI BO) and the four new proposed methods.

6 Conclusion

In summary, we consider the optimal portfolio allocation problem which aims to minimize a computationally
demanding risk measure, subject to a minimum expected return constraint. We propose four new BO
algorithms specifically designed for such problems that significantly reduce the number of evaluations of the
expensive objective function. Furthermore, the proposed methods take advantage of the special properties of
portfolio optimisation problems, by developing a new acquisition function, a two-stage point selection process,
and a batch implementation to take advantage of parallel computing. We expect that the proposed methods
can be useful in problems arising from various fields, and inparticular we plan to explore its application to
portforlio allocation problems in reinforcement learning (Ghosh et al.| (2022) in the future.

References

Alexander, S., Coleman, T. F., and Li, Y. (2006). Minimizing cvar and var for a portfolio of derivatives.
Journal of Banking & Finance, 30(2):583-605.

12



Under review as submission to TMLR

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk. Mathematical
finance, 9(3):203-228.

Bali, T. G. and Cakici, N. (2004). Value at risk and expected stock returns. Financial Analysts Journal,
60(2):57-73.

Berkeley, J., Moss, H. B., Artemev, A., Pascual-Diaz, S., Granta, U., Stojic, H., Couckuyt, I., Qing, J.,
Loka, N., Paleyes, A., Ober, S. W., Goodall, A., Ghani, K., and Picheny, V. (2023). Trieste.

Brochu, E., Cora, V. M., and de Freitas, N. (2010). A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint

arXiv:1012.2599.

Cakmak, S., Astudillo Marban, R., Frazier, P., and Zhou, E. (2020). Bayesian optimization of risk measures.
Adwvances in Neural Information Processing Systems, 33:20130-20141.

Daulton, S., Cakmak, S., Balandat, M., Osborne, M. A., Zhou, E., and Bakshy, E. (2022a). Robust multi-
objective bayesian optimization under input noise. In International Conference on Machine Learning,
pages 4831-4866. PMLR.

Daulton, S., Eriksson, D., Balandat, M., and Bakshy, E. (2022b). Multi-objective bayesian optimization over
high-dimensional search spaces. In Uncertainty in Artificial Intelligence, pages 507-517. PMLR.

Embrechts, P., Schied, A., and Wang, R. (2022). Robustness in the optimization of risk measures. Operations
Research, 70(1):95-110.

Eriksson, D. and Poloczek, M. (2021). Scalable constrained bayesian optimization. In International Confer-
ence on Artificial Intelligence and Statistics, pages 730-738. PMLR.

Fleischhacker, A., Lettner, G., Schwabeneder, D., and Auer, H. (2019). Portfolio optimization of energy
communities to meet reductions in costs and emissions. Fnergy, 173:1092-1105.

Frazier, P. I., Powell, W. B., and Dayanik, S. (2008). A knowledge-gradient policy for sequential information
collection. STAM Journal on Control and Optimization, 47(5):2410-2439.

Frohlich, L., Klenske, E., Vinogradska, J., Daniel, C., and Zeilinger, M. (2020). Noisy-input entropy search for
efficient robust bayesian optimization. In International Conference on Artificial Intelligence and Statistics,
pages 2262-2272. PMLR.

Gaivoronski, A. A. and Pflug, G. (2005). Value-at-risk in portfolio optimization: properties and computa-
tional approach. Journal of risk, 7(2):1-31.

Gardner, J. R., Kusner, M. J., Xu, Z. E., Weinberger, K. Q., and Cunningham, J. P. (2014). Bayesian
optimization with inequality constraints. In ICML, volume 2014, pages 937-945.

Gelbart, M. A., Snoek, J., and Adams, R. P. (2014). Bayesian optimization with unknown constraints. arXiv
preprint arXiv:1403.5607.

Ghaoui, L. E.; Oks, M., and Oustry, F. (2003). Worst-case value-at-risk and robust portfolio optimization:
A conic programming approach. Operations research, 51(4):543-556.

Ghosh, S., Wynter, L., Lim, S. H., and Nguyen, D. T. (2022). Neural-progressive hedging: Enforcing con-
straints in reinforcement learning with stochastic programming. In Uncertainty in Artificial Intelligence,
pages 707-717. PMLR.

Gramacy, R. B., Gray, G. A., Le Digabel, S., Lee, H. K., Ranjan, P., Wells, G., and Wild, S. M. (2016).
Modeling an augmented lagrangian for blackbox constrained optimization. Technometrics, 58(1):1-11.

Gramacy, R. B. and Lee, H. K. H. (2011). 2290ptimization Under Unknown Constraints. In Bayesian
Statistics 9. Oxford University Press.

13



Under review as submission to TMLR

Hamdi, F., Ghorbel, A., Masmoudi, F., and Dupont, L. (2018). Optimization of a supply portfolio in
the context of supply chain risk management: literature review. Journal of intelligent manufacturing,
29:763-788.

Igbal, J., Azher, S., and ITjaz, A. (2010). Predictive ability of value-at-risk methods: evidence from the
karachi stock exchange-100 index. Technical report, EERI Research Paper Series.

Kheybari, S., Ishizaka, A., and Salamirad, A. (2023). A new hybrid risk-averse best-worst method and port-
folio optimization to select temporary hospital locations for covid-19 patients. Journal of the Operational
Research Society, 74(2):509-526.

Krokhmal, P.; Palmquist, J., and Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk
objective and constraints. Journal of risk, 4:43—68.

Kusakawa, S., Takeno, S., Inatsu, Y., Kutsukake, K., Iwazaki, S., Nakano, T., Ujihara, T., Karasuyama, M.,
and Takeuchi, I. (2022). Bayesian optimization for cascade-type multistage processes. Neural Computation,
34(12):2408-2431.

Lam, R. and Willcox, K. (2017). Lookahead bayesian optimization with inequality constraints. Advances in
Neural Information Processing Systems, 30.

Letham, B., Karrer, B., Ottoni, G., and Bakshy, E. (2019). Constrained bayesian optimization with noisy
experiments.

Mausser, H. and Rosen, D. (1999). Beyond var: from measuring risk to managing risk. In Proceedings of
the IEEE/IAFE 1999 Conference on Computational Intelligence for Financial Engineering (CIFEr)(IEEE
Cat. No. 99TH8408), pages 163-178. IEEE.

McKay, R. and Keefer, T. E. (1996). Var is a dangerous technique. Corporate Finance Searching for Systems
Integration Supplement, 9:30.

Mockus, J. (1975). On bayesian methods for secking the extremum. In Optimization techniques IFIP technical
conference, pages 400-404. Springer.

Nguyen, Q. P., Dai, Z., Low, B. K. H., and Jaillet, P. (2021a). Optimizing conditional value-at-risk of
black-box functions. Advances in Neural Information Processing Systems, 34.

Nguyen, Q. P., Dai, Z., Low, B. K. H., and Jaillet, P. (2021b). Value-at-risk optimization with gaussian
processes. In International Conference on Machine Learning, pages 8063-8072. PMLR.

Pflug, G. C. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. Probabilistic
constrained optimization: Methodology and applications, pages 272-281.

Picheny, V., Moss, H., Torossian, L., and Durrande, N. (2022). Bayesian quantile and expectile optimisation.
In Uncertainty in Artificial Intelligence, pages 1623-1633. PMLR.

Rockafellar, R. T. and Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of risk, 2:21-42.

Zymler, S., Kuhn, D., and Rustem, B. (2013). Worst-case value at risk of nonlinear portfolios. Management
Science, 59(1):172-188.

14



	Introduction
	Optimal Portfolio Allocation
	Risk Measures
	Problem Set-up

	Bayesian Optimization
	Bayesian Optimization
	Bayesian Optimization with Constraints

	BO for Portfolio Optimization
	Activeness of the Constraint
	Two-Stage Point Selection
	New Acquisition Function
	The Complete Algorithm
	Batch Implementation

	Numerical Experiments
	Mathematical example
	Portfolio allocation examples
	Problem setup
	Experimental Results


	Conclusion

