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1 VFN-IF OUTPERFORMS THE OFFICIAL PROTEINMPNN IN DESIGNABILITY.

As far as we know, VFN-IF is the first method to surpass ProteinMPNN in designability
(scRMSD and scTM). We reproduced VFN-IF based on the official GitHub repository of Protein-
MPNN, aligning the settings of VFN-IF with those of ProteinMPNN. Our results are groundbreaking,
showing that VFN-IF outperforms ProteinMPNN in designability by up to 14%. This implies that
VFN-IF will significantly enhance the designability of widely used protein design methods. We will
release the code and weights of this model for community use, marking a significant contribution of
this work. We have incorporated this information into Table 5 of the paper. In the next version, this
information will be added to Table 4.

The experimental results are presented in Table 2 below. Due to the time limit during the discussion
period, the program for the setting with num sequence = 100 is still running. This is because under
this setting, each sample requires time-consuming ESMFold predictions for 100 structures. We will
include the results for this setting in the next version. However, the metrics for num sequence = 8 are
the official setting used by ProteinMPNN, and the following experiments are sufficient to demonstrate
the superiority of VFN-IF.

Diversity and novelty metrics are used to evaluate the diffusion model, not the performance of inverse
folding. For the sake of brevity, we have omitted diversity and novelty metrics from the table. If
readers are interested, these metrics are detailed in Table 4 and Table 5 in the paper.

Metric

Setting Noise Scale 1.0 0.5 0.1 0.1

Number Steps 500 500 500 100

Number Sequences 8 8 8 8

D
es

ig
na

bi
lit

y

scTM0.5

FrameDiff + ProteinMPNN 53.58% 76.42% 77.41% 76.67%
VFN-Diff + ProteinMPNN 67.04% 81.23% 83.95% 83.83%
VFN-Diff + VFN-IF 72.84% 91.60% 93.46% 90.49%

scRMSD2

FrameDiff + ProteinMPNN 10.62% 23.46% 28.02% 26.42%
VFN-Diff + ProteinMPNN 25.93% 40.00% 44.20% 40.25%
VFN-Diff + VFN-IF 26.79% 53.33% 58.27% 51.36%

Table 1: Comparison of the complete pipeline. All settings and metrics are aligned with Table 4 in
the main paper. Detailed explanations for scTM and scRMSD can be found in the main paper and the
appendix. Here, VFN-IF adopts the settings of ProteinMPNN.

1.1 ADDITIONAL EXPERIMENTS BASED ON RFDIFFUSION

We replaced ProteinMPNN in the RFDiffusion[1] (A concurrent study) pipeline with VFN-IF and
achieved an also approximately 6% improvement in designability. The results are shown in Table :

Diffusion Models Inverse Folding Models scTM0.5 scRMSD2

RFDiffusion ProteinMPNN 87% 35%
RFDiffusion VFN-IF 92% 41%

Table 2: Comparison based on RFDiffusion.
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Due to time constraints of discussion, the results above are based on the analysis of a protein with a
length of 300 residues. However, this is sufficient to demonstrate the efficacy of VFN-IF.

2 THE COMPARISON BETWEEN VFN AND IPA

In this section, we first present the pseudocode for IPA and VFN to provide an intuitive comparison,
as shown in subsection 2.1. Subsequently, we elaborate on the differences between IPA and VFN,
as outlined in subsection 2.2. In order to further elucidate the atom representation bottleneck, we
expound on how VFN addresses the bottleneck in subsection 2.3. Finally, in subsection 2.4, we
introduce the pipeline of IPA to facilitate our readers’ understanding of the specific processes involved
in IPA.

2.1 THE PSEUDO-CODE FOR VFN AND IPA

In this section, we initially compare IPA with VFN in the provided pseudocode 1 and 2 below and
explain the meaning of the notation.

Algorithm 1 The pseudo-code for the IPA mod-
ule.
1: def IPA({si}, {eij}, {Ti}):
2: qi,ki,vi = Linear(si)

3: q⃗il, k⃗il, v⃗il = Linear(si)

4: q⃗il, k⃗il, v⃗il ← Ti ◦ {q⃗il, k⃗il, v⃗il}
5: apoint

ij =
∑

l ∥q⃗il − k⃗jl∥
–

6: anode
ij = q⊤i kj

7: aedge
ij = Linear(eij)

8: ai,j = softmaxj(a
node
ij + aedge

ij + apoint
ij )

–

9: onode
ij =

∑
j ai,jvi

10: oedge
ij =

∑
j ai,jeij

11: o⃗point
il = T−1

i ◦
∑

j ai,j v⃗jl

12: si ← Linear(oedge
ij ,onode

ij , o⃗point
il )

–

13: return {si}

Algorithm 2 The pseudo-code for the VFN mod-
ule.
1: def VFN({si}, {eij}, {Ti←j}):

–

2: q⃗il = Linear(si)

3: k⃗jl = Ti←j ◦ q⃗jl

4: h⃗k =
∑

l w
a
klq⃗il +

∑
l w

b
klk⃗jl

5: gi,j = concatk(
h⃗k

∥h⃗k∥
,RBF(∥h⃗k∥))

–

–

6: ai,j = softmaxj(MLP(si, sj ,gi,j , ei,j))

7: vi,j = MLP(sj ,gi,j , ei,j)

8: oi =
∑

j ai,jvi,j

–

–

9: si ← si +MLP(oi)

10: ei,j ← MLP(si, sj ,gi,j , ei,j)

11: return {si}, {ei,j}

In the aforementioned pseudocode, we largely adhere to the notations used in the main text, with some
distinctions in certain notations. Specifically, q⃗il denotes the l-th feature vector of the i-th node, and
k⃗jl follows the same convention. Ti represents the transformation matrix from the i-th local frame
(residue frame) to the global frame, while T−1i signifies the transformation matrix from the global
frame to the i-th local frame. Ti←j denotes the transformation matrix from the j-th local frame to the
i-th local frame. si represents the representation of the i-th node, and eij represents the representation
of the edge between i-th and j-th nodes. wa

kl and wb
kl are learnable weights. The specific process of

VFN is detailed in the main text; the procedure for IPA is elaborated in subsection 2.4. For the sake
of conciseness in comparison, the pseudocode overlooks certain non-essential factors. For instance,
in the pseudocode, we illustrate a single-head attention mechanism, but in fact, both IPA and VFN
employ a multi-head attention mechanism.
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2.2 THE DIFFERENCES BETWEEN IPA AND VFN

As indicated in the pseudocode, the attention mechanism for virtual atoms in IPA and VFN is
fundamentally different. The most crucial distinction lies in the fact that, due to the constraints of
SE(3) invariance, IPA cannot directly employ an activation function when extracting features for
virtual atoms, as explained in subsection 2.3. In contrast, VFN circumvents this limitation and utilizes
a vector field operator to extract features, denoted as h⃗k, and complementing it with an MLP (ReLU
inside) for feature extraction. To accommodate this design choice, the overall architecture of VFN
diverges significantly from that of IPA.

2.3 BYPASSING IPA BOTTLENECKS

The design of IPA has led to the atom representation bottleneck, while the design of VFN avoids
this issue. Specifically, in IPA, qi and kj are with respect to the global frame, and the operator
corresponding to qi,kj needs to maintain SE(3) invariance. This constraint results in the inability to
directly apply activation functions on qi,kj , as doing so would compromise the SE(3) invariance.
Consequently, IPA can only employ operations similar to distance pooling. We refer to this limitation
as the atom representation bottleneck.

In VFN, we place these virtual atoms in the same local frame Ti, utilizing the local frame to ensure
SE(3) invariance, as proved in subsection A.2.6. This eliminates the need to impose constraints on
operators to achieve SE(3) invariance. Operators in VFN can freely utilize activation functions without
disrupting SE(3) invariance. This characteristic allows VFN to circumvent the atom representation
bottleneck present in IPA.

2.4 THE PIPELINE OF IPA

As shown in pseudocode 1, IPA employs an attention mechanism. Unlike VFN, its attention
mechanism consists of three parts: node attention, edge attention, and point attention. Specifically,
node attention and edge attention utilize common methods. In particular, node attention employs a
mechanism similar to that of the transformer, obtaining attention weights anode

ij through dot product of
qi and kj . In edge attention, the representation of edges eij introduces attention bias aedge

ij through a
linear layer. Point attention is the core of IPA, where attention weights o⃗point

il are obtained through
a distance pooling operation on the virtual atomic distances (∥q⃗il − k⃗jl∥). Subsequently, these
attention weights are summed and normalized through softmax to obtain the final attention weights
ai,j . These attention weights ai,j are then used to calculate weighted averages for the corresponding
representations vi, eij , v⃗jl, producing the output for each type of attention. onode

ij ,oedge
ij , o⃗point

il . Finally,
these outputs are collectively updated for each node’s representation si through a linear layer,
achieving the frame modeling.
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