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Abstract—This paper introduces an event-triggered secure
control scheme for human-in-the-loop multi-agent systems in the
context of DoS attacks. The integration of human intelligence
and decision-making significantly enhances system security, as a
human provides command signals to a non-autonomous leader
agent. To determine unknown states, an adaptive neural state
observer utilizes neural networks to approximate nonlinear
functions, while a relative threshold-based event-triggered con-
trol strategy is introduced to optimize communication resource
usage. At the same time, a predictor is developed to monitor
potential compromises in the edges of the multi-agent network
to counteract attacks. Using Lyapunov analysis, it is shown that
the proposed secure control protocol is capable of maintaining
bounded closed-loop signals despite the occurrence of attacks.
Finally, the effectiveness of the proposed scheme is validated by
the simulation results.

Index Terms—Multi-agent systems, DoS attacks, event-
triggered control, Human in the loop.

I. INTRODUCTION

IN many earlier studies on coordination control [1]–[5], it is
commonly assumed that every agent, including the leader,

operates independently within a multi-agent system (MAS).
This setup takes advantage of advancements in artificial in-
telligence, which allows for decreased human involvement.
Although it offers a clear benefit, the idea of complete
autonomy seems somewhat idealistic when considering the
complexities of decision-making in emergencies. This can lead
to significant consequences, as evidenced by the documented
fatalities associated with Tesla’s self-driving cars and the
crashes involving Boeing 737 aircraft [6]. Given the potential
for emergencies, it is standard practice to incorporate a human
operator to support the autonomous system in performing
tasks. Consequently, research on human-in-the-loop (HiTL)
control has been carried out, as detailed in [7]–[9].
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Generally, network attacks are broadly classified as decep-
tion attacks [10] and denial of service (DoS) attacks [11].
In contrast to the injection of malicious information, loss
of communication can isolate an agent, thus impeding the
effective functioning of multi-agent systems. Taking this into
account, experts in control and computational intelligence have
made efforts to combat DoS attacks, resulting in successful
outcomes. The authors in [12] established sufficient conditions
for multi-agent systems under DoS attacks with limited energy.
Subsequently, this result was further extended in [13], which
also addressed attacks on multiple transmission channels.
Similarly, in [14], the authors proposed a recovery mechanism
designed to restore communication in network systems during
interruptions. Beyond mitigating network attacks, the effective
use of communication resources significantly impacts system
performance. Event-triggered control is crucial for reducing
unnecessary information updates and deserves greater focus. In
an event-triggered framework, to avoid unnecessary transmis-
sions, the actuator interacts with the device only when specific
trigger conditions are satisfied. In [15], Tabuada et al. first
introduced an event-triggered control scheme for analyzing
nonlinear systems. Following this, a fixed-threshold strategy
with a constant upper limit for the trigger condition was imple-
mented in [16] to design a control scheme for linear systems.
Although this strategy is simple and easy to implement, it may
lead to reduced system performance. To address this issue, In
[17], Xing et al. advanced the approach from a fixed-threshold
to a relative-threshold method, allowing the trigger threshold
to be dynamically adjusted according to the magnitude of
the trigger error. This approach provides a better balance
between system performance and communication resource
consumption. Drawing from the previous research, this paper
investigates secure control mechanisms within HiTL multi-
agent systems using an event-triggered approach, where the
control inputs of leaders vary dynamically over time due to
human intervention. Unlike existing control schemes [18]–
[22], this paper explores a more comprehensive approach, tak-
ing into account that inter-agent communication within multi-
agent networks may be compromised by malicious attacks. To
solve the issue of unavailable state variables, a method for state
reconstruction is implemented, alongside an approach that
reduces communication frequency and minimizes triggering
events by using a threshold-based event-trigger mechanism.
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II. PROBLEM AND FUNDAMENTALS

A. Graph Theory
A graph is specified by P = (S,W,A), where S =

{S1, . . . , SN+M}, with S1 = {1, . . . N} and SN+M = {N +
1, . . . N +M}. The set W = {(i,m) ∈ S × S} represents
the edges, while A = [aim] ∈ R(N+M)×(N+M) denotes
the adjacency matrix. These elements are associated with the
sets of nodes, followers, leaders, edges, and the matrix of
adjacency in that sequence. Define zi as the collection of
nodes adjacent to node i, given by zi = {m|(i,m) ∈ W}.
The entries in the adjacency matrix A can be characterized
by aim > 0 if (m, i) ∈ W ; otherwise, aim = 0. This implies
that (m, i) ∈ W , then agent m obtains data from agent i.
The scenario where self-connections are absent, indicated by
(i, i) /∈W , is analyzed. The adjacency matrix element aim is
defined as 1 if (i, i) ∈W , and 0 if (i, i) /∈W . The Laplacian
matrix L is given by L = D − A ∈ R(N+M)×(N+M), where
D = diag {d1, . . . dN} ∈ R(N+M)×(N+M) represents the in-
degree matrix, with di =

∑N+M
m=1,m̸=i aim.

B. System Model
In a MAS with N followers and M leaders, the behavior

for each ith follower is described by

κ̇i,m = κi,m+1 + gi,m (κ̄i,m)

κ̇i,n = ui + gi,n (κ̄i,n)

yi = κi,1, (1)
i = 1, 2, . . . , N,m = 1, 2, . . . , n− 1

where the state vectors are given by κ̄i,m =

[κi,1,κi,2, . . . ,κi,m]
T ∈ Rm, and yi ∈ R denotes the

system outputs. The nonlinear functions gi,m (·) and gi,n (·)
denote not explicitly known and smooth.

The behavior of the leader is described by

κ̇0,j = −κ0,j + u0

ȳ0,j = κ0,j

where the states of the leader are represented by κ0,j , while
ȳ0,j denotes the system output, j = 1, 2. The control input u0
is an unknown bounded parameter.

The subsequent lemma will be utilized in the design of the
adaptive controller.

Lemma 1: ( [23]) For any variable π ∈ R, the following
inequality holds

0 ≤ |π| − π2

√
π2 + o2

≤ o

where o > 0 is a constant.
To identify potential issues, a detector h (i,m, t) has been

created to monitor the status of the edge (i,m) ∈ W . When
agent i obtains data from agent m at time t, h (i,m, t) is set to
0; otherwise, it is set to 1. This mechanism helps agent verify
whether the communication link to agent m is compromised.

Therefore, the adjacency matrix Ā = [āim], which includes
the monitoring information, is expressed as

āim =

{
aim, h (i,m, t) = 0
0, h (i,m, t) = 1

(2)

C. Relative Threshold Event-Triggered Control Strategy

To reduce the consumption of communication resources,
an adaptive relative threshold-based event-triggered control
method [17] was developed.

The following outlines the devised triggering mechanism:

ui (t) = ϑi (ti,χ) , ∀t ∈ [ti,χ, ti,χ+1) , χ ∈ N∗ (3)
ti,χ+1 =

{
inf {t > ti,χ ||αi (t)| ≥ ζi |ui|+ µi} (4)

where ϑi (t) represents the controller to be designed subse-
quently. The decision to update the input ui (t) is determined
by the triggering error αi (t) = ϑi (t) − ui (t). The constants
ζi and µi, which are greater than 0.

From [24], within the time interval [ti,χ, ti,χ+1), the expres-
sion ϑi (t) = (1 + ri,1 (t) ζi)ui (t) + ri,2 (t)µi holds, where
|ri,1 (t)| ≤ 1 and |ri,2 (t)| ≤ 1. Consequently, the input ui (t)
can be expressed as: ui (t) =

ϑi(t)
1+ri,1(t)ζi

− ri,2(t)µi

1+ri,1(t)ζi
.

Radial basis function neural networks (RBFNNs) are fre-
quently used for modeling nonlinear functions due to their
strong ability to approximate functions effectively.

The following assumption is essential for designing the
neural state observer.

Assumption 1: ( [25]) Assuming function g (·) meets the
global Lipschitz condition, specific constants ϱi for i =
1, 2, ..., n can be identified to satisfy

|gi (κi)− gi (κ̂i)| ≤ ϱi ∥κi − κ̂i∥ (5)

where κ̂i = [κ̂i,1, . . . , κ̂i,n]
T represents the estimation of κi.

III. EVENT-TRIGGERED SECURE CONTROL SCHEME

Given the system’s unobserved states, it is crucial to design
an adaptive state estimation approach as outlined below.

˙̂κi,m = κ̂i,m+1 + ϱi,m (yi − κ̂i,1) + β̂T
i,mωi,m (κ̂i,m)

˙̂κi,n = ui + ϱi,n (yi − κ̂i,1) + β̂T
i,nωi,n (κ̂i,n) (6)

where κ̂i = [κ̂i,1, . . . , κ̂i,n]
T represents the estimated values

of κi.
Reformulate the the dynamics described in (1)

κ̇i = Θ̄iκi +
n∑

m=1

Ui,m (gi,m (κ̄i) +△gi,m)

+Ūiui +Miyi (7)

where △gi,m = gi,m (κ̄i)−gi,m (κ̂i), Θ̄i = Θi−MiK
T
i , and

Θi =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0


Mi = [ϱi,1, ϱi,2, · · · , ϱi,n]T ,KT

i = [1, 0, · · · , 0]
Ui,m = [0, · · · , 1, · · · , 0]T , Ūi = [0, · · · , 0, 1]T

The observer outlined in (6) undergoes reformulation to

˙̂κi = Θ̄iκ̂i +
n∑

m=1

Ui,m (gi,m (κ̂i) +△gi,m)

+Ūiui +Miyi (8)
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Let ei = κ̄i − κ̂i represent the estimation error. The
differential of this error is given by

ėi = Θ̄iei +
n∑

m=1

Ui,m

[
β̃T
i,mωi,m (κ̂i) + εi,m +△gi,m

]
where ei = [ei,1, . . . , ei,n]

T . |εi,m| ≤ δi,m.
The vector Mi is selected, and the matrix Θ̄i is strictly

Hurwitz. Consequently, there exists a matrix Ξ̄i = Ξ̄T
i > 0,

and the matrix Ψ̄i = Ψ̄T
i > 0 satisfies

Θ̄T
i Ψ̄i + Ψ̄iΘ̄i = −Ξ̄i

The candidate Lyapunov function Ve is given by

V0 = eTi Ψ̄iei

The differential of the Lyapunov function V0 can be repre-
sented by

V̇0 = −eTi Ξ̄iei + 2eTi Ψ̄i

n∑
m=1

Ui,m

×
[
β̃T
i,mωi,m (κ̂i) + εi,m +△Gi

]
(9)

By evaluating

2eTi Ψ̄i

n∑
m=1

Ui,m

[
β̃T
i,mωi,m (κ̂i) + εi,m

]
≤ 2 (n+ 1) eTi ei +

∥∥Ψ̄i

∥∥2 n∑
m=1

(
β̃T
i,mβ̃i,m + δ2i,m

)
(10)

2eTi Ψ̄i

n∑
m=1

Ui,m△gi,m

≤

(
n+

∥∥Ψ̄i

∥∥2 n∑
m=1

ϱ2i,m

)
eTi ei (11)

Substituting (11), (12) into (10), it can be determined that

V̇0 ≤ −

(
λmin

(
Ξ̄i

)
− 3n− 2−

∥∥Ψ̄i

∥∥2 n∑
m=1

ϱ2i,m

)
eTi ei

+
∥∥Ψ̄i

∥∥2 n∑
m=1

(
β̃T
i,mβ̃i,m + δ2i,m

)
The coordinate transformations can be specified in the

following way:

zi,1 =
N∑

m=1

āim (κi,1 − κm,1) +
N+M∑

m=N+1

āim (κi,1 − yj,r)

zi,m = κ̂i,m − θi,m (12)

where the dynamics errors are denoted by zi,m (for m =
2, . . . , n), while θi,m denotes the filter’s output.

The outputs yjr, ẏj,r of multiple leaders are bounded in
their trajectories.

The following expression represents the error compensation
signal:

ρ̇i,1 = −ci,1ρi,1 +ϖi,1 (θi,2 − τi,1 + ρi,2)

ρ̇i,2 = −ci,2ρi,2 + (θi,3 − τi,2)

−ϖi,1ρi,1 + ρi,3

ρ̇i,m = −ci,mρi,m + (θi,m+1 − τi,m)

−ρi,m−1 + ρi,m+1

ρ̇i,n = 0 (13)

where m = 1, · · · , n. The constants ci,1, ci,2, . . . , ci,m > 0.
ρi,m (0) set to 0 for m from 1 to n. ϖi,1 =

∑N+M
m=1 āim.

Details regarding the virtual controllers τi,1, τi,2, . . . , τi,m will
be presented in later sections.

The formulation for the error compensation tracking signal
is:

κi,m = zi,m − ρi,m, m = 1, . . . , n (14)

Design the virtual controller τi,1, along with the adaptive
laws ˙̂

βi,1 and ˙̂
ϑi,1

τi,1 = −ci,1zi,1 − 2ϖi,1κi,1 − β̂T
i,1ωi,1

+
1

ϖi,1
ϑ̂Ti,1Υi + ẏj,r −

1

2ϖi,1
κi,1 (15)

˙̂
βi,1 = li,1ϖi,1ωi,1κi,1 − ςi,1β̂i,1 (16)
˙̂
ψi,1 = −c̄i,1Υiκi,1 − ς̄i,1ψ̂i,1 (17)

where βi,1 and ϑi,1 are the weight vectors. ωi,1 and Υi are
the basis function vectors. The constants ci,1, li,1, ςi,1, c̄i,1,
ς̄i,1 > 0.

Design the virtual controller τi,m, along with the adaptive
law ˙̂

βi,m,m = 2, . . . n− 1.

τi,m = −ci,mzi,m − zi,m−1 − β̂T
i,mωi,m

−ϱi,mei,1 + θ̇i,m (18)
˙̂
βi,m = li,mϕi,mκi,m − ςi,mβ̂i,m (19)

where βi,m is the weight vector. ωi,m is the basis function
vectors. The constants ci,m, li,m, ϱi,m, ςi,m > 0.

Design the virtual controller τi,n, along with the adaptive
laws ˙̂

βi,n and ˙̂φi

τi,n = −ci,nzi,n − 1

2a2i
ρiκi,nφ̂i,nς

T
i,nςi,n (20)

˙̂
βi,n = li,nωi,nκi,n − ςi,nβ̂i,m (21)
˙̂φi =

σi
2a2i

κ2i,nς
T
i,nςi,n − ς̄i,nφ̂i (22)

where the constants ci,n, ai, li,n, ςi,n, ρi, ς̄i,n > 0.
Design the adaptive controller in the following manner:

ϑi (t) = − (1 + ξi)

(
κi,n tanh

(
λi,nκi,n
ϵi

)
+γ̄i tanh

(
γ̄iκi,n
ϵi

))
(23)

with γ̄i, ϵi > 0.
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IV. STABILITY ANALYSIS

Theorem 1: Consider the multi-agent systems (1) subject
to DoS attacks, considering Assumptions 1 and 2. The vir-
tual controllers (15), (18), (20), the event-triggered adaptive
controller (23), the observer (6), and the adaptive laws (16),
(17), (19), (21), and (22) provides assurance that, despite the
occurrence of DoS attacks, all closed-loop signals will stay
within bounded limits.

Proof. Establish the total Lyapunov function as

V =

N∑
i=1

Ve +

N∑
i=1

Vi,n

The differential of V fulfills

V̇ ≤ −
N∑
i=1

(
λmin

(
Ξ̄i

)
− 3n− 5

2
−
∥∥Ψ̄i

∥∥2 n∑
m=1

ϱ2i,m

)

×eTi ei +
N∑
i=1

n∑
m=1

δ2i,m −
N∑
i=1

n∑
s=2

(ci,s − 1)κ2i,s

+

N∑
i=1

n∑
m=1

ςi,s
2li,s

βT
i,sβi,s +

N∑
i=1

ς̄i,1
2c̄i,1

ψT
i,1ψi,1

+
1

2

N∑
i=1

(
η2i,1 + ι2i,1 + a2i + h̄2i,n

)
+

N∑
i=1

ρi
2σi

ς̄i,nφ
2
i −

N∑
i=1

n∑
s=2

(
1

4

)
β̃T
i,sβ̃i,s

−
N∑
i=1

ρi
2σi

ς̄i,nφ̃
2
i −

N∑
i=1

ς̄i,1
2c̄i,1

ψ̃T
i,1ψ̃i,1

−
N∑
i=1

n∑
s=1

(
ςi,s
2li,s

−
∥∥Ψ̄i

∥∥2) β̃T
i,sβ̃i,s

−
N∑
i=1

ci,1κ
2
i,1 +

N∑
i=1i

2oi (24)

Utilizing the aforementioned analysis, the results in (24) can
be expressed as

V̇ ≤ HV + Y (25)

where

H = min

{
λmin

(
Ξ̄i

)
− 3n− 5

2 −
∥∥Ψ̄i

∥∥2∑n
m=1 ϱ

2
i,m

λmin

(
Ψ̄i

) ,

2ci,1, 2 (ci,2 − 1) , · · · , 2 (ci,n − 1) ,

2li,s

(
ςi,s
2ai,s

−
∥∥Ψ̄i

∥∥2 − 1

4

)
, ς̄i,1, ς̄i,n

}
Y =

N∑
i=1

n∑
m=1

δ2i,m +

N∑
i=1

n∑
m=1

ςi,s
2li,s

βT
i,sβi,s +

N∑
i=1i

2oi

+
1

2

N∑
i=1

(
η2i,1 + ι2i,1 + a2i + h̄2i,n

)
+

N∑
i=1

ς̄i,1
2r̄i,1

ψT
i,1ψi,1 +

N∑
i=1

ρi
2σi

ς̄i,nφ
2
i

From [26], it follows that ∥θi,m+1 − τi,m∥ ≤ ℜ̄i. As a
result, ∥θi,m∥ will be constrained, ensuring that all signals

stay bounded even when DoS attacks occur. Theorem 1 has
been fully proved. �

From [24], it can be concluded that

d

dt
|αi (t)| =

d

dt
(αi (t)× αi (t))

1
2

= sign (αi (t)) α̇i (t) ≤
∣∣∣ϑ̇ (t)∣∣∣

where
∣∣∣ϑ̇ (t)∣∣∣ ≤ σ, σ > 0.

Based on (3), (4) and αi (t), it can be determined that
|αi (t)| ≥ ζi |ui| + µi. There exists a time interval t∗ such
that ti,χ+1 − ti,χ ≥ t∗. Consequently, the lower bound for the
interval between executions t∗ satisfies t∗ ≥ ζi|ui|+µi

σ , thus
successfully avoiding Zeno behavior.

V. SIMULATION

In this section, simulation examples will be provided to
validate the theoretical results.

Investigate the dynamics related to the ith agent in the
following manner:

κ̇i,1 = κi,2 + gi,1

κ̇i,2 = ui + gi,2

i = 1, 2, 3

where

g1,1 = cos (κ1,1) , g1,2 = cos (κ1,1κ1,2)

g2,1 = sin (0.5κ2,1) , g2,2 = sin (κ2,1κ2,2)

g3,1 = sin (0.2κ3,1) , g3,2 = sin (κ3,1κ3,2)

the state vectors and control input are given by κi =
[κi,1,κi,2]

T and ui, respectively.
The dynamics of the leader can be described by the follow-

ing equation:

κ̇0,j = −κ0,j + u0

ȳ0,j = κ0,j

where κ0,j represents the states of the leader, and ȳ0,j denotes
the system output, j = 1, 2. For containment control purposes,
the outputs are defined as yj,1 = ȳ0,1 + 0.5 and yj,2 = ȳ0,2 −
0.5. Additionally, the control input u0 is an unknown bounded
variable. The initial conditions are specified in Table I.

Moreover, the control input of the leader, represented as
u0 (t) and provided by a human operator, is not available to
all followers. The design of the control input u0 (t) is outlined
as follows:

u0 (t) =

 sin2 (t) , 0 ≤ t ≤ 15
sin (t) cos (t) , 15 < t ≤ 30
cos2 (t) , t > 30

Fig. 1 illustrates the trajectories of followers κi,1 for i =
1, 2, 3 and leaders yj,r for r = 1, 2 during the DoS attacks. The
shaded flesh area indicates the period of the DoS attacks. With
the implementation of the proposed secure control scheme,
the system returns to normal operation after a brief period.
Fig. 2 depicts the timing and intervals of the event-triggered
communication strategy.
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TABLE I
THE INITIAL STATES OF THE FOLLOWERS AND THEIR CORRESPONDING

STATE ESTIMATIONS.

Initial states Values Initial states Values
κ1,1 (0) 1.5 κ̂1,1 (0) 0.5
κ1,2 (0) -0.5 κ̂1,2 (0) 0.5
κ2,1 (0) -0.7 κ̂2,1 (0) 0.5
κ2,2 (0) 0.3 κ̂2,2 (0) 0.5
κ3,1 (0) 1.4 κ̂3,1 (0) 1.5
κ3,2 (0) -0.3 κ̂3,2 (0) 0.5

0 5 10 15 20 25 30 35 40
Time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x11 x21 x31 yj1 yj2

Fig. 1. Tracking of followers, leaders and DoS attacks.

VI. CONCLUSION

This paper has presented a secure control scheme for
HiTL MASs utilizing an event-triggered mechanism to ad-
dress DoS attacks. By integrating human intelligence and
decision-making, the system’s security has been significantly
improved as human operators send command signals to a non-
autonomous leader agent. To manage limited communication
resources, a relative threshold event-triggered control strategy
has been adopted, which effectively reduces data transmis-
sions. Simultaneously, the system’s vulnerability to malicious
attacks in the network, which could compromise control tasks,
is acknowledged. Therefore, the effects of DoS attacks are
considered.
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Fig. 2. Intersample time of agents 1-3.
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