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ABSTRACT

Augmenting the multi-step reasoning abilities of Large Language Models (LLMs)
has been a persistent challenge. Recently, verification has shown promise in im-
proving solution consistency by evaluating generated outputs. However, current
verification approaches suffer from sampling inefficiencies, requiring a large num-
ber of samples to achieve satisfactory performance. Additionally, training an ef-
fective verifier often depends on extensive process supervision, which is costly to
acquire. In this paper, we address these limitations by introducing a novel ver-
ification method based on Twisted Sequential Monte Carlo (TSMC). TSMC se-
quentially refines its sampling effort to focus exploration on promising candidates,
resulting in more efficient generation of high-quality solutions. We apply TSMC
to LLMs by estimating the expected future rewards at partial solutions. This ap-
proach results in a more straightforward training target that eliminates the need
for step-wise human annotations. We empirically demonstrate the advantages of
our method across multiple math benchmarks, and also validate our theoretical
analysis of both our approach and existing verification methods.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have achieved significant breakthroughs across
various domains (Park et al., 2023; Kaddour et al., 2023; Song et al.; Li et al., 2023a; Wang et al.,
2023a; Chen et al., 2023; Zheng et al., 2023; Wang et al., 2023c). However, their performance
in multi-step reasoning tasks, such as solving complex mathematical or coding problems, remains
notably constrained (Lightman et al., 2024; Huang et al., 2023). A key challenge arises from the
high sensitivity of these tasks to individual errors at each step of reasoning. Autoregressive LLMs,
in particular, struggle with maintaining consistency throughout the reasoning process, leading to
solutions that are prone to mistakes or logical inconsistencies (Shen et al., 2021; Cobbe et al., 2021).

Verification (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2024) has emerged as an
effective strategy to mitigate these issues. In a typical verification process, multiple solutions are
sampled from the generator (the LLM), and an external verifier evaluates each of these solutions.
The verification outcomes are then used to adjust the weight of each solution in determining the
final answer. Since verification is generally simpler than generation, it tends to achieve higher
accuracy and consistency compared to the methods that rely solely on the generator, such as majority
voting (Wang et al., 2023e). There are two primary types of verifiers: the Outcome Reward Model
(ORM) (Cobbe et al., 2021) and the Process Reward Model (PRM) (Uesato et al., 2022). The
ORM evaluates the fully generated solution with a single scalar output representing the confidence
score, and its training is straightforward, using outcome supervision based on comparing generated
answers with ground truth. In contrast, the PRM focuses on providing rewards at each step of
the reasoning process, giving more detailed feedback on the intermediate steps. Although empirical
evidence suggests that PRM outperforms ORM (Lightman et al., 2024), there exists no simple metric
in evaluating the correctness of each step and efficiently collecting process supervision for such
intermediate steps remains a great challenge.

Despite being promising, existing verification methods are still limited in the following two areas:

• (Problem I) Low sampling efficiency: Current verification methods only evaluate fully generated
solutions, without refining their quality during the generation process. Sampling efforts would be
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wasted on partial solutions that are clearly incorrect. As a result, a large number of samples are
needed to obtain even one correct solution, making the process inefficient and resource-intensive.

• (Problem II) Difficulty in obtaining process supervision: Training powerful verifiers like the
PRM requires detailed step-wise supervision. Existing approaches either rely on human effort
(Uesato et al., 2022; Lightman et al., 2024) or tree search (Wang et al., 2023d; Luo et al., 2024)
for intermediate step annotations. However, both approaches are inefficient and lack scalability,
limiting their practical application for large-scale tasks.

To address these two significant problems in existing verification methods, we propose a novel
approach based on Twisted Sequential Monte Carlo (TSMC) (Doucet et al., 2001; Del Moral et al.,
2006; Briers et al., 2009; Chopin & Papaspiliopoulos, 2020). TSMC is a significant advancement
in the Importance Sampling (IS) technology. Building on the foundation of Sequential Monte Carlo
(SMC), TSMC is intended to enhance sampling efficiency of IS in the high-dimensional space. It
employs a series of intermediate target distributions at each resampling step, which are defined
through twist functions. This function strategically guides the samples towards the high-density
region in the target distribution. By retaining the most promising samples, TSMC effectively reduces
the variance in estimated quantities and boosts the efficiency of the sampling process.

Notably, the application of TSMC to improve the verification method in LLMs has not been ex-
plored previously, making our study the first of its kind in this area. Our approach is inspired by the
realization that existing verification methods employing reward-weighted majority voting (Li et al.,
2023b) essentially performs IS, where the sampling efficiency deteriorates as the disparity between
the proposal distribution (which generates potential solutions) and the target distribution (concen-
trated around correct solutions) widens. We identify Problem I—low sampling efficiency—as a
consequence of high variance in IS when there is a substantial deviation between the proposal and
target distributions. Multi-step reasoning, even minor discrepancies at each step can cumulate into a
substantial mismatch between the two distributions. We therefore apply TSMC to improve the sam-
pling efficiency of verification by focusing the sampling effort on promising partial solutions during
the intermediate decoding process. We have shown the optimal twist functions in our case, which is
used to guide the sampling of TSMC, is proportional to expected future rewards, also known as the
value function. The value function could be simply learnt through a neural regressor on the data in-
dependently sampled from the generator. This simplifies the training target by eliminating the need
for human annotations or tree search. We also highlight the relationship between TSMC and the
PRM in existing verification methods, allowing for a comprehensive analysis of bias and variance.

We compare our proposed method with baseline approaches on two math benchmarks: GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), utilizing fine-tuned models from Llemma-
7B (Azerbayev et al., 2023) and DeepSeek-7B (Shao et al., 2024) as the generators. Our results
indicate that TSMC consistently improves both the quality of the generated solutions and the overall
verification performance. Additionally, we empirically validate the theoretical advantage of TSMC
as an unbiased estimator with reduced variance, further highlighting its effectiveness.

Our main contributions can be summarized as follows:

1. We propose a novel method based on TSMC that enhances the sampling efficiency of verification
and reduces the reliance on process supervision obtained through human annotations or tree
search in training verifiers.

2. We introduce a new theoretical framework for analyzing verification methods, providing deeper
insights into their effectiveness and limitations.

3. Our empirical results demonstrate that TSMC consistently outperforms existing verification
methods across multiple math benchmarks, utilizing various generators.

2 PRELIMINARIES

2.1 LLMS FOR MATH

Following Lightman et al. (2024), we fix the generator without further fine-tuning via reinforcement
learning. For a problem statement x0, a (tokenized) candidate solution can be sampled from the
generator, denoted as x1:T ∼ p(·|x0). For simplicity, we always assume the dependence on x0 and
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no longer explicitly write it out in the following text. The solution is assumed to be decomposable
as x1:T = [x1, · · · ,xT ], where xi is a variable-length reasoning step. By default, the LLM gener-
ates all steps in an autoregressive manner, i.e., xt ∼ p(·|x1:t−1). Each solution x1:T contains the
reasoning process and an answer to the problem, with examples shown in Appendix F. We represent
the extracted answer from the solution as a = Ans(x1:T ), and its correctness as ϕ(a), which is 1 if
it is correct (matched with the ground-truth answer) and 0 otherwise.

The primary methods for solving math problems with LLMs include majority voting (Wang et al.,
2023e) and verification (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2024).

Majority Voting. Majority voting independently samples N (tokenized) candidate solutions
{xi

1:T }Ni=1 from the generator. It selects the final answer as the one with the most votes, i.e.,
a∗ = argmaxa

∑N
i=1 I(ai = a), where I(·) is the indicator function.

Verification. Verification introduces an external verifier r(·) to evaluate the N solutions produced
by the LLM generator. Existing methods can be roughly divided into two kinds: the outcome
reward model (ORM) family and the process reward model (PRM) family. ORM directly evaluates
the confidence score for each full solution as s = rORM (x1:T ), while PRM instead aggregates the
confidence scores of sub-sequences as s = rPRM (x1:T ) = Aggr({rPRM (xt|x1:t−1)}Tt=1). Here,
rPRM (xt|x1:t−1) corresponds to the process reward, and Aggr(·) is the aggregation function such
as the minimum or product:

min = min{rPRM (xt|x1:t−1}Tt=1), prod =

T∏
t=1

rPRM (xt|x1:t−1). (1)

The final answer could either be selected from the solution with the highest score a∗ = argmaxai si

(best-of-N ), or the answer with the highest total weight a∗ = argmaxa
∑N

i=1 s
iI(ai = a)

(weighted majority voting) (Li et al., 2023b). In this work, we mainly develop our method on
top of the weighted majority voting due to its empirical better performance (Sun et al., 2024).

2.2 IMPORTANCE SAMPLING AND TWISTED SEQUENTIAL MONTE CARLO

Importance Sampling. Consider a target distribution σ(x1:T ) = σ̃(x1:T )
Zσ , where σ̃(x1:T ) ≥ 0

is the unnormalized probability density and Zσ =
∫
x1:T

σ̃(x1:T )dx1:T is the normalizing factor,
typically intractable. For a given function h(x1:T ), it could be difficult to estimate its expectation
under σ(x1:T ) via directly sampling. Importance sampling (IS) (Robert & Casella, 2000) instead
introduces a proposal distribution q(x1:T ) and provides an estimator of the expectation as

Eσ(x1:T )[h(x1:T )] =
1

Zσ
Eq(x1:T )[

σ̃(x1:T )

q(x1:T )
h(x1:T )] =

Eq(x1:T )[
σ̃(x1:T )
q(x1:T )h(x1:T )]

Eq(x1:T )[
σ̃(x1:T )
q(x1:T ) ]

. (2)

Here, σ̃(x1:T )
q(x1:T ) is known as the importance weight w(x1:T ). Using some q(x1:T ) that is easy to

sample from, we can leverage Equation 2 to estimate the expectation via the Monte Carlo method,

Eσ(x1:T )[h(x1:T )] ≈
N∑
i=1

w(xi
1:T )∑N

j=1 w(x
j
1:T )

h(xi
1:T ), xi

1:T ∼ q(x1:T ). (3)

Although ideally a zero variance of the importance weight could be achieved when q(x1:T ) =
σ(x1:T ), such a case rarely holds in practice. Remarkably, the distribution mismatches at each
step are accumulated as the generation proceeds, leading to an exponentially increasing variance
with respect to T (Doucet & Johansen, 2009). Such a limitation makes IS inefficient in the high-
dimensional space since extensive sampling is needed to reduce the variance.

Twisted Sequential Monte Carlo. Twisted Sequential Monte Carlo (TSMC) enhances the sam-
pling efficiency of IS by modifying the marginal distribution of the proposal, q(x1:t), to a more
informative intermediate distribution, πt(x1:t). The aim is to ensure that partial sequences from
πt(x1:t) are more likely to result in higher-quality samples in the final target distribution σ(x1:T ).
Here, {πt}Tt=1 is known as the (twisted) intermediate targets where πt(x1:T ) = π̃t(x1:T )

Zπ
t

and the
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final target is aligned with π̃T ≡ σ̃. In standard Sequential Monte Carlo, πt(x1:t) is typically the
marginal of the target distribution σ(x1:T ), to ensure that at each time step, the marginal distribution
matches the target. However, if our primary interest is only the final target σ(x1:T ), we are free to
design {πt}T−1

t=1 on the specific problem at hand, leading to the flexibility of the TSMC method.

TSMC operates recursively, alternating between generation and resampling. At each step, TSMC
takes the input of N partial sequences, {xi

1:t−1}Ni=1, following the distribution πt−1(x1:t−1), and
extends these sequences by sampling the next step from the proposal, i.e., xt ∼ q(·|x1:t−1). It
computes the incremental importance weight for each sequence as

wt(x1:t) =
π̃t(x1:t)

q(xt|x1:t−1)π̃t−1(x1:t−1)
. (4)

These weights are used to approximate the distribution πt by resampling the partial sequences from
a categorical distribution with the self-normalized weights:

xi
1:t ← xωi

1:t, ωi ∼ Cat({ wt(x
i
1:t)∑N

j=1 wt(x
j
1:t)

)}Ni=1), i = 1, · · · , N. (5)

This new set of N sequences would serve as the input to the next step of TSMC. With informative
intermediate targets, the resampling step could promptly discard the sequences with a low potential
in the target distribution and avoid a large variance in the importance weights. More importantly,
since πT (x1:T ) is matched with the target σ(x1:T ), TSMC always yields an unbiased estimator of∑

x1:T
σ̃(x1:T )h(x1:T ) regardless of the twist functions (Del Moral, 2004).

3 METHODOLOGY

3.1 EXISTING VERIFICATION METHODS ARE PERFORMING IMPORTANCE SAMPLING

The motivation of our method is based on the observation that existing verification methods are
essentially performing IS. To see this, compare the normalized voting weight of each answer in
majority voting and weighted majority voting when N is large

lim
N→∞

∑N
i=1 I(ai = a)

N
= Ep(x1:T )[I(Ans(x1:T ) = a)] (majority voting) (6)

lim
N→∞

∑N
i=1 siI(ai = a)

N
= Ep(x1:T )[r(x1:T )I(Ans(x1:T ) = a)] (weighted majority voting) (7)

It can be seen that the weighting process actually introduces a factor r(x1:T ) with a similar role of
the importance weight in Equation 2. In particular, we can let σ̃(x1:T ) = p(x1:T )r(x1:T ) and treat
weighted majority voting as IS to estimate the answer voting weight

w(a) =
∑
x1:T

σ̃(x1:T )I(Ans(x1:T ) = a). (8)

However, as described in Section 2.2, the importance weight in IS suffers from a large variance in
the high-dimensional space, and so do the estimation objectives according to Proposition 3.1.

Proposition 3.1. For IS with the target σ(x1:T ) and proposal q(x1:T ), up to a constant C indepen-
dent of q(x1:T ), the following identity in the variance holds for the set of all answers A:∑

a∈A
Vq[

σ̃(x1:T )I(Ans(x1:T ) = a)

q(x1:T )
] = Vq[

σ̃(x1:T )

q(x1:T )
] + C. (9)

We include the proof in Appendix A.1. This issue also accounts for Problem I, i.e., plenty of samples
are needed to reduce the variance of the estimator. Therefore, we aim to address this problem via
TSMC, which provides the unbiased estimator of w(a), but with less variance. We visualize the
comparison between existing IS-based verification and our TSMC-based verification in Figure 1.
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Figure 1: IS-based verification vs. TSMC-based verification: (a) Typical IS-based verification
only weights (verifies) the solutions until they are fully generated, which often leads to generat-
ing incorrect solutions with high probability, aka low sampling efficiency. (b) Our TSMC-based
verification weights and resamples partial solutions at each step of the generation process. This se-
quential resampling process reduces the discrepancy between the proposal and target distributions,
improving the overall correctness of the generated solutions and thus the sampling efficiency.

3.2 VERIFICATION VIA TSMC

The optimal reward model in our problem is simply the correctness function of each solution, i.e.,
r∗(x1:T ) = ϕ(Ans(x1:T )). In the following section, we fix our target distribution as

σ(x1:T ) =
p(x1:T )ϕ(Ans(x1:T ))

Zσ
, (10)

since it corresponds to the actual target distribution we try to sample from.

To utilize TSMC for verification, we still need to decide the proposal distribution q(xt|x1:t−1) and
intermediate targets {πt}T−1

t=1 . Following Zhao et al. (2024), we define the intermediate targets
through the twist functions {ψt}T−1

t=1 where ψt(x1:t) ≥ 0 are functions to be optimized

πt(x1:t) =
p(x1:t)ψt(x1:t)

Zπ
t

. (11)

Let ψ0(x0) ≡ 1 and ψT (x1:T ) ≡ ϕ(Ans(x1:T )), the incremental importance weight is given by

wt(x1:t) =
p(xt|x1:t−1)ψt(x1:t)

q(xt|x1:t−1)ψt−1(x1:t−1)
. (12)

Zhao et al. (2024) have shown that the optimal proposal and intermediate targets correspond to

q∗t (xt|x1:t−1) =
σ(x1:t)

σ(x1:t−1)
and π∗

t (x1:t) = σ(x1:t), (13)

where σ(x1:t) =
∑

xt+1:T
σ(x1:T ) stands for the target marginal distribution. However, it is hard to

directly apply these optimal choices to our case. We outline the reason and our approach as follows.

Proposal. There are two challenges in preventing us from using the optimal proposal. First, the
combinatorial nature of the step xt, which consists of multiple tokens, makes q∗t (xt|x1:t−1) gen-
erally intractable. Moreover, even if we can approximate it via finetuning, we still encounter the
second challenge as the large variance in q∗t (xt|x1:t−1) caused by the high dimensionality of xt.

5
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This would result in the weight degeneracy issue (Naesseth et al., 2019) of TSMC, where the in-
cremental importance weights would be dominated by a single sample, resulting in a poor diversity
of solutions after resampling. We therefore simply let q(xt|x1:t−1) = p(xt|x1:t−1) for the ease of
sampling and weight degeneracy would be alleviated when q(xt|x1:t−1) cancels in Equation 12.

Intermediate targets. The intermediate targets in Equation 13 is no longer optimal when we use
p(xt|x1:t−1) as our proposal. However, it is also hard to solve the globally optimal intermediate
targets for an arbitrary proposal. We instead seek to sequentially derive the locally optimal twists in
a greedy manner. Since our ultimate goal is to estimate the answer weightsw(a), we start by looking
for the optimal intermediate target π∗

T−1(x1:T−1) in minimizing the variance of the incremental
importance weight in the last TSMC step. We prove the following proposition in Appendix A.2.

Proposition 3.2. Given an (intermediate) target πt(x1:t) and the proposal q(xt|x1:t−1), the optimal
πt−1(x1:t−1) in minimizing the variance of the incremental importance weight corresponds to

πq
t−1(x1:t−1) ∝

√∑
xt

πt(x1:t)2

q(xt|x1:t−1)
. (14)

Taking t = T and q = p implies πp
T−1(x1:T−1) ∝ p(x1:T−1)

√∑
xT
p(xT |x1:T−1)ϕ(Ans(x1:T )).

Here we apply the fact that ϕ(Ans(x1:T ))
2 = ϕ(Ans(x1:T )) as it is binary. If we fix the inter-

mediate target as the choice above, we could further propagate the derivation to previous steps by
recursively applying Proposition 3.2, getting the locally optimal intermediate targets for t < T as

πp
t (x1:t) ∝ p(x1:t)

√ ∑
xt+1:T

p(xt+1:T |x1:t)ϕ(Ans(x1:T )). (15)

In particular,
∑

xt+1:T
p(xt+1:T |x1:t)ϕ(Ans(x1:T )) actually represents the value function V p(x1:t)

in reinforcement learning (Ouyang et al., 2022). Hence, the locally optimal twists are given by

ψp
t (x1:t) ∝

√
V p(x1:t). (16)

3.3 CONNECTION WITH THE PRM

Based on our above choices, the incremental importance weights in Equation 12 becomes

wp
t (x1:t) =

ψp
t (x1:t)

ψp
t−1(x1:t−1)

∝

√
V p(x1:t)

V p(x1:t−1)
. (17)

The incremental importance weight could also be treated as a measurement of the step quality,
similar to the process reward in the PRM. To further augment this connection, note that

T∏
t=1

wp(x1:t) =

T∏
t=1

ψp
t (x1:t)

ψp
t−1(x1:t−1)

=
ψp
T (x1:T )

ψp
0(x0)

= ϕ(Ans(x1:T )), (18)

which is in the same format as the PRM with prod aggregation. The key observation here is that
TSMC always yields an unbiased estimator of the importance weight ϕ(Ans(x1:T )) when there is
no estimation error of V p. We continue to compare this estimator to some existing PRMs.

The PRM learnt through automatic supervision. This class of PRMs (Wang et al., 2023b; Luo
et al., 2024) computes the process reward by evaluating the value function at each partial solution
with respect to a roll-out policy µ. The solution confidence score will be computed as

rPRM (x1:T ) = Aggr({r(xt|x1:t−1)}Tt=1) = Aggr({V µ(x1:t)}Tt=1). (19)

But such an estimator is always biased no matter min or prod is used for aggregation.
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The PRM learnt through human supervision. The human supervision is generated through the
logical sense of the step correctness. We formally establish the definition of the step correctness in
Definition A.1 and prove the following proposition in Appendix A.3.
Proposition 3.3. The ground-truth PRM over the step correctness corresponds to

rPRM (xt|x1:t−1) = I(σ(x1:t) > 0). (20)

Therefore, the solution confidence score of this PRM is always an unbiased estimator of
ϕ(Ans(x1:T )) for both min and prod aggregation. However, using I(σ(x1:t) > 0) for the inter-
mediate target, as tried by Uesato et al. (2022), does not effectively reduce the sampling variance or
improve the verification performance since it ignores the likelihood of the proposal p(xt+1:T |x1:t).

3.4 VALUE FUNCTION ESTIMATION

The approximation of {ψp
t }T−1

t=1 and r∗ can be consolidated into a single learning task: estimating
the value function V p. We therefore use a single neural model parameterized by θ for approximation.
Estimating the value function through independently sampled data from the policy (generator) is a
well-studied topic (Bertsekas, 2012). It therefore eliminates the need for explicit process supervision
during training, as outlined in Problem II.

In this paper, we adopt the Contrastive Twist Learning (CTL) method developed by Zhao et al.
(2024). Directly approximating πp

t would be hard, so we still approximate the target marginal
σ(x1:t) to learn the value function and take the square root of the value function during the in-
ference time. Let V θ be our approximation of the value function V p, and define the intermediate
target πθ

t (x1:t) = p(x1:t)V
θ(x1:t)

Zπ
t (x1:t)

. CTL minimizes the KL divergence between the target marginal
distributions and the intermediate targets, i.e.,

min
θ
LCTL(θ) = min

θ

T∑
t=1

DKL(σ(x1:t)∥πθ
t (x1:t)), (21)

whose gradient at t-th step can be derived as

Eσ(x1:t)[∇θ log V
θ(x1:t)]− Eπθ

t (x1:t)[∇θ log V
θ(x1:t)]. (22)

We approximate the gradient in the first term via rejection sampling while the gradient in the second
term via importance sampling, as done in Equation 3. We include more training details in Appendix
C.2 and summarize our entire TSMC-based verification algorithm in Appendix B.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We outline the basic experimental setup in this section and include more details in Appendix C.

Datasets. Building on prior work (Uesato et al., 2022; Lightman et al., 2024; Wang et al., 2023b),
we assess our TSMC method using two widely used math datasets: GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). For GSM8K, we evaluate model performance across all testing
instances. Whereas for MATH, we follow Lightman et al. (2024) to select a representative subset of
500 testing instances, referred to as “MATH500” in the following text.

Generators. We fine-tune our solution generators using two different pretrained LLMs, Llemma-
7B (Azerbayev et al., 2023) and DeepSeek-7B (Shao et al., 2024). Following Sun et al. (2024), we
use the filtered PRM800K (Lightman et al., 2024) as the supervised fine-tuning dataset.

Baselines. We compare our method to both the non-verification methods, including zero-shot
greedy decoding and majority voting (MV) (Wang et al., 2023e), and the verification methods using
weighted majority voting (WMV). For verification methods, we utilize various types of verifiers, in-
cluding the ORM, the PRM trained with human supervision on PRM800K (Lightman et al., 2024))
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and the PRM trained with automatic supervision on MATH-SHEPHERD (Wang et al., 2023b). We
employ min for aggregation on both PRMs. We keep the architecture and pretrained weights of
all the verifiers, including the reward model and the parameterized value function, the same as the
generator across all settings. The problem solving rate (in %) is used as the metric for comparison.

TSMC details. Our TSMC is applied on the step level. We implement a warm-up stage that skips
resampling in the initial stage, setting this threshold at 50 tokens across all experiments. A maximum
of five resampling steps is allowed to reduce the latency. For sequences that terminate early, we
assign an incremental importance weight of 1 during the remaining resampling steps. We employ
stratified sampling (Kitagawa, 1996) for resampling to reduce the variance. Instead of resampling
across the full batch ofN solutions, we perform resampling over a mini-batch withM samples. The
batch size M is fixed as 80 (the maximum number of sequences fit into our GPUs) by default.

4.2 MAIN RESULTS

To verify if TSMC actually improves the sampling efficiency with a better solution quality, we also
directly perform the majority voting on the solutions generated by TSMC. We denote this method
as TSMC + MV and the full TSMC as TSMC + WMV. We present our main results in Table 1.

Table 1: Comparative results in the problem solving rate (%) on GSM8K and MATH500 datasets.
Llemma-7B and DeepSeek-8B are used as generators. We bold the best results in each category.
The voting is performed on 240 samples.

Generators Methods GSM8K MATH500

Llemma-7B

Greedy 38.2 19.4
MV 72.5 41.2
WMV w. ORM 78.7 43.0
WMV w. PRM (PRM800K) 73.6 43.2
WMV w. PRM (SHEPHERD) 79.2 43.6
TSMC + MV (Ours) 77.6 44.0
TSMC + WMV (Ours) 80.6 45.6

DeepSeek-7B

Greedy 61.2 30.8
MV 86.4 52.8
WMV w. ORM 86.6 55.0
WMV w. PRM (PRM800K) 87.0 55.2
WMV w. PRM (SHEPHERD) 89.5 52.6
TSMC + MV (Ours) 88.7 54.8
TSMC + WMV (Ours) 90.8 56.2

It is evident that TSMC + MV demonstrates a significant improvement over vanilla MV, highlighting
its effectiveness in enhancing the overall solution quality. This advantage is particularly pronounced
when using the relatively weaker generator Llemma-7B, which corresponds to cases where the pro-
posal distribution deviates significantly from the target. Moreover, TSMC consistently outperforms
other methods in terms of final verification performance. It is worth noting that the final verification
step in TSMC operates independently of the generator, meaning that a better reward model could fur-
ther improve TSMC’s performance in WMV. Overall, our TSMC-based verification method shows
a clear advantage over existing verification methods, with a simpler training target.

4.3 IMPACT OF THE BIAS IN THE ESTIMATOR

TSMC is characterized by its unbiased estimation of the importance weight, which is ϕ(Ans(x1:T ))
in our task. However, since the training error is unavoidable in practice, it remains unclear whether
such kind of unbiased estimation at the theoretical optimal case is useful. We thus look into this
problem by comparing different biased and unbiased estimators analyzed in Section 3.3.

We consider both the PRM predicting the step correctness, PRM (PRM800K), and the PRM predict-
ing the value function, including PRM (SHEPHERD) and the value function estimated in TSMC.
Beyond the min and prod aggregations, we also consider an unbiased ORM-like strategy that only
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uses the process reward at the last step as the solution score:
last = rPRM (xT |x1:T−1). (23)

Exceptionally, we evaluate the value function of TSMC on the data generated by TSMC, so we use
the last incremental importance weight for last in this scenario as we do in our original TSMC
method. This is equivalent to the product of incremental importance weights, which is also an
unbiased estimator. We compare all estimators in Figure 2.

Figure 2: Comparison among all biased and unbiased estimators of the importance weight.

The trend is highly consistent when the value function is used as the process reward, as in PRM
(SHEPHERD) and Value (TSMC). The prod strategy shows an overall inferior performance across
all settings. Since the step value could be small, the product of step values is highly biased towards
the solutions with fewer steps. In contrast, min could overcome such a bias as its value is insensitive
to the number of steps. It also shows a clear advantage in comparison to prod, in line with the
choice of (Wang et al., 2023b). However, its performance is still consistently worse than the unbiased
estimator using last. A different pattern shows up in PRM (PRM800K), where the step correctness
is used as the process reward. The min strategy still achieves the overall best result, but prod is also
comparably good. We find no advantage of last in this case as all three estimators are unbiased.
Instead, prod and min would benefit from less modeling error with its ensemble classifier.

We find our results consistent with the observation from Sun et al. (2024). Basically, the advantage of
PRM against ORM holds only when both of them are unbiased estimators of ϕ(Ans(x1:T )). When
the PRM is biased, there is no clear guarantee of a better performance against the ORM, which is
always an unbiased estimator. While TSMC assimilates the strengths of the unbiased estimation
from the ORM and the intermedidate step modeling from the PRM, leading to the best performance.

4.4 IMPACT OF THE VARIANCE IN THE ESTIMATOR

Besides of being unbiased, TSMC reduces the variance of the importance weight via informative
twist functions. To investigate the impact of the variance, we consider the following TSMC variants:
using the step correctness predicted by PRM (PRM800K) as the incremental importance weight;
using the process reward in PRM (SHEPHERD) for the estimation of the value function; and using
V p(x1:t) rather than

√
V p(x1:t) for the twist, which approximates the target marginal σ(x1:t) as the

intermediate target. Using Llemma-7B on MATH500 as the example, we examine the performance
of these variants in Figure 3.

As observed by Uesato et al. (2022), using the step correctness in the intermediate decoding does
not bring any improvement since the likelihood from the generator is ignored. The value function
provided by PRM (SHEPHERD) is more informative and leads to a better performance. But since
the value function is evaluated on a different generator µ, it still achieves a worse performance than
our TSMC using the approximated V p as the twist. Finally, using V p(x1:t) as the twist also leads to
an inferior performance than using

√
V p(x1:t), indicating the necessity to optimize the variance.

9
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Figure 3: TSMC with different intermediate tar-
gets. Variance are visualized across many sub-
samples of the 240 solutions per problem.

Figure 4: Ablation study on the TSMC batch
size. Variance are visualized across many sub-
samples of the 240 solutions per problem.

4.5 SENSITIVITY ANALYSIS OF THE TSMC BATCH SIZE

In above experiments, we use the maximum number of samples that can fit into the memory of our
GPUs as the batch sizeM of TSMC. In practice, a smaller memory and or a larger model would lead
to a smaller TSMC batch size. We thus try to investigate the effect of M on the TSMC performance
by varying M over the values in {10, 20, 40, 80}. The comparative results are shown in Figure 4. It
can be seen that smaller M achieves comparable and even better results. The advantage of TSMC
still clearly holds when M = 10, which is a batch size that can be fit into most GPUs.

5 RELATED WORK

Verification for reasoning. Verification has proven to be an effective approach for enhancing the
multi-step reasoning ability of LLMs. Two widely adopted verification methods are the Outcome
Reward Model (ORM) (Cobbe et al., 2021) and the Process Reward Model (PRM) (Uesato et al.,
2022). While empirical evidence suggests that PRM outperforms ORM (Lightman et al., 2024),
training the PRM presents a significant challenge due to the need for process supervision, which is
often difficult to obtain. Recent research has therefore increasingly focused on automatic supervision
to train PRMs more efficiently (Wang et al., 2023d; Luo et al., 2024; Wang et al., 2024).

(Twisted) Sequential Monte Carlo. Sequential Monte Carlo (SMC) is a generic statistical infer-
ence approach that has been widely applied across various domains, including signal processing
(Doucet & Johansen, 2009; Simon J Godsill & West, 2004), financial econometrics (Johannes &
Polson, 2010; Creal, 2012), and robotics (Montemerlo et al., 2002; Bailey & Durrant-Whyte, 2006;
Thrun et al., 2005). Recently, SMC has been integrated with neural models to enhance sequential
generative models, such as diffusion models (Trippe et al., 2023; Wu et al., 2023) and LLMs (Lew
et al., 2023; Zhao et al., 2024). The most relevant work to ours is Zhao et al. (2024), which presents
a general framework for controlled text generation using Twisted Sequential Monte Carlo (TSMC).
Our work primarily focuses on multi-step reasoning, one of the most challenging areas for LLMs.
Additionally, we are the first to bridge TSMC with the predominant verification methods, offering a
novel theoretical perspective for explainability.

6 CONCLUSION & LIMITATION

In this paper, we introduce a novel verification method for multi-step reasoning using Twisted Se-
quential Monte Carlo (TSMC). Our approach sequentially approximates intermediate targets, en-
hancing the reasoning process of large language models and improving both solution quality and
sampling efficiency. By incorporating step-wise guidance without human supervision for training,
our method provides a scalable framework for various multi-step reasoning tasks.

Although promising, our method also introduces the additional latency in the inference time due to
variable step lengths. A potential optimization involves blockwise resampling over a fixed number
of tokens. Future work could also explore the impact of TSMC batch size and refine algorithmic
design for further efficiency gains.
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Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Alexander K. Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K. Mansinghka. Sequential monte
carlo steering of large language models using probabilistic programs, 2023. URL https://
arxiv.org/abs/2306.03081.

Lei Li, Yuwei Yin, Shicheng Li, Liang Chen, Peiyi Wang, Shuhuai Ren, Mukai Li, Yazheng Yang,
Jingjing Xu, Xu Sun, et al. M3it: A large-scale dataset towards multi-modal multilingual instruc-
tion tuning. arXiv preprint arXiv:2306.04387, 2023a.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Mak-
ing language models better reasoners with step-aware verifier. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 5315–5333, Toronto, Canada, July
2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.291. URL
https://aclanthology.org/2023.acl-long.291.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language
models by automated process supervision, 2024. URL https://arxiv.org/abs/2406.
06592.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta Baral,
and Ashwin Kalyan. NumGLUE: A suite of fundamental yet challenging mathematical reason-
ing tasks. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3505–3523, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.246. URL https://aclanthology.org/2022.
acl-long.246.

Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fastslam: a factored
solution to the simultaneous localization and mapping problem. In Eighteenth National Con-
ference on Artificial Intelligence, pp. 593–598, USA, 2002. American Association for Artificial
Intelligence. ISBN 0262511290.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. Controlled decoding from language models. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=bVIcZb7Qa0.

Christian Naesseth, Fredrik Lindsten, and Thomas Schön. Elements of Sequential Monte Carlo. 01
2019. ISBN 978-1-68083-632-5. doi: 10.1561/9781680836332.

12

https://www.sciencedirect.com/science/article/pii/B9780444535481500039
https://www.sciencedirect.com/science/article/pii/B9780444535481500039
https://www.tandfonline.com/doi/abs/10.1080/10618600.1996.10474692
https://www.tandfonline.com/doi/abs/10.1080/10618600.1996.10474692
https://arxiv.org/abs/2306.03081
https://arxiv.org/abs/2306.03081
https://aclanthology.org/2023.acl-long.291
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://aclanthology.org/2022.acl-long.246
https://aclanthology.org/2022.acl-long.246
https://openreview.net/forum?id=bVIcZb7Qa0


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023.

Christian Robert and George Casella. Monte carlo statistical method. Technometrics, 42, 11 2000.
doi: 10.2307/1270959.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Lluı́s Màrquez,
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A PROOFS

A.1 PROOF FOR ANSWER WEIGHT VARIANCE

Proposition 3.1. For IS with the target σ(x1:T ) and proposal q(x1:T ), up to a constant C indepen-
dent of q(x1:T ), the following identity in the variance holds for the set of all answers A:∑

a∈A
Vq[

σ̃(x1:T )I(Ans(x1:T ) = a)

q(x1:T )
] = Vq[

σ̃(x1:T )

q(x1:T )
] + C. (9)
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Proof. For simplicity, denote fa(x1:T ) = I(Ans(x1:T ) = a). Using the fact that fa(x1:T )
2 =

fa(x1:T ) and
∑

a∈A fa(x1:T ) = 1, we have∑
a∈A

Vq[
σ̃(x1:T )fa(x1:T )

q(x1:T )
] =

∑
a∈A

(Eq[(
σ̃(x1:T )fa(x1:T )

q(x1:T )
)2]− Eq[

σ̃(x1:T )fa(x1:T )

q(x1:T )
]2)

=
∑
a∈A

(
∑
x1:T

σ̃(x1:T )
2fa(x1:T )

2

q(x1:T )
− (

∑
x1:T

σ̃(x1:T )fa(x1:T ))
2)

=
∑
x1:T

σ̃(x1:T )
2
∑

a fa(x1:T )
2

q(x1:T )
−

∑
a∈A

(
∑
x1:T

σ̃(x1:T )fa(x1:T ))
2

=
∑
x1:T

σ̃(x1:T )
2

q(x1:T )
−

∑
a∈A

(
∑
x1:T

σ̃(x1:T )fa(x1:T ))
2

= Vq[
σ̃(x1:T )

q(x1:T )
] + C.

(24)

Here, C = (
∑

x1:T
σ̃(x1:T ))

2 −
∑

a∈A(
∑

x1:T
σ̃(x1:T )fa(x1:T ))

2 is independent of q(x1:T ).

A.2 PROOF FOR THE LOCALLY OPTIMAL INTERMEDIATE TARGET

Proposition 3.2. Given an (intermediate) target πt(x1:t) and the proposal q(xt|x1:t−1), the optimal
πt−1(x1:t−1) in minimizing the variance of the incremental importance weight corresponds to

πq
t−1(x1:t−1) ∝

√∑
xt

πt(x1:t)2

q(xt|x1:t−1)
. (14)

Proof. Note that for the expectation of the importance weight, Epπt−1
[ πt(x1:t)
p(xt|x1:t−1)πt−1(x1:t−1)

] = 1.
So we have the variance of the importance weight as

Vpπt−1
[

πt(x1:t)

q(xt|x1:t−1)πt−1(x1:t−1)
] = Eqπt−1

[(
πt(x1:t)

q(xt|x1:t−1)πt−1(x1:t−1)
)2]− 1 (25)

Minimizing the variance is thus equivalent to minimizing Eqπt−1
[( πt(x1:t)

p(xt|x1:t−1)πt−1(x1:t−1)
)2]. Sub-

ject to the constraint of the probability, we introduce the Lagrange multiplier λ in our objective

min
πt−1

Eqπt−1 [(
πt(x1:t)

q(xt|x1:t−1)πt−1(x1:t−1)
)2] + λ(

∑
x1:t−1

πt−1(x1:t−1)− 1)

=min
πt−1

∑
x1:t

πt(x1:t)
2

q(xt|x1:t−1)πt−1(x1:t−1)
+ λ(

∑
x1:t−1

πt−1(x1:t−1)− 1).

(26)

Taking (·)
πt−1(x1:t−1)

= 0, we get

−
∑
xt

πt(x1:t)
2

q(xt|x1:t−1)π2
t−1(x1:t−1)

+ λ = 0. (27)

This yields the optimal πq
t−1 given q as

πq
t−1(x1:t−1) =

1

λ

√∑
xt

πt(x1:t)2

q(xt|x1:t−1)
, (28)

where λ is chosen to normalize the densities to have a sum of 1. Especially, when πt and q corre-
spond to the optimal choices in Equation 13, we recover

πq
t−1(x1:t−1) =

1

λ

√∑
xt

σ(x1:t)σ(x1:t−1) = σ(x1:t−1) = π∗
t−1(x1:t−1). (29)
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A.3 PROOF FOR THE GROUND-TRUTH PRM

Definition A.1. Each step xt|x1:t−1 is either correct or incorrect, following the two axioms below:

• For any solution x1:T , if xt|x1:t−1 is correct for t = 1, · · · , T , then ϕ(Ans(x1:T )) = 1.

• For any solution x1:T , if any step xt|x1:t−1 is incorrect, then ϕ(Ans(x1:T )) = 0.

Proposition 3.3. The ground-truth PRM over the step correctness corresponds to

rPRM (xt|x1:t−1) = I(σ(x1:t) > 0). (20)

Proof. According to Definition A.1, a step would be correct if there is at least one correct solution
contains it, and incorrect otherwise. So its process reward corresponds to

rPRM (xt|x1:t−1) = I(
∑

xt+1:T

σ(x1:T ) > 0) = I(σ(x1:t) > 0). (30)

Here we treat all steps as incorrect if they follow an incorrect step. While in Lightman et al. (2024),
a step could still be labeled as correct even its prior steps are incorrect. This is because the logical
thinking is not always in a linear dependency, i.e., a future step is not necessarily dependent on all
steps prior to it. How to label these steps is an inductive bias, which does not affect the solution
score at the theoretical optimal case.

B PSEUDOCODE FOR TSMC

Here we summarize the pseudocode for our TSMC-based verification method.
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Algorithm 1 TSMC for Verification
1: Input: Generator p, estimated value function V θ

2: for t = 1, . . . , T do
3: for i = 1, · · · , N do
4: # Sample the next step
5: xi

t ∼ p(·|xi
1:t−1)

6: # Concatenate the sampled step to the partial sequence
7: xi

1:t ← CONCAT(xi
1:t−1,x

i
t)

8: # Evaluate the incremental importance weight
9: if t < T then

10: w(xi
1:t)←

√
V θ(xi

1:t)

V θ(xi
1:t−1)

11: else
12: w(xi

1:T )←
V θ(xi

1:T )√
V θ(xi

1:T−1)

13: end if
14: end for
15: if t < T then
16: for i = 1, · · · , N do
17: # Resample the sequences

18: ωi ∼ Cat({ wt(x
i
1:t)∑N

j=1 wt(x
j
1:t)

)}Ni=1)

19: xi
1:t ← xωi

1:t
20: end for
21: end if
22: end for
23: # Create a dictionary to store the voting weight
24: W ← {}
25: for i = 1, · · · , N do
26: # Extract the answer
27: ai ← Ans(xi

1:T )
28: if ai ∈W then
29: # Update the answer voting weight
30: W [ai]←W [ai] + w(xi

1:T )
31: else
32: W [ai]← w(xi

1:T )
33: end if
34: end for
35: # Majority voting
36: return: argmaxaW [a]

C ADDITIONAL EXPERIMENTAL DETAILS

All our experiments, including training and inference, are conducted on a single machine with 8
H100 GPUs. The summary of the model hyperparameters is presented in Table 2, and we include
individual details as below.

C.1 THE GENERATOR

We follow Sun et al. (2024) to fine-tune the generators on a filtered subset from PRM800K (Light-
man et al., 2024). The hyperparameters are kept the same across the fine-tuning over Llemma-7B
(Azerbayev et al., 2023) and DeepSeek-7B (Shao et al., 2024). The generators are fixed once the
supervised fine-tuning is over and no additional reinforcement learning is applied.

During the inference time, we generate the solution using top-K sampling with K = 20 and set the
temperature as 0.7. The maximum length of the solution is fixed as 768.
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Table 2: The summary of training hyperparameters for all models.

Generator Value ORM PRM (PRM800k) PRM (SHEPHERD)

Learning rate 2× 10−5 10−5 2× 10−5 2× 10−5 2× 10−5

Batch size 128 80 128 128 128

# Epochs 3 2 2 2 2

Warmup ratio 0.2 0.05 0.2 0.2 0.2

Max. length 768 1024 1024 1024 1024

Dtype BF16

C.2 THE VALUE FUNCTION

For each math problem in the training dataset, we generate B = 80 solutions independently with
the generator and we only keep them for training if at least one solution is correct. The inference
hyperparameters for the generator are kept the same as above. We use the same way to create the
validation set using 500 validation instances.

We apply the CTL loss (Zhao et al., 2024) on the step-level. The steps are separated by double
newline indicators, i.e., \n\n, and the value function is trained on the token corresponding to the
second newline indicator, along with the end of sentence token <eos>. Since the CTL loss is
computed over all solutions to a single problem, we fill each training batch with all 80 samples
collected from that problem.

Recall that the gradient of the CTL loss at t-th step is given as

Eσ(x1:t)[∇θ log V
θ(x1:t)]− Eπθ

t (x1:t)[∇θ log V
θ(x1:t)]. (31)

We approximate the gradient in the first term via rejection sampling while the gradient in the
second term via IS. The first term is approximated as

∑B
i=1

ϕ(Ans(xi
1:T ))∑B

j=1 ϕ(Ans(xj
1:T ))
∇θ log V

θ(xi
1:t).

In the second term, we first compute the importance weight via the current approximated value
function as wθ

t (x1:t) =
V θ(xi

1:t)

V θ(xj
1:t−1)

, then we approximate the expected gradient via IS as∑B
i=1

wθ
t (x

i
1:t)∑B

j=1 wθ
t (x

j
1:t)
∇θ log V

θ(xi
1:t). Therefore, we can approximate the gradient of θ on the train-

ing problems as

∇θLCTL(θ) ≈ Ex0
[

T∑
t=1

B∑
i=1

(
ϕ(xi

1:T )∑B
j=1 ϕ(x

j
1:T )
− wθ

t (x
i
1:t)∑B

j=1 w
θ
t (x

j
1:t)

)∇θ log V
θ(xi

1:t)] (32)

C.3 THE ORM

To ensure a fair comparison, the ORM is trained on the same data used to train and validate our
value function, but with a different data processing strategy and training method.

We basically follow the same procedure in Cobbe et al. (2021) to train the ORM. We balance the
positive and negative samples in the dataset by selecting the same number of correct and incorrect
solutions per problem. The ORM is trained with the binary cross-entropy loss on each token while
only the last token is used for prediction during the inference time.

C.4 THE PRM

We use PRM800K (Lightman et al., 2024) and MATH-SHEPHERD (Wang et al., 2023b) datasets
to train two PRMs separately. Especially, we use the PRM800K data to train the PRM once and
apply it on both GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) datasets. While
for MATH-SHEPHERD, it consists of the samples from both the GSM8K and MATH datasets, and
we use the corresponding portion to train two PRMs separately. A validation set of 4096 samples

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

is held from the training set of each model. We apply the binary cross entropy loss on the second
newline token of a step and the last token of each sample.

D COMPARISON WITH GREEDY DECODING ALGORITHMS

Although TSMC yields an unbiased estimation of the importance weight with less variance, the
ultimate goal in reasoning tasks is simply to generate the solution with the highest correctness prob-
ability. In case we have a perfect estimation of the value function, we could greedily select the
partial sequence with the highest value and continue the search since then, which should in theory
give the highest chance in reaching the correct answer (Mudgal et al., 2024). While in practice,
the training error is unavoidable and estimation of the value function is always imperfect, which
makes the sampling necessary. In this section, we compare our TSMC method with some greedy
approaches to verify the necessity of sampling.

The main baseline we consider is the Step-Level Beam Search (SBS) (Chen et al., 2024). At each
step, SBS selects the top-K samples with the highest values from M parallel decoded sequences.
It then clones each sample for M

K times to continue the search in the next step. It is also shown
to outperform the Monte Carlo Tree Search method (Kocsis & Szepesvári, 2006; Coulom, 2006;
Silver et al., 2016; Świechowski et al., 2023) in both the efficiency and solving rate. Following the
parameters in Chen et al. (2024), we set K = 8, and fix M = 80 as in our TSMC method. Besides,
we also consider another variant of TSMC in selecting the top-K incremental importance weights
and clone them for M

K times during the resampling stage. This method is named as TSMC (greedy).
We fix the value function across all methods and compare TSMC to these variants in Figure 5.

Figure 5: Comparison to greedy methods. Variance are visualized across many sub-samples of the
240 solutions per problem.

It can be seen that the greedy approaches do not achieve a comparable performance to our TSMC
method. Although SBS outperforms all other baselines in Table 1, there is still a substantial gap
between its performance and our TSMC method. This result verifies the robustness of our TSMC
method to the estimation error in the value function, which also verifies the necessity of sampling in
practice.

E QUALITATIVE EXAMPLES

Here we include some qualitative examples generated by our TSMC method in Table 3. We com-
pare the samples discarded (do not get sampled) and cloned by TSMC (get sampled multiple times)
during the same resampling step. We also include the value and the incremental importance weight
estimated at each sample. Notably, the incremental importance weight is proportional to the resam-
pling probability up to a constant, so a lower weight means a lower chance to be sampled.
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QUESTION What is 1(2
235423523)?

DISCARDED

VALUE: 0.09
WEIGHT: 0.77

I notice that this expression is a power of 1, so it is just 1 by the definition of exponents.

However, I also notice that the exponent is very large, so I wonder if there is a pattern
or a shortcut to simplify it.

I recall that any number raised to a multiple of 2 has a simple pattern: it is either 1 or
−1 depending on whether the exponent is even or odd.

CLONED

VALUE: 0.18
WEIGHT: 1.25

So the question is asking us to evaluate 1(2
235423523).

Right, and we know that anything to the power of 1 is just 1.

So now we just need to evaluate 12
235423523

.

And since 1 is a power of 1, then 12
235423523

= 1.

QUESTION
A regular hexagon can be divided into six equilateral triangles. If the perimeter of one
of the triangles is 21 inches, what is the perimeter, in inches, of the regular hexagon?

DISCARDED

VALUE: 0.02
WEIGHT: 0.27

Since the hexagon is regular, all the sides are equal.

And since the hexagon can be divided into six equilateral triangles, all the sides of the
hexagon are also equal to the perimeter of one of the triangles divided by six.

So the perimeter of the hexagon is 21/6 = 3.5 inches.

CLONED

VALUE: 0.36
WEIGHT: 1.37

I know that the perimeter of a regular hexagon is six times the length of one of its sides,
so I need to find the length of one side of the hexagon.

If I divide a regular hexagon into six equilateral triangles, each triangle must have the
same side length as the hexagon, because they are congruent.

So, if the perimeter of one of the triangles is 21 inches, then each side of the triangle
must be 21/3 = 7 inches.

QUESTION How many positive whole-number divisors does 196 have?

DISCARDED

VALUE: 0.17
WEIGHT: 0.85

To find the number of divisors of a positive whole-number, I can use the fact that it is
equal to the product of one more than the exponents of its prime factorization.

For example, 12 has six divisors because it can be written as 22 ∗ 31, and the product of
one more than the exponents is (2 + 1) ∗ (1 + 1) = 6.

So I need to find the prime factorization of 196

I can start by dividing by 2, the smallest prime, and see if I get an integer.

196/2 = 98, which is not an integer, so 2 is not a factor of 196.

I can try the next prime, 3, and see if I get an integer.

CLONED

VALUE: 0.33
WEIGHT: 1.10

I need to find all the positive integers that divide 196 evenly, without leaving a remainder.

One way to do this is to factor 196 into its prime factors, and then use the formula for the
number of divisors of a product of prime powers.

196 is divisible by 2, so I can write it as 2 times 98.

98 is also divisible by 2, so I can write it as 2 times 49.

49 is a perfect square, and it is also divisible by 7, so I can write it as 7 times 7.

Therefore, 196 can be written as 2 times 2 times 7 times 7, or 22 times 72.

Table 3: Qualitative examples for partial sequences discarded and cloned by TSMC. The estimated
value function and incremental importance weight from the TSMC are included. We also highlight
the incorrect/unpromising reasoning steps in red through human annotations.
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F EXAMPLE OUTPUTS

Here we include some raw outputs from the generator, which follows the basic format in PRM800K
(Lightman et al., 2024).

# Question

Convert the point $(0,3)$ in rectangular coordinates to polar
coordinates. Enter your answer in the form $(r,\theta),$ where $r > 0
$ and $0 \le \theta < 2 \pi.$

# Solution

To convert from rectangular to polar coordinates, I need to use the
formulas $r = \sqrt{xˆ2 + yˆ2}$ and $\theta = \tanˆ{-1} \frac{y}{x}.$

For this point, $x = 0$ and $y = 3,$ so $r = \sqrt{0ˆ2 + 3ˆ2} = 3$ and $
\theta = \tanˆ{-1} \frac{3}{0}.$

However, I can’t divide by zero, so I need to use a limit to avoid that.

As the angle $\theta$ approaches zero from the right, the ratio $\frac{y
}{x}$ approaches $\frac{3}{0ˆ+}.$

This means that $\theta$ approaches $\frac{\pi}{2},$ which is the angle
in the first quadrant.

Since $r$ is always positive, I don’t need to worry about the sign or
the quadrant.

Therefore, the polar coordinates are $(3, \frac{\pi}{2}).$

# Answer

(3, \frac{\pi}{2})

# Question

The expression $2\cdot 3 \cdot 4\cdot 5+1$ is equal to 121, since
multiplication is carried out before addition. However, we can obtain
values other than 121 for this expression if we are allowed to

change it by inserting parentheses. For example, we can obtain 144 by
writing \[

(2\cdot (3\cdot 4)) \cdot (5+1) = 144.
\]In total, how many values can be obtained from the expression $2\cdot

3\cdot 4 \cdot 5 + 1$ by inserting parentheses? (Note that
rearranging terms is not allowed, only inserting parentheses).

# Solution

I need to count how many ways I can group the four factors of the
product into two pairs, and then combine those pairs using either
multiplication or addition.

I can use the binomial coefficient to count the number of ways to choose
two factors out of four, and then multiply that by the number of

ways to group the remaining two factors.

The binomial coefficient $\binom{4}{2} = \frac{4!}{2!2!}

= 6$ is the number of ways to choose two factors out of four, and it
represents the number of ways to arrange the two pairs of factors.

The number of ways to combine those pairs into a single product or sum
depends on which pair I choose to be the first one.
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If I choose the pair $2\cdot 3$, then I have two options: either to
multiply them $(2\cdot 3)$, or to add them to the rest of the
expression $(2\cdot 3) \cdot 4\cdot 5 + 1$.

If I choose the pair $4\cdot 5$, then I have two options: either to
multiply them $(4\cdot 5)$, or to add them to the rest of the
expression $(2\cdot 3) \cdot 4 + 1$.

In either case, the rest of the expression $(4\cdot 5) \cdot 2\cdot 3 +
1$ or $(2\cdot 3) \cdot 4 + 1$ is always a constant, and I can ignore
it for now.

So, for each pair of factors, I have two options to combine them into a
product or a sum.

Therefore, for each way to arrange the two pairs of factors, I have $2\
cdot 2 = 4$ options to combine them into a product or a sum.

This means that there are $6\cdot 4 = 24$ ways to insert parentheses in
the expression, and obtain values other than 121.

# Answer

24
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G ADDITIONAL EXPERIMENTS

In this section, we present three additional experiments to check TSMC’s advantage on easy math
problems, its generalizability to other reasoning tasks and its performance on the remaining prob-
lems in the MATH dataset (Hendrycks et al., 2021).

G.1 EASY MATH PROBLEMS

We first evaluate the performance of TSMC method on an easy math reasoning benchmark, Multi-
arith(Roy & Roth, 2015), to examine whether TSMC brings an adverse effect when the problem is
easy or the generator is good enough. Since the answer format of Multiarith is the same as that in
GSM8K, i.e., an integer number, we directly apply the generator and reward/value models trained
on the GSM8K for evaluation on this dataset. All the experimental setups are kept the same as the
ones in Section 4. The comparative results are shown in Table 4.

Table 4: Comparative results in the problem solving rate (%) on the Multiarith dataset. Llemma-7B
and DeepSeek-8B are used as generators. We bold the best results in each category. The voting is
performed on 240 samples.

Generators Methods Multiarith

Llemma-7B

Greedy 66.7

MV 95.4

WMV w. ORM 97.1

WMV w. PRM (PRM800K) 95.4

WMV w. PRM (SHEPHERD) 97.8

TSMC + MV (Ours) 98.3

TSMC + WMV (Ours) 98.9

DeepSeek-7B

Greedy 85.6

MV 98.3

WMV w. ORM 98.3

WMV w. PRM (PRM800K) 97.7

WMV w. PRM (SHEPHERD) 98.9

TSMC + MV (Ours) 98.3

TSMC + WMV (Ours) 99.4

Although the absolute differences between the performance of TSMC and baselines are reduced,
TSMC still shows a consistent improvement against the baselines without showing any adverse
effect. But in practice, the usage of TSMC should balance the trade-off between the performance
improvement and the additional computation cost brought by TSMC. In general, TSMC is most
suitable when the generator lacks sufficient power to generate correct solutions.

G.2 OTHER REASONING TASKS

We then examine the generalizability of TSMC to other reasoning tasks beyond mathematical rea-
soning. Here we choose the quantitative natural language inference task (task 7) in the NumGLUE
benchmark (Mishra et al., 2022), which uses a Python program for the multi-step reasoning.

We separate the Python program into steps using the single newline character \n. We re-split the
dataset by choosing a subset of the original validation and testing sets for validation and testing, and
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add the remaining ones to the training set. This forms a final dataset with 5924 training samples,
200 validation samples and 200 testing samples. We use the training set for the supervised fine-
tuning and the training for the value network. CodeLlama-7B (Rozière et al., 2024) is used for
fine-tuning and fixed as the generator afterwards. To train the value network, we generate B = 40
solutions independently with the generator, while the remaining training process is kept the same
as the one on math benchmarks. Since this task is relatively easy, we do perform the TSMC across
the full reasoning process without skipping the first few tokens and setting the maximum number of
resampling steps.

The comparative results are presented in Table 5 below. Since PRMs are not available on this task,
we only compare our method to greedy decoding, majority voting and the ORM method. Here we
vary the voting sample size across {5, 10, 20, 40} and the TSMC batch size is set as {5, 10, 20, 20}
respectively. The results indicate that TSMC achieves a consistent advantage against baselines
across all voting sizes. It still achieves a high solving rate (99%) with 5 voting samples. This result
on this task, although simple, has shown the potential of TSMC to be applied to other reasoning
tasks.

Table 5: Comparative results in the problem solving rate (%) on the NumGLUE dataset (quantitative
natural language inference). CodeLlama-7B is used as generator. The voting is performed under
n = 5, 10, 20 and 40 respectively (no effect on the greedy decoding). We bold the best results in
each category.

Generator Methods n = 5 n = 10 n = 20 n = 40

CodeLlama-7B

Greedy 94.0 94.0 94.0 94.0

MV 97.0 98.0 98.0 98.0

WMV w. ORM 97.0 98.5 98.5 98.5

TSMC + MV (Ours) 98.5 99.0 99.5 99.5

TSMC + WMV (Ours) 99.0 99.5 99.5 99.5

G.3 OTHER PROBLEMS IN THE MATH DATASET

Since we have trained our value function on most problems in MATH dataset (Hendrycks et al.,
2021), here we repeat our evaluation on our on-hold validation set (500 samples) from the MATH
dataset to check if the performance is consistent. The results are show in Table 6. Basically, it can be
seen that the result is consistent with the one presented in Table ??, where TSMC takes a consistent
lead across all methods.
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Table 6: Comparative results in the problem solving rate (%) on our validation set in MATH.
Llemma-7B and DeepSeek-8B are used as generators. We bold the best results in each category.
The voting is performed on 240 samples.

Generators Methods MATH (validation)

Llemma-7B

Greedy 26.2

MV 40.2

WMV w. ORM 42.4

WMV w. PRM (PRM800K) 44.0

WMV w. PRM (SHEPHERD) 46.8

TSMC + MV (Ours) 47.4

TSMC + WMV (Ours) 50.8

DeepSeek-7B

Greedy 33.2

MV 55.2

WMV w. ORM 57.2

WMV w. PRM (PRM800K) 58.4

WMV w. PRM (SHEPHERD) 56.4

TSMC + MV (Ours) 57.6

TSMC + WMV (Ours) 59.0
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