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ABSTRACT

The frequent retrieval of Key-Value (KV) cache data has emerged as a significant
factor contributing to the inefficiency of the inference process in large language
models. Previous research has demonstrated that a small subset of critical KV cache
tokens largely influences attention outcomes, leading to methods that either employ
fixed sparsity patterns or dynamically select critical tokens based on the query.
While dynamic sparse patterns have proven to be more effective, they introduce
significant computational overhead, as critical tokens must be reselected for each
self-attention computation. In this paper, we reveal substantial similarities in KV
cache token criticality across neighboring queries, layers, and heads. Motivated by
this insight, we propose HShare, a hierarchical KV sharing framework. HShare
facilitates the sharing of critical KV cache token indices across layers, heads, and
queries, which significantly reduces the computational overhead associated with
query-aware dynamic token sparsity. In addition, we introduce a greedy algorithm
that dynamically determines the optimal layer-level and head-level sharing con-
figuration for the decoding phase. We evaluate the effectiveness and efficiency
of HShare across various tasks using three models: LLaMA2-7b, LLaMA3-70b,
and Mistral-7b. Experimental results demonstrate that HShare maintains accuracy
with an additional sharing ratio of 1/8, while delivering up to an 8.6× speedup in
self-attention operations and a 2.7× improvement in end-to-end throughput. The
source code will be made publicly available upon publication.

1 INTRODUCTION

The development of Large Language Models (LLMs), like the GPT and LLaMA series (OpenAI,
2024; Touvron et al., 2023), has marked a major breakthrough in artificial intelligence, dramatically
improving performance in natural language processing tasks such as translation (Zhu et al., 2023; Pal
et al., 2024) and summarization (Zhang et al., 2023; Liu et al., 2023b). However, in long-context
scenarios, such as multi-turn dialogues (Yi et al., 2024; Teng et al., 2024), document-based question
answering (Abdel-Nabi et al., 2023; Rasool et al., 2024), and code completion (Yang et al., 2023;
Eghbali & Pradel, 2024), LLMs face significant speed challenges with token-by-token decoding. A
key factor contributing to this slowdown is the handling of the Key-Value (KV) memory cache since
as the context length expands, the size of this KV cache grows correspondingly, resulting in longer
access times and increased memory overhead.

Existing works have introduced several approaches to address this issue. Since it has been demon-
strated that a small portion of the tokens can dominate the accuracy of token generation, many works
choose to only load these critical tokens into the KV cache to reduce the inference latency while
maintaining accuracy. Among them, StreamingLLM (Xiao et al., 2023) treats the initial tokens (also
referred to sink tokens) and the recent tokens as critical tokens and performs sparsity in a fixed pattern.
H2O (Zhang et al., 2024b) introduces a greedy policy that dynamically retains a balance of recent
and heavy tokens. These two methods alleviate both storage and retrieval pressures through KV
cache eviction. However, they tend to lose a significant amount of historical information, leading to a
substantial decline in performance as their sparsity increases.

On the other hand, Quest (Tang et al., 2024) points out the criticality of tokens can change with
different query tokens. To this end, Quest introduces a query-aware token sparsity algorithm, which
uses the maximum and minimum values of each hidden dimension at page granularity to measure the
query-aware criticality. Similarly, DoubleSparse (DS) (Yang et al., 2024) proposes to select critical
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Table 1: Comparison of the selection of critical tokens in different token sparsity methods.
Methods Selection mode Efficiency Memory cost Accuracy
StreamingLLM (Zhang et al., 2024b) Fixed pattern High Low Low
H2O (Xiao et al., 2023) Dynamic+Local High Low Low
Quest (Tang et al., 2024) Dynamic Low High Median
DS (Yang et al., 2024) Dynamic Median High High
HShare (Ours) Dynamic+Sharing High High High

tokens dynamically by calculating and sorting approximate attention weights with important channels
only. Although these two methods only load critical tokens, they retain all the KV cache, allowing
them to enhance speed while effectively maintaining accuracy. However, for Quest and DS, the
requirement evaluation for each dynamic selection introduces computational overhead, which results
in a significant drawback of these approaches. Take DS as an example, with a sequence length of 2k
and a batch size of 8, the process of selecting important tokens consumes nearly 50% of the total
runtime in their token sparse attention. The comparison of different methods is shown in Tab. 1.

In this work, we further observe that the criticality of KV cache tokens demonstrates significant
similarity across different layers, heads within the same layer, and between adjacent queries. Building
on this observation and to mitigate the computational overhead associated with the dynamic selection
of critical tokens mentioned above, we propose HShare, a hierarchical key-value sharing framework
that operates at three levels: layers, heads, and queries. Specifically, we introduce an algorithm to
design a sharing configuration for the layer and head levels based on the similarity of critical KV
cache token indices. To ensure the sharing accuracy, we compute the corresponding configuration
online for each batch of samples after the prefilling phase, the configuration is then applied to the
entire decoding phase. This online calculation introduces only a minor increase in the prefill phase’s
time without incurring any additional overhead during the decode phase. At the query level, we simply
share critical token indices between adjacent queries, as their proximity results in higher similarity.
By retaining the full KV cache, selectively loading only the critical portions, and implementing
hierarchical multi-level sharing, HShare maintains accuracy while reducing the time spent selecting
critical KV tokens, significantly improving decoding latency compared to existing methods.

We use LLaMA2-7b-chat (Touvron et al., 2023), LLaMA3-70b (Dubey et al., 2024), and Mistral-
7b (Jiang et al., 2023a) to evaluate the accuracy of HShare across three benchmarks: GSM8K (Cobbe
et al., 2021), COQA (Reddy et al., 2019), and LongBench (Bai et al., 2023). Experimental results
demonstrate that, under the same token sparsity, HShare can maintain accuracy with an additional
sharing ratio of 1/8, offering competitive performance to state-of-the-art (SOTA) methods. Further-
more, we evaluate the efficiency of HShare and the results show that HShare can achieve up to 8.6×
self-attention latency reduction compared with FlashAttention-2 (Dao, 2023) and 2.7× throughput
improvement in end-to-end inference compared with GPT-fast (PyTorch, 2023). In summary, the
contributions of this paper are:

• We systematically analyze the criticality of KV cache tokens across all the levels: different
layers, different heads within the same layer, and adjacent queries. Our empirical findings
on LLaMA2-7b-chat show that all three levels exhibit substantial similarity.

• We propose a hierarchical critical KV token indices sharing framework with a greedy
algorithm to dynamically determine the sharing configuration. To the best of our knowledge,
this is the first work to introduce the concept of sharing critical KV cache token indices.

• We evaluate HShare in terms of accuracy and efficiency, with results showing that it maintains
model performance with a sharing ratio 1/8 while achieving up to 8.6× reduction in self-
attention latency and 2.7× improvement in inference throughput.

2 RELATED WORK

2.1 LONG-CONTEXT MODEL

Recently, significant efforts have been made to extend the context windows of LLM, both in academia
(e.g., LongChat (Li et al., 2023), Yarn-LLaMA-2 (Peng et al., 2023)) and industry (e.g., GPT-4
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Turbo, which supports up to 128K tokens (OpenAI, 2024)). These extended-context LLMs excel
in tasks such as multi-turn conversation comprehension and meeting summarization by providing
enhanced in-context learning and improved performance on complex reasoning tasks. However, this
advancement comes with notable trade-offs, including increased computational demands, higher
memory usage, and greater bandwidth requirements, leading to elevated costs and longer per-token
latencies (Aminabadi et al., 2022; Pan et al., 2024; Chen et al., 2024b). For example, (Pan et al.,
2024) utilizes host SSD memory to alleviate the long sequence KV cache memory requirements
at the expense of long latency whereas (Chen et al., 2024b) offloads the attention computation on
low-cost GPU devices to support economical long-sequence LLM inference. These solutions try to
tackle the Long-context model from the computing system level, however, it could be better solved
from the algorithm advancements such as LLM quantization (Liu et al., 2024) and sparsification
(Tang et al., 2024).

2.2 EFFICIENT INFERENCE OF LLMS

Several techniques, such as speculative decoding (Leviathan et al., 2023; Miao et al., 2024), parameter
sharing (Chen et al., 2024a), and quantization (Lin et al., 2024b;a), have been proposed to improve
inference efficiency. Here we focus on accelerating the attention mechanism, which poses significant
time costs due to its quadratic complexity with respect to sequence length, particularly in long-context
scenarios. Decoder-only transformers, trained with masked self-attention where each token depends
only on preceding tokens, enable the use of key-value activation caching (KV cache) to bypass
redundant computations (Pope et al., 2023). However, the KV cache can grow significantly in size.
For instance, during inference with the OPT-175B model (Zhang et al., 2022) using a batch size of
512, a prompt length of 512, and an output length of 32, the KV cache demands 1.2TB of memory
for storage and communication just to generate a single token (Liu et al., 2024), which poses a grand
challenge for system memory and bandwidth. To tackle the challenge, one path is to reduce the KV
cache storage by quantization to 2-bit or even 1-bit. Existing works (Liu et al., 2024) report to achieve
2-bit quantization without accuracy loss and (Zhang et al., 2024a) quantizes the KV cache to 1-bit
with minor accuracy loss. Another orthogonal path is to focus only on the critical tokens in the KV
caches, also known as token sparsity, which we will review in Sec 2.3.

2.3 SPARSE ATTENTION

Early works such as sparse transformer (Child et al., 2019), reformer (Kitaev et al., 2020), and
longformer (Beltagy et al., 2020) made efforts to reduce attention complexity through training.
Recently, Jiang et al. (2023b) trained a language model to compress prompts into smaller sets of gist
to reduce memory pressure during caching. However, such a compression strategy requires retraining
the large language model and also increases the overhead during inference.

On the other hand, many works (Ribar et al., 2023; Zhang et al., 2024b; Tang et al., 2024) propose
post-training sparse attention, primarily leveraging the observation of sparse attention scores, which
allows focusing on important tokens without compromising performance. StreamingLLM (Xiao
et al., 2023) identifies the initial and most recent tokens as critical, while Zhang et al. (2024b;a)
propose to adopt the accumulated attention score as the indicator to identify the critical tokens in
the KV cache. MInference (Jiang et al., 2024) introduces a dynamic sparse pattern identification
algorithm for prefilling acceleration. Additionally, Quest (Tang et al., 2024) uses min and max values
to assess the importance of each KV cache page, computing only the most relevant pages, while
DS (Yang et al., 2024) focuses on selecting critical KV tokens by utilizing only important channels.
However, these methods incur additional computational overhead for determining importance. In
contrast, our work aims to minimize the need for such additional computations by sharing critical KV
cache token indices across multiple levels.

3 PROBLEM FORMULATION

We begin by defining the decoding self-attention process with selected critical key-value cache tokens,
which we refer to as token sparsity attention. In the decoding stage, let the query matrix be denoted
as Q ∈ R1×d, the key matrix as K ∈ Rn×d and the value matrix as V ∈ Rn×d, where n denotes the
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sequence length. Here Ki,∗ represents the i-th row of key matrix, corresponding to the i-th token in
the current sequence. With these notations, we define the token sparsity attention.

Definition 3.1 (Token sparse attention, informal). Token sparsity attention only calculates the
attention weights between the query matrix and the selected critical key tokens. Let Nc represent the
number of KV critical tokens to be selected, and suppose we have the indices:

CT = {x1, x2, . . . , xNc
| xi ∈ [0, n] and i = 1, 2, . . . , Nc} (1)

We then select the rows {Ki,∗|i ∈ S} corresponding to these indices from the key matrix to form a
new key matrix KCT ∈ RNc×d, also apply the same operation to the value matrix to form a new
value matrix VCT ∈ RNc×d. The token sparsity ratio is defined as Nc

n and the token sparse attention
is computed through the formula shown below:

y = softmax

(
Q ·KT

CT√
dh

)
· VCT (2)

Normally, each attention block independently evaluates and selects its critical KV cache tokens,
resulting in a corresponding set of indices, denoted as CT . We use the number of overlapping
elements between two different sets to evaluate the similarity between them. Then the similarity
between two critical KV cache token indices CTA and CTB can be formally written as:

sim(CTA, CTB) =
|CTA ∩ CTB |

max(|CTA|, |CTB |)
, (3)

here | · | represents the cardinality of a set and normally |CTA| = |CTB | = Nc. Next, we define
Key-Value sharing.

Definition 3.2 (Key-Value sharing). Assuming that the critical KV cache token indices for attention
block A are denoted as CTA, if another attention block B directly reuses the indices from block A,
represented as CTB ← CTA, we refer this to as key-value sharing between blocks B and A. In this
case, CTA is utilized by attention block B to construct KCT and VCT .

4 METHOD

In this section, we first present the motivation of HShare, and then we introduce HShare in details.

4.1 MOTIVATION

Previous works have pointed out not all KV tokens hold equal significance, with a limited subset,
known as critical tokens, contributing most to the attention output, and these critical tokens are found
to be query-aware. In this paper, we further present three observations, with insights shown in Fig. 1.

Similar critical tokens between adjacent queries: From Fig. 1(a)-(d), we observe that within
individual attention heads, the distribution of critical KV cache tokens (those associated with larger
values in the attention matrix) gradually shifts with changes in the queries. However, the critical
tokens across adjacent queries remain largely consistent. This observation aligns with intuition, as
minor variations in query length do not significantly alter the overall sequence length, suggesting
that the attention distribution remains stable. The similarity between adjacent queries presents an
opportunity to reduce computational overhead by reusing the same critical KV cache tokens for every
k consecutive query.

Similar sparse-patterns across different heads and layers: The distribution of critical tokens
results in different sparse patterns for attention heads. However, as illustrated in Fig. 1(a)-(d), we
can also see that some sparse patterns are consistently observed across various attention heads. For
example, the sparse pattern of head 12 in layer 8 is very similar to that of head 22 in the same layer.
Additionally, head 9 and head 16 in layer 9 also share a similar sparse pattern, indicating that the
similarity between heads exists not only within the same layer but also across different layers. This
uniformity suggests that a sparse pattern derived from one head can be effectively applied to others,
enabling a shared strategy for selecting critical KV cache tokens. This approach can further improve
the speed and efficiency of the attention mechanism.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: (a)-(d): Illustrations of self-attention matrices from a specific head in a particular layer of
the LLaMA2-7b-chat model, corresponding to similar self-attention patterns observed across different
layers and heads. (e)-(h) Similarity matrices of critical token indices across different heads and layers
during the prefill and decode stages. The element in the i-th row and j-th column represents the
similarity (Eq. 3) between the i-th head (layer) and the j-th head (layer). The red stars represent the
top-k largest values in the matrix.
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Figure 2: Share the same critical token
indices between layers and heads.
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Figure 3: Share the same critical token
indices between adjacent queries.

Consistency relationships between prefill and decoding phases: Fig. 1(e) and Fig. 1(f) present
the head similarity matrices of layer 8 in terms of prefill stage and decoding stage, respectively.
Fig. 1(g) and Fig. 1(h) present the layer similarity matrices of the whole network in terms of the
prefill stage and decoding stage, respectively. We observe that the similarity matrix between prefill
and decoding phases exhibits a remarkable consistency for both head-level and layer-level. This
continuity underscores the potential that applying the hierarchical sharing strategy computed from
the prefill phase to the decoding phase.

Motivated by the above observations, we propose HShare, a hierarchical sharing framework that
shares the same critical KV cache tokens across queries, heads, and layers. HShare not only takes
advantage of dynamic sparsity but also significantly reduces the computational overhead associated
with critical tokens through an effective sharing mechanism.

4.2 HIERARCHICAL KEY-VALUE SHARING FRAMEWORK

Inspired by recent works (Zhang et al., 2024b; Xiao et al., 2023; Yang et al., 2024), in this paper,
we select critical tokens from three perspectives: initial tokens (also referred to as sink tokens), the
most recent window, and significant tokens in the middle. The dark blue positions in Fig.2 and Fig.3
represent the indices of these critical tokens. Given that the decoding stage is autoregressive, each
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decoding step requires passing through all L layers of the attention blocks. In the case of multi-head
attention and group query attention, each attention block involves multiple parallel attention head H
computations. Consequently, to generate n tokens, a total of L×H × n attention computations are
necessary, resulting in L×H × n re-selections of critical tokens.

To reduce the overall time spent on evaluating and selecting critical tokens and further accelerate the
decoding, we introduce a hierarchical key-value sharing framework. This framework is designed to
facilitate key-value sharing from three perspectives: across layers, heads, and queries. Specifically,
denote the attention computation of head h in layer l of the query q as Al,h,q, then the key-value
sharing between layers l1 and l2 can be expressed as: CTAl2,h,q

← CTAl1,h,q
.

Similarly, the key-value sharing between heads h1, h2 and queries q1, q2 can be expressed as:
CTAl,h1,q

← CTAl,h2,q
, CTAl,h,q1

← CTAl,h,q2
.

It should be noted that since there is a temporal dependency between the attention computations of
layers and queries, it is necessary to satisfy l1 < l2 and q1 < q2 here.

Similar to the token sparsity ratio, we define the sharing ratio as a value less than or equal to 1, where
a smaller value indicates a higher degree of sharing and greater computational savings. Let the total
number of layers and heads be denoted as nl and nh, respectively. Suppose kl layers and kh heads
share critical KV token indices with other layers or heads. The sharing ratios for layers and heads
are then defined as ratiol = 1− kl

nl
and ratioh = 1− kh

nh
, respectively. For query-level sharing, let

the total number of decoding tokens (queries) be nq, and suppose kq queries bypass the selection
of critical token indices by sharing key-value indices with other queries. The query-level sharing
ratio is defined as ratioq = 1− kq

nq
. Since the sharing across layers, heads, and queries is mutually

independent, the total sharing ratio is given by:

sharing ratio = (1− kl
nl

)× (1− kh
nh

)× (1− kq
nq

) (4)

4.3 ALGORITHM FOR SHARING CONFIGURATION DESIGN

Algorithm 1 Layer(Head) Sharing Algorithm

1: Input: layer(head) number nl(nh), critical token
indices matrix List L = {M1,M2, ...Mnl(nh)},
share number kl(kh)

2: Initialize similarity matrix S ← zeros(n, n)
3: for i = 1 to nl(nh) do
4: seti ← set(Mi.flatten())
5: for j = 1 to i− 1 do
6: setj ← set(Mj .flatten())
7: overlap← |seti ∩ setj |
8: Sij ← overlap / Mi.numel()
9: end for

10: end for
11: for i = 1 to nl(nh) do
12: Initialize sharing config C[i]← i
13: end for
14: for i = 1 to kl(kh) do
15: row index, column index← argmax(S)
16: S[row index, :]← 0
17: S[:, row index]← 0
18: C[row index]← column index
19: end for
20: Output: Sharing config C of layer(head).

For layer-level and head-level sharing, as
demonstrated in Sec. 4.1, the similarity of
the critical KV cache token indices shows
consistency across the different queries.
Therefore, we can design a sharing config-
uration by calculating the similarity of the
critical token indices between layers and
heads after prefilling, and then apply this
configuration to the entire decoding phase.

Here, we use the layer-level as an exam-
ple for a detailed explanation. After each
prefill step, we first obtain the critical KV
cache token indices matrix list for all lay-
ers L = M1,M2, . . . ,Mnl

, where nl rep-
resents the number of layers. Next, we
compute the pairwise similarities between
the critical KV cache token indices of all
layers, producing a similarity matrix Sl.
Based on the desired sharing ratio, we
then perform key-value sharing between
the most similar layers. Specifically, if the
layer-level sharing ratio is β, meaning that
kl = (1− β)× nl layers should share crit-
ical KV token indices, we iteratively select
the pair (i, j) with the highest similarity

(where j < i), allowing the i-th layer to reuse the indices of the j-th layer. Since layer i now reuses
the critical token indices of another layer and does not compute its own, we remove the i-th row and
i-th column from the similarity matrix.
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Similarly, for all heads within each layer, we apply the same method to determine the sharing
configuration. Note that each layer has its own head-level sharing configuration. Algo. 1 outlines the
process of calculating the similarity matrix and designing the layer (or head) sharing configuration.
Formally, the output sharing configuration C represents:

ci =

{
j, if the i-th layer (or the i-th head) shares with the j-th layer (or the j-th head),
i, if the i-th layer needs to compute critical tokens separately.

(5)

Since the sharing configuration can differ across samples, we compute it dynamically for each batch
of samples.

Query-level. As discussed in Sec. 4.1, we observe that attention weights between adjacent query
tokens tend to exhibit significantly higher similarity compared to those between distant query tokens.
Specifically, for query i and query i+ 1, the importance rankings of the tokens from token 0 to token
i − 1 are largely similar. Based on this observation, we group every a adjacent query to share a
single critical token set, resulting in a sharing ratio of 1

a between queries. Fig.3 illustrates the sharing
mechanism between two adjacent queries.

5 EXPERIMENT

5.1 ACCURACY EVALUATION

5.1.1 SETUP

We evaluate HShare on GSM8K (Cobbe et al., 2021), COQA (Reddy et al., 2019), and six datasets
in LongBench (Bai et al., 2023): LCC (Guo et al., 2023), RepoBench-P (Liu et al., 2023a), Trivi-
aQA (Joshi et al., 2017), Qasper (Dasigi et al., 2021), 2WikiMultihopQA(2WikiMQA) (Ho et al.,
2020) and GovReport (Huang et al., 2021). For our evaluation, we select three widely-used models:
LLaMA2-7b-chat (Touvron et al., 2023), LLaMA3-70b (Gliwa et al., 2019), and Mistral-7b (Jiang
et al., 2023a), representing a range of architectures from multi-head attention (MHA) to group
query attention (GQA), and from dense to mixture of experts (MoE). As baselines, we include four
state-of-the-art methods: two KV cache eviction algorithms StreamingLLM (Xiao et al., 2023),
H2O (Zhang et al., 2024b) and two query-aware token sparsity algorithms Quest (Tang et al., 2024),
DS (Yang et al., 2024). It should be noted that some baselines skip sparsity in certain layers or during
the prefill stage. To ensure a fair comparison, we apply token-sparse attention to all layers across
both the decode and prefill stages.

5.1.2 RESULTS ON GSM8K, COQA

Datasets and Metrics. We use the LM-Eval framework to conduct zero-shot inference on two
generation tasks: GSM8K and COQA. GSM8K consists of around 8,000 elementary school math
problems and COQA is designed for evaluating dialogue-based question-answering systems. The
average context length for these two datasets is approximately 500 and 2k respectively. Here we
report the GSM8K with flexible exact-match accuracy and strict exact-match accuracy, while COQA
with em score.

Inference Details. For a fair comparison, all methods select Nc = 128 critical KV cache tokens
and do token sparse attention, with a token sparsity ratio of approximately 1/4 and 1/16 for the
two datasets respectively (since GSM8K consists of math problems, we select a higher sparsity
level, whereas COQA involves story-based question-answering, so we choose a lower sparsity level.)
For HShare, we select critical tokens from three aspects, with x = 8 sink tokens, y = 32 recent
tokens, and z = 88 critical tokens in the middle. Following the approach in Yang et al. (2024), we
load the heavy channel of the KV cache in 4-bit precision to compute the approximate attention
weights, then sort them to select the top-z tokens in the middle. We evaluate the effectiveness of our
proposed HShare using LLaMA2-7b-chat, LLaMA3-70b, and Mistral-7b, selecting two sharing ratios
3/4-3/4-1/2 and 1/2-1/2-1/2 of HShare for comparison against other methods. Here a-b-c means
HShare with layer-sharing ratio a, head-sharing ratio b, and query-sharing ratio c.

Results The results on GSM8K and COQA, shown in Tab. 2, indicate that HShare significantly out-
performs other KV cache eviction methods (StreamingLLM and H2O). In addition, when compared
to dynamic critical token selection approaches (Quest and DS), HShare incurs only minimal accuracy
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Table 2: Evaluation of different methods on GSM8K and COQA and the best result (exclude
origin) in each column is highlighted in bold. Complexity* refers to the theoretical time complexity
for each method to select critical KV cache tokens, where O(1) denotes constant time complexity,
and T represents the theoretical computation time for a dense attention mechanism.

Model Architecture Method GSM8K(flexible/strict)↑ COQA ↑ Complexity* ↓

LLaMA2-7b-chat Dense/MHA

Original 0.2297/0.2297 0.5997 -
StreamingLLM 0.0485/0.0000 0.2515 0
H2O 0.0558/0.0108 0.3615 O(1)
Quest 0.0371/0.0364 0.5513 0.125T
DS 0.1630/0.1622 0.6270 0.0625T
Ours (3/4-3/4-1/2) 0.1554/0.1456 0.6013 0.018T
Ours (1/2-1/2-1/2) 0.1319/0.0743 0.5960 0.008T

LLaMA3-70b Dense/GQA

Original 0.8067/0.8052 0.7085 -
StreamingLLM 0.3897/0.0311 0.3473 0
H2O 0.4329/0.3288 0.6100 O(1)
Quest 0.4708/0.4602 0.6900 0.125T
DS 0.7233/0.7195 0.7012 0.0625T
Ours (3/4-3/4-1/2) 0.7460/0.7445 0.7075 0.018T
Ours (1/2-1/2-1/2) 0.7301/0.7225 0.6912 0.008T

Mistral-7b MoE/GQA

Original 0.3821/0.3813 0.6758 -
StreamingLLM 0.0849/0.0068 0.2905 0
H2O 0.0902/0.0159 0.4225 O(1)
Quest 0.1302/0.0569 0.6170 0.125T
DS 0.3093/0.3063 0.6687 0.0625T
Ours (3/4-3/4-1/2) 0.3101/0.3010 0.6538 0.018T
Ours (1/2-1/2-1/2) 0.2775/0.2707 0.6313 0.008T

Table 3: Evaluation of different methods on six datasets in Longbench and the best result in each
column is highlighted in bold.

Method LCC RepoBench-P TriviaQA Qasper 2WikiMQA GovReport Average

Original 58.26 52.14 83.09 21.88 31.18 26.55 45.52
StreamingLLM 52.41 48.12 53.76 14.01 27.07 21.39 36.13
H2O 57.47 47.67 60.81 14.13 25.99 21.51 37.93
Quest 53.99 44.42 81.49 17.14 28.17 25.95 41.86
DS 57.75 48.78 83.46 21.94 28.77 26.53 44.54
Ours (3/4-3/4-1/2) 56.29 49.67 83.92 22.13 30.67 25.76 44.74
Ours (1/2-1/2-1/2) 55.89 48.88 83.68 21.39 29.04 23.88 43.79

loss and even achieves higher accuracy on LLaMA3-70b. Overall, HShare provides the optimal
balance between efficiency and accuracy.

5.1.3 RESULTS ON LONGBENCH

Datasets and Metrics. We use LongBench to evaluate the performance of the proposed HShare across
multiple long context benchmarks, including code completion: LCC and RepoBench-P; few-shot
learning: TriviaQA; single-document QA: Qasper; multi-document QA: 2WikiMQA; summarization:
GovReport. Here we report LCC and RepoBench-P with similarity score, TriviaQA, Qasper and
2WikiMQA with F1 score, as well as GovReport with rouge score.

Inference Details. All methods select Nc = 512 critical KV cache tokens, with a token sparsity
ratio of approximately 1/8. Similarly, we select critical tokens from three aspects: x = 16 sink
tokens, y = 64 recent tokens, and z = 432 critical tokens in the middle. Using LLaMA2-7b-chat, we
evaluate two sharing ratios of HShare: 3/4-3/4-1/2 and 1/2-1/2-1/2.

Results. The results on LongBench, presented in Tab. 3, demonstrate that our method maintains
accuracy in long-context scenarios. Notably, with a sharing ratio of 3/4-3/4-1/2, HShare outperforms
the existing state-of-the-art methods on average. The results across the 16 commonly used English
datasets from Longbench can be found in Appendix A.1.
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Figure 4: Latency(↓) of different methods across various batch sizes and sequence lengths.

Figure 5: Throughput (↑) of different methods across various batch sizes and sequence lengths.

5.2 EFFICIENCY EVALUATION

5.2.1 SETUP

All experiments are conducted on a machine with Xeon(R) Platinum 8336C CPU, one A100 GPU,
and 128G RAM.

Inference Details. Following Yang et al. (2024), we utilized PyTorch to approximate attention,
selecting the top-z tokens from the middle and further incorporating x initial indices and y recent
indices to form the complete set of critical token indices. The kernel for head-level sharing and
the attention over critical KV tokens are designed using OpenAI Triton. Meanwhile, since HShare
designs key value sharing between different layers and queries, we require an additional cache to store
the critical token indices that need to be shared. Then for attention modules where the computation
of critical token indices is bypassed due to sharing, we directly load the corresponding part from the
cache. It is important to note that the additional storage required here is minimal, as we only need to
store integers with a complexity of O(Nc). As for end-to-end testing, our implementation is based
on GPT-fast (PyTorch, 2023), with the full attention module being replaced by our token sparsity
self-attention module.

Baseline. To evaluate self-attention operator speedup, we use FlashAttention2 (Dao, 2023) as our
baseline, which is an optimized attention mechanism designed to improve the speed and efficiency of
attention computation and ranks among the fastest attention mechanisms. For the evaluation of end-
to-end inference speedup, we take GPT-fast (PyTorch, 2023) as our baseline, which is acknowledged
as the SOTA implementation for LLaMA models on the A100 GPU. Further comparison with other
token sparsity algorithms can be referred in Appendix A.3

5.2.2 SELF-ATTENTION OPERATOR SPEEDUP

We conduct the self-attention latency evaluation on a single A100 GPU with batch sizes ranging
from 4 to 16 and sequence lengths from 1k to 4k, with a token sparsity ratio of 1/8. We simulate the
hierarchical sharing framework and average the latency over 1000 times self-attention computations.
The results are shown in Fig. 4, which demonstrate that our method can significantly improve the
average latency of self-attention compared with FlashAttention-2. Especially when the batch size
is 16 and the sequence length is 2k, HShare can achieve up to an 8.6× reduction in self-attention
latency. However, we observe that for the case when batch size is 4 and sequence length is 1k,
our token-sparsity self-attention module performs slightly worse than the baseline. This may be

9
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 Sharing ratio

Figure 6: Results of HShare with different sharing ratios on eight datasets.

because, in smaller workloads, GPU underutilization prevents token sparsity from improving speed,
and selecting critical token indices adds overhead instead.

5.2.3 END-TO-END INFERENCE SPEEDUP

Similarly, we conduct end-to-end inference evaluation with the same batch sizes and sequence
lengths, and Fig. 5 reports the corresponding results. We find that HShare consistently outperforms
GPT-fast and achieves up to 2.7× throughput acceleration, especially with larger batch sizes and
longer sequence lengths.

5.3 ABLATION STUDY

HShare with different sharing ratios. We conduct ablation studies under different sharing ratios on
eight datasets and the results are shown in Fig. 6. Specifically, for layer-level and head-level sharing,
we selected sharing ratios of 3/4, 1/2, and 1/4. For query-level sharing, we group queries in sets of
2 and 4, corresponding to sharing ratios of 1/2 and 1/4, respectively. The results indicate that for all
three levels, a smaller sharing ratio tends to result in greater accuracy loss on average. However, on
certain datasets like TriviaQA and GSM8K, sharing a subset of heads leads to improved performance.
Additionally, compared to head-level sharing, we observe that layer-level and query-level sharing
have a greater negative impact on accuracy. Overall, the sharing ratios 3/4-3/4-1/2 and 1/2-1/2-1/2
emerge as more reasonable options. More ablation studies can be found in Appendix A.4.

6 CONCLUSION AND DISCUSSION

In this paper, we first systematically analyze and reveal the similarity of critical KV cache tokens
across layers, heads, and query levels. Then we introduce HShare, a hierarchical framework for
sharing critical KV cache token indices at all three levels to reduce the overhead associated with
selecting critical KV tokens. Additionally, we propose a greedy selection algorithm for efficient
sharing at the layer and head levels. Extensive evaluations show that HShare preserves model
accuracy with an additional sharing ratio of 1/8, while achieving up to 8.6× speedup in self-attention
operations and a 2.7× increase in end-to-end throughput.
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A MORE EXPERIMENTS

A.1 MORE RESULTS ON LONGBENCH

The results across the 16 commonly used English datasets from Longbench are shown in Tab. 4.
It can be seen that in the 7/16 dataset, HShare achieves the highest scores. On average, HShare
outperforms StreamingLLM, H2O, and Quest. Although HShare performs slightly worse than DS,
which is a negligible performance decline considering the speed advantage of HShare over DS.

Table 4: Evaluation of different methods on sixteen datasets in Longbench and the best result in
each row (exclude original) is highlighted in bold.

Dataset
Method Original StreamingLLM H2O Quest DS Ours (3/4-3/4-1/2) Ours (1/2-1/2-1/2)

MultiNews 26.22 22.93 22.24 25.74 25.98 25.86 24.83
Musique 8.65 4.56 6.32 6.65 7.16 7.63 7.41
HotpotQA 27.72 20.77 25.62 23.30 24.83 24.98 25.81
Qasper 21.88 14.01 14.13 17.14 21.94 22.13 21.39
2WikiMQA 31.18 27.07 25.99 28.17 28.77 30.67 29.04
Repobench-P 52.14 48.12 47.67 44.42 48.78 49.67 48.88
TriviaQA 83.09 53.76 60.81 81.49 83.46 83.92 83.68
Trec 64.50 40.50 44.00 61.00 61.50 59.00 57.50
Qmsum 20.91 18.81 19.28 20.80 20.22 20.01 20.28
NarrativeQA 18.83 9.52 11.83 14.53 15.76 16.05 16.40
GovReport 26.55 21.39 21.51 25.95 26.53 25.76 23.88
LCC 58.26 52.41 57.47 53.99 57.75 56.29 55.89
Passage-Count 2.77 2.54 2.29 4.77 2.21 2.27 2.50
Samsum 41.01 37.37 38.57 40.67 41.48 40.73 40.13
Passage-Retrieval-EN 6.50 3.50 3.50 3.50 9.00 9.00 6.00
MultifieldQA-EN 36.15 20.75 21.10 21.61 37.55 34.46 34.21
Average 32.90 24.86 26.40 29.61 32.06 31.78 31.11

A.2 SYSTEM EFFICIENCY ANALYSIS

Table 5: Attention latency (ms ↓) of different methods across various batch sizes and sequence
lengths.

BS Seqlen Flash StreamingLLM H2O Quest DS Ours (3/4-3/4-1/2) Ours (1/2-1/2-1/2)

8 1k 0.230 0.030 0.088 0.200 0.141 0.124 0.090
2k 0.830 0.038 0.093 0.460 0.241 0.160 0.120
4k 1.630 0.420 0.470 0.850 0.733 0.570 0.530

16 1k 0.440 0.030 0.089 0.280 0.133 0.120 0.093
2k 1.630 0.073 0.110 0.770 0.422 0.230 0.190
4k 3.230 0.800 0.850 2.21 1.350 1.041 0.990

Table 6: Throughput (↑) of different methods across various batch sizes and sequence lengths.

BS Seqlen Flash StreamingLLM H2O Quest DS Ours (3/4-3/4-1/2) Ours (1/2-1/2-1/2)

8 1k 228 264 240 228 228 231 235
2k 188 252 234 206 213 222 226
4k 118 243 228 152 201 214 217

16 1k 374 465 441 410 423 430 439
2k 233 452 416 287 360 398 411
4k 136 422 396 175 286 350 365

Here, we provide system efficiency comparisons as the same settings in Sec. 5.1.1 (including two KV
cache eviction algorithms StreamingLLM and H2O, two query-aware token sparsity algorithms
Quest and DS). The results are shown in Tab. 5 (attention latency) and Tab. 6 (end-to-end throughput).
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From the results, it can be observed that KV cache eviction algorithms have a clear advantage in
system efficiency compared to query-aware token sparsity algorithms. Specifically, StreamingLLM
achieves the fastest speed as it applies a fixed sparsity pattern. However, both StreamingLLM and
H2O fall short in terms of accuracy. In contrast, HShare not only preserves accuracy but also achieves
significant speedup compared to other query-aware dynamic token sparsity methods. For example,
when batch size is 16 and sequence length is 2k, our algorithm achieves up to 2.21x and 1.14x
speedup over DS in terms of attention latency and end-to-end throughput, respectively.

A.3 TRADE-OFF ACCURACY AND EFFICIENCY ANALYSIS
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Figure 7: The average score on Longbench and the end-to-end throughput (BS=16, Seqlen=4k) of
different methods

Table 7: Attention latency (ms ↓) and GSM8K accuracy of HShare under different sharing ratios.
Sharing Ratio Attention Latency(ms) GSM8K(flexible/strict)

1/2 0.31 0.144/0.136
1/4 0.23 0.135/0.125
1/8 0.19 0.132/0.074

1/16 0.10 0.107/0.032

To illustrate the trade-off between accuracy and efficiency, we present the average score on Longbench
and the end-to-end throughput (BS=16, Seqlen=4k) of different methods. The evaluation uses the
LLaMA2-7b-chat model, with the results depicted in Fig. 7. Among the compared methods, the
original model utilizing FlashAttention2 achieves the highest average Longbench score, albeit at the
cost of the lowest throughput. On the other hand, StreamingLLM achieves the highest throughput,
significantly outpacing other methods in processing efficiency but exhibits the lowest average score.
Notably, our method performs a balance between these two aspects, showing negligible performance
degradation while maintaining relatively high throughputs of 350 and 365. This demonstrates
the effectiveness of our approach in achieving competitive accuracy while significantly enhancing
processing efficiency relative to other methods.

In addition, we provide the attention latency and GSM8K accuracy of our proposed HShare under
different sharing ratios in Tab. 7 to reveal the tradeoff between accuracy and efficiency within HShare.

A.4 MORE ABLATION STUDIES

HShare VS random share. We further conduct ablation studies to evaluate our layer(head) sharing
scheme as shown in algorithm 1. We compare our greedy sharing scheme with random sharing
scheme under the same sharing ratio and the corresponding results are shown in Fig. 8. The empirical
results indicate that when critical token indices are shared by randomly selected layers and heads, the
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Figure 8: Comparison between HShare and random sharing at the layer level and head level. We take
HShare as the 100% baseline and normalize the results of others accordingly.

accuracy decreases significantly across all datasets, further validating the effectiveness of sharing
critical tokens between similar layers and heads.

Table 8: Performance of HShare on MultiNews.
Sharing Ratio 1K 2k 3k 4k

Ours-3/4-3/4-1/2 27.77 27.55 25.73 22.49
Ours-1/2-1/2-1/2 26.58 25.93 24.65 19.99
Ours-1/4-1/4-1/4 25.39 23.44 22.47 19.21

Ablation study on different context lengths. To test our method in document summarization with
varying context lengths, we conduct experiments on the MultiNews dataset, which belongs to the
document summarization category. We evaluate the proposed HShare across different context lengths
and sharing ratios. The results are presented in Tab. 8. It should be noted that regardless of the length
of the text, we consistently selected 256 critical tokens. The results show that the score decreases
as the context length increases, and similarly, higher degrees of sharing also lead to a decline in
performance. This suggests that when dealing with long context lengths, a more moderate sharing
strategy is needed to maintain accuracy, whereas, for shorter texts, a higher degree of sharing can be
applied.

B DISCUSSION OF POTENTIAL ADAPTATIONS

We believe HShare can effectively support transformer variants. HShare aims to optimize long
sequence attention operations by sharing critical key and value indices between layers, heads, and
queries. As such, convolutional or graph neural networks with attention can also benefit from the
proposed HShare. Below are two examples of potential applications:

• Convolutional neural network (CNN) with attention: (Son et al., 2024) proposes to adopt
CNNs to extract image features and use spatial-temporal attention to identify crucial frames.
To apply HShare in this network, we can predict the indices of critical features (similar to
critical tokens), which can then be shared across heads and layers. The potential adaptation
involves using only the critical features for attention computation. Since video input exhibits
temporal redundancy across nearby frames, critical feature indices can also be shared across
frames. HShare can further be applied to other CNN-related works, such as VQA (Anderson
et al., 2018).

• Graph neural network (GNN) with attention: (Veličković et al., 2017) adopts multi-head
attention to extract features from a set of input nodes. HShare can be seamlessly applied to
identify critical nodes and share their indices across heads and layers (if multiple layers are
used). Depending on the problem, if the graph nodes are close and similar, the key indices
of these nodes can also be shared across nodes, similar to query sharing in HShare. Similar
works (Thekumparampil et al., 2018; Wu et al., 2021) can also benefit from applying HShare
to reduce computational load.
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