
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HSHARE: FAST LLM DECODING BY HIERARCHICAL
KEY-VALUE SHARING

Anonymous authors
Paper under double-blind review

ABSTRACT

The frequent retrieval of Key-Value (KV) cache data has emerged as a significant
factor contributing to the inefficiency of the inference process in large language
models. Previous research has demonstrated that a small subset of critical KV cache
tokens largely influences attention outcomes, leading to methods that either employ
fixed sparsity patterns or dynamically select critical tokens based on the query.
While dynamic sparse patterns have proven to be more effective, they introduce
significant computational overhead, as critical tokens must be reselected for each
self-attention computation. In this paper, we reveal substantial similarities in KV
cache token criticality across neighboring queries, layers, and heads. Motivated by
this insight, we propose HShare, a hierarchical KV sharing framework. HShare
facilitates the sharing of critical KV cache token indices across layers, heads, and
queries, which significantly reduces the computational overhead associated with
query-aware dynamic token sparsity. In addition, we introduce a greedy algorithm
that dynamically determines the optimal layer-level and head-level sharing con-
figuration for the decoding phase. We evaluate the effectiveness and efficiency
of HShare across various tasks using three models: LLaMA2-7b, LLaMA3-70b,
and Mistral-7b. Experimental results demonstrate that HShare maintains accuracy
with an additional sharing ratio of 1/8, while delivering up to an 8.6× speedup in
self-attention operations and a 2.7× improvement in end-to-end throughput. The
source code will be made publicly available upon publication.

1 INTRODUCTION

The development of Large Language Models (LLMs), like the GPT and LLaMA series (OpenAI,
2024; Touvron et al., 2023), has marked a major breakthrough in artificial intelligence, dramatically
improving performance in natural language processing tasks such as translation (Zhu et al., 2023; Pal
et al., 2024) and summarization (Zhang et al., 2023; Liu et al., 2023b). However, in long-context
scenarios, such as multi-turn dialogues (Yi et al., 2024; Teng et al., 2024), document-based question
answering (Abdel-Nabi et al., 2023; Rasool et al., 2024), and code completion (Yang et al., 2023;
Eghbali & Pradel, 2024), LLMs face significant speed challenges with token-by-token decoding. A
key factor contributing to this slowdown is the handling of the Key-Value (KV) memory cache since
as the context length expands, the size of this KV cache grows correspondingly, resulting in longer
access times and increased memory overhead.

Existing works have introduced several approaches to address this issue. Since it has been demon-
strated that a small portion of the tokens can dominate the accuracy of token generation, many works
choose to only load these critical tokens into the KV cache to reduce the inference latency while
maintaining accuracy. Among them, StreamingLLM (Xiao et al., 2023) treats the initial tokens (also
referred to sink tokens) and the recent tokens as critical tokens and performs sparsity in a fixed pattern.
H2O (Zhang et al., 2024b) introduces a greedy policy that dynamically retains a balance of recent
and heavy tokens. These two methods alleviate both storage and retrieval pressures through KV
cache eviction. However, they tend to lose a significant amount of historical information, leading to a
substantial decline in performance as their sparsity increases.

On the other hand, Quest (Tang et al., 2024) points out the criticality of tokens can change with
different query tokens. To this end, Quest introduces a query-aware token sparsity algorithm, which
uses the maximum and minimum values of each hidden dimension at page granularity to measure the
query-aware criticality. Similarly, DoubleSparse (DS) (Yang et al., 2024) proposes to select critical

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison of the selection of critical tokens in different token sparsity methods.
Methods Selection mode Efficiency Memory cost Accuracy
StreamingLLM (Zhang et al., 2024b) Fixed pattern High Low Low
H2O (Xiao et al., 2023) Dynamic+Local High Low Low
Quest (Tang et al., 2024) Dynamic Low High Median
DS (Yang et al., 2024) Dynamic Median High High
HShare (Ours) Dynamic+Sharing High High High

tokens dynamically by calculating and sorting approximate attention weights with important channels
only. Although these two methods only load critical tokens, they retain all the KV cache, allowing
them to enhance speed while effectively maintaining accuracy. However, for Quest and DS, the
requirement evaluation for each dynamic selection introduces computational overhead, which results
in a significant drawback of these approaches. Take DS as an example, with a sequence length of 2k
and a batch size of 8, the process of selecting important tokens consumes nearly 50% of the total
runtime in their token sparse attention. The comparison of different methods is shown in Tab. 1.

In this work, we further observe that the criticality of KV cache tokens demonstrates significant
similarity across different layers, heads within the same layer, and between adjacent queries. Building
on this observation and to mitigate the computational overhead associated with the dynamic selection
of critical tokens mentioned above, we propose HShare, a hierarchical key-value sharing framework
that operates at three levels: layers, heads, and queries. Specifically, we introduce an algorithm to
design a sharing configuration for the layer and head levels based on the similarity of critical KV
cache token indices. To ensure the sharing accuracy, we compute the corresponding configuration
online for each batch of samples after the prefilling phase, the configuration is then applied to the
entire decoding phase. This online calculation introduces only a minor increase in the prefill phase’s
time without incurring any additional overhead during the decode phase. At the query level, we simply
share critical token indices between adjacent queries, as their proximity results in higher similarity.
By retaining the full KV cache, selectively loading only the critical portions, and implementing
hierarchical multi-level sharing, HShare maintains accuracy while reducing the time spent selecting
critical KV tokens, significantly improving decoding latency compared to existing methods.

We use LLaMA2-7b-chat (Touvron et al., 2023), LLaMA3-70b (Dubey et al., 2024), and Mistral-
7b (Jiang et al., 2023a) to evaluate the accuracy of HShare across three benchmarks: GSM8K (Cobbe
et al., 2021), COQA (Reddy et al., 2019), and LongBench (Bai et al., 2023). Experimental results
demonstrate that, under the same token sparsity, HShare can maintain accuracy with an additional
sharing ratio of 1/8, offering competitive performance to state-of-the-art (SOTA) methods. Further-
more, we evaluate the efficiency of HShare and the results show that HShare can achieve up to 8.6×
self-attention latency reduction compared with FlashAttention-2 (Dao, 2023) and 2.7× throughput
improvement in end-to-end inference compared with GPT-fast (PyTorch, 2023). In summary, the
contributions of this paper are:

• We systematically analyze the criticality of KV cache tokens across all the levels: different
layers, different heads within the same layer, and adjacent queries. Our empirical findings
on LLaMA2-7b-chat show that all three levels exhibit substantial similarity.

• We propose a hierarchical critical KV token indices sharing framework with a greedy
algorithm to dynamically determine the sharing configuration. To the best of our knowledge,
this is the first work to introduce the concept of sharing critical KV cache token indices.

• We evaluate HShare in terms of accuracy and efficiency, with results showing that it maintains
model performance with a sharing ratio 1/8 while achieving up to 8.6× reduction in self-
attention latency and 2.7× improvement in inference throughput.

2 RELATED WORK

2.1 LONG-CONTEXT MODEL

Recently, significant efforts have been made to extend the context windows of LLM, both in academia
(e.g., LongChat (Li et al., 2023), Yarn-LLaMA-2 (Peng et al., 2023)) and industry (e.g., GPT-4

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Turbo, which supports up to 128K tokens (OpenAI, 2024)). These extended-context LLMs excel
in tasks such as multi-turn conversation comprehension and meeting summarization by providing
enhanced in-context learning and improved performance on complex reasoning tasks. However, this
advancement comes with notable trade-offs, including increased computational demands, higher
memory usage, and greater bandwidth requirements, leading to elevated costs and longer per-token
latencies (Aminabadi et al., 2022; Pan et al., 2024; Chen et al., 2024b). For example, (Pan et al.,
2024) utilizes host SSD memory to alleviate the long sequence KV cache memory requirements
at the expense of long latency whereas (Chen et al., 2024b) offloads the attention computation on
low-cost GPU devices to support economical long-sequence LLM inference. These solutions try to
tackle the Long-context model from the computing system level, however, it could be better solved
from the algorithm advancements such as LLM quantization (Liu et al., 2024) and sparsification
(Tang et al., 2024).

2.2 EFFICIENT INFERENCE OF LLMS

Several techniques, such as speculative decoding (Leviathan et al., 2023; Miao et al., 2024), parameter
sharing (Chen et al., 2024a), and quantization (Lin et al., 2024b;a), have been proposed to improve
inference efficiency. Here we focus on accelerating the attention mechanism, which poses significant
time costs due to its quadratic complexity with respect to sequence length, particularly in long-context
scenarios. Decoder-only transformers, trained with masked self-attention where each token depends
only on preceding tokens, enable the use of key-value activation caching (KV cache) to bypass
redundant computations (Pope et al., 2023). However, the KV cache can grow significantly in size.
For instance, during inference with the OPT-175B model (Zhang et al., 2022) using a batch size of
512, a prompt length of 512, and an output length of 32, the KV cache demands 1.2TB of memory
for storage and communication just to generate a single token (Liu et al., 2024), which poses a grand
challenge for system memory and bandwidth. To tackle the challenge, one path is to reduce the KV
cache storage by quantization to 2-bit or even 1-bit. Existing works (Liu et al., 2024) report to achieve
2-bit quantization without accuracy loss and (Zhang et al., 2024a) quantizes the KV cache to 1-bit
with minor accuracy loss. Another orthogonal path is to focus only on the critical tokens in the KV
caches, also known as token sparsity, which we will review in Sec 2.3.

2.3 SPARSE ATTENTION

Early works such as sparse transformer (Child et al., 2019), reformer (Kitaev et al., 2020), and
longformer (Beltagy et al., 2020) made efforts to reduce attention complexity through training.
Recently, Jiang et al. (2023b) trained a language model to compress prompts into smaller sets of gist
to reduce memory pressure during caching. However, such a compression strategy requires retraining
the large language model and also increases the overhead during inference.

On the other hand, many works (Ribar et al., 2023; Zhang et al., 2024b; Tang et al., 2024) propose
post-training sparse attention, primarily leveraging the observation of sparse attention scores, which
allows focusing on important tokens without compromising performance. StreamingLLM (Xiao
et al., 2023) identifies the initial and most recent tokens as critical, while Zhang et al. (2024b;a)
propose to adopt the accumulated attention score as the indicator to identify the critical tokens in
the KV cache. MInference (Jiang et al., 2024) introduces a dynamic sparse pattern identification
algorithm for prefilling acceleration. Additionally, Quest (Tang et al., 2024) uses min and max values
to assess the importance of each KV cache page, computing only the most relevant pages, while
DS (Yang et al., 2024) focuses on selecting critical KV tokens by utilizing only important channels.
However, these methods incur additional computational overhead for determining importance. In
contrast, our work aims to minimize the need for such additional computations by sharing critical KV
cache token indices across multiple levels.

3 PROBLEM FORMULATION

We begin by defining the decoding self-attention process with selected critical key-value cache tokens,
which we refer to as token sparsity attention. In the decoding stage, let the query matrix be denoted
as Q ∈ R1×d, the key matrix as K ∈ Rn×d and the value matrix as V ∈ Rn×d, where n denotes the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

sequence length. Here Ki,∗ represents the i-th row of key matrix, corresponding to the i-th token in
the current sequence. With these notations, we define the token sparsity attention.

Definition 3.1 (Token sparse attention, informal). Token sparsity attention only calculates the
attention weights between the query matrix and the selected critical key tokens. Let Nc represent the
number of KV critical tokens to be selected, and suppose we have the indices:

CT = {x1, x2, . . . , xNc
| xi ∈ [0, n] and i = 1, 2, . . . , Nc} (1)

We then select the rows {Ki,∗|i ∈ S} corresponding to these indices from the key matrix to form a
new key matrix KCT ∈ RNc×d, also apply the same operation to the value matrix to form a new
value matrix VCT ∈ RNc×d. The token sparsity ratio is defined as Nc

n and the token sparse attention
is computed through the formula shown below:

y = softmax

(
Q ·KT

CT√
dh

)
· VCT (2)

Normally, each attention block independently evaluates and selects its critical KV cache tokens,
resulting in a corresponding set of indices, denoted as CT . We use the number of overlapping
elements between two different sets to evaluate the similarity between them. Then the similarity
between two critical KV cache token indices CTA and CTB can be formally written as:

sim(CTA, CTB) =
|CTA ∩ CTB |

max(|CTA|, |CTB |)
, (3)

here | · | represents the cardinality of a set and normally |CTA| = |CTB | = Nc. Next, we define
Key-Value sharing.

Definition 3.2 (Key-Value sharing). Assuming that the critical KV cache token indices for attention
block A are denoted as CTA, if another attention block B directly reuses the indices from block A,
represented as CTB ← CTA, we refer this to as key-value sharing between blocks B and A. In this
case, CTA is utilized by attention block B to construct KCT and VCT .

4 METHOD

In this section, we first present the motivation of HShare, and then we introduce HShare in details.

4.1 MOTIVATION

Previous works have pointed out not all KV tokens hold equal significance, with a limited subset,
known as critical tokens, contributing most to the attention output, and these critical tokens are found
to be query-aware. In this paper, we further present three observations, with insights shown in Fig. 1.

Similar critical tokens between adjacent queries: From Fig. 1(a)-(d), we observe that within
individual attention heads, the distribution of critical KV cache tokens (those associated with larger
values in the attention matrix) gradually shifts with changes in the queries. However, the critical
tokens across adjacent queries remain largely consistent. This observation aligns with intuition, as
minor variations in query length do not significantly alter the overall sequence length, suggesting
that the attention distribution remains stable. The similarity between adjacent queries presents an
opportunity to reduce computational overhead by reusing the same critical KV cache tokens for every
k consecutive query.

Similar sparse-patterns across different heads and layers: The distribution of critical tokens
results in different sparse patterns for attention heads. However, as illustrated in Fig. 1(a)-(d), we
can also see that some sparse patterns are consistently observed across various attention heads. For
example, the sparse pattern of head 12 in layer 8 is very similar to that of head 22 in the same layer.
Additionally, head 9 and head 16 in layer 9 also share a similar sparse pattern, indicating that the
similarity between heads exists not only within the same layer but also across different layers. This
uniformity suggests that a sparse pattern derived from one head can be effectively applied to others,
enabling a shared strategy for selecting critical KV cache tokens. This approach can further improve
the speed and efficiency of the attention mechanism.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: (a)-(d): Illustrations of self-attention matrices from a specific head in a particular layer of
the LLaMA2-7b-chat model, corresponding to similar self-attention patterns observed across different
layers and heads. (e)-(h) Similarity matrices of critical token indices across different heads and layers
during the prefill and decode stages. The element in the i-th row and j-th column represents the
similarity (Eq. 3) between the i-th head (layer) and the j-th head (layer). The red stars represent the
top-k largest values in the matrix.

… … … …

𝑙𝑎𝑦𝑒𝑟!!

𝑙𝑎𝑦𝑒𝑟"!

ℎ𝑒𝑎𝑑!"

ℎ𝑒𝑎𝑑""

… … … …

…
…

…
…

Figure 2: Share the same critical token
indices between layers and heads.

𝑞𝑢𝑒𝑟𝑦!

𝑞𝑢𝑒𝑟𝑦"#$

𝑞𝑢𝑒𝑟𝑦!#%

𝑞𝑢𝑒𝑟𝑦!#&

Figure 3: Share the same critical token
indices between adjacent queries.

Consistency relationships between prefill and decoding phases: Fig. 1(e) and Fig. 1(f) present
the head similarity matrices of layer 8 in terms of prefill stage and decoding stage, respectively.
Fig. 1(g) and Fig. 1(h) present the layer similarity matrices of the whole network in terms of the
prefill stage and decoding stage, respectively. We observe that the similarity matrix between prefill
and decoding phases exhibits a remarkable consistency for both head-level and layer-level. This
continuity underscores the potential that applying the hierarchical sharing strategy computed from
the prefill phase to the decoding phase.

Motivated by the above observations, we propose HShare, a hierarchical sharing framework that
shares the same critical KV cache tokens across queries, heads, and layers. HShare not only takes
advantage of dynamic sparsity but also significantly reduces the computational overhead associated
with critical tokens through an effective sharing mechanism.

4.2 HIERARCHICAL KEY-VALUE SHARING FRAMEWORK

Inspired by recent works (Zhang et al., 2024b; Xiao et al., 2023; Yang et al., 2024), in this paper,
we select critical tokens from three perspectives: initial tokens (also referred to as sink tokens), the
most recent window, and significant tokens in the middle. The dark blue positions in Fig.2 and Fig.3
represent the indices of these critical tokens. Given that the decoding stage is autoregressive, each

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

decoding step requires passing through all L layers of the attention blocks. In the case of multi-head
attention and group query attention, each attention block involves multiple parallel attention head H
computations. Consequently, to generate n tokens, a total of L×H × n attention computations are
necessary, resulting in L×H × n re-selections of critical tokens.

To reduce the overall time spent on evaluating and selecting critical tokens and further accelerate the
decoding, we introduce a hierarchical key-value sharing framework. This framework is designed to
facilitate key-value sharing from three perspectives: across layers, heads, and queries. Specifically,
denote the attention computation of head h in layer l of the query q as Al,h,q, then the key-value
sharing between layers l1 and l2 can be expressed as: CTAl2,h,q

← CTAl1,h,q
.

Similarly, the key-value sharing between heads h1, h2 and queries q1, q2 can be expressed as:
CTAl,h1,q

← CTAl,h2,q
, CTAl,h,q1

← CTAl,h,q2
.

It should be noted that since there is a temporal dependency between the attention computations of
layers and queries, it is necessary to satisfy l1 < l2 and q1 < q2 here.

Similar to the token sparsity ratio, we define the sharing ratio as a value less than or equal to 1, where
a smaller value indicates a higher degree of sharing and greater computational savings. Let the total
number of layers and heads be denoted as nl and nh, respectively. Suppose kl layers and kh heads
share critical KV token indices with other layers or heads. The sharing ratios for layers and heads
are then defined as ratiol = 1− kl

nl
and ratioh = 1− kh

nh
, respectively. For query-level sharing, let

the total number of decoding tokens (queries) be nq, and suppose kq queries bypass the selection
of critical token indices by sharing key-value indices with other queries. The query-level sharing
ratio is defined as ratioq = 1− kq

nq
. Since the sharing across layers, heads, and queries is mutually

independent, the total sharing ratio is given by:

sharing ratio = (1− kl
nl

)× (1− kh
nh

)× (1− kq
nq

) (4)

4.3 ALGORITHM FOR SHARING CONFIGURATION DESIGN

Algorithm 1 Layer(Head) Sharing Algorithm

1: Input: layer(head) number nl(nh), critical token
indices matrix List L = {M1,M2, ...Mnl(nh)},
share number kl(kh)

2: Initialize similarity matrix S ← zeros(n, n)
3: for i = 1 to nl(nh) do
4: seti ← set(Mi.flatten())
5: for j = 1 to i− 1 do
6: setj ← set(Mj .flatten())
7: overlap← |seti ∩ setj |
8: Sij ← overlap / Mi.numel()
9: end for

10: end for
11: for i = 1 to nl(nh) do
12: Initialize sharing config C[i]← i
13: end for
14: for i = 1 to kl(kh) do
15: row index, column index← argmax(S)
16: S[row index, :]← 0
17: S[:, row index]← 0
18: C[row index]← column index
19: end for
20: Output: Sharing config C of layer(head).

For layer-level and head-level sharing, as
demonstrated in Sec. 4.1, the similarity of
the critical KV cache token indices shows
consistency across the different queries.
Therefore, we can design a sharing config-
uration by calculating the similarity of the
critical token indices between layers and
heads after prefilling, and then apply this
configuration to the entire decoding phase.

Here, we use the layer-level as an exam-
ple for a detailed explanation. After each
prefill step, we first obtain the critical KV
cache token indices matrix list for all lay-
ers L = M1,M2, . . . ,Mnl

, where nl rep-
resents the number of layers. Next, we
compute the pairwise similarities between
the critical KV cache token indices of all
layers, producing a similarity matrix Sl.
Based on the desired sharing ratio, we
then perform key-value sharing between
the most similar layers. Specifically, if the
layer-level sharing ratio is β, meaning that
kl = (1− β)× nl layers should share crit-
ical KV token indices, we iteratively select
the pair (i, j) with the highest similarity

(where j < i), allowing the i-th layer to reuse the indices of the j-th layer. Since layer i now reuses
the critical token indices of another layer and does not compute its own, we remove the i-th row and
i-th column from the similarity matrix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Similarly, for all heads within each layer, we apply the same method to determine the sharing
configuration. Note that each layer has its own head-level sharing configuration. Algo. 1 outlines the
process of calculating the similarity matrix and designing the layer (or head) sharing configuration.
Formally, the output sharing configuration C represents:

ci =

{
j, if the i-th layer (or the i-th head) shares with the j-th layer (or the j-th head),
i, if the i-th layer needs to compute critical tokens separately.

(5)

Since the sharing configuration can differ across samples, we compute it dynamically for each batch
of samples.

Query-level. As discussed in Sec. 4.1, we observe that attention weights between adjacent query
tokens tend to exhibit significantly higher similarity compared to those between distant query tokens.
Specifically, for query i and query i+ 1, the importance rankings of the tokens from token 0 to token
i − 1 are largely similar. Based on this observation, we group every a adjacent query to share a
single critical token set, resulting in a sharing ratio of 1

a between queries. Fig.3 illustrates the sharing
mechanism between two adjacent queries.

5 EXPERIMENT

5.1 ACCURACY EVALUATION

5.1.1 SETUP

We evaluate HShare on GSM8K (Cobbe et al., 2021), COQA (Reddy et al., 2019), and six datasets
in LongBench (Bai et al., 2023): LCC (Guo et al., 2023), RepoBench-P (Liu et al., 2023a), Trivi-
aQA (Joshi et al., 2017), Qasper (Dasigi et al., 2021), 2WikiMultihopQA(2WikiMQA) (Ho et al.,
2020) and GovReport (Huang et al., 2021). For our evaluation, we select three widely-used models:
LLaMA2-7b-chat (Touvron et al., 2023), LLaMA3-70b (Gliwa et al., 2019), and Mistral-7b (Jiang
et al., 2023a), representing a range of architectures from multi-head attention (MHA) to group
query attention (GQA), and from dense to mixture of experts (MoE). As baselines, we include four
state-of-the-art methods: two KV cache eviction algorithms StreamingLLM (Xiao et al., 2023),
H2O (Zhang et al., 2024b) and two query-aware token sparsity algorithms Quest (Tang et al., 2024),
DS (Yang et al., 2024). It should be noted that some baselines skip sparsity in certain layers or during
the prefill stage. To ensure a fair comparison, we apply token-sparse attention to all layers across
both the decode and prefill stages.

5.1.2 RESULTS ON GSM8K, COQA

Datasets and Metrics. We use the LM-Eval framework to conduct zero-shot inference on two
generation tasks: GSM8K and COQA. GSM8K consists of around 8,000 elementary school math
problems and COQA is designed for evaluating dialogue-based question-answering systems. The
average context length for these two datasets is approximately 500 and 2k respectively. Here we
report the GSM8K with flexible exact-match accuracy and strict exact-match accuracy, while COQA
with em score.

Inference Details. For a fair comparison, all methods select Nc = 128 critical KV cache tokens
and do token sparse attention, with a token sparsity ratio of approximately 1/4 and 1/16 for the
two datasets respectively (since GSM8K consists of math problems, we select a higher sparsity
level, whereas COQA involves story-based question-answering, so we choose a lower sparsity level.)
For HShare, we select critical tokens from three aspects, with x = 8 sink tokens, y = 32 recent
tokens, and z = 88 critical tokens in the middle. Following the approach in Yang et al. (2024), we
load the heavy channel of the KV cache in 4-bit precision to compute the approximate attention
weights, then sort them to select the top-z tokens in the middle. We evaluate the effectiveness of our
proposed HShare using LLaMA2-7b-chat, LLaMA3-70b, and Mistral-7b, selecting two sharing ratios
3/4-3/4-1/2 and 1/2-1/2-1/2 of HShare for comparison against other methods. Here a-b-c means
HShare with layer-sharing ratio a, head-sharing ratio b, and query-sharing ratio c.

Results The results on GSM8K and COQA, shown in Tab. 2, indicate that HShare significantly out-
performs other KV cache eviction methods (StreamingLLM and H2O). In addition, when compared
to dynamic critical token selection approaches (Quest and DS), HShare incurs only minimal accuracy

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Evaluation of different methods on GSM8K and COQA and the best result (exclude
origin) in each column is highlighted in bold. Complexity* refers to the theoretical time complexity
for each method to select critical KV cache tokens, where O(1) denotes constant time complexity,
and T represents the theoretical computation time for a dense attention mechanism.

Model Architecture Method GSM8K(flexible/strict)↑ COQA ↑ Complexity* ↓

LLaMA2-7b-chat Dense/MHA

Original 0.2297/0.2297 0.5997 -
StreamingLLM 0.0485/0.0000 0.2515 0
H2O 0.0558/0.0108 0.3615 O(1)
Quest 0.0371/0.0364 0.5513 0.125T
DS 0.1630/0.1622 0.6270 0.0625T
Ours (3/4-3/4-1/2) 0.1554/0.1456 0.6013 0.018T
Ours (1/2-1/2-1/2) 0.1319/0.0743 0.5960 0.008T

LLaMA3-70b Dense/GQA

Original 0.8067/0.8052 0.7085 -
StreamingLLM 0.3897/0.0311 0.3473 0
H2O 0.4329/0.3288 0.6100 O(1)
Quest 0.4708/0.4602 0.6900 0.125T
DS 0.7233/0.7195 0.7012 0.0625T
Ours (3/4-3/4-1/2) 0.7460/0.7445 0.7075 0.018T
Ours (1/2-1/2-1/2) 0.7301/0.7225 0.6912 0.008T

Mistral-7b MoE/GQA

Original 0.3821/0.3813 0.6758 -
StreamingLLM 0.0849/0.0068 0.2905 0
H2O 0.0902/0.0159 0.4225 O(1)
Quest 0.1302/0.0569 0.6170 0.125T
DS 0.3093/0.3063 0.6687 0.0625T
Ours (3/4-3/4-1/2) 0.3101/0.3010 0.6538 0.018T
Ours (1/2-1/2-1/2) 0.2775/0.2707 0.6313 0.008T

Table 3: Evaluation of different methods on six datasets in Longbench and the best result in each
column is highlighted in bold.

Method LCC RepoBench-P TriviaQA Qasper 2WikiMQA GovReport Average

Original 58.26 52.14 83.09 21.88 31.18 26.55 45.52
StreamingLLM 52.41 48.12 53.76 14.01 27.07 21.39 36.13
H2O 57.47 47.67 60.81 14.13 25.99 21.51 37.93
Quest 53.99 44.42 81.49 17.14 28.17 25.95 41.86
DS 57.75 48.78 83.46 21.94 28.77 26.53 44.54
Ours (3/4-3/4-1/2) 56.29 49.67 83.92 22.13 30.67 25.76 44.74
Ours (1/2-1/2-1/2) 55.89 48.88 83.68 21.39 29.04 23.88 43.79

loss and even achieves higher accuracy on LLaMA3-70b. Overall, HShare provides the optimal
balance between efficiency and accuracy.

5.1.3 RESULTS ON LONGBENCH

Datasets and Metrics. We use LongBench to evaluate the performance of the proposed HShare across
multiple long context benchmarks, including code completion: LCC and RepoBench-P; few-shot
learning: TriviaQA; single-document QA: Qasper; multi-document QA: 2WikiMQA; summarization:
GovReport. Here we report LCC and RepoBench-P with similarity score, TriviaQA, Qasper and
2WikiMQA with F1 score, as well as GovReport with rouge score.

Inference Details. All methods select Nc = 512 critical KV cache tokens, with a token sparsity
ratio of approximately 1/8. Similarly, we select critical tokens from three aspects: x = 16 sink
tokens, y = 64 recent tokens, and z = 432 critical tokens in the middle. Using LLaMA2-7b-chat, we
evaluate two sharing ratios of HShare: 3/4-3/4-1/2 and 1/2-1/2-1/2.

Results. The results on LongBench, presented in Tab. 3, demonstrate that our method maintains
accuracy in long-context scenarios. Notably, with a sharing ratio of 3/4-3/4-1/2, HShare outperforms
the existing state-of-the-art methods on average. The results across the 16 commonly used English
datasets from Longbench can be found in Appendix A.1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Latency(↓) of different methods across various batch sizes and sequence lengths.

Figure 5: Throughput (↑) of different methods across various batch sizes and sequence lengths.

5.2 EFFICIENCY EVALUATION

5.2.1 SETUP

All experiments are conducted on a machine with Xeon(R) Platinum 8336C CPU, one A100 GPU,
and 128G RAM.

Inference Details. Following Yang et al. (2024), we utilized PyTorch to approximate attention,
selecting the top-z tokens from the middle and further incorporating x initial indices and y recent
indices to form the complete set of critical token indices. The kernel for head-level sharing and
the attention over critical KV tokens are designed using OpenAI Triton. Meanwhile, since HShare
designs key value sharing between different layers and queries, we require an additional cache to store
the critical token indices that need to be shared. Then for attention modules where the computation
of critical token indices is bypassed due to sharing, we directly load the corresponding part from the
cache. It is important to note that the additional storage required here is minimal, as we only need to
store integers with a complexity of O(Nc). As for end-to-end testing, our implementation is based
on GPT-fast (PyTorch, 2023), with the full attention module being replaced by our token sparsity
self-attention module.

Baseline. To evaluate self-attention operator speedup, we use FlashAttention2 (Dao, 2023) as our
baseline, which is an optimized attention mechanism designed to improve the speed and efficiency of
attention computation and ranks among the fastest attention mechanisms. For the evaluation of end-
to-end inference speedup, we take GPT-fast (PyTorch, 2023) as our baseline, which is acknowledged
as the SOTA implementation for LLaMA models on the A100 GPU. Further comparison with other
token sparsity algorithms can be referred in Appendix A.3

5.2.2 SELF-ATTENTION OPERATOR SPEEDUP

We conduct the self-attention latency evaluation on a single A100 GPU with batch sizes ranging
from 4 to 16 and sequence lengths from 1k to 4k, with a token sparsity ratio of 1/8. We simulate the
hierarchical sharing framework and average the latency over 1000 times self-attention computations.
The results are shown in Fig. 4, which demonstrate that our method can significantly improve the
average latency of self-attention compared with FlashAttention-2. Especially when the batch size
is 16 and the sequence length is 2k, HShare can achieve up to an 8.6× reduction in self-attention
latency. However, we observe that for the case when batch size is 4 and sequence length is 1k,
our token-sparsity self-attention module performs slightly worse than the baseline. This may be

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

 Sharing ratio

Figure 6: Results of HShare with different sharing ratios on eight datasets.

because, in smaller workloads, GPU underutilization prevents token sparsity from improving speed,
and selecting critical token indices adds overhead instead.

5.2.3 END-TO-END INFERENCE SPEEDUP

Similarly, we conduct end-to-end inference evaluation with the same batch sizes and sequence
lengths, and Fig. 5 reports the corresponding results. We find that HShare consistently outperforms
GPT-fast and achieves up to 2.7× throughput acceleration, especially with larger batch sizes and
longer sequence lengths.

5.3 ABLATION STUDY

HShare with different sharing ratios. We conduct ablation studies under different sharing ratios on
eight datasets and the results are shown in Fig. 6. Specifically, for layer-level and head-level sharing,
we selected sharing ratios of 3/4, 1/2, and 1/4. For query-level sharing, we group queries in sets of
2 and 4, corresponding to sharing ratios of 1/2 and 1/4, respectively. The results indicate that for all
three levels, a smaller sharing ratio tends to result in greater accuracy loss on average. However, on
certain datasets like TriviaQA and GSM8K, sharing a subset of heads leads to improved performance.
Additionally, compared to head-level sharing, we observe that layer-level and query-level sharing
have a greater negative impact on accuracy. Overall, the sharing ratios 3/4-3/4-1/2 and 1/2-1/2-1/2
emerge as more reasonable options. More ablation studies can be found in Appendix A.4.

6 CONCLUSION AND DISCUSSION

In this paper, we first systematically analyze and reveal the similarity of critical KV cache tokens
across layers, heads, and query levels. Then we introduce HShare, a hierarchical framework for
sharing critical KV cache token indices at all three levels to reduce the overhead associated with
selecting critical KV tokens. Additionally, we propose a greedy selection algorithm for efficient
sharing at the layer and head levels. Extensive evaluations show that HShare preserves model
accuracy with an additional sharing ratio of 1/8, while achieving up to 8.6× speedup in self-attention
operations and a 2.7× increase in end-to-end throughput.

REFERENCES

Heba Abdel-Nabi, Arafat Awajan, and Mostafa Z Ali. Deep learning-based question answering: a
survey. Knowledge and Information Systems, 65(4):1399–1485, 2023.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2022.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. Bottom-up and top-down attention for image captioning and visual question answering. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6077–6086,
2018.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica:
Multi-tenant lora serving. Proceedings of Machine Learning and Systems, 6:1–13, 2024a.

Shaoyuan Chen, Yutong Lin, Mingxing Zhang, and Yongwei Wu. Efficient and economic large
language model inference with attention offloading. arXiv preprint arXiv:2405.01814, 2024b.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Aryaz Eghbali and Michael Pradel. De-hallucinator: Iterative grounding for llm-based code comple-
tion. arXiv preprint arXiv:2401.01701, 2024.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. In International Conference on Machine Learning,
pp. 12098–12107. PMLR, 2023.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization. arXiv preprint arXiv:2104.02112, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023a.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. arXiv preprint arXiv:2310.05736,
2023b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can context length of open-source llms truly promise? In
NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024a.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han.
Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv preprint
arXiv:2405.04532, 2024b.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023a.

Yixin Liu, Kejian Shi, Katherine S He, Longtian Ye, Alexander R Fabbri, Pengfei Liu, Dragomir
Radev, and Arman Cohan. On learning to summarize with large language models as references.
arXiv preprint arXiv:2305.14239, 2023b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024.

OpenAI. Introducing gpt-4o: our fastest and most affordable flagship mode, 2024. URL https:
//platform.openai.com/docs/models. Last accessed 28 September 2024.

Proyag Pal, Alexandra Birch-Mayne, and Kenneth Heafield. Document-level machine translation
with large-scale public parallel corpora. In The 62nd Annual Meeting of the Association for
Computational Linguistics, pp. 13185–13197. Association for Computational Linguistics (ACL),
2024.

Xiurui Pan, Endian Li, Qiao Li, Shengwen Liang, Yizhou Shan, Ke Zhou, Yingwei Luo, Xiaolin
Wang, and Jie Zhang. Instinfer: In-storage attention offloading for cost-effective long-context llm
inference. arXiv preprint arXiv:2409.04992, 2024.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606–624, 2023.

PyTorch. Accelerating generative ai with pytorch 2.0. https://pytorch.org/blog/
accelerating-generative-ai-2/, May 2023.

12

https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://pytorch.org/blog/accelerating-generative-ai-2/
https://pytorch.org/blog/accelerating-generative-ai-2/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zafaryab Rasool, Stefanus Kurniawan, Sherwin Balugo, Scott Barnett, Rajesh Vasa, Courtney Chesser,
Benjamin M Hampstead, Sylvie Belleville, Kon Mouzakis, and Alex Bahar-Fuchs. Evaluating
llms on document-based qa: Exact answer selection and numerical extraction using cogtale dataset.
Natural Language Processing Journal, pp. 100083, 2024.

Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering
challenge. Transactions of the Association for Computational Linguistics, 7:249–266, 2019.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.

Jaewon Son, Jaehun Park, and Kwangsu Kim. Csta: Cnn-based spatiotemporal attention for video
summarization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18847–18856, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference, 2024.

Zeyu Teng, Yong Song, Xiaozhou Ye, and Ye Ouyang. Fine-tuning llms for multi-turn dialogues:
Optimizing cross-entropy loss with kl divergence for all rounds of responses. In Proceedings of
the 2024 16th International Conference on Machine Learning and Computing, pp. 128–133, 2024.

Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph neural
network for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang, Tingting Han, and Taolue Chen. Exploitgen:
Template-augmented exploit code generation based on codebert. Journal of Systems and Software,
197:111577, 2023.

Shuo Yang, Ying Sheng, Joseph E Gonzalez, Ion Stoica, and Lianmin Zheng. Post-training sparse
attention with double sparsity. arXiv preprint arXiv:2408.07092, 2024.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems. arXiv preprint arXiv:2402.18013, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per channel: Ef-
ficient large language model inference with coupled quantization. arXiv preprint arXiv:2405.03917,
2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zixuan Zhang, Heba Elfardy, Markus Dreyer, Kevin Small, Heng Ji, and Mohit Bansal. Enhancing
multi-document summarization with cross-document graph-based information extraction. In
Proceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 1696–1707, 2023.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen,
and Lei Li. Multilingual machine translation with large language models: Empirical results and
analysis. arXiv preprint arXiv:2304.04675, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MORE EXPERIMENTS

A.1 MORE RESULTS ON LONGBENCH

The results across the 16 commonly used English datasets from Longbench are shown in Tab. 4.
It can be seen that in the 7/16 dataset, HShare achieves the highest scores. On average, HShare
outperforms StreamingLLM, H2O, and Quest. Although HShare performs slightly worse than DS,
which is a negligible performance decline considering the speed advantage of HShare over DS.

Table 4: Evaluation of different methods on sixteen datasets in Longbench and the best result in
each row (exclude original) is highlighted in bold.

Dataset
Method Original StreamingLLM H2O Quest DS Ours (3/4-3/4-1/2) Ours (1/2-1/2-1/2)

MultiNews 26.22 22.93 22.24 25.74 25.98 25.86 24.83
Musique 8.65 4.56 6.32 6.65 7.16 7.63 7.41
HotpotQA 27.72 20.77 25.62 23.30 24.83 24.98 25.81
Qasper 21.88 14.01 14.13 17.14 21.94 22.13 21.39
2WikiMQA 31.18 27.07 25.99 28.17 28.77 30.67 29.04
Repobench-P 52.14 48.12 47.67 44.42 48.78 49.67 48.88
TriviaQA 83.09 53.76 60.81 81.49 83.46 83.92 83.68
Trec 64.50 40.50 44.00 61.00 61.50 59.00 57.50
Qmsum 20.91 18.81 19.28 20.80 20.22 20.01 20.28
NarrativeQA 18.83 9.52 11.83 14.53 15.76 16.05 16.40
GovReport 26.55 21.39 21.51 25.95 26.53 25.76 23.88
LCC 58.26 52.41 57.47 53.99 57.75 56.29 55.89
Passage-Count 2.77 2.54 2.29 4.77 2.21 2.27 2.50
Samsum 41.01 37.37 38.57 40.67 41.48 40.73 40.13
Passage-Retrieval-EN 6.50 3.50 3.50 3.50 9.00 9.00 6.00
MultifieldQA-EN 36.15 20.75 21.10 21.61 37.55 34.46 34.21
Average 32.90 24.86 26.40 29.61 32.06 31.78 31.11

A.2 SYSTEM EFFICIENCY ANALYSIS

Table 5: Attention latency (ms ↓) of different methods across various batch sizes and sequence
lengths.

BS Seqlen Flash StreamingLLM H2O Quest DS Ours (3/4-3/4-1/2) Ours (1/2-1/2-1/2)

8 1k 0.230 0.030 0.088 0.200 0.141 0.124 0.090
2k 0.830 0.038 0.093 0.460 0.241 0.160 0.120
4k 1.630 0.420 0.470 0.850 0.733 0.570 0.530

16 1k 0.440 0.030 0.089 0.280 0.133 0.120 0.093
2k 1.630 0.073 0.110 0.770 0.422 0.230 0.190
4k 3.230 0.800 0.850 2.21 1.350 1.041 0.990

Table 6: Throughput (↑) of different methods across various batch sizes and sequence lengths.

BS Seqlen Flash StreamingLLM H2O Quest DS Ours (3/4-3/4-1/2) Ours (1/2-1/2-1/2)

8 1k 228 264 240 228 228 231 235
2k 188 252 234 206 213 222 226
4k 118 243 228 152 201 214 217

16 1k 374 465 441 410 423 430 439
2k 233 452 416 287 360 398 411
4k 136 422 396 175 286 350 365

Here, we provide system efficiency comparisons as the same settings in Sec. 5.1.1 (including two KV
cache eviction algorithms StreamingLLM and H2O, two query-aware token sparsity algorithms
Quest and DS). The results are shown in Tab. 5 (attention latency) and Tab. 6 (end-to-end throughput).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

From the results, it can be observed that KV cache eviction algorithms have a clear advantage in
system efficiency compared to query-aware token sparsity algorithms. Specifically, StreamingLLM
achieves the fastest speed as it applies a fixed sparsity pattern. However, both StreamingLLM and
H2O fall short in terms of accuracy. In contrast, HShare not only preserves accuracy but also achieves
significant speedup compared to other query-aware dynamic token sparsity methods. For example,
when batch size is 16 and sequence length is 2k, our algorithm achieves up to 2.21x and 1.14x
speedup over DS in terms of attention latency and end-to-end throughput, respectively.

A.3 TRADE-OFF ACCURACY AND EFFICIENCY ANALYSIS

Orig
ina

l

Str
ea

ming
LLM H2O

Que
st DS

Ours
(3/

4-3
/4-

1/2
)

Ours
(1/

2-1
/2-

1/2
)

20

22

24

26

28

30

32

34

Av
er

ag
e

sc
or

e
on

 lo
ng

be
nc

h

100

150

200

250

300

350

400

450

En
d-

to
-e

nd
 T

hr
ou

gh
pu

t

Trade-off between accuracy and efficiency
Average Score
Throughput

Figure 7: The average score on Longbench and the end-to-end throughput (BS=16, Seqlen=4k) of
different methods

Table 7: Attention latency (ms ↓) and GSM8K accuracy of HShare under different sharing ratios.
Sharing Ratio Attention Latency(ms) GSM8K(flexible/strict)

1/2 0.31 0.144/0.136
1/4 0.23 0.135/0.125
1/8 0.19 0.132/0.074

1/16 0.10 0.107/0.032

To illustrate the trade-off between accuracy and efficiency, we present the average score on Longbench
and the end-to-end throughput (BS=16, Seqlen=4k) of different methods. The evaluation uses the
LLaMA2-7b-chat model, with the results depicted in Fig. 7. Among the compared methods, the
original model utilizing FlashAttention2 achieves the highest average Longbench score, albeit at the
cost of the lowest throughput. On the other hand, StreamingLLM achieves the highest throughput,
significantly outpacing other methods in processing efficiency but exhibits the lowest average score.
Notably, our method performs a balance between these two aspects, showing negligible performance
degradation while maintaining relatively high throughputs of 350 and 365. This demonstrates
the effectiveness of our approach in achieving competitive accuracy while significantly enhancing
processing efficiency relative to other methods.

In addition, we provide the attention latency and GSM8K accuracy of our proposed HShare under
different sharing ratios in Tab. 7 to reveal the tradeoff between accuracy and efficiency within HShare.

A.4 MORE ABLATION STUDIES

HShare VS random share. We further conduct ablation studies to evaluate our layer(head) sharing
scheme as shown in algorithm 1. We compare our greedy sharing scheme with random sharing
scheme under the same sharing ratio and the corresponding results are shown in Fig. 8. The empirical
results indicate that when critical token indices are shared by randomly selected layers and heads, the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Comparison between HShare and random sharing at the layer level and head level. We take
HShare as the 100% baseline and normalize the results of others accordingly.

accuracy decreases significantly across all datasets, further validating the effectiveness of sharing
critical tokens between similar layers and heads.

Table 8: Performance of HShare on MultiNews.
Sharing Ratio 1K 2k 3k 4k

Ours-3/4-3/4-1/2 27.77 27.55 25.73 22.49
Ours-1/2-1/2-1/2 26.58 25.93 24.65 19.99
Ours-1/4-1/4-1/4 25.39 23.44 22.47 19.21

Ablation study on different context lengths. To test our method in document summarization with
varying context lengths, we conduct experiments on the MultiNews dataset, which belongs to the
document summarization category. We evaluate the proposed HShare across different context lengths
and sharing ratios. The results are presented in Tab. 8. It should be noted that regardless of the length
of the text, we consistently selected 256 critical tokens. The results show that the score decreases
as the context length increases, and similarly, higher degrees of sharing also lead to a decline in
performance. This suggests that when dealing with long context lengths, a more moderate sharing
strategy is needed to maintain accuracy, whereas, for shorter texts, a higher degree of sharing can be
applied.

B DISCUSSION OF POTENTIAL ADAPTATIONS

We believe HShare can effectively support transformer variants. HShare aims to optimize long
sequence attention operations by sharing critical key and value indices between layers, heads, and
queries. As such, convolutional or graph neural networks with attention can also benefit from the
proposed HShare. Below are two examples of potential applications:

• Convolutional neural network (CNN) with attention: (Son et al., 2024) proposes to adopt
CNNs to extract image features and use spatial-temporal attention to identify crucial frames.
To apply HShare in this network, we can predict the indices of critical features (similar to
critical tokens), which can then be shared across heads and layers. The potential adaptation
involves using only the critical features for attention computation. Since video input exhibits
temporal redundancy across nearby frames, critical feature indices can also be shared across
frames. HShare can further be applied to other CNN-related works, such as VQA (Anderson
et al., 2018).

• Graph neural network (GNN) with attention: (Veličković et al., 2017) adopts multi-head
attention to extract features from a set of input nodes. HShare can be seamlessly applied to
identify critical nodes and share their indices across heads and layers (if multiple layers are
used). Depending on the problem, if the graph nodes are close and similar, the key indices
of these nodes can also be shared across nodes, similar to query sharing in HShare. Similar
works (Thekumparampil et al., 2018; Wu et al., 2021) can also benefit from applying HShare
to reduce computational load.

17

	Introduction
	Related Work
	Long-context Model
	Efficient Inference of LLMs
	Sparse Attention

	Problem Formulation
	Method
	Motivation
	Hierarchical Key-Value Sharing framework
	Algorithm for Sharing configuration design

	Experiment
	Accuracy Evaluation
	Setup
	Results on gsm8k, coqa
	Results on LongBench

	Efficiency Evaluation
	Setup
	Self-Attention Operator Speedup
	End-to-End Inference Speedup

	Ablation Study

	Conclusion and Discussion
	More Experiments
	More results on LongBench
	System efficiency analysis
	Trade-off accuracy and efficiency Analysis
	More Ablation Studies

	Discussion of potential adaptations

