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ABSTRACT

Large language models (LLMs) with decoder-only architectures have demon-
strated exceptional text-generation capabilities across a variety of tasks. Some
researchers have also adapted these models for text representation tasks. However,
in text representation tasks, these models often face performance degradation on
unseen tasks. In-context learning (ICL), which leverages examples provided in
the input context, enables LLMs to handle unseen tasks effectively. Inspired by
this, we aim to fully utilize the inherent properties of LLMs to enhance text repre-
sentation performance across different tasks through the ICL approach.
In this paper, we introduce a simple yet effective training strategy, which sig-
nificantly improves text representation capabilities. Unlike previous models that
prepend task instructions to the text, our method randomly samples a varying num-
ber of examples during training, endowing the embedding model with in-context
learning abilities while maintaining its zero-shot capabilities. This approach does
not require additional data construction or modifications to the model architecture.
On the contrary, we find that some popular modifications to the model, such as
bidirectional attention, can degrade performance, undermining the inherent char-
acteristics of LLMs. We open-source the model, code, and data to foster further
development in the field.

1 INTRODUCTION

Text embeddings are vector representations that capture the semantic and contextual meaning of nat-
ural language text. They play a pivotal role in natural language processing (NLP) tasks, facilitating
a wide range of applications such as information retrieval, text classification, item recommendation,
and question answering (Karpukhin et al., 2020; Xiong et al., 2020; Lu et al., 2020). Pre-trained bidi-
rectional encoder and encoder-decoder architectures have been widely adopted as backbone models
for embedding model, owing to their effectiveness in producing high-quality vector embeddings for
text thanks to their extensive pre-training (Xiao et al., 2022; Gao et al., 2021).

The impressive performance showcased by Large Language Models (LLMs) has sparked a growing
interest in exploring how these decoder-only models can be utilized as embedding models (Ma et al.,
2023; Li et al., 2024; Wang et al., 2023b). These LLM-based embedding models have exhibited
remarkable enhancements in domain-specific accuracy and generalization capabilities, particularly
when trained through supervised learning approaches (Wang et al., 2023b). A popular adaptation in
training LLMs for embedding purposes is instruction-tuning (Wei et al., 2021; Ouyang et al., 2022),
which involves providing varied instructions specific to different tasks. This targeted fine-tuning
has proven superior to traditional methods (Wang et al., 2023b; Lee et al., 2024a; Asai et al., 2022;
Wang et al., 2023a). However, the information contained within the instructions is still limited.
When faced with an entirely new task, the model may struggle to fully understand the task based
solely on the instructions. For example, as shown in Figure 1, when given a new retrieval task, both
E5-mistral (Wang et al., 2023b) and GTE-qwen2 (Li et al., 2023) assign a higher similarity score to
the incorrect candidate 1 than to the correct candidate 2, resulting in incorrect retrieval results.

In-context learning (ICL) is a core capability of LLMs, enabling them to incorporate task-specific
examples directly into input prompts to generate desired outputs (Radford et al., 2019; Brown, 2020;
Gao et al., 2020). The scope of ICL extends beyond tasks seen during training; it enables LLMs
to generalize to new and complex tasks by learning patterns from the provided examples. This
allows LLMs to adapt dynamically to novel tasks without additional training, making them highly
applicable to real-world scenarios (Wei et al., 2022; Yao et al., 2022; Dong et al., 2022).
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Similarity
Score

Once upon a time, in a blooming meadow, a group of rabbits were happily racing each other. Their 
playful chase led them to a hidden, glowing burrow. Inside, they discovered an enchanted world 
where animals spoke and wishes came true, a secret haven of endless adventures.

On a meadow, a group of rabbits are running, with an eagle chasing them from behind. To survive, 
the rabbits must run as fast as they can.

Candidates

Query A group of rabbits are running.

Scene: A cat is chasing a mouse through a castle.
Fairy Tale: In an ancient castle, a mouse named Max and a cat named Sir Whiskers stumbled upon a 
secret chamber with a magical crystal. Instead of continuing their chase, they called a truce to 
protect the crystal. Together, they used its magic to bring prosperity and harmony to the castle.

Scene: A frog is sitting on a lilypad under a moonlit sky.
Fairy Tale: Under a moonlit sky, a cursed prince in the form of a frog sat on a lilypad. A kind maiden 
named Lila came by and, moved by his sorrow, kissed him. The curse was broken, and the frog 
transformed into a prince. They married and ruled a kingdom happily ever after.

Scene: A young girl discovers an old, dusty book in an attic.
Fairy Tale: Once upon a time, a curious young girl named Eliza found an old, dusty book in her 
grandmother's attic. As she opened it, she was transported into a magical realm where she had to 
help a brave knight save a cursed kingdom. Together, they broke the curse and restored peace.

Given a scene, retrieve the fairy tale that unfolds with this scene.Instruction

Examples

1

2

icl-embedder
(zero-shot)

1 > 2

e5-mistral

1 > 2

gte-qwen2

1 > 2

icl-embedder
(few-shot)

2 > 1

Figure 1: For a new task, conventionally tuned instruction-tuning embedding models use only task
instructions and queries. They assign a higher similarity score to the incorrect candidate 1 than
to the correct candidate 2, resulting in incorrect retrieval results. However, with our ICL strategy-
trained embedding model, although zero-shot retrieval results may remain incorrect, providing a few
examples enables the model to retrieval successfully.

Recognizing the robust ICL abilities of LLMs, in this work, we introduce ICL Embedder, a model
capable of handling various tasks within a single framework by given the input text, task instruction
and a few task-related examples. Unlike previous models, we not only provide task instructions
to guide the generation of query embeddings but also incorporate task-related examples to further
enhance the query embeddings. To train the ICL Embedder, we randomly select examples for each
training step to ensure robust few-shot capabilities, and we use a diverse numbers of examples to
train for maintaining the model’s zero-shot performance. As illustrated in Figure 1, while our model
icl-embedder exhibits unsatisfactory performance in the zero-shot scenario, its retrieval accuracy
significantly improve when provided with few-shot examples. To the best of our knowledge, this
is the first embedding model to leverage the ICL strategy for generating embeddings. Our model
icl-embedder achieves state-of-the-art (SOTA) results on both the MTEB (Up to August 29, 2024)
(Muennighoff et al., 2022) and AIR-Bench 1 benchmarks.

Moreover, LLMs are predominantly utilized for text generation tasks, and adapting them for text
representation tasks requires specific fine-tuning strategies. Recent studies have introduced vari-
ous approaches, including the generation of high-quality training data through LLMs (Wang et al.,
2023b), modifications to attention mechanisms, and changes in pooling methods (Ma et al., 2023; Li
et al., 2024). In this paper, we also investigate how to effectively utilize LLMs as embedding models
by modifying various architectures, e.g., bidirectional attention, meaning pooling. Our experimental
findings indicate that in the ICL scenario, making complex modifications to the models does not lead
to significant improvements. In contrast, the best results are obtained using the original, unmodified
architecture.

In summary, the key contributions of our work are as follows:

• We propose to integrate ICL capabilities into the embedding model and introduce a simple
but effective training strategy, which empowers the ICL Embedder to achieve exceptional
performance without requiring additional training data or modifications to the model ar-
chitecture. Remarkably, our model icl-embedder achieves SOTA performance on both the
MTEB and AIR-Bench benchmarks. To the best of our knowledge, this is the first work to
successfully incorporate ICL capabilities into an embedding model.

1https://huggingface.co/spaces/AIR-Bench/leaderboard
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• We rethink and explore how to effectively utilize LLMs as embedding models by evaluating
various attention mechanisms and pooling methods. Our findings highlight that simplicity
is best; simply combining ICL capabilities with embedding models can achieve excellent
performance.

• In contrast to other leading models on the MTEB benchmark, we provide open access to
our model checkpoint, dataset, and training scripts.

2 RELATED WORK

Text embedding is a critical research direction in the field of information retrieval, with wide-ranging
applications including web search, question answering, and dialogue systems. The fundamental
principle involves encoding both queries and documents into embedding vectors within the same la-
tent space. By calculating similarity scores between these vectors, effective retrieval is achieved. In
recent years, numerous studies have leveraged pre-trained language models such as BERT (Devlin,
2018), T5 (Raffel et al., 2020), and RoBERTa (Liu, 2019) as the backbone for embedding models.
They have consistently demonstrated superior performance compared to sparse retrieval methods.

The capability of the backbone is a crucial determinant in the effectiveness of retrieval systems. (Luo
et al., 2024) have demonstrated that performance improves with increased scale and extensive pre-
training. Currently, numerous studies have explored the effectiveness of utilizing LLMs as backbone
encoders for text embedding tasks.

Repllama (Ma et al., 2023) fine-tuned Llama-2 to serve as both a dense retriever and a reranker,
demonstrating the effectiveness of applying large language models (LLMs) in text embedding tasks.
To further align LLMs with text embedding tasks, Llama2Vec (Li et al., 2024) introduced two pre-
training tasks specifically designed to enhance the model’s performance, which led to significant im-
provements on the BEIR benchmark. E5-mistral and Gecko (Wang et al., 2023b; Lee et al., 2024b)
advanced the training of LLM-based embedding models through the use of synthetic data, markedly
boosting their performance across a diverse range of retrieval and non-retrieval tasks. NV-Embed
(Lee et al., 2024a) innovatively proposed a latent attention layer to replace conventional pooling
methods and implemented a two-stage training strategy to address the challenge of false negatives
in non-retrieval tasks. This model has shown strong performance in both retrieval and non-retrieval
domains. Additionally, GRIT (Muennighoff et al., 2024) successfully integrated text embedding
and generation within a single LLM, achieving performance levels on par with specialized models
focused solely on either embedding or generation. In the exploration of LLMs as embedding models
from an unsupervised perspective, LLM2Vec (BehnamGhader et al., 2024) presented a novel unsu-
pervised method to transform decoder-only LLMs into embedding models. This approach demon-
strated significant potential for modifying LLM backbone encoders to perform retrieval without any
supervision. Similarly, PromptReps (Zhuang et al., 2024) leveraged chat-based LLMs aligned with
human preferences to generate high-quality dense representations in an unsupervised manner.

The LLM-based embedding models mentioned above exhibit commendable performance across
both retrieval and non-retrieval tasks. However, much of the existing work has disproportionately
focused on altering model architectures, thereby neglecting the intrinsic capabilities of LLMs. Even
models like GritLM, which integrate generation and embedding functionalities, fail to fully exploit
the potential ICL capabilities of LLMs within the embedding process. By leveraging the innate
ICL capabilities of LLMs, embedding models can be more versatile and adapt to diverse scenarios
without necessitating additional fine-tuning. Our model effectively utilizes the inherent strengths of
LLMs and achieves SOTA results on the MTEB and AIR-Bench benchmarks.

3 METHOLOGY

To ensure the embedding models can be used for various tasks with ICL capabilities, without any ad-
ditional training, we propose a simple yet effective strategy. We will present the ICL representation
for embedding models and our training strategy in the following section.
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# EXAMPLES:
<Instruct> Classify the emotion expressed in the given 
Twitter message into one of the six emotions: anger, fear, 
joy, love, sadness, and surprise
<query> I am bothered is that he might changed his 
feelings once he get back in us and leave me heartbroken
<response> sadness

<Instruct> Classify the emotion expressed in the given 
Twitter message into one of the six emotions: anger, fear, 
joy, love, sadness, and surprise
<query> I have always loved my jobs and loved to work 
and i truly feel like being back there with my patients and 
co workers will do me a lot of good even if it is only for a 
few weeks
<response> joy

# INPUT:
<Instruct> Classify the emotion expressed in the given 
Twitter message into one of the six emotions: anger, fear, 
joy, love, sadness, and surprise
<query> I keep feeling pleasantly surprised at his 
supportiveness and also his ease in new situations
<response>
</s>

Examples Input </s>

Causal Attention

{Examples}    {Input} 

Output Embedding:

</s>

ModelLLM

Exam
ples 

Input
</s>

Figure 2: The query representation of the ICL Embedder.

3.1 THE ICL REPRESENTATION FOR EMEBDDING MODELS

Traditional embedding models often directly input the query to generate target embeddings. How-
ever, this approach struggles to handle tasks with different intents, limiting the model’s adaptability
and generalization capabilities. To overcome this limitation, researchers have introduced appending
task instructions (Su et al., 2022) to queries, enabling a single embedding model to generalize across
various domains by altering the instructions.

Despite these advancements, the information provided by the instruction remains constrained. In-
spired by the remarkable capability of LLMs to adapt and perform well on unseen tasks through ICL,
we seek to integrate this powerful feature into our embedding model. Consequently, we propose an
innovative query representation format that leverages ICL, as depicted in Figure 2.

Consider a new query q+, its corresponding positive passage p+, and a few-shot set of n query-
passage pairs {(q1, p1), . . . , (qn, pn)} in an embedding task. The traditional instruction-based query
template (Wang et al., 2023b) has the following format:

⟨Instruct⟩ {task definition} ⟨query⟩ {q+} (1)

Here, “task definition” represents the description of the specific embedding task. However, the
information provided in the instruction alone is also limited. To overcome this limitation, we propose
an expanded query format that incorporates few-shot examples. First, we suggest organizing each
query-passage pair (qk, pk) as follows:

⟨Instruct⟩ {task definition} ⟨query⟩ {qk} ⟨response⟩ {pk} (2)

Once the few-shot examples are obtained, they can be concatenated with the query to form the
following format:

{example 1} ... {example n} ⟨Instruct⟩ {task definition} ⟨query⟩ {q+} ⟨response⟩ (3)

We then append an [EOS] token to the end of the modified input queries and passages, and feed
them into the language model to obtain embeddings (hq+ , hp+) , the final hidden state of the [EOS]
token is used as the embedding, and we apply the same [EOS] token for encoding both queries and
passages.

4
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3.2 THE ICL EMBEDDER TRAINING STRATEGY

While previous works (Wang et al., 2023b; Lee et al., 2024a) have proposed the training method
of instruction-tuning, which incorporates a large number of task-specific instructions during the
training process, enabling the model to adapt to various downstream retrieval tasks based on different
instructions, it is not applicable to the ICL strategy. As demonstrated by GRIT (Muennighoff et al.,
2024), directly supplying few-shot examples when generating embeddings can actually degrade
model performance.

A straightforward approach to train ICL Embedder is providing task-specific few-shot examples and
instructions along with each query during training, which helps the model effectively leverage the
examples to enhance the representation of the query’s embedding. However, such a training process
raises several issues. On the one hand, if few-shot samples are always used during the training
process, there is a risk that the model’s zero-shot capabilities could be hindered. On the other hand,
if the examples used for training remain static, the model may not be able to handle new examples,
resulting in a decline in performance in the few-shot scenario.

To enable the embedding model with ICL capabilities and ensure high performance in both zero-
shot and few-shot scenarios, we propose a simple yet effective training strategy. Within each training
batch, we utilize the same dataset. During the training process, we select different examples from
the same batch at each step to ensure variability in the data exposed to the model, thereby enhancing
its few-shot robustness. Simultaneously, the number of examples is randomly chosen between 0 and
the maximum value, which supports the development of the model’s zero-shot capabilities.

During training, we employ the standard InfoNCE (Izacard et al., 2021) loss function L:

L = − log
exp(sim(q+,p+))

exp(sim(q+,p+)) +
∑
j

exp(sim(q+,p−j ))
(4)

In this equation, p−j denotes the set of negative passages. For retrieval tasks, this set encompasses
both in-batch negatives and hard negatives, whereas for non-retrieval tasks, it is limited solely to
hard negatives. The function sim(q,p) is the scoring function between the query and passage. The
scoring function is a temperature-scaled cosine similarity, defined as:

sim(q,p) =
1

τ
cos(hq,hp) (5)

Here, τ is a temperature hyperparameter, which is fixed at 0.02 during training. The cos(hq,hp) term
represents the cosine similarity between the query representation hq and passage representations hp.

4 EXPERIMENTS

In this section, we examine the effectiveness of the ICL Embedder training strategy and rethink the
training methodologies for LLM-based embedding models. We focus on the following questions:

• RQ 1: How does our ICL Embedder perform in zero-shot and few-shot scenarios?

• RQ 2: How does the performance of our ICL Embedder compare to other LLM-based
embedding methods?

• RQ 3: How does our ICL training strategy affect the performance of embedding models
compared to normal ICL training strategy.

• RQ 4: Will changes in model architecture, such as bidirectional attention and mean pool-
ing, improve the performance of ICL Embedder?

4.1 SETUP

LLM. Following E5-Mistral (Wang et al., 2023b), SFR, and NV-Embedder (Lee et al., 2024a), we
have adopted Mistral-7B (Jiang et al., 2023) as the backbone for our framework.

5
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Training Data. To ensure a fair comparison, we use the E5-Mistral dataset, which is employed
to fine-tune both the E5-Mistral (Wang et al., 2023b) and LLM2Vec (BehnamGhader et al., 2024).
This dataset includes some in-domain retrieval datasets from MTEB, including HotpotQA (Yang
et al., 2018), FEVER (Thorne et al., 2018), MSMARCO passage ranking (Nguyen et al., 2016), NQ
(Karpukhin et al., 2020) and Quora Duplicate Questions (DataCanary et al., 2017), as well as other
publicly available retrieval datasets, including ELI5 (Fan et al., 2019), MIRACL (Zhang et al., 2023),
MSMARCO document ranking (Nguyen et al., 2016), NLI (Gao et al., 2021), SQuAD (Karpukhin
et al., 2020), TriviaQA (Karpukhin et al., 2020), MrTyDi (Zhang et al., 2021), DuReader (Qiu et al.,
2022), and T2Ranking.

However, methods that typically perform exceptionally well, such as NV-Embedder (Lee et al.,
2024a) and SFR, often require more MTEB in-domain training data. Additionally, some of these
methods, such as GTE-Qwen2 (Li et al., 2023), do not disclose their sources of training data. We
speculate that they might have also utilized additional MTEB in-domain data. Therefore, we have
collected a new dataset, the Augmented E5-Mistral dataset. This dataset builds on the English re-
trieval dataset from the E5-Mistral dataset, incorporating extra in-domain training data from MTEB.
It includes data for various tasks including Retrieval, Reranking, Clustering, Classification, and STS.
Specifically, the Augmented E5-Mistral dataset contains the following categories of datasets:

• Retrieval: ELI5, HotpotQA, FEVER, MSMARCO passage and document ranking, NQ,
NLI, SQuAD, TriviaQA, Quora Duplicate Questions, Arguana (Wachsmuth et al., 2018),
and FiQA (Maia et al., 2018).

• Reranking: SciDocsRR (Cohan et al., 2020) and StackOverFlowDupQuestions (Liu et al.,
2018).

• Classification: AmazonReviews-Classification (McAuley & Leskovec, 2013),
AmazonCounterfactual-Classification (O’Neill et al., 2021), Banking77-
Classification (Casanueva et al., 2020), Emotion-Classification (Saravia et al., 2018),
TweetSentimentExtraction-Classification (Maggie, 2020), MTOPIntent-Classification (Li
et al., 2020), IMDB-Classification (Maas et al., 2011), ToxicConversations-Classification
(Adams et al., 2019).

• Clustering: {Arxiv/Biorxiv/Medrxiv/Reddit/StackExchange}-Clustering-{S2S/P2P},
TwentyNewsgroups-Clustering (Lang, 1995).

• STS: STS12 (Agirre et al., 2012), STS22 (Chen et al., 2022), STS-Benchmark (Cer et al.,
2017).

Training Detail. We fine-tune the Mistral-7B model using the contrastive loss and train it for a
single epoch. For efficient fine-tuning, we employ Low-Rank Adaptation (LoRA) (Hu et al., 2021),
setting the LoRA rank to 64 and the LoRA alpha to 32, with a learning rate of 1e-4. For retrieval
tasks, we use in-batch negatives. Each dataset incorporates 7 hard negatives. The batch size is set
to 512 for retrieval tasks and 256 for other types of tasks. We maintain consistency by using the
same dataset throughout one training step. To distill the score from reranker in retrieval tasks, we
use the bge-reranker model as the teacher. For in-context learning training, we implement a in-batch
random examples selection training strategy. For each query, considering excessively long inputs
will severely restrict the batch size, we select between 0 to 5 examples from the in-batch training
data. In training, the maximum length for the query, passage, and example is set to 512. The
example comprises the example query and example passage, each with a maximum length of 256.
The maximum length for the concatenated query and examples is 2048.

Evaluation. We evaluate the performance of our model on MTEB (Muennighoff et al., 2022) and
AIR-Bench. MTEB is a comprehensive benchmark designed to evaluate the performance of text
embedding models. AIR-Bench is dedicated to the evaluation of retrieval performance, its testing
data is automatically generated by large language models without human intervention. We evaluate
the performance of our model under both zero-shot and few-shot scenarios. In the few-shot scenario,
fixed in-context examples are applied to each query within the same dataset. We use the following
strategy to select examples for evaluation:

• For tasks with training sets: We reserve a small subset of the training set for testing
purposes. From the remaining training data, we randomly sample examples three times.
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Task Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg.
# of datasets → 15 4 11 3 12 10 1 56

w/ E5-Mistral dataset
E5-mistral-7b-instruct 52.78 60.38 47.78 88.47 76.80 83.77 31.90 64.56
GritLM-7B 53.10 61.30 48.90 86.90 77.00 82.80 29.40 64.70
LLM2Vec-Mistral-supervised 55.99 58.42 45.54 87.99 76.63 84.09 29.96 64.80
icl-embedder (E5-Mistral dataset) (zero-shot) 59.59 56.85 42.61 87.87 75.47 83.30 29.52 64.67
icl-embedder (E5-Mistral dataset) (few-shot) 60.08 56.67 46.55 88.51 77.31 83.69 30.68 66.08

E5-mistral-7b-instruct 56.90 60.21 50.26 88.34 78.47 84.66 31.40 66.63
GritLM-7B 57.41 60.49 50.61 87.16 79.46 83.35 30.37 66.76
SFR-Embedding 59.00 60.64 51.67 88.54 78.33 85.05 31.16 67.56
Linq-Embed-Mistral 60.19 60.29 51.42 88.35 80.20 84.97 30.98 68.17
voyage-large-2-instruct 58.28 60.09 53.35 89.24 81.49 84.31 30.84 68.23
NV-Embed-v1 59.36 60.59 52.80 86.91 87.35 82.84 31.20 69.32
bge-multilingual-gemma2 59.24 59.72 54.65 85.84 88.08 83.88 31.20 69.88
stella en 400M v5 58.97 60.16 56.70 87.74 86.67 84.22 31.66 70.11
gte-Qwen2-7B-instruct 60.25 61.42 56.92 85.79 86.58 83.04 31.35 70.24
SFR-Embedding-2 R 60.18 60.14 56.17 88.07 89.05 81.26 30.71 70.31
stella en 1.5B v5 61.01 61.21 57.69 88.07 87.63 84.51 31.49 71.19
NV-Embed-v2 (August 30, 2024) 62.65 60.65 58.46 88.67 90.37 84.31 30.70 72.31
icl-embedder (Augmented E5-Mistral dataset) (zero-shot) 61.67 59.66 57.51 86.93 88.62 83.74 30.75 71.24
icl-embedder (Augmented E5-Mistral dataset) (few-shot) 62.16 59.82 57.89 88.14 88.95 84.24 30.77 71.67

Table 1: The performance on the MTEB benchmark.

Domain wiki web news healthcare law finance arxiv msmarco Avg.
# of datasets → 1 1 1 1 1 1 1 1 8
E5-mistral-7b-instruct 61.67 44.41 48.18 56.32 19.32 54.79 44.78 59.03 48.56
SFR-Embedding 63.46 51.27 52.21 58.76 23.27 56.94 47.75 58.99 51.58
NV-Embed-v1 62.84 50.42 51.46 58.53 20.65 49.89 46.10 60.27 50.02
Linq-Embed-Mistral 61.04 48.41 49.44 60.18 20.34 50.04 47.56 60.50 49.69
gte-Qwen2-7B-instruct 63.46 51.20 54.07 54.20 22.31 58.20 40.27 58.39 50.26
stella en 1.5B v5 61.99 50.88 53.87 58.81 23.22 57.26 44.81 61.38 51.53
NV-Embed-v2 (August 30, 2024) 65.19 52.58 53.13 59.56 25.00 53.04 48.94 60.80 52.28
icl-embedder (Augmented E5-Mistral dataset) (zero-shot) 64.61 54.40 55.11 57.25 25.10 54.81 48.46 63.71 52.93
icl-embedder (Augmented E5-Mistral dataset) (few-shot) 64.94 55.11 56.02 58.85 28.29 57.16 50.04 64.50 54.36
icl-embedder (E5-Mistral dataset) (zero-shot) 64.82 54.96 55.82 57.06 28.87 54.46 49.60 63.25 53.60
icl-embedder (E5-Mistral dataset) (few-shot) 66.98 56.38 57.17 59.54 32.03 58.81 51.36 65.05 55.92

Table 2: QA (en, nDCG@10) performance on AIR-Bench.

We then select the set of examples that achieves the highest accuracy on the small subset
as the final in-context examples for evaluation.

• For tasks without training sets: We provide ChatGPT with a task description to generate
10 examples. Then, we use ChatGPT to filter these examples and select those that best
represent the task.

4.2 MAIN RESULTS (FOR RQ 1 AND RQ 2)

MTEB. Table 1 presents the performance of our model, icl-embedder, evaluated on the MTEB
benchmark. It is important to note that the use of the Augmented E5-Mistral dataset may introduce
unfair comparisons, as different models often rely on varying datasets, and many of these models
do not disclose the specific datasets they use. For a fairer comparison and to better understand the
impact of in-context learning, we conducts an evaluation using the E5-Mistral dataset. Under these
constraints, our model’s performance in the zero-shot scenario is on par with that of other models
such as GritLM (Muennighoff et al., 2024) and LLM2Vec (BehnamGhader et al., 2024). However,
in the few-shot scenario, our model show significant enhancements, particularly in the classifica-
tion and clustering tasks that are not part of the training data. These improvements underscore the
potential benefits of in-context learning, demonstrating its generalizability and effectiveness when
applied to tasks outside the original training domain.

When leveraging the Augmented E5-Mistral dataset, our model demonstrates strong capabilities
in both zero-shot and few-shot scenarios, achieving SOTA results in the few-shot scenario (Up to
August 29, 2024). However, the performance in the few-shot scenario exhibits only a marginal
improvement over the zero-shot scenario. Because the model is previously exposed to these specific
datasets during its training phase, enables it to perform well on their corresponding test sets. As a
result, employing ICL does not yield significant benefits.

AIR-Bench. Our model’s performance is further evaluated on the AIR-Bench dataset, encompass-
ing QA and Long-Doc tasks. As shown in Tables 2 and 3, our model demonstrates significant
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Domain arxiv book healthcare law Avg.
# of datasets → 4 2 5 4 15
text-embedding-3-large 74.53 73.16 65.83 64.47 68.77
E5-mistral-7b-instruct 72.14 72.44 68.44 62.92 68.49
SFR-Embedding 72.79 72.41 67.94 64.83 69.00
NV-Embed-v1 77.65 75.49 72.38 69.55 73.45
Linq-Embed-Mistral 75.46 73.81 71.58 68.58 72.11
gte-Qwen2-7B-instruct 63.93 68.51 65.59 65.26 65.45
stella en 1.5B v5 73.17 74.38 70.02 69.32 71.25
bge-multilingual-gemma2 71.77 76.46 73.96 70.86 72.88
NV-Embed-v2 (August 30, 2024) 79.27 77.46 73.01 71.18 74.78
icl-embedder (Augmented E5-Mistral dataset) (zero-shot) 78.30 78.21 73.65 67.09 73.75
icl-embedder (Augmented E5-Mistral dataset) (few-shot) 79.63 79.36 74.80 67.79 74.83
icl-embedder (E5-Mistral dataset) (zero-shot) 79.73 78.66 72.88 70.59 74.86
icl-embedder (E5-Mistral dataset) (few-shot) 79.82 80.37 74.60 71.66 75.98

Table 3: Long-Doc (en, Recall@10) performance on AIR-Bench.

performance across both QA and Long-Doc tasks when trained on either the Augmented E5-Mistral
dataset or the E5-Mistral dataset. It is noteworthy that there is no overlap between the model’s train-
ing dataset and the AIR-Bench evaluation data, and our model’s few-shot performance significantly
surpasses its zero-shot performance in all cases, underscoring its robustness in handling unseen
tasks.

Interestingly, the model achieves better results when trained solely on the E5-Mistral dataset com-
pared to training on the Augmented E5-Mistral dataset. This improvement could be attributed to
that the Augmented E5-Mistral dataset containing an excessive amount of MTEB-related data, such
as clustering and classification tasks. Such data might introduce the risk of overfitting, thereby
potentially hampering the model’s generalization performance on the AIR-Bench dataset.

4.3 IN-CONTEXT LEARNING (FOR RQ 3)

Task Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg.
# of datasets → 15 4 11 3 12 10 1 56

w/ E5-Mistral dataset
w/o in-context learning (zero-shot) 59.11 57.02 42.60 87.99 76.27 83.93 30.50 64.83
w/ fix examples (zero-shot) 48.98 56.48 41.84 85.94 74.38 84.31 29.68 61.50
w/ fix examples (few-shot) 59.00 56.90 45.75 88.54 75.56 84.67 30.66 65.46
w/ random examples (zero-shot) 59.59 56.85 42.61 87.87 75.47 83.30 29.52 64.67
w/ random examples (few-shot) 60.08 56.67 46.55 88.51 77.31 83.69 30.68 66.08

Table 4: Evaluation of various ICL strategies on the MTEB Benchmark.

To evaluate the impact of the ICL strategy, we conduct a series of ablation studies using the MTEB
benchmark. In these studies, we compare the performance of models fine-tuned with the ICL strat-
egy against those fine-tuned without it. These experiments all use the same setting. Specifically, for
ICL training, we employ two distinct training approaches: fixed examples and random examples.
For fixed examples, each task is trained using three predetermined examples. For random examples,
constitution and quantity of examples are random.

Table 4 presents various results from our experiment. When trained without the ICL strategy, the
model’s zero-shot performance is 64.83. However, its performance significantly degrades and can
even become unusable when provided with few-shot examples.

When fixed examples are used during ICL training, there is a significant decline in zero-shot evalua-
tion performance compared to using random examples. This decline can be attributed to the model’s
consistent exposure to the same training examples, which may have impaired its zero-shot ablitiy.
On the other hand, in the few-shot scenario, the model demonstrates improved performance when
trained with fixed examples, exceeding its own zero-shot results by 3.96 points and outperforming
models trained without ICL by 0.63 points. This confirms the effectiveness of the ICL strategy in
enhancing model performance.

When utilizing random examples during training, the model’s zero-shot capability is preserved.
Furthermore, exposing the model to random examples enhances its performance in the few-shot
scenario due to the abundance of examples it encounters during the training process.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.4 ATTENTION (FOR RQ 4)

Task Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg.
# of datasets → 15 4 11 3 12 10 1 56

causal attention & last token pooling
w/o in-context learning 59.11 57.02 42.60 87.99 76.27 83.93 30.50 64.83
w/ in-context learning (zero-shot) 59.59 56.85 42.61 87.87 75.52 83.30 29.52 64.67
w/ in-context learning (few-shot) 60.08 56.67 46.55 88.51 77.31 83.69 30.68 66.08

causal attention & mean pooling
w/o in-context learning 58.50 53.74 36.82 82.14 72.37 77.62 29.10 61.03

bidirectional attention & last token pooling
w/o in-context learning 59.59 56.96 44.34 87.61 74.77 83.81 30.12 64.96
w/ in-context learning (zero-shot) 59.77 58.09 44.04 87.87 75.35 83.97 29.75 65.19
w/ in-context learning (few-shot) 60.23 57.81 44.45 88.64 77.00 83.77 29.99 65.74

bidirectional attention & mean pooling
w/o in-context learning 59.13 57.03 43.44 87.25 75.03 84.08 29.17 64.73
w/ in-context learning (zero-shot) 59.53 57.48 43.88 88.12 74.86 83.64 29.58 64.90
w/ in-context learning (few-shot) 59.42 57.29 44.93 88.36 75.26 83.75 29.60 65.18

Table 5: Results of different attention and pooling mechanisms on the MTEB Benchmark.

Recent studies have explored modifying the attention mechanism in LLMs to adopt bidirectional
attention and employ mean pooling for embedding generation. Notably, models such as GritLM
(Muennighoff et al., 2024), NV-Embed (Lee et al., 2024a), and LLM2Vec (BehnamGhader et al.,
2024) have successfully utilized these techniques, achieving considerable experimental success.
Motivated by these advancements, we explore the potential benefits of implementing bidirectional
attention in the ICL scenario. Specifically, we investigate the impacts of various attention and pool-
ing mechanisms, including causal and bidirectional attention, coupled with last token pooling and
mean pooling.

In a causal attention framework, each token is limited to accessing only the information from preced-
ing tokens, without considering subsequent tokens, and employing mean pooling tends to yield bad
results due to this restriction. Therefore, in this specific configuration, we present only the results
from experiments without ICL.

Table 5 presents the experimental setup and results in both non-ICL and ICL scenarios. It shows
that in non-ICL scenarios, most methods yield consistent performance, except for the combination
of causal attention with mean pooling. In contrast, in ICL scenarios, the integration of causal atten-
tion and last token pooling emerges as the superior approach. This configuration seems aligned to
the model’s pre-training, suggesting that retaining the original architecture and simplicity is advanta-
geous. Moreover, shifting from causal attention to bidirectional attention does not lead to significant
improvements, and mean pooling is not necessary for implementing bidirectional attention.

Additionally, configurations utilizing bidirectional attention paired with last token pooling are also
effective in both non-ICL and zero-shot scenarios, indicating that it is a viable option in some specific
scenarios.

5 CONCLUSION

This paper proposes a novel approach that enables embedding models to leverage ICL capabilities
without requiring additional data or modifications to the model architecture. To the best of our
knowledge, this is the first work to successfully apply ICL capabilities to embedding models through
a simple yet effective training strategy. Our approach empowers embedding models to become in-
context learners, and experimental results demonstrate that our model achieves SOTA performance
on the MTEB and AIR-Bench datasets.

Furthermore, we rethink and explore potential changes to the model structure, such as bidirectional
attention. Our findings indicate that these structural modifications do not enhance the few-shot
performance of the embedding models but instead lead to a decline in performance. We hope that
the ICL Embedder could provide valuable insights for both researchers and practitioners working
with embedding models and in-context learning.
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A INSTRUCTION

Task Name Instruction Template

ArguAna Given a claim, find documents that refute the claim.

ClimateFEVER Given a claim about climate change, retrieve documents that support or refute
the claim.

CQADupStack Given a question, retrieve detailed question descriptions from Stackexchange that are
duplicates to the given question.

DBPedia Given a query, retrieve relevant entity descriptions from DBPedia.
FEVER Given a claim, retrieve documents that support or refute the claim.
FiQA2018 Given a financial question, retrieve user replies that best answer the question.
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question.
MSMARCO Given a web search query, retrieve relevant passages that answer the query.
NFCorpus Given a question, retrieve relevant documents that best answer the question.
Natural Question Given a question, retrieve Wikipedia passages that answer the question.

QuoraRetrieval Given a question, retrieve questions that are semantically equivalent to the given
question.

SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited by the given paper.
SciFact Given a scientific claim, retrieve documents that support or refute the claim.
Touche2020 Given a question, retrieve detailed and persuasive arguments that answer the question.
TREC-COVID Given a query, retrieve documents that answer the query.
STS* Retrieve semantically similar text.
SummEval Given a news summary, retrieve other semantically similar summaries.

AmazonCounterfactualClassification Classify a given Amazon customer review text as either counterfactual
or not-counterfactual.

AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment.
AmazonReviewsClassification Classify the given Amazon review into its appropriate rating category.
Banking77Classification Given a online banking query, find the corresponding intents.

EmotionClassification Classify the emotion expressed in the given Twitter message into one of the six
emotions: anger, fear, joy, love, sadness, and surprise.

ImdbClassification Classify the sentiment expressed in the given movie review text from
the IMDB dataset.

MassiveIntentClassification Given a user utterance as query, find the user intents.
MassiveScenarioClassification Given a user utterance as query, find the user scenarios.
MTOPDomainClassification Classify the intent domain of the given utterance in task-oriented conversation.
MTOPIntentClassification Classify the intent of the given utterance in task-oriented conversation.
ToxicConversationsClassification Classify the given comments as either toxic or not toxic.
TweetSentimentExtractionClassification Classify the sentiment of a given tweet as either positive, negative, or neutral.

ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based on the titles
and abstracts.

ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based on the titles.
BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles and abstracts.
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles.
MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles and abstracts.
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles.
RedditClustering Identify the topic or theme of Reddit posts based on the titles.
RedditClusteringP2P Identify the topic or theme of Reddit posts based on the titles and posts.
StackExchangeClustering Identify the topic or theme of StackExchange posts based on the titles.
StackExchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the given paragraphs.
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles.
AskUbuntuDupQuestions Retrieve duplicate questions from AskUbuntu forum.
MindSmallReranking Retrieve relevant news articles based on user browsing history.
SciDocsRR Given a title of a scientific paper, retrieve the titles of other relevant papers.
StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum.
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum.
TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet.
TwitterURLCorpus Retrieve tweets that are semantically similar to the given tweet.

AIR-Bench Given a question, retrieve passages that answer the question.

Table 6: The instruction we used on the MTEB and AIR-Bench benchmarks.
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B DETAILED MTEB RESULTS

Dataset NV-Em
bed-v1

bge-multilin
gual-gemma2

gte-Qwen2-
7B-instruct

SFR-Embe
dding-2 R

stella en
1.5B v5

icl-embedder
(zero-shot)

icl-embedder
(few-shot)

ArguAna 68.21 77.37 64.27 62.34 65.27 82.76 83.08
ClimateFEVER 34.72 39.37 45.88 34.43 46.11 45.35 45.43
CQADupStack 50.51 47.94 46.43 46.11 47.75 47.23 47.31
DBPEDIA 48.29 51.37 52.42 51.21 52.28 50.42 51.63
FEVER 87.77 90.38 95.11 92.16 94.83 91.96 92.83
FiQA2018 63.10 60.04 62.03 61.77 60.48 58.77 59.67
HotpotQA 79.92 83.26 73.08 81.36 76.67 84.98 85.14
MSMARCO 46.49 45.71 45.98 42.18 45.22 46.72 46.79
NFCorpus 38.04 38.11 40.60 41.34 42.00 40.69 41.85
Natural Question 71.22 71.45 67.00 73.96 71.80 73.85 73.88
QuoraRetrieval 89.21 90.04 90.09 89.58 90.03 91.02 90.95
SCIDOCS 20.19 26.93 28.91 24.87 26.64 25.25 25.26
SciFact 78.43 72.05 79.06 85.91 80.09 78.33 79.09
Touche2020 28.38 30.26 30.57 28.18 29.94 29.67 30.48
TREC-COVID 85.88 64.27 82.26 87.28 85.98 78.11 79.08
BIOSSES 85.59 85.74 81.37 87.60 83.11 86.35 86.47
SICK-R 82.80 82.66 79.28 77.01 82.89 83.87 83.87
STS12 76.22 77.71 79.55 75.67 80.09 77.73 78.14
STS13 86.30 87.45 88.83 82.40 89.68 85.98 86.59
STS14 82.09 83.48 83.87 79.93 85.07 82.34 82.83
STS15 87.24 87.63 88.54 85.82 89.39 87.35 87.77
STS16 84.77 86.70 86.49 84.50 87.15 86.54 87.04
STS17 87.42 91.18 88.73 88.93 91.35 91.25 91.25
STS22 69.85 69.02 66.88 67.10 68.10 68.08 70.07
STSBenchmark 86.14 87.25 86.85 83.60 88.23 87.92 88.42
SummEval 31.20 31.20 31.35 30.71 31.49 30.75 30.77
SprintDuplicateQuestions 95.94 90.94 92.82 97.62 96.04 95.06 97.23
TwitterSemEval2015 78.73 79.64 77.96 78.57 80.58 78.54 79.34
TwitterURLCorpus 86.05 86.95 86.59 88.03 87.58 87.19 87.84
AmazonCounterfactual 95.12 89.48 91.31 92.72 92.87 92.88 93.15
AmazonPolarity 97.14 96.90 97.50 97.31 97.16 96.86 96.98
AmazonReviews 55.47 61.60 62.56 61.04 59.36 61.28 61.46
Banking77 90.34 92.53 87.57 90.02 89.79 91.42 91.49
Emotion 91.71 92.97 79.45 93.37 84.29 93.31 93.36
Imdb 97.06 96.66 96.75 96.80 96.66 96.91 96.91
MassiveIntent 80.07 82.05 85.41 85.97 85.83 82.26 82.93
MassiveScenario 81.74 84.40 89.77 90.61 90.20 83.92 85.60
MTOPDomain 96.51 98.61 99.04 98.58 99.01 97.99 98.42
MTOPIntent 89.77 95.51 91.88 91.30 92.78 93.56 94.00
ToxicConversations 92.60 87.34 85.12 91.14 88.76 93.16 93.17
TweetSentimentExtraction 80.60 78.86 72.58 79.70 74.84 79.90 79.93
Arxiv-P2P 53.76 54.91 54.46 54.02 55.44 54.42 54.44
Arxiv-S2S 49.59 50.28 51.74 48.82 50.66 49.17 49.33
Biorxiv-P2P 48.15 52.64 50.09 50.76 50.68 52.32 53.05
Biorxiv-S2S 44.74 49.20 46.65 46.57 46.87 48.38 48.38
Medrxiv-P2P 39.24 45.81 46.23 46.66 46.87 46.13 45.86
Medrxiv-S2S 36.98 44.11 44.13 44.18 44.65 44.20 44.33
Reddit 63.20 56.03 73.55 62.92 72.86 71.20 72.33
Reddit-P2P 68.01 65.83 74.13 72.74 75.27 72.17 72.72
StackExchange 74.99 66.21 79.86 76.48 80.29 81.29 81.32
StackExchange-P2P 42.04 45.74 49.41 48.29 49.57 45.53 46.05
TwentyNewsgroups 60.13 70.44 53.91 66.42 61.43 68.51 68.98
AskUbuntuDupQuestions 67.50 64.59 67.58 66.71 67.33 64.80 65.15
MindSmallRerank 30.82 31.79 33.36 31.26 33.05 30.60 30.60
SciDocsRR 87.26 87.60 89.09 87.29 89.20 86.90 86.96
StackOverflowDupQuestions 56.58 54.90 55.66 55.32 55.25 56.32 56.71
MTEB Average (56) 69.32 69.88 70.24 70.31 71.19 71.24 71.67

Table 7: MTEB results with Augmented E5-Mistral dataset.
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Dataset icl-embedder (zero-shot) icl-embedder (few-shot)
ArguAna 55.81 55.41
ClimateFEVER 45.17 45.14
CQADupStack 46.03 46.46
DBPEDIA 50.79 51.14
FEVER 91.96 92.42
FiQA2018 58.49 58.15
HotpotQA 84.34 84.68
MSMARCO 46.52 46.56
NFCorpus 40.16 40.96
Natural Question 73.56 74.01
QuoraRetrieval 90.79 90.89
SCIDOCS 20.56 20.87
SciFact 78.10 79.65
Touche2020 33.64 34.93
TREC-COVID 77.89 79.95
BIOSSES 86.80 87.49
SICK-R 83.83 83.69
STS12 77.80 78.39
STS13 84.90 85.62
STS14 82.53 82.62
STS15 88.33 88.52
STS16 86.14 86.44
STS17 91.65 91.79
STS22 63.79 64.83
STSBenchmark 87.27 87.52
SummEval 29.52 30.68
SprintDuplicateQuestions 94.79 96.09
TwitterSemEval2015 81.53 82.04
TwitterURLCorpus 87.30 87.39
AmazonCounterfactual 82.40 83.36
AmazonPolarity 88.57 92.69
AmazonReviews 47.25 49.85
Banking77 87.57 88.70
Emotion 53.74 54.24
Imdb 81.14 84.96
MassiveIntent 77.87 79.24
MassiveScenario 79.77 82.00
MTOPDomain 95.68 96.61
MTOPIntent 85.22 88.19
ToxicConversations 63.58 64.68
TweetSentimentExtraction 63.47 63.16
Arxiv-P2P 47.22 48.97
Arxiv-S2S 42.87 45.35
Biorxiv-P2P 33.17 38.37
Biorxiv-S2S 35.00 37.05
Medrxiv-P2P 28.74 30.24
Medrxiv-S2S 28.10 31.45
Reddit 53.83 59.14
Reddit-P2P 64.40 65.51
StackExchange 57.50 68.61
StackExchange-P2P 34.21 36.01
TwentyNewsgroups 43.65 51.40
AskUbuntuDupQuestions 63.71 62.96
MindSmallRerank 27.90 27.90
SciDocsRR 84.31 84.24
StackOverflowDupQuestions 51.48 51.56
MTEB Average (56) 64.67 66.08

Table 8: MTEB results with E5-Mistral dataset.
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Task Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg.
# of datasets → 15 4 11 3 12 10 1 56

w/ E5-Mistral dataset
0-shot examples 59.59 56.85 42.61 87.87 75.52 83.30 29.52 64.67
1-shot examples 59.72 57.43 44.86 88.24 76.91 83.49 30.54 65.57
2-shot examples 59.95 56.90 45.79 88.33 77.25 83.68 30.68 65.90
3-shot examples 60.10 56.94 46.31 88.51 77.59 83.66 30.71 66.12
4-shot examples 60.11 57.18 46.64 88.52 77.54 83.68 30.96 66.18
5-shot examples 60.10 57.15 46.64 88.54 77.45 83.70 30.83 66.18

Table 9: Results with different number of examples on the MTEB Benchmark.

C THE NUMBER OF EXAMPLES

Previous efforts to apply in-context learning techniques developed for generative models have shown
that the number of in-context examples significantly influences their performance. To investigate
whether this phenomenon similarly affects embedding models, we conduct a series of experiments
varying the number of in-context examples. The results are presented in Table 9. It can be observed
that the empirical performance of different tasks shows consistent improvement as the number of
examples increases within certain ranges. However, beyond these ranges, the performance stabi-
lizes, with additional examples yielding no further gains. This empirical evidence suggests that five
examples are sufficient for most tasks.

D THE ORDER OF EXAMPLES

Task Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg.
# of datasets → 15 4 11 3 12 10 1 56

w/ E5-Mistral dataset
3-shot examples (shuffle-1) 60.10 56.94 46.31 88.51 77.59 83.66 30.71 66.12
3-shot examples (shuffle-2) 60.16 56.99 46.23 88.46 77.65 83.67 30.58 66.13
3-shot examples (shuffle-3) 60.14 56.96 46.18 88.52 77.59 83.60 30.80 66.10
3-shot examples (shuffle-4) 60.13 57.07 46.29 88.54 77.65 83.61 30.64 66.14

Table 10: Results with different orders of examples on the MTEB Benchmark.

When using in-context learning with generative models, the order in which examples are presented
to the model can significantly influence its output. To examine whether the order of examples
affects the performance of embedding models, we conduct an experiment involving three examples.
We randomly shuffle the order of these examples four times to analyze the potential impact of their
ordering on the model’s performance, and the results are shown in Table 10. Across the four random
shuffles, the overall performance of the model remains relatively stable. This suggests that different
orders of the same examples do not significantly impact the final results. The model demonstrates
reliable robustness when faced with varying orders of the same examples.

E THE SELECTION OF EXAMPLES

In the context of in-context learning for text generation, identical inputs can yield different outputs
depending on the examples provided. To determine if selecting examples randomly offers substantial
improvements over a zero-shot approach, we compare our default example selection strategy with
a random selection approach. In the random selection approach, we perform the selection process
three times, labeled as ”random selection strategy -1, -2, -3”. The results are shown in Table 11. It
indicates that both the default and random selection strategies significantly outperform the zero-shot
baseline. Therefore, employing a random selection strategy is also a viable method for selecting
examples to enhance model performance.
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Task Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg.
# of datasets → 15 4 11 3 12 10 1 56

w/ E5-Mistral dataset
zero-shot 59.59 56.85 42.61 87.87 75.52 83.30 29.52 64.67
the default selection strategy 60.08 56.67 46.55 88.51 77.39 83.69 30.68 66.08
random selection strategy - 1 60.06 57.40 46.74 88.51 77.28 83.29 30.68 66.09
random selection strategy - 2 60.06 57.53 46.75 88.51 76.94 83.59 30.68 66.08
random selection strategy - 3 60.04 57.44 46.68 88.51 77.36 83.50 30.68 66.13

Table 11: Results with different example selection strategies on the MTEB Benchmark.

Task Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg.
# of datasets → 15 4 11 3 12 10 1 56

w/ E5-Mistral dataset
rank 8 (zero-shot) 58.78 57.14 42.94 87.03 75.51 82.87 29.62 64.43
rank 8 (few-shot) 59.36 57.26 45.85 88.36 76.90 83.21 29.82 65.60
rank 16 (zero-shot) 59.55 57.32 42.95 87.58 74.99 83.16 29.77 64.62
rank 16 (few-shot) 59.91 57.03 46.78 88.74 76.64 83.71 30.58 65.98
rank 32 (zero-shot) 59.59 56.85 42.61 87.87 75.52 83.30 29.52 64.67
rank 32 (few-shot) 60.08 56.67 46.55 88.51 77.31 83.69 30.68 66.08
rank 64 (zero-shot) 59.21 57.02 43.36 87.34 75.21 83.64 30.40 64.72
rank 64 (few-shot) 59.83 56.83 46.78 88.54 77.51 84.08 30.39 66.18
rank 128 (zero-shot) 59.35 57.24 42.69 87.68 75.59 83.44 29.67 64.70
rank 128 (few-shot) 59.85 57.23 46.38 88.64 77.60 83.93 30.09 66.12

Table 12: Results with different lora rank on the MTEB Benchmark.

F THE RESULTS OF LORA RANK

We also explore the hyperparameters used for training the model. Specifically, in addition to the
LoRA rank of 32 employed in our experiments, we investigate the performance of the model with
LoRA ranks of 8, 16, 64, and 128. The experimental results are presented in Table 12. It can be
observed that as the LoRA rank increases, the overall performance of the model gradually improves
until it stabilizes. However, higher LoRA ranks require more computational resources. Therefore,
using a default rank of 32 in our experiments strikes a balance between performance and computa-
tional efficiency.
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