
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SYNTACTIC AND SEMANTIC CONTROL OF LARGE
LANGUAGE MODELS VIA SEQUENTIAL MONTE CARLO

Anonymous authors
Paper under double-blind review

ABSTRACT

A wide range of LLM applications require generating text that conforms to
syntactic or semantic constraints. Imposing such constraints nontrivially alters
the distribution over sequences, usually making exact sampling intractable. In this
work, building on the Language Model Probabilistic Programming framework of
Lew et al. (2023), we develop an approach to approximate inference for controlled
LLM generation based on sequential Monte Carlo (SMC). Our SMC framework
allows us to flexibly incorporate domain- and problem-specific constraints at
inference time, and efficiently reallocate computation in light of new information
during the course of generation. We demonstrate that our approach improves
downstream performance on four challenging domains—Python code generation
for data science, text-to-SQL, goal inference, and molecule synthesis. We compare
to a number of alternative and ablated approaches, showing that our accuracy
improvements are driven by better approximation to the full Bayesian posterior.

1 INTRODUCTION

The goal of controlled generation from language models (LMs) is to produce text guided by a set of
syntactic or semantic constraints. One prominent setting for controlled generation is semantic parsing,
or code generation, which involves generating text in a programming (or other formal) language.
Much prior work in this space has focused on ensuring that the LM outputs adhere to the formal
language using regular expressions or context-free grammars (Shin et al., 2021; Scholak et al., 2021;
Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024). But in practice,
we may wish to use diverse signals beyond grammaticality to guide generation. For example:

• Checking (partial) code statically (type-checking, linting, partial evaluation);

• Running (partial) code on a test case and checking if it raises an error or returns the wrong answer;

• Simulating environments (e.g. in robotics or chemistry) and assigning a score to the resulting state;

• Rolling out possible completions of partial code and computing their max, min, or average score;

• Asking another language model to critique the code generated so far.

Such signals vary along several important dimensions: some are cheap to compute (linting), others are
more costly (simulations); some can be evaluated incrementally with each sampled token (language
model critique), others provide sparser guidance (running code); some enforce binary hard constraints
(type-checking), others yield soft continuous scores (scoring).

One way to represent such signals uniformly is as potential functions ϕ : A∗ → R≥0, assigning
non-negative scores to sequences of tokens from an alphabet A. Given a set Φ of such potentials, we
can then frame the problem of controlled generation probabilistically: we wish to sample from the
global product of experts distribution on complete sequences x. We define

pglobal(x) =
1

Z
pLM(x)

∏
ϕ∈Φ

ϕ(x),

where pLM is the LM’s distribution on complete token sequences, and Z is the normalizing constant.
Even when each ϕ can be evaluated relatively cheaply, sampling exactly from this distribution is

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Grammar constrained generation

people

employee

Existing particles

SELECT age FROM

SELECT birthdate

SELECT age FROM

0.4

0.3

0.4

employee

Weight correction Semantic potential

SELECT age FROM employee0.0

SELECT birthdate FROM

SELECT age FROM people

1.0

1.0

manager

(

*

0.0

0.21

0.32

SELECT age FROM employee

SELECT birthdate FROM

SELECT age FROM people

Updated particles

SELECT age FROM people

SELECT birthdate FROM

SELECT age FROM people

0.18

0.18

0.18

Resampled particles

Accuracy by method across domains

people employee (
0.8

0.8

FROM ,
0.7

people employee (

Figure 1: Controlled generation from LLMs via sequential Monte Carlo. Left: We use sequential
Monte Carlo to sample from high-quality approximations to Bayesian posteriors over LLM outputs.
Partial sequences are repeatedly extended via grammar-constrained generation. We then apply weight
corrections to mitigate the greediness of locally constrained decoding, as well as semantic potentials
to encode rich information that cannot be included in logit masks. Finally, resampling focuses
computation on promising particles. Right: Cumulative accuracy gains from these innovations, on
challenging data science, text-to-SQL, goal inference, and molecule synthesis benchmarks.

generally intractable. Popular approaches based on per-token logit biasing or masking avoid the
intractable global normalizing constant, but introduce greedy approximations that can badly distort
the distribution (Lew et al., 2023; Park et al., 2024).

Unnormalized densities over token sequences also arise in other difficult language modeling problems,
such as infilling, prompt engineering, and prompt intersection, where Sequential Monte Carlo has
been proposed as an effective means of approximating these intractable distributions (Lew et al., 2023;
Zhao et al., 2024). In this paper, we use sequential Monte Carlo to tackle a number of challenging
semantic parsing problems, using incremental static and dynamic analyses to inform both proposal
distributions and twist functions—algorithm components that in previous work were learned via a
costly contrastive fine-tuning procedure (Zhao et al., 2024). Our approach enables us to flexibly
integrate heterogeneous signals that capture both syntactic and semantic aspects of each domain.

Our paper makes the following contributions:

• SMC for Constrained Semantic Parsing. We develop a variant of sequential Monte Carlo specialized
for semantic parsing and code generation under diverse syntactic and semantic constraints (§2).
Unlike many previous frameworks for constrained decoding, our algorithm can integrate constraints
that cannot be incrementally evaluated to compute masks on the entire token vocabulary, as well as
constraints that can only be evaluated at irregular intervals during generation.

• Empirical Evaluation of Performance in Diverse Domains. We implement our approach, and
five baselines, in four challenging problem domains: Python code generation for data science,
text-to-SQL, goal inference, and molecule synthesis (§3.1). We find that sequential Monte Carlo
significantly improves performance across domains (§3.2).

• Empirical Evaluation of Algorithm Components. We run ablation experiments, and find that
improved performance can be attributed to three algorithmic components: weight correction, which
mitigates the greediness of popular locally constrained decoding methods; semantic potentials,
which incorporate useful signals that some baseline methods cannot integrate; and adaptive
resampling, which adaptively focuses computation on partial sequences that look more promising.

• Empirical Validation of the Probabilistic Perspective. We derive estimators of the KL divergence
from each method’s output distribution to the global product of experts (Appendix D). We find
that generation quality is correlated with how well each method approximates the global product
of experts distribution, and that the global product of experts distribution is calibrated, in that
higher-probability generations are more likely to perform well in each domain (§3.3).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 MONTE CARLO INFERENCE FOR CONSTRAINED SEMANTIC PARSING

Notation. Let A be a vocabulary of tokens, including a distinguished token EOS marking the end
of a complete sequence. We write A∗

EOS for the set of EOS-terminated token sequences, and A∗ for
the set of prefixes of strings in A∗

EOS. We use x to refer to a sequence of tokens, with xi being the ith

token in the sequence. We use the notation x<t to refer to the sequence x1 ···xt−1, and x≤t to refer
to the sequence x<txt. Here, juxtaposition indicates sequence concatenation.

We consider a set Φ of domain- or task-specific potential functions that encode relevant constraints.
Each potential function ϕ : A∗ → R≥0 returns a non-negative real ϕ(x) when evaluated on some
sequence x, freely using any structure in the sequence so far. We assume that all potentials satisfy
ϕ(x) = 0 =⇒ ϕ(xy) = 0, for all x,y such that xy ∈ A∗

EOS. Intuitively, this means it is safe to
cancel a partial generation if ϕ(x) = 0, because there is no completion that can make ϕ positive.

A language model pLM is a probability distribution on A∗
EOS. Note that any such distribution factors

autoregressively into a product of conditional next-token distributions:

pLM(x) =

|x|∏
t=1

pLM(xt | x<t). (1)

Target distribution. Our goal in controlled generation is to sample the global product of experts
distribution induced by the potentials Φ, which we write as [pLM ⊗ Φ]:

pglobal(x) = [pLM ⊗ Φ](x) =
pLM(x)

∏
ϕ∈Φ ϕ(x)∑

y∈A∗
EOS

pLM(y)
∏

ϕ∈Φ ϕ(y)
=

1

Z
pLM(x)

∏
ϕ∈Φ

ϕ(x). (2)

The distribution is normalized globally with respect to all possible complete sequences of tokens.
When each potential function takes values in [0, 1], pglobal can be understood intuitively as the rejection
sampling distribution that arises by repeatedly generating x ∼ pLM until a sample x is accepted,
where each sample x is accepted with probability

∏
ϕ∈Φ ϕ(x). Depending on how frequently raw

samples from pLM satisfy all the constraints, rejection sampling can be extremely expensive. Our
work aims to accurately approximate pglobal with much less computation.

Locally constrained decoding. A popular approach to enforcing constraints at decode-time is to
apply constraints before sampling each token, as a mask or bias applied to the logits computed by
the LM (see, e.g., Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023;
Ugare et al., 2024). In this approach, at each time step t, the current sequence x<t is extended with a
new token xt, drawn proportionally to pLM(xt | x<t) ·

∏
ϕ∈Φ

ϕ(x<txt)
ϕ(x<t)

. Samples drawn in this way
are distributed according to a local product of experts distribution, which we write [pLM ⊙ Φ]:

plocal(x) = [pLM ⊙ Φ](x) =

|x|∏
t=1

pLM(xt | x<t)
∏

ϕ∈Φeff

ϕ(x<txt)
ϕ(x<t)∑

x′
t∈A pLM(x′

t | x<t)
∏

ϕ∈Φeff

ϕ(x<tx′
t)

ϕ(x<t)

. (3)

Note that unlike in Eqn. 2, the normalization is now performed locally, once per token.

Despite its popularity, locally constrained decoding has two important shortcomings. First, the local
product of experts can only be sampled efficiently when it is possible to cheaply evaluate the potentials
ϕ ∈ Φ on all possible one-token continuations x<tx

′
t of the current sequence. For some constraints

(e.g., checking membership in the language of a regular expression or context-free grammar), there
do exist algorithms for efficient parallel evaluation across tens of thousands of possible continuations.
However, for many of the applications of interest in the present paper (including those listed in Tab. 1,
e.g., error-checking with test-cases), this is not feasible. Second, even when potential functions
can be incrementally and cheaply computed, the local and global product of experts do not define
the same distribution (Lew et al., 2023; Park et al., 2024). In particular, the local product enforces
constraints greedily, which can lead to myopic sampling down dead-end paths. Continuations with
high probability in the short run may have zero mass under a potential just a few steps later.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Importance sampling. Both these problems can be addressed with importance sampling, a stan-
dard Monte Carlo technique for approximating intractable distributions. We describe a particular
application of the technique specialized to this setting. First, from the overall set of potentials Φ, we
identify a subset of efficient potentials Φeff , which admit efficient computation of local normalizing
constants. This means that the local product of experts [pLM ⊙ Φeff] with respect to just Φeff can be
tractably sampled; we use it as a proposal distribution. The importance sampling algorithm repeatedly
generates multiple particles x(i) ∼ [pLM ⊙ Φeff], then computes corresponding importance weights

w(x(i)) =
Z · [pLM ⊗ Φ](x(i))

[pLM ⊙ Φeff](x(i))
=

|x(i)|∏
t=1

∑
x′
t∈A

pLM(x′
t | x

(i)
<t)

∏
ϕ∈Φeff

ϕ(x
(i)
<tx

′
t)

ϕ(x
(i)
<t)

· ∏
ϕ∈Φ\Φeff

ϕ(x(i)).

(4)
The first term in the weight is a product of local normalizing constants that are already computed as a
byproduct of sampling the local product of experts. The second term can be computed by running
each of the less efficient potentials once, on the final generated sequence. The first term corrects for
the greediness of locally constrained decoding, penalizing particles that wound up in “dead ends”
where all possible continuations x′

t ∈ A scored poorly under some potential. The second term
multiplies in the potentials that were not directly accounted for during the sample generation process.

Given samples x(1), ···x(N), importance sampling approximates the posterior using the distribution∑N
i=1

w(x(i))∑N
j=1 w(x(j))

· δx(i) . Under mild conditions, this approximation converges to the posterior

as N grows — however, the number of particles required to obtain a good approximation of the
target distribution is exponential in the KL divergence between proposal and target (Chatterjee &
Diaconis, 2018). This means that, in practice, if the local product of experts is too far from the target
distribution, sampling and weighting a modest number of particles will not help.

Sequential Monte Carlo. One avenue for improvement comes from noticing that importance
sampling waits until a particle has been completely generated before computing its weight. This
is despite the fact that some terms in the weight can, in principle, be computed early, given just a
partial sequence: at each step, we can compute a new local normalizing constant for the local product
of experts, and even the less efficient potentials may be able to provide some useful signal before
the entire sequence is generated. Sequential Monte Carlo (SMC; Chopin et al., 2020), is a natural
generalization of importance sampling that samples from a sequence of related target distributions
p1, . . . , pT on state spaces of increasing dimension. In our case, we consider intermediate targets pt
defined on the growing sequence of spaces A∗

≤t = {x ∈ A∗ | ∃y ∈ A∗
EOS. x = y≤t}. The targets

are defined as partial-sequence versions of the global product of experts. For x ∈ A∗
≤t, we have

pt(x) =

(∏|x|
i=1 pLM(xi | x<i)

)∏
ϕ∈Φ ϕ(x)∑

y∈A∗
≤t

(∏|y|
i=1 pLM(yi | y<i)

)∏
ϕ∈Φ ϕ(y)

. (5)

The key difference between the global product of experts and pt is that pt is defined on, and
normalized with respect to, possibly incomplete token sequences of at most length t, rather than
complete sequences of arbitrary length. As such, unlike both pglobal and plocal, pt depends on the
behavior of the potentials ϕ ∈ Φ \ Φeff when applied to partial sequences. But no matter how
the partial potentials are defined, as t approaches∞, pt(x) approaches pglobal(x) for all complete
sequences x ∈ A∗

EOS.

The sequential Monte Carlo algorithm generates approximations to each intermediate target in
turn. We begin with a collection of N weighted particles (xi, wi

0) = (ϵ, 1), where ϵ is the empty
sequence of tokens. Then, starting at t = 1, we repeat the following three steps until all particles are
EOS-terminated:

1. Extend. For each i ∈ 1, . . . , N , if x(i) ̸∈ A∗
EOS, propose x

(i)
t ∼ [pLM ⊙ Φeff](x

(i)
t | x<t).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2. Reweight. For each extended particle x(i), update the weight w(i) according to the formula

w
(i)
t = w

(i)
t−1

Ztpt(x
(i))

Zt−1pt−1(x
(i)
<t)

1

[pLM ⊙ Φeff](x
(i)
t | x

(i)
<t)

(6)

= w
(i)
t−1 ·

∑
x′
t∈A

pLM(x′
t | x

(i)
<t)

∏
ϕ∈Φeff

ϕ(x
(i)
<tx

′
t)

ϕ(x
(i)
<t)

 · ∏
ϕ∈Φ\Φeff

ϕ(x(i))

ϕ(x
(i)
<t)

. (7)

3. Resample. If the effective sample size N̂ess :=
(∑N

i=1(w
(i))2

)−1

is under a chosen threshold

(e.g., N
3), perform a resampling step: generate N independent ancestor indices

a(i) ∼ Categorical

(
w

(1)
t∑N

j=1 w
(j)
t

, . . . ,
w

(N)
t∑N

j=1 w
(j)
t

)
,

then simultaneously reassign all particles (x(i), w
(i)
t)← (x(a(i)), 1

N

∑N
j=1 w

(j)
t).

The extension step generates next tokens from the local product of experts proposal, just as in
importance sampling. The reweighting step incrementally computes the importance weight, with a
new factor at each token. The resampling step exploits any early signal available in the incremental
weights to reallocate computation to promising particles (which are likely to be chosen as ancestors
multiple times) and away from unpromising particles (which are unlikely to be chosen as ancestors,
and will thus be culled before they can be completed). This reallocation of computation can lead to
dramatic improvements in inference quality.

Further extensions. We further extend SMC in two ways. First, potentials in Φeff may still be
modestly expensive to evaluate on the entire vocabulary. In these cases, we can develop cheap
stochastic approximations to the full token-masking distributions [pLM ⊙ Φeff](xt | x<t), and use
these as proposals during the Extend step. The incremental weight computation must also be corrected
to account for these approximations; we derive stochastic unbiased estimators of the incremental
weights that can be soundly used within SMC (see Appendix C). Second, the intermediate targets pt
needn’t advance generation token-by-token; in some domains it may be beneficial to consider more
semantically meaningful increments. For example, the intermediate target pt may be defined over the
space of all partial Python programs containing t or fewer lines of code (rather than tokens); the Extend
step would then sample a different number of tokens per particle, waiting in each partial sequence
until a new full line has been generated. Such strategies can lead to better particle alignment (Lundén
et al., 2018), making resampling more effective. We exploit this in one of our experiments by
implementing SMC steps over Python statements (§3.1).

3 EXPERIMENTS

We study the performance of our proposed sampling methods on four challenging semantic parsing
domains: Goal Inference (STRIPS), Data Science (Python), Text-to-SQL (SQL), and Molecular
Synthesis (SMILES). We compare seven approaches to constrained generation:

1. Language model (pLM). As a baseline, we report the performance of the base language model
(see §3.1 for details on the language models used).

2. Language model with grammar constraint (Locally-constrained decoding; target: [pLM ⊙ ϕCFG]).
This is the approach used by much prior work (Shin et al., 2021; Scholak et al., 2021; Poesia et al.,
2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024). In each of our domains,
we formulate a context-free grammar (CFG) encoding a notion of syntactic well-formedness
appropriate for the domain (see §3.1). Writing ϕCFG for the binary function that determines
whether its input is a prefix of some valid string in the grammar’s language, this baseline directly
samples the local product-of-experts [pLM ⊙ ϕCFG]—i.e., it uses per-token logit masking to
greedily enforce the CFG constraint.

3. Language model with grammar constraint and weight correction (Grammar-only IS; target:
[pLM ⊗ ϕCFG]). This method generates particles from [pLM ⊙ ϕCFG], then computes importance

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Tasks, languages, their corresponding constraint-encoding potential functions, and an
example output.

Task Language ϕsem Example Output

Goal inference STRIPS Plan simulation (:goal (and (arm-empty) (on-table b1)
(on b2 b1) ... (clear b5))

Data Science Python Error-checking with
test cases

idx_list = ((x == a) & (y == b))
result = idx_list.nonzero()[0]

Text-to-SQL SQL Dynamic alias and
table-column checking

SELECT born_state FROM head GROUP BY
born_state HAVING count(*) >= 3

Molecular Synthesis SMILES Check valences, kekulize
aromatic systems CC1=CC2(OC=N)C(=O)NC3CC23C(C1)=NO

weights to correct toward the target [pLM⊗ϕCFG]. These weights mitigate some of the greediness
of local-product-of-experts sampling, but do not yet integrate any potentials beyond ϕCFG.

4. Language model with grammar constraint, weight correction and resampling (Grammar-only
SMC; target: [pLM ⊗ ϕCFG]). This method is a straightforward application of Lew et al. (2023) to
locally-constrained decoding; and is similar to Park et al. (2024), which also attempts to correct for
the greediness of locally-constrained decoding. As in the previous method, it targets [pLM⊗ϕCFG],
but uses resampling to reallocate computation to promising particles.

5. Language model with grammar constraint and semantic potential (Sample-Rerank; target: [[pLM⊙
ϕCFG] ⊗ ϕsem])). Sample-Rerank is a common approach for incorporating an external signal
into an LM’s generations post-hoc, for instance a reward model (e.g. (Nakano et al., 2021)), or
a boolean encoding validity (e.g. (Olausson et al., 2023)). In each domain, we formulate an
additional potential ϕsem that encodes task-specific signals of sequence quality (see §3.1). This
baseline generates grammar-constrained sequences from the local product of experts [pLM⊙ϕCFG],
then for each sequence x, computes the weight w(x) = ϕsem(x).

6. Language model with grammar constraint, weight correction, and semantic potential (Full IS;
target: [pLM⊗{ϕCFG, ϕsem}]). This is the full importance sampling method described in §2, with
Φ = {ϕCFG, ϕsem} and Φeff = {ϕCFG}. Unlike in the previous method, the importance weights
now include correction terms that mitigate the greediness of local sampling. We include this
method primarily as an ablation of our next method (SMC), modified not to include incremental
resampling.

7. Language model with grammar constraint, weight correction, semantic potential, and resampling
(Full SMC; target: [pLM ⊗ {ϕCFG, ϕsem}]). This method includes all of the algorithmic contri-
butions of our approach. It is the full sequential Monte Carlo algorithm, with Φeff = {ϕCFG}
and Φ = {ϕCFG, ϕsem}. It targets the same global posterior as the previous method but uses
resampling to reallocate computation to promising particles.

We report results using N = 10 particles; see App. A.2 for downstream accuracy results for a varying
number of particles. We ran experiments on GCP instances with 1 A100 GPU and 12 vCPUs (our
CFG parser is implemented for CPU and is parallelized across particles), with the exception of the
Data Science domain, for which we used 4 H100 GPUs and 64 vCPUs.

3.1 DOMAINS

We briefly describe our problem domains, summarized in Table 1; see Appendix E for further details.

• Goal inference (Planetarium). Task: Produce a formal description of an agent’s goal in the
STRIPS subset of the PDDL planning language (Fikes & Nilsson, 1971; Aeronautiques et al.,
1998), given a natural-language description of the goal, as well as PDDL code describing the
agent’s initial conditions and plan for achieving the goal. Data: Blocksworld tasks with up to 10
objects, from the Planetarium benchmark (Zuo et al., 2024). Metric: Accuracy with respect to
ground-truth PDDL goal. Base LM: Llama 3.1 8B. Grammar: STRIPS syntax for goals within
Planetarium Blocksworld’s domain definition. Semantic Potential: Evaluation (using the VAL plan
validator (Howey et al., 2004)) of whether the known plan, when executed in the known initial
conditions, can be proven not to satisfy the (partial) goal.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Comparison of different methods with their scores on different domains. Errors are
bootstrapped 95% confidence intervals.

Method Score
Goal inference Molecular synthesis Data science Text-to-SQL

LM 0.063 (0.05, 0.08) 0.132 (0.12, 0.15) 0.213 (0.19, 0.24) 0.531 (0.51, 0.55)
w/ grammar constraint (Locally-constrained Decoding) 0.086 (0.07, 0.11) 0.189 (0.17, 0.21) - 0.559 (0.54, 0.58)
w/ grammar constraint, weight correction (Grammar-only IS) 0.083 (0.06, 0.11) 0.228 (0.21, 0.25) - 0.597 (0.57, 0.62)
w/ grammar constraint, potential (Sample-Rerank) 0.289 (0.24, 0.34) 0.392 (0.36, 0.42) - 0.581 (0.56, 0.60)
w/ grammar constraint, correction, and resampling (Grammar-only SMC) 0.401 (0.34, 0.46) 0.205 (0.18, 0.23) - 0.596 (0.57, 0.62)
w/ grammar constraint, potential, and correction (Full IS) 0.257 (0.21, 0.31) 0.404 (0.37, 0.44) 0.346 (0.31, 0.39) 0.618 (0.59, 0.64)
w/ grammar constraint, potential, correction, and resampling (Full SMC) 0.419 (0.37, 0.48) 0.577 (0.56, 0.59) 0.407 (0.36, 0.45) 0.620 (0.60, 0.64)

• Python for data science (DS-1000). Task: Generate Python code that uses standard data science
libraries (NumPy, PyTorch, Pandas, etc.) to solve a task specified in natural language and via an
(executable) test case. Data: The DS-1000 benchmark (Lai et al., 2023). Metric: Accuracy of
the generated program with respect to the provided test cases. Base LM: Llama 3 70B. Grammar:
We use a trivial potential ϕCFG(x) = 1, as we find that the unconstrained LM reliably generates
grammatical Python (that may nonetheless induce runtime errors). Semantic Potential: Given a
partial program x, ϕsem truncates x to the last-generated newline not ending in :, and executes the
resulting (partial) program on the provided test case, checking for runtime errors.

• Text-to-SQL (Spider). Task: Given a relational database schema and a natural-language question,
generate a SQL query that answers the question. Data: The development split of Spider (Yu et al.,
2018), a large-scale text-to-SQL dataset. Metric: Execution accuracy (whether the generated SQL
query, when run against a test database, produces the same results as the ground-truth SQL query).
Base LM: Llama 3.1 8B-Instruct. Grammar: We use the SQL context-free grammars released
by Roy et al. (2024), which enforce valid SQL syntax and also schema-specific constraints that
limit table and column names to those present in the given schema. Semantic Potential: Check
whether column names in the generated (partial) query actually belong to the queried tables, modulo
aliasing. (The grammar ensures only that the column names exist in some table.)

• Molecular synthesis (GDB-17). Task: Generate drug-like molecules in the SMILES for-
mat (Weininger, 1988). Data: Few-shot prompts constructed by repeatedly choosing 20 random
examples from the GDB-17 dataset (Ruddigkeit et al., 2012). Metric: Quantitative Estimate of
Drug-likeness (QED; Bickerton et al., 2012), a standard molecular fitness function implemented in
the Python RDKit library (Landrum et al., 2024); additional molecular properties of interest are
reported in App. E.2. Base LM: Llama 3.1 8B. Grammar: SMILES syntax for molecules. Semantic
Potential: A SMILES prefix validator implemented in the Python partialsmiles library (O’Boyle,
2024), which checks syntax, atom valences, and the ability to kekulize aromatic systems.

3.2 EVALUATION OF DOWNSTREAM PERFORMANCE

We begin by investigating whether our approach leads to significant performance gains. Table 2
reports posterior-weighted accuracy for our approach and ablations of its components: grammar
constraints, weight corrections, semantic potentials, and resampling. We summarize four key results:

Grammar constraints. In line with previous literature (e.g., Shin et al., 2021; Scholak et al., 2021;
Poesia et al., 2022; Wang et al., 2024), we find that the addition of a grammar constraint ϕCFG

improves downstream accuracy relative to the base LM across all domains in which it is used, even
without the use of weight corrections.

Semantic potentials. Furthermore, we observe that integrating the semantic potential ϕsem im-
proves accuracy in models with and without any weight corrections. In the latter case, the improve-
ment in the goal inference, data science and molecular synthesis domains is large; in the text-to-SQL
domain, it is smaller but statistically significant (paired permutation test, p < 0.01). This suggests
that making use of information that cannot be efficiently encoded in logit masks can greatly improve
performance, even without the use of weight corrections.

Weight corrections. Although the use of ϕCFG and ϕsem alone lead to significant gains in down-
stream accuracy, these gains can be amplified with addition of weight corrections. In cases without
the semantic potential, weight corrections provide significant albeit relatively small gains in accuracy
across three domains; in goal inference it does not significantly affect performance. In the presence

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Estimated KL between the algorithm and the global product of experts, for a representative
problem instance in each domain. Values closer to 0 indicate that the algorithm is better at approxi-
mating the global product of experts [pLM ⊗ {ϕCFG, ϕsem}]. Significant differences are indicated
with ** for p < 0.01 and *** for p < 0.001 (t-test). Algorithms are run with N = 10 particles.

of the semantic potential, adding weight corrections improves accuracy for text-to-SQL, and has no
effect in goal inference and molecular synthesis. Overall, these results indicate that debiasing samples
from a local product of experts to correctly target the global product of experts can significantly
improve downstream accuracy. That said, the accuracy gains attributable to weight corrections are
modest compared to other components of the algorithm, which suggests that the bias from locally
constrained decoding may be less severe in these semantic parsing domains than has been observed
in other domains (e.g. constrained generation of natural language (Lew et al., 2023)).

Resampling. Finally, we observe that the addition of resampling steps improves downstream
accuracy in all domains except text-to-SQL, in which they neither significantly improve nor hurt
performance. These results motivate adaptively focusing computation on promising partial sequences.

3.3 VALIDATION OF THE PROBABILISTIC PERSPECTIVE

The best-performing methods from the previous section were designed to approximate the global
product of experts distribution [pLM⊗{ϕCFG, ϕsem}]. In this section, we investigate how closely each
of these methods approximates this global distribution, and whether the quality of the probabilistic
inference correlates with the downstream performance results from the previous section. In particular,
we investigate several questions:

How closely do different methods approximate the global product of experts? We consider
the distribution over sequences qr

alg(x) defined by each algorithm (see Appendix D for details and
derivations).1 For each qr

alg, we computed an estimate of logZ−DKL(q
r
alg ∥ [pLM⊗{ϕCFG, ϕsem}]).

We refer to this quantity as the approximation quality. Since the term logZ is algorithm-independent,
we can directly compare the estimated approximation quality across algorithms to determine which
ones have lower KL divergence relative to the global product of experts. However, because logZ is
instance-specific, these comparisons can only be made at the instance level. Accordingly, for each
domain, we select the instance with the median unique accuracy as a representative example. Figure 2
visualizes estimated approximation quality on these examples across the three methods which include
ϕsem: (i) Sample-Rerank; (ii) Full IS (iii) Full SMC.2 This set of methods can be viewed as the
cumulative addition of weight corrections and resampling steps to the language model with grammar
constraint and semantic potential. Estimates were computed across 100 runs of each algorithm.

1More precisely, qr
alg is the marginal distribution of a single particle chosen proportionally to the particle

weights after the algorithm alg is run. If all weights are zero, qr
alg reruns the algorithm until at least one weight is

non-zero, and selects from the resulting particle set.
2Note that we do not compute Sample-Rerank for DS1000 since this method is equivalent to Full IS when

ϕCFG(x) = 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Pearson correlation between relative particle weights and accuracy scores for all weighted
methods. Greater correlation indicates that relative weights are better associated with downstream
performance (closer to 1 is better).

Method Correlation between relative weight and score
Goal inference Molecular synthesis Data science Text-to-SQL

LM with grammar constraints and correction (Grammar-Only IS) 0.138 (0.10, 0.18) 0.218 (0.16, 0.28) 0.217 (0.18, 0.26) 0.810 (0.79, 0.83)
LM with grammar constraints, potential, and correction (Full IS) 0.677 (0.64, 0.71) 0.570 (0.53, 0.61) 0.289 (0.25, 0.33) 0.796 (0.78, 0.81)
LM with grammar constraints, potential, correction, and resampling (Full SMC) 0.793 (0.76, 0.82) 0.826 (0.81, 0.84) 0.370 (0.31, 0.42) 0.810 (0.79, 0.83)

We summarize two key observations. First, we find that sampling from the local distribution can
hurt approximation quality. In each domain, sampling from the local product of experts [pLM ⊙
ϕCFG]⊗ ϕsem without weight correction leads to significantly lower approximation quality relative
to the methods which sample from the global product [pLM ⊗ {ϕCFG, ϕsem}]. Second, we find that
resampling steps can improve approximation quality. The addition of resampling steps significantly
improves approximation quality in the data science and goal inference domains, and does not
significantly improve nor hurt quality in the molecular synthesis and text-to-SQL domains.

Does approximation quality predict downstream accuracy? These trends in approximation
quality are consistent with those observed in our evaluation of downstream accuracy. For example,
we find that text-to-SQL is the domain in which weight corrections led to the most significant
improvement in approximations of the global posterior, as well as the domain in which weight
corrections most improve downstream performance. This suggests that framing constrained semantic
parsing as a probabilistic inference problem (of sampling from the global products of experts
distribution) is reasonable even when we are only interested in task-specific performance metrics that
the probabilistic framing does not explicitly reflect. Furthermore, in some domains, these benefits
extend beyond our main performance metric; for instance, resampling during molecular generation
yields simultaneous improvements along a number of additional dimensions of interest, including
de-novo similarity and diversity (Fig. 3).

Are higher-probability semantic parses (under [pLM ⊗ {ϕCFG, ϕsem}]) more likely to perform
well? In each of our experiments, we group output particles by semantic equivalence, and estimate
the probability of each equivalence class under the method’s approximation to the global product of
experts, by summing the normalized weights of the members of each equivalence class (this is similar
to the postprocessing performed in Shi et al. (2022)). We then measure the correlation between
estimated probability of a result and its score on the task-specific metric.

Table 3 shows sequential Monte Carlo overall exhibits high correlation between (approximate)
posterior probabilities and downstream performance, and that the differences in correlation between
methods closely track the differences in performance in §3.2: in the goal inference, molecular
synthesis, and data science domains, where semantic potentials and resampling greatly increase
performance, we find that the same features also result in higher correlation between result probability
and performance, whereas in text-to-SQL, where the performance gains are slimmer, we find that all
methods correlate weight and score equally well. Together, these results validate the probabilistic
approach, suggesting that the global posterior captures semantically meaningful uncertainty.

4 RELATED WORK

Our contributions are primarily situated among two bodies of work. First, there is a large body of work
leveraging LMs for semantic parsing or code generation tasks, while forcing adherence to a grammar
or other constraints (Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Shin & Van Durme,
2022; Geng et al., 2023; Zheng et al., 2023a; Moskal et al., 2024; Wang et al., 2024; Ugare et al.,
2024). Closely related is a series of algorithmic advances that enable the efficient construction and
application of grammar constraints for sequential inference problems via compilation to automata
(Deutsch et al., 2019; Willard & Louf, 2023; Kuchnik et al., 2023; Koo et al., 2024). Second, there is
a large body of work which aims to generate from LMs subject to hard or soft constraints, including
approaches based in reinforcement learning (RL) (Ziegler et al., 2019; Stiennon et al., 2020; Bai
et al., 2022; Ouyang et al., 2022), classifier-guided control (Cheng et al., 2024), efficient probabilistic
inference through tractable proxy models (Zhang et al., 2023), and locally-applied logit biasing or
masking based on domain-specific potential functions (Pascual et al., 2021; Huang et al., 2024).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Invalid
SMILES

Drug-like
compounds

Figure 3: Visualization of posterior distributions for key molecular property indexes. Middle:
Qualitative Estimate of Drug-likeness (QED), used as the main evaluation metric in Tab. 2. Right:
Additional metrics of interest Validity (proportion of valid SMILES), Weight (exact molecular weight),
De Novo Similarity (average pairwise Tanimoto similarity to the target distribution, excluding exact
duplicates), and Diversity (inverse average pairwise Tanimoto similarity among compounds generated
by a particular method). Of the generation methods evaluated, Full SMC achieves near-100% validity
and most closely matches the target data distribution (GDB-17).

In this work, our algorithms aim to unify and improve on each of these bodies of preceding work,
tackling semantic parsing and code generation tasks with a combination of grammar constraints
(ϕCFG), arbitrary semantic potentials (ϕsem), and asymptotically correct inference (via SMC).

In the space of conditional generation via approximate posterior inference through sampling, there are
a few neighboring efforts. Lin & Eisner (2018) trained an SMC proposal distribution for a globally
normalized neural tagger. Lew et al. (2023) proposed SMC steering of LMs, enabling provably
accurate posterior sampling from conditional densities while only ever computing local constraints.
This work forms the basis of the SMC algorithms designed and implemented in this paper. Shortly
thereafter, Zhao et al. (2024) independently developed a framework for steering LMs via SMC,
including the use of learned twist functions that act as intermediate targets. In contrast to their work,
we leverage incremental static and dynamic analysis to guide compute to promising partial sequences
during generation, as opposed to undergoing a costly contrastive fine-tuning procedure. Concurrent
with our work, Park et al. (2024) have highlighted the distinction between locally-constrained vs
globally-aligned decoding from LMs subject to grammar constraints. The authors presented an
iterative inference algorithm with a slow-converging approximation to the true posterior. This
approach was also optimized for CFG constraints, as opposed to an arbitrary broader collection of
multiple intersecting potentials.

An extended and thorough discussion of these bodies of work can be found in Appendix F.

5 DISCUSSION

The experiments in this paper show that it is possible to obtain significant improvements in controlled
generation quality by wrapping language model generations in global probabilistic inference algo-
rithms that account for varied constraints. Furthermore, the experiments demonstrate that generation
quality is correlated with the probability of generation under our methods, and methods that better
approximate the global product of experts also have better downstream performance.

Our approach offers a modular way to improve performance across a broad class of controlled
generation problems, especially where task-specific structure can be captured in semantic potentials.
One possible source of potentials in many domains is the static analyses implemented efficiently in
language servers, which IDEs use to incrementally detect problems in code as users type.

This paper has not extensively explored the auxiliary benefits of taking a principled probabilistic
approach to constrained generation. As one example, the weights that are maintained and updated by
our SMC algorithm are unbiased estimates of the global product of experts’ normalizing constant,
which can be interpreted as the probability that the unconstrained language model would have
happened to satisfy all the constraints. This could be a proxy for whether a problem instance is in- or
out-of-distribution for a model. Using such probabilistic quantities (also including, e.g., posterior
uncertainty over parses), we may be able to build more rational systems, that ask clarifying questions
or defer to larger models when there is reason to believe it may help.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel Weld, David Wilkins Sri, Anthony Barrett, Dave Christianson, et al. Pddl
| the planning domain definition language. 1998.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Afra Amini, Tim Vieira, and Ryan Cotterell. Variational best-of-n alignment. arXiv preprint
arXiv:2407.06057, 2024.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Martin Berglund, Willeke Martens, and Brink van der Merwe. Constructing a BPE tokenization DFA.
In International Conference on Implementation and Application of Automata, pp. 66–78. Springer,
2024.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Kris Cao and Laura Rimell. You should evaluate your language model on marginal likelihood over
tokenisations. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 2104–2114, 2021.

Sourav Chatterjee and Persi Diaconis. The sample size required in importance sampling. The Annals
of Applied Probability, 28(2), April 2018. doi: 10.1214/17-aap1326.

Emily Cheng, Marco Baroni, and Carmen Amo Alonso. Linearly controlled language generation
with performative guarantees. arXiv preprint arXiv:2405.15454, 2024.

Nadezhda Chirkova, Germán Kruszewski, Jos Rozen, and Marc Dymetman. Should you marginalize
over possible tokenizations? In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 1–12, 2023.

Nicolas Chopin, Omiros Papaspiliopoulos, et al. An introduction to sequential Monte Carlo, volume 4.
Springer, 2020.

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. A general-purpose algorithm for constrained
sequential inference. In Proceedings of the 23rd Conference on Computational Natural Language
Learning (CoNLL), pp. 482–492, 2019.

Jay Earley. An Efficient Context-Free Parsing Algorithm. PhD thesis, Carnegie Mellon University,
1968.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-Guzik. Language models can learn complex
molecular distributions. Nature Communications, 13(1):3293, 2022.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained decoding
for structured NLP tasks without finetuning. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 10932–10952, 2023.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task planning.
Advances in Neural Information Processing Systems, 36:79081–79094, 2023.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26:
191–246, 2006.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement from
a finite universe. Journal of the American statistical Association, 47(260):663–685, 1952.

R. Howey, D. Long, and M. Fox. Val: automatic plan validation, continuous effects and mixed
initiative planning using pddl. In 16th IEEE International Conference on Tools with Artificial
Intelligence, pp. 294–301, 2004. doi: 10.1109/ICTAI.2004.120.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess, Andy Zeng, Yao Lu, Pete Florence, Igor
Mordatch, Sergey Levine, Karol Hausman, et al. Grounded decoding: Guiding text generation
with grounded models for embodied agents. Advances in Neural Information Processing Systems,
36, 2024.

Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model decoding.
In First Conference on Language Modeling, 2024.

Tomasz Korbak, Ethan Perez, and Christopher Buckley. RL with KL penalties is better viewed as
Bayesian inference. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pp. 1083–1091, 2022.

Michael Kuchnik, Virginia Smith, and George Amvrosiadis. Validating large language models with
relm. Proceedings of Machine Learning and Systems, 5:457–476, 2023.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. DS-1000: A natural and reliable benchmark for data science
code generation. In International Conference on Machine Learning, pp. 18319–18345. PMLR,
2023.

Greg Landrum et al. RDKit: Open-source cheminformatics. https://github.com/rdkit/rdkit,
2024.

Alexander K Lew, Marco Cusumano-Towner, and Vikash K Mansinghka. Recursive Monte Carlo
and variational inference with auxiliary variables. In Uncertainty in Artificial Intelligence, pp.
1096–1106. PMLR, 2022.

Alexander K Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash Mansinghka. Sequential Monte
Carlo steering of large language models using probabilistic programs. In ICML 2023 Workshop:
Sampling and Optimization in Discrete Space, 2023.

Chu-Cheng Lin and Jason Eisner. Neural particle smoothing for sampling from conditional sequence
models. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 929–941,
New Orleans, June 2018. doi: 10.18653/v1/N18-1085. URL https://aclanthology.org/
N18-1085/.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Daniel Lundén, David Broman, Fredrik Ronquist, and Lawrence M Murray. Automatic align-
ment of sequential monte carlo inference in higher-order probabilistic programs. arXiv preprint
arXiv:1812.07439, 2018.

Michal Moskal, Madan Musuvathi, and Emre Kıcıman. AI Controller Interface. https://github.
com/microsoft/aici/, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

version 1.0. Available from O’Boyle, N.M. partialsmiles. partialsmiles. N.M.O’
Boyle.partialsmiles,version1.0.Availablefromhttps://github.com/baoilleach/
partialsmiles, 2024.

12

https://github.com/rdkit/rdkit
https://aclanthology.org/N18-1085/
https://aclanthology.org/N18-1085/
https://github.com/microsoft/aici/
https://github.com/microsoft/aici/
N.M. O'Boyle. partialsmiles, version 1.0. Available from https://github.com/baoilleach/partialsmiles
N.M. O'Boyle. partialsmiles, version 1.0. Available from https://github.com/baoilleach/partialsmiles
N.M. O'Boyle. partialsmiles, version 1.0. Available from https://github.com/baoilleach/partialsmiles

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Theo X Olausson, Alex Gu, Benjamin Lipkin, Cedegao E Zhang, Armando Solar-Lezama, Joshua B
Tenenbaum, and Roger Levy. Linc: A neurosymbolic approach for logical reasoning by combining
language models with first-order logic provers. arXiv preprint arXiv:2310.15164, 2023.

João CA Oliveira, Johanna Frey, Shuo-Qing Zhang, Li-Cheng Xu, Xin Li, Shu-Wen Li, Xin Hong,
and Lutz Ackermann. When machine learning meets molecular synthesis. Trends in Chemistry, 4
(10):863–885, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and Loris D’Antoni.
Grammar-aligned decoding. arXiv preprint arXiv:2405.21047, 2024.

Damian Pascual, Beni Egressy, Clara Meister, Ryan Cotterell, and Roger Wattenhofer. A plug-and-
play method for controlled text generation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 3973–3997, 2021.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. In
International Conference on Learning Representations, 2022.

Subhro Roy, Samuel Thomson, Tongfei Chen, Richard Shin, Adam Pauls, Jason Eisner, and Benjamin
Van Durme. Benchclamp: A benchmark for evaluating language models on syntactic and semantic
parsing. Advances in Neural Information Processing Systems, 36, 2024.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing incrementally for con-
strained auto-regressive decoding from language models. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 9895–9901, 2021.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I Wang. Natural language
to code translation with execution. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 3533–3546, 2022.

Richard Shin and Benjamin Van Durme. Few-shot semantic parsing with language models trained on
code. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 5417–5425, 2022.

Richard Shin, Christopher Lin, Sam Thomson, Charles Chen Jr, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and Benjamin Van Durme. Constrained language
models yield few-shot semantic parsers. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 7699–7715, 2021.

Tom Silver, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Pddl planning with pretrained large language models. In NeurIPS 2022
Foundation Models for Decision Making Workshop, 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Andreas Stolcke. An efficient probabilistic context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2), 1995.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Ste-
fano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of LLMs should leverage
suboptimal, on-policy data. In Forty-first International Conference on Machine Learning, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-Yen Lin, Hung-yi Lee, and Yun-Nung Chen. Let
me speak freely? a study on the impact of format restrictions on performance of large language
models. arXiv preprint arXiv:2408.02442, 2024.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Improving
LLM code generation with grammar augmentation. arXiv preprint arXiv:2403.01632, 2024.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A Saurous, and Yoon Kim. Grammar prompt-
ing for domain-specific language generation with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Brandon T Willard and Rémi Louf. Efficient guided generation for large language models. arXiv
e-prints, pp. arXiv–2307, 2023.

Lionel Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S Siegel, Jiahai Feng, Noa Korneev, Joshua B
Tenenbaum, and Jacob Andreas. Learning adaptive planning representations with natural language
guidance. arXiv preprint arXiv:2312.08566, 2023.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural language
to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

Lance Ying, Katherine M Collins, Megan Wei, Cedegao E Zhang, Tan Zhi-Xuan, Adrian Weller,
Joshua B Tenenbaum, and Lionel Wong. The neuro-symbolic inverse planning engine (nipe):
Modeling probabilistic social inferences from linguistic inputs. In First Workshop on Theory of
Mind in Communicating Agents, 2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3911–3921,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1425. URL https://aclanthology.org/D18-1425.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for
autoregressive language generation. In International Conference on Machine Learning, pp. 40932–
40945. PMLR, 2023.

Tianyi Zhang, Li Zhang, Zhaoyi Hou, Ziyu Wang, Yuling Gu, Peter Clark, Chris Callison-Burch,
and Niket Tandon. Proc2pddl: Open-domain planning representations from texts. arXiv preprint
arXiv:2403.00092, 2024.

Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and Roger Baker Grosse. Probabilistic inference
in language models via twisted sequential Monte Carlo. In Forty-first International Conference on
Machine Learning, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured
language model programs, 2023a.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, et al. Secrets of rlhf in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023b.

14

https://aclanthology.org/D18-1425

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tan Zhi-Xuan, Lance Ying, Vikash Mansinghka, and Joshua B Tenenbaum. Pragmatic instruction
following and goal assistance via cooperative language-guided inverse planning. arXiv preprint
arXiv:2402.17930, 2024.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pp. 43037–43067. PMLR, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li, Michael L Littman, and Stephen H Bach.
Planetarium: A rigorous benchmark for translating text to structured planning languages. arXiv
preprint arXiv:2407.03321, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Downstream accuracy of different method using a smaller base language model (Llama 3.1
8B in Data science and Llama 3.2 1B in all other domains). Errors are bootstrapped 95% confidence
intervals. Instruct model is used for Text-to-SQL.

Method Score
Goal inference Molecular synthesis Data science Text-to-SQL

LM 0.012 (0.01, 0.02) 0.032 (0.02, 0.04) 0.114 (0.09, 0.14) 0.224 (0.207, 0.241)
w/ grammar constraint (Locally-constrained Decoding) 0.046 (0.03, 0.06) 0.031 (0.02, 0.04) - 0.250 (0.232, 0.270)
w/ grammar constraint, weight correction (Grammar-only IS) 0.037 (0.02, 0.06) 0.041 (0.03, 0.05) - 0.301 (0.281, 0.323)
w/ grammar constraint, potential (Sample-Rerank) 0.087 (0.06, 0.12) 0.119 (0.09, 0.16) - 0.299 (0.278, 0.321)
w/ grammar constraint, correction, and resampling (Grammar-only SMC) 0.052 (0.03, 0.08) 0.050 (0.04, 0.06) - 0.302 (0.281, 0.324)
w/ grammar constraint, potential, and correction (IS) 0.079 (0.05, 0.11) 0.122 (0.09, 0.16) 0.225 (0.19, 0.26) 0.348 (0.326, 0.372)
w/ grammar constraint, potential, correction, and resampling (SMC) 0.125 (0.09, 0.16) 0.517 (0.48, 0.55) 0.285 (0.24, 0.34) 0.348 (0.325, 0.374)

A ADDITIONAL EXPERIMENTS

A.1 SMALLER BASE LMS

This section evaluates downstream accuracy across methods using smaller base language models. For
the Text-to-SQL, Molecular Synthesis and Goal Inference domains, which in the §3.2 experiments
used Llama 3.1 (8B), we substitute Llama 3.2 (1B). In the Data Science domain, which used Llama 3
(70B) in the §3.2 experiments, we substitute Llama 3.1 (8B). All experiments were run with N = 10
particles, and the instruct version of Llama 3.2 (1B) was used in the text-to-SQL domain to remain
consistent with the model variants used in the main paper.

We report posterior weighted accuracy using the smaller LMs across all methods and domains in Tab. 4.
Although accuracy is significantly lower compared to the larger LMs, we find that weight corrections,
semantic potentials and resampling steps still improve model performance. Most interestingly, we
also find that, in general, the relative gains in accuracy provided by our method are more pronounced
for smaller language models. With the exception of Text-to-SQL, we observe that our approach with
the smaller LM outperforms the locally-constrained decoding baseline (LM w/ grammar constraint)
using the larger LM (see Tab. 2). In the Data Science domain, our Full SMC approach with the
smaller LM outperforms the larger base LM. These results suggest that our approach can dramatically
improve the performance of smaller LMs.

A.2 ACCURACY BY NUMBER OF PARTICLES

This section investigates how performance improvements vary with the number of particles. Tab. 5
reports downstream accuracy for N = 5, N = 10 and N = 50 particles using the Llama 3.1 (8B)
models. Note that we only include methods in which samples are generated from an approximate
posterior that is constructed from a set of importance-weighted particles. For the base LM and locally
constrained decoding baselines, samples are generated through direct ancestral sampling. As a result,
the number of particles does not influence accuracy in these cases (though additional particles can
provide a better estimate of the true model accuracy), so we omit these methods from the analysis.

We observe two patterns of results. In the Text-to-SQL and Molecular synthesis domains, increasing
the number of particles has a marginal impact on downstream accuracy. However, in Goal inference
and Data Science, we observe that a greater number of particles can lead to significantly better
downstream accuracy (though only when increasing from 5 to 10 particles in the Data Science
domain). These results indicate that the effect of the number of particles on downstream accuracy is
dependent on the task. Future work will seek to characterize how properties of the task setup (e.g.,
the relationship between the (incremental) target distributions and the evaluation metric) affect the
number of particles needed to achieve reasonable accuracy.

A.3 RESAMPLING WITHOUT REPLACEMENT (LEW ET AL., 2023)

This section evaluates our approach using the without-replacement resampling method introduced in
Lew et al. (2023). Specifically, we replace multinomial resampling steps with Lew et al. (2023)’s
without replacement scheme in the full SMC algorithm with semantic potential (LM w/ grammar
constraint, potential, correction, and resampling). For comparison, we ran the SMC steer baseline
with N = 5 particles and a beam size of 3, alongside our approach using multinomial resampling

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Accuracy by number of particles across methods. Errors are bootstrapped 95% confidence
intervals. Llama 3.1 8B is used as the base LM for all domains. Instruct model is used for Text-to-
SQL.

Method Score
Goal inference Molecular synthesis Data science Text-to-SQL

5 Particles
LM w/ grammar constraint, correction (Grammar-only IS) 0.106 (0.08, 0.14) 0.239 (0.21, 0.27) - 0.587 (0.56, 0.61)
LM w/ grammar constraint, potential (Sample-Rerank) 0.214 (0.17, 0.26) 0.407 (0.36, 0.45) - 0.578 (0.55, 0.60)
LM w/ grammar constraint, correction, and resampling (Grammar-only SMC) 0.310 (0.26, 0.37) 0.209 (0.18, 0.24) - 0.599 (0.57, 0.62)
LM w/ grammar constraint, potential, and correction (Full IS) 0.216 (0.17, 0.27) 0.411 (0.37, 0.45) 0.204 (0.16, 0.25) 0.611 (0.59, 0.63)
LM w/ grammar constraint, potential, correction, and resampling (Full SMC) 0.319 (0.27, 0.37) 0.552 (0.52, 0.58) 0.224 (0.18, 0.27) 0.620 (0.59, 0.64)

10 Particles
LM w/ grammar constraint, weight correction (Grammar-only IS) 0.083 (0.06, 0.11) 0.228 (0.21, 0.25) - 0.597 (0.57, 0.62)
LM w/ grammar constraint, potential (Sample-Rerank) 0.289 (0.24, 0.34) 0.392 (0.36, 0.42) - 0.581 (0.56, 0.60)
LM w/ grammar constraint, correction, and resampling (Grammar-only SMC) 0.401 (0.34, 0.46) 0.205 (0.18, 0.23) - 0.596 (0.57, 0.62)
LM w/ grammar constraint, potential, and correction (Full IS) 0.257 (0.21, 0.31) 0.404 (0.37, 0.44) 0.223 (0.19, 0.27) 0.618 (0.59, 0.64)
LM w/ grammar constraint, potential, correction, and resampling (Full SMC) 0.419 (0.37, 0.48) 0.577 (0.56, 0.59) 0.285 (0.26, 0.32) 0.620 (0.60, 0.64)

50 Particles
LM w/ grammar constraint, correction (Grammar-only IS) 0.069 (0.05, 0.09) 0.211 (0.20, 0.22) - 0.603 (0.58, 0.63)
LM w/ grammar constraint, potential (Sample-Rerank) 0.416 (0.36, 0.47) 0.382 (0.37, 0.40) - 0.585 (0.56, 0.61)
LM w/ grammar constraint, correction, and resampling (Grammar-only SMC) 0.595 (0.54, 0.65) 0.212 (0.20, 0.23) - 0.599 (0.58, 0.62)
LM w/ grammar constraint, potential, and correction (Full IS) 0.393 (0.35, 0.45) 0.389 (0.38, 0.40) 0.218 (0.19, 0.25) 0.626 (0.60, 0.66)
LM w/ grammar constraint, potential, correction, and resampling (Full SMC) 0.611 (0.56, 0.66) 0.569 (0.56, 0.58) 0.292 (0.25, 0.33) 0.622 (0.60, 0.65)

Table 6: Downstream accuracy comparison with the SMC Steering method from Lew et al. (2023) in
the text-to-SQL domain. Errors are bootstrapped 95% confidence intervals. Both methods include
semantic potentials. Our method is run with 10 particles. SMC Steering is run with 5 particles and a
beam size of 3. Both methods are run with Llama 3.1 8B Instruct.

Method Score

Full SMC 0.620 (0.60, 0.64)
SMC Steering (Lew et al., 2023) 0.607 (0.58, 0.63)

with N = 10 particles (and an ESS threshold of 0.9). These settings effectively give the SMC steer
method a particle count of N = 15, giving it an advantage in the comparison.

Tab. 6 reports posterior-weighted accuracy for these methods in the text-to-SQL domain (we restricted
this analysis to a single domain because of limitations in computational resources). We observe that
without replacement resampling steps slightly hurt performance compared to multinomial resampling.

A.4 COMPUTATIONAL COST

Though we have shown that practitioners can improve over locally-constrained decoding by using
our proposed SMC method, in practice there is additional computational cost stemming from two
sources: resampling and computing semantic potentials ϕsem. The cost of resampling is negligible,
consisting only of simple sum, softmax, and categorical sampling operations at every token. The cost
of computing semantic potentials, on the other hand, is more significant and varies across domains.
Table 7 shows the average per token cost of computing semantic potentials for all of our domains,:
we see that it rarely goes above about 30ms.

In general, the computational cost of semantic potentials is lessened by two factors: 1) semantic
potentials often change not at every token, but only at larger, semantically meaningful units (for
instance the end of a SQL clause or a python statement)—caching can therefore significantly lessen
computational cost, 2) semantic potentials are often CPU rather than GPU computations (and so the
cost of computation is much cheaper).

B PARSER

We implement prefix parsing for Context-Free Grammars (CFGs) in order to enforce syntactic
well-formedness in generated output sequences. Letting y refer to a sequence of terminal symbols
from our CFG, writing y◦ to mean string y considered as as prefix, the prefix probability is given

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Average per token cost (in seconds) of computing the semantic potential ϕsem for each of
our domains. Intervals are bootstrapped confidences estimated by selecting 10 SMC generations at
random for each domain.

Method Goal Inference Molecular Synthesis Data Science Text-to-SQL
ϕsem seconds per token 0.011 (0.007, 0.016) 0.0003 (0.0002, 0.0004) 0.007 (0.0009, 0.023) 0.031 (0.0204, 0.0413)

by pCFG(y◦) =
∑

y∈Σ∗ pCFG(y)1[y ∈ prefix(y)]. Such prefix probabilities can be used to derive
incremental (i.e., conditional) next-terminal distributions.

pCFG(yt | y<t) =
pCFG(y◦)
pCFG(y<t◦)

(8)

We implement an algorithm similar to the probabilistic, prefix-parsing variant of Earley’s algorithm
(Earley, 1968) given in Stolcke (1995). However, we note that properly achieving the integration
between pLM and ϕCFG is challenging due to the token-terminal alignment problem—the vocabulary
of terminal symbols which forms the leaves of CFG derivation trees is not the same as the vocabulary
of tokens output by the large language model. To address this problem, we extend our prefix
parser such that it computes the conditional probability of next-characters rather than next terminals
(pCFG(c | y<t) where c is a character).

C PROPOSAL DISTRIBUTION

We use the character-level prefix parser described in the previous section to develop a character-based
proposal algorithm. This algorithm proposes tokens from A by sampling sequences of characters,
and approximately, but asymptotically correctly, samples from the distribution on next tokens given
as the product of pLM and ϕCFG using the weight correction techniques for auxiliary randomness
presented in Lew et al. (2022). This section describes this approach.

C.1 PROPOSAL FRAMEWORK

Let p denote the distribution on next tokens targeted in inference. Our character-based proposal is a
part of a general framework for proposal distributions which propose a token x ∈ A according to the
following procedure, a variant of the Horvitz-Thompson estimator (Horvitz & Thompson, 1952) that
can be justified for use within SMC using the RAVI framework (Lew et al., 2022):

1. Sample a subset S of the token vocabulary according to a distribution qS .
2. Compute the unnormalized target probability p̃(x) of each token x ∈ S.

3. Compute the local weight w′(x) of each token as p̃(x)
Pr(x∈S) where Pr(x ∈ S) is the inclusion

probability—the probability that x ended up in the sampled set under qS .
4. Renormalize the local weights of the tokens in S and sample one of them.
5. Set the importance weight equal to the sum of the weights

∑
x∈S

w′(x).

We motivate the weight computation in step 5 with reference to proper weighting. Given an unnor-
malized density p̃(x) with normalizing constant Z, a sample (x,w) is properly weighted for p̃ if, for
any function f ,

E
(x,w)∼q′

[f(x)w] = Z E
x∼p

[f(x)] (9)

where q′ is a joint proposal over pairs (x,w). In our setting, it is possible to construct a proposal that
is a properly weighted sampler for p̃ by introducing a distribution q̂(S | x) that downweights each
importance weight—specifically, w(x, S) := p(x)q̂(S|x)

q(x,S) . Under this weighting scheme, our proposal
gives rise to a properly weighted sampler for p̃:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E
(x,w)∼q′

[wf(x)] =
∑
x

∑
S

q(x, S)
p̃(x)q̂(S | x)

q(x, S)
f(x) (10)

=
∑
x

∑
S

p̃(x)q̂(S | x)f(x) (11)

=
∑
x

p̃(x)f(x)
∑
S

q̂(S | x) (12)

= Z
∑
x

p(x)f(x) (13)

= Z E
x∼p

[f(x)] (14)

Note that for the derivation above to hold in general, the step Eq. (10) =⇒ Eq. (11) requires
∀x, S : p(x)q̂(S | x) > 0 =⇒ q(x, S) > 0. See Lew et al. (2022, Appendix C) for more details.

Unfortunately, we cannot tractably compute the exact density for q(S | x′) = q(x′|S)qS(S)∑
S′ q(x′|S′)qS(S′)

since we cannot generally marginalize over S. Thus, in the spirit of Lew et al. (2022), we use a
meta-proposal qS(S | x′ ∈ S) for S based on the idea that we sample an S subject to the constraint
that it contain x′. Under the assumption that we can tractably compute Pr(x′ ∈ S), we can compute
the exact density for q(S | x′ ∈ S) by Bayes’ rule qS(S | x′ ∈ S) = qS(S)1S(x′)

Pr(x′∈S) . Then the
importance weight attached to the returned x′ is given as:

p(x′)q̃x′(S)

qS(S)q(x′ | S)
= p̃(x′)

qS(S)

Pr(x′ ∈ S)

qS(S)

p̃(x′)
Pr(x′∈S))∑
x

p(x)
Pr(x∈S)

−1

(15)

= p̃(x′)
qS(S)

Pr(x′ ∈ S)

 p̃(x′)qS(S)
Pr(x′∈S))∑
x

p(x)
Pr(x∈S)

−1

(16)

=
∑
x

p̃(x)

Pr(x′ ∈ S)
(17)

C.2 CHARACTER PROPOSAL

Our character proposal distribution is an instance of this framework in which qS samples sets of
tokens S by sampling a sequence of characters. We provide the pseudocode for this algorithm in
Algorithm 1, and define two key data structures used by this proposal:

Definition 1. Our trie data structure T is a labeled, tree-structured graph that is defined as follows:

• Let V be the LM’s vocabulary of tokens (represented as strings of characters ending with a
designated end-of-token marker EOT).

• Let P be the prefix closure of the set V : P def
= {p ∈ Σ∗ |p ⪯ t, t ∈ V } where p ⪯ t denotes that

p is a prefix of t.

• Let T = (N,E) be a labeled graph with node P and labeled edges E =
{
p

a−→ p a
∣∣∣p, (p a) ∈ P

}
Definition 2. Let mass be a mapping N → [0, 1], defined as follows:

Each leaf node corresponds to an LLM token with mass given by p in a specified context t ∈ V ∗:

mass(t′) = p(t′ | t), for t′ ∈ V (18)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Name Proposal Target Inference alg.
Language model pLM pLM Exact
w/ grammar constraint [pLM ⊙ ϕCFG] [pLM ⊙ ϕCFG] Exact
w/ grammar constraint, weight correction [pLM ⊙ ϕCFG] [pLM ⊗ ϕCFG] IS
w/ grammar constraint, potential [pLM ⊙ ϕCFG] [pLM ⊙ ϕCFG]⊗ ϕsem IS
w/ grammar constraint, potential, and correction [pLM ⊙ ϕCFG] [pLM ⊗ {ϕCFG, ϕsem}] IS
w/ grammar constraint, potential, correction, and resampling [pLM ⊙ ϕCFG] [pLM ⊗ {ϕCFG, ϕsem}] SMC

Table 8: Potentials, Models, and Inference Algorithms

mass(p) =
∑
t′∈V

s.t.p≺t′

p(t′ | t), for p ∈ P − V (19)

=
∑

p
a−→p a∈E

mass(p a) (20)

Here p ≺ t denotes that p is a strict prefix of t.

Algorithm 1 Character proposal: This procedure returns sampling weights for possible next tokens,
i.e., an element of RV

≥0.

1. procedure character_proposal(t)
2. mass← Apply Eq. (20) to p(· | t)
3. p← ε ▷ start at the trie’s root node

4. inclusion_prob← 1 ▷ prefix’s path probability

5. weights← {}
6. while true:
7. p1 ←

{
a : mass(p a)

mass(p) for p a−→ p a ∈ E
}

8. p2 ← {a : pCFG(a | t p) for a ∈ Σ}
9. if p EOT−−→ p EOT ∈ E : ▷ End-of-token available (i.e., p EOT ∈ V

10. weights(p EOT) = mass(p EOT)·local_prob
inclusion_prob

11. q ← {a : p1(a) · p2(a) for a ∈ Σ} ▷ Note: EOT ̸∈ Σ.

12. Q←
∑

a∈Σ q(a)
13. if Q = 0: ▷ cannot continue further

14. break
15. a ∼ q/Q ▷ Sample next character proportional to q

16. p← p a ▷ extend the prefix (i.e., transition to the next node)

17. local_prob← local_prob · p2(a)
18. inclusion_prob← inclusion_prob · q(a)/Q
19. return weights

D ESTIMATING INFERENCE QUALITY

D.1 IS AND SMC

A standard property of importance sampling is that log of the mean importance weight provides a
biased estimate of the KL between the algorithm and the target distribution.
Definition 3 (Extended-state space IS). Let S := {x, k,x−k} denote an extended state-space of a
resampled particle x, its index k in the particle beam, and the K − 1 non-resampled particles. We
interpret an IS algorithm with proposal q targeting σ as a proposal distribution

qIS(x, k,x−k) =
w(xk)∑K
i=1 w(x

i)

K∏
i=1

q(xi)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

which targets the distribution

σIS(x, k,x−k) = σ(x−k, k | x)σ(x), where σ(x−k, k | x) :=
1

K

∏
i̸=k

q(xi)

Both distributions are defined over S.

We now show that under the formulation, we can use the log of the mean importance weights of our
algorithm as an estimate of logZσ −DKL(qIS ∥ σ).
Proposition 1 (Estimating logZσ − DKL(qIS ∥ σ)). Let w(x) = σ(x)/q(x) be the importance
weight of a particle x under our IS algorithm. Under the extended state-space formulation of IS,
log 1

K

∑K
k=1

(
w(xk)∑K
i=1 w(xi)

)
provides a biased estimate of logZσ −DKL(qIS ∥ σ).

proof

E
qIS

[
log

σ̃IS(x, k,x−k)

qIS(x, k,x−k)

]
= − E

qIS

[
log

qIS(x, k,x−k)

σ̃IS(x, k,x−k)

]
(21)

= − E
qIS

[
log

qIS(x, k,x−k)

σIS(x, k,x−k) · Zσ

]
(22)

= logZσ − E
qIS

[
log

qIS(x, k,x−k)

σIS(x, k,x−k)

]
(23)

= logZσ − E
qIS

[
log

qIS(k,x−k | x)qIS(x)

σIS(k,x−k | x)σ(x)

]
(24)

= logZσ − E
qIS

[
log

qIS(k,x−k | x)
σIS(k,x−k | x)

]
− E

qIS

[
log

qIS(x)

σ(x)

]
(25)

= logZσ −DKL(qIS(k,x−k ∥ x) | σIS(k,x−k | x))−DKL(qIS ∥ σ)
(26)

where

σ̃IS(x, k,x−k)

qIS(x, k,x−k)
=

1
K σ̃(x)

∏
i ̸=k q(x

i)

q(x) w(xk)∑K
i=1 w(xi)

(∏
i ̸=k q(x

i)
) (27)

=
1

K
w(x)

∑K
i=1 w(x

i)

w(x)
(28)

=
1

K

K∑
i=1

w(xi) (29)

Hence, log
(

1
K

∑K
i=1 w(x

i)
)

provides a single sample estimate of logZσgpoe
IS
− DKL(qIS ∥ σgpoe

IS)

with bias DKL(qIS(k,x−k ∥ x) | σ(k,x−k | x)).

The same logic as above can be applied to SMC: Appendix F in Zhao et al. (2024) explains the
standard extended state-space construction for SMC. Using this construction, the extended-space
importance ratio between σSMC and qSMC is exactly the average particle weight in the final particle
collection returned by the algorithm, just as in IS, and the expected log average particle weight is (by
the same logic as above) equal to logZ −DKL(qSMC ∥ σSMC).

D.2 ESTIMATING INFERENCE QUALITY FOR REJECTION-SAMPLED VARIATIONS OF OUR
ALGORITHMS

When attempting to estimate the discrepancy between samples for algorithms qalg and the posterior
[pLM⊗{ϕCFG, ϕsem}], one difficulty is that DKL(qalg||[pLM⊗{ϕCFG, ϕsem}]), is infinite for all the
algorithms we consider in this work, as all of them make it possible (given a finite number of particles)
to generate samples that have probability zero under [pLM ⊗ {ϕCFG, ϕsem}]. A potential solution to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

this issue, explored by Zhao et al. (2024), is to instead estimate DKL([pLM ⊗ {ϕCFG, ϕsem}]||qalg).
But this requires exact samples from [pLM ⊗ {ϕCFG, ϕsem}], which are impractical to obtain in our
setting. We thus take a different approach and consider rejection-sampled versions of each of our
algorithms, qralg, which draw samples x ∼ qalg repeatedly until [pLM ⊗ {ϕCFG, ϕsem}](x) > 0. In
this case, we have

DKL(q
r
alg||[pLM ⊗ {ϕCFG, ϕsem}]) = Eqralg

[
log

qralg(x)

[pLM ⊗ {ϕCFG, ϕsem}](x)

]
(30)

= Eqralg

[
log

qalg(x)

[pLM ⊗ {ϕCFG, ϕsem}](x)Zr
alg

]
(31)

= Eqralg

[
log

qalg(x)

[pLM ⊗ {ϕCFG, ϕsem}](x)

]
− logZr

alg, (32)

where Zr
alg is the acceptance rate of qralg (which we can estimate with standard Monte Carlo), and we

can estimate the first term in Eq. (32) up to an instance-specific constant, using the derivations from
above.

E DOMAIN DETAILS

E.1 SPIDER

Spider is a large-scale text-to-SQL dataset of natural language questions and database schemas; given
a question and schema, the task is to generate a valid SQL query that is semantically equivalent to
a ground-truth query. In this domain, ϕCFG is used to enforce valid SQL syntax according to the
SQL grammars released by Roy et al. (2024). These grammars include schema-specific constraints
that limit table and column names to those present in the given schema, but do not ensure correct
table-column associations. Thus, we use ϕsem to verify whether the (partial) SQL query references a
column that exists in a table, returning 0 in the case that it does not and 1 otherwise. Note that ϕsem

is only semantically meaningful when a generated query has fully specified the necessary table or
alias information to check correspondences (e.g., after the FROM clause is complete). We evaluate on
the development split of Spider with execution accuracy, which checks whether the predicted SQL
query’s output matches that of the ground-truth query. We define pLLM(x) by prompting Llama-3.1
(8b) instruct with 3 examples followed by a rendering of the database and the natural language
question. We sample 10 particles for all methods, and set an ESS threshold of 9 for SMC. This
threshold is chosen to trigger a resampling step as soon as a particle is deemed invalid by ϕslow. We
use a multinomial sampling scheme.

E.2 GBD-17

A recent line of work has applied LMs to the problem of molecular synthesis, with the aim of
generating candidate molecules with properties similar to molecules from known databases (see
Oliveira et al., 2022, for review)—most commonly (e.g. Flam-Shepherd et al. (2022); Wang et al.
(2024)) by prompting with examples of molecules in SMILES format (Weininger, 1988). We follow
this approach, constructing prompts from random subsets of 20 molecules from the GDB-17 dataset
(Ruddigkeit et al., 2012). We evaluate generations using the standard molecule fitness function
Quantitative-Estimated Drug-likeness (QED; Bickerton et al., 2012) implemented in the Python
RDKit library (Landrum et al., 2024). This metric combines eight physicochemical properties of
a compound: Molecular weight, LogP, H-bond donors, H-bond acceptors, Charge, Aromaticity,
Stereochemistry, Solubility. Here, ϕCFG enforces SMILES syntax. To enforce properties not encoded
by this syntax, we define ϕsemusing a molecule validator that can be applied to partial SMILES
strings, implemented in the Python partialsmiles library (O’Boyle, 2024). The validator checks
the SMILES prefix to ensure that atom’s valences are in a list of allowed valences, and attempts
to find alternating patterns of single and double bonds to cover all aromatic systems in the partial
string. The additional metrics reported in Fig. 3 are Validity (proportion of valid SMILES), Weight
(exact molecular weight), De Novo Similarity (average pairwise Tanimoto similarity to the target

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table Columns
singer singer_id, name, . . .
concert concert_id, concert_name, . . .

(a) Example schema

Query ϕCFG ϕsem Description
SELECT song_id FROM singer . . . ✗ ✗ Invalid column name
SELECT singer_id FROM concert . . . ✓ ✗ Invalid column name for table
SELECT singer_id FROM singer . . . ✓ ✓ Valid column name for table

(b) Example queries and potential values

Table 9: Overview of potentials used in Spider experiments for a given schema. We condition the base
language model using two potentials. ϕCFG ensures syntactically valid SQL queries that only include
table and column names present in the schema. ϕsem further restricts SQL queries by ensuring a
correct correspondence between column and table names.

distribution, excluding exact duplicates), and Diversity (inverse average pairwise Tanimoto similarity
among compounds generated by a particular method).

E.3 PLANETARIUM

Recent work has explored using LMs for planning with languages like the Planning Domain Definition
Language (PDDL) (Aeronautiques et al., 1998), by either generating plans directly (Silver et al.,
2022; Wong et al., 2023; Ying et al., 2023; Zhang et al., 2024; Zhi-Xuan et al., 2024), or generating
descriptions of a task’s initial and/or goal conditions, which classical planning algorithms can use to
search for plans (Liu et al., 2023; Xie et al., 2023; Guan et al., 2023). In the spirit of the latter, we use
the Blocksworld tasks from the Planetarium benchmark (Zuo et al., 2024), which provides natural
language descriptions of a task’s initial and goal conditions along with their ground-truth symbolic
representations in the STRIPS subset of PDDL (Fikes & Nilsson, 1971). The original dataset is
extremely challenging, requiring the LM to output a full STRIPS description of tasks with up to 100
objects—Zuo et al. (2024) report fewer than 2% of the outputs of Gemma 1.1 7B to be even parseable.
We therefore simplify the task by limiting our evaluation to examples with fewer than 10 objects, and
requiring the LM to generate only the goal conditions given a description of initial conditions. Here,
ϕCFG encodes STRIPS syntax for goals within Planetarium’s Blocksworld domain definition; ϕsem

uses a gold-standard plan known to satisfy the ground-truth task description, and calls the VAL plan
validator (Howey et al., 2004) to test whether partial goal descriptions are valid according to that plan.
The gold-standard plans for each instance were derived using the fast downward algorithm (Helmert,
2006). Note that it is only possible to apply this ϕsem potential to partial strings if goal descriptions
are monotonic, that is, if any goal prefix describes a superset of the states that the full goal describes.
This is the case for STRIPS, where goals must be described as conjunctions of literals, so that we can
evaluate the potential after each literal in the conjuction is completed.

E.4 DS1000

DS-1000 (Lai et al., 2023) is a challenging code generation benchmark on data science problems in
Python with problem solutions allowing the usage of a number of popular libraries, including NumPy,
PyTorch, and Pandas. For each problem instance, the language model is prompted with an English
description of the problem and a sample test case in Python and is tasked to generate code that solves
the problem and passes the test case. Each test case includes a result variable, and success depends
on the execution.

In preliminary experiments, we observed that our language model was able to generating syntactically
correct Python programs for every sample. We, therefore, set ϕCFG = 1 for our experiments in this
domain. Thus, unlike the other three domains, the proposal distribution for all evaluations of DS1000
was simply pLM.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

In this domain, ϕsem simply executes the test cases provided in the prompts from Lai et al. (2023)
on generated (partial) Python programs, and returns 1 if no errors are produced and 0 otherwise (in
particular, we did not make use the output of test cases). Note that it is only possible to execute
Python code when the generated sequence x consists entirely of well-formed Python statements, thus
in this domain ϕsem can only be meaningfully applied at the boundary of statements—this motivates
aligning SMC particles using statements as their steps, as explained in the “Further extensions"
section in (§2).

F EXTENDED RELATED WORK

Grammar-constrained semantic parsing with LMs

Shin et al. (2021) presented a system allowing LMs to be locally intersected with (boolean) CFGs to
restrict generations to conform to target formal languages, and that with only a few in-context exam-
ples, such an inference-time strategy could outperform more substantial fine-tuning. Concurrently,
PICARD (Scholak et al., 2021) presented an approach for intersecting LMs with an incremental
parsing algorithm, and showed how additional context-sensitive constraints could be imposed such
as requiring table-column matching for SQL generation via the use of programmable “guards”.
Synchromesh (Poesia et al., 2022) generalized these frameworks and extended the idea of incremental
guards that can impose semantic restrictions during generation—such as typing and scoping rules—by
dynamically constructing constraints as regular expression on-the-fly. A great deal of other work has
explored variants of LM-grammar intersection including the effectiveness of pre-training models
on code for these settings (Shin & Van Durme, 2022), the runtime compilation of individual task
instances into highly-specific, task-specialized grammars (Geng et al., 2023), and even using the LM
to generate grammars directly at runtime, that then restrict their own generation to solve a task (Wang
et al., 2024). Other work has focused more closely on the standard syntactic-constraint problem but
with an emphasis on optimizing efficient data structures and algorithms for fast LM-CFG intersection
(Ugare et al., 2024; Zheng et al., 2023a; Moskal et al., 2024).

A parallel line of work in this space has been concerned with the efficient construction and application
of constraints for sequential inference problems. Deutsch et al. (2019) first noted that regular and
context-free grammar constraints could be pre-compiled to automata—these could then be used
during sequential inference to impose constraints with near-zero runtime overhead. This approach
was independently developed and efficiently implemented in the context of restricting LM generations
to regular expressions by the Outlines (Willard & Louf, 2023) and ReLM libraries (Kuchnik et al.,
2023). Similar work was later developed by Koo et al. (2024), who extended several formal automata-
theoretic characteristics of these constructions.

This work has noted the complications of efficiently intersecting grammars whose atoms are terminals
and LMs whose atoms are tokens, which we refer to as the token-terminal alignment problem. An
efficient and accurate solution to this problem space was one of several desiderata for our proposal
algorithm (see Appendix 1 for more details). These works have also discussed considerations that
arise in the construction of automata, whose arcs are tokens, in the assignment of probabilities to
strings. Namely, there are exponentially many latent token trajectories that correspond to a generated
string. While the correct method for assigning string probabilities involves marginalizing over these
trajectories (Cao & Rimell, 2021), in practice simply using the canonical tokenization accounts for
the overwhelming majority of the probability mass and can be well justified (Chirkova et al., 2023;
Kuchnik et al., 2023; Berglund et al., 2024). In the present work, we do not enforce this assumption
and allow all token trajectories.

Conditional generation subject to constraints

Language models pre-trained on a next-word objective reflect the distribution of their pre-training
corpora, but often the inference-time needs of tasks necessitate that LMs modify this base distribution.

One approach to this class of problems is fine-tuning or reinforcement learning via some set of data
that more closely mirrors the target task, such as via reinforcement learning from human feedback
(RLHF) (Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022; Ouyang et al., 2022), but this
method comes with challenges such as hyperparameter sensitivity and distributional collapse (Zheng
et al., 2023b; Zhu et al., 2023; Xiong et al., 2024). Some of these drawbacks can be mitigated by
utilizing on-policy data (Tajwar et al., 2024) and imposing a KL penalty that penalizes shifting an LM

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

too far from its prior distribution, casting optimization as a variational inference problem (Korbak
et al., 2022; Amini et al., 2024).

Another inference-time approach to controlled generation for an LM is via direct modification to the
LM’s sampling distribution. This may be done via controlling intermediate layer activations with
classifier guidance (Cheng et al., 2024), guiding autoregresssive generation with a proxy probabilistic
model for which estimation of the conditional density is tractable (Zhang et al., 2023), or most
commonly by directly intervening on the final logits before sampling to impose intersection with a
potential function. Pascual et al. (2021) presented an early variant of such logit-biasing to encourage
the presence of predefined guide words in generations.

This pattern is employed more broadly for hard constraints via logit-masking, setting the probability
associated with particular tokens to zero, forcing the LM to sample from a subset of its distribution
over sequences. This approach is used in most of the grammar-constrained semantic parsing work
outlined in the previous section. Most recently, there have been attempts to restricting and re-weight
generations not only via grammars but through additional semantic potentials such as grounded
affordances in robotics settings (Ahn et al., 2022; Huang et al., 2024). However, in all of these works,
constraints are imposed greedily, resulting in a local product of experts construction, and care is not
taken to appropriately target the implied global product of experts. It should then come as no surprise
that while standard approaches to grammar-constrained generation have been successful, they have
been far from a silver bullet (Tam et al., 2024).

Approximate posterior inference via sampling

This leads to a third line of work that aims to formulate conditional generation subject to constraints
as posterior inference, and employ approximate inference algorithms to appropriately sample from
such global target distributions. Lew et al. (2023) propose SMC steering of LMs via probabilistic
programming specifications. This work enables provably accurate posterior sampling from such
conditional targets, globally steering generation while only ever computing local constraints. Our
approach builds on the results in that paper.

Shortly thereafter, Zhao et al. (2024) independently developed a framework for expressing various
LM tasks as probabilistic inference problems that can be tackled with SMC. Similar to our work,
Zhao et al. (2024) guide SMC with intermediate targets—in their case learned twist functions via
a novel contrastive method—that enable estimation of the expected future value of each candidate
partial sequence. Their work also developed methods for evaluating LM inference algorithms via
bi-directional bounds on the log-partition function that can be used to estimate the KL-divergence
between the inference and target distribution. In contrast to this prior work, our approach to SMC
leverages incremental static and dynamic analyses to inform our proposal distributions and twist
functions, as opposed to learning components of these algorithms via a costly contrastive fine-tuning
procedure. In addition, our results directly relate the quality of our posterior approximation to
improved performance on a series of standard, difficult benchmark tasks.

Concurrent with our work, Park et al. (2024) have highlighted the distinction between the prevalent
locally constrained decoding approach and the more accurate targeting of the global distribution
that arises from combining language models with constraints. Park et al. (2024)’s approach to
approximate the global distribution is based on the concept of expected future grammaticality, which
is the probability that a string sampled from the LM is compliant with a given grammar. The authors
describe an iterative algorithm that approximates the global distribution by refining the estimates of
the expected future grammatically. However, the proposed strategy shows relatively slow convergence,
was specifically designed for a CFG constraint, and may not be easily adaptable to constraining with
multiple potential functions.

25

	Introduction
	Monte Carlo Inference for Constrained Semantic Parsing
	Experiments
	Domains
	Evaluation of Downstream Performance
	Validation of the Probabilistic Perspective

	Related Work
	Discussion
	Additional experiments
	Smaller Base LMs
	Accuracy by number of particles
	Resampling without replacement lew2023sequential
	Computational Cost

	Parser
	Proposal distribution
	Proposal framework
	Character proposal

	Estimating inference quality
	IS and SMC
	Estimating inference quality for rejection-sampled variations of our algorithms

	Domain details
	Spider
	GBD-17
	Planetarium
	DS1000

	Extended Related Work

