Under review as a conference paper at ICLR 2025

TRAINING-FREE LLM-GENERATED TEXT DETECTION
BY MINING TOKEN PROBABILITY SEQUENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities in
generating high-quality texts across diverse domains. However, the potential
misuse of LLMs has raised significant concerns, underscoring the urgent need for
reliable detection of LLM-generated texts. Conventional training-based detectors
often struggle with generalization, particularly in cross-domain and cross-model
scenarios. In contrast, training-free methods, which focus on inherent discrepancies
through carefully designed statistical features, offer improved generalization and
interpretability. Despite this, existing training-free detection methods typically rely
on global text sequence statistics, neglecting the modeling of local discriminative
features, thereby limiting their detection efficacy. In this work, we introduce a novel
training-free detector, termed Lastde that synergizes local and global statistics for
enhanced detection. For the first time, we introduce time series analysis to LLM-
generated text detection, capturing the temporal dynamics of token probability
sequences. By integrating these local statistics with global ones, our detector
reveals significant disparities between human and LLM-generated texts. We also
propose an efficient alternative, Lastde++ to enable real-time detection. Extensive
experiments on six datasets involving cross-domain, cross-model, and cross-lingual
detection scenarios, under both white-box and black-box settings, demonstrated
that our method consistently achieves state-of-the-art performance. Furthermore,
our approach exhibits greater robustness against paraphrasing attacks compared
to existing baseline methods. Our codes are available at https://anonymous .
4open.science/r/Lastde-5DBC anonymously.

1 INTRODUCTION

Recent advancements in large language models (LLMs), such as GPT-4 (OpenAlL [2024b) and Gemma
(Team et al.}2024), have significantly enhanced the text generation capabilities of machines. These
models produce texts that are virtually indistinguishable from those written by humans, enabling
broad applications across fields like journalism (Quinonez & Meij, [2024)), education (M Alshater,
2022} Xiao et al., [2023)), and medicine (Thirunavukarasu et al.l |2023). However, the increasing
sophistication of LLMs has also raised serious concerns about their potential misuse. Examples
include the fabrication and dissemination of fake news (Opdahl et al., 2023 |[Fang et al., [2024]),
academic dishonesty in scientific writing (Else} 2023} |Curriel 2023} |Liang et al., 2024), and the risk
of model collapse when trained on LLM-generated data (Shumailov et al., 2024; Wenger, 2024).

Prior arts in LLM-generated text detection can be broadly categorized as training-based and training-
free methods. Training-based methods extract discriminative features from the texts and then input
them into binary classifiers. These detectors require training on labeled datasets. Typical examples
include RoBERTa-based fine-tuning (Guo et al.,2023)), OpenAl Text Classifier (OpenAll[2023)), and
GPTZero (Tianl 2023). In contrast, training-free methods utilize global statistical features of given
texts such as likelihood and rank (Solaiman et al,2019), which can be computed from LLMs during
the text inference. Typical training-free methods such as DetectGPT (Mitchell et al., 2023)) and
DNA-GPT (Yang et al.,|2024)) achieve detection by comparing or scoring these statistical features.

Training-based methods require significant time and effort in high-quality data collection, model
training, etc. Also, they often face generalization issues, e.g. overfitting to in-domain data, particularly
when detecting cross-domain texts |Pu et al.| (2023); Zhu et al.[(2023). In contrast, training-free

https://anonymous.4open.science/r/Lastde-5DBC
https://anonymous.4open.science/r/Lastde-5DBC

Under review as a conference paper at ICLR 2025

0 301 3 Human B
- = LM] 1
? 25 — | i
z -4
= 3 20
36 g r
S 5151
3 ® 10/ [
2 -10
-12 5 ‘
L
14 0 ; ; T '
0 50 100 150 200 —-60 =50 —40 -30
Token Score
(a) Anillustration example comparing the TPS (b) The proposed Lastde score distribution of
fluctuations between human-written and LLM- 150 human and LLM-generated texts from the
generated texts. WritingPrompts dataset, using the OPT-2.7
model.

Figure 1: Comparison of TPS fluctuations and Lastde score distributions between human-written
texts and LLM-generated texts, using the first 30 tokens of human texts as a prefix to continue writing
with OPT-2.7.

methods, which rely on scoring the analysis results of data statistics (often global statistics) or
the data distribution, are more adept at handling cross-domain texts (Yu et al, [2024). However,
existing training-free methods either incur high time and computational costs or perform poorly in
scenarios involving cross-model detection and paraphrasing attacks. Additionally, most of these
methods only evaluate the global statistical features (e.g. likelihood) of the text without harnessing
the local statistical patterns (e.g. temporal dynamics) from token segments, significantly limiting the
development and broader application of training-free methods.

To bridge the gap, this work aims to leverage local and global statistics for effective detection by
mining discriminative patterns from the token probability sequence (TPS). Specifically, we first
provide a novel perspective that views the TPS as a time series and harnesses time series analysis
to extract local statistics. As illustrated in Figure [I(a)] the TPS of human-written text fluctuates
more abruptly than LLM-generated ones, showcasing distinct temporal dynamics. To quantify the
dynamical complexity, we exploit the diversity entropy 2020) that measures similarities
among neighboring sliding-window segments of a TPS followed by conversion to discrete probability
states for entropy calculation. We then aggregate the DEs (diversity entropy) from different time
scales to establish our local statistics. Finally, we integrate the local statistical features with likelihood,
a typical measure of global text features, to develop a novel detection method: Lastde (Likelihood
and sequential token probability diversity entropy) and its variant Lastde++, with the latter being an
enhanced version featuring fast-sampling for more efficient detection. As shown in Fig. [I(b)] our
method shows a clear distinguishability boundary between human and LLM-generated texts.

Extensive experiments across different datasets, models, and scenarios demonstrate that Lastde++
has a strong ability to distinguish between human and LLM-generated text. Notably, in the black-box
setting, Lastde, relying on a single score, outperformed all existing single-score methods, even
matching the detection performance of Fast-DetectGPT 12024), a previous work that
requires extensive sampling, thus our method establishes a new powerful benchmark.

Our main contributions can be summarized as follows:

1) We propose a novel and effective method for LLM-generated text detection, termed Lastde (and
Lastde++), by mining token probability sequences from a time series analysis viewpoint.

2) We propose to leverage diversity entropy to capture the disparate temporal dynamics of a token
probability sequence, extract the local statistics, and integrate them with the global statistics to
achieve a robust detector.

3) Our method achieves state-of-the-art detection performance, surpassing advanced training-free
baseline methods including DetectGPT, DNA-GPT, and Fast-DetectGPT with comparable or lower
computational costs. Besides, it demonstrates superior robustness in handling complex detection
scenarios, e.g. cross-domain, cross-model, cross-lingual, cross-scenario tasks, and paraphrasing
attacks.

Under review as a conference paper at ICLR 2025

Global Statistics

Candidate Text Multi-scale

Processor

~ U sliding Ty
window

“\\ Local Statistics Q //

Figure 2: Overview of the Lastde detection framework. The example shows how a 7-token candidate
text is fully detected with setting s = 3,e = 10,7" = 3. First, a proxy model converts the text
into a token (log) probability sequence (TPS). Then, both global and local statistics of the TPS are
mined in parallel. The global statistics is straightforward. For local statistics, the TPS is mapped
into 3 new sequences by a Multi-scale Processor (with 7" = 3). Each scale factor 7; € {1,2,3}
represents the arithmetic mean of 7; adjacent elements from the original TPS. For each new sequence,
a sliding window with a stride of 1 and width of 3 (s = 3) moves from left to right, forming a matrix
by vertically stacking window segments’ elements. The cosine similarity between adjacent rows
(segments) is then calculated to generate a similarity sequence. We calculate the histogram of 10
(e =10, [—1, 1]) equally divided intervals based on the similarity sequence and derive the Diversity
Entropy (DE) of the current sequence. Finally, we divide Log-Likelihood by aggregating all DEs
(Agg-MDE) to derive the detection score, making a decision based on an appropriate threshold.

2 RELATED WORK

Detecting LLM-generated text has been a prominent area of research since the early days of large
language models (Jawahar et al., 2020} [Bakhtin et al., 2019} [Crothers et al} 2023). Current studies
predominantly focus on training-based and training-free detection methods.

Most training-based methods (Bhattacharjee et al., 2023} [Li et al, 2023} [Tian et al.,[2023)) leverage
the semantic features of text (such as token embeddings) to train or fine-tune a classification model
under the premise of labels for successful detection. Meanwhile, some approaches

[2023}; [Shi et al.| [2024}; Wang et al.},[2023) incorporate probability information as part of the training

features, which has also proven effective in detecting LLM-generated text in various scenarios.

However, research has shown that many existing training-based methods struggle with overfitting or
generalizing to out-of-distribution data (Uchendu et all, [2020; [Chakraborty et all,[2023). As a result,
training-free methods have gained increasing attention aiming at identifying LL.M-generated text
across diverse domains and source models. Specifically, these methods focus on the probabilistic
features of the text, scoring the text by constructing appropriate statistics, and ultimately making
decisions based on a determined threshold. Representative methods include Likelihood, Rank

(Solaiman et al.,[2019), GLTR (Gehrmann et al}[2019), and DetectLRR (Su et al.| 2023)). DetectGPT

[Mitchell et al.|(2023)) pioneered the detection paradigm of contrasting perturbed texts with original
text, subsequently leading to the development of DetectNPR and DNA-GPT
2024). Yet we must acknowledge that these methods cannot achieve real-time or large-scale
detection due to their excessive time consumption. Fast-DetectGPT leverages
fast-sampling technique to enhance the detection efficiency of DetectGPT by 340 times, thereby
broadening the application prospects of training-free methods. However, its black-box detection
performance still exhibits substantial potential for enhancement. More innovative detectors are

continuously being conceived, please refer to (Mao et al., 2024} [Hans et al., 2024).

We are confident that the constraints on the performance of existing training-free detectors in black-
box detection arise from their failure to fully exploit or excavate the deeper layers of information

Under review as a conference paper at ICLR 2025

inherent in token probability sequence, particularly the local geometric information. To address this
issue, we devised a detection statistic termed Lastde, which is employed to evaluate both human-
written and LLM-generated texts. Our approach successfully establishes the connection between
token probability sequence and traditional time series, achieving state-of-the-art performance among
training-free methods and providing a novel perspective for the detection of LLM-generated texts.

3 METHODOLOGY

In this section, we first formulate the diversity entropy of a token probability sequence (TPS) to
quantitatively measure its local dynamics. We then integrate local statistic features with the global
ones (likelihood) to develop our Lastde detector, and further develop a fast-sampling alternative
called Lastde++ for more efficient detection.

3.1 ANALYZING TPS wWITH DIVERSITY ENTROPY

Diversity Entropy (DE) (Wang et al.l 2020) is an entropy-based method for measuring the dynamic
complexity of time series, originally applied to feature extraction in areas such as fault diagnosis,
ECG, and signal processing. It is a process of first increasing the dimensionality and then reducing
the dimensionality of a one-dimensional sequence. We restate and extend DE to make it suitable to
detecting LLM-generated text (black-box) .

Given candidate text ¢ and a proxy model My, with the sliding window size s € N, the precision of
the interval € € N, and the number of scales 7/ € NT. Input ¢ into My for inference, we can obtain
its (log) TPS

L(t) = (log py(t1]t<1),log pe(talt<z), ..., log po(tnlt<n)) . €]
where t; is the ¢-th token of ¢.
Multiscale log-probability sequence. Apply multiscale transformation to L(t). Specifically, for
T = 1,2,...,7, let LD(t) = <logp(T)()) be the new TPS corresponding to the 7-th scale
transformation, where

J+T 1
log py” () Z logpo(tilt<i)y 1<j<n—7+1. 2)

Note that, when 7 = 1, L) (¢) = <logp()()) = (logpe(t;|t<;)) = L(t), which is the original

TPS of Equation[I] Different 7 measures its dynamic characteristics at different scales, which is
essentially an enhancement of the original data.

Sliding-segmentation sequence. Apply a sliding window of size s and a step size of 1 to segment
and rearrange L(7)(t),7 = 1,2, ..., 7’ in sequence, resulting in the following:

logpy” (1) log py” (2) o gy ()
logp(T)(2) logp(T)(?)) o logpl (14) 3
logpy) (n—7—s5+2) logp(n—7—s+1) - logp{”(n—7+1)
Denote the matrix in Equation [3as
=4 T T T T
LO(s) = [7 (5), s 17 a(s)] @

where 17 (s) = (logp(T)(), logp(r)(z +1),.. logp(T)(z +s— 1)) is the log-probability segment
within window ¢ at the 7-th scale, which is called an s-probability segment.

Segment similarity. For L(")(s),7 = 1,2,...,7 in Equation 4, compute the cosine sim-
ilarity between adjacent s-probability segments, yielding the similarity sequence D(7)(s) =
(dgT), ds? o dm H_1) where

d\” = CosineSimilarity(I{” (5), 17 (5)), k = 1,2, .,n — 7 — s + 1.)

Under review as a conference paper at ICLR 2025

The geometric meaning of cosine similarity is the cosine of the angle between two vectors in space,
with arange of values from [-1, 1]. Therefore, intuitively, the closer the similarity value of two adjacent
s-probability segments is to 1, the smaller the deviation in direction, and the smaller the fluctuation
in the local log-probability. Conversely, the larger the fluctuation in the local log-probability.

Probability state sequence. Divide the interval [—1, 1] into € mutually exclusive and equally spaced
sub-intervals, denoted as I = (I, Io, ..., I.), each of which is called a state. Therefore, we can

easily obtain the statistical histogram C(™(s) = ({77, ...) of D) (s) on I, where CET)
is the number of elements in D(7) (s) that fall into the state I;. Furthermore, we can calculate the
probability state sequence

PO (s) = (P, P P, (©)

)
where Pi(T) = ﬁ Obviously, the sum of the sequence of EquationHis equal to 1.

k=1Ck
Multiscale diversity entropy. According to the DE formula of Equation |8} calculate the diversity
entropy of the probability state sequence P(T)(s)7 7 = 1,2,...,7 for each scale, and store them
together to obtain the multiscale diversity entropy (MDE) sequence for the text ¢, denoted as

MDE(t, s,¢,7') = (DE(s,¢,1),...,DE(s,¢,7")), @)
where
1 a T T T
DE(s,¢,7) = —E;Pf ‘mpP™, P70 (8)

According to (Shannonl, [1948), the entropy value ranges from [0, 1], and therefore, the DE value
also ranges from [0, 1]. A DE value closer to 0 indicates that the TPS at the current scale has less
fluctuation, while a value further from 0 indicates greater fluctuation.

3.2 LASTDE AND LASTDE++

Lastde score. Inspired by DetectLLM (Su et al.,2023), we first aggregated the MDE sequence of the
text. Subsequently, we combined this with the Log-Likelihood of the text and defined the following
Log-Likelihood and sequential token probability multiscale diversity entropy (Lastde) score

LS logpe(tilt<:)

Lastde(t,0) = Agg((DE(s,e,1),...,DE(s, e, 7))’ 9

where Agg : R™ — R is an aggregation operator or function that summarizes the sequence’s
elements in a particular way, the rest of the notations are consistent with the previous definitions.
Obviously, the numerator in Equation [J]is the Log-Likelihood value, which corresponds to the global
statistical feature of TPS. Additionally, we refer to the result of the denominator in Equation [Q]as the
Agg-MDE value, which reflects the local statistical feature of the TPS. Unless explicitly stated, we
use the standard deviation function (Std) as the aggregation function (Agg), additional aggregation
functions and their detection results are located in Appendix @} Furthermore, for Lastde, the 3
hyperparameters are set to default values of s = 3,6 = 10 x n,7’ = 5, where n is the number of
tokens in the text. In summary, the detection process of Lastde can be outlined in three steps:

1. Inference: Retrieve the TPS of candidate text using a specific open-source proxy model.

2. Computing statistics: Simultaneously compute the Log-Likelihood and Agg-MDE statistics
of the TPS.

3. Scoring: Divide the two statistics and make a decision based on the result.

A simple example illustrating the framework of our proposed algorithm can be seen in Figure

We observed that the Lastde score distributions for the two types of texts are significantly different:
the Lastde score for human-written texts is generally lower, while that for LLM-generated texts is
higher, as shown in Figure The ablation experiment in Appendix [E]also proves the rationality of
applying the MDE algorithm to TPS. Therefore, to improve the detection performance of the Lastde
method, we incorporate the fast-sampling technique (Bao et al.,2024) to modify the Lastde score,
providing the final detection score of the text from the perspective of sampling discrepancy.

Under review as a conference paper at ICLR 2025

Lastde++. Specifically, for a given text ¢, an available scoring model My, and a conditionally
independent sampling model My, the sampling Lastde discrepancy is defined as

Lastde(t,8) — i1

D (t,0.0)= 10
())) &) ()
where Lastde(t, §) can be seen Equation[9]

=B, @ [Lastde(£,6)] and &° = Bint, @) [(Lastde(t,0) —)] . (11)

where /i and 2 are the expectation and variance of the Lastde scores of the sampling samples ¢
from My, respectively. Our default sampling number is 100, which is 1/100 of Fast-DetectGPT. In

fact, when 0 = 5, the sampling and scoring steps can be combined, and in this case, the detection
task can be completed by only calling the model once. For Lastde++, the default settings are
s=4,e=8xn,7 =15.

The discriminative power of Lastde++ in distinguishing human-written text and LLM-generated text
is usually stronger than that of Lastde. As shown in Figure[I2] the score distribution after sampling
normalization is more favorable for distinguishing the two types of text compared to the Lastde score
distribution. Appendix [E|presents a more detailed analysis of Lastde++.

4 EXPERIMENTS

4.1 SETTINGS

Datasets. The experiments conducted involved 6 distinct datasets, covering a range of languages
and topics. Adhering to the setups of Fast-DetectGPT and DNA-GPT, we report the main detection
results on 4 datasets: XSum (Narayan et al., 2018)) (BBC News documents), SQuAD (Rajpurkar|
et al.,[2016;[2018)) (Wikipedia-based Q&A context), WritingPrompts (Fan et al.| 2018) (for story
generation),and Reddit ELIS (Fan et al.l 2019) (Q&A data restricted to the topics of biology, physics,
chemistry, economics, law, and technique). To investigate the robustness of various detectors across
different languages, we first conducted detection on WMT16 (Bojar et al.|[2016), a common dataset
for English and German text translations. Subsequently, we gathered data on food, history, and
economics from the popular Chinese Q&A platform Zhihu, extending detection to these Chinese
datasets. Each dataset contained 150 human-written examples. For each human-written example, we
used the first 30 tokens as a prompt to input into the source model and generate a LL.M-generated
continuation. More details on the dataset and prompt engineering are provided in the Appendix

Source models & proxy model. In order to comprehensively evaluate all the detectors, we utilized
up to 18 source models for testing, including 15 famous open-source models with parameters ranging
from 1.3B to 13B, as well as 3 of the latest and widely used closed-source models: GPT-4-Turbo
(OpenAlL 2024b), GPT-40 (OpenAl, 2024a), and Claude-3-haiku (Antropic, 2024). Most
of the open-source models were consistent with Fast-DetectGPT. Additionally, apart from mGPT
(Shliazhko et al.| [2022), Qwenl.5 (Bai et al.| |2023), and Yi-1.5 (Al et al.} [2024) being used for
cross-lingual (German and Chinese) robustness detection, the residual 12 open-source models were
employed to report the main detection results. Unless explicitly stated, all methods used GPT-J (Wang
& Komatsuzakil, [2021)) as the sole proxy model to execute the entire black-box detection process,
encompassing rewriting (if necessary), sampling (if necessary), and scoring. Detailed information
about all the source models can be found in the Appendix [B.2}

Baselines & metric. We selected 8 representative training-free detection methods as baselines and
categorized them into two main groups: Sample-based and Distribution-based. Both rely on statistics
derived from the Logits tensor. The key difference is that the former directly utilizes the statistical
values obtained as the final score for the text, while the latter generates a large number of contrast
samples through specific methods (e.g., perturbation, rewriting, fast sampling) and then evaluates the
overall distribution of these samples. Specifically, the first group includes Log-Likelihood (Solaiman
et al.| |2019), LogRank (Solaiman et al., 2019), Entropy (Gehrmann et al., 2019} Ippolito et al.|
2019), and DetectLRR (Su et al.| 2023)). The second group consists of DetectGPT (Mitchell et al.,
2023)), DetectNPR (Su et al.,|2023), DNA-GPT (Yang et al., 2024), and Fast-DetectGPT (Bao et al.,
2024). Further details on the baselines can be found in the Appendix[B.3] According to prior studies
(Bao et al., |2024)), the most commonly used evaluation metric is AUROC (area under the receiver
operating characteristic curve). Therefore, we conform to this convention.

Under review as a conference paper at ICLR 2025

Table 1: Detection results for text generated by 12 source models under the white-box scenario.
The AUROC values reported for each model are averaged across three datasets: XSum, SQuAD,
and WritingPrompts. More detailed detection results are available in Table [f]in Appendix [C.T] All
methods use the source model for scoring. The “(Diff)” rows indicate the absolute improvement
in AUROC of Lastde over DetectLRR for the first group of methods, and of Lastde++ over Fast-
DetectGPT for the second group. "value" denotes the second-best AUROC. Implementation details
for all baselines can be found in the Appendix

Methods/Models GPT-2 Neo-2.7 OPT-2.7 GPT-J Llama-13 Llama2-13 Llama3-8 OPT-13 BLOOM-7.1 Falcon-7 Gemma-7 Phi2-2.7 Avg.
Sample-based Methods

Likelihood 91.65 89.40 88.08 84.95 63.66 65.36 98.35 84.45 88.00 76.78 70.14 89.67 82.54
LogRank 94.31 92.87 90.99 88.68 68.87 70.27 99.04 87.74 92.42 81.32 74.81 92.13 86.12
Entropy 52.15 51.72 50.46 54.31 64.18 61.05 23.30 54.30 62.67 59.33 66.47 44.09 53.67
DetectLRR 96.67 96.07 93.13 92.24 81.40 80.89 98.94 91.03 96.35 87.45 81.36 94.10 90.80
Lastde 98.41 98.64 98.15 97.24 88.98 88.40 99.71 96.47 99.35 95.49 91.85 96.99 95.89
(Diff) 1.74 2.57 5.02 5.00 8.58 7.51 0.77 5.44 3.00 8.04 10.5 2.89 5.09
Distribution-based Methods
DetectGPT 93.43 90.40 90.36 83.82 63.78 65.39 70.13 85.05 89.28 77.98 68.96 89.55 80.68
DetectNPR 95.77 94.77 93.24 88.86 68.60 69.83 95.55 89.78 94.95 83.06 74.74 93.06 86.85
DNA-GPT 89.92 86.80 86.79 82.21 62.28 64.46 98.07 82.51 86.74 74.04 63.63 88.00 80.45
Fast-DetectGPT 99.57 99.49 98.78 98.95 93.45 93.34 99.91 98.07 99.53 97.74 96.90 98.10 97.82
Lastde++ 99.76 99.87 99.46 99.52 96.58 96.67 99.82 98.77 99.84 98.76 98.40 98.76 98.85
(Diff) 0.19 0.38 0.68 0.57 3.13 3.33 -0.09 0.70 0.31 1.02 1.50 0.66 1.03

Table 2: Detection results for text generated by 11 open-source models and 1 closed-source model
(GPT-4-Turbo) under the black-box scenario. The AUROC values reported for each model are
averaged across three datasets: XSum, WritingPrompts, and Reddit. The meanings of "(Diff)" and
"value" are the same as in Table[I] More detailed detection results and results for the remaining 2
closed-source models are provided in the Appendix @ and@

Methods/Models GPT-2 Neo-2.7 OPT-2.7 Llama-13 Llama2-13 Llama3-8 OPT-13 BLOOM-7.1 Falcon-7 Gemma-7 Phi2-2.7 GPT-4-Turbo Avg.

Sample-based Methods
Likelihood 65.88 67.09 67.40 65.75 68.61 99.60 68.80 61.80 67.42 69.90 73.93 79.69 71.32
LogRank 70.38 71.17 72.35 70.28 72.67 99.69 73.01 67.51 71.66 72.17 77.99 79.24 74.84
Entropy 61.48 58.65 54.55 49.14 45.18 14.43 53.09 60.84 50.55 48.01 46.58 35.09 48.13
DetectLRR 79.30 79.19 81.25 78.51 78.94 97.35 80.27 79.57 79.87 73.47 83.79 73.85 80.45
Lastde 89.17 90.24 89.70 80.71 79.90 99.67 90.01 88.94 84.36 79.61 88.32 81.33 86.38
(Diff) 9.87 11.1 8.45 2.20 0.96 232 9.74 9.37 4.49 6.14 4.53 7.48 6.38
Distribution-based Methods
DetectGPT 67.56 69.28 72.03 66.12 67.96 82.90 73.89 61.83 68.69 66.55 72.76 81.73 70.94
DetectNPR 68.07 68.41 73.06 67.83 70.60 96.75 75.13 63.00 70.42 65.72 74.08 79.94 72.75
DNA-GPT 64.15 62.63 63.64 60.77 66.71 99.47 65.75 62.01 65.08 62.59 72.02 70.75 67.97
Fast-DetectGPT 89.82 88.75 86.52 77.58 77.62 99.43 86.16 84.55 81.42 81.49 86.67 88.18 85.68
Lastde++ 94.93 95.28 94.13 85.00 85.80 99.03 93.37 92.22 89.49 87.58 92.67 88.21 91.47
(Diff) 5.11 6.53 7.62 742 8.18 -0.40 721 7.67 8.07 6.09 6.00 0.03 5.80

4.2 MAIN RESULTS

We introduce Lastde as a new sample-based method to compare with the first group and Lastde++ as
its enhanced version to compare with the second group, following the default settings described in
Sec. [3.2] In the white-box scenario, we use the 12 open-source models mentioned earlier to generate
LLM-generated text and perform detection concurrently. In the black-box scenario, since GPT-J has
already been used as the proxy model, it is not suitable to use it as the source model again, so we
deploy GPT-4-Turbo to fill that gap.

Overall results. Table[T|and [2] present the detection results under white-box and black-box scenarios.
Overall, Lastde and Lastde++, which require only 100 samples, consistently outperform DetectLRR
and Fast-DetectGPT in both scenarios. Specifically, in the white-box scenario, Lastde achieves an
average AUROC of 95.89% across the 12 source models, significantly surpassing methods of the same
type and approaching the performance levels of Fast-DetectGPT. In the black-box scenario, Lastde
not only outperforms Fast-DetectGPT in detecting most open-source models but its enhanced version,
Lastde++, further improves the average AUROC by 5.80% . In summary, Lastde++ significantly
improves detection performance for open-source models in black-box scenarios compared to Fast-
DetectGPT and also achieves the best performance on closed-source models, making it a superior
training-free detection method. Given that black-box scenarios are more common in practice and
that open-source models still have a wide range of applications similar to closed-source models
due to factors such as API call costs, Lastde++ is poised to become a more accurate cross-source
LLM-generated texts detector and a powerful benchmark. For detailed detection results, please refer
to the Table[6]in the Appendix[C.T]and the Table[7]in the[C.2]

Hyperparameter analysis. In Figure 3] we explored the impact of Lastde’s three hyperparameters
(s,&,7") on detection results across four specific datasets. Firstly, a larger window size results in

Under review as a conference paper at ICLR 2025

The impact of windon size on AUROC

The impact of € = k- n on AUROC

The impact of T on AUROC

924 92.54

901 90.0 901
I8} I8}
O 88 S 8757 3
E E Ses
< 86 < 85.01 =

84 82.5

80 4
824 80.0 1
2 6 1n 4n 6n 8n 10n 5 10 15 20 25
WindowsSize(s) Multiple(k) of Text(token) length(n) Number of scales(t’)
~@- XSum(GPT-4-Turbo) Reddit(GPT-4-Turbo) ~ —il- SQuAD(LIama-13) —h~ WritingPrompts(Gemma-7)

Figure 3: Sensitivity analysis results for three types of hyperparameters in Lastde++. The legend
denotes (Dataset, Source Model). Through preliminary analysis and referring to the parameter
tuning experiments of the original paper of the MDE algorithm, we explore the following ranges:
s€{2,3,4,5,6}, ¢ € {n,4n,6n,8n,10n}, 7’ € {5,10, 15,20, 25}. In each experiment, we adjust
only one type of hyperparameters while keeping the other two types fixed at their default settings.

fewer s-probability segments, while if the size is too small, the reflection of the variations will be too
monotonous. Both situations are not conducive to capturing the authentic information of the sequence.
This is confirmed by Figure 3] (left), where a size of 3 or 4 optimally balances detection performance
across the four datasets. Secondly, a larger ¢ results in finer granularity when partitioning the [—1, 1]
range, which is generally advantageous. To adaptively vary ¢, it is set as a multiple (k) of the number
of tokens (n). As shown in Figure 3| (middle), detection performance improves with increasing k
on most datasets, converging at 8x or 10x, except for the Reddit (GPT-4-Turbo) dataset. Finally,
increasing the scale factor from 5 to 10 improves detection across all four datasets. However, beyond
10, performance continues to improve on the Reddit (GPT-4-Turbo) dataset but plateaus or slightly
declines on others, likely because a huge scale factor may not align well with the token count.

4.3 ROBUSTNESS ANALYSIS

Samples number. According to findings from DetectLLM (Su et al.,[2023)), increasing the number
of perturbed samples enhances detection accuracy. Our experiments on contrast samples for all
distribution-based methods reveal that more contrast samples improve detection performance, with
DetectGPT shows the most significant gains (see Figure[d). Notably, Lastde++ achieves superior
performance with just 10 samples, surpassing Fast-DetectGPT with 100 samples and outperforming
other methods by a considerable margin. This underscores Lastde++’s strong competitiveness even
with a limited number of contrast samples.

Average AUROC on XSum-SQUAD-WritingPrompts
98.5

21 i 85<
| f F98.0 T 804
| 75

.01 < 70
| " 65 ﬁ
| L 96. 60 //

. | 55 /

10 20 50 100 30 50 120 150 160

XSum(GPT-4-Turbo)

~ ~
[SEN)
o w
ing

~
N
5}

T

©
~
5

0C

N
[

©
o
n

o [

w

o
©o
~
o

AUROC (Fast Sampl

AU

AUROC (Non-Fast Sampling)
3
o

o
N
%)
©
o
=}

The number of contrast samples Response Length (words)
@~ DetectGPT DetectNPR DNA-GPT = Fast-DetectGPT @)= Lastde++ ~@- Likelihood =6 Lastde DetectGPT DetectNPR - Fast-DetectGPT @ Lastde++

Figure 5: Detection results of 6 detection meth-
ods on 5 response lengths. Specifically, the 3
hyperparameters of Lastde++ and Lastde were
setto s = 3,e = 1-n,7 = 10 to adapt to
shorter text. The settings for the other methods
were kept at their default settings.

Figure 4: Distribution-based methods’ robustness
to contrast sample numbers. The right y-axis
represents the AUROC of fast sampling methods,
while the left y-axis represents non-fast sampling
methods (see Appendix [FI). Perform white-box
detection using Gemma-7 as the source model.

Response lengths. Prior studies (Verma et al., 2023} Mao et al.,|2024) have demonstrated that shorter
texts are generally less conducive to detection. Therefore, we evaluated detection performance across
varying response lengths (number of words), focusing primarily on XSum generated by GPT-4-Turbo

Under review as a conference paper at ICLR 2025

due to source response length constraints. We truncated responses to {30, 50, 120, 150, 160} words,
revealing in Figure [5| that most detection methods’ performance improves with longer responses,
consistent with prior research findings. The shorter response length inherently restricts the number of
scales (77), thereby diminishing the capacity of Lastde and Lastde++ to capture local information
in the initial stages. When the length exceeds 120, Lastde and Lastde++ clearly outperform other
comparable methods, underscoring their sustained competitiveness.

Decoding strategies. We evaluated the impact of different decoding strategies on detection, including
top-p, top-k, and temperature sampling, each controlling the diversity of generated text from different
angles. We conducted comparisons on Xsum, SQuAD, and WritingPrompts. The results presented in
Figure [6indicate that across all three strategies, Lastde++ consistently exhibits superior robustness
among the three source models, while Lastde significantly outperforms sample-based methods such
as DetectLRR, achieving detection performance comparable to Fast-DetectGPT.

Top-p = 0.96 Top-k = 40 Temperature = 0.80
Neo-2.7 Neo-2.7 Neo-2.7

80 80

GPT-2 GPT-2 GPT-2

OPT-2.7 OPT-2.7 OPT-2.7

—— Likelihood —— LogRank DetectLRR ~ —— Lastde = —— Fast-DetectGPT —— Lastde++

Figure 6: The impact of the decoding strategy. The average AUROC values across 3 datasets are
provided for each Detection method (detailed results can be found in Table[T5]in Appendix[F3). The
source models were GPT-2, Neo-2.7, and OPT-2.7, with the decoding strategy hyperparameters set
to top-p = 0.96, top-k = 40, and temperature=0.8. All experiments were conducted in a black-box
setting, with other model implementation details kept at their default settings.

Paraphrasing attack. Previous studies (Krishna et al., [2024; [Sadasivan et al., [2023) show that
paraphrasing attacks can effectively evade detection by methods like watermarking, GPTZero,
DetectGPT, and OpenAlT’s text classifier. Following Bao (Bao et al.|[2024)), we used T5-Paraphrase1E|
to perform paraphrasing attacks on texts generated by source models. As shown in Table 3] both
methods exhibited performance drops in detecting paraphrased texts, in both black-box and white-
box scenarios. However, Lastde++ consistently maintained a significant advantage, with smaller
performance declines compared to Fast-DetectGPT across most scenarios and datasets. Notably,
in detecting paraphrased Reddit (GPT-4-Turbo), Lastde++ surpassed Fast-DetectGPT, indicating
superior robustness (see Appendix [F2)).

Table 3: AUROC for Fast-DetectGPT and Lastde++ before and after paraphrasing attacks, with
average values across three source models in both white-box (Llama-13, OPT-13, GPT-J) and black-
box (Llama-13, OPT-13, GPT-4-Turbo) scenarios, and the decrease in AUROC values indicated in
parentheses. Detailed results are shown in the Appendix @

Methods/Datasets ‘ XSum(Original) XSum(Paraphrased) ‘ WritingPrompts(Original) WritingPrompts(Paraphrased) ‘ Reddit(Original) Reddit(Paraphrased)
White-box Settings

Fast-DetectGPT 96.04 85.48 (| 10.6) 98.99 96.29 (| 2.70) 98.08 94.60 (| 3.48)

Lastde++ 97.75 89.27 (| 8.48) 99.57 97.84 (| 1.73) 99.10 97.00 (] 2.10)
Black-box Settings

Fast-DetectGPT 76.62 67.17 (] 9.45) 89.26 83.82 (] 5.44) 86.04 83.04 (J 3.00)

Lastde++ 82.57 73.43 (1 9.14) 92.74 88.54 (| 4.20) 91.26 87.90 (] 3.36)

'https://huggingface.co/Vamsi/T5_Paraphrase_Paws

https://huggingface.co/Vamsi/T5_Paraphrase_Paws

Under review as a conference paper at ICLR 2025

Non-English scenarios. The latest research Average AUROC for Both Scenarios
. . 100 97.76
(Liang et al [2023) shows that detectors exhibit LR e

bias against non-English writers. Therefore, we
conducted experiments on datasets in three dif-
ferent languages, and the results confirmed that
Lastde++ remains effective (see Figure [7). The
Lastde++ outperforms in detecting texts across all

AUROC

three languages. Specifically, Lastde++ surpasses 1
Fast-DetectGPT by an average AUROC margin of
4.56% (WMT16-German) and 5.24% (WMT16- 201
English) in both scenarios. On our newly intro-
duced Chinese dataset, which includes three topics, 0-

WMT16(GER) ~ WMTLG(ENG) Economy(CHI) Food(CHI) History(CHI)

both methods perform well, but Lastde++ demon-
strates a slight advantage. Therefore, Lastde++ is

better suited for cross-lingual detection scenarios Fi 7. Detecti of .
compared to Fast-DetectGPT. igure 7: Detection performance comparison

across English, German, and Chinese texts. The
Selection of proxy models. Bao source models in the white-box scenario are
discussed the impact of proxy sampling models mGPT (English and German) and Qwenl.5-7
on detection performance in white-box scenarios. (Chinese), while the source models in the black-
Our experiments further reveal that the choice of box scenario remain unchanged and the proxy
proxy model in black-box scenarios significantly models are GPT-J (English and German) and
influences detection performance. We evaluated ~ Yil.5-6 (Chinese).
five training-free detection methods across five different source and proxy model pairs, as illustrated in
Figure[8] The results indicate that Lastde matches in most or even surpasses Fast-DetectGPT pairings,
while Lastde++ outperforms Fast-DetectGPT in all five pairings. Notably, detection performance was
poor across all five methods with the closed-source GPT-4-Turbo and the proxy model Llama3-8.
Despite this, our proposed Lastde and Lastde++ consistently outperformed Fast-DetectGPT and other
baseline methods, further emphasizing that the choice of proxy model greatly influences detection
performance.

BN Fast-DetectGPT B Lastde++

AUROC for different source and proxy model pairs

89.42 89.44

o
o
!

55.78 2783

AUROC (%)

N
S
!

GPT-)(Neo-2.7) OPT-2.7(OPT-13) Gemma-7(GPT-2) GPT-4-Turbo(Llama-13) GPT-4-Turbo(Llama3-8)

W Likelihood W= Lastde DNA-GPT ~ mmE Fast-DetectGPT W Lastde++

Figure 8: The performance of 5 zero-shot detection methods under 5 different combinations of source
models and proxy models is presented. The x-axis represents the 5 different combinations, with the
proxy model in parentheses and the source model outside the parentheses. The source dataset is
XSum, and the other settings are kept at their default values.

5 CONCLUSION

In this work, we propose a novel training-free method for detecting LLM-generated text, termed
Lastde and Lastde++, by mining token probability sequences (TPS). By observing significant dif-
ferences in the temporal dynamics of TPS between human-written and LLM-generated texts, we
leveraged diverse entropy from time series analysis to develop local statistical features, integrating
them with global statistics to create an effective and robust detector. Our approach demonstrates effi-
cacy in both black-box and white-box settings while maintaining comparable or lower computational
costs. Furthermore, it outperforms existing training-free detectors in complex scenarios, including
paraphrasing attacks and cross-lingual tasks.

10

Under review as a conference paper at ICLR 2025

REFERENCES

01. AL :, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin
Yang, Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu,
Pengcheng Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and
Zonghong Dai. Yi: Open foundation models by 01.ai, 2024. URL https://arxiv.org/
abs/2403.04652.

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta—1lama/llama3/
blob/main/MODEL_CARD.md.

Antropic. Introducing the next generation of claude. |https://www.anthropic.com/news/
claude-3-family, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chenggiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuangi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng, Marc’ Aurelio Ranzato, and Arthur Szlam.

Real or fake? learning to discriminate machine from human generated text. arXiv preprint
arXiv:1906.03351, 2019.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Efficient
zero-shot detection of machine-generated text via conditional probability curvature. International
Conference on Learning Representations, 2024.

Amrita Bhattacharjee, Tharindu Kumarage, Raha Moraffah, and Huan Liu. Conda: Contrastive
domain adaptation for ai-generated text detection. arXiv preprint arXiv:2309.03992, 2023.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autore-
gressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/
10.5281/zenodo.5297715, If you use this software, please cite it using these metadata.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-20b: An
open-source autoregressive language model, 2022. URL https://arxiv.org/abs/2204,
06745,

Ondrej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, et al. Findings of the
2016 conference on machine translation (wmt16). In First conference on machine translation, pp.
131-198. Association for Computational Linguistics, 2016.

Souradip Chakraborty, Amrit Singh Bedi, Sicheng Zhu, Bang An, Dinesh Manocha, and Furong
Huang. On the possibilities of ai-generated text detection. arXiv preprint arXiv:2304.04736, 2023.

Evan N Crothers, Nathalie Japkowicz, and Herna L Viktor. Machine-generated text: A comprehensive
survey of threat models and detection methods. IEEE Access, 11:70977-71002, 2023.

Geoffrey M Currie. Academic integrity and artificial intelligence: is chatgpt hype, hero or heresy? In
Seminars in Nuclear Medicine, volume 53, pp. 719-730. Elsevier, 2023.

Holly Else. Abstracts written by chatgpt fool scientists. Nature, 613:423 — 423, 2023.
Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint

arXiv:1805.04833, 2018.

11

https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/2403.04652
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745

Under review as a conference paper at ICLR 2025

Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. Eli5:
Long form question answering. arXiv preprint arXiv:1907.09190, 2019.

Xiao Fang, Shangkun Che, Minjia Mao, Hongzhe Zhang, Ming Zhao, and Xiaohang Zhao. Bias
of ai-generated content: an examination of news produced by large language models. Scientific
Reports, 14(1):5224, 2024.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical detection and
visualization of generated text. arXiv preprint arXiv:1906.04043, 2019.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL https://arxiv.org/
abs/2306.11644l

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran Nie, Yuxuan Ding, Jianwei Yue, and
Yupeng Wu. How close is chatgpt to human experts? comparison corpus, evaluation, and detection.
arXiv preprint arXiv:2301.07597, 2023.

Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah
Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot detection
of machine-generated text, 2024. URL https://arxiv.org/abs/2401.12070.

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang Zhang. Mgtbench: Benchmarking
machine-generated text detection, 2024. URL https://arxiv.org/abs/2303.14822,

Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic detection of
generated text is easiest when humans are fooled. arXiv preprint arXiv:1911.00650, 2019.

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks VS Lakshmanan. Automatic detection of
machine generated text: A critical survey. arXiv preprint arXiv:2011.01314, 2020.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering. arXiv preprint arXiv:1909.06146, 2019.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense. Advances in Neural
Information Processing Systems, 36, 2024.

Hyunseok Lee, Jihoon Tack, and Jinwoo Shin. Remodetect: Reward models recognize aligned llm’s
generations, 2024. URL https://arxiv.org/abs/2405.17382,

Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Longyue Wang, Linyi Yang, Shuming Shi, and Yue Zhang.
Deepfake text detection in the wild. arXiv preprint arXiv:2305.13242, 2023.

Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric Wu, and James Zou. Gpt detectors are biased
against non-native english writers, 2023. URL https://arxiv.org/abs/2304.02819.

Weixin Liang, Yaohui Zhang, Zhengxuan Wu, Haley Lepp, Wenlong Ji, Xuandong Zhao, Hancheng
Cao, Sheng Liu, Siyu He, Zhi Huang, et al. Mapping the increasing use of llms in scientific papers.
arXiv preprint arXiv:2404.01268, 2024.

Muneer M Alshater. Exploring the role of artificial intelligence in enhancing academic performance:
A case study of chatgpt. Available at SSRN 4312358, 2022.

Shixuan Ma and Quan Wang. Zero-shot detection of 1lm-generated text using token cohesiveness,
2024. URL https://arxiv.org/abs/2409.16914.

Chengzhi Mao, Carl Vondrick, Hao Wang, and Junfeng Yang. Raidar: generative ai detection via
rewriting, 2024. URL https://arxiv.org/abs/2401.12970,

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature. In International
Conference on Machine Learning, pp. 24950-24962. PMLR, 2023.

12

https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2401.12070
https://arxiv.org/abs/2303.14822
https://arxiv.org/abs/2405.17382
https://arxiv.org/abs/2304.02819
https://arxiv.org/abs/2409.16914
https://arxiv.org/abs/2401.12970

Under review as a conference paper at ICLR 2025

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. ArXiv, abs/1808.08745,
2018.

Andreas L Opdahl, Bjgrnar Tessem, Duc-Tien Dang-Nguyen, Enrico Motta, Vinay Setty, Eivind
Throndsen, Are Tverberg, and Christoph Trattner. Trustworthy journalism through ai. Data &
Knowledge Engineering, 146:102182, 2023.

OpenAl Al text classifier, Jan 2023. URL https://beta.openai.com/
ai-text-classifier!

OpenAl. Hello gpt-40. https://openai.com/index/hello-gpt-40/,2024a.
OpenAl. Gpt-4 technical report, 2024b. URL https://arxiv.org/abs/2303.08774.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb
dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116,2023. URL https://arxiv.org/abs/2306.01116.

Jiameng Pu, Zain Sarwar, Sifat Muhammad Abdullah, Abdullah Rehman, Yoonjin Kim, Parantapa
Bhattacharya, Mobin Javed, and Bimal Viswanath. Deepfake text detection: Limitations and
opportunities. In 2023 IEEE symposium on security and privacy (SP), pp. 1613-1630. IEEE, 2023.

Claudia Quinonez and Edgar Meij. A new era of ai-assisted journalism at bloomberg. Al Magazine,
2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383-2392,
Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
D16-1264. URL https://aclanthology.org/D16-1264.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for SQuAD. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 784-789,
Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/
P18-2124. URL https://aclanthology.org/P18-2124l

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
Jjournal, 27(3):379-423, 1948.

Yuhui Shi, Qiang Sheng, Juan Cao, Hao Mi, Beizhe Hu, and Danding Wang. Ten words only still
help: Improving black-box ai-generated text detection via proxy-guided efficient re-sampling.
arXiv preprint arXiv:2402.09199, 2024.

Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova, Vladislav Mikhailov, Anastasia Kozlova, and
Tatiana Shavrina. mgpt: Few-shot learners go multilingual, 2022. URL |https://arxiv.org/
abs/2204.07580l

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. Ai
models collapse when trained on recursively generated data. Nature, 631(8022):755-759, 2024.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

13

https://beta.openai.com/ai-text-classifier
https://beta.openai.com/ai-text-classifier
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2306.01116
https://aclanthology.org/D16-1264
https://aclanthology.org/P18-2124
https://arxiv.org/abs/2204.07580
https://arxiv.org/abs/2204.07580

Under review as a conference paper at ICLR 2025

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank information
for zero-shot detection of machine-generated text. arXiv preprint arXiv:2306.05540, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930-1940, 2023.

Edward Tian. Gptzero: An ai text detector, 2023. URL https://gptzero.me/.

Yuchuan Tian, Hanting Chen, Xutao Wang, Zheyuan Bai, Qinghua Zhang, Ruifeng Li, Chao Xu,
and Yunhe Wang. Multiscale positive-unlabeled detection of ai-generated texts. arXiv preprint
arXiv:2305.18149, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee. Authorship attribution for neural text
generation. In Proceedings of the 2020 conference on empirical methods in natural language
processing (EMNLP), pp. 8384-8395, 2020.

Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan Klein. Ghostbuster: Detecting text ghostwritten
by large language models. arXiv preprint arXiv:2305.15047, 2023.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang, Dong Zhang, and Xipeng Qiu. Seqxgpt: Sentence-
level ai-generated text detection. arXiv preprint arXiv:2310.08903, 2023.

Xianzhi Wang, Shubin Si, and Yongbo Li. Multiscale diversity entropy: A novel dynamical measure
for fault diagnosis of rotating machinery. IEEE Transactions on Industrial Informatics, 17(8):
5419-5429, 2020.

Emily Wenger. Ai produces gibberish when trained on too much ai-generated data, 2024.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ili¢,
Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, Francois Yvon, et al. Bloom: A
176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Changrong Xiao, Sean Xin Xu, Kunpeng Zhang, Yufang Wang, and Lei Xia. Evaluating reading
comprehension exercises generated by llms: A showcase of chatgpt in education applications. In
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications
(BEA 2023), pp. 610-625, 2023.

Xianjun Yang, Wei Cheng, Yue Wu, Linda Petzold, William Yang Wang, and Haifeng Chen. Dna-
gpt: Divergent n-gram analysis for training-free detection of gpt-generated text. International
Conference on Learning Representations, 2024.

Xiao Yu, Yuang Qi, Kejiang Chen, Guogiang Chen, Xi Yang, Pengyuan Zhu, Xiuwei Shang, Weiming
Zhang, and Nenghai Yu. Dpic: Decoupling prompt and intrinsic characteristics for 1lm generated
text detection, 2024. URL https://arxiv.org/abs/2305.12519.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

14

https://gptzero.me/
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2305.12519

Under review as a conference paper at ICLR 2025

Biru Zhu, Lifan Yuan, Ganqu Cui, Yangyi Chen, Chong Fu, Bingxiang He, Yangdong Deng, Zhiyuan
Liu, Maosong Sun, and Ming Gu. Beat llms at their own game: Zero-shot llm-generated text
detection via querying chatgpt. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 7470-7483, 2023.

15

Under review as a conference paper at ICLR 2025

A TASK AND SCENARIO DEFINITION FOR TRAINING-FREE DETECTION

Task Definition. Current research mainly defines the problem of LLM-generated text detection in
two ways. According to DetectGPT (Mitchell et al.||2023), training-free detection can be defined as:
given a specific autoregressive language model M and a candidate text t = ({1, t2, ..., t,,) containing
n tokens, determine whether ¢ was generated by M without any training. Under this setup, even
if the judgment is "no", the candidate text may still belong to another language model Q(# M).
Therefore, we can only conclude that ¢ is not generated by M, rather than by humans. This definition
is obviously more suitable for more precise detection situations such as tracing the source of text. In
practical detection scenarios, we often seek a more straightforward conclusion. So in this paper, we
follow the definition provided by Fast-DetectGPT (Bao et al.,|2024)) for the training-free detection
problem, which is: given a text £, determine whether ¢ is LLM-generated without any machine
training. This definition allows us to use any available language model (proxy model) for inference
and judgment.

Scenarios definition. Suppose ¢ is a LLM-generated text, we can classify the detection scenarios
into white-box and black-box settings (Gehrmann et al., [2019) based on whether we can obtain
the probabilities pg(t;|t<;) for each token ¢; from source model M, that generated ¢, where ¢
is the parameters of M. In the white-box setting, the range of detection results is limited to the
source model and humans. We input ¢ into My for inference, and the returned result contains actual
statistical information about ¢, such as the probability of each token. In a black-box setting, detection
becomes more challenging because we cannot know in advance whether ¢ was generated by M. As
aresult, it is impossible to use My to obtain the actual statistical information about ¢. Fortunately,
there are many open-source models (such as LLaMA Series (Touvron et al.l [2023a3b; Al@Metal
2024)) with varying parameter scales that we can leverage. These models share a similar underlying
architecture, with the common goal of learning the general patterns of human text creation. Based on
this consideration, a compromise approach for black-box scenario detection is to select a suitable
open-source model (not necessarily the source model itself) as a proxy model, and indirectly realize
detection through analyzing the proxy model’s inference results on t.

Indeed, black-box detection is more common in real-world scenarios. With the release of increasingly
powerful open-source and closed-source models, developing a universal detector that can operate
across different sources and domains to improve the accuracy of detecting LLM-generated texts
in black-box scenarios is becoming an urgent task. However, white-box detection also plays an
irreplaceable role in tasks such as text attribution (He et al.,[2024)), where it is sometimes crucial to
precisely identify the model that generated the text, a task that is no simpler than black-box detection.

B DETAILS ABOUT THE SETTINGS AND BASELINES

B.1 DATASETS AND PROMPTS

XSum, SQuAD, and WritingPrompts were primarily used for white-box detection, while XSum,
WritingPrompts, and Reddit were primarily used for black-box detection. For each dataset, we
filtered out samples with text length less than 150 words, and randomly sampled 150 of these as
human-written examples. For each human-written example, we used the first 30 tokens as a prompt
to generate a continuation from the source model. For source models that require system prompts
or API calls, including OpenAl’s gpt—-4-turbo-2024-04-09, gpt-40-2024-05-13, and
Anthropic’s claude-3-haiku-20240307, we provide the details of prompt engineering in
Table]

Table 4: Examples of prompts used in different datasets for Black-box detection.

Datasets Prompts
Xsum .Systemf You are a professional News Writer. .
User: Please write an article with about 200 words starting exactly with: Prefix
Writing System: You are a professional Fiction writer.
Prompts User: Please write a story with about 200 words starting exactly with: Prefix

System: You are a helpful assistant that answers the question provided.
User: Please continue the answer in 200 words starting exactly with: Prefix

Reddit

16

Under review as a conference paper at ICLR 2025

Thus, each complete dataset contained 150 negative (human-written) and 150 positive (LLM-
generated) samples, with roughly equivalent text length and the beginning portion between each
pair. Finally, We have excluded the commonly used PubMedQA dataset (Jin et al.,|2019) from our
experiments because the length of most samples in this dataset is significantly shorter compared to
the other datasets. This discrepancy in sample length could compromise the fairness of the testing.

B.2 ALL LARGE LANGUAGE MODELS USED

All the source models used are listed in Table[5] which includes both open-source and closed-source
models. Our experimental setup consists of two RTX 3090 GPUs (2x24GB). Due to GPU memory
limitations, we did not conduct experiments on models with parameter sizes greater than 20B, such
as NeoX (Black et al.,[2022), and instead replaced it with Falcon-7, Gemma-7, and Phi2-2.7 to cover
as many large language model products from tech companies as possible. Except for Neo-2.7, GPT-2,
OPT-2.7, Phi2-2.7, and mGPT, which use full-precision (float32), the rest of the open-source models
use half-precision (float16).

Table 5: Details of the source models that is used to produce machine-generated text.

Model Model File/Service Parameters
mGPT (Shliazhko et al.| 2022) ai-forever/mGPT 1.3B
GPT-2 (Radford et al.}2019) openai-community/gpt2-x1 1.5B
OPT-2.7 (Zhang et al | [2022) facebook/opt-2.7b 2.7B
Neo-2.7 (Black et al.|[2021) EleutherAl/gpt-neo-2.7B 2.7B
Phi2-2.7 (Gunasekar et al.| 2023) microsoft/phi-2 2.7B
GPT-J (Wang & Komatsuzaki} [2021) EleutherAl/gpt-j-6B 6B
Yil.5-6 (Al et al.[[2024) 01-ai/Yi-1.5-6B 6B
Falcon-7 (Penedo et al.| 2023) tiiuae/falcon-7b 7B
Gemma-7 (Team et al.|[2024) google/gemma-7b 7B
Qwenl.5-7 (Bai et al.}|12023) Qwen/Qwenl.5-7B 7B
BLOOM-7.1 (Workshop et al.}|2022) bigscience/bloom-7b1 7.1B
Llama3-8|Al@Metal (2024) meta-llama/Meta-Llama-3-8B 8B
OPT-13 (Zhang et al.||2022) facebook/opt-13b 13B
Llama-13 (Touvron et al.||2023a) huggyllama/llama-13b 13B
Llama2-13 (Touvron et al.;[2023b) TheBloke/Llama-2-13B-fpl6 13B
GPT-4-Turbo (OpenAl, 2024b) OpenAl NA
GPT-40 (OpenAl| [2024a) OpenAl NA
Claude-3-haiku (Antropic, [2024) Anthropic NA

It is worth noting that the default setting of Fast-DetectGPT uses GPT-J as the conditional independent
sampling model and Neo-2.7 as the scoring model. However, we did not follow this setting and
instead unified the sampling model and scoring model as GPT-J. On the one hand, Fast-DetectGPT
(our main improved method) achieves the best performance compared to itself in our dataset. On the
other hand, using a single model not only saves GPU memory but also makes the detection process
more unified.

B.3 DETAILS OF BASELINES

The implementation details of the 8 baselines in this article are as follows:

Log-Likelihood (Solaiman et al.,[2019). The average log probability of all tokens in the candidate
text is used as the metric.

Log-Rank (Solaiman et al.;[2019). The average log rank of all tokens in the candidate text, sorted in
descending order by probability, is used as the metric.

Entropy (Gehrmann et al.l 2019; [Ippolito et al.| 2019). The average entropy of each token is
calculated based on the probability distribution over the vocabulary.

DetectLRR (Su et al.,[2023)). The ratio of log-likelihood to log-rank is used as the average metric.

The first group of methods aggregates the probability information of each token in the text by
constructing appropriate statistics, which are used as the final detection score. By default, we use
GPT-J as the scoring model in black-box scenario.

17

Under review as a conference paper at ICLR 2025

DetectGPT (Mitchell et al.,|2023). Perturbation likelihood discrepancy is used as the metric. We
maintain the default settings from the original paper, using T5-3B as the perturbation model with 100
perturbations.

DetectNPR (Su et al.;,|2023)). Normalized log-rank perturbation is used as the metric, with all other
settings consistent with DetectGPT.

DNA-GPT (Yang et al.l 2024). Contrast samples are generated using a cut-off and rewrite method,
with log-likelihood as the metric. The default settings are a truncation rate of 7 = 0.5 and 10 rewrites.

Fast-DetectGPT (Bao et al.||2024). Sampling discrepancy is used as the metric. To ensure a fair
comparison, we chose both the sampling model and the scoring model as GPT-J, instead of the
original setting where the sampling model was GPT-J and the scoring model was Neo-2.7. This
modification results in better detection performance on our dataset. The number of samples remains
at 10,000.

The second group of methods requires perturbing or sampling the original samples to obtain a certain
number of contrast samples, then calculating the statistical discrepancy between the contrast samples
and the original samples as the final detection score. In the black box scenario, we use GPT-J as
the sampling, rewriting, and scoring model by default. Non-sampling methods (e.g., DetectNPR
and DNA-GPT) generally require multiple model calls, making detection time longer. Therefore,
sampling-based methods are more practical in comparison.

C DETAILS OF DETECTION RESULTS

C.1 DETAIL OF MAIN RESULTS IN THE WHITE-BOX SCENARIO

The main results of the white-box scenario are shown in Table[f] First, the basic version of the Lastde
method achieved the best detection performance among the 5 sample-based training-free methods,
with an average AUROC 5.09% higher than the previously best-performing DetectLRR method.
Notably, it led by approximately 8% in the well-known LLaMA series and Gemma, making it a strong
detection statistics. Second, among the 5 distribution-based training-free methods, the enhanced
Lastde++ method achieved the best detection performance with only 100 samples, significantly fewer
than Fast-DetectGPT. This demonstrates that our method has a notable advantage in the white-box
scenario, providing insights for more detailed detection tasks such as model attribution.

C.2 DETAIL OF MAIN RESULTS IN THE BLACK-BOX SCENARIO

Although the detection performance of all methods across the 12 source models showed a significant
decline compared to the white-box scenario, as shown in Table|/| Lastde and Lastde++ still outper-
formed other methods of the same type. Lastde++ maintained a considerable leading advantage across
all open-source and closed-source models. Notably, the two fast-sampling methods, Fast-DetectGPT
and Lastde++, performed worse on Llama3-8 compared to their base statistics, Likelihood and Lastde.
A possible reason for this is that the detection performance may have already saturated, and the
sampling process introduced additional randomness.

Additionally, in the black-box scenario, DetectLRR showed a noticeable performance gap in detecting
GPT-4-Turbo compared to Likelihood and LogRank, whereas this was not observed in the other
open-source models. This observation is consistent with the conclusions of Fast-DetectGPT (Bao
et al.| 2024)), and we provide further analysis of this phenomenon in Appendix

18

Under review as a conference paper at ICLR 2025

Table 6: The details in Table [[linclude the main results of 8 baseline methods as well as Lastde and
Lastde++ on the white-box detection task across the XSum, SQuAD, and WritingPrompts datasets.
DNA-GPT generates rewritten samples using the source model, while Fast-DetectGPT and Lastde++
utilize sampling from the source model. Other implementation settings are described in Appendix

Methods/Model GPT-2 Neo-2.7 OPT-2.7 GPT-J Llama-13 Llama2-13 Llama3-8 OPT-13 BLOOM-7.1 Falcon-7 Gemma-7 Phi2-2.7 Avg.

XSum
Likelihood 86.89 86.68 81.46 81.47 61.66 63.08 99.43 71.15 85.31 68.60 68.04 88.68 79.04
LogRank 90.00 90.59 84.64 84.99 67.07 68.75 99.86 80.99 90.61 73.71 73.16 91.29 82.97
Entropy 56.19 59.82 54.33 59.80 66.32 62.99 34.77 57.34 69.58 67.09 68.73 56.24 59.43
DetectLRR 92.49 92.44 85.57 86.69 78.95 76.96 99.01 84.42 95.11 80.13 81.86 91.73 87.11
Lastde 95.79 97.44 95.63 96.52 89.92 85.72 100.0 92.32 99.12 92.68 92.28 95.82 94.44
" DetectGPT ~ ~ 7 ¢ 80.527 T 8941 T 78333 T "8124 T T 688T T T T 67.55° T T 76927 T T 7695 T T 8699 T~ T 75700 T T 68.08” T T 8897 T 7882
DetectNPR 90.98 92.31 86.46 86.15 69.49 70.94 98.52 80.01 93.67 77.09 73.85 92.64 84.34
DNA-GPT 83.78 80.30 77.08 75.35 59.25 58.83 98.40 71.32 80.82 60.15 59.36 83.64 74.02
Fast-DetectGPT 98.92 98.97 96.98 98.12 94.80 92.63 99.89 95.19 99.22 96.20 96.40 98.08 97.12
Lastde++ 99.36 99.72 98.46 99.04 97.27 96.11 99.71 96.94 99.64 97.91 97.98 98.97 98.43
SQuAD
Likelihood 92.05 86.77 88.84 80.47 46.56 48.36 95.65 84.04 75.60 72.79 83.21 78.29
LogRank 95.14 91.48 92.39 85.84 51.84 53.55 97.25 87.92 81.20 76.77 87.36 82.61
Entropy 59.86 57.88 52.77 61.14 70.47 71.44 30.76 61.02 63.11 63.16 50.94 59.16
DetectLRR 97.97 96.92 95.83 92.58 71.65 73.27 98.93 92.16 89.29 80.72 92.64 89.77
Lastde 99.62 98.87 99.01 96.39 81.99 82.61 99.16 98.08 95.92 90.81 96.88 94.88
" DetectGPT™ ~ ~ ~ ¢ 93737 8626 ~ 90.15 ~ "77.83 T T 4096~~~ 47.06° ~ ~ "5471 ~ " 8176 ~ ~ 86817 ~ T T 70527~ T 71467~ 8166~ 7358
DetectNPR 97.48 94.13 94.68 84.40 48.30 50.32 90.66 91.15 80.99 76.74 88.09 82.54
DNA-GPT 93.74 88.78 89.96 83.33 50.65 54.83 96.56 85.43 79.94 67.68 86.44 80.46
Fast-DetectGPT 99.91 99.72 99.69 99.51 87.20 89.35 99.91 99.62 98.75 96.79 99.28 97.45
Lastde++ 99.96 99.93 99.95 99.78 92.90 94.50 99.84 99.97 99.42 98.80 99.30 98.69
WritingPrompts
Likelihood 96.02 94.76 93.93 92.92 82.76 84.64 99.98 92.17 93.62 86.13 69.58 97.13 90.30
LogRank 97.78 96.55 95.94 95.22 87.69 88.52 100.00 94.30 96.09 89.04 74.49 97.73 92.78
Entropy 40.39 37.45 44.28 41.98 55.74 48.71 4.36 44.53 51.07 47.78 67.52 25.10 42.41
DetectLRR 99.54 98.85 97.99 97.44 93.60 92.45 98.88 96.50 98.60 92.94 81.49 97.93 95.52
Lastde 99.73 99.60 99.80 98.82 98.05 96.86 99.98 99.01 99.71 97.88 92.47 98.26 9835
" DetectGPT™ ~ ~ ¢ 97.04” ~ 95527 T 797.61° ~ "9240 ~ " 8156 8145 T T T8642 9645 T 9404 ~ T T 87737 T T 67.35 T 98.02° 89.63
DetectNPR 98.85 97.88 98.57 96.04 88.00 88.23 97.48 98.19 97.59 91.11 73.62 98.45 93.67
DNA-GPT 92.25 91.32 93.34 87.95 76.95 79.72 99.26 90.77 91.19 82.04 63.85 9391 86.88
Fast-DetectGPT ~ 99.89 99.78 99.68 99.22 98.35 98.04 99.91 99.40 99.74 98.27 97.50 96.94 98.89
Lastde++ 99.96 99.95 99.96 99.75 99.56 99.41 99.92 99.40 99.95 98.95 98.42 98.02 99.44

Table 7: The details in Table include the main results of 8 baseline methods, as well as Lastde and
Lastde++, on the black-box detection task across the XSum, WritingPrompts, and Reddit datasets.
All baselines use the default settings described in Appendix for the black-box scenario.

Methods/Model GPT-2 Neo-2.7 OPT-2.7 Llama-13 Llama2-13 Llama3-8 OPT-13 BIOOM-7.1 Falcon-7 Gemma-7 Phi2-2.7 GPT-4-Turbo Avg.

XSum
Likelihood 54.02 48.45 63.20 54.22 54.32 98.91 68.84 39.49 54.02 65.43 54.61 60.44 59.66
LogRank 58.35 53.52 66.96 60.09 59.46 99.12 72.30 47.25 59.82 68.14 61.64 61.52 64.01
Entropy 65.46 69.85 56.85 53.78 51.57 29.08 53.21 7331 60.20 51.65 64.27 61.24 57.54
DetectLRR 67.38 66.48 71.76 71.82 68.17 96.25 74.99 66.08 71.25 70.24 74.45 61.71 71.72
Lastde 79.98 82.17 83.47 72.30 67.01 99.32 86.95 77.46 75.63 76.23 79.44 64.16 78.68
" DetectGPT ~ ~ 7 73 58.86° 55977 T T63.61° T T 56287 T T T54908 T T T 7566 T 6544 T T T 4687~ T 755837 T T 6228 T T 54227 T T T 6735 T T 5978
DetectNPR 55.64 50.72 63.58 56.50 55.65 96.36 66.72 44.54 56.33 60.37 55.15 62.94 60.37
DNA-GPT 53.17 44.47 55.40 52.92 54.63 99.04 59.26 48.67 54.63 55.03 54.28 57.32 57.40
Fast-DetectGPT 80.80 77.22 82.14 64.79 62.81 99.20 84.27 69.45 72.17 76.71 75.70 80.79 7717
Lastde++ 88.78 89.09 91.32 72.84 73.00 98.80 91.76 82.20 82.79 83.15 85.41 83.12 85.19
WritingPrompts
Likelihood 78.06 82.36 77.08 76.45 78.99 99.88 77.43 76.75 78.60 66.20 86.19 81.48 79.96
LogRank 82.04 85.72 81.98 79.75 81.80 99.96 81.38 81.38 81.48 68.03 88.67 79.03 82.60
Entropy 54.04 48.93 48.69 45.06 39.68 6.150 44.92 5243 44.11 49.17 36.99 35.56 42.14
DetectLRR 88.61 90.52 90.58 8527 85.96 98.82 88.00 89.92 86.40 67.34 90.49 66.75 85.72
Lastde 95.27 96.82 96.09 88.02 87.32 99.97 94.12 96.16 92.95 73.58 93.68 83.09 91.42
" DetectGPT ~ ~ ~ 7 77057~ 18477 T 783300 T T 74460 © T 7779 T T T 90147 T T 8465 T T T 7029 T T 8028 T T 62.147 T T BA86 T T T 9421 T T 7980
DetectNPR 79.36 81.29 83.48 77.03 81.13 96.48 86.16 73.04 81.41 58.75 85.64 90.78 81.21
DNA-GPT 74.27 75.82 73.55 68.35 75.52 99.56 74.20 71.53 71.74 58.84 82.55 72.82 74.90
Fast-DetectGPT 95.86 96.07 92.03 88.26 86.44 99.56 89.64 92.75 90.04 76.53 93.63 89.88 90.89
Lastde++ 98.99 98.93 97.19 94.46 93.05 98.84 95.25 97.39 95.84 84.31 96.92 88.50 94.97
Reddit
Likelihood 65.55 70.45 61.91 66.58 72.53 100.00 60.14 69.16 69.65 78.08 81.01 97.15 74.35
LogRank 70.76 74.27 68.12 71.00 76.76 100.00 65.35 73.89 73.68 80.34 83.66 97.16 77.92
Entropy 64.95 57.16 58.11 48.59 44.29 8.050 61.14 56.77 47.33 43.21 38.48 8.480 44.71
DetectLRR 81.91 80.57 81.41 78.44 82.68 96.98 77.83 82.71 81.95 82.84 86.44 93.10 83.90
Lastde 92.28 91.71 89.53 81.80 85.34 99.73 88.98 93.20 84.49 89.27 91.84 96.74 90.41
" DetectGPT ~ ~ ~ € 66.77" 73417 T T69.18 T T 67.637 ~ T 71T T T T B291T T 71539 T T T 68327 T T 69.97 T T 75220 T T 79197 T T T 8363 T T T 73247
DetectNPR 69.20 73.23 72.13 69.97 75.03 97.40 72.51 71.41 73.51 78.03 81.44 86.10 76.66
DNA-GPT 65.01 67.59 61.96 61.04 69.99 99.82 63.78 65.84 68.88 73.90 79.24 82.12 71.60
Fast-DetectGPT 92.79 92.97 85.39 79.68 83.60 99.53 84.57 91.46 82.04 91.22 90.68 93.87 88.98
Lastde++ 97.01 97.82 93.90 87.70 91.35 99.45 93.09 97.06 89.84 95.28 95.67 93.00 94.26

D ADDITIONAL RESULTS ON DIFFERENT AGGREGATION FUNCTIONS AND
MORE CLOSED-SOURCE MODEL DETECTION

We conducted additional tests of Lastde and Lastde++ on more closed-source models, and we also
reported the impact of different aggregation functions on these two detection methods. As illustrated
in Figure[8] Lastde(Std) performs comparably to the classic Likelihood on GPT-40, while maintaining
a significant advantage over other methods in the same group on the other two advanced closed-source

19

Under review as a conference paper at ICLR 2025

Table 8: The AUROC value of the closed-source model. When using Lastde or Lastde++, we
considered five aggregation functions. Specifically, 2-norm refers to calculating the 2-norm of the
sequence; Range refers to calculating the range of the sequence; Std refers to calculating the standard
deviation of the sequence (which is our default setting); ExpRange and ExpStd refer to taking the
exponential of the range and standard deviation of the sequence, respectively. It is worth noting that
we adjust the 3 hyperparameters of Lastde to s = 3,& = 1, 7/ = 15 to enhance detection performance.
Lastde++ and the other methods maintain their default settings.

Methods SourceModels — GPT-4-Turbo GPT-40 Claude-3-haiku

1 Datasets — XSum WritingPrompts ~ Reddit ~ Avg. | XSum WritingPrompts ~ Reddit ~ Avg. | XSum WritingPrompts ~ Reddit ~ Avg.
Likelihood 60.44 81.48 97.15 79.69 | 75.42 84.90 97.74 86.02 | 96.84 98.38 99.92 9838
LogRank 61.52 79.03 97.16 79.24 | 73.85 82.32 97.74 84.64 | 97.09 98.71 99.96 98.59
Entropy 61.24 35.56 08.48 35.09 | 47.50 31.60 09.74 29.61 | 38.90 17.69 06.56 21.05
DetectLRR 61.71 66.75 93.10 73.85 | 62.87 69.06 9375 7523 | 95.78 97.96 99.56 97.77
Lastde(Std) 64.16 83.09 96.74 81.33 | 73.87 86.20 97.74 8594 | 97.44 99.40 99.92 98.92

Aggregation function
Fast-DetectGPT 80.79 89.88 93.87 88.18 | 86.87 93.77 97.93 92.86 | 99.93 99.99 99.96 99.96
" Lastde++(2-Norm) ~ ~ ~ ~ ~ [7691~~~ "8739 ~ T T 93.61 8597 | 8574 ~ T 9296 ~ 9752 92.077|799.95 T T 99.99 " "~ 79996 " 99.97 °

Lastde++(Range) 82.67 86.37 91.72 86.92 | 85.96 91.34 96.57 9129 | 99.84 99.99 99.95 99.93
Lastde++(Std) 83.12 88.50 93.00 8821 | 86.47 93.41 96.98 92.29 | 99.92 99.96 99.89 99.92
Lastde++(ExpRange) 82.40 89.02 93.70 88.37 | 87.42 93.60 97.77 9293 | 99.96 100.00 99.97 99.98
Lastde++(ExpStd) 81.55 89.81 9399 8845 | 87.24 94.24 97.94 93.14 | 99.97 99.99 99.95 99.97

models. Furthermore, appropriate aggregation functions are beneficial for improving the performance
of Lastde++.

Intuitively, using ExpStd as the aggregation function seems to be a better choice than Std. However,
when using it to detect open-source models, we found that although Lastde++(ExpStd) also achieves
state-of-the-art results, its advantage is far less pronounced than that of Lastde++(Std), which is
in stark contrast to the results on the aforementioned 3 closed-source models. Possible reasons
include model size, hyperparameter settings, choice of proxy models, and the applicability of rapid
sampling techniques. Given the larger role of open-source models in the current development of
LLMs, we continue to use Std as the default aggregation function and report most of the experimental
results accordingly, highlighting the significant performance improvements of Lastde++ over previous
detection methods.

Next, in order to further enhance the persuasiveness of our approachs, we conducted extended
experiments on several third-party datasets. The details are as follows:

Including more datasets. We conducted experiments on multiple datasets recently released by
ReMoDeteciEl and Fast—DetectGPTEl [2024)). These datasets cover four
domains: XSum, SQuAD, WritingPrompts, PubMedQA, and six chat/instruct type or large-parameter
(> 20B) source models: NeoX-20B, Llama3-70B, GPT-3.5-Turbo, GPT-4, GPT-4-Turbo, Claude3.
For Fast-DetectGPT, we only use the dataset generated by NeoX-20B.

Including more baselines. We have added another two strong baselines: Binoculars
[2024), GPTZero (commercial, 2024-11-11 base version) (Tian}[2023). For Binoculars, we adopted
its default settings from the original paper. For GPTZero, we first replicated the detection results
provided in the ReMoDetect paper, then implemented our own detection on Fast-DetectGPT’s dataset
related to NeoX-20B.

Combining with plug-and-play detector. We explored the feasibility of integrating our method
with recent plug-and-play detectors (plugins), e.g. TOCSIN (Ma & Wang} 2024). Specifically, we
combine TOCSIN with Lastde, Lastde++ and other detectors (except Binoculars, GPTZero), and
report the detection results (AUROC values) on the above multiple datasets.

Unified hyperparameters. Here, we unify the hyperparameters of Lastde and Lastde++ to s =
3,e = 10, 7" = 5. Note that this is not the best hyperparameter used by Lastde++ in our paper and
our dataset, but the following results still prove that it can achieve SOTA performance.

We conducted experiments under the above settings and divided the results into two parts: before and
after combining with TOCSIN. The results are as follows:

Zhttps://github.com/hyunseoklee-ai/ReMoDetect/tree/main/exp/data
3https://github.com/baoguangsheng/fast—detect—gpt/tree/main/exp_main/
data

20

https://github.com/hyunseoklee-ai/ReMoDetect/tree/main/exp/data
https://github.com/baoguangsheng/fast-detect-gpt/tree/main/exp_main/data
https://github.com/baoguangsheng/fast-detect-gpt/tree/main/exp_main/data

Under review as a conference paper at ICLR 2025

Table 9: Detection results (AUROC) before combining with TOCSIN. It should be noted that
Binoculars uses Falcon-7B as observer, Falcon-7B-Instruct as performer, and uses the judgment
threshold under Low-FPR given by the author: 0.8536432310785527.

Models Domains Likelihood LogRank DetectLRR Fast-DetectGPT Binoculars GPTZero Lastde Lastde++
XSum 68.1 69.9 70.6 84.7 54.3 60.1 78.8 88.4
NeoX-20B SQuAD 64.8 69.3 77.6 85.9 56.6 52.6 86.2 91.8
WritingPrompts 87.7 89.7 90.7 96.7 66.1 724 94.7 97.4
XSum 96.9 97.4 94.9 99.9 98.7 100 97.2 99.9
Llama3-70B WritingPrompts 98.2 97.9 93.8 99.9 100 99.8 98.2 99.9
PubMedQA 84.8 83.5 71.1 90.5 88.7 90.1 85.6 90.7
XSum 87.8 89.1 87.2 98.3 94.9 100 88.9 98.5
GPT-4-Turbo WritingPrompts 98.2 98.0 94.4 99.9 99.3 100 98.2 99.8
PubMedQA 85.8 85.1 74.5 87.8 90.0 87.2 86.4 87.8
XSum 73.7 73.7 69.8 91.6 78.7 98.2 74.1 91.6
GPT-4 WritingPrompts 87.6 85.5 73.4 97.6 90.7 82.6 87.3 97.4
PubMedQA 79.6 79.0 69.3 83.7 86.7 84.8 80.4 83.8
XSum 93.8 94.1 90.9 99.2 99.7 99.5 94.2 99.1
GPT-3.5-Turbo ~ WritingPrompts 98.1 97.7 93.0 99.7 99.3 92.9 98.2 99.6
PubMedQA 87.2 86.6 75.8 90.4 93.0 88.0 88.1 90.4
XSum 91.8 92.6 89.8 96.4 94.0 99.9 924 96.4
Claude-3 WritingPrompts 97.0 96.4 88.8 96.1 96.0 99.1 97.0 96.0
PubMedQA 85.5 84.9 74.8 88.0 88.0 88.0 86.2 87.9
Avg. 87.0 87.2 822 93.7 87.5 88.6 89.6 94.2

It can be observed that even without running Lastde++ under the optimal hyperparameter settings, our
method still achieves SOTA performance. This conclusion remains valid even when compared to two
newly introduced baselines: Binoculars (using two proxy models with larger parameters, 7B > 6B)
and the latest version of GPTZero. Additionally, Lastde demonstrates the best performance among
sample-based methods. Most importantly, the experimental results in Table 0] were all obtained on
third-party datasets, further demonstrating the reliability of our method.

Table 10: The detection results after combining with TOCSIN (AUROC). When using the TOCSIN
module, the two hyperparameters n (the number of copies created for each input) and p (the proportion
of tokens to be deleted in each copy) are set to 10 and 15% respectively.

Models Domains Likelihood LogRank DetectLRR Fast-DetectGPT Lastde Lastde++
XSum 97.7 97.6 99.0 89.4 98.9 96.8
NeoX-20B SQuAD 88.8 88.9 94.8 88.6 95.7 95.9
WritingPrompts 98.1 98.2 98.0 97.9 99.3 99.2
XSum 99.2 99.4 97.2 99.9 99.3 99.9
Llama3-70B WritingPrompts 99.7 99.6 96.8 100 99.7 100
PubMedQA 84.5 83.2 68.9 90.5 85.2 90.7
XSum 85.2 87.7 73.5 98.3 86.3 98.3
GPT-4-Turbo WritingPrompts 98.0 98.0 88.8 99.9 98.0 99.8
PubMedQA 85.4 84.7 70.8 87.8 86.1 87.7
XSum 96.8 96.5 96.3 93.8 97.0 93.7
GPT-4 WritingPrompts 94.2 932 81.7 97.8 94.1 97.8
PubMedQA 78.9 78.4 65.4 83.7 79.8 83.9
XSum 99.8 99.8 99.6 99.4 99.8 99.4
GPT-3.5-Turbo ~ WritingPrompts 99.3 99.3 99.3 99.7 99.3 99.8
PubMedQA 86.4 85.7 71.9 90.2 87.3 90.2
XSum 88.3 91.2 74.6 96.4 89.2 96.7
Claude-3 WritingPrompts 97.5 97.6 90.5 96.6 97.5 96.5
PubMedQA 85.6 84.8 72.3 88.0 86.1 88.5
Avg. 92.4 92.4 85.5 94.3 93.3 95.3

All detection methods show performance improvements when combined with the lightweight plug-
and-play detection module TOCSIN. Notably, Lastde demonstrates a more significant gain, with an
improvement of 1.1%, compared to 0.6% for Fast-DetectGPT. With the increasing dataset and strong
baselines, we believe that Lastde and Lastde++ are efficient detectors.

21

Under review as a conference paper at ICLR 2025

E ANALYSIS OF THE APPLICATIONS OF MDE AND ABLATION EXPERIMENTS
OF LASTDE

In this section, we present further application cases of MDE [Wang et al.| (2020) and Lastde on
token probability sequence across various types of texts, which substantiate the validity of our prior
observations and hypotheses.

XSum(Llama3-8) SQUAD(BLOOM-7.1) WritingPrompts(GPT4-Turbo)
0.75 0.75 0.75
3 E s
= 0.50 = 0.50 = 0.50
S < g
& 0.25 & 025 5025
0.00 LT 0.00 0.00 1+ F
12345678 9101112131415 12345678 9101112131415 12345678 9101112131415
T T T
Reddit(Gemma-7) ZhihuEconomy(Qwen1.5-7) WMT16GER(MGPT)
0.75 0.75 0.75
g) s
= 0.50 = 0.50 = 0.50
s < <
B 025 025 & 0.25
0'OOIIIIIIIIIIIIIII 0'OOIIIIIIIIIIIIIII 0'OOIIIIIIIIIIIIIII
1234567 8 9101112131415 1234567 8 9101112131415 1234567 8 9101112131415
T T T

-@— Human =#— LLM

Figure 9: The comparison results of the MDE curves for human-LLM texts. The subtitles indicate the
dataset or source model associated with each example. In addition to the scale number 7/, the other
two parameters are set as follows: s = 3 and € = 1. The example WritingPrompts (GPT-4-Turbo) is
conducted in a black-box scenario, while the remaining examples are examined in white-box contexts.

Properties of MDE transformation. Based on our observations from Figure[I(a)] we found that
under the same prefix, the dynamic variations in the token probability sequences for human-written
subsequent texts and LLM-generated response texts differ. The token probabilities of LLM-generated
responses are more compact, whereas human responses exhibit the opposite trend. This is attributable
to the fact that LLMs are trained with the objective of minimizing perplexity. Therefore, according to
the principles of MDE, the DE values corresponding to human texts are theoretically expected to be
larger. We performed MDE transformations on 6 pairs of examples, setting the scale number 7/ to 15
for each text in every pair. Subsequently, we calculated the DE values for each scale, resulting in the
MDE sequence comparison shown in Figure 9]

It is evident that the curve representing humans consistently lies above the curve representing LLMs,
and this conclusion holds across various languages, scenarios, and models. Interestingly, for both
humans and LLMs, there is an overall downward trend in the DE values of the transformed TPS as the
scale increases. This suggests that after multiple filtering iterations, the token probability sequences
gradually approach a periodic or deterministic state. In summary, these results illustrate that the token
probability sequences of humans and LLMs can be differentiated through MDE sequences, thereby
validating the reasonableness of our hypothesis.

Table 11: Detailed results of the ablation experiments under the black-box setting. Using both
Agg-MDE and Log-Likelihood corresponds to the standard Lastde. The rest of the settings are
default.

Scoring Types Xsum WritingPrompts Reddit
Agg-MDE Log-Likelihood | GPT-2 Neo-2.7 OPT-2.7 Avg. | GPT-2 Neo-2.7 OPT-2.7 Avg. | GPT-2 Neo-2.7 OPT-2.7 Avg.
X 4 54.02 48.45 63.20 55.22 | 78.06 82.36 77.08 79.17 | 65.55 70.45 61.91 65.97
v X 77.05 81.62 70.70 76.46 | 76.90 77.42 76.39 76.90 | 80.20 75.15 75.53 76.96
v v 79.98 82.17 83.47 81.87 | 95.27 96.82 96.09 96.06 | 92.28 91.74 89.53 91.18

22

Under review as a conference paper at ICLR 2025

MDE Aggregation Ablation. The Lastde consists of 2 components: Log-Likelihood and Agg-MDE.
To demonstrate the indispensable role of the aggregated MDE sequence in Lastde, we conducted
ablation experiments under a more complex black-box setting. As shown in Figure [I0] relying solely
on Log-Likelihood or Agg-MDE can only yield very limited distinctions between human and LLM
texts, while their combination significantly enhances the discriminative power between the two text
types. Table[TT|indicates that, with appropriate aggregation functions and hyperparameter settings,
relying solely on Agg-MDE can yield good results. Furthermore, when combined with Likelihood,
accuracy (AUROC) can sometimes be improved by over 10%. We believe that Likelihood, as a
classical statistical measure, provides a comprehensive overview of the global information in the
token probability sequence. At the same time, Agg-MDE focuses on modeling segments of the token
probability sequence, extracting useful yet often overlooked local information. These two types of
information complement each other and are both indispensable components of Lastde.

AggMDE Likelihood Lastde

301 25]] J

304

Frequency
N
o
L
Frequency
Frequency
N
o
L

=
o
1

il

0.06
Score

T
0.04 0.08

Figure 10: Black-box experiments on the WritingPrompts (GPT-2) dataset. The aggregation function
and the hyperparameters for MDE both use the default settings provided in Subsection [3.2] The
complete results can be found in Table @

Discriminative ability of Lastde and Lastde++. We conducted further studies on Lastde and
Lastde++ across various source models. As shown in Figure [TT], the approximate threshold for
distinguishing human and LLM texts using the Lastde score is -40. The distribution of human texts is
relatively flat, leading to some overlap with the LLM distribution. However, Figure[I2]indicates that
after applying sampling normalization, the Lastde score makes it easier to distinguish between the
two types of texts. The average score for LLM texts is around 4, while for human texts, it is around
0, and both distributions are more compact, resulting in only minimal overlap. In conclusion, both
detection methods we propose are highly effective.

SQUAD (GPT-2)

SQUAD (Neo-2.7)

SQUAD (OPT-2.7)

SQUAD (GPT-J)

30
304 301 H
25 ’_‘ 30
25 1 [’_‘ 254 r‘
2207 2 5 2 5 g
315 g [g (8 20 fn
g I g 15 g 15 g
* 104 I | < 10 : 101 T 104 ‘
5] 4 4
] ; AlllllL] il Al
0 il b 0 A | 0 i = ol ‘

+ T
=50 —40 -30
Score

—— Human

LM

0-r T
-70 -60

T y
-50 -40

Score

-30

Figure 11: The distribution of white-box detection scores by Lastde for SQuAD, with the source
models indicated in parentheses. Each subplot contains 150 pairs of LLM-generated and human-
written texts. The LLM-generated texts are generated by inputting the first 30 tokens of the human-
written texts as prompts into the corresponding source models [B.2] The implementation settings are
described in Subsection [3.2]

23

Under review as a conference paper at ICLR 2025

SQUAD (GPT-2) SQUAD (Neo-2.7) SQUAD (OPT-2.7) SQUAD (GPT-))
30
301 30
i 304
2 f 254 ’_‘ \ ﬂ 25
> > > >
2204 2 201 —‘ 2 il 2 201
[} [@ @ 204 19 dh
215 2 2 s
g § 151 (§ § 151 |
i &] b &
104 |] 104 i 104 ’7 104 [
i dlllli) alll b il
! 0 . -)
0 1 | ! ,“ oLk LA Lp oLt . - AN oLLE AL Pl
25 00 25 50 2 0o 2 4 6 2 0 2 4 6 2 0 2 4 &
Score Score Score Score
—— Human LM

Figure 12: White-box detection score distribution of Lastde++. The dataset is exactly the same as
that given in Figure[TT]

F DETAILED RESULTS OF ROBUSTNESS ANALYSIS

F.1 SAMPLES NUMBER

Previous training-free detectors typically employ three strategies for generating contrast samples:
using TS5 for perturbation, rewriting with the proxy or source model, and fast-sampling with the
proxy or source model. This paper adopts the fast-sampling technique by default. Since Lastde can
serve as a standard scoring statistic, theoretically, we can enhance Lastde using any of the three
aforementioned methods. As shown in Table [I2] generally speaking, the more contrast samples
there are, the more accurate the scoring becomes. It is worth noting that we have already achieved
state-of-the-art performance with the support of fast-sampling technique, so we did not explore the
other two methods in detail. However, this does not impose any limitations on the Lastde score.

Table 12: Detailed results corresponding to Figure 4, White-box detection was performed on XSum,
SQuAD, and WritingPrompts, with the source model being Gemma-7 and the number of contrast
samples set to {10, 20, 50, 100}.

Methods Datasets — XSum SQuAD WritingPrompts

1 Numbers— ‘ 10 20 50 100 ‘ 10 20 50 100 10 20 50 100
DetectGPT 61.40 6536 69.45 71.64 | 68.60 70.90 73.86 76.71 | 62.77 6649 72.64 7244
DetectNPR 76.83 77.10 7836 77.83 | 7841 79.39 80.32 79.78 | 7549 7797 77.17 7123
DNA-GPT 58.18 5843 5924 59.78 | 67.01 65.69 67.17 67.68 | 6292 6253 63.72 63.07
Fast-DetectGPT 9551 9585 9627 96.28 | 95.67 96.28 96.82 96.72 | 96.74 96.95 97.27 97.32
Lastde++ 97.18 97.61 9792 9798 | 98.15 9840 98.88 98.80 | 97.69 97.83 98.26 98.42

F.2 PARAPHRASING ATTACK

Evading detection through paraphrasing attacks is a current research challenge. As shown in Table
and Table the performance of Fast-DetectGPT drops significantly in both scenarios, while
Lastde++ remains relatively stable. Overall, the white-box scenario better highlights the robustness of
Lastde++. In the black-box scenario, Lastde++ performs slightly worse than Fast-DetectGPT on the

Table 13: Comparison of detection effects before and after paraphrasing attack in white-box scenario.
The source models are Llamal-13, OPT-13, and GPT-J. The average of the three is shown in TableE}
The values in brackets indicate the decrease in AUROC after attack compared to before attack.

Methods/Datasets \ XSum(Original) XSum(Paraphrased) \ ‘WritingPrompts(Original) WritingPrompts(Paraphrased) \ Reddit(Original) Reddit(Paraphrased)

Llama-13
Fast-DetectGPT 94.80 81.12 (} 13.68) 98.35 95.01 (| 3.34) 96.84 91.22 (1 5.62)
Lastde++ 97.27 85.65 (| 11.62) 99.56 97.69 (| 1.87) 98.48 95.15 (] 3.33)
OPT-13
Fast-DetectGPT 95.19 85.43 (1. 9.76) 99.40 97.46 (| 1.94) 98.81 96.61 (] 2.20)
Lastde++ 96.94 88.30 (| 8.64) 99.40 97.43 (1 1.97) 99.43 98.00 (| 1.43)
GPT-J
Fast-DetectGPT 98.12 89.88 (] 8.24) 99.22 96.40 (| 2.82) 98.58 95.97 (1. 2.61)
Lastde++ 99.04 93.87 (1 5.17) 99.75 98.41 (| 1.34) 99.38 97.85 (| 1.53)

24

Under review as a conference paper at ICLR 2025

Table 14: Comparison of detection effects before and after paraphrasing attack in black-box scenario.
The source models are Llamal-13, OPT-13, GPT-4-Turbo, and the rest of the information is the same
as in the Table[13]

Methods/Datasets \ XSum(Original) XSum(Paraphrased) \ WritingPrompts(Original) WritingPrompts(Paraphrased) \ Reddit(Original) Reddit(Paraphrased)

Llama-13
Fast-DetectGPT 64.79 53.91 (] 10.88) 88.26 82.09 (| 6.17) 79.68 74.05 (J 5.63)
Lastde++ 72.84 61.27 (1 11.57) 94.46 90.05 (| 4.41) 87.70 81.68 (| 6.02)
OPT-13
Fast-DetectGPT 84.27 72.63 (] 11.64) 89.64 88.44 (] 1.20) 84.57 83.73 (] 0.84)
Lastde++ 91.76 80.58 (| 11.18) 95.25 94.24 (| 1.01) 93.09 91.27 (1 1.82)
GPT-4-Turbo
Fast-DetectGPT 80.79 74.96 (| 5.83) 89.88 80.93 ({ 8.95) 93.87 91.35 (] 2.52)
Lastde++ 83.12 78.44 (| 4.68) 88.50 81.32 (| 7.18) 93.00 90.74 (] 2.26)

original data, but it surpasses Fast-DetectGPT on paraphrased texts with a smaller performance drop.
A similar trend can be observed on the Reddit dataset. In conclusion, Lastde++ holds significant
potential for further research.

F.3 DECODING STRATEGY

Table 15: Specific details of the Figure@

Methods Strategies — Top-p (p = 0.96) Top-k (k = 40) Temperature (" = 0.8)

1 Models — | GPT-2 Neo-2.7 OPT-2.7 Avg. | GPT-2 Neo-2.7 OPT-2.7 Avg. | GPT-2 Neo-2.7 OPT-2.7 Avg.
XSum
Likelihood 68.60 64.04 81.53 71.39 | 59.55 54.47 73.61 87.67 | 6254 87.07 91.66 88.80
LogRank 71.44 68.75 83.03 74.41 64.52 61.12 77.04 67.56 90.29 89.95 93.51 91.25
DetectLRR 73.20 74.52 80.48 76.07 | 73.28 73.65 79.10 75.34 | 91.17 90.28 93.49 91.65
Lastde 90.23 91.71 92.35 9143 | 89.65 84.59 88.92 87.72 | 96.48 96.70 96.28 96.49
" Fast-DetectGPT ~ ~ ~ ~ | 9357~ 90.00 ~ 9407 ~ 92557 8519 ~ 8459 ~ "87.93 = 8590 | 9928 = 98.89 99.31 99.16
Lastde++ 97.36 95.62 97.81 96.93 | 93.99 92.95 95.66 94.20 | 99.51 98.88 99.20 99.20
SQuAD
Likelihood 58.24 63.84 68.61 63.56 | 48.60 54.70 60.24 54.51 | 80.71 85.60 87.00 84.44
LogRank 64.02 69.40 73.55 68.99 | 56.76 62.11 67.32 62.06 | 8572 90.08 90.85 88.88
DetectLRR 77.24 80.86 81.96 80.02 | 77.78 80.73 81.80 80.10 | 92.16 94.81 94.49 93.82
Lastde 88.27 91.32 92.57 90.72 | 86.85 88.22 88.47 87.85 | 95.14 95.13 96.19 95.49
" Fast-DetectGPT ~ ~ ~ ~ | 9353~ 7 9596~ ~ 9430 ~ 9460 | 88.26 ~ 90.22" ~ "90.07 ~ 89.527| 9879 = 99.73 99.42 99.31
Lastde++ 96.84 98.78 96.98 97.53 | 95.08 96.47 96.48 96.01 | 99.02 99.44 99.65 99.37
WritingPrompts

Likelihood 87.87 90.21 85.00 87.69 | 82.16 85.82 79.08 82.35 | 96.38 97.41 94.59 96.13
LogRank 90.00 92.31 88.02 90.11 86.12 89.02 84.50 86.55 97.50 98.20 96.53 97.41
DetectLRR 91.93 95.16 91.28 92.79 | 91.65 93.30 91.40 92.12 | 98.08 98.45 97.14 97.89
Lastde 97.83 99.30 97.58 98.24 | 96.18 98.35 96.59 97.04 | 99.12 99.84 99.30 99.42
" Fast-DetectGPT ~ ~ ~ ~ | 9878 ~ 9883~ ~ 96.89" ~ 9817 | 96.72° ~ 95.01 ~ 9246 ~ 94737| 99.68 = 99.80 98.97 99.48
Lastde++ 99.68 99.70 98.86 99.41 | 98.84 98.44 98.00 98.43 | 99.76 99.76 99.33 99.62

As shown in the Table Lastde++ consistently maintains a detection performance above 94%
across all three datasets and outperforms Fast-DetectGPT in every strategy. Additionally, Lastde
demonstrates the best average detection performance among similar methods. Notably, with a top-k
value of 40, Lastde++ achieves average absolute advantages over Fast-DetectGPT of 8.30%, 6.49%,
and 3.70% across the three datasets, highlighting its superior robustness in handling different decoding
strategies.

25

	Introduction
	Related work
	Methodology
	Analyzing TPS with Diversity Entropy
	Lastde and Lastde++

	Experiments
	Settings
	Main Results
	Robustness Analysis

	CONCLUSION
	Task and scenario definition for training-free detection
	Details about the settings and baselines
	Datasets and prompts
	All large language models used
	Details of baselines

	Details of detection results
	Detail of Main Results in the white-box scenario
	Detail of Main Results in the black-box scenario

	Additional results on different aggregation functions and more closed-source model detection
	Analysis of the applications of MDE and ablation experiments of Lastde
	Detailed results of robustness analysis
	Samples Number
	Paraphrasing Attack
	Decoding Strategy

