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Abstract

In this short note we comment on recent results on identifiability of independent component
analysis. We point out an error in earlier works and clarify that this error cannot be fixed as
the chosen approach is not sufficiently powerful to prove identifiability results. In addition,
we explain the necessary ingredients to prove stronger identifiability results. Finally, we
discuss and extend the flow-based technique to construct spurious solutions for independent
component analysis problems and provide a counterexample to an earlier identifiability
result.

1 Introduction

Independent Component Analysis (ICA) is a principled framework for representation learning. The goal is
to recover independent factors of variation from an observed mixture of the sources. It is well known that
independent component analysis is not identifiable without additional assumptions on the mixing function
(Hyvärinen & Pajunen, 1999). On the other hand, it is known that for a linear mixing function the indepen-
dent components are identifiable Comon (1994). So a natural question is whether there are larger function
classes such that ICA is nevertheless identifiable within this function class. Recent works investigated the
question of identifiability for volume preserving functions (Yang et al., 2022) (in the auxiliary variable set-
ting) and volume preserving orthogonal coordinate transformations (Zheng et al., 2022a;b). Unfortunately,
proofs of identifiability results are error-prone. Given the recent surge of interest in identifiability results for
latent variable models, we think that it becomes increasingly important to gain a clear understanding of the
proof strategies available and their limitations.

In this regard the purpose of this note is twofold. First, we point out a mistake in Lemma 1 in (Yang et al.,
2022) which is also used crucially in the proof of (Zheng et al., 2022a) invalidating the theoretical main
results of those two works. Secondly, we review a bit more generally techniques to prove identifiability or
non-identifiability of ICA in restricted function classes.

In particular, we show that their proof-strategy is probably too restrictive to show identifiability in inter-
esting function classes. We also review some rigidity results that allow us to characterize function classes
characterized by a local condition on its gradient and explain how such an approach could be used to prove
identifiability for ICA. Finally, we discuss and extend a recent construction of counterexamples for identifia-
bility of ICA based on the flow generated by suitable vector fields (Buchholz et al., 2022). This allows us to
construct a counterexample to the main result, Theorem 1, in Yang et al. (2022). We do not resolve whether
a variant of the main result (Proposition 2.1) of Zheng et al. (2022a) which also appears as Proposition 2 in
Zheng et al. (2022b) holds true, i.e., whether ICA with volume preserving orthogonal coordinate transfor-
mations is identifiable. However, this note clarifies that a complete proof requires more involved techniques.
In addition, we point out in Section 4 that their statement does not show identifiability in the right sense as
they assume too restrictive an estimation model.

This work is structured as follows. In Section 2 we introduce the setting of ICA in restricted function classes
and define identifiability in the context of ICA. Then we discuss the proofs of the earlier works (Zheng
et al., 2022a; Yang et al., 2022) in Section 3 followed by a short explanation how stronger results can be
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obtained in Section 4. In Section 5 we discuss how the flows of suitable vector fields can be used to establish
non-identifiability for ICA problems, which generalizes earlier results.

2 Setting

To fix notation and set the stage, we briefly review identifiability of ICA. This material is standard and close
to Buchholz et al. (2022). Independent component analysis deals with data generated according to

x = f(s), s ∼
∏

i

pi(si) (1)

where f : Rd → Rd is an invertible mixing. Without further indicating this, we will always assume that
all considered functions are bijective on their image and sufficiently smooth with smooth inverse. The
coordinates si are also called factors of variation and are assumed to be independent. The goal is to
reconstruct the sources s from the observations x up to some tolerable ambiguities, i.e., one tries to identify
f−1. It is well known that identification in any meaningful sense is not possible for general nonlinear functions
f . There are two roads that can lead to identifiability. One is the restriction of the function class. The other
are multi-view settings introduced in Hyvärinen et al. (2019), where we have an auxiliary variable u such
that conditional on u

xu = f(su) su ∼ p(s|u) =
∏

i

pi(si|u). (2)

Then it can be shown that given a sufficiently diverse set of conditional distributions p(s|u) the mixing f can
be identified (Hyvärinen et al., 2019; Khemakhem et al., 2020). Without auxiliary variables, it is possible to
obtain (partial) identifiability results by restricting the mixing to be in some function class F .

We now introduce some notation to define the notion of identifiability formally. It is convenient to use the
pushforward of measures. If x = f(s) and s ∼ P then the distribution of x is given by the pushforward
measure f∗P.

In all ICA problems we can only hope to identify the mixing up to certain ambiguities, e.g., for linear
mixings we cannot identify the scale and the order of the latent variable. We now define the maximal
possible ambiguity set that still allows us to identify the factors of variation. For this we consider the set of
1-dimensional diffeomorphisms that reparametrize one coordinate

F1d−reparam = {f : R → R |f is bijective and f ′ > 0}. (3)

Then we define coordinate-wise reparametrizations by

Freparam = {f : R → R |f(s) = (h1(s1), . . . , hd(sd)), hi ∈ F1d−reparam}. (4)

Now we define the maximal ambiguity set of coordinate-wise reparametrizations and coordinate permutations

Smax = {f : Rd → Rd |f = A ◦ f̃ where A ∈ Perm±(d), f̃ ∈ Freparam}. (5)

Here Perm±(d) denotes the set of signed permutation matrices, i.e.,

Perm±(d) = {A ∈ Rd×d |B with bij = |aij | is a permutation matrix}. (6)

Now that we defined the maximal possible ambiguity set that allows identification of the individual factors
of variations (although relabelled and rescaled) we can define identifiability of ICA in some function class F .
Definition 1. We call ICA identifiable in some function class F for some class of admissible base distributions
P if the relation

f∗P = g∗Q (7)
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for f, g ∈ F and P,Q ∈ P implies that g−1◦f |Ω = h|Ω for some h ∈ Smax where Ω = Supp(P). In other words,
two mechanisms generating the same observational distribution agree up to relabelling and reparametrizing
the coordinates. This can be extended to the auxiliary variable case by requiring the same conclusion under
the assumption that

f∗Pu = g∗Qu (8)

for all u where Pu = p(·|u) ∈ P and Qu = q(·|u) ∈ P.

For our construction in Section 5 below we show that even a weaker form of identifiability does not hold.
Namely, we assume that the distribution of the sources is known.
Definition 2. We call ICA in some function class F identifiable given the source distributions Pu = p(·|u)
if the relation

f∗Pu = g∗Pu (9)

for all u implies that (g−1 ◦ f)|Ω = h|Ω for some h ∈ Smax where Ω =
⋃

u Supp(Pu).

We remark that equation 9 implies h∗Pu = Pu and thus restricts h substantially.

Now we introduce the function classes of interest. We consider function classes that are characterized by a
pointwise restriction of their gradient. For Ω ⊂ Rd open and connected we define

Fconf = {f : Ω → Rd |Df⊤Df = λ · Id λ > 0}, (10)
FOCT = {f : Ω → Rd |Df⊤Df ∈ Diag(d)}, (11)

Fvol = {f : Ω → Rd | | detDf | = 1}. (12)

Here we introduced the notation

Diag(d) = {A ∈ Rd×d |A is a diagonal matrix}. (13)

Those are the function classes considered in Zheng et al. (2022b); Yang et al. (2022); Buchholz et al. (2022)
and we refer to those works for a motivation. We remark that the function class FOCT has the property
that for h ∈ Freparam and f ∈ FOCT the relation f ◦ h ∈ FOCT holds. Therefore, up to regularity issues the
identifiability given the source distribution (Definition 2) is equivalent to identifiability in the unconditional
case (Definition 1). This is not true for the auxiliary variable case and other function classes.

Notation We denote the set of skew-symmetric matrices by

Skew(d) = {A ∈ Rd×d |A⊤ +A = 0}. (14)

We denote orthogonal and special orthogonal group as usual by

O(d) = {Q ∈ Rd×d |Q⊤Q = Idd}, (15)
SO(d) = {Q ∈ Rd×d |Q⊤Q = Idd, detQ = 1}. (16)

We use the language of differential geometry freely throughout the text and refer to any standard textbook
for definitions of, e.g., the tangent space of a manifold.

3 Proof Techniques for Identifiability

The goal of this section is to point out an error in the recent works Yang et al. (2022); Zheng et al. (2022a;b)
1 and we in addition discuss more generally the limitations of their approach. We structure this in two
parts. First, we discuss a folklore technique to exploit the independence assumption. Then we discuss how
the proof proceeds in the mentioned works, what is really shown, and finally we explain why this cannot be
used to give a full identifiability result without further ingredients. For readers interested in the details, we
provide an extended discussion in Appendix A.

1The paper Zheng et al. (2022b) is an extension of the earlier workshop paper Zheng et al. (2022a). Thus, we will only refer
to the later work Zheng et al. (2022b) but our remarks apply equally to the workshop paper. We emphasize that this note only
refers to the results in Section 4 of this paper and does not comment on the results on sparsity.
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3.1 A relation for Jacobian and Hessian

Let us fix a function class F for which we want to show identifiability. Suppose we have P, Q and f, g ∈ F
such that

f(s) D= g(s′), s ∼ P, s′ ∼ Q, (17)

and p and q have C2 densities. Then the standard approach to exploit the independence (manifest in the
factorization of the densities) is to use that for i ̸= j

∂i∂j ln(p(x)) = ∂i∂j

∑
i

ln(pi(xi)) = 0 (18)

We introduce the notation p̃ = ln(p) and q̃ = ln(q) for the log-densities. We write h = g−1f and then the
condition equation 17 can be expressed as

s′ = h(s). (19)

Then we can conclude the following relation.
Lemma 1. Assume that h is defined as above and volume preserving. Then the relation

Dh⊤ΩDh+
∑

k

vkD
2hk = Λ ∈ Diag(d). (20)

holds, where Ω = Diag(∂2
1 q̃) ◦ h, . . . , ∂2

d q̃) ◦ h) and Λ = Diag(∂2
1 p̃), . . . , ∂2

d p̃)) are diagonal matrices at each
point.
Remark 1. Note that both works Yang et al. (2022); Zheng et al. (2022b) use the assumption that the mixing
functions f, g are volume preserving. Moreover, adding this assumption makes the considered function class
F smaller, so identifiability becomes easier. In particular, the argument extends to larger function classes
without this restriction, e.g., showing that the argument does not allow to prove identifiability for FOCT∩Fvol
implies that the same is true for FOCT.

Proof. The standard transformation formula for densities then reads

p(s) = q(h(s)) · | detDh(s)|. (21)

We now apply equation 18 to this equation to conclude that (denoting q̃ = ln(q))

0 = ∂i∂j (ln(q(h(s)) + ln | detDh(s)|)

= ∂i

∑
k

(∂kq̃)(h(s))∂jhk(s) + ∂i∂j ln | detDh(s)|

=
∑

k

∑
l

(∂l∂kq̃)(h(s)) · ∂jhk(s) · ∂ihl(s) +
∑

k

(∂kq̃)(h(s))∂i∂jhk(s) + ∂i∂j ln | detDh(s)|.

(22)

Since h is volume preserving detDh(s) = 1 is constant and the last term in the display above vanishes.
Using that q̃(s′) =

∑
q̃i(s′

i) for some functions q̃i the off diagonal terms of the first sum vanish. Thus, we
end up with the condition.

0 =
∑

k

(∂2
k q̃)(h(s)) · ∂jhk(s) · ∂ihk(s) +

∑
k

(∂kq̃)(h(s))∂i∂jhk(s). (23)

We now fix a point s0 and set s′
0 = h(s0). Then we write Ω = Diag(∂2

1 q̃)(s′
0), . . . , ∂2

d q̃)(s′
0)) and v ∈ Rd with

vk = ∂kq̃(s′
0). Then equation 23 can be written concisely as (dropping arguments s)

Dh⊤ΩDh+
∑

k

vkD
2hk = Λ ∈ Diag(d). (24)

The matrix Λ has diagonal entries Λii = ∂2
i p̃(s). This ends the proof. Note that in the auxiliary variable

case with a finite number of auxiliary variables um with 1 ≤ m ≤ U we get U equations of this type that
must be satisfied simultaneously.
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3.2 Proofs in Yang et al. (2022); Zheng et al. (2022b)

The main problem of the proofs in Yang et al. (2022); Zheng et al. (2022b) is that they both rely on Lemma
1 in Yang et al. (2022) which is an erroneous version of Lemma 5 above. Essentially they claim, rephrased
in our notation, that

(Dh(s)⊤)Ω(Dh(s)) ∈ Diag(d), (25)

i.e., when comparing with equation 20 we see that the v term is missing and Ω is constant (because they
assume Gaussian density for q). Indeed, the last relation is the matrix form of Equation (20) in Yang et al.
(2022) which states (slightly adopted to our notation)

d∑
i=1

Θi(u)∂hi

∂sj
(s)∂hi

∂sk
(s) = 0. (26)

To bridge the different notations we pinpoint the problem with their lemma in Appendix C. Given that both
proofs rely on the wrong relation equation 25 it is clear that they are not valid as stated. Nevertheless, we
want to clarify here in a bit more detail that it is highly likely that the proofs cannot be fixed by using similar
arguments together with the (correct) relation equation 20 and more involved arguments are required.

Let us first explain how based on the relation equation 25 the proofs in the aforementioned works is finished.
In both works we can find matrices Λ1,Λ2,Ω1,Ω2 such that

Dh⊤ΩiDh = Λi (27)

for i = 1 and i = 2. Indeed, in the auxiliary variable case in Yang et al. (2022) they conclude that the relation
equation 25 holds for the two pairs of densities (pu1 , qu1), and (pu2 , qu2). In Zheng et al. (2022b) it is assumed
that h ∈ FOCT, i.e., Dh⊤Dh ∈ Diag(d). By defining Ω2 = Id and Λ2 = Dh⊤Dh (and Ω1 = Ω,Λ1 = Λ with
Ω, Λ from equation 20) we obtain that equation 27 also holds in this case.

In both papers they assume in addition that the ratios (Ω1)ii/(Ω2)ii are pairwise distinct, and their assump-
tions entail that the diagonal entries of Ωi are positive. Then the following lemma is used.
Lemma 2. Suppose that there are diagonal matrices Ω1,Ω2,Λ1,Λ2 with positive diagonal entries such that
(Ω1)ii/(Ω2)ii are pairwise different and

X⊤ΩiX = Λi (28)

for i = 1, 2 and some X. Then, X = DP for a diagonal matrix D and a permutation matrix P .

For completeness we include a streamlined proof of this Lemma in Appendix B.

Thus we conclude that for all points s such that equation 25 holds Dh(s) is a scaled permutation.

Let us now investigate under which conditions the general relation equation 20 simplifies to equation 25.
There are two cases of interest:

The function h is linear. We observe that if D2hi(s) = 0 for all i and s then equation 20 simplifies to
equation 25. The second derivative vanishes iff h is s linear. Thus we recover the well known identifiability
result for linear ICA, but no more general result.

The vector v = 0 vanishes. When v = 0 which happens whenever ∇q(h(s)) = 0 the relation equation 25
also holds. In particular, when q is a Gaussian density this is true exactly for the mean of the Gaussian. So
from the results in Yang et al. (2022); Zheng et al. (2022b) we can conclude that in both considered settings
the gradient Dh(s) of the mixing function at the mean of the Gaussian prior is a scaled permutation which
is a non-trivial observation. However, we cannot conclude anything from the true relation equation 20 as
soon as v = ∇q(h(s)) ̸= 02 when we do not assume additional restrictions on D2h.

2Note that considering a constant density q does not help. While this ensures v = 0 this also implies Ω = 0 as this collects
the second derivative of q̃, so the relation equation 20 is trivially satisfied.
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We note that when not assuming that h is linear or away from the points where ∇q(h(s)) vanishes we cannot
infer any information on Dh(s) from equation 20 because we have not derived any restriction on the term
involving the Hessian of h. Next we show that this remains true even when carefully using all available
restriction on D2h. Indeed, in the settings considered in Yang et al. (2022); Zheng et al. (2022b) D2h cannot
be arbitrary since we assume h ∈ F where F is characterized by Dh ∈ M for some manifold M , e.g., Dh
satisfies Dh⊤Dh ∈ Diag(d) in Zheng et al. (2022b). Then we can conclude that ∂iDh(s) ∈ TDh(s)M , the
tangent space of the manifold M at Dh(s) and this is the tightest restriction we can obtain by looking just
at s (note that in the next section we discuss that using that Dh(s) is the gradient of a function (globally)
and Dh(s) ∈ M allows us to derive much tighter restrictions on D2h in some settings).

In Appendix A we discuss that even when using the additional condition ∂iDh(s) ∈ TDh(s)M for all i it is not
possible to extract any useful restriction from the relation equation 20 for points with v ̸= 0. This clarifies
that any identifiability proof based on the relation equation 20 cannot just argue locally by considering a
fixed point s but it has to exploit the global partial differential equation that the relation entails.

3.3 Takeaway

We conclude that for settings of interest it is not possible to show identifiability based on exploiting the
relation that originates from taking the second derivative of the log-density in a single point. Instead, we
need to exploit this relation globally, i.e., the equation must be viewed as a Partial Differential Equation
(PDE) and identifiability amounts to showing certain properties of all solutions of this PDE. Note that we
do not rule out that Dh can be restricted by considering higher order derivatives of the log density, e.g.,
by considering ∂i∂j∂kq̃(h(s)). In fact, when restricting to analytic functions it is clear that it is (in theory)
sufficient to consider derivatives of all order at a single point. In addition, interesting relations for higher
order derivatives were shown (Yang, 2022), e.g., for i ̸= j and v = 0

∂r
i hj = 0. (29)

However, we think it is unlikely that this is a promising road, for the same reason as above, the highest order
derivatives Dkh have sufficiently many free parameters (O(dk+1)) to satisfy the resulting (O(dk)) equations
for every value of Dh. In the next section, we briefly discuss that certain function classes are substantial
more rigid than apparent from the local condition. This provides additional information beyond the local
gradient structure, e.g., might put further restrictions on D2h than the mere assumption that ∂iDh ∈ TDhM .

4 Rigidity

In this section we briefly mention rigidity results that can help to prove identifiability. Rigidity in this context
refers to the observation that in some cases pointwise restrictions on the Jacobian of a function lead to very
strong global restrictions on the functional form of the function. They have been applied successfully in the
theory of elasticity, where it is natural to consider pointwise restrictions on the gradient as this encodes the
local deformability of the function. To clarify this we consider a simple and well-known example. Suppose
that f : Ω → Rd is a C2 function defined on an open connected set Ω ⊂ Rd such that Df(s) ∈ SO(d) for
all s ∈ Ω. Naively, this only implies that ∂iDf(s) ∈ TDf(s)SO(d). So we can conclude that Ai = ∂iDf(s)
satisfies the equation A⊤

i Df(s) + Df(s)⊤Ai = 0, e.g., if Df(s) = Id then Ai is skew-symmetric. However,
the gradient structure of Df puts additional restrictions that might restrict the values Ai further than just
being in the tangent space. In fact, in the example above it can be shown that f(s) = As + b for some
A ∈ SO(d). For clarity we state this in a separate theorem.
Theorem 1. Assume f : Ω → Rd is a C2 function and Ω ⊂ Rd is open and connected. If Df(s) ∈ SO(d)
for all s ∈ Ω then

f(s) = As+ b (30)

for some A ∈ SO(d), b ∈ Rd.

So we conclude that f is necessary affine, Df is constant, and Ai = 0. In this case the rigidity result implies
a strong restriction on D2f (it vanishes). This additional restriction might be helpful when analyzing
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equation 20 and imply identifiability. However, it also shows that the function class is of limited interest as
it is rather small, in this case it is just a subclass of linear functions.

This can have undesired consequences, for example the following statement holds.
Theorem 2. Suppose f : Ω → Rd is C2 and Ω ⊂ Rd open and connected, d ≥ 3. If f ∈ Fconf ∩ Fvol then f
is affine.

Proof. The Louiville Theorem states that conformal maps in dimension d ≥ 3 are Möbius transformation,
i.e., can be written as

f(s) = b+ κA
x− a

|x− a|ε
(31)

where b, a ∈ Rd, κ > 0, A ∈ O(d) and ε ∈ {0, 2}. It can be checked easily that only linear Möbius
transformations are volume preserving.

Remark 2. Note that Proposition 2 in Zheng et al. (2022b) assumes that the estimating model, i.e., the
function g, shall satisfy g∗Q = f∗P, has the properties of the previous theorem (this is assumption iv in
their theorem, the assumption that the unmixing is volume preserving is contained in the proof3). Since in
addition a Gaussian density is assumed this implies that their Proposition 2 only applies to observational
distributions that are linear transformations of Gaussians, i.e., Gaussians.

To the best of our knowledge it is currently unknown whether there are rigidity results for further function
classes in particular the function class FOCT. However, one possible road to identifiability is to show that for
certain function class F characterized by the pointwise condition Df(s) ∈ M we can, in fact, conclude that
∂iDf(s) ∈ U ⊂ TDf(s)M where U is a small subset and then use this additional restriction in equation 20.

Alternatively, one could try to directly consider the system of PDEs given by

Dh⊤ΩDh+
∑

k

vkD
2hk = Λ (32)

Dh ∈ M. (33)

This is essentially the road taken in Buchholz et al. (2022) to show partial identifiability results in FOCT.

5 Counterexamples for identifiability based on flows

In this section we show how flows can be used to construct spurious solutions in ICA settings and we use this
to provide a counter-example to Theorem 1 in Yang et al. (2022). This extends and elaborates on results
in Buchholz et al. (2022) where it was shown that ICA with volume preserving maps is not identifiable.
The main idea is given a data generating mechanism x ∼ f(s) where s ∼ P we try to construct a family
Φt : Rd → Rd such that (Φt)∗P = P, f ◦ Φt ∈ F and Φt is the flow of a possibly time-dependent vector field
Xt : [0, T ] × Rd → Rd such that

∂tΦt(s) = Xt(Φt(s)). (34)

This procedure allows to construct spurious solutions in certain cases. It blends particularly well with volume
preserving transformations because the evolution of the density pt of (Φt)∗P evolves according to the equation

∂tpt + Div(Xtpt) = 0. (35)

In particular the flow of Xt preserves the measure P if and only if Div(Xtp) = 0. To illustrate this construc-
tion, we consider the case of general nonlinear ICA. Suppose P is the uniform measure on [0, 1]d. Then any
divergence free vector field X with compact support in [0, 1]d will construct a family of spurious solutions

3Below equation 79 it is assumed that the Jacobian determinant of g can be written as
∏

yi(si), which is only true for linear
Möbius transformations.
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f ◦ Φt. Note that there are many such divergence free vector fields, one construction was given in Hyvärinen
& Pajunen (1999) based on radius dependent rotations. This construction can also be phrased based on
flows of suitable vector fields. A simple general construction of divergence free vector fields with compact
support is to take any smooth function with compact support φ and then consider the vector field X such
that X1 = ∂2φ, X2 = −∂1φ, and Xi = 0 for i > 2. Then it is easy to see that X is divergence free. This
also shows that it is possible to just mix 2 arbitrary factors of variation.

In Buchholz et al. (2022) it was also discussed how this type of construction leads to spurious solutions for
the class of volume preserving maps. This requires us to construct a divergence free vector field X (ensuring
that f ◦ Φt is volume preserving) orthogonal to ∇p ensuring that (Φt)∗P = P because for divergence free
vector fields

Div(Xp) = pDiv(X) +X∇p = X∇p. (36)

Then it easy to show (see Buchholz et al. (2022)) that the vector field given by

X1 = −∂2p, X2 = ∂1p, Xi = 0, i > 2 (37)

is divergence free and orthogonal to ∇p. We now show that this construction can be generalized to the case
of two auxiliary variables.

5.1 A counterexample to Theorem 1 in Yang et al. (2022)

We now show that a similar construction can be extended to the auxiliary variable setting. This gives a
counterexample to the main result, Theorem 1, in Yang et al. (2022). Consider the following two densities

p1(s) = p(s|u(1)) = N (0,⊮3) (38)
p2(s) = p(s|u(2)) = N (0,Σ) (39)

where N denotes a normal variable and Σ = Diag(σ2
1 , σ

2
2 , σ

2
3). We use P1 and P2 to denote the measures

with densities p1 and p2. We write a = σ−2
1 , b = σ−2

2 , c = σ−2
3 . We assume that σi and thus a, b, c are

pairwise different. It can be checked that all assumptions of Theorem 1 in Yang et al. (2022) are satisfied.
Thus the theorem claims that if f1, f2 ∈ Fvol and (f1)∗Pj = (f2)∗Pj for j = 1, 2 then f−1

1 ◦ f2 ∈ Smax, i.e., is
a concatenation of a permutation and a coordinate-wise transformation. We now construct a flow Φt such
that (Φt)∗Pj = Pj and Φt is volume preserving and Φt /∈ Smax. This provides a generic counterexample to
the theorem as f ◦ Φt generates the same observational distribution as f .

The map Φt will be the flow of the following vector field (denoting s = (s1, s2, s3))

X(s) =

(c− b)s2s3
(a− c)s1s3
(b− a)s1s2

 . (40)

This means Φ : [0, T ] × R3 → R3 is characterized by

∂tΦt(s) = X(Φt(s)), Φ0(s) = s. (41)

Then we have the following lemma.
Lemma 3. For the flow Φt defined above, the following results hold:

1. The flow exists for all times t and all s.

2. The flow is analytic.

3. The map Φt is volume preserving for any t.

4. The map Φt preserves p1 and p2 for all t, i.e.,

(Φt)∗Pj = Pj . (42)
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5. The map Φt mixes the coordinates.

Proof. To show the first point, we note that the flow exists locally by standard ODE results. For global
existence, we note that

∂t|Φt(s)|2 = 2Φt(s)X(Φt(s))
= Φt(s)1 · (2(c− b)Φt(s)2Φt(s)3) + Φt(s)2 · (2(a− c)Φt(s)1Φt(s)3 + Φt(s)3 · (2(b− a)Φt(s)1Φt(s)2)
= 0.

(43)

This implies that no blow-up occurs. The flow is analytic because the vector field is analytic by the
Cauchy–Kowalevski theorem. To show the next statement, we note that by equation 36 it is sufficient
to show that Div(X) = Div(p1X) = Div(p2X) = 0 (the first condition ensures that the Lebesgue measure is
preserved, i.e., the flow is volume preserving). We calculate

DivX = Div

(c− b)s2s3
(a− c)s1s3
(b− a)s1s2

 = ∂1((c− b)s2s3) + ∂2((a− c)s1s3) + ∂3((b− a)s1s2) = 0 (44)

and similarly (using ∂1p1 = −s1p1, ∂2p1 = −s2p1, ∂3p1 = −s3p1)

Div(Xp1) = −(c− b)s1s2s3 · p1(s) − (a− c)s1s2s3 · p1(s) − (b− a)s1s2s3 · p1(s) = 0 (45)

and (using ∂1p2 = −as1p2, ∂2p2 = −bssp2, and ∂3p2 = −cs3p2)

Div(Xp2) = −(c− b)s3s2as1 · p2(s) − (a− c)s3s1bs2 · p2(s) − (b− a)s1s2cs3 · p2(s)
= s1s2s3 · p2(s)(ab− ca+ bc− ab+ ac− bc) = 0.

(46)

To show the last point we note that the first order expansion for small ε gives

Φε(s) ≈

s1 + ε(c− b)s2s3
s2 + ε(a− c)s1s3
s3 + ε(b− a)s1s2

 (47)

which cannot be written as a coordinate-wise transformation as a, b, and c are pairwise different.

5.2 A general construction

Finally, we consider a more general construction that allows to construct local deformations but requires
some differential geometry. Let us first give some intuition about the following result. We want to create a
vector X field such that its flow Φt is volume preserving and satisfies (Φt)∗Pu for a collection of measures
Pu. The equivalent conditions for X are Div(X) = 0 and X∇pu = 0. In other words the vector field must be
divergence free and must preserve the level sets of each pu. As each level set is a codimension 1 submanifold
the intersection of k such level sets is a submanifold of dimension d−k (under some generecity condition). If
d−k ≥ 2 we can pick a divergence free vector field with compact support on those submanifolds consistently
thus showing that identifiability fails. The following lemma makes those statements precise.
Lemma 4. Consider k smooth densities p1, . . . , pk and k ≤ d− 2. Suppose s0 is a point such that ∇pi(s0)
are linearly independent. Then there is a non-vanishing vector field X with compact support such that

Div(X) = Div(pjX) = 0. (48)

The proof is based on standard techniques from differential geometry and can be found in Appendix B. This
lemma has the following corollary.
Corollary 1. Consider ICA of volume preserving functions with k ≤ d− 2 auxiliary variables and densities
pi with 1 ≤ i ≤ k. Assume that there is a point s0 such that ∇pi(s0) are independent vectors. Then ICA is
not identifiable given the source distribution.

Proof. This is a direct consequence of the lemma above. Note that X cannot be aligned with one coordinate
axis, i.e., of the form X = eif because it is divergence free with compact support. Thus its flow mixes the
coordinates, i.e., Φt /∈ Smax.

9
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5.3 Takeaway

Let us briefly put this result into context using some heuristics. Assume we know the densities pu and the
mixing is volume preserving. Parameter counting suggests that if there are d values of u we can infer s from
the vector (p1(s), . . . , pd(s)). Then the relation qu(x) = qu(f(s)) = pu(s) implies that volume preserving ICA
with d auxiliary variables should be identifiable given the source distribution. Similarly, if f is not assumed to
be volume preserving, we can use that ln(qu1(x)) − ln(qu2(x)) = ln(pu1(s)) − ln(pu2(s)) because the Jacobian
determinant cancels. Thus ICA with d+ 1 auxiliary variables should be identifiable for arbitrary nonlinear
mixings. This suggests that the bound above is rather tight, and restricting mixings to be volume preserving
does not lead to substantially stronger identifiability results than for general nonlinear functions. Since
volume preserving maps are characterized by a single pointwise condition (dim({A : | DetA| = 1}) = d2 − 1)
this is not very surprising. Those heuristics can be compared to the rigorous results in Hyvärinen et al.
(2019) where it was shown that under some non-degeneracy nonlinear ICA is identifiable given 2d+ 1 values
of the auxiliary variable and in Khemakhem et al. (2020) a similar result with again a O(d) scaling was
shown for a parametric family of source distributions. It is currently an open question whether combining
the auxiliary variable setting with stronger restrictions on the function class gives new identifiability results.
In particular, results for FOCT in the auxiliary variable setting are of great interest.

6 Conclusion

The present work tried to clarify some aspects of identifiability proofs for independent component analysis.
The main messages are that using a pointwise linear algebraic reasoning is not sufficient to show identifiability
results for restricted function classes. Instead, it appears to be necessary to exploit the global uniqueness
properties of certain differential equations associated to the problem. This contrasts with the identifiability
results for the auxiliary variable setting, which allow for mostly algebraic arguments when the number of
auxiliary variables is sufficiently large in comparison to the number of free parameters. In addition, we
described new construction of suitable flows, which are a powerful technique to show non-identifiability
results.
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A Obstacles to Pointwise Proofs of Identifiability

The purpose of this appendix is to show that the relation equation 20 point-wise cannot be sufficient to show
identifiability even when we use all restriction available for D2h. While this section is slightly technical,
we think that it is of interest to everyone who wants to gain a deeper understanding of the difficulties of
identifiability proofs in restricted function classes. Here, we focus on the setting of identifiability in some
restricted function class F but similar reasoning can be applied to settings with few auxiliary variable
values as in Yang et al. (2022). We assume that the function class F is characterized by the condition that
Dh ∈ M pointwise for some (nonlinear) manifold M . In addition, we assume that the directional derivatives
∂iDh(s) ∈ TDh(s)M are in the tangent space of M which is implied by Dh(s) ∈ M for all s. We now show
that these assumptions combined with equation 20 are not sufficient to restrict Dh substantially for many
typical manifolds M as soon as (∇q̃)(s′) is not the null-vector.

To make this precise, we assume that the reference distribution q and the points s, s′ = h(s) are fixed and
try to investigate the implications of the relation equation 20 for the Jacobian Dh(s). Above we discussed
how ∇q̃(h(s)) = 0 implies that Dh(s) is a scaled permutation matrix. We now show that similarly strong
conclusions are not possible in the general case. We introduce the notation ∂iDh(s) = Ai ∈ Rd×d for
1 ≤ i ≤ d. Then equation 20 can be expressed as

(Dh⊤ΩDh)ij +
∑

k

vkA
i
kj = Λij . (49)

We now assume that v ̸= 0 is a fixed vector and show that under very mild conditions onDh there are matrices
Ai ∈ TDhM such that the equation above holds. This implies that we cannot restrict Dh substantially based
on equation 20. Thus we assume for now that Dh ∈ M is a fixed matrix, and we derive under which
conditions on Dh the system equation 49 has a solution for Ai. For this it is convenient to rewrite the
condition for the matrix Ai that follows from equation 49. We assume that i is fixed. We consider the
vector βi with entries βi

j = −(Dh⊤ΩDh)ij , i.e., βi denote the columns of the matrix. Moreover, we write
λi = Λii ∈ R. Then the equation equation 49 simplifies to

v⊤Ai = (βi)⊤ + λie⊤
i . (50)

To illustrate and clarify this approach, we first consider two concrete examples where the restriction on Dh
can be characterized explicitly. Later we give a more general argument based on parameter counting.

Example I: M = O(d) First, we assume that M = O(d) (below we will discuss that this is not a particular
interesting function class). Then

TDhM = {A ∈ Rd×d : (Dh)⊤ A+A⊤Dh = 0}, (51)

i.e., A⊤Dh is skew-symmetric. For readers not so familiar we note that this can be made clear by noting that
for tangent directions A the relation (Dh+ϵA)⊤(Dh+ϵA) = Id+O(ϵ2) holds, which implies Dh⊤A+A⊤Dh =
0. We can show the following lemma.
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Lemma 5. Let M = O(d). Let v ∈ Rd and Dh ∈ Rd×d such that all entries of (Dh)−1v has all entries
different from 0. Then the system equation 50 has a solution (Ai, λi) for any βi.
Remark 3. Note that βi in equation 50 depends on Dh. However, we show that under the stated assumptions,
there is a solution for any vector β. We also remark that for v ̸= 0 and a uniformly random Dh ∈ SO(d)
(Dh)−1v has all entries different from 0 with probability 1. This approach thus allows us to exclude only a
subset of measure 0 of all possible values Dh(s). In contrast, for v = 0 it is possible to show that Dh(s) is
a scaled permutation, so we constrain Dh(s) to a subset of measure 0 of all possible rotations.

The proof can be found in Appendix B.

To summarize, we have established that for M = O(d) all we can infer from the relation equation 20 is that
for a fixed v ̸= 0 the only restriction on Dh is that (Dh)−1v has no zero entry.

Example II: M = {A ∈ Rd×d : A⊤A ∈ Diag(d),Det(A) = 1} Now we consider the case where M =
{A ∈ Rd×d : A⊤A ∈ Diag(d),Det(A) = 1} which corresponds to F0 = FOCT ∩ Fvol. Let us add a remark
regarding this choice.
Remark 4. We emphasize that h ∈ F0 is not the right condition if we want to prove identifiability for this
function class because FOCT is not a group, so we cannot conclude that h = g−1f is in FOCT if g, f ∈ FOCT
and actually, we can only conclude that Dh is in some larger space than FOCT (this is a misconception in
Zheng et al. (2022b) based on too restrictive an estimation model, we discuss the implications also in the
next section).

Let us nevertheless investigate the implications of h ∈ F = FOCT ∩ Fvol. In this case we can even assume
that the right-hand side of equation 20 is a fixed given matrix Λ (i.e., we assume that we also know the
ground truth source density p). Then we can absorb the now fixed vector λiei as β̃i = βi + λiei. So the
equation we now consider is

v⊤Ai = (β̃i)⊤. (52)

We note that the tangent space TDhM is characterized by

TDhM = {A ∈ Rd×d : A⊤Dh+ (Dh)⊤A ∈ Diag(d), Tr((Dh)−1A) = 0}. (53)

To clarify the second condition, we note that Det(Dh + ϵA) = Det(Dh) Det(Id + (Dh)−1A) = 1 +
ϵTr((Dh)−1A)+O(ϵ2). For the next proof it is helpful to use that for any matrix B ∈ M there is a unique de-
composition B = OD where D ∈ Diag(d) with all diagonal entries positive and O ∈ O(d). For the existence,
just set D =

√
B⊤B and for uniqueness note that D2 = (OD)⊤(OD) = B⊤B = (O′D′)⊤(O′D′) = D′2. We

can show the following result.
Lemma 6. Assume that v ̸= 0. There is a subset O ⊂ O(d) of measure zero (w.r.t. the Haar measure)
such that for O ∈ O(d) with O /∈ O and Dh = OD for D ∈ Diag(d) the equation equation 52 has a solution
Ai ∈ TDhM .
Remark 5. The approach again only allows excluding at most a set of measure zero of all possible values of
Dh. So no useful restriction on Dh can be extracted based on this approach.

The proof of the Lemma can be found in Appendix B.

Now we analyze the equation equation 50 more generally based on parameter counting. Note that it is
typically under determined linear equation for Ai and λi. Indeed, the condition Ai ∈ TDhM enforces
that Ai is contained in a dim(M) dimensional subspace, i.e., Ai has dim(M) free parameters. As soon
as dim(M) ≥ d − 1 the equation equation 50 generically has a solution for a fixed v and any β because
then there are d equations and at least d degrees of freedom (λi is also a variable). This suggests that this
approach is not powerful enough to prove identifiability except for very low dimensional M . For example
the orthogonal group considered above satisfies dim(SO(d)) = d(d− 1)/2 and we will see in the next section
that the resulting function space is already too small to be of interest.

Note that in the auxiliary variable setting we get U equations like equation 50 for each Ai. Then typically
those U equation will have a solution if dim(M) ≥ U(d−1). For unrestricted function classes (i.e., dim(M) =

12
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d2) we then obtain the condition that U > (d+1) to ensure identifiability. Note that Theorem 1 in Hyvärinen
et al. (2019) proves identifiability for 2d+1 auxiliary variables under a non-degeneracy condition. This is up
to a constant factor, the same scaling as parameter counting suggested. It is not clear whether their result is
optimal, and it is also not clear that the strategy discussed here can be extended to an identifiability proof.

B Proofs

Here we provide the missing proofs.

Proof of Lemma 2. Set A =
√

Ω2X
√

Λ2
−1. Then A⊤A = Id so A ∈ O(d). It is sufficient to show that A is

a signed permutation matrix. Indeed, then X =
√

Λ2
−1
A

√
Λ1A

−1A where A
√

Λ1A
−1 is a diagonal matrix

when A ∈ Perm±(d). Equation equation 28 for i = 2 then reads

A⊤Ω−1
2 Ω1A = Λ−1

2 Λ1. (54)

Set Ω = Ω−1
2 Ω1 and Λ = Λ−1

2 Λ1. By assumption, the entries of Ω are pairwise different. As A is orthogonal,
Ω and Λ have the same spectrum so their diagonal entries agree up to a permutation. Suppose Λii is the
(unique) maximal entry of Λ. Then

Λii = v⊤Ωv ≤ |v|2 max Ωjj = max Ωjj (55)

where v denotes the i-th column of A and we used that A ∈ O(n) so |v| = 1. Equality only holds when v = ek

where k is the unique index such that Ωkk is maximal (here we use that Ω and Λ have the same entries. By
induction, we conclude that all columns of A are unit vectors and thus A is a permutation matrix.

Next we prove Lemma 5.

Proof of Lemma 5. Let O be an invertible matrix such that

O(Dh)−1v = e1 (56)

(such O exists if v ̸= 0). Now we show that the first entry of O−⊤ei is non-zero, i.e., e⊤
1 O

−⊤ei ̸= 0. Note
that

e⊤
1 O

−⊤ei = e⊤
i O

−1e1 = e⊤
i (Dh)−1v ̸= 0 (57)

by assumption. Thus we can find λi ∈ R such that

e⊤
1
(
O−⊤βi + λiO−⊤ei

)
= 0. (58)

Now we set

T = ((O−⊤βi + λiO−⊤ei) ⊗ e1 − e1 ⊗ ((O−⊤βi + λiO−⊤ei). (59)

Clearly T ∈ Skew(d). Moreover,

Te1 = O−⊤βi + λiO−⊤ei (60)

by equation 58. Finally we set

Ai = −(Dh)−⊤O⊤TO. (61)

Then Ai ∈ TDhM because

(Dh)⊤Ai + (Ai)⊤Dh = −O⊤(T + T⊤)O = 0. (62)

We calculate (using T⊤ = −T )

(Ai)⊤v = O⊤TO(Dh)−1v = O⊤Te1 = O(O−⊤βi + λiO−⊤ei = βi + λiei. (63)

This ends the proof.
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Next we prove Lemma 6.

Proof of Lemma 6. We first show the following fact. Suppose w ∈ Rd is a vector such that not all its entries
have equal absolute value and b ∈ Rd is any vector, then there is T ∈ Diag(d) + Skew(d) with TrT = 0 such
that

Tw = b. (64)

It is sufficient to show the result for d = 2 as the general case follows by linearity and the d = 2 case applied
to suitable subblocks of T . Note that the conditions on T imply that we can write it as

T =
(
t1 t2

−t2 −t1

)
∈ Diag(2) + Skew(2) (65)

and all such matrices satisfy all the requirements for T . With this we get

Tw =
(
t1 t2

−t2 −t1

)(
w1
w2

)
=
(
w1 w2

−w2 −w1

)(
t1
t2

)
. (66)

If |w1| ≠ |w2| then the determinant of the matrix on the RHS is w2
2 − w2

1 ̸= 0. Thus we can find a solution
(t1, t2)⊤ of the linear equation Tw = b for any vector b.

We now define O ⊂ O(d) to be the set of orthogonal matrices such that O⊤v has all entries of equal absolute
value. For v ̸= 0 this is indeed a set of measure 0 because by applying a suitable rotation we can assume
v = e1 and then there are only 2d possible first columns of O⊤, namely d−1/2(±1,±1, . . . ,±1). Suppose
now that O ∈ O(d) satisfies O /∈ O and Dh = OD for some D ∈ Diag(d). Let T ∈ Diag(d) + Skew(d) with
TrT = 0 be a solution of the equation

TO⊤v = D−1β̃i. (67)

By assumption on O and v such a solution T exists. We now define

(Ai)⊤ = DTO⊤ (68)

so that equation 52 holds. It remains to be shown that Ai ∈ TDhM . We find

(Ai)⊤Dh+ (Dh)⊤Ai = DTO⊤OD +DO⊤OT⊤D = D(T + T⊤)D ∈ Diag(d). (69)

Moreover, we have

Tr((Dh)−1A) = Tr(D−1O⊤OTD) = TrT = 0. (70)

We conclude that Ai ∈ TDhM . This ends the proof.

Finally we prove Lemma 4.

Proof of Lemma 4. It is convenient to use the language of differential geometry in the proof. We con-
sider the manifold M = Rd equipped with the standard volume form ds1 ∧ . . . ∧ dsd. The bulk of the
proof consists of the construction of suitable new coordinates on M . Pick vectors v1, . . . , vd−k such that
together with ∇pi(s0) they form a basis of Rd. Consider the functions yi(s) = vis. Then the map
ψ(s) = (y1(s), . . . , yd−k(s), p1(s), . . . , pk(s)) has an invertible Jacobian at s0 which we can assume to have
positive determinant by changing the sign of v1. Thus ψ defines a chart locally, i.e., in a neighborhood
U ⊂ M of s0. There is a function h : U → R with h > 0 such that

h · dy1 ∧ . . . ∧ dyd−k ∧ dp1 ∧ . . . ∧ dpk = ds1 ∧ . . . ∧ dsd. (71)

14



Under review as submission to TMLR

By shrinking U we can assume that the image ψ(U) is convex. We define a new coordinate function
z̃1 : ψ(U) → R for (ȳ1, . . . , ȳd−k, p̄1, . . . , p̄k) ∈ ψ(U) by

z̃1(ȳ1, . . . , ȳd−k, p̄1, . . . , p̄k) =
∫ ȳ1

y1(s0)
h(ψ−1(t, ȳ2, . . . , ȳd−k, p̄1, . . . , p̄k)) dt. (72)

This implies in particular that

∂

∂ȳ1
z̃1(x) = h(ψ−1(x)) (73)

for x ∈ Rd. We define z1 : U → R by

z1(s) = z̃1(ψ(s)). (74)

Note that

dz1 =
d−k∑
i=1

∂z1

∂yi
dyi +

k∑
i=1

∂z1

∂pi
dpi. (75)

We now calculate

dz1 ∧ dy2 ∧ . . . ∧ dyd−k ∧ dp1 ∧ . . . ∧ dpk = ∂z1

∂y1
dy1 ∧ . . . ∧ dyd−k ∧ dp1 ∧ . . . ∧ dpk. (76)

Note that all further terms involving dpi or dyi vanish by antisymmetry. We evaluate using the definition
of directional derivatives with respect to a tangent vector and equation 73

∂z1

∂y1
(s) =

(
∂

∂y1
z1 ◦ ψ−1

)
(ψ(s)) =

(
∂

∂y1
z̃1

)
(ψ(s)) = (h ◦ ψ−1)(ψ(s)) = h(s). (77)

We can therefore conclude

dz1 ∧ dy2 ∧ . . . ∧ dyd−k ∧ dp1 ∧ . . . ∧ dpk = ∂z1

∂y1
dy1 ∧ . . . ∧ dyd−k ∧ dp1 ∧ . . . ∧ dpk

= hdy1 ∧ . . . ∧ dyd−k ∧ dp1 ∧ . . . ∧ dpk

= ds1 ∧ . . . ∧ dsd.

(78)

Now the map φ : U → Rd given by φ(s) = (z1(s), . . . , zd−k(s), p1(s), . . . , pk(s)) defines a local chart where
we define z1 as above and zi = yi for i > 1 (it is easy to check from the definition of z1 that φ is injective
but one could also shrink the domain for the following argument). Let g : U → R be given by the root of the
determinant of the matrix representation of the (standard) metric tensor for the coordinates φ. The relation

g dz1 ∧ dy2 ∧ . . . ∧ dyd−k ∧ dp1 ∧ . . . ∧ dpk = ds1 ∧ . . . ∧ dsd (79)

implies g = 1. Let X̃ : φ(U) → Rd be a non-zero divergence free vector field with compact support such
that X̃i = 0 for i > 2. Consider the vector field X : M → TM = Rd defined by

X(s) = X̃1(φ(s)) ∂

∂z1
+ X̃2(φ(s)) ∂

∂z2
(80)

for s ∈ U and extended by 0 for s /∈ U . Then we calculate using the coordinate formula for the divergence
and using g = 1

DivM X =
∑

i

1
g
∂i(gXi) = ∂

∂z1
X̃1 ◦ φ+ ∂

∂z2
X̃2 ◦ φ = ∂1X̃1 + ∂2X̃2 = DivRd X̃ = 0. (81)
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Similarly we also get

DivM (Xpi) = ∂

∂z1
((X̃1 ◦ φ)pi) + ∂

∂z2
(X̃2 ◦ φ)pi) = pi∂1X̃1 + pi∂2X̃2 = pi DivRd X̃ = 0. (82)

Here we used that
∂

∂z1
pi = 0 (83)

which follows from the relation pi ◦ φ−1(x) = πd−k+i(x) = xr where πr denotes the projection on the r-th
coordinate and ∂ixr = δir.

C Detailed comment on Lemma 1 in Yang et al. (2022)

Here we discuss in a bit more detail the errors in Lemma 1 in Yang et al. (2022). We adopt their notation
but simplify it slightly by removing u which is not necessary in the context of the lemma. We assume that
f : Rd → Rd is volume preserving and consider

p(s) =
d∏

i=1
pi(si) (84)

q(z) ∝
d∏

i=1
e−θi,1zi−θi,2z2

i /2. (85)

Note that

θi,1 = −µi/σ
2
i , θi,2 = σ−2

i (86)

where µi and σ2
i are the mean and variance of the Gaussian distribution. Lemma 1 in Yang et al. (2022)

claims that if q(f(s)) = p(s) then for j ̸= k (see Eq. (15))∑
i

θi,1
∂2fi

∂sj∂sk
(s) + θi,2

∂fi

∂sj
(s) ∂fi

∂sk
(s) = 0. (87)

Moreover they claim in Equation (20) below the lemma that θi,1 = 0 can be assumed giving the simpler
relation ∑

i

θi,2
∂fi

∂sj
(s) ∂fi

∂sk
(s) = 0. (88)

The proof strategy is to consider ln(p(s)) = ln(q(f(s)) and apply −∂j∂k to this relation, i.e., they consider

∂j∂k

(
d∑

i=1
θi,1f(s) + θi,2f(s)2

)
. (89)

The error is that below (17) they state that f(s0) = 0 can be assumed without loss of generality which is
not true. Without this assumption, we obtain an additional term when both derivatives hit the same factor
of f(s)2, i.e., we get

0 =
∑

i

θi,1
∂2fi

∂sj∂sk
(s) + θi,2

(
∂fi

∂sj
(s) ∂fi

∂sk
(s) ∂2fi

∂sj∂sk
(s)fi(s)

)
=
∑

i

(θi,1 + fi(s)θi,2) ∂2fi

∂sj∂sk
(s) + θi,2

∂fi

∂sj
(s) ∂fi

∂sk
(s).

(90)

Now we see that the claimed relation equation 88 only holds if θi,1 +fi(s)θi,2 = 0 which in light of equation 86
is true iff fi(s) = µi for all i. This finding agrees with the relation equation 20, because for Gaussian densities
q the mean has maximal density, which implies that ∇q(µ) = 0 and thus v = 0 in the notation of Section 3.1.
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