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ABSTRACT

We present two complementary random mechanisms to significantly reduce in-
terference when eliminating cross-model redundancy for efficient multi-model
serving: Layer Shuffling and Task Vector Superposition. They work together to
increase the orthogonality among interfering task vectors, forcing them into self-
destruction without requiring any post-training learning or optimization. Layer
Shuffling randomly reorders layers of each individual models to reduce the align-
ment between interfering task vectors. While Task Vector Superposition lever-
ages random orthogonal transformations to decorrelate task vectors further. To-
gether, these techniques drastically minimize interference, yielding improved per-
formance across multiple tasks with effectively zero incremental memory cost
when incorporating new models. Their data and model-independent nature also
allows for seamless on-the-fly addition or removal of models, without requiring
any re-computation, making them highly practical for real-world deployment sce-
narios.
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Figure 1: Illustration of interference reduction in multi-model compression. M0 is the pre-trained checkpoint,
and Mi the i-th fine-tuned checkpoint, with task vectors Ti, T1, and T2. Standard task arithmetic (M̂ ta

i ,
red) sums aligned task vectors, causing interference. With S2 (M̂ our

i , blue), layer shuffling and superposition
decorrelate the interfering task vectors into T ′

1 and T ′
2, lowering the Frobenius norm of interference. This

allows better retrieval of Mi with a higher merging coefficient λ.

1 INTRODUCTION

Contemporary advances in machine learning are fueled by ever larger models. Language models
and multimodal language models now run into billions of parameters (Cohen & Gokaslan, 2020;
Radford et al., 2019; 2021; Workshop et al., 2022). These models are often finetuned into task-
specific models to capture the intricacies of individual tasks. As the number of these large models
proliferates, serving them becomes a challenge. It is no longer possible to even store multiple
models, even in high-end GPUs, significantly impacting downstream applications. Approaches to
compress these models without losing accuracy are thus becoming increasingly important. When
there are multiple models finetuned from the same pre-trained checkpoint on potentially related
tasks, one would expect that the models have a lot of redundant information and can be compressed
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together. In fact, a line of work has shown that all these models can be merged together into a
single model that can tackle all the tasks involved (Ainsworth et al., 2022; Frankle et al., 2020;
Wortsman et al., 2020; 2022; Li et al., 2024; Yadav et al., 2024; Tang et al., 2024c; Ilharco et al.,
2022; Yang et al., 2023). Of these, a popular framework is task arithmetic (Ilharco et al., 2022),
which computes the difference between finetuned model weights and pre-trained model weights to
produce task vectors for each task, and add these task vectors together with the pretrained model
weights to yield a merged model.

However, the accuracy of these merged models still lags behind the accuracy of the original fine-
tuned models. Prior work has identified as a potential reason the interference between the different
tasks, which may not be perfectly correlated with each other (Yadav et al., 2024; Wang et al., 2024;
?). While many techniques have been proposed to limit interference, it has generally been difficult
to reduce this interference.

In this paper, we take a renewed look at this interference, and find that the cause of this interference
is not that the models involved are too different, but that they are too similar. Concretely, we find that
task arithmetic works best when the task vectors are as orthogonal to each other as possible. Armed
with this insight, we propose two new ways of improving upon task arithmetic. Our first approach
is to shuffle task vectors across the layers of each model before combining them, with an inverse
shuffle applied at test time. Our second approach is to apply a random sign flip or rotation to the
task vectors before merging them, again inverting the transformation at test time. Both approaches
significantly reduce interference between the task vectors. They also have the advantage of being
simple, efficient and requiring no training or optimization.

We test our approach on three different benchmarks involving large models and their finetuned ver-
sions: CLIP-ViT-B/32 and CLIP-ViT-L/14 for zero-shot image classification (Radford et al., 2021),
Flan-T5-base for text generation (Longpre et al., 2023), and GPT-2 for text classification (Radford
et al., 2019). We find that across all of these benchmarks, our approach substantially improves in
terms of accuracy over prior model merging-based approaches. When compared to the original fine-
tuned models, in two of the three benchmarks our approach yields near-identical accuracy to the
individual models while reducing the storage costs by 4×. In sum, our contributions are:

1. We provide an analysis of the interference between tasks in task arithmetic, which suggests
that similarity between the task vectors may be a problem.

2. We propose two complementary strategies for reducing interference. Our first strategy
randomly shuffles parameter matrices across layers. Our second strategy applies a random
rotation or a sign flip to the task vectors before merging.

3. We demonstrate through experiments on three benchmarks that our approach compresses
multiple models together and achieves much higher accuracy than prior model merging
based approaches.

2 PROBLEM SETUP

We are given T models {Θi}Ti=1 fine-tuned from a single pre-trained model Θ0 on tasks i =
1, . . . , T . Each model Θi as a set of parameter matrices:

Θi =

{
Ii,

(
Mk,1

i ,Mk,2
i , . . . ,Mk,mk

i

)K

k=1
,Oi

}
.

Here Ii and Oi are the input and output layers. Each model has K blocks, with the k-th block
containing mk matrices Mk,1

i ,Mk,2
i , . . . ,Mk,mk

i .

Our goal is to compress {Θi}Ti=1 into a compact representation Θ∗ = compress({Θi}Ti=1) with
minimal memory usage, so that at test time, given a task i, we can retrieve an approximate model
Θ̂i = retrieve(Θ∗, i) for the task that achieves high accuracy on this task.

One way to address this problem is obviously to compress each individual model using strategies
such as pruning or quantization. However, here we are interested in techniques that can leverage the
structure of the problem (namely, T models finetuned from the same source) to yield storage that is
sub-linear in T .

2
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3 TASK ARITHMETIC

A promising line of approaches for this problem derives from the observation that models fine-
tuned for different tasks could be merged into a single model that gives reasonable accuracy for
all tasks (Ilharco et al., 2022). Concretely, their framework, called task arithmetic, first computes
the difference between the finetuned model weights for each layer k, Mk

i , and the corresponding
pre-trained model weights, Mk

0 , to produce task vectors T k
i = Mk

i −Mk
0 . Task arithmetic then

computes a weighted average of the pretrained model weights and the task vectors:

Mk
⋆ ←Mk

0 + λ

T∑

i=1

T k
i = Mk

0 + λ

T∑

i=1

(Mk
i −Mk

0 ), (1)

ΘTA
⋆ ←{Mk

⋆ }Kk=1, (2)

where λ ∈ R+ is the merging coefficient. At test time, this compressed model is directly applied no
matter what the task:

Θ̂i ← ΘTA
⋆ = {Mk

⋆ }Kk=1. (3)

This approach can be used to reduce model storage by a factor of T since we only need to store one
model instead of T different models. However, as we show later, this yields much lower accuracy
than the original fine-tuned models.

One reason that has been put forward for the low accuracies offered by task arithmetic is task inter-
ference: different tasks may want to set particular parameters differently, and merging these param-
eters naively will cause one task to harm another task’s accuracy (Yadav et al., 2024; Wang et al.,
2024; Tang et al., 2023). However, a mathematical analysis of this interference is missing. Below,
we delve deeper into this interference, and find a counter-intuitive solution.

3.1 INTERFERENCE IN TASK ARITHMETIC

To understand the interference term, let us consider what happens when we apply the merged model
to task i:

M̂k
i =Mk

⋆ , (from equation 3)

=Mk
0 + λ

T∑

i=1

(Mk
i −Mk

0 ),

=(1− λ)Mk
0 + λMk

i + λ
∑

j ̸=i

T k
j . (4)

The last line suggests that the model being applied to the i-th task is interpolating between the
pretrained model Mk

0 and the task-specific finetuned model Mk
i , but with an additional interference

coming from other merged models : λ
∑

j ̸=i T
k
j . To retrieve the finetuned model, the first two terms

suggest that we should set λ to 1. However this will increase the interference term, λ
∑

j ̸=i T
k
j .

Some prior work has tried to achieve a good balance by optimizing λ for each model and layer using
test-time adaptation(Yang et al., 2023), but attaining this balance has often been challenging.

Instead of focusing on λ, let us look at this interference term in greater detail by analyzing its
Frobenius norm:

∥∥∥∥∥∥
λ
∑

j ̸=i

T k
j

∥∥∥∥∥∥

2

F

= λ2



∑

j ̸=i

∥T k
i ∥2F + 2

∑

1≤l<j≤n
l,j ̸=i

∥T k
l ∥F ∥T k

j ∥F cos(T k
l ,T

k
j )


 . (5)

We observe that the interference term is directly correlated with two quantities: the magnitude of
the task vectors T k

i (which is out of our control since it depends on the task-specific finetuning), and
the cosine products between them. Interestingly, the interference term is maximum when the task

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

SUN397 Cars RESISC45

SUN397

Cars

RESISC45

1.0000 0.0221 0.0289

0.0221 1.0000 0.0182

0.0289 0.0182 1.0000

Original

SUN397 Cars RESISC45

1.0000 0.0043 0.0027

0.0043 1.0000 0.0035

0.0027 0.0035 1.0000

Shuffled

SUN397 Cars RESISC45

1.0000 0.0007 0.0008

0.0007 1.0000 0.0001

0.0008 0.0001 1.0000

Superposed

SUN397 Cars RESISC45

1.0000 0.0002 -0.0000

0.0002 1.0000 0.0000

-0.0000 0.0000 1.0000

Shuffled & Superposed

Figure 2: Average pairwise cosine similarity of three out of eight CLIP-ViT-B/32 task vectors during model
retrieval for SUN397 across three repetitions. Both random layer shuffling and superposition increase mutual
orthogonality, with an additive effect when combined.

vectors are very closely aligned with each other. Thus, the problem with task arithmetic is not that
the individual task vectors are very different from each other, but that they are too similar.

Our goal, therefore, should be to make the task vectors as different from each other as possible.
Below, we propose two strategies for doing this.

4 METHODOLOGY

As described above, to minimize interference, we want the task vectors to be as orthogonal to each
other as possible. We propose two complementary random algorithms to achieve this: random layer
shuffling and task vector superposition.

+ShuffleOriginal −Shuffle(Retrieved)

Layer 1

Layer 2

Layer 3

(a) Layer Shuffling Illustration

CLIP-ViT-B/32 Flan-T5 GPT-20.00
0.02
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0.08
0.10

Co
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e 
Si

m
ila

rit
y

Inter
Intra

(b) Layer Cosine Similarity

Figure 3: (a) Layer shuffling illustration in a three-layer model with three checkpoints. Different task vectors
(distinct arrowheads) initially align across layers, causing interference when directly merged. Shuffling layers
followed by inverse transformation retain the target task’s orientation (standard arrowhead) while reducing
interference through increased orthogonality among other vectors. (b) shows cosine similarity distributions
between task vector layers within and across models for CLIP-ViT-B/32, Flan-T5, and GPT-2, with standard
error of mean (SEM) as error bars.

4.1 RANDOM LAYER SHUFFLING

Across several model architectures (CLIP-ViT-B/32, CLIP-ViT-L/14 (Radford et al., 2021), Flan-
T5 (Longpre et al., 2023), and GPT-2 (Radford et al., 2019)), we observed that task vector layers
within the same model exhibit greater variability compared to corresponding layers across fine-
tuned models (see Figure 3 (b)). This insight suggests that by randomly shuffling layers across
different task vectors, we can reduce the pairwise cosine similarity of interfering task vectors and
thus minimize their contribution to the interference. To that end, we propose random layer shuffling
as a simple fix to the problem.

4
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Method Description. The models we consider are made of multiple parameter blocks of similar
structure. For example, transformers have multiple MLP layers and multiple attention layers. Many
of the MLP and Attention layers have weight matrices of the same size.

Our proposal is that when merging the task vectors, for each model, we first randomly permute the
task vectors across layers of the same type and with the same dimensions of parameter matrices
(as illustrated in Figure 3 (a)). Then, when we want to perform inference on a particular task, we
perform the inverse of the corresponding permutation to obtain the model for the task.

Concretely, for each task i, we produce a random permutation of the layers σi, taking care to only
permute across layers of the same type and same dimensionality. We then produce merged task
vectors by adding up these shuffled task vectors across models. The merged task vector for the k-th
layer is:

T k
⋆ ←

T∑

i=1

T
σi(k)
i . (6)

The number of such merged task vectors is equal to the total number of layers K. We then store
both the pretrained model Θ0 and the merged task vectors {T k

⋆ }Kk=1:

ΘShuffle
∗ ←

(
Θ0, {T k

⋆ }Kk=1

)
. (7)

Reduction in Interference: Because parameter vectors from different layers are less likely to align,
we effectively reduce the cosine product between the task vectors being merged: instead of the term
cos(T k

i ,T
k
j ) in the interference term (equation 5), we now have the product cos(T σi(k)

i ,T
σj(k)
j )

, which is expected to be significantly lower due to the reduced alignment of parameter vectors
from different layers. We thus expect smaller interference and thus more faithful retrieval of model
weights for each task. The first two parts of Figure 2 shows this effect in action, with layer shuffling
reducing the pairwise cosine similarity among interfering vectors unanimously.

4.2 TASK VECTOR SUPERPOSITION

We can also leverage the blessing of dimensionality (Gorban & Tyukin, 2018) to promote orthogo-
nality among high dimensional vectors. We take inspiration from Cheung et al. (2019) on continual
learning and introduce superposition as a complementary approach to increase the mutual orthogo-
nality among interfering task vectors.

Method Description. Considering merging the parameters of layer k, we sample a random binary
diagonal matrices whose diagonal entries have equal probability to be +1 or −1 to each of the T
task vectors and apply them to the vectors before summation:

T k
⋆ ←

T∑

i=1

T k
i C

k
i . (8)

We call them context matrices and ∀i ∈ [1, . . . , T ], Ck
i C

k(T )
i = Ck

i C
k(−1)
i = I .

When performing task i, we apply the inverse transformation C
k(−1)
i to retrieve task vector T k

i from
the superposition:

T̂ k
i = T k

⋆ C
k(−1)
i , (9)

=

T∑

i=1

[T k
i C

k
i ]C

k(−1)
i , (10)

= T k
i +

∑

j ̸=i

[T k
j C

k
j C

k(−1)
i ]. (11)

We store both the pretrained model Θ0, the merged task vectors {T k
⋆ }Kk=1, as well as the context

matrices {Ck
⋆ }Kk=1:

ΘSuperpose
∗ ←

(
Θ0, {T k

⋆ }Kk=1, {Ck
⋆ }Kk=1

)
. (12)

5
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Reduction in Interference. Two random vectors in high dimensional space is very likely to
be nearly orthogonal with each other. Now the cosine similarity in equation 5 changes from
cos(T k

i ,T
k
j ) to cos(T k

i CiC
l(−1)
j ,T k

j CiC
l(−1)
j ) when performing task l. The randomly sampled

diagonal binary matrices {Ck
⋆ }Kk=1 will randomize the task vectors, leading to more orthogonal

task vectors, smaller interference, and thus better retrieval of model parameters for the task at hand.
Again, Figure 2 confirmed the cosine similarity reduction when task vectors are superposed together.

5 EXPERIMENTS

We evaluate our methods on FusionBench (Tang et al., 2024a) across vision and language tasks,
showing comparable performance for both discriminative and generative models. Through ablation
studies, we analyze component importance, merging coefficient effects, and context matrix designs.
Finally, we demonstrate broader applications including PEFT model compression and large-scale
merging of twenty CLIP-ViT-L/14 models.

5.1 EXPERIMENT SETUP

Datasets and Models. We follow Tang et al. (2024a) and select three representative scenarios
to evaluate our methods. This includes i) CLIP-ViT-B/32 fine-tuned on eight image classification
datasets (adopted from (Ilharco et al., 2022)); ii) Flan-T5-base fine-tuned on eight text generation
datasets; and iii) GPT-2 fine-tuned on seven text classification datasets. Detailed information on the
datasets and models is in Appendix B.

Baselines and Metrics. We evaluate baselines from model merging/compression literature,
grouped by memory requirements: methods using the original footprint (pre-trained model, stan-
dard merging techniques) and those requiring additional memory (fine-tuned models, newer merg-
ing baselines). The pre-trained and fine-tuned models provide lower and upper performance bounds
respectively. Following Ilharco et al. (2022), we optimize merging coefficient λ via validation set
grid search. We report accuracy and memory usage across three runs per experiment with random
operations. See Appendix B for details.

5.2 PERFORMANCE ANALYSIS

Table 1: Performance and memory comparison of CLIP-ViT-B/32 models across eight image classification
tasks, showing absolute and normalized accuracy (%), as well as memory footprint (Gb). Results averaged
over three runs where applicable. Variances smaller than 0.1% are omitted.

Method Avg.(%) ↑ Bits(Gb) ↓ SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Pre-trained 48.2 (53.4) 0.564 (1.00) 63.2 59.8 60.7 46.0 31.6 32.5 48.3 43.9
Weight Averaging 66.5 (73.6) 0.564 (1.00) 65.4 62.6 70.8 76.9 64.5 54.9 86.3 50.9
Fisher Merging 70.6 (78.2) 0.564 (1.00) 66.7 64.0 72.2 91.6 69.0 64.3 83.5 53.7
RegMean 80.5 (89.1) 0.564 (1.00) 67.8 68.9 82.5 94.4 90.6 79.2 94.7 63.2
Task Arithmetic 69.8 (77.2) 0.564 (1.00) 64.4 61.5 70.5 80.4 73.9 62.8 93.0 51.6
Ties-Merging 72.2 (80.0) 0.564 (1.00) 67.1 64.2 74.1 91.6 77.7 69.4 94.1 54.0
Layerwise AdaMerging 82.6 (91.5) 0.564 (1.00) 67.9 71.3 83.5 92.7 87.4 92.9 98.2 67.0
PSP 4.5 (5.0) 0.564 (1.00) 0.3 0.5 1.9 10.4 8.8 2.3 9.8 1.9

Fine-tuned 90.3 (100) 2.84 (5.03)1 75.0 78.3 95.2 99.0 97.3 98.9 99.6 79.7
WEMoE 89.2 (98.8) 2.27 (4.03) 73.7 76.8 93.4 98.2 96.8 98.2 99.6 76.6
SMILE 89.3 (98.9) 1.23 (2.20) 73.6 77.8 92.0 98.3 96.9 98.1 99.6 78.1
TA+Shuffle (Ours) 81.3 (90.0) 0.89 (1.58) 65.6 58.5 86.8 94.5 93.2 91.4 98.5 62.2
STA (Ours) 89.6 (99.2) 0.89 (1.58) 74.4 75.6 94.6 99.0 97.1 98.5 99.5 77.8
STA+Shuffle (Ours) 89.9 (99.6) 0.89 (1.58) 74.8 76.7 94.8 99.0 97.2 98.6 99.5 78.7

Superior MTL Performance. Our approach achieves significant accuracy gains across bench-
marks (Tables 1, 2 and 6), with STA+Shuffle nearly matching individual fine-tuned models. We
outperform WEMoE (Tang et al., 2024c) and SMILE (Tang et al., 2024b) on image classification
while using only 40% and 72% of their respective memory footprints, and surpass SMILE’s text gen-
eration performance at benchmark saturation. Though Task Arithmetic (Ilharco et al., 2022) uses
55% of our storage, its performance is substantially lower. Parameter Superposition (Cheung et al.,

6
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Table 2: Performance and memory comparison of Flan-T5-base models across eight GLUE text generation
tasks, showing absolute and normalized accuracy (%), as well as memory footprint (Gb). Results averaged
over three runs where applicable. Variances smaller than 0.1% are omitted.

Method Avg.(%) ↑ Bits(Gb) ↓ CoLA MNLI MRPC QNLI QQP RTE SST2 STSB

Pre-trained 75.7 (87.6) 1.19 (1.00) 69.1 56.5 76.2 88.4 82.1 80.1 91.2 62.2
Weight Averaging 78.9 (91.3) 1.19 (1.00) 69.1 62.6 79.4 89.8 83.9 81.2 91.7 73.2
Task Arithmetic 79.6 (92.1) 1.19 (1.00) 69.7 64.1 79.2 90.2 83.9 81.6 92.1 76.4
Ties-Merging 79.9 (92.5) 1.19 (1.00) 70.3 65.0 78.9 90.2 83.5 81.6 91.7 78.3
PSP 0.0 (0.0) 1.19 (1.00) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A

Fine-tuned 86.4 (100) 9.52 (8.00) 75.0 83.4 87.5 91.5 85.4 85.9 93.6 88.7
SMILE 85.5 (99.0) 1.81 (1.52) 73.2 84.2 85.0 91.3 84.9 84.8 93.5 87.3
TA+Shuffle (Ours) 85.7 (99.0) 2.38 (2.00) 75.5 82.0 87.5 91.1 83.9 83.8 93.6 88.4
STA (Ours) 86.5 (100) 2.38 (2.00) 77.2 82.1 87.6 91.6 85.3 85.7 93.2 89.0
STA+Shuffle (Ours) 86.4 (100) 2.38 (2.00) 75.6 82.8 88.2 91.7 85.3 85.7 93.5 88.9

2019), while effective for continual learning, underperforms here, demonstrating the importance of
task vector superposition for offline compression.

Amortizable Memory Overhead. Our method requires only 2x memory, mainly from storing
merged task vectors {T k

⋆ }Kk=1 and binary context matrices {Ck
⋆ }Kk=1 (equations 7, 12). By storing

random seeds and regenerating context matrices on-the-fly with minimal overhead (292.70 ms for
CLIP-ViT-B/32, 658.19 ms for CLIP-ViT-L/14 on Intel Xeon Gold 6448Y CPU), we achieve effec-
tively zero additional memory per model. This enables efficient scaling, demonstrated by merging
20 CLIP-ViT-L/14 models with state-of-the-art performance and 9x memory reduction (Sec. 5.9).

5.3 KEY COMPONENTS ABLATION

In this section, we ablate both the random layer shuffling and superposition to show their individual
contribution. Specifically, we derive two variants:

• TA+Shuffle: we randomly shuffle the layers before task arithmetic without performing
superposition.

• STA: we superpose task vectors without layer shuffling.

As shown in Tables 1, 2, 4, 5 and 6, both methods significantly outperform task arithmetic consis-
tently. In some benchmarks, shuffling works better (Flan-T5-base and GPT-2) while superposition
works better in others (CLIP). This difference may be because of the nature of task vectors them-
selves: how they vary across the model layers and across different models. We find that the combined
approach is able to combine gains from both components, yielding consistently the best result across
all the benchmarks. This complementary effect is further manifested in Figure 2, where introducing
both mechanism gets the smallest pairwise cosine similarity among interfering task vectors. We pro-
vide detailed analysis of the interplay between shuffling and superposition in Section D, including
how different implementation choices affect model performance.

5.4 IMPACT OF MERGING COEFFICIENT λ
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Figure 4: The impact
of λ on average accu-
racy over eight image
classification tasks.

Here we examine the interplay between the merging coefficient λ and the
average performance across different setup. For each variant derived in sec-
tion 4, we perform a grid search on λ = {0.1, 0.2, · · · , 1.0} when compress-
ing eight CLIP-ViT-B/32 models for image classification. Figure 4 shows
the change of optimal model performance and the coefficient λ when layer
shuffling and superposition are introduced to task arithmetic.

We observe that when shuffling and superposition are introduced, the best
performance increases along with the value of λ. This shows the effectiveness
of our method in reducing interference, allowing larger λ to be selected for
more authentic model retrieval as according to equation 4.
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5.5 IMPACT OF CONTEXT MATRIX DESIGN

To further examine how task vector superposition works and shad light on better context matrix
design, we make a comparison between three types of context matrices: random binary diagonal
matrix with {−1,+1} entries (RBD), identity matrix (Identity), and random diagonal matrix with
entries draw from Normal distribution (RD). We use random layer shuffling when compressing the
8 CLIP-ViT-B/32 models on the image classification tasks.

The average accuracy and its variance with the optimal merging coefficient is shown in Figure 5.
RBD receives higher accuracy than Identity due to the randomness it introduces, which reduces in-
terference as discussed in section 4.2. Despite being random, RD’s accuracy is much lower than
RBD. We think this happens because RD is not an orthogonal matrix. It fails to preserve the Frobe-
nius norm of T k

j C
k
j C

k(−1)
i and thus disturb this self-cancellation process.
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(b) Target Layer Selection

Figure 5: (a) Impact of context matrix design to the average accuracy. RBD stands for random binary diagonal;
RD stands for random diagonal. (b) Impact of target layer selection to the average accuracy. ALL stands for
choosing all layers; MLP means only MLP layers are selected; and ATTN stands for attention layers.

5.6 TARGET LAYER SELECTION

By default we apply the random operations on all layers within the models. In this section, we
evaluate the benefits of targeting specific types of layers. To do this, we create two variants: MLP
(which selects only the MLP layers) and ATTN (which selects only the attention layers), in addition
to the default setup (ALL). Figure 5 shows the average accuracy for each setup across eight image
classification tasks using CLIP-ViT-B/32. The ALL configuration achieves the highest accuracy,
followed by MLP and ATTN. Note that the total number of parameters in MLP is twice that of
ATTN, explaining the gradual decline in performance as fewer parameters are selected.

5.7 MODEL HOT SWAPPING

The ability to hot-swap models in real-world applications is crucial, especially in dynamic environ-
ments like model serving, where new models need to be integrated into the system regularly, and
deprecated ones need to be removed in a timely fashion. As mentioned, the STA+Shuffle method
allows for this by shuffling layers and sampling diagonal binary matrices independently of data or
model parameters, thus enabling the on-the-fly addition of new models without the need for re-
computation. This provides our a method a big advantage over methods like WEMoE which require
recomputation of the router when new models are added (Tang et al., 2024c), or TALL-masks, which
also needs to recompute binary masks when new models are added (Wang et al., 2024). We dub this
feature hot swapping to borrow a term from the hardware literature.

5.8 PARAMETER EFFICIENT FINETUNING (PEFT) MODEL COMPRESSION

We also apply our method on PEFT adapter weights. Consider a LoRA (Hu et al., 2021), where we
have a fixed pre-trained model Θ0, along with LoRA weights Li. We merge the LoRA weights to
get the fine-tuned model: Θi = Θ0 + λLi. Similar to section 4.1 and 4.2, we apply random layer
shuffling and superposition on these LoRA weight vectors before retrieval.

1CLIP models’ text encoder is frozen and shared by all fine-tuned models.
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Table 3: Comparison of selected methods with hot adding and recomputation requirements when new models
are added to the pool.

Method Hot Swap Recomputation
Task Arithmetic ✓ ✗

WEMoE ✗ ✓
TALL-masks ✗ ✓
STA+Shuffle ✓ ✗

Experiments on Flan-T5-base LoRA fine-tunes (Longpre et al., 2023; Tang et al., 2024a;b) demon-
strate that our method is performative in PEFT compression settings as well (Table 4). With 99.8%
normalized average accuracy compare to the fine-tuned baseline, and 1.20 Gb memory usage, our
method presents a better trade-off point between performance and storage usage than the state-of-
the-art model SMILE (Tang et al., 2024b).

Table 4: Performance and memory comparison of Flan-T5-base LoRA models across eight GLUE text genera-
tion tasks, showing absolute and normalized accuracy (%), as well as memory footprint (Gb). Results averaged
over three runs where applicable. Variances smaller than 0.1% are omitted.

Method Avg.(%) ↑ Bits(Gb) ↓ CoLA MNLI MRPC QNLI QQP RTE SST2 STSB

Pre-trained 75.7 (87.6) 1.19 (1.00) 69.1 56.5 76.2 88.4 82.1 80.1 91.2 62.2
Weight Averaging 78.2 (92.4) 1.19 (1.00) 69.7 59.7 78.9 90.1 83.8 80.5 91.2 72.0
Task Arithmetic 77.4 (91.5) 1.19 (1.00) 68.8 55.2 78.7 89.8 83.7 79.1 91.5 72.4
Ties-Merging 77.5 (91.6) 1.19 (1.00) 68.3 56.3 79.4 89.8 83.7 79.4 91.6 71.2

Fine-tuned 84.6 (100) 1.25 (1.05) 69.1 82.7 85.5 90.9 84.0 84.4 92.9 87.4
SMILE 84.0 (99.3) 1.21 (1.02) 69.3 82.9 83.8 90.6 83.9 83.4 93.1 85.1
TA+Shuffle (Ours) 83.9 (99.2) 1.20 (1.01) 69.2 79.0 ±0.3 84.2 90.4 84.1 85.0 92.9 86.5
STA (Ours) 83.0 (98.1) 1.20 (1.01) 69.1 81.3 82.2 90.5 83.2 79.1 92.7 85.6
STA+Shuffle (Ours) 84.4 (99.8) 1.20 (1.01) 69.1 82.7 85.0 90.9 83.8 84.2 92.7 86.9

5.9 SCALABILITY ANALYSIS

Our method scales effectively to merging larger models and more tasks, as demonstrated on CLIP
ViT-L/14 with 8, 14, and 20 image classification tasks (Table 5). STA+Shuffle achieves near fine-
tuned performance (93.5% vs 94.2% for 20 tasks) while maintaining constant 2.87GB storage re-
gardless of task count. In contrast, TALL-masks+TA (Wang et al., 2024) requires progressively
more storage (5.42GB to 9.25GB) as tasks increase. Though Task Arithmetic uses only 1.59GB, its
performance drops significantly with more tasks. Model retrieval remains efficient, requiring just
658.19ms per CLIP ViT-L/14 model on an Intel Xeon Gold 6448Y CPU.

Table 5: Performance and memory comparison of CLIP ViT-L/14 models across three test scenarios with 8, 14,
and 20 image classification tasks, showing absolute and normalized accuracy (%), as well as memory footprint
(Gb). Results averaged over three runs where applicable. Variances smaller than 0.1% are omitted.

Method 8 tasks 14 tasks 20 tasks

Acc.(%) ↑ Bits(Gb) ↓ Acc.(%) ↑ Bits(Gb) ↓ Acc.(%) ↑ Bits(Gb) ↓
Pre-trained 64.5 (68.3) 1.59 (1.00) 68.1 (72.8) 1.59 (1.00) 65.2 (69.2) 1.59 (1.00)

Task Arithmetic 84.0 (88.7) 1.59 (1.00) 79.1 (84.2) 1.59 (1.00) 73.8 (78.3) 1.59 (1.00)

Fine-tuned 94.4 (100) 10.53 (6.62) 93.5 (100) 18.18 (11.43) 94.2 (100) 25.84 (16.25)

Magnitude Masking 92.8 (98.2) 5.42 (3.41) 90.6 (96.7) 7.34 (4.62) 90.9 (96.4) 9.25 (5.82)

TALL Mask+TA 94.2 (99.7) 5.42 (3.41) 92.4 (98.8) 7.34 (4.62) 93.2 (98.9) 9.25 (5.82)

TA+Shuffle (Ours) 93.0 (98.4) 2.87 (1.81) 88.8 (94.6) 2.87 (1.81) 87.1 ±0.1(92.2) 2.87 (1.81)

STA (Ours) 94.2 (99.8) 2.87 (1.81) 92.8 (99.2) 2.87 (1.81) 93.4 (99.1) 2.87 (1.81)

STA+Shuffle (Ours) 94.3 (99.9) 2.87 (1.81) 93.0 (99.5) 2.87 (1.81) 93.5 (99.3) 2.87 (1.81)
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6 RELATED WORK

Model Merging. Recent research on model merging is largely founded on linear mode connectiv-
ity (LMC) (Frankle et al., 2020; Neyshabur et al., 2020), which posits that models fine-tuned from
the same pre-trained model are connected by a linear path along which performance remains con-
stant. Building upon this concept, Wortsman et al. (2022) and Li et al. (2024) demonstrated that a set
of specialist models can be directly interpolated to obtain a multi-task model. Ilharco et al. (2022)
proposed interpolating the parameter deltas (referred to as ”task vectors”) instead. However, these
methods suffer from task interference: when different models adjust the same parameters in conflict-
ing ways, summing these adjustments leads to interference and degraded performance on individual
tasks (Yadav et al., 2024; Tang et al., 2024b; Wang et al., 2024). To mitigate this interference, various
strategies have been proposed. Yang et al. (2023) optimized the merging coefficients for different
tasks and layers to reduce interference. Yadav et al. (2024) addressed the conflict by removing re-
dundant parameters and resolving sign disagreements. Tang et al. (2024c) reduced interference by
upscaling the multilayer perceptron (MLP) layers. Tang et al. (2024b) compressed task vectors us-
ing singular value decomposition (SVD) and performed routing between them to further diminish
interference. Both Wang et al. (2024) and Yu et al. (2024) sparsified the task vectors to prevent
task conflicts. Additionally, Ortiz-Jimenez et al. (2024) proposed fine-tuning the linearized model
along the tangent space of the pre-trained model to promote weight disentanglement and avoid in-
terference. In contrast to the above mentioned methods that aim to avoid conflicts, we intentionally
accumulate interference among conflicting task vectors to facilitate their mutual cancellation.

Model Compression. Model compression techniques aim to reduce the memory footprint of mod-
els while maintaining their performance. Model pruning compresses neural networks by removing
inessential parameters in either a structured (Anwar et al., 2017; Fang et al., 2023; He & Xiao, 2023;
Wang et al., 2019) or unstructured (Liao et al., 2023; Kwon et al., 2020) manner. Parameter quan-
tization saves memory and speeds up inference by converting the weights and activation values of
a neural network from high precision to low precision (Gholami et al., 2022; Liu et al., 2021; Yuan
et al., 2022). Knowledge distillation reduces the memory footprint by training a smaller network to
mimic a larger network’s behavior (Gou et al., 2021; Cho & Hariharan, 2019; Park et al., 2019; Zhao
et al., 2022). Leveraging the low-rank nature of model parameters, many works decompose weight
matrices into low-rank matrices for memory reduction (Yu et al., 2017; Li et al., 2023; Guo et al.,
2024). Ryu et al. (2023) observed the low-rank nature of weight residuals in overparameterized
models and proposed reducing storage demands for fine-tuned models through low-rank approxi-
mation of these residuals. Similarly, Tang et al. (2024b) compresses individual task vectors using
SVD and routes through a set of them conditioned on input. Our work differs from these works in
that we try to reduce redundancy across a set of aligned models rather than within them.

7 DISCUSSION AND FUTURE WORK

In this work, we introduce random layer shuffling and task vector superposition to enhance or-
thogonality between task vectors, thereby significantly reduce task interference during multi-model
merging and compression. These data- and model-agnostic random operations enable users to i)
efficiently modify the model merging combinations without the need for additional training or op-
timization; ii) merge additional models without increasing memory usage by saving random seeds.
Evaluation on diverse model and task sets demonstrates that our method maintains high performance
while keeping a constant memory footprint as more and larger models are merged. These attributes
make our approach highly practical for real-world multi-model serving environments.

An interesting future direction is to further improve performance by increasing orthogonality, po-
tentially through alternative random operations or more systematic approaches. Our method relies
on specific properties of model parameters that emerge from fine-tuning. Identifying these proper-
ties and enhancing fine-tuning strategies could lead to better merging and compression performance.
Since we reduce cross-model redundancy, applying model compression algorithms could potentially
further decrease memory footprint.
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A OVERVIEW

In this appendix we present more information about the experiment settings and analysis that could
not fit in the main paper. In Sec. B we present more details about the datasets, models, and baseline
methods used in evaluation. In Sec. C we derive the squared Frobenius norm of the interference
term used in equation 5. In Sec. D we include additional analysis and results.

B EXPERIMENT SETUP

This section provides detailed descriptions for the datasets, baselines, and model fine-tuning settings.

Datasets Details. Evaluation are performed on two sets of datasets with different type of tasks.

1. Image Classification Datasets: For image classification, following Ilharco et al. (2022);
Tang et al. (2024a); Wang et al. (2024), we use twenty tasks from CLIP’s (Radford
et al., 2021) test set: SUN397 (Xiao et al., 2010), Cars (Krause et al., 2013), RE-
SISC45 (Cheng et al., 2017), EuroSAT (Helber et al., 2019), SVHN (Netzer et al., 2011),
GTSRB (Stallkamp et al., 2012), MNIST (Deng, 2012), DTD (Cimpoi et al., 2014),
CIFAR100 (Krizhevsky, 2009), STL10 (Coates et al., 2011), Flowers102 (Nilsback &
Zisserman, 2008), OxfordIIITPet (Parkhi et al., 2012), PCAM (Veeling et al., 2018),
FER2013 (Goodfellow et al., 2013), EMNIST (Cohen et al., 2017), CIFAR10 (Krizhevsky,
2009), Food101 (Bossard et al., 2014), FashionMNIST (Xiao et al., 2017), Ren-
deredSST2 (Socher et al., 2013; Radford et al., 2019), and KMNIST (Clanuwat et al.,
2018). For experiments on K tasks, the first K datasets from this list are select.

2. Text Classification and Generation Datasets: For text classification and generation, fol-
lowing Tang et al. (2024a), we have in total eight tasks from the GLUE benchmark (Wang,
2018): CoLA, MNLI, MRPC, QNLI, QQP, RTE, SST2, and STSB.

Baseline Details. Our experiments compare the following baselines and our methods:

• Pre-trained: Pre-trained model used across all tasks (performance lower bound).
• Fine-tuned: Individual fine-tuned models (performance upper bound).
• Weight Averaging (Wortsman et al., 2022): Merge models by directly averaging their

parameters.
• Fisher Merging (Matena & Raffel, 2022): Fisher Merging uses the Fisher information as

a weight for each parameter during weight averaging.
• RegMean (Jin et al., 2022): RegMean introduces a constraint in model merging by mini-

mizing the L2 distance between the merged model and each individual model.
• Task Arithmetic (Ilharco et al., 2022): Task Arithmetic computes the delta parameters

between fine-tuned models and the base model (known as ”task vectors”) and aggregates
them before adding into a pre-trained model.

• Ties-Merging (Yadav et al., 2024): Ties-Merging addresses task conflict issues found in
Task Arithmetic by eliminating redundant parameters and resolving symbol conflicts.

• Layer-wise AdaMerging (Yang et al., 2023): Layer-wise AdaMerging finds optimal merg-
ing coefficients for each layer of each task vector in Task Arithmetic using test-time adap-
tation.

• Parameter Superposition (PSP) (Cheung et al., 2019): PSP applies random orthogonal
matrices periodically during training to store many models into one model. We adopted
it in our offline setting by treating fine-tuned models as different model instances during
training to provide some contexts to our task vector superposition approach.

• WEMoE (Tang et al., 2024c): WEMoE only merges the layer norm and attention layers
while keeping the multi-layer perceptron layers unmerged, with a router to dynamically
allocate weights to each MLP conditioned on the input.
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• SMILE (Tang et al., 2024b): SMILE compresses task vectors with singular value decom-
position (SVD). It then determines the routing weights based on the alignment between
input and each low-rank matrix.

• TALL-masks+TA (Wang et al., 2024): TALL-masks+TA finds a binary parameter mask
for each task vector by finding task-specific parameters with values deviate a lot from the
aggregated multi-task vector. The corresponding mask for each task is applied to the multi-
task vector before adding to a pre-trained model.

• Magnitude Masking (Wang et al., 2024): Magnitude Masking differ from TALL-masks in
that it determines per-task masks by keeping the top k% of each task vector’s parameters.

• TA+Shuffle (Ours): TA+Shuffle performs random layer shuffling among the repetitive
layers in each task vector before merging them with Task Arithmetic.

• STA (Ours): STA applies random orthogonal transformations to each layer in each task
vector in Task Arithmetic.

• STA+Shuffle (Ours): STA+Shuffle combines layer shuffling and superposition.

Model Details. We utilize fine-tuned models from Tang et al. (2024a) and Wang et al. (2024).
Here we describe the experimental setup for fine-tuning these models.

• CLIP-ViT-B/32 Models: The CLIP-ViT-B/32 models are fine-tuned by Tang et al. (2024a).
The Adam optimizer is employed with a fixed learning rate of 1e−5 for a total of 4,000
training steps with the batch size of 32. The zero-shot classification layer is computed
on-the-fly with a frozen text encoder.

• CLIP-ViT-L/14 Models: Different from CLIP-ViT-B/32 models, these models are fine-
tuned by Wang et al. (2024) with the training procedure described in Ilharco et al. (2022).
The AdamW optimizer is employed with a fixed learning rate of 1e−5 for a total of 2,000
training steps with the batch size of 128, and a cosine annealing learning rate schedule
with 200 warm-up steps. The zero-shot classification heads are pre-computed and freezed
during fine-tuning process, following Ilharco et al. (2022) and Ortiz-Jimenez et al. (2024).

• GPT-2 Models: These models are fine-tuned by Tang et al. (2024a) with a constant learning
rate of 5e−5 for 3 epochs.

• Flan-T5-base and LoRA Models: These models come from Tang et al. (2024a), with
unspecified fine-tuning settings.

Evaluation Metrics. We measure performance using average task accuracy and normalized ac-
curacy (relative to Fine-tuned baseline). For STSB (Wang, 2018), we use Spearman’s correlation.
Memory efficiency is evaluated by estimated memory footprint in Gb and normalized footprint (rel-
ative to Pre-trained baseline).

Default Experimental Setup. We use global random seeds 42, 43, 44 for three runs per exper-
iment on random approaches. Each model’s specific seed is generated by adding its index to the
global seed, and is used consistently for layer shuffling and binary diagonal matrices across target
layers. Following Ilharco et al. (2022), we apply uniform merging coefficients across models, op-
timized via grid search on validation sets (10% of training data, max 1,000 samples (Wang et al.,
2024)). The search space is 0.1, 0.2, · · · , 1.0, extended to 0.1, 0.2, · · · , 2.0 for Flan-T5-base LoRA
experiments.
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C DERIVATION OF EQUATION 5

Here we derive the squared Frobenius norm of the interference λ
∑
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i in more details:
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D ADDITIONAL ANALYSIS

D.1 GPT-2 TEXT CLASSIFICATION EXPERIMENTS

We evaluated our proposed methods against established baselines by merging seven independently
trained GPT-2 models on text classification tasks. As shown in Table 6, both our STA+Shuffle
algorithm and its TA+Shuffle variants achieved significantly higher classification accuracy while
doubling the memory footprint, consistent with the performance on other benchmarks.

Table 6: Performance and memory comparison of GPT-2 models across seven GLUE text classification tasks,
showing absolute and normalized accuracy (%), as well as memory footprint (Gb). Results averaged over three
runs where applicable. Variances smaller than 0.1% are omitted.

Method Avg.(%) ↑ Bits(Gb) ↓ CoLA MNLI MRPC QNLI QQP RTE SST-2

Pre-trained 44.5 (54.3) 0.498 (1.00) 30.9 33.0 31.4 49.2 63.2 52.7 50.9
Weight Averaging 56.1 (63.3) 0.498 (1.00) 55.0 55.1 51.0 57.6 76.7 44.8 52.5
Fisher Merging 58.7 (64.7) 0.498 (1.00) 54.8 58.0 39.5 63.3 81.5 49.1 64.7
RegMean 68.8 (79.7) 0.498 (1.00) 61.7 70.4 65.4 69.7 78.8 56.0 79.7
Task Arithmetic 70.0 (85.4) 0.498 (1.00) 68.7 68.6 69.6 70.5 81.8 47.3 83.6
Ties-Merging 70.0 (82.4) 0.498 (1.00) 68.4 71.4 68.4 69.6 82.4 47.7 81.8
PSP 44.5 (54.3) 0.498 (1.00) 30.9 33.6 31.6 49.5 63.2 52.5 50.3

Fine-tuned 82.0 (100) 3.49 (7.00) 76.8 82.1 80.4 88.3 89.6 65.3 91.2
TA+Shuffle (Ours) 76.7 (93.5) 0.997 (2.00) 71.6 80.3 73.9 85.8 88.5 47.5 89.3
STA (Ours) 71.3 ±0.6 (87.0) 0.997 (2.00) 62.3 ±0.3 78.2 46.1 ±4 82.6 88.4 52.7 88.9
STA+Shuffle (Ours) 76.6 ±0.2 (93.4) 0.997 (2.00) 70.3 ±0.1 81.0 61.0 ±1.3 87.2 89.3 57.5 ±0.3 90.2

D.2 DYNAMICS BETWEEN LAYER SHUFFLING AND SUPERPOSITION

We investigate how varying layer shuffling and superposition parameters affects model performance.
We test target layer skip rates of 1, 2, 3, 4, where every k-th target layer within repetitive layer sets
is shuffled and superposed. We also introduce layer shifting – a deterministic alternative to shuffling
that shifts layers one position deeper with wrap-around – to study how different decorrelation
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Figure 6: Average accuracy and cosine similarity among interfering task vectors when retrieving SUN397
and GTSRB models from 8 merged CLIP-ViT-B/32 models with various target layer skipping rates and shuf-
fling/superposition setups.

approaches affect performance.

Experiments on eight CLIP-ViT-B/32 benchmarks (Figure 6) show averaged results across
three repetitions, focusing on overall benchmark accuracy and two specific tasks: SUN397 (Xiao
et al., 2010) and GTSRB (Stallkamp et al., 2012). We analyze both task performance and average
pairwise cosine similarity among task vectors - both original and among interfering vectors during
model retrieval.

As skip rate increases, accuracy declines while cosine similarity rises. Performance remains
stable up to skip rate 2, suggesting potential memory savings through selective layer manipulation.
For GTSRB, TA+Shuffle outperforms TA+Shift despite higher cosine similarity, indicating the
method of achieving orthogonality matters beyond decorrelation levels. This pattern reverses for
SUN397, revealing task-dependent variations and opportunities for task-specific optimization.

The correlation between interfering task vectors’ cosine similarity and accuracy shows a neg-
ative trend (Figure 7), most pronounced in EuroSAT and MNIST. While patterns vary across tasks,
peak accuracy consistently occurs near zero cosine similarity. This observation, combined with
STA+Shift’s strong performance at low skip rates (Figure 6), suggests a cosine similarity threshold
may exist above which method selection becomes less critical.
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Figure 7: Correlation between the pairwise cosine similarity among interfering task vectors and the accuracy
on the eight image classification tasks, with CLIP-ViT-B/32 merged with different levels of shuffling and su-
perposition.
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