
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INTERFERING WITH INTERFERENCE: BLIND SHUF-
FLING AND SUPERPOSITION FOR BETTER MULTI-
MODEL COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present two complementary random mechanisms to significantly reduce in-
terference when eliminating cross-model redundancy for efficient multi-model
serving: Layer Shuffling and Task Vector Superposition. They work together to
increase the orthogonality among interfering task vectors, forcing them into self-
destruction without requiring any post-training learning or optimization. Layer
Shuffling randomly reorders layers of each individual models to reduce the align-
ment between interfering task vectors. While Task Vector Superposition lever-
ages random orthogonal transformations to decorrelate task vectors further. To-
gether, these techniques drastically minimize interference, yielding improved per-
formance across multiple tasks with effectively zero incremental memory cost
when incorporating new models. Their data and model-independent nature also
allows for seamless on-the-fly addition or removal of models, without requiring
any re-computation, making them highly practical for real-world deployment sce-
narios.

M̂our
i = (1− λ)M0 + λMi + λ

2∑

j=1

T ′
j

T ′
1 T ′

2

M̂our
i

∥∥∥∥∥∥
λ

2∑

j

T ′
j

∥∥∥∥∥∥
F

<

∥∥∥∥∥∥
λ

2∑

j

Tj

∥∥∥∥∥∥
F

cos(T ′
1,T

′
2) < cos(T1,T2)

Ti

Mi

M0

M̂ ta
i = (1− λ)M0 + λMi + λ

2∑

j=1

Tj

T2

T1

M̂ ta
i

Figure 1: Illustration of interference reduction in multi-model compression. M0 is the pre-trained checkpoint,
and Mi the i-th fine-tuned checkpoint, with task vectors Ti, T1, and T2. Standard task arithmetic (M̂ ta

i ,
red) sums aligned task vectors, causing interference. With S2 (M̂ our

i , blue), layer shuffling and superposition
decorrelate the interfering task vectors into T ′

1 and T ′
2, lowering the Frobenius norm of interference. This

allows better retrieval of Mi with a higher merging coefficient λ.

1 INTRODUCTION

Contemporary advances in machine learning are fueled by ever larger models. Language models
and multimodal language models now run into billions of parameters (Cohen & Gokaslan, 2020;
Radford et al., 2019; 2021; Workshop et al., 2022). These models are often finetuned into task-
specific models to capture the intricacies of individual tasks. As the number of these large models
proliferates, serving them becomes a challenge. It is no longer possible to even store multiple
models, even in high-end GPUs, significantly impacting downstream applications. Approaches to
compress these models without losing accuracy are thus becoming increasingly important. When
there are multiple models finetuned from the same pre-trained checkpoint on potentially related
tasks, one would expect that the models have a lot of redundant information and can be compressed

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

together. In fact, a line of work has shown that all these models can be merged together into a
single model that can tackle all the tasks involved (Ainsworth et al., 2022; Frankle et al., 2020;
Wortsman et al., 2020; 2022; Li et al., 2024; Yadav et al., 2024; Tang et al., 2024c; Ilharco et al.,
2022; Yang et al., 2023). Of these, a popular framework is task arithmetic (Ilharco et al., 2022),
which computes the difference between finetuned model weights and pre-trained model weights to
produce task vectors for each task, and add these task vectors together with the pretrained model
weights to yield a merged model.

However, the accuracy of these merged models still lags behind the accuracy of the original fine-
tuned models. Prior work has identified as a potential reason the interference between the different
tasks, which may not be perfectly correlated with each other (Yadav et al., 2024; Wang et al., 2024;
?). While many techniques have been proposed to limit interference, it has generally been difficult
to reduce this interference.

In this paper, we take a renewed look at this interference, and find that the cause of this interference
is not that the models involved are too different, but that they are too similar. Concretely, we find that
task arithmetic works best when the task vectors are as orthogonal to each other as possible. Armed
with this insight, we propose two new ways of improving upon task arithmetic. Our first approach
is to shuffle task vectors across the layers of each model before combining them, with an inverse
shuffle applied at test time. Our second approach is to apply a random sign flip or rotation to the
task vectors before merging them, again inverting the transformation at test time. Both approaches
significantly reduce interference between the task vectors. They also have the advantage of being
simple, efficient and requiring no training or optimization.

We test our approach on three different benchmarks involving large models and their finetuned ver-
sions: CLIP-ViT-B/32 and CLIP-ViT-L/14 for zero-shot image classification (Radford et al., 2021),
Flan-T5-base for text generation (Longpre et al., 2023), and GPT-2 for text classification (Radford
et al., 2019). We find that across all of these benchmarks, our approach substantially improves in
terms of accuracy over prior model merging-based approaches. When compared to the original fine-
tuned models, in two of the three benchmarks our approach yields near-identical accuracy to the
individual models while reducing the storage costs by 4×. In sum, our contributions are:

1. We provide an analysis of the interference between tasks in task arithmetic, which suggests
that similarity between the task vectors may be a problem.

2. We propose two complementary strategies for reducing interference. Our first strategy
randomly shuffles parameter matrices across layers. Our second strategy applies a random
rotation or a sign flip to the task vectors before merging.

3. We demonstrate through experiments on three benchmarks that our approach compresses
multiple models together and achieves much higher accuracy than prior model merging
based approaches.

2 PROBLEM SETUP

We are given T models {Θi}Ti=1 fine-tuned from a single pre-trained model Θ0 on tasks i =
1, . . . , T . Each model Θi as a set of parameter matrices:

Θi =

{
Ii,

(
Mk,1

i ,Mk,2
i , . . . ,Mk,mk

i

)K

k=1
,Oi

}
.

Here Ii and Oi are the input and output layers. Each model has K blocks, with the k-th block
containing mk matrices Mk,1

i ,Mk,2
i , . . . ,Mk,mk

i .

Our goal is to compress {Θi}Ti=1 into a compact representation Θ∗ = compress({Θi}Ti=1) with
minimal memory usage, so that at test time, given a task i, we can retrieve an approximate model
Θ̂i = retrieve(Θ∗, i) for the task that achieves high accuracy on this task.

One way to address this problem is obviously to compress each individual model using strategies
such as pruning or quantization. However, here we are interested in techniques that can leverage the
structure of the problem (namely, T models finetuned from the same source) to yield storage that is
sub-linear in T .

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 TASK ARITHMETIC

A promising line of approaches for this problem derives from the observation that models fine-
tuned for different tasks could be merged into a single model that gives reasonable accuracy for
all tasks (Ilharco et al., 2022). Concretely, their framework, called task arithmetic, first computes
the difference between the finetuned model weights for each layer k, Mk

i , and the corresponding
pre-trained model weights, Mk

0 , to produce task vectors T k
i = Mk

i −Mk
0 . Task arithmetic then

computes a weighted average of the pretrained model weights and the task vectors:

Mk
⋆ ←Mk

0 + λ

T∑

i=1

T k
i = Mk

0 + λ

T∑

i=1

(Mk
i −Mk

0 ), (1)

ΘTA
⋆ ←{Mk

⋆ }Kk=1, (2)

where λ ∈ R+ is the merging coefficient. At test time, this compressed model is directly applied no
matter what the task:

Θ̂i ← ΘTA
⋆ = {Mk

⋆ }Kk=1. (3)

This approach can be used to reduce model storage by a factor of T since we only need to store one
model instead of T different models. However, as we show later, this yields much lower accuracy
than the original fine-tuned models.

One reason that has been put forward for the low accuracies offered by task arithmetic is task inter-
ference: different tasks may want to set particular parameters differently, and merging these param-
eters naively will cause one task to harm another task’s accuracy (Yadav et al., 2024; Wang et al.,
2024; Tang et al., 2023). However, a mathematical analysis of this interference is missing. Below,
we delve deeper into this interference, and find a counter-intuitive solution.

3.1 INTERFERENCE IN TASK ARITHMETIC

To understand the interference term, let us consider what happens when we apply the merged model
to task i:

M̂k
i =Mk

⋆ , (from equation 3)

=Mk
0 + λ

T∑

i=1

(Mk
i −Mk

0 ),

=(1− λ)Mk
0 + λMk

i + λ
∑

j ̸=i

T k
j . (4)

The last line suggests that the model being applied to the i-th task is interpolating between the
pretrained model Mk

0 and the task-specific finetuned model Mk
i , but with an additional interference

coming from other merged models : λ
∑

j ̸=i T
k
j . To retrieve the finetuned model, the first two terms

suggest that we should set λ to 1. However this will increase the interference term, λ
∑

j ̸=i T
k
j .

Some prior work has tried to achieve a good balance by optimizing λ for each model and layer using
test-time adaptation(Yang et al., 2023), but attaining this balance has often been challenging.

Instead of focusing on λ, let us look at this interference term in greater detail by analyzing its
Frobenius norm:

∥∥∥∥∥∥
λ
∑

j ̸=i

T k
j

∥∥∥∥∥∥

2

F

= λ2



∑

j ̸=i

∥T k
i ∥2F + 2

∑

1≤l<j≤n
l,j ̸=i

∥T k
l ∥F ∥T k

j ∥F cos(T k
l ,T

k
j )


 . (5)

We observe that the interference term is directly correlated with two quantities: the magnitude of
the task vectors T k

i (which is out of our control since it depends on the task-specific finetuning), and
the cosine products between them. Interestingly, the interference term is maximum when the task

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

SUN397 Cars RESISC45

SUN397

Cars

RESISC45

1.0000 0.0221 0.0289

0.0221 1.0000 0.0182

0.0289 0.0182 1.0000

Original

SUN397 Cars RESISC45

1.0000 0.0043 0.0027

0.0043 1.0000 0.0035

0.0027 0.0035 1.0000

Shuffled

SUN397 Cars RESISC45

1.0000 0.0007 0.0008

0.0007 1.0000 0.0001

0.0008 0.0001 1.0000

Superposed

SUN397 Cars RESISC45

1.0000 0.0002 -0.0000

0.0002 1.0000 0.0000

-0.0000 0.0000 1.0000

Shuffled & Superposed

Figure 2: Average pairwise cosine similarity of three out of eight CLIP-ViT-B/32 task vectors during model
retrieval for SUN397 across three repetitions. Both random layer shuffling and superposition increase mutual
orthogonality, with an additive effect when combined.

vectors are very closely aligned with each other. Thus, the problem with task arithmetic is not that
the individual task vectors are very different from each other, but that they are too similar.

Our goal, therefore, should be to make the task vectors as different from each other as possible.
Below, we propose two strategies for doing this.

4 METHODOLOGY

As described above, to minimize interference, we want the task vectors to be as orthogonal to each
other as possible. We propose two complementary random algorithms to achieve this: random layer
shuffling and task vector superposition.

+ShuffleOriginal −Shuffle(Retrieved)

Layer 1

Layer 2

Layer 3

(a) Layer Shuffling Illustration

CLIP-ViT-B/32 Flan-T5 GPT-20.00
0.02
0.04
0.06
0.08
0.10

Co
sin

e 
Si

m
ila

rit
y

Inter
Intra

(b) Layer Cosine Similarity

Figure 3: (a) Layer shuffling illustration in a three-layer model with three checkpoints. Different task vectors
(distinct arrowheads) initially align across layers, causing interference when directly merged. Shuffling layers
followed by inverse transformation retain the target task’s orientation (standard arrowhead) while reducing
interference through increased orthogonality among other vectors. (b) shows cosine similarity distributions
between task vector layers within and across models for CLIP-ViT-B/32, Flan-T5, and GPT-2, with standard
error of mean (SEM) as error bars.

4.1 RANDOM LAYER SHUFFLING

Across several model architectures (CLIP-ViT-B/32, CLIP-ViT-L/14 (Radford et al., 2021), Flan-
T5 (Longpre et al., 2023), and GPT-2 (Radford et al., 2019)), we observed that task vector layers
within the same model exhibit greater variability compared to corresponding layers across fine-
tuned models (see Figure 3 (b)). This insight suggests that by randomly shuffling layers across
different task vectors, we can reduce the pairwise cosine similarity of interfering task vectors and
thus minimize their contribution to the interference. To that end, we propose random layer shuffling
as a simple fix to the problem.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Method Description. The models we consider are made of multiple parameter blocks of similar
structure. For example, transformers have multiple MLP layers and multiple attention layers. Many
of the MLP and Attention layers have weight matrices of the same size.

Our proposal is that when merging the task vectors, for each model, we first randomly permute the
task vectors across layers of the same type and with the same dimensions of parameter matrices
(as illustrated in Figure 3 (a)). Then, when we want to perform inference on a particular task, we
perform the inverse of the corresponding permutation to obtain the model for the task.

Concretely, for each task i, we produce a random permutation of the layers σi, taking care to only
permute across layers of the same type and same dimensionality. We then produce merged task
vectors by adding up these shuffled task vectors across models. The merged task vector for the k-th
layer is:

T k
⋆ ←

T∑

i=1

T
σi(k)
i . (6)

The number of such merged task vectors is equal to the total number of layers K. We then store
both the pretrained model Θ0 and the merged task vectors {T k

⋆ }Kk=1:

ΘShuffle
∗ ←

(
Θ0, {T k

⋆ }Kk=1

)
. (7)

Reduction in Interference: Because parameter vectors from different layers are less likely to align,
we effectively reduce the cosine product between the task vectors being merged: instead of the term
cos(T k

i ,T
k
j ) in the interference term (equation 5), we now have the product cos(T σi(k)

i ,T
σj(k)
j )

, which is expected to be significantly lower due to the reduced alignment of parameter vectors
from different layers. We thus expect smaller interference and thus more faithful retrieval of model
weights for each task. The first two parts of Figure 2 shows this effect in action, with layer shuffling
reducing the pairwise cosine similarity among interfering vectors unanimously.

4.2 TASK VECTOR SUPERPOSITION

We can also leverage the blessing of dimensionality (Gorban & Tyukin, 2018) to promote orthogo-
nality among high dimensional vectors. We take inspiration from Cheung et al. (2019) on continual
learning and introduce superposition as a complementary approach to increase the mutual orthogo-
nality among interfering task vectors.

Method Description. Considering merging the parameters of layer k, we sample a random binary
diagonal matrices whose diagonal entries have equal probability to be +1 or −1 to each of the T
task vectors and apply them to the vectors before summation:

T k
⋆ ←

T∑

i=1

T k
i C

k
i . (8)

We call them context matrices and ∀i ∈ [1, . . . , T ], Ck
i C

k(T )
i = Ck

i C
k(−1)
i = I .

When performing task i, we apply the inverse transformation C
k(−1)
i to retrieve task vector T k

i from
the superposition:

T̂ k
i = T k

⋆ C
k(−1)
i , (9)

=

T∑

i=1

[T k
i C

k
i ]C

k(−1)
i , (10)

= T k
i +

∑

j ̸=i

[T k
j C

k
j C

k(−1)
i ]. (11)

We store both the pretrained model Θ0, the merged task vectors {T k
⋆ }Kk=1, as well as the context

matrices {Ck
⋆ }Kk=1:

ΘSuperpose
∗ ←

(
Θ0, {T k

⋆ }Kk=1, {Ck
⋆ }Kk=1

)
. (12)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Reduction in Interference. Two random vectors in high dimensional space is very likely to
be nearly orthogonal with each other. Now the cosine similarity in equation 5 changes from
cos(T k

i ,T
k
j ) to cos(T k

i CiC
l(−1)
j ,T k

j CiC
l(−1)
j ) when performing task l. The randomly sampled

diagonal binary matrices {Ck
⋆ }Kk=1 will randomize the task vectors, leading to more orthogonal

task vectors, smaller interference, and thus better retrieval of model parameters for the task at hand.
Again, Figure 2 confirmed the cosine similarity reduction when task vectors are superposed together.

5 EXPERIMENTS

We evaluate our methods on FusionBench (Tang et al., 2024a) across vision and language tasks,
showing comparable performance for both discriminative and generative models. Through ablation
studies, we analyze component importance, merging coefficient effects, and context matrix designs.
Finally, we demonstrate broader applications including PEFT model compression and large-scale
merging of twenty CLIP-ViT-L/14 models.

5.1 EXPERIMENT SETUP

Datasets and Models. We follow Tang et al. (2024a) and select three representative scenarios
to evaluate our methods. This includes i) CLIP-ViT-B/32 fine-tuned on eight image classification
datasets (adopted from (Ilharco et al., 2022)); ii) Flan-T5-base fine-tuned on eight text generation
datasets; and iii) GPT-2 fine-tuned on seven text classification datasets. Detailed information on the
datasets and models is in Appendix B.

Baselines and Metrics. We evaluate baselines from model merging/compression literature,
grouped by memory requirements: methods using the original footprint (pre-trained model, stan-
dard merging techniques) and those requiring additional memory (fine-tuned models, newer merg-
ing baselines). The pre-trained and fine-tuned models provide lower and upper performance bounds
respectively. Following Ilharco et al. (2022), we optimize merging coefficient λ via validation set
grid search. We report accuracy and memory usage across three runs per experiment with random
operations. See Appendix B for details.

5.2 PERFORMANCE ANALYSIS

Table 1: Performance and memory comparison of CLIP-ViT-B/32 models across eight image classification
tasks, showing absolute and normalized accuracy (%), as well as memory footprint (Gb). Results averaged
over three runs where applicable. Variances smaller than 0.1% are omitted.

Method Avg.(%) ↑ Bits(Gb) ↓ SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Pre-trained 48.2 (53.4) 0.564 (1.00) 63.2 59.8 60.7 46.0 31.6 32.5 48.3 43.9
Weight Averaging 66.5 (73.6) 0.564 (1.00) 65.4 62.6 70.8 76.9 64.5 54.9 86.3 50.9
Fisher Merging 70.6 (78.2) 0.564 (1.00) 66.7 64.0 72.2 91.6 69.0 64.3 83.5 53.7
RegMean 80.5 (89.1) 0.564 (1.00) 67.8 68.9 82.5 94.4 90.6 79.2 94.7 63.2
Task Arithmetic 69.8 (77.2) 0.564 (1.00) 64.4 61.5 70.5 80.4 73.9 62.8 93.0 51.6
Ties-Merging 72.2 (80.0) 0.564 (1.00) 67.1 64.2 74.1 91.6 77.7 69.4 94.1 54.0
Layerwise AdaMerging 82.6 (91.5) 0.564 (1.00) 67.9 71.3 83.5 92.7 87.4 92.9 98.2 67.0
PSP 4.5 (5.0) 0.564 (1.00) 0.3 0.5 1.9 10.4 8.8 2.3 9.8 1.9

Fine-tuned 90.3 (100) 2.84 (5.03)1 75.0 78.3 95.2 99.0 97.3 98.9 99.6 79.7
WEMoE 89.2 (98.8) 2.27 (4.03) 73.7 76.8 93.4 98.2 96.8 98.2 99.6 76.6
SMILE 89.3 (98.9) 1.23 (2.20) 73.6 77.8 92.0 98.3 96.9 98.1 99.6 78.1
TA+Shuffle (Ours) 81.3 (90.0) 0.89 (1.58) 65.6 58.5 86.8 94.5 93.2 91.4 98.5 62.2
STA (Ours) 89.6 (99.2) 0.89 (1.58) 74.4 75.6 94.6 99.0 97.1 98.5 99.5 77.8
STA+Shuffle (Ours) 89.9 (99.6) 0.89 (1.58) 74.8 76.7 94.8 99.0 97.2 98.6 99.5 78.7

Superior MTL Performance. Our approach achieves significant accuracy gains across bench-
marks (Tables 1, 2 and 6), with STA+Shuffle nearly matching individual fine-tuned models. We
outperform WEMoE (Tang et al., 2024c) and SMILE (Tang et al., 2024b) on image classification
while using only 40% and 72% of their respective memory footprints, and surpass SMILE’s text gen-
eration performance at benchmark saturation. Though Task Arithmetic (Ilharco et al., 2022) uses
55% of our storage, its performance is substantially lower. Parameter Superposition (Cheung et al.,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Performance and memory comparison of Flan-T5-base models across eight GLUE text generation
tasks, showing absolute and normalized accuracy (%), as well as memory footprint (Gb). Results averaged
over three runs where applicable. Variances smaller than 0.1% are omitted.

Method Avg.(%) ↑ Bits(Gb) ↓ CoLA MNLI MRPC QNLI QQP RTE SST2 STSB

Pre-trained 75.7 (87.6) 1.19 (1.00) 69.1 56.5 76.2 88.4 82.1 80.1 91.2 62.2
Weight Averaging 78.9 (91.3) 1.19 (1.00) 69.1 62.6 79.4 89.8 83.9 81.2 91.7 73.2
Task Arithmetic 79.6 (92.1) 1.19 (1.00) 69.7 64.1 79.2 90.2 83.9 81.6 92.1 76.4
Ties-Merging 79.9 (92.5) 1.19 (1.00) 70.3 65.0 78.9 90.2 83.5 81.6 91.7 78.3
PSP 0.0 (0.0) 1.19 (1.00) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A

Fine-tuned 86.4 (100) 9.52 (8.00) 75.0 83.4 87.5 91.5 85.4 85.9 93.6 88.7
SMILE 85.5 (99.0) 1.81 (1.52) 73.2 84.2 85.0 91.3 84.9 84.8 93.5 87.3
TA+Shuffle (Ours) 85.7 (99.0) 2.38 (2.00) 75.5 82.0 87.5 91.1 83.9 83.8 93.6 88.4
STA (Ours) 86.5 (100) 2.38 (2.00) 77.2 82.1 87.6 91.6 85.3 85.7 93.2 89.0
STA+Shuffle (Ours) 86.4 (100) 2.38 (2.00) 75.6 82.8 88.2 91.7 85.3 85.7 93.5 88.9

2019), while effective for continual learning, underperforms here, demonstrating the importance of
task vector superposition for offline compression.

Amortizable Memory Overhead. Our method requires only 2x memory, mainly from storing
merged task vectors {T k

⋆ }Kk=1 and binary context matrices {Ck
⋆ }Kk=1 (equations 7, 12). By storing

random seeds and regenerating context matrices on-the-fly with minimal overhead (292.70 ms for
CLIP-ViT-B/32, 658.19 ms for CLIP-ViT-L/14 on Intel Xeon Gold 6448Y CPU), we achieve effec-
tively zero additional memory per model. This enables efficient scaling, demonstrated by merging
20 CLIP-ViT-L/14 models with state-of-the-art performance and 9x memory reduction (Sec. 5.9).

5.3 KEY COMPONENTS ABLATION

In this section, we ablate both the random layer shuffling and superposition to show their individual
contribution. Specifically, we derive two variants:

• TA+Shuffle: we randomly shuffle the layers before task arithmetic without performing
superposition.

• STA: we superpose task vectors without layer shuffling.

As shown in Tables 1, 2, 4, 5 and 6, both methods significantly outperform task arithmetic consis-
tently. In some benchmarks, shuffling works better (Flan-T5-base and GPT-2) while superposition
works better in others (CLIP). This difference may be because of the nature of task vectors them-
selves: how they vary across the model layers and across different models. We find that the combined
approach is able to combine gains from both components, yielding consistently the best result across
all the benchmarks. This complementary effect is further manifested in Figure 2, where introducing
both mechanism gets the smallest pairwise cosine similarity among interfering task vectors. We pro-
vide detailed analysis of the interplay between shuffling and superposition in Section D, including
how different implementation choices affect model performance.

5.4 IMPACT OF MERGING COEFFICIENT λ

0.2 0.4 0.6 0.8 1.0
Coefficient 

20

30

40

50

60

70

80

90

100

Av
er

ag
e 

Ac
cu

ra
cy

 (%
)

Fine-tuned
Pre-trained
STA+Shuffle
STA
TA+Shuffle
Task Arithmetic

Figure 4: The impact
of λ on average accu-
racy over eight image
classification tasks.

Here we examine the interplay between the merging coefficient λ and the
average performance across different setup. For each variant derived in sec-
tion 4, we perform a grid search on λ = {0.1, 0.2, · · · , 1.0} when compress-
ing eight CLIP-ViT-B/32 models for image classification. Figure 4 shows
the change of optimal model performance and the coefficient λ when layer
shuffling and superposition are introduced to task arithmetic.

We observe that when shuffling and superposition are introduced, the best
performance increases along with the value of λ. This shows the effectiveness
of our method in reducing interference, allowing larger λ to be selected for
more authentic model retrieval as according to equation 4.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.5 IMPACT OF CONTEXT MATRIX DESIGN

To further examine how task vector superposition works and shad light on better context matrix
design, we make a comparison between three types of context matrices: random binary diagonal
matrix with {−1,+1} entries (RBD), identity matrix (Identity), and random diagonal matrix with
entries draw from Normal distribution (RD). We use random layer shuffling when compressing the
8 CLIP-ViT-B/32 models on the image classification tasks.

The average accuracy and its variance with the optimal merging coefficient is shown in Figure 5.
RBD receives higher accuracy than Identity due to the randomness it introduces, which reduces in-
terference as discussed in section 4.2. Despite being random, RD’s accuracy is much lower than
RBD. We think this happens because RD is not an orthogonal matrix. It fails to preserve the Frobe-
nius norm of T k

j C
k
j C

k(−1)
i and thus disturb this self-cancellation process.

RBD Identity RD0

20

40

60

80

Av
er

ag
e 

Ac
cu

ra
cy

 (%
)

(a) Context Matrix Design

ALL MLP ATTN0

20

40

60

80

Av
er

ag
e 

Ac
cu

ra
cy

 (%
)

(b) Target Layer Selection

Figure 5: (a) Impact of context matrix design to the average accuracy. RBD stands for random binary diagonal;
RD stands for random diagonal. (b) Impact of target layer selection to the average accuracy. ALL stands for
choosing all layers; MLP means only MLP layers are selected; and ATTN stands for attention layers.

5.6 TARGET LAYER SELECTION

By default we apply the random operations on all layers within the models. In this section, we
evaluate the benefits of targeting specific types of layers. To do this, we create two variants: MLP
(which selects only the MLP layers) and ATTN (which selects only the attention layers), in addition
to the default setup (ALL). Figure 5 shows the average accuracy for each setup across eight image
classification tasks using CLIP-ViT-B/32. The ALL configuration achieves the highest accuracy,
followed by MLP and ATTN. Note that the total number of parameters in MLP is twice that of
ATTN, explaining the gradual decline in performance as fewer parameters are selected.

5.7 MODEL HOT SWAPPING

The ability to hot-swap models in real-world applications is crucial, especially in dynamic environ-
ments like model serving, where new models need to be integrated into the system regularly, and
deprecated ones need to be removed in a timely fashion. As mentioned, the STA+Shuffle method
allows for this by shuffling layers and sampling diagonal binary matrices independently of data or
model parameters, thus enabling the on-the-fly addition of new models without the need for re-
computation. This provides our a method a big advantage over methods like WEMoE which require
recomputation of the router when new models are added (Tang et al., 2024c), or TALL-masks, which
also needs to recompute binary masks when new models are added (Wang et al., 2024). We dub this
feature hot swapping to borrow a term from the hardware literature.

5.8 PARAMETER EFFICIENT FINETUNING (PEFT) MODEL COMPRESSION

We also apply our method on PEFT adapter weights. Consider a LoRA (Hu et al., 2021), where we
have a fixed pre-trained model Θ0, along with LoRA weights Li. We merge the LoRA weights to
get the fine-tuned model: Θi = Θ0 + λLi. Similar to section 4.1 and 4.2, we apply random layer
shuffling and superposition on these LoRA weight vectors before retrieval.

1CLIP models’ text encoder is frozen and shared by all fine-tuned models.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Comparison of selected methods with hot adding and recomputation requirements when new models
are added to the pool.

Method Hot Swap Recomputation
Task Arithmetic ✓ ✗

WEMoE ✗ ✓
TALL-masks ✗ ✓
STA+Shuffle ✓ ✗

Experiments on Flan-T5-base LoRA fine-tunes (Longpre et al., 2023; Tang et al., 2024a;b) demon-
strate that our method is performative in PEFT compression settings as well (Table 4). With 99.8%
normalized average accuracy compare to the fine-tuned baseline, and 1.20 Gb memory usage, our
method presents a better trade-off point between performance and storage usage than the state-of-
the-art model SMILE (Tang et al., 2024b).

Table 4: Performance and memory comparison of Flan-T5-base LoRA models across eight GLUE text genera-
tion tasks, showing absolute and normalized accuracy (%), as well as memory footprint (Gb). Results averaged
over three runs where applicable. Variances smaller than 0.1% are omitted.

Method Avg.(%) ↑ Bits(Gb) ↓ CoLA MNLI MRPC QNLI QQP RTE SST2 STSB

Pre-trained 75.7 (87.6) 1.19 (1.00) 69.1 56.5 76.2 88.4 82.1 80.1 91.2 62.2
Weight Averaging 78.2 (92.4) 1.19 (1.00) 69.7 59.7 78.9 90.1 83.8 80.5 91.2 72.0
Task Arithmetic 77.4 (91.5) 1.19 (1.00) 68.8 55.2 78.7 89.8 83.7 79.1 91.5 72.4
Ties-Merging 77.5 (91.6) 1.19 (1.00) 68.3 56.3 79.4 89.8 83.7 79.4 91.6 71.2

Fine-tuned 84.6 (100) 1.25 (1.05) 69.1 82.7 85.5 90.9 84.0 84.4 92.9 87.4
SMILE 84.0 (99.3) 1.21 (1.02) 69.3 82.9 83.8 90.6 83.9 83.4 93.1 85.1
TA+Shuffle (Ours) 83.9 (99.2) 1.20 (1.01) 69.2 79.0 ±0.3 84.2 90.4 84.1 85.0 92.9 86.5
STA (Ours) 83.0 (98.1) 1.20 (1.01) 69.1 81.3 82.2 90.5 83.2 79.1 92.7 85.6
STA+Shuffle (Ours) 84.4 (99.8) 1.20 (1.01) 69.1 82.7 85.0 90.9 83.8 84.2 92.7 86.9

5.9 SCALABILITY ANALYSIS

Our method scales effectively to merging larger models and more tasks, as demonstrated on CLIP
ViT-L/14 with 8, 14, and 20 image classification tasks (Table 5). STA+Shuffle achieves near fine-
tuned performance (93.5% vs 94.2% for 20 tasks) while maintaining constant 2.87GB storage re-
gardless of task count. In contrast, TALL-masks+TA (Wang et al., 2024) requires progressively
more storage (5.42GB to 9.25GB) as tasks increase. Though Task Arithmetic uses only 1.59GB, its
performance drops significantly with more tasks. Model retrieval remains efficient, requiring just
658.19ms per CLIP ViT-L/14 model on an Intel Xeon Gold 6448Y CPU.

Table 5: Performance and memory comparison of CLIP ViT-L/14 models across three test scenarios with 8, 14,
and 20 image classification tasks, showing absolute and normalized accuracy (%), as well as memory footprint
(Gb). Results averaged over three runs where applicable. Variances smaller than 0.1% are omitted.

Method 8 tasks 14 tasks 20 tasks

Acc.(%) ↑ Bits(Gb) ↓ Acc.(%) ↑ Bits(Gb) ↓ Acc.(%) ↑ Bits(Gb) ↓
Pre-trained 64.5 (68.3) 1.59 (1.00) 68.1 (72.8) 1.59 (1.00) 65.2 (69.2) 1.59 (1.00)

Task Arithmetic 84.0 (88.7) 1.59 (1.00) 79.1 (84.2) 1.59 (1.00) 73.8 (78.3) 1.59 (1.00)

Fine-tuned 94.4 (100) 10.53 (6.62) 93.5 (100) 18.18 (11.43) 94.2 (100) 25.84 (16.25)

Magnitude Masking 92.8 (98.2) 5.42 (3.41) 90.6 (96.7) 7.34 (4.62) 90.9 (96.4) 9.25 (5.82)

TALL Mask+TA 94.2 (99.7) 5.42 (3.41) 92.4 (98.8) 7.34 (4.62) 93.2 (98.9) 9.25 (5.82)

TA+Shuffle (Ours) 93.0 (98.4) 2.87 (1.81) 88.8 (94.6) 2.87 (1.81) 87.1 ±0.1(92.2) 2.87 (1.81)

STA (Ours) 94.2 (99.8) 2.87 (1.81) 92.8 (99.2) 2.87 (1.81) 93.4 (99.1) 2.87 (1.81)

STA+Shuffle (Ours) 94.3 (99.9) 2.87 (1.81) 93.0 (99.5) 2.87 (1.81) 93.5 (99.3) 2.87 (1.81)

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 RELATED WORK

Model Merging. Recent research on model merging is largely founded on linear mode connectiv-
ity (LMC) (Frankle et al., 2020; Neyshabur et al., 2020), which posits that models fine-tuned from
the same pre-trained model are connected by a linear path along which performance remains con-
stant. Building upon this concept, Wortsman et al. (2022) and Li et al. (2024) demonstrated that a set
of specialist models can be directly interpolated to obtain a multi-task model. Ilharco et al. (2022)
proposed interpolating the parameter deltas (referred to as ”task vectors”) instead. However, these
methods suffer from task interference: when different models adjust the same parameters in conflict-
ing ways, summing these adjustments leads to interference and degraded performance on individual
tasks (Yadav et al., 2024; Tang et al., 2024b; Wang et al., 2024). To mitigate this interference, various
strategies have been proposed. Yang et al. (2023) optimized the merging coefficients for different
tasks and layers to reduce interference. Yadav et al. (2024) addressed the conflict by removing re-
dundant parameters and resolving sign disagreements. Tang et al. (2024c) reduced interference by
upscaling the multilayer perceptron (MLP) layers. Tang et al. (2024b) compressed task vectors us-
ing singular value decomposition (SVD) and performed routing between them to further diminish
interference. Both Wang et al. (2024) and Yu et al. (2024) sparsified the task vectors to prevent
task conflicts. Additionally, Ortiz-Jimenez et al. (2024) proposed fine-tuning the linearized model
along the tangent space of the pre-trained model to promote weight disentanglement and avoid in-
terference. In contrast to the above mentioned methods that aim to avoid conflicts, we intentionally
accumulate interference among conflicting task vectors to facilitate their mutual cancellation.

Model Compression. Model compression techniques aim to reduce the memory footprint of mod-
els while maintaining their performance. Model pruning compresses neural networks by removing
inessential parameters in either a structured (Anwar et al., 2017; Fang et al., 2023; He & Xiao, 2023;
Wang et al., 2019) or unstructured (Liao et al., 2023; Kwon et al., 2020) manner. Parameter quan-
tization saves memory and speeds up inference by converting the weights and activation values of
a neural network from high precision to low precision (Gholami et al., 2022; Liu et al., 2021; Yuan
et al., 2022). Knowledge distillation reduces the memory footprint by training a smaller network to
mimic a larger network’s behavior (Gou et al., 2021; Cho & Hariharan, 2019; Park et al., 2019; Zhao
et al., 2022). Leveraging the low-rank nature of model parameters, many works decompose weight
matrices into low-rank matrices for memory reduction (Yu et al., 2017; Li et al., 2023; Guo et al.,
2024). Ryu et al. (2023) observed the low-rank nature of weight residuals in overparameterized
models and proposed reducing storage demands for fine-tuned models through low-rank approxi-
mation of these residuals. Similarly, Tang et al. (2024b) compresses individual task vectors using
SVD and routes through a set of them conditioned on input. Our work differs from these works in
that we try to reduce redundancy across a set of aligned models rather than within them.

7 DISCUSSION AND FUTURE WORK

In this work, we introduce random layer shuffling and task vector superposition to enhance or-
thogonality between task vectors, thereby significantly reduce task interference during multi-model
merging and compression. These data- and model-agnostic random operations enable users to i)
efficiently modify the model merging combinations without the need for additional training or op-
timization; ii) merge additional models without increasing memory usage by saving random seeds.
Evaluation on diverse model and task sets demonstrates that our method maintains high performance
while keeping a constant memory footprint as more and larger models are merged. These attributes
make our approach highly practical for real-world multi-model serving environments.

An interesting future direction is to further improve performance by increasing orthogonality, po-
tentially through alternative random operations or more systematic approaches. Our method relies
on specific properties of model parameters that emerge from fine-tuning. Identifying these proper-
ties and enhancing fine-tuning strategies could lead to better merging and compression performance.
Since we reduce cross-model redundancy, applying model compression algorithms could potentially
further decrease memory footprint.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):1–18,
2017.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer vision–ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings, part VI 13, pp. 446–461. Springer, 2014.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Superpo-
sition of many models into one. Advances in neural information processing systems, 32, 2019.

Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 4794–4802, 2019.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718, 2018.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp.
2921–2926. IEEE, 2017.

Vanya Cohen and Aaron Gokaslan. Opengpt-2: open language models and implications of generated
text. XRDS, 27(1):26–30, September 2020. ISSN 1528-4972. doi: 10.1145/3416063. URL
https://doi.org/10.1145/3416063.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16091–16101, 2023.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben Hamner,
Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, et al. Challenges in representation
learning: A report on three machine learning contests. In Neural information processing: 20th
international conference, ICONIP 2013, daegu, korea, november 3-7, 2013. Proceedings, Part III
20, pp. 117–124. Springer, 2013.

Alexander N Gorban and Ivan Yu Tyukin. Blessing of dimensionality: mathematical foundations of
the statistical physics of data. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 376(2118):20170237, 2018.

11

https://doi.org/10.1145/3416063


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Yangyang Guo, Guangzhi Wang, and Mohan Kankanhalli. Pela: Learning parameter-efficient mod-
els with low-rank approximation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15699–15709, 2024.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2023.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Se Jung Kwon, Dongsoo Lee, Byeongwook Kim, Parichay Kapoor, Baeseong Park, and Gu-Yeon
Wei. Structured compression by weight encryption for unstructured pruning and quantization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1909–1918, 2020.

Tao Li, Weisen Jiang, Fanghui Liu, Xiaolin Huang, and James T Kwok. Scalable learned model
soup on a single gpu: An efficient subspace training strategy. arXiv preprint arXiv:2407.03641,
2024.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse ap-
proximation. In International Conference on Machine Learning, pp. 20336–20350. PMLR, 2023.

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce
the depth in deep neural networks? In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1402–1406, 2023.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quanti-
zation for vision transformer. Advances in Neural Information Processing Systems, 34:28092–
28103, 2021.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning, pp. 22631–22648. PMLR,
2023.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

12

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learn-
ing? Advances in neural information processing systems, 33:512–523, 2020.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3967–3976,
2019.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Simo Ryu, Seunghyun Seo, and Jaejun Yoo. Efficient storage of fine-tuned models via low-rank
approximation of weight residuals. arXiv preprint arXiv:2305.18425, 2023.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition. Neural networks, 32:323–332,
2012.

Anke Tang, Li Shen, Yong Luo, Liang Ding, Han Hu, Bo Du, and Dacheng Tao. Concrete
subspace learning based interference elimination for multi-task model fusion. arXiv preprint
arXiv:2312.06173, 2023.

Anke Tang, Li Shen, Yong Luo, Han Hu, Bo Do, and Dacheng Tao. Fusionbench: A comprehensive
benchmark of deep model fusion. arXiv preprint arXiv:2406.03280, 2024a.

Anke Tang, Li Shen, Yong Luo, Shuai Xie, Han Hu, Lefei Zhang, Bo Du, and Dacheng Tao. Smile:
Zero-shot sparse mixture of low-rank experts construction from pre-trained foundation models.
arXiv preprint arXiv:2408.10174, 2024b.

Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task
models via weight-ensembling mixture of experts. arXiv preprint arXiv:2402.00433, 2024c.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation
equivariant cnns for digital pathology. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20,
2018, Proceedings, Part II 11, pp. 210–218. Springer, 2018.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. arXiv preprint
arXiv:2405.07813, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv
preprint arXiv:1910.04732, 2019.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,
Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, et al. Bloom:
A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,
2022.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33:15173–15184, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 3485–3492, 2010. doi: 10.1109/CVPR.2010.
5539970.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. arXiv preprint arXiv:2310.02575,
2023.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7370–7379, 2017.

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training
quantization for vision transformers with twin uniform quantization. In European conference on
computer vision, pp. 191–207. Springer, 2022.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp.
11953–11962, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A OVERVIEW

In this appendix we present more information about the experiment settings and analysis that could
not fit in the main paper. In Sec. B we present more details about the datasets, models, and baseline
methods used in evaluation. In Sec. C we derive the squared Frobenius norm of the interference
term used in equation 5. In Sec. D we include additional analysis and results.

B EXPERIMENT SETUP

This section provides detailed descriptions for the datasets, baselines, and model fine-tuning settings.

Datasets Details. Evaluation are performed on two sets of datasets with different type of tasks.

1. Image Classification Datasets: For image classification, following Ilharco et al. (2022);
Tang et al. (2024a); Wang et al. (2024), we use twenty tasks from CLIP’s (Radford
et al., 2021) test set: SUN397 (Xiao et al., 2010), Cars (Krause et al., 2013), RE-
SISC45 (Cheng et al., 2017), EuroSAT (Helber et al., 2019), SVHN (Netzer et al., 2011),
GTSRB (Stallkamp et al., 2012), MNIST (Deng, 2012), DTD (Cimpoi et al., 2014),
CIFAR100 (Krizhevsky, 2009), STL10 (Coates et al., 2011), Flowers102 (Nilsback &
Zisserman, 2008), OxfordIIITPet (Parkhi et al., 2012), PCAM (Veeling et al., 2018),
FER2013 (Goodfellow et al., 2013), EMNIST (Cohen et al., 2017), CIFAR10 (Krizhevsky,
2009), Food101 (Bossard et al., 2014), FashionMNIST (Xiao et al., 2017), Ren-
deredSST2 (Socher et al., 2013; Radford et al., 2019), and KMNIST (Clanuwat et al.,
2018). For experiments on K tasks, the first K datasets from this list are select.

2. Text Classification and Generation Datasets: For text classification and generation, fol-
lowing Tang et al. (2024a), we have in total eight tasks from the GLUE benchmark (Wang,
2018): CoLA, MNLI, MRPC, QNLI, QQP, RTE, SST2, and STSB.

Baseline Details. Our experiments compare the following baselines and our methods:

• Pre-trained: Pre-trained model used across all tasks (performance lower bound).
• Fine-tuned: Individual fine-tuned models (performance upper bound).
• Weight Averaging (Wortsman et al., 2022): Merge models by directly averaging their

parameters.
• Fisher Merging (Matena & Raffel, 2022): Fisher Merging uses the Fisher information as

a weight for each parameter during weight averaging.
• RegMean (Jin et al., 2022): RegMean introduces a constraint in model merging by mini-

mizing the L2 distance between the merged model and each individual model.
• Task Arithmetic (Ilharco et al., 2022): Task Arithmetic computes the delta parameters

between fine-tuned models and the base model (known as ”task vectors”) and aggregates
them before adding into a pre-trained model.

• Ties-Merging (Yadav et al., 2024): Ties-Merging addresses task conflict issues found in
Task Arithmetic by eliminating redundant parameters and resolving symbol conflicts.

• Layer-wise AdaMerging (Yang et al., 2023): Layer-wise AdaMerging finds optimal merg-
ing coefficients for each layer of each task vector in Task Arithmetic using test-time adap-
tation.

• Parameter Superposition (PSP) (Cheung et al., 2019): PSP applies random orthogonal
matrices periodically during training to store many models into one model. We adopted
it in our offline setting by treating fine-tuned models as different model instances during
training to provide some contexts to our task vector superposition approach.

• WEMoE (Tang et al., 2024c): WEMoE only merges the layer norm and attention layers
while keeping the multi-layer perceptron layers unmerged, with a router to dynamically
allocate weights to each MLP conditioned on the input.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• SMILE (Tang et al., 2024b): SMILE compresses task vectors with singular value decom-
position (SVD). It then determines the routing weights based on the alignment between
input and each low-rank matrix.

• TALL-masks+TA (Wang et al., 2024): TALL-masks+TA finds a binary parameter mask
for each task vector by finding task-specific parameters with values deviate a lot from the
aggregated multi-task vector. The corresponding mask for each task is applied to the multi-
task vector before adding to a pre-trained model.

• Magnitude Masking (Wang et al., 2024): Magnitude Masking differ from TALL-masks in
that it determines per-task masks by keeping the top k% of each task vector’s parameters.

• TA+Shuffle (Ours): TA+Shuffle performs random layer shuffling among the repetitive
layers in each task vector before merging them with Task Arithmetic.

• STA (Ours): STA applies random orthogonal transformations to each layer in each task
vector in Task Arithmetic.

• STA+Shuffle (Ours): STA+Shuffle combines layer shuffling and superposition.

Model Details. We utilize fine-tuned models from Tang et al. (2024a) and Wang et al. (2024).
Here we describe the experimental setup for fine-tuning these models.

• CLIP-ViT-B/32 Models: The CLIP-ViT-B/32 models are fine-tuned by Tang et al. (2024a).
The Adam optimizer is employed with a fixed learning rate of 1e−5 for a total of 4,000
training steps with the batch size of 32. The zero-shot classification layer is computed
on-the-fly with a frozen text encoder.

• CLIP-ViT-L/14 Models: Different from CLIP-ViT-B/32 models, these models are fine-
tuned by Wang et al. (2024) with the training procedure described in Ilharco et al. (2022).
The AdamW optimizer is employed with a fixed learning rate of 1e−5 for a total of 2,000
training steps with the batch size of 128, and a cosine annealing learning rate schedule
with 200 warm-up steps. The zero-shot classification heads are pre-computed and freezed
during fine-tuning process, following Ilharco et al. (2022) and Ortiz-Jimenez et al. (2024).

• GPT-2 Models: These models are fine-tuned by Tang et al. (2024a) with a constant learning
rate of 5e−5 for 3 epochs.

• Flan-T5-base and LoRA Models: These models come from Tang et al. (2024a), with
unspecified fine-tuning settings.

Evaluation Metrics. We measure performance using average task accuracy and normalized ac-
curacy (relative to Fine-tuned baseline). For STSB (Wang, 2018), we use Spearman’s correlation.
Memory efficiency is evaluated by estimated memory footprint in Gb and normalized footprint (rel-
ative to Pre-trained baseline).

Default Experimental Setup. We use global random seeds 42, 43, 44 for three runs per exper-
iment on random approaches. Each model’s specific seed is generated by adding its index to the
global seed, and is used consistently for layer shuffling and binary diagonal matrices across target
layers. Following Ilharco et al. (2022), we apply uniform merging coefficients across models, op-
timized via grid search on validation sets (10% of training data, max 1,000 samples (Wang et al.,
2024)). The search space is 0.1, 0.2, · · · , 1.0, extended to 0.1, 0.2, · · · , 2.0 for Flan-T5-base LoRA
experiments.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C DERIVATION OF EQUATION 5

Here we derive the squared Frobenius norm of the interference λ
∑

i ̸=k T
k
i in more details:

∥∥∥∥∥∥
λ
∑

i ̸=k

T k
i

∥∥∥∥∥∥

2

F

=

〈
λ
∑

i ̸=k

T k
i , λ

∑

i̸=k

T k
i

〉

F

, (13)

= λ2


∑

i̸=k

∑

j ̸=k

⟨T k
i ,T

k
j ⟩F


 , (14)

= λ2


∑

i̸=k

⟨T k
i ,T

k
i ⟩F +

∑

i,j ̸=k

⟨Ti,T
k
j ⟩F


 , (15)

= λ2



∑

i ̸=k

∥T k
i ∥2F + 2

∑

1≤i<j≤n
i,j ̸=k

⟨T k
i ,T

k
j ⟩F


 , (16)

= λ2



∑

i ̸=k

∥T k
i ∥2F + 2

∑

1≤i<j≤n
i,j ̸=k

∥T k
i ∥F ∥T k

j ∥F cos(T k
i ,T

k
j )


 . (17)

D ADDITIONAL ANALYSIS

D.1 GPT-2 TEXT CLASSIFICATION EXPERIMENTS

We evaluated our proposed methods against established baselines by merging seven independently
trained GPT-2 models on text classification tasks. As shown in Table 6, both our STA+Shuffle
algorithm and its TA+Shuffle variants achieved significantly higher classification accuracy while
doubling the memory footprint, consistent with the performance on other benchmarks.

Table 6: Performance and memory comparison of GPT-2 models across seven GLUE text classification tasks,
showing absolute and normalized accuracy (%), as well as memory footprint (Gb). Results averaged over three
runs where applicable. Variances smaller than 0.1% are omitted.

Method Avg.(%) ↑ Bits(Gb) ↓ CoLA MNLI MRPC QNLI QQP RTE SST-2

Pre-trained 44.5 (54.3) 0.498 (1.00) 30.9 33.0 31.4 49.2 63.2 52.7 50.9
Weight Averaging 56.1 (63.3) 0.498 (1.00) 55.0 55.1 51.0 57.6 76.7 44.8 52.5
Fisher Merging 58.7 (64.7) 0.498 (1.00) 54.8 58.0 39.5 63.3 81.5 49.1 64.7
RegMean 68.8 (79.7) 0.498 (1.00) 61.7 70.4 65.4 69.7 78.8 56.0 79.7
Task Arithmetic 70.0 (85.4) 0.498 (1.00) 68.7 68.6 69.6 70.5 81.8 47.3 83.6
Ties-Merging 70.0 (82.4) 0.498 (1.00) 68.4 71.4 68.4 69.6 82.4 47.7 81.8
PSP 44.5 (54.3) 0.498 (1.00) 30.9 33.6 31.6 49.5 63.2 52.5 50.3

Fine-tuned 82.0 (100) 3.49 (7.00) 76.8 82.1 80.4 88.3 89.6 65.3 91.2
TA+Shuffle (Ours) 76.7 (93.5) 0.997 (2.00) 71.6 80.3 73.9 85.8 88.5 47.5 89.3
STA (Ours) 71.3 ±0.6 (87.0) 0.997 (2.00) 62.3 ±0.3 78.2 46.1 ±4 82.6 88.4 52.7 88.9
STA+Shuffle (Ours) 76.6 ±0.2 (93.4) 0.997 (2.00) 70.3 ±0.1 81.0 61.0 ±1.3 87.2 89.3 57.5 ±0.3 90.2

D.2 DYNAMICS BETWEEN LAYER SHUFFLING AND SUPERPOSITION

We investigate how varying layer shuffling and superposition parameters affects model performance.
We test target layer skip rates of 1, 2, 3, 4, where every k-th target layer within repetitive layer sets
is shuffled and superposed. We also introduce layer shifting – a deterministic alternative to shuffling
that shifts layers one position deeper with wrap-around – to study how different decorrelation

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Skip Rate
0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Average Accuracy
TA+Shuffle
TA+Shift
STA+Shuffle
STA+Shift
STA

Skip Rate

0.0260

0.0265

0.0270

0.0275

0.0280

0.0285

Co
sin

e 
Si

m
ila

rit
y

Average Cosine Similarity (Original)
TA+Shuffle
TA+Shift
STA+Shuffle
STA+Shift
STA

Skip Rate

0.64

0.66

0.68

0.70

0.72

0.74

Ac
cu

ra
cy

Average Accuracy (SUN397)
TA+Shuffle
TA+Shift
STA+Shuffle
STA+Shift
STA

Skip Rate
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Co
sin

e 
Si

m
ila

rit
y

Average Cosine Similarity (SUN397)
TA+Shuffle
TA+Shift
STA+Shuffle
STA+Shift
STA

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Skip Rate

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Average Accuracy (GTSRB)

TA+Shuffle
TA+Shift
STA+Shuffle
STA+Shift
STA

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Skip Rate

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Co
sin

e 
Si

m
ila

rit
y

Average Cosine Similarity (GTSRB)
TA+Shuffle
TA+Shift
STA+Shuffle
STA+Shift
STA

Figure 6: Average accuracy and cosine similarity among interfering task vectors when retrieving SUN397
and GTSRB models from 8 merged CLIP-ViT-B/32 models with various target layer skipping rates and shuf-
fling/superposition setups.

approaches affect performance.

Experiments on eight CLIP-ViT-B/32 benchmarks (Figure 6) show averaged results across
three repetitions, focusing on overall benchmark accuracy and two specific tasks: SUN397 (Xiao
et al., 2010) and GTSRB (Stallkamp et al., 2012). We analyze both task performance and average
pairwise cosine similarity among task vectors - both original and among interfering vectors during
model retrieval.

As skip rate increases, accuracy declines while cosine similarity rises. Performance remains
stable up to skip rate 2, suggesting potential memory savings through selective layer manipulation.
For GTSRB, TA+Shuffle outperforms TA+Shift despite higher cosine similarity, indicating the
method of achieving orthogonality matters beyond decorrelation levels. This pattern reverses for
SUN397, revealing task-dependent variations and opportunities for task-specific optimization.

The correlation between interfering task vectors’ cosine similarity and accuracy shows a neg-
ative trend (Figure 7), most pronounced in EuroSAT and MNIST. While patterns vary across tasks,
peak accuracy consistently occurs near zero cosine similarity. This observation, combined with
STA+Shift’s strong performance at low skip rates (Figure 6), suggests a cosine similarity threshold
may exist above which method selection becomes less critical.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.00000.00250.00500.00750.01000.01250.01500.01750.0200
Cosine Similarity

0.64

0.66

0.68

0.70

0.72

0.74

Ac
cu

ra
cy

sun397 (Corr: -0.80)

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Cosine Similarity

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

stanford_cars (Corr: -0.59)

0.000 0.005 0.010 0.015 0.020 0.025
Cosine Similarity

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

resisc45 (Corr: -0.72)

0.000 0.005 0.010 0.015 0.020
Cosine Similarity

0.80

0.85

0.90

0.95
Ac

cu
ra

cy

eurosat (Corr: -0.97)

0.00 0.01 0.02 0.03 0.04
Cosine Similarity

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

svhn (Corr: -0.48)

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Cosine Similarity

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

gtsrb (Corr: -0.57)

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Cosine Similarity

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

mnist (Corr: -0.93)

0.00000.00250.00500.00750.01000.01250.01500.0175
Cosine Similarity

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

dtd (Corr: -0.70)

Figure 7: Correlation between the pairwise cosine similarity among interfering task vectors and the accuracy
on the eight image classification tasks, with CLIP-ViT-B/32 merged with different levels of shuffling and su-
perposition.

19


	Introduction
	Problem setup
	Task Arithmetic
	Interference in Task Arithmetic

	Methodology
	Random Layer Shuffling
	Task Vector Superposition

	Experiments
	Experiment Setup
	Performance Analysis
	Key Components Ablation
	Impact of Merging Coefficient 
	Impact of Context Matrix Design
	Target Layer Selection
	Model Hot Swapping
	Parameter Efficient Finetuning (PEFT) Model Compression
	Scalability Analysis

	Related Work
	Discussion and Future Work
	Overview
	Experiment Setup
	Derivation of [interferencefrobnormequation]Equation 5
	Additional Analysis
	GPT-2 Text Classification Experiments
	Dynamics between Layer Shuffling and Superposition


