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Abstract

In order to address the chain of thought in the large language model inference cost surge, this research
proposes to use a sparse attention mechanism that only focuses on a few relevant tokens. The researcher
constructed a new attention mechanism and used GiantRabbit trained with custom GPTs as an
experimental tool. The experiment tested and compared the reasoning time, correctness score and chain of
thought length of this model and o1 Preview in solving the linear algebra test questions of MIT
OpenCourseWare. The results show that GiantRabbit's reasoning time and chain of thought length are
significantly lower than o1 Preview, confirming the feasibility of the sparse attention mechanism in
reducing chain of thought reasoning. Detailed architectural details and experimental process have been
uploaded to Github, the link is:https://github.com/brucewang123456789/GeniusTrail.git.

Figure 1 - An Innovative Transformer Architecture that Integrates Sparse Attention Mechanisms with
Chain of Thought

1. Introduction
With the rapid development of generative artificial intelligence (GenAI) in academia and industry, the

NLP field continues to break through bottlenecks and promote the gradual maturity of large language
model (LLM) technology (Hagos et al., 2024). GPT, Llama, Gemini and other series of products have made
significant progress in the fluency and semantic coherence of language generation (Creutz, 2024; Mondal et
al., 2024; Rai et al., 2024; Zhao et al., 2024).

Chain of thought (CoT) reasoning innovation is the key to promoting the development of LLM (Wei et
al., 2022). Early word vector models such as Word2Vec and GloVe can only perform simple semantic
reasoning, but lack context understanding (Asudani et al., 2023). The Seq2Seq model improves sequence
generation through the encoder-decoder, but the reasoning ability was not significantly improved until the
transformer architecture introduced self-attention (Vaswani, 2017). With the continuous iteration of the
GPT series, parameter and data expansion have further improved logic and accuracy (Rai et al., 2024).
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Multi-task learning and few-shot learning enhance the generalization ability of the model (Bouniot et al.,
2022).

2. Related Work
The effect of introducing chain of thought (CoT) to autoregressive modeling increases the strategy of

generating a series of intermediate reasoning steps prior to generating content by prompting (Mitra et al.,
2024). The development of o1 preview in 2024 heralds the achievement and maintenance of a high level of
reasoning accuracy with resource optimization, whichever works on the two-way improvement of
reasoning performance and cost efficiency (Zhong et al., 2024). As shown in Figure 2, CoT most notably
enhances the inference capabilities of large language models, which can be achieved by humans performing
rapid engineering (Wei et al., 2022; Li et al., 2024)

Figure 2 - Chain of thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted
(Adapted from Wei et al., 2022).
In fact, CoT has been applied to optimize the accuracy of the model in solving mathematical problems

such as linear equations (Feng et al., 2024). This means that the input task can be decomposed into several
specific subtasks, which can be solved step by step, and the computation result of each step can be used as
a basis for subsequent steps (Zhao et al., 2023; Li et al., 2024). The experimental results of Feng et al. show
that the large language model with CoT maintains high accuracy even when facing longer input sequences.

Autoregressive model such as o1 preview radically improve the reasoning ability of the transformer
through CoT, with a significant accuracy in generating intermediate reasoning steps for complex tasks (Jin
et al., 2024; Mitra et al., 2024; Sprague et al., 2024). It decomposes the various parts of the task to form a
clear sequence of steps that systematically guides the model in reasoning (Wu et al., 2024). It is
fundamentally different from the previous GPT series: a problem solving process that is based on
sequential reasoning steps rather than just memory input-output (Wu et al., 2024). However, the
introduction of CoT also leads to a significant spike in reasoning cost due to the significant increase in
sequence length in the decoder-only architecture, which is why the use of o1 preview is limited (OpenAI,
2024). The rationale is that when the model generates outputs, it must also incorporate intermediate
reasoning steps into the generated sequences, which increases the sequence length from n to n+m (m
denotes the number of intermediate reasoning steps). The increase in sequence length has a direct impact on
the computational and memory requirements of the model due to the need to process longer inputs and
maintain more state information at each step (Nayab et al., 2024; Zhou et al., 2024).
The key to addressing the surge in reasoning cost caused by CoT lies in the computational complexity of

the prune self-attention mechanism when dealing with long sequences (Jin et al., 2024). From the
perspective of transformer architecture, the self-attention mechanism has O(n²) computational complexity,
where n is the sequence length (Roy et al., 2021). Since each token needs to be computationally related to
all other tokens in the sequence, O(n²) is used for computational complexity (Condevaux & Harispe, 2023).
This means that when the sequence length increases, the computation will grow at the rate of quadrature.
will grow at the rate of quadratic of n, which generates more tokens (Xiong et al., 2021; Zheng et al., 2024).
It causes excessive consumption of computational resources and prolonged reasoning time which makes the
model inefficient when dealing with long sequences (Liu et al., 2023; Jin et al., 2024).

Sparse attention is closely related to sparse coding in the human visual cortexthat is embodied in the
efficient selection of information for processing. Relevant literature has documented that only a small
fraction of neurons are activated in the biological brain that are highly sensitive to specific image features
or patterns (Olshausen & Field, 2004; Lee et al., 2006). This sparsity is modeled in the transformer
allowing the brain to accurately extract information with low energy consumption and low time cost
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(Zheng et al., 2023). In this research, the sparse attention mechanism mimics this principle and is designed
to limit the attention of each token to only a small number of other terms that are highly relevant to it. By
simulating sparse coding in the visual cortex of the human brain, this mechanism can theoretically reduce
computational complexity and maintain model performance in information processing (Olshausen & Field,
2004; Rego et al., 2023).
Inspired by graph theory, this mechanism treats attention computation as a traversal problem in graphs

(Zverovich, 2021). In contrast to traditional attention mechanisms, sparse attention mechanisms can be
viewed as operating on complete graphs (Roy et al., 2021). Combined with the theoretical foundation, each
token in a sequence can be regarded as a node of the graph (Zhang et al., 2023). There is an edge
connection between any two nodes, which leads to a dense neighbor matrix and O(n²) computational
complexity. If the number of edges in the graph is drastically reduced to make the neighbor matrix sparse,
then the computational complexity is reduced (Buluç et al., 2011; Dai et al., 2020).

3. Sparse Attention Mechanism
Given the advantages of sparse graphs in terms of information transfer and computational efficiency, the
sparse attention mechanism has gained theoretical support in graph theory (Li et al., 2023). The sparse
attention mechanism aims to reduce the complexity of the attention computation by limiting each attention
to only a small number of lexemes that are highly relevant to it (Zaheer et al., 2020; Frantar & Alistarh,
2023). This research designs a model architecture based on sparse attention mechanism, and its flow is
shown in Figure 1. It applies the concept of sparse connections in graph theory to model optimization, thus
realizing the possibility of reducing computational cost while maintaining model performance.

3.1 Sparse Transformer Architecture

The current sparse attention mechanism is optimized based on the transformer architecture and attempts
to solve the thinking chain problem that leads to a surge in reasoning costs. The encoder layer is introduced
and the encoder-decoder design is followed. This is not only necessary to match the sparse attention
mechanism, but also based on the demand for this architectural principle based on sparse coding. Because
sparse coding can effectively select the most relevant tokens when processing long sequences of inputs. It
reduces attention to invalid or redundant information, thereby achieving higher efficiency in computing
resources (Ren et al., 2021; Lou et al., 2024).

Firstly, tokens are inputted and initially embedded into sparse vectors by sparse embedding layer, which
effectively reduces the computational burden of high-dimensional data. Embedding vectors provide
positional information in sequence data through positional encoding, allowing the model to maintain
sequential relationships in the recognition input. The embedding layer and the positional encoding are
summed up as inputs into the encoder. In the sparse encoder layers, multi-head sparse attention is used to
capture the correlation between different positions in the input sequence. Next, residual linking and
regularization are performed through the add & norm layer to ensure the stability of the model during the
deep learning process (Vaswani, 2017). The data then flows through the feed forward, which in this
research is set up as a two-layer fully connected network on a location-by-location basis (Geva et al., 2022).
The principle is applied to non-linearly transform at each position and maintain a stable output through
another residual connection (Nguyen & Salazar, 2019).
After the input has been processed at the coding level, the chain of thought module is responsible for

generating intermediate inference steps to split the complex problem into smaller logical units. Its principle
aims to improve the model's ability to handle complex problems by means of incremental reasoning,
making subsequent reasoning more precise and transparent (Wei et al., 2022). The literature of Wei et al.
clearly shows that CoT internally includes short-shot cues, shot cues, step-by-step inference generation,
sequential attention allocation, interpretability, and emergence, providing a step-by-step reasoning method.
The CoT module generates intermediate reasoning steps step-by-step and presents them in the form of
natural language, which decomposes complex problems into a series of simple sub-steps (Khot et al., 2022).
In the sparse decoder layer, masked multi-head sparse self-attention is first used to ensure that the model

can only see previous outputs. The data goes through the add & norm layer to maintain the gradient
stability. Immediately after that, the data enters multi-head sparse cross attention to introduce CoT
reasoning attention operation to the output of coding layer. After the feed forward network and two residual
connections, the decoder performs a linear transformation of the output through the Linear layer. It is worth
noting that theresearch chose sparsemax instead of softmax as the activation function to generate word
probability distributions (Martins & Astudillo, 2016).

In principle, the sparse attention mechanism reduces the attention calculation to linear complexity to
alleviates the computational resources caused by the increase in sequence length (Huang et al., 2024).
Specifically, sparse attention can be achieved by various methods, such as local attention that focuses only
on neighboring tokens; chunk sparsity that divides the sequence into multiple chunks for attention
computation; and dynamic sparsity that dynamically selects the objects to focus on based on the contents of
the tokens (Condevaux & Harispe, 2023). All these methods aim to retain the critical contextual
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information, while reducing computation amount and improving the memory usage efficiency (Zhu et al.,
2024). The design of sparse attention mechanism aims to not only reduce the computational load and
memory usage, but also maintain the model's ability to capture critical information (Lin et al., 2022).

3.2 Proposed Algorithms

In order to reduce the computational cost of the model in the sparse embedding layer while retaining the
main information of the input features, this research designed a sparse embedding algorithm. First, the
embedding matrix E∈RV×D, where V represents the size of the vocabulary and D represents the embedding
dimension. For the input token index x∈RB×N, where B represents the batch size and N represents the
sequence length. The process of sparse embedding query is the following mathematical representation,
which aims to convert the input index into the corresponding embedding representation:

Embed(x) = E[x]∈ℝB×N×D

To apply sparsity in the embedding representation to reduce the computational complexity, this research
introduces the sparsity mask M∈{0,1}D. Its generation is based on the sparsity factor recorded as α to
control the embedding dimensions. Specifically, for the sparsity mask M, its elements Mi are defined as the
following mathematical representation, where the set S represents the selected active dimensions,
determined by the sparsity factor α.

Applying the sparsity mask M to the embedding representation process can be expressed mathematically
as follows. ⊙ represents element-level multiplication operations, and broadcast operations in batch and
sequence dimensions.

SparseEmbed(x) = Embed(x)⊙ M

The core of the current algorithm is based on the principle of sparse attention, which limits each label to
only focus on a part of the most relevant tokens to reduce the amount of attention required to be calculated
for each token (Guan et al., 2022; Yun et al., 2024). Different from the traditional self-attention mechanism,
it does not need to calculate the correlation of each token with all other tokens, reducing the computational
complexity from O(n)2 to O(n) or n*log(n) (Kitaev et al., 2020; Treviso et al., 2021).

Where:

 Q, K, V represent query, key and value matrices respectively.
 S represents sparse mode that defines each token should focus on.
 M represents the mask matrix. With large negative values such as -oo at locations where attention is

not allowed, it effectively zeroes out some attention weights.
 Sparsemax is an activation function that converts attention scores into sparse probability distributions.

Less important tokens are actually assigned the weight of zero.

In the specific design process, it is first determined that the attention connection of the key information
that needs to be retained is described by the sparsity mode S, which determines the range of tokens that
each token should pay attention to.
For those tokens that are not within the range of sparsity mode, the mask matrix M is designed to set the

attention weight to a minimum value such as negative infinity. By effectively “masking” unnecessary
attention by assigning negative infinite values to irrelevant locations, it ensures that it does not have an
impact on the final result of the computation. This design ensures that the model can focus resources on
tokens that are critical to the current task when calculating attention.

It is worth noting that sparsemax was used instead of softmax as the activation function during the
development of this algorithm. The main difference between them is the output distribution (Martins &
Astudillo, 2016). The sparse output produced by sparsemax will zero out the weights of less relevant tokens,
thereby producing a more selective focus of attention (Baan et al., 2019).
Since sparse coding was used before chain of thought, this research needs to modify CoT's operation of

sparse representation. The inference path is optimized by introducing a sparse structure, retaining only the
most informative intermediate representations for further reasoning. The burden of CoT is reduced by
avoiding redundant reasoning.

To perform reasoning effectively under the sparsity principle, CoT requires dynamic inference updates
of the sparse embedding representation of the input. The researcher first consider the output of the sparse
coding layer as the input representation of CoT, denoted as SparseEmbed(x). Its reasoning process is
mathematically expressed as the following series of step-by-step updates:

Rt = ft (SparseEmbed(x), Ct-1)
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Where
 Rt represents the reasoning state at reasoning step t.
 Ft represents the transformation function of each step, which includes a sparse multi-head attention

layer and a sparse feed-forward neural network.
 Ct-1 represents the context information generated by the previous step of reasoning.

The researcher apply a sparsity mask after each reasoning step to retain the most representative features.
It sparses the reasoning state Rt:

Rtsparse= Rt ⊙ Mt

Mt is a sparsity mask dynamically generated given the importance of intermediate features at each step of
inference. It enables the CoT module to focus on the most important features and data fragments during the
multi-step reasoning process to avoid redundant reasoning.

Considering that the design of the sparse decoding layer is based on the sparse features after the CoT
module output, and the need to process the encoder output and partially generated sequences at the same
time. The sparse cross-attention computation is performed first, which aims to combine the output
representations from the encoder during decoding. Specifically, assuming that the output of the sparse
encoder is He, the cross-attention weight is calculated as follows:

Where
 Q represents the query vector from the decoder.
 K represents the key vector from the encoder,
 Mcross represents the sparsity mask in cross attention to limit the attention computation to only focus

on the most important inputs.

In the calculation of sparse self-attention, this part ensures that each token in the decoder can only pay
attention to the previously generated tokens, while following the sparsity principle:

Mself is represented as a causal mask to prevent future tokens in the decoder from receiving attention, and
enforces sparsity to limit the attention scope of each token.
The final decoding output can be obtained by weighting and summing the attention of these two parts:

Hd = FFN (AselfV+AcrossHe)⊙ Md

Where

 FFN stands for feedforward neural network.
 Md is the sparsity mask applied to the final output to ensure that the sparsity features in the output

stage are preserved.

Since the Add & Norm layer continues the components of the standard transformer, it does not require
major algorithm modifications to adapt to sparsity, so this layer does not have to come up with a new
mathematical representation of the algorithm.

4. Experiment
Based on the principle of Figure 2, this research conducts prompt word engineering in GPTs to build and

train an autoregressive model with a sparse attention mechanism as the core. It uses the above algorithm to
build a new model based on the encoder-decoder principle to ensure that it is distinguished from the
operation process of the original transformer. During the experiment, it is more convincing to choose 9
questions of Exam 1 - sample questions of Stanford University's MATH 113: Linear Algebra, Autumn in
2018 as the experimental data. To prove the effectiveness of the reasoning optimization model with the
sparse attention mechanism as the core, this experiment compared and tested the three indicators between
reasoning time, correctness score and CoT length of Giant Rabbit and o1 Preview. Because as an
introductory level of linear algebra, this test question is aimed at a broad group of students, and this test
question requires multi-step reasoning operations to answer.

4.1 Experiment Setup

Currently, architectures such as SparseGPT and BigBird, which use the sparse attention mechanism as
the core based on transformers, have been used to process long sequence data to reduce computational costs
(Zaheer et al., 2020; Frantar & Alistarh, 2023). However, they mainly focus on preserving the general
reasoning capabilities of the architecture without making specific optimizations for the chain of thought.
Therefore, at this stage, there are no large language models and variants that can be directly adapted to the
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experimental requirements of this study. And although the current sparse attention mechanism helps reduce
computational burden, it is not deeply optimized and tested in these models for the multi-step reasoning and
complexity required by CoT.

Figure 3 - Experimental tool "GiantRabbit" trained via customer GPTs

Based on this, this research proposes an innovative method to verify the effect of the sparse attention
mechanism in reducing CoT inference costs by using ChatGPT to train a new custom GPTs. The
architecture used for the experiment is named "GiantRabbit" (Figure 3), which is a model based on the core
architecture designed in this research to conduct and test CoT reasoning. During the training process, the
sparse attention mechanism of encoder-decoder and the chain of thought were simultaneously built on
custom GPTs according to the previously proposed architecture, which is different from the extended
decoder-only GPT series. Following methods documented in the literature, thought chain reasoning can be
implemented through rapid engineering (Wei et al., 2022). Following methods documented in the literature,
chain of thought reasoning can be achieved through prompt engineering (Wei et al., 2022). Sparse attention
is able to be practically trained on GPTs through the architectural design and algorithms designed by the
researcher. The advantage of using GPTs to train models is to design a model that meets the needs of this
research to the greatest extent possible. And the configuration data related to the used model can be found
and used for comparison. The design code of the experimental tool "Giant Rabbit" will be uploaded to
Github and shared as open source.
The researcher compared the architectural differences between o1 preview and GiantRabbit. It is

speculated that o1 preview continues the decoder-only architecture like the GPT series models. It is based
on the principle of autoregressive inference, and the generation process relies on the previous output of
each step, which becomes the reason for consuming a lot of computing resources when processing long
sequence inputs and performing complex inferences (Cai et al., 2022; Roberts, 2024). Although
GiantRabbit is a model trained based on GPTs, it uses an encoder-decoder architecture, which allows the
model to form a more effective interaction between understanding and generation.

Since the knowledge base provided by OpenAI for the current GPT series models has been updated to
December 2023, it is impossible to find official evidence that GPTs are based on GPT4o. This means that
GiantRabbit, the experimental tool built using GPTs in this research, may still be considered to use GPT-4-
turbo. According to the research results of Liu et al. (2024), the performance of GPTs is obviously due to
GPT4, although there is a gap with GPT4o. But the selection of GPTs aims to provide effective verification
of the potential of sparse attention mechanisms in multi-step reasoning, especially to test the reduction of
required computing resources and time. Compared with SparseGPT and Bigbird's reduction in reasoning
costs, experiments using GiantRabbit are more suitable for testing the time required and the accuracy
achieved by chain of thought reasoning. In addition, the introduction of the encoder layer can also make up
for GiantRabbit's shortcomings in handling complex context understanding because it is based on GPT4-
Turbo. Through the encoder layer, the model can achieve a deeper understanding of the input, especially
multi-step CoT reasoning tasks. In this way, GiantRabbit can focus on key information in a long sequence
in a targeted manner with the support of sparse attention, rather than being scattered throughout all parts of
the sequence.

4.2 Dataset

In the experiment, the Exam 1 of MIT OpenCourseWare's 18.06 Linear Algebra (open source) were
selected as experimental data. The group it targets is undergraduate students, which means it covers a wide
group and is generalizable, and the problem-solving process requires students to use multiple steps. The
reasoning required to solve these questions is consistent with the multi-step reasoning requirements in CoT.
To ensure the objectivity of the experiment, the questions used for this experiment can be found in
Appendix 1. It is noteworthy that the 18.06 linear algebra course of MIT OpenCourseWare is not the
GSM8K math problem, because the characteristics of multi-step reasoning can better amplify the
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optimization of chain of thought reasoning by the sparse attention mechanism. In addition, MIT
OpenCourseWare makes the exam questions publicly available, and they may be used, copied, distributed,
translated, and modified for non-commercial educational purposes only.

4.3 Implementation

Since the experiment is designed to be simulated on built GPTs, its essence is still through prompt
engineering. This research selected 9 questions of Exam 1. Since o1 Preview cannot directly upload
documents, the researcher manually input the test questions into GiantRabbit and o1 Preview respectively.
Each sub-question within an exam question can be reasoned about independently and is therefore numbered
from 1 to 9 on the same dimension. In order to ensure the rigor of the experiment, no changes will be made
to the content of the test questions, nor any additional special processing will be done to the execution.
Since the test questions do not have images, Table 1 shows the conversion of questions with matrix
operations into computer language that can be recognized by the model.

Table 1 - Adapted Questions of Exam 1

No. Adapted Questions
1 Forward elimination changes

Ax = b to a row reduced Rx =
d: the complete solution is
x = [4, 0, 0]ᵀ + c1 * [2, 1, 0]ᵀ
+ c2 * [5, 0, 1]ᵀ

What is the 3 by 3 reduced row echelon matrix R and what is d?

2
If the process of elimination subtracted 3 times row 1 from row 2 and
then 5 times row 1 from row 3, what matrix connects R and d to the
original A and b? Use this matrix to fnd A and b.

3

Suppose A is the matrix
A = [ [0, 1, 2, 2],

[0, 3, 8, 7],
[0, 0, 4, 2] ].

Find all special solutions to Ax=0 and describe in words the whole
nullspace of A.

4 Describe the column space of this particular matrix A. “All
combinations of the four columns” is not a sufficient answer

5

What is the reduced row echelon form R* = rref(B) when B is the 6 by 8
block matrix
B = [ A A ]

[ A A ] using the same A?

6
Rank and Solutions

Suppose a 3x5 matrix A has rank r=3. Then the equation Ax=b (circle
the correct options) (always / sometimes but not always) has (a unique
solution / many solutions / no solution).

7 What is the column space of A? Describe the nullspace of A.

8 Suppose that A is the matrix
A = [ [2, 1],

[6, 5],
[2, 4] ].

Explain in words how knowing all solutions to Ax = b decides if a given
vector b is in the column space of A.

9 Is the vector b = [8, 28, 14] in the column space of A?

Regarding output, this research does not provide specific guidance prompt instructions. Both models
generate answers in the default way. The researcher only need to record the time required to generate two
models through reasoning, the correctness of the answers (compared with the answers provided by MIT
OpenCourseWare, memory usage, and the length of the CoT.

5. Result
In this research, GiantRabbit can only be conservatively estimated to use the original GPT4-turbo for

training. GPT-4 Turbo is considered an optimized version that uses less computing resources. It has a
relatively lower number of parameters and higher inference efficiency than the full version of GPT-4 (Liu
et al., 2024; Ramesh et al., 2024). The following is a comparison of the configuration data of GPT-4 Turbo
and o1 preview from OpenAI.

Table 2 - Feature comparison of GPT4-Turbo and o1 Preview (Adapted from OpenAI, 2024)

Feature GiantRabbit o1 Preview
Context Window 128,000 128,000
Max Output Tokens 4,096 32,768
Knowledge Cutoff Up to Oct 2023 Up to Dec 2023
Pricing Comparison (Input) / per million tokens $10.00 $15.00
Pricing Comparison (Output) / per million tokens $30.00 $60.00
Specialization General Purpose

Natural Language
STEM Reasoning
Complex Coding

Supported Modalities Text, Image Text

According to the data comparison results provided by DocsBot AI on the benchmark test of GPT4-Turbo
and o1 Preview:
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Table 3 - Benchmark comparison of GPT4-Turbo and o1 Preview (Adapted from DocsBot AI, 2024)

Benchmark GiantRabbit o1 Preview
MMLU 85.4% (5-shot) 92.3% (pass@1)
MMLU-Pro 63.71% Not Available
MMMU Not Available 78.2% (pass@1)
HellaSwag Not Available Not Available
HumanEval 86.6% (0-shot) 92.40%
Math 64.5% (0-shot) 85.5% (pass@1)

According to the results in Figure 4, o1 Preview and GiantRabbit show significant differences on nine
questions.

Figure 4 - Comparison between o1 preview and GiantRabbit in reasoning time, correctness score and CoT
length

In Q1, the o1 Preview inference time is 7 seconds, the accuracy rate is 95%, and the number of reasoning
steps is 4 steps; while the GiantRabbit inference time is 3.41 seconds, the accuracy rate is 85%, and the
number of steps is 3 steps. In Q2, the o1 Preview inference time is 25 seconds, the accuracy rate is 100%,
and the number of inference steps is 5 steps; the GiantRabbit inference time is 5.81 seconds, the accuracy
rate is 95%, and the number of inference steps is 3 steps. In Q3, the o1 Preview inference time is 16
seconds, the accuracy rate is 100%, and the number of reasoning steps is 6 steps; the GiantRabbit inference
time is 4.45 seconds, the accuracy rate is 95%, and the number of steps is 4 steps. In Q4, the o1 Preview
inference time is 31 seconds, the accuracy rate is 100%, and the number of steps is 6 steps; the GiantRabbit
inference time is 4.25 seconds, the accuracy rate is 95%, and the number of steps is 4 steps. In Q5, the o1
Preview inference time is 50 seconds, the accuracy rate is 100%, and the number of inference steps is 5
steps; the GiantRabbit inference time is 5.31 seconds, the accuracy rate is 70%, and the number of steps is
the same as 5 steps. In Q6, the o1 Preview inference time is 8 seconds, the accuracy rate is 100%, and the
number of steps is 4 steps; while the GiantRabbit inference time is 3.6 seconds, the accuracy rate is 100%,
and the number of steps is 2 steps. In Q7, the o1 Preview inference time is 21 seconds, the accuracy rate is
100%, and the number of steps is 4 steps; the GiantRabbit inference time is 4.21 seconds, the accuracy rate
is 95%, and the number of steps is 4 steps. In Q8, the o1 Preview inference time is 19 seconds, the accuracy
rate is 100%, and the number of steps is 4 steps; the GiantRabbit inference time is 3.61 seconds, the
accuracy rate is 100%, and the number of steps is also 4 steps. Finally, in Q9, the o1 Preview inference
time was 26 seconds, the accuracy rate was 100%, and the number of steps was 4 steps; while the
GiantRabbit inference time was 3.5 seconds, the accuracy rate was 80%, and the number of steps was 3
steps.

In addition to testing the performance of these two models in solving 9 linear algebra reasoning problems
respectively, stability is also a factor that is considered and evaluated. Figure 5 uses a line chart to detect
fluctuations in problem solving by o1 preview and GiantRabbit during the experiment.

Figure 5 - Comparison between o1 preview and GiantRabbit in performance stability
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6. Discussion
From the statistical processing and comparative analysis of the data results, it can be seen that the

experimental model GiantRabbit showed convincing performance in comparing reasoning time, correctness
score and chain of thought length with o1 Preview. The researcher recorded the experimental process and
data results one by one and uploaded them to Github, which proved that the sparse attention mechanism
reduces the cost of chain of thought reasoning. Analyzing the two models' answers to 9 questions in Exam
1 of MIT OpenCourseWare-Linear Algebra, it can be seen that GiantRabbit shows that the reasoning time
of each question is much lower than o1 Preview, while remaining within a stable trend. During the
reasoning process, Giant Rabbit uses fewer steps to complete reasoning and keeps it at 3 to 6 steps, which
is better than o1 preview. But in terms of correctness score, o1 Preview is in the leading position and shows
good stability capabilities. Although Jutu's accuracy score is lower than that of o1 Preview, and there are
fluctuations, the score difference is not large and is acceptable.

7. Limitations &Future Research
Essentially, GiantRabbit is a model specially designed for this experiment and trained through prompt

design based on the GPTs function of ChatGPT. However, since the current ChatGPT knowledge base is
only updated until December 2023, it is impossible to obtain specific objective information about which
model is used by the latest GPTs. Note that the current OpenAI knowledge base has been updated to
December 2023. To ensure the objectivity of the experiment, the researcher conservatively considered
GiantRabbit to be a model trained based on GPT-4 Turbo. It means that there may be interfering factors in
the comparison of data results between GiantRabbit and o1 Preview. Notwithstanding, considering the
difficulty of replacing GiantRabbit in this research, it is still the most feasible experimental solution at
present. Therefore, future research needs to further explore experiments in training sparse attention models
to eliminate interference factors in model configuration, so as to more accurately evaluate the cost
reduction of chain of thought reasoning caused by sparse attention.

8. Conclusions
The architecture with the sparse attention mechanism as the core demonstrates outstanding capabilities in

the transformer's chain of thought reasoning. After comparing the answers to the MIT OpenCourseWare
linear algebra exam using the experimental models GiantRabbit and o1 Preview built using this research,
the test results provide evidence in three aspects: reasoning time, correctness score and chain of thought
length. Compared with o1 Preview, the experimental results show that GiantRabbit, which introduces the
sparse attention mechanism, has significant advantages in reasoning time and chain of thought length. In
summary, according to the experimental results, it is acceptable to conclude that using the sparse attention
mechanism can reduce the cost of CoT reasoning. Training large predictive models by combining sparse
attention with CoT facilitates the development of more transformer variants in the future by imitating
human brain cognition.
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Appendix 1
This research selects and excerpts exam questions from Exam 1 of MIT OpenCourseWare - Linear

Algebra, and uses o1 Preview and GiantRabbit to answer them respectively. Since the test questions
contain matrix operations, the researcher converted them into computer language that can be recognized by
the model without changing the content of the test questions. It is available non-commercially for the
experimental purposes of this research under the terms of the Creative Commons Attribution-
NonCommercial-ShareAlike (CC BY-NC-SA) license. The copyright and originality of this test question
also belongs to MIT OCW. The following are the original Exam 1 questions.

18.06 Quiz March 1, 2010 Professor Strang
1. Forward elimination changes Ax = b to a row reduced Rx = d: the complete solution is

(a)Wat is the 3 by 3 reduced row echelon matrix R and what is d?
(b)If the process of elimination subtracted 3 times row 1 from row 2 and then 5 times row 1 from row 3,
what matrix connects R and d to the original A and b? Use this matrix to find A and b.
2. Suppose A is the matrix

(a)Find all special solutions to Ax = 0 and describe in words the whole nullspace of A.

(b) Describe the column space of this particular matrix A. “All combinations of the four columns” is not a
sufficient answer.
(c) What is the reduced row echelon form R* = rref(B) when B is the 6 by

8 block matrixusing the same A?
3. Circle the words that correctly complete the following sentence:

(a) Supose a 3 by 5 matrix A has rank r = 3. Then the equation Ax = b (always / sometimes but not always)
has (a unique solution / many solutions / no solution).
(b) What is the column space of A? Describe the nullspace of A.

4. Suppose that A is the matrix

(a) Explain in words how knowing all solutions to Ax = b decides if a given vector b is in the column space
of A.

(b) Is the vector b = in the column space of A?


