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Abstract

Temporal data are increasingly prevalent in modern data science. A fundamental question
is whether two time series are related or not. Existing approaches often have limitations,
such as relying on parametric assumptions, detecting only linear associations, and requiring
multiple tests and corrections. While many non-parametric and universally consistent de-
pendence measures have recently been proposed, directly applying them to temporal data
can inflate the p-value and result in an invalid test. To address these challenges, this
paper introduces the temporal dependence statistic with block permutation to test inde-
pendence between temporal data. Under proper assumptions, the proposed procedure is
asymptotically valid and universally consistent for testing independence between station-
ary time series, and capable of estimating the optimal dependence lag that maximizes the
dependence. Moreover, it is compatible with a rich family of distance and kernel based de-
pendence measures, eliminates the need for multiple testing, and exhibits excellent testing
power in various simulation settings.

1 Introduction

Temporal data, often referred to as time series, finds wide applications across diverse domains, such as func-
tional magnetic resonance imaging (fMRI) in neuroscience, dynamic social networks in sociology, financial
indices, etc. In a broader context, temporal data can be seen as a type of structural data characterized by
inherent underlying patterns. When dealing with temporal data, a fundamental problem is to determine the
presence of a relationship between two jointly observed time series.

In the context of standard independent and identically distributed (i.i.d.) data, where observations
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) are drawn independently and identically from the joint distribution FXY , the
question simplifies to whether the underlying random variables X and Y are independent, i.e., FXY = FXFY .
Many recent dependence measures have been proposed to tackle this problem, aiming to achieve valid and
universally consistent independence testing. These methods include distance correlation (Szekely et al.,
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2007; Szekely & Rizzo, 2009; 2014), Hilbert-Schmidt independence criterion (Gretton et al., 2005; Gretton
& Gyorfi, 2010; Gretton et al., 2012), multiscale graph correlation (Vogelstein et al., 2019; Shen et al., 2020;
Lee et al., 2019), and many others (Heller et al., 2013; Zhu et al., 2017; Pan et al., 2020).

However, the standard testing framework is not applicable to structured data such as time series, because the
i.i.d. assumption often does not hold. As a result, standard testing procedures like the permutation test are
known to produce inflated p-values and are thus unsuitable for testing structured data (Guillot & Rousset,
2013; DiCiccio & Romano, 2017). Existing research on testing independence for temporal data is limited,
often relying on linear measures such as autocorrelation and cross-correlation, which may overlook potential
nonlinear relationships (Wang et al., 2021). A commonly made assumption is to consider the sample data as
stationary, meaning that the joint distribution of (Xt, Yt−l) depends only on the lag l and not on any specific
time index t. Approaches for addressing the instantaneous time problem, where the goal is to detect whether
Xt and Yt are independent, have been explored in Chwialkowski & Gretton (2014). Moreover, Chwialkowski
et al. (2014) investigates the problem of testing between Xt and Yt−l for each lag l separately, employing
multiple testing techniques.

In this paper, we propose an aggregated temporal statistic and utilize a block permutation procedure to ex-
tend the scope of independence testing beyond the i.i.d. assumption. Given a standard dependence measure
such as distance correlation, our method first calculates a set of cross dependence statistics. These statistics
not only facilitate the estimation of the optimal dependence lag, but also enable the computation of the
temporal dependence statistic as a weighted aggregation of all cross dependence statistics. Subsequently,
we employ a block permutation procedure to derive a p-value for hypothesis testing. Under proper assump-
tions regarding the choice of the dependence measure, the joint distribution of the temporal data, and the
parameters of the block permutation, we establish the asymptotic properties of the temporal dependence,
and prove the asymptotic validity and universal consistency of our method. Notably, the proposed temporal
dependence method is non-parametric and does not require multiple testing.

Numerically, we show that the proposed approach yields satisfactory testing power when applied to simulated
time series with small sample sizes. It is compatible with various dependence measure choices, and numeri-
cally superior and more versatile than previously proposed time series testing procedures. Additionally, we
present the results of two real-data experiments, utilizing the proposed method to analyze neural connectiv-
ity based on fMRI data, as well as uncovering interesting temporal dependencies between the general stock
market and low-beta stocks.

2 Method

2.1 Hypothesis for Testing Temporal Dependence

Given the joint sample data {(X1, Y1), ..., (Xn, Yn)}, let X⃗ = {X1, . . . , Xn} ∈ Rp×n and Y⃗ = {Y1, . . . , Yn} ∈
Rq×n represent each individual sample data. Here, p and q denote the dimensions and are positive integers,
and n is the sample size.

Suppose (X⃗, Y⃗ ) is strictly stationary, meaning the distribution at any set of indices remains the same. We
can represent the distributions of Xt and Yt at any point t as FX and FY , and represent the distribution of
(Xt, Yt−l) as FXY−l

for each lag l ≥ 0.

We aim to test the following independence hypothesis between X⃗ and Y⃗ :

H0 : FXY−l
= FXFY for each l ∈ {0, 1, ..., L}

HA : FXY−l
̸= FXFY for some l ∈ {0, 1, ..., L},

Here, L is a non-negative integer denoting the maximum lag under consideration. Essentially, the null
hypothesis states that Xt is independent of present and past values of Yt−l for all of l = 0, . . . , L. In
contrast, the alternative hypothesis suggests (X⃗, Y⃗−l) are dependent for at least one l in the range of [0, L].

This setting is, in fact, a generalization of the standard i.i.d. setting, where it was assumed that
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) i.i.d.∼ FXY , and the null hypothesis simplifies to FXY = FXFY because there
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is no possible dependence other than l = 0. Hence, our subsequent method and theory for testing two
time series are also applicable when only one of them is time series or when both are standard i.i.d. data.
Moreover, they are applicable to any general structured data that can be assumed stationary.

2.2 Main Algorithm

The proposed method consists of four steps: computation of the cross-lag dependence statistics, estimation of
the optimal dependence lag, computation of temporal dependence statistic, and block permutation to obtain
the p-value for testing purposes. Details regarding the choice of the dependence measure, block permutation,
and computational complexity are discussed in the following subsections.

Input: Two jointly-sampled datasets represented as X⃗ ∈ Rp×n and Y⃗ ∈ Rq×n, a given choice of sample
dependence measure τn(·, ·) : Rp×n × Rq×n → R, and three positive integers: the lag limit L, the
number of blocks B, and the number of random permutations R.

Step 1: Compute the set of cross dependence sample statistics {τn(X⃗, Y⃗−l), l = 0, . . . , L}. Here, (X⃗, Y⃗−l)
denotes the sample data with l lags apart, which consists of (n − l) pairs of observations:

(X⃗, Y⃗−l) = {(X1+l, Y1), (X2+l, Y2), . . . , (Xn, Yn−l)}.

Step 2: Estimate the optimal dependence lag:

L̂∗ = arg max
l∈[0,L]

(
n − l

n

)
· τn(X⃗, Y⃗−l).

Here, the weight
(

n−l
n

)
simply weights each cross dependence statistic based on the number of

observations it uses.

Step 3: Compute the temporal dependence sample statistic:

Tn(X⃗, Y⃗ ) =
L∑

l=0

(
n − l

n

)
· τn(X⃗, Y⃗−l).

Step 4: Compute the p-value using block permutation:

p-val =
R∑

r=1
I(Tn(X⃗, Y⃗ ) > Tn(X⃗, Y⃗πB

))/R,

where I(·) is the 0-1 indicator function, and πB is a randomly generated block permutation for each
r.

Output: The temporal dependence statistic T, the corresponding p-value, and the estimated optimal depen-
dence lag L̂∗.

The null hypothesis is rejected if the p-value is less than a pre-specified Type 1 error level, such as 0.05.

2.3 Choice of Dependence Measure

While the algorithm can accommodate any dependence measure as the choice of τn(·, ·), it is essential for the
chosen measure to be well-behaved and satisfy the required assumptions outlined in Section 3.1. This ensures
consistency in detecting dependence between temporal data, both in terms of performance and subsequent
theory. In our experiments, we employed distance correlation, Hilbert-Schmidt independence criterion, and
multiscale graph correlation. All of these measures meet the necessary assumptions, and the resulting tests
appear valid and consistent in our numerical experiments.
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As the proposed temporal statistic is essentially an aggregation of the underlying dependence measure, its
effectiveness in capturing dependence is contingent upon the choice of dependence measure. It is well known
that each dependence measure has its own unique strengths. Therefore, our usage of distance and kernel
based statistics in this paper should be viewed as an illustration of the validity and consistency properties
of the proposed temporal test.

Some examples of other dependence measures include correlation coefficients (Fukumizu et al., 2007; Bieß-
mann et al., 2010), Chatterjee’s rank correlation (Chatterjee, 2021; Shi et al., 2021; 2022), the HHG method
(Heller et al., 2013; 2016), projection correlation (Zhu et al., 2017), ball covariance (Pan et al., 2020), as
well as recent high-dimensional dependence statistics (Zhu et al., 2020; Huang & Huo, 2022; Shen & Dong,
2024; Xu et al., 2024; Zhou et al., 2024). All of these dependence measures can be directly incorporated
into our temporal testing framework by simply modifying the cross-dependence statistics in Step 1. Such
adaptations may offer better testing power for certain dependence structures.

For instance, using the correlation coefficient with block permutation will only detect linear associations in
temporal data, while a universally consistent dependence measure can detect all possible dependencies with a
sufficiently large sample size; dependence measures that are better at detecting nonlinear or high-dimensional
dependencies in standard i.i.d. data will also perform better under such dependencies in the case of temporal
data, requiring a smaller sample size to achieve perfect testing power; rank-based dependence measures can
be more robust against data noise.

2.4 The Block Permutation Test

The standard permutation test is widely used for independence testing (Good, 2005). In a standard permu-
tation, π(·) randomly permutes the indices 1, 2, . . . , n, resulting in Y⃗π and X⃗ that are mostly independent
(except for a few indices that do not change position, which are asymptotically negligible as n increases).
Given sufficiently many random permutations, this process allows the permuted test statistics to estimate
the true null distribution.

However, the above is only true under the standard i.i.d. setting, and it no longer holds when there exists
structural dependence within the sample sequence, such as when (Xt, Yt) are dependent with (Xt−1, Yt−1).
Specifically, the permuted statistics would under-estimate the true null distribution, leading to an inflation
of the testing power. This issue has been noted in Guillot & Rousset (2013); DiCiccio & Romano (2017),
which can affect any dependence measure that relies on the standard permutation test.

To ensure validity of the test, we employ a block permutation procedure (Politis, 2003) denoted as πB(·),
where B denotes the number of blocks. The construction of πB(·) proceeds as follows:

We partition the index list into B consecutive blocks. For j = 1, . . . , B, block j consists of indices

Bj = (⌈ n

B
⌉ ∗ (j − 1) + 1, ⌈ n

B
⌉ ∗ (j − 1) + 2, . . . , ⌈ n

B
⌉ ∗ j − 1).

Note that for the last block, the last few indices may exceed n, in which case the indices wrap around and
restart from 1.

As an example, consider a sample size of n = 100 and B = 20 blocks, with each block containing 5 indices.
Then the first block would be (Y1, Y2, ..., Y5), the second block would be (Y6, Y7, ..., Y10), etc. During the
block permutation process, each block is shifted to another position. For instance, the first block might be
permuted to the fourth block, resulting in πB(1) = 16, πB(2) = 17, πB(3) = 18, πB(1) = 19, πB(1) = 20.
This shuffling of blocks ensures a randomized distribution of data while maintaining the block structure.

2.5 Parameter Choice and Computational Complexity

The choice of the maximum lag, denoted as L, is typically determined based on subject matter considerations.
For example, if the signal from one region of the brain can only influence another region within a range of
20 time steps, then setting L = 20 would be appropriate. Similarly, when collecting daily stock trading data
for two stocks, choosing L = 30 indicates that we are examining the dependence structure within the past
month.
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As for the number of blocks, we used B = 20 in our experiments, which is sufficient for our purposes. For
the number of permutation, we used R = 1000 replicates. Assuming that the dependence measure can be
computed in O(n2) time complexity (which is the case for distance correlation), the temporal independence
test has a time complexity of O(n2RL).

3 Supporting Theory

In this section, we establish the asymptotic properties of the test statistics and the resulting tests, which
include asymptotic convergence, validity, and consistency. We begin by outlining the necessary assumptions
for the theoretical results, followed by detailed elaborations on each assumption. All theorem proofs can be
found in the Appendix Section B.

3.1 Assumptions

• The observed data {(Xt, Yt)}n
t=1 is strictly stationary, non-constant, and the underlying distribution

FXY−l
has finite moments for any lag l ≥ 0.

• There exists a maximum dependence lag M such that for all l ≥ M , the two time series are almost
independent for large n, so are each time series within itself:

sup |FXY−l
− FXFY | = O( 1

n
),

sup |FXX−l
− FXFX | = O( 1

n
),

sup |FY Y−l
− FY FY | = O( 1

n
).

• The maximum dependence lag M and the maximum lag under consideration L are non-negative
integers that satisfies L ≥ M and L = o(n), i.e., they may increase together with n but at a slower
pace.

• As the sample size n increases, both the number of blocks B and the number of observations per
block n

B increase to infinity. Moreover, n
B ≥ M for sufficiently large n.

• The sample dependence measure has the following form:

τn(X⃗, Y⃗ ) =
∑n

i=1
∑n

j=1 γn(i, j)
n2 ,

where each γn(i, j) is a function of (Xi, Xj , Yi, Yj), and remaining sample pairs may also be used
but with a weight of O(1/n).

• In the standard i.i.d. setting where (X1, Y1), (X2, Y2), . . . , (Xn, Yn) i.i.d.∼ FXY , there exists a popula-
tion statistic τ(X, Y ) defined solely based on the joint distribution FXY . When i ̸= j, each term in
the sample statistic satisfies:

E(γn(i, j)) = τ(X, Y ) + o(1).

Moreover, the population statistic τ(X, Y ) is non-negative and equals 0 if and only if X and Y are
independent, i.e., FXY = FXFY .

The first assumption is a common one in time series research. The key distinction from the standard
i.i.d. setting is that the samples are no longer independent, but remain identically distributed. For non-
stationary data, there exist many common techniques to remove trends and process them into approximately
stationary processes (Cleveland et al., 1990; Hastie et al., 2009; Enders, 2010; Shumway & Stoffer, 2010; Box
et al., 2015). Some examples include differencing, where one computes the difference between consecutive
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observations; detrending via linear regression or polynomial fitting and subtracting the trend component
from the original series; seasonal adjustment by decomposition; log / square root / Box-Cox transformation
to stabilize variance; smoothing via moving averages to reduce noise and short-term fluctuations; filtering to
remove specific frequencies from the data.

The second and third assumptions require that the time series exhibit independence for sufficiently large lags
beyond M , and that the maximum lag to be examined, L, must be no less than M . Such an assumption
shares similarity with the mixing property, where a stochastic process is mixing if its values at widely-
separated times are asymptotically independent (Pham & Tran, 1985; McDonald et al., 2011; Ziemann &
Tu, 2022). Hence, our results can also be considered approximately true for mixing time series.

The fourth assumption imposes a regularity condition on block permutation. In theory, choices for B can be
log(n) or

√
n, while a practical choice like B = 20 is sufficient for our simulations. This resembles the Bayes

optimal condition for K-nearest-neighbor, where K is required to increase to infinity but slower than n.

The remaining assumptions regarding the dependence measure are satisfied by a variety of distance and kernel
measures that have been recently proposed. For example, distance covariance satisfies the two assumptions,
with

γn(i, j) = {d(Xi, Xj) − µXi − µXj + µX}{d(Yi, Yj) − µYi − µYj + µY }.

Here, d(·, ·) is the Euclidean distance, µXi
denotes the mean of all distance pairs relative to Xi within X⃗,

and µX is the mean of the whole pairwise distance matrices of X⃗. Furthermore, the population distance
covariance is defined in terms of characteristic functions and equals 0 if and only if FXY = FXFY in the
standard i.i.d. settings. Indeed, many dependence measures that are universal consistent in the standard
i.i.d. setting satisfy this assumption. For example, the Hilbert-Schmidt independence criterion utilizes the
same formulation (Shen & Vogelstein, 2021; Sejdinovic et al., 2013) on the Gaussian kernel. Additionally,
the unbiased distance covariance and distance correlation, as well as the multiscale graph correlation –
a truncated version of distance correlation where large distance pairs may be unused – also satisfy this
assumption.

3.2 Convergence of the Sample Statistics

We begin by proving the convergence of the sample cross dependence to the population cross dependence:
Theorem 1. The cross dependence sample statistic satisfies:

E(τn(X⃗, Y⃗−l)) − τ(X, Y−l) = o(1),

Var(τn(X⃗, Y⃗−l))) = O( 1
n − l

).

Therefore, for each l ∈ {0, ..., L}, we have

τn(X⃗, Y⃗−l)
n→∞→ τ(X, Y−l)

in probability.

Theorem 1 shows that both the bias and variance of the cross dependence statistic diminish to 0 as the
sample size n increases. Consequently, this guarantees that the aggregated temporal dependence statistic
and the estimated optimal lag also converge to their corresponding population forms in probability.
Theorem 2. The temporal dependence sample statistic satisfies:

Tn(X⃗, Y⃗ ) n→∞→
L∑

l=0
τ(X, Y−l).

The estimated optimal dependence lag satisfies:

L̂∗ n→∞→ arg max
l∈[0,L]

τ(X, Y−l).
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3.3 Validity and Consistency for Testing Temporal Independence

In this subsection we establish the validity and consistency of the method. Specifically, if X⃗ and Y⃗ are
independent, the power of the test equals the Type 1 error level α. Conversely, if X⃗ and Y⃗ are dependent,
the power of the test converges to 1, and the method can consistently detect any dependence.

Given Tn(X⃗, Y⃗ ) as the observed test statistic, let FT B
n

(z) be the empirical distribution of the block-permuted
statistics {Tn(X⃗, Y⃗πB

)}, and denote zn,α as the critical value where:

FT B
n

(z)(zn,α) = 1 − α.

The following theorem establishes the asymptotic validity of our block permutation test:
Theorem 3 (Asymptotic Validity). Under the null hypothesis that X⃗ and Y⃗ are independent for all lags
l ∈ [0, L], the test statistic satisfies:

Tn(X⃗, Y⃗ ) n→∞→ 0.

Moreover, the block-permutation test is asymptotically valid, i.e.,

Prob(Tn(X⃗, Y⃗ ) ≥ zn,α) n→∞→ α.

The next theorem proves that the method is universally consistent against any alternative.
Theorem 4 (Testing Consistency). Under the alternative hypothesis that X⃗ and Y⃗ are dependent for some
lag l ∈ [0, L], the test statistic satisfies

Tn(X⃗, Y⃗ ) n→∞→ c > 0.

Moreover, the block-permutation test is asymptotically consistent, i.e.,

Prob(Tn(X⃗, Y⃗ ) ≥ zn,α) n→∞→ 1.

4 Simulations

We estimated the testing power of the proposed approach through simulations on various temporal de-
pendence structures. Specifically, we considered three different implementations of the proposed temporal
dependence statistic, which utilized distance correlation (DCorr), Hilbert-Schmidt independence criterion
(HSIC), and multiscale graph correlation (MGC). For comparison, we included ShiftHSIC (Chwialkowski &
Gretton, 2014), WildHSIC (Chwialkowski et al., 2014), and the widely recognized Ljung-Box test (Ljung &
Box, 1978) using traditional cross-correlations. Each simulation was repeated 300 times, with 1000 permu-
tations and a Type 1 error level of α = 0.05 used to compute the p-values. The testing power is measured
by how often the p-value is lower than 0.05 out of the 300 Monte-Carlo simulations. Analysis of ShiftHSIC
and WildHSIC was performed using MATLAB code1 and wildBootstrap2.

4.1 Testing Power Evaluation

Independence First, we check the validity of the tests by generating two independent, stationary autore-
gressive time series with a lag of one: [

Xt

Yt

]
=

[
ϕ 0
0 ϕ

] [
Xt−1
Yt−1

]
+

[
ϵt

ηt

]
.

Here, (ϵt, ηt) are standard normal noise terms. As shown in Figure 1, the proposed methods maintain a
testing power close to α = 0.05 across varying n and ϕ, regardless of the statistic used.

1https://github.com/kacperChwialkowski/HSIC/
2https://github.com/kacperChwialkowski/wildBootstrap
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Figure 1: This figure illustrates the validity of the tests using two independent time series. In the left panel,
the testing power is computed as the sample size increases, with an AR coefficient of ϕ = 0.5. The right panel
keeps the sample size at n = 1200 while varying the AR coefficient ϕ, with the noise variance appropriately
adjusted by (1 − ϕ2), based on the same simulation as in Chwialkowski & Gretton (2014). The dashed black
line represents the significance level α = 0.05.

Linear Dependence Next, we assess our methods’ ability to capture linear relationships in the following
simulation: [

Xt

Yt

]
=

[
0 ϕ
ϕ 0

] [
Xt−1
Yt−1

]
+

[
ϵt

ηt

]
.

As this represents a straightforward linear relationship, the Ljung-Box test, based on auto-correlation, is
expected to perform best. This is indeed the case in the left panel of Figure 2. Our proposed methods using
DCorr, MGC, and HSIC follow closely, quickly converging to perfect power around n = 100. In contrast, the
other competitors do not perform well in this scenario. This is not surprising, as the ShiftHSIC method
is designed to detect whether Xt and Yt are dependent at lag 0, whereas the linear dependence here is of
lag 1. The WildHSIC method used a wild bootstrap method to estimate the null distribution, which can be
inaccurate at small sample size.

Nonlinear Dependence The next simulation considers a nonlinear dependent model:[
Xt

Yt

]
=

[
ϵtYt−1

ηt

]
.

In the right panel of Figure 2, our proposed methods utilizing DCorr, MGC, and HSIC demonstrate superior
performance compared to other competing methods. Notably, the HSIC and MGC implementations exhibit
better finite-sample power, as these two dependence measures are better at identifying nonlinear relationships
than DCorr. In contrast, all other tests fail to detect dependence in this scenario.

Extinct Gaussian This simulation uses the same extinct Gaussian process from Chwialkowski & Gretton
(2014), where [

Xt

Yt

]
=

[
ϕ 0
0 ϕ

] [
Xt−1
Yt−1

]
+

[
ϵt

ηt

]
,

and we set n = 1200. Here, the (ϵt, ηt) pair are dependent and drawn from an Extinct Gaussian distribution
with two additional parameters: e (extinction rate) and r (radius). Both variables are initially drawn from
independent standard normal, and U is sampled from standard uniform. If either ϵ2

t +η2
t > r or U > e holds,

then (ϵt, ηt) are returned; otherwise, they are discarded and the process is repeated. In this process, the
dependence between ϵt and ηt increases with extinction rate e. Therefore, we expect power to increase with
the extinction rate, which is indeed the case as shown in Figure 3. While all methods, except Ljung-Box,
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Figure 2: The testing power for linear (left panel) and nonlinear (right panel) simulations based on 300
replicates.

are consistent and eventually achieve perfect power, our proposed method using MGC stands out as the best
performer.
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Figure 3: The testing power for the extinct gaussian simulation based on 300 replicates.

4.2 Optimal Dependence Lag Estimation

In this subsection, we evaluate the method’s performance in estimating the optimal dependence lag in both
linear and nonlinear settings. The linear setting is[

Xt

Yt

]
=

[
0 ϕ1
ϕ1 0

] [
Xt−1
Yt−1

]
+

[
0 ϕ3
ϕ3 0

] [
Xt−3
Yt−3

]
+

[
ϵt

ηt

]
,

where we set ϕ3 = 0.8 > ϕ1 = 0.1 such that the true optimal dependence lag equals 3. The nonlinear
simulation is [

Xt

Yt

]
=

[
ϵtYt−3

ηt

]
.
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In both simulations, the true optimal dependence lag equals 3. Figure 4 shows that the proposed method
using either DCorr or MGC consistently estimates the optimal dependence lag as the sample size increases,
and MGC outperforms DCorr in the nonlinear setting.

4.3 Multivariate Simulations

In this subsection, we revisit the testing power and dependence lag estimation in both linear and nonlin-
ear settings, maintaining a fixed sample size of n = 100 and increasing the dimensionality p, to evaluate
performance for multivariate data.

For testing power evaluation, we use the following multivariate linear setting:[
Xt

Yt

]
=

[
0 ϕD

ϕD 0

] [
Xt−1
Yt−1

]
+

[
ϵt

ηt

]
,

where ϕ = 0.65, D ∈ Rp×p is a diagonal matrix where the elements are Dii = 1/i, and ϵt, ηt are standard
normal of dimension p. In a similar manner, we use the following multivariate nonlinear setting:[

Xt

Yt

]
=

[
D(ϵt ⊙ Yt−1)

ηt

]
,

where ⊙ denotes element-wise multiplication. We intentionally design the matrix D as a decaying weight,
reflecting a meaningful multivariate simulation where additional dimensions contain weaker dependence
signals.

Figure 5 illustrates the testing power as dimensionality increases. At a fixed sample size, all testing powers
gradually decrease as p increases. The proposed method using any of MGC, DCorr, or HSIC maintains relatively
stable power with slow degradation in the case of linear dependence. The same trend is observed for nonlinear
dependence, although the degradation is faster, with the MGC statistic performing the best. It is worth
emphasizing that due to the consistent property, if we fix p and let n increase, the testing power for our
method shall increase to 1.

Similarly, we extend the optimal lag estimation into the following two multivariate settings:[
Xt

Yt

]
=

[
0 ϕ1D

ϕ1D 0

] [
Xt−1
Yt−1

]
+

[
0 ϕ3D

ϕ3D 0

] [
Xt−3
Yt−3

]
+

[
ϵt

ηt

]
.[

Xt

Yt

]
=

[
D(ϵt ⊙ Yt−3)

ηt

]
,

where ϕ1 = 0.1 and ϕ3 = 0.65. These settings are similar to those in Section 4.2, with the addition
of increasing dimension and D. The true optimal lag remains 3. The estimation accuracy, as shown in
Figure 6, demonstrates successful detection at small p, with accuracy gradually degrading as p increases.

5 Real Data

5.1 Analyzing Connectivity in the Human Brain

This study is based on data from an individual (Subject ID: 100307) of the Human Connectome Project
(HCP), which can be downloaded online3. The human cortex is parcellated into 180 parcels per hemisphere
using the HCP multi-modal parcellation atlas (Glasser et al., 2016). For this study, 22 parcels were selected
as regions of interest (ROIs), representing various locations across the cortex. These parcels are denoted as
X(1), . . . , X(22). Each parcel consists of a contiguous set of vertices whose fMRI signal is projected on the
cortical surface. Averaging the vertices within a parcel yields a univariate time series X(u) = (X(u)

1 , . . . , X
(u)
n ),

where n = 1200 in this particular case. The selected ROIs, their parcel number in the HCP multi-modal
parcellation (Glasser et al., 2016), and assigned network are listed in Table 1.

3https://www.humanconnectome.org/study/hcp-young-adult/data-releases
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Figure 4: This figure displays the performance of our proposed method using both MGC and DCorr for
estimating the optimal dependence lag L̂∗ in linear and nonlinear relationships. The colored bar above lag
l shows the empirical frequency of L̂∗ = j, with red representing MGC and purple representing DCorr. The
probability is estimated based on 100 trials. The first row shows DCorr estimation performance at sample
sizes n = 15, 30, 60 for linear relationships, while the second row shows the MGC performance on the same
data. The third row displays DCorr estimation for nonlinear relationships, and the last row presents the
same for MGC.
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Figure 5: This figure shows the testing power for multivariate simulations, with a constant sample size of
n = 100 while increasing the dimensionality.
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Figure 6: This figure shows the accuracy of estimating the true optimal lag in multivariate simulations,
maintaining a constant sample size of n = 100 while increasing the dimensionality. Note that in the left
panel, the lines representing DCorr and HSIC overlap due to their almost identical performance.
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ROI ID Network Shorthand Parcel Key Parcel Name
18 Default Mode Network DMN 150 PGi
19 Default Mode Network DMN 65 p32pr
20 Default Mode Network DMN 161 32pd
21 Default Mode Network DMN 132 TE1a
22 Default Mode Network DMN 71 9p
6 Dorsal Attention Network dAtt 96 6a
7 Dorsal Attention Network dAtt 117 API
8 Dorsal Attention Network dAtt 50 MIP
9 Dorsal Attention Network dAtt 143 PGp
10 Ventral Attention Network vAtt 109 MI
11 Ventral Attention Network vAtt 148 PF
12 Ventral Attention Network vAtt 60 p32pr
13 Ventral Attention Network vAtt 38 23c
1 Visual Network Visual 1 V1
2 Visual Network Visual 23 MT
3 Visual Network Visual 18 FFC
16 FrontoParietal Network FP 83 p9-46v
17 FrontoParietal Network FP 149 PFm
14 Limbic Network Limbic 135 TF
15 Limbic Network Limbic 93 OFC
4 Somatomotor Network SM 53 3a
5 Somatomotor Network SM 24 A1

Table 1: This table displays the parcellation information for the parcels used in our analysis. They are listed
based on the numeric order they appear in Figure 7.

p-Value

DMN dAtt vAtt Visual FP Limbic SM

DMN

dAtt

vAtt

Visual

FP

Limbic

SM

0.56

0.32

0.18

0.10

0.06

0.03

0.02

0.01

Figure 7: This displays the results of applying the temporal dependence method using MGC to resting-state
fMRI data.

As the temporal dependence method using MGC performed well in our simulations, we simply use the MGC im-
plementation in this analysis. In the left panel of Figure 7, we present the optimal dependence lag for each
interdependency, ranging up to L = 10. Meanwhile, the right panel of Figure 7 displays the log-scale p-values
of temporal dependence for each pair of parcels. Generally, we observe strong relationships with small lags
within the same region, such as an optimal lag of usually 0 within the "DMN" region with significant p-values.
In contrast, inter-region dependencies are less significant and typically exist at longer lags.
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5.2 Discovering Temporal Dependence Structure of Low-Beta Stocks

In this experiment, we apply the proposed methodology to analyze the financial market and uncover inter-
esting nonlinear dependencies between low-beta stocks and the S&P 500. In the US financial market, it is
well-known that almost all stocks are linearly related to the broad market. A commonly used statistic to
measure this association is the beta value, which quantifies a stock’s volatility relative to the market (S&P
500). Beta is defined as the covariance between an individual stock and the general market, divided by the
variance of the general market, and it utilizes the rate of return per month rather than the stock price. A
beta less than 1 suggests that the stock is less volatile than the market, while a beta greater than 1 indicates
higher volatility.

Low-beta stocks are an interesting concept in investing, defined by having a relatively small beta value,
typically around 0.5 or less. These stocks tend to have lower correlations with market movements compared
to high-beta stocks and are often associated with companies that have stable earnings, strong cash flows, and
less uncertainty about their future prospects. Therefore, low-beta stocks can play a valuable role in a well-
diversified investment portfolio by providing stability, reducing risk, and potentially enhancing long-term
performance. Moreover, with the right strategy, stocks with low volatility can generate high risk-adjusted
returns (Blitz & Vliet, 2007; Frazzini & Pedersen, 2014).

We collected weekly closing stock prices from January 1, 2014, to May 1, 2014, using Yahoo Finance data,
for the S&P 500 ETF (the benchmark) and 10 individual stocks, as shown in Figure 8. In addition to NVDA,
AAPL, and MSFT, which are mega cap stocks and were included for comparison purposes, the remaining
stocks are commonly found in low-beta portfolios. Given the high volatility of daily stock prices, we chose
to collect the closing price per week, and process each stock’s weekly price into rates of return to make the
data resemble a stationary sequence.

As the stock market is highly related and linear relationships are dominant among stocks, we chose to use
Pearson correlation and distance correlation as our choice of dependence measures. For each choice, we
computed the cross-dependence measures between each individual stock and the S&P 500 from lag 0 to
4. Subsequently, we computed the aggregated temporal statistic, followed by optimal lag estimation and
p-value computation using block permutations. The sample size is n = 538, and the number of blocks is 20.
Therefore, our aim is to test the existence of temporal dependence between each individual stock and the
general market, from concurrent testing to a lag of up to 1 month.

For each individual stock, the aggregated test always yielded a significant result, with a p-value of 0 and an
optimal lag of 0 in every case. This indicates that all individual stocks are dependent on the general market,
with the strongest dependence observed at concurrent (lag 0) intervals. This outcome is not surprising, as
even a beta of 0.3 readily implies a significant linear relationship at lag 0.

Next, we examine the cross-lag dependence structure and their individual p-values in block-permutation, as
reported in Figure 9. We first consider the Pearson correlation: the lag 0 concurrent testing statistic is very
similar to the beta value of each stock, all of which have significant p-values of 0. On the other hand, all
other lags have insignificant p-values, suggesting there is no linear relationship beyond lag 0. Namely, the
S&P 500 price this week has no linear effect on itself next week or any individual stock next week, e.g., a
high return of +2% this week does not always imply another +2% next week.

Inspecting the distance correlation measure yields interesting new insights: the general market, the three
mega-cap stocks, and a few low-beta stocks are actually dependent on the general market at lag 1 and
beyond. Since the Pearson correlation indicates the lack of a linear relationship, this dependence must be
nonlinear, which is weakened as the lag increases. This insight aligns with empirical experience: for example,
a high return of +2% this week may indicate that the next week will be volatile, potentially resulting in
another week of high return or a significant pullback from the highs. Such dependence constitutes a nonlinear
association, while the linear association could be almost 0. This type of volatility is often utilized in option
trading and holds promise for future applications.

Finally, Figure 9 also reveal that some low-beta stocks, such as T, JNJ, WMT, and LLY, exhibit independence
from the general market beyond the concurrent lag 0. This insight suggests that these stocks could be ideal
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Company Stock Symbol Beta (5 Year Monthly)
SP500 ETF SPY 1

Nvidia NVDA 1.75
Apple Inc AAPL 1.26
Microsoft MSFT 0.89
AT&T Inc T 0.7
Pfizer Inc PFE 0.58

Coca Cola KO 0.57
Johnson & Johnson JNJ 0.55

Walmart Inc WMT 0.49
Procter & Gamble PG 0.42

Eli Lily LLY 0.37

SPY

-20.00%

0.00%

20.00%

Rate of Return (10 Year Weekly)

SPY Nvidia AAPL MSFT T PFE KO JNJ WMT PG LLY

Figure 8: This figure shows the selected stocks, their current beta, and their rate of return over 10 years on
a weekly basis.

candidates for a portfolio that offers temporal independence, rather than just a lack of linear relationship,
from the general market.

6 Conclusion

This paper introduces a new independence testing procedure for temporal data. The method combined the
strengths of nonparametric dependence measures, the specialized cross-lag statistic for time series, and the
block permutation procedure. As a result, it provides an asymptotically valid and universally consistent
approach with outstanding numerical performance. While the exposition of this manuscript is focused on
time series data, this work marks an important step in extending independence testing to structural data
beyond the realm of standard i.i.d. data, making them more attractive and broadly applicable.

There are several avenues for future research that warrant exploration. Firstly, although we have demon-
strated the asymptotic validity of the block permutation test, its computational efficiency remains a challenge
when dealing with large sample sizes. Recent studies (Zhang et al., 2018; Shen et al., 2022) have investi-
gated faster testing procedures by approximating the null distribution of distance and kernel correlations
under the standard i.i.d. setting. Extending such approaches to structural data could significantly enhance
computational scalability.
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Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 0 Lag 1 Lag 2 Lag 3 Lag 4

SP500 ETF 1.0000 0.0117 -0.0335 -0.0560 0.0454 0 0.782 0.494 0.172 0.288
Nvidia 0.5937 0.0148 0.0055 -0.0185 0.0347 0 0.73 0.914 0.594 0.382

Apple Inc 0.6691 -0.0195 -0.0079 -0.0081 0.0686 0 0.658 0.858 0.832 0.124
Microsoft 0.7177 -0.0247 -0.0351 -0.0429 0.0541 0 0.584 0.44 0.274 0.202
AT&T Inc 0.3787 -0.0677 -0.0355 -0.0270 -0.0155 0 0.13 0.388 0.52 0.696
Pfizer Inc 0.4482 0.0706 -0.0337 -0.0087 0.0383 0 0.13 0.448 0.812 0.44

Coca Cola 0.5024 -0.0057 -0.0655 -0.0755 0.0032 0 0.87 0.124 0.074 0.954
Johnson & Johnson 0.4810 0.0132 -0.0536 -0.0116 0.0381 0 0.782 0.168 0.766 0.396

Walmart Inc 0.3845 -0.0606 -0.0242 -0.0165 0.0742 0 0.144 0.612 0.666 0.09
Procter & Gamble 0.4163 -0.0196 -0.0543 0.0264 0.0326 0 0.662 0.202 0.564 0.488

Eli Lily 0.2877 0.0032 -0.0395 0.0030 0.0914 0 0.946 0.402 0.932 0.036

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 0 Lag 1 Lag 2 Lag 3 Lag 4

SP500 ETF 1.0000 0.0175 0.0114 0.0102 0.0061 0 0 0.008 0.004 0.022
Nvidia 0.3264 0.0093 0.0046 0.0059 0.0005 0 0.014 0.052 0.042 0.364

Apple Inc 0.3755 0.0115 0.0018 0.0047 0.0016 0 0.006 0.172 0.064 0.186
Microsoft 0.4556 0.0068 0.0013 0.0020 0.0020 0 0.03 0.288 0.14 0.146
AT&T Inc 0.1092 0.0022 -0.0009 -0.0018 0.0010 0 0.19 0.56 0.746 0.302
Pfizer Inc 0.1419 0.0071 0.0054 -0.0009 -0.0007 0 0.03 0.032 0.572 0.554

Coca Cola 0.1409 0.0056 0.0033 -0.0019 -0.0021 0 0.03 0.094 0.786 0.816
Johnson & Johnson 0.1608 0.0030 0.0036 -0.0012 -0.0005 0 0.152 0.094 0.588 0.498

Walmart Inc 0.1123 0.0028 -0.0010 -0.0004 0.0035 0 0.12 0.572 0.478 0.112
Procter & Gamble 0.1008 0.0056 0.0052 -0.0005 -0.0029 0 0.036 0.024 0.518 0.918

Eli Lily 0.0639 0.0026 0.0052 0.0036 0.0028 0 0.15 0.05 0.112 0.114

Cross Pearson Correlation with SP500 P-Value by Block Permutation

Cross Distance Correlation with SP500 P-Value by Block Permutation

Figure 9: This figure shows the cross-correlation between each individual stock and the S&P 500, using
Pearson correlation at the top and distance correlation at the bottom, for lags from 0 to 4, along with the
corresponding p-values. Significant correlations, where larger values are better, are marked in green, while
significant p-values, where smaller values are better, are marked in red.

Secondly, dependence measures are commonly employed in dimension reduction techniques, such as screening
(Fan & Lv, 2008; Li et al., 2012), especially in high-dimensional data settings. However, little attention has
been given to the temporal domain. While it is straightforward to utilize dependence measures for dimension
reduction in multivariate time series, delving into their theoretical properties and their relationships with
other standard tools, such as independence component analysis, could provide valuable insights.

Thirdly, causal inference in time series data is an important task (Haufe et al., 2010; Winkler et al., 2016).
While it is widely recognized that correlation does not imply causality, recent research has demonstrated the
utility of dependence and conditional dependence tests in causal inference (Cai et al., 2022; Laumann et al.,
2023). Therefore, extending this framework to encompass conditional independence and causal inference
may significantly advance the understanding of causal inference in time series data.
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APPENDIX

A Assumptions

We begin by revisiting the theoretical assumptions listed in the main paper:

• The observed data {(Xt, Yt)}n
t=1 is strictly stationary, non-constant, and the underlying distribution

FXY−l
has finite moments for any lag l ≥ 0.

• There exists a maximum dependence lag M such that for all l ≥ M , the two time series are almost
independent for large n, so are each time series within itself:

sup |FXY−l
− FXFY | = O( 1

n
),

sup |FXX−l
− FXFX | = O( 1

n
),

sup |FY Y−l
− FY FY | = O( 1

n
).

• The maximum dependence lag M and the maximum lag under consideration L are non-negative
integers that satisfies L ≥ M and L = o(n), i.e., they may increase together with n but at a slower
pace.

• As the sample size n increases, both the number of blocks B and the number of observations per
block n

B increase to infinity. Moreover, n
B ≥ M for sufficiently large n.

• The sample dependence measure has the following form:

τn(X⃗, Y⃗ ) =
∑n

i=1
∑n

j=1 γn(i, j)
n2 ,

where each γn(i, j) is a function of (Xi, Xj , Yi, Yj), and remaining sample pairs may also be used
but with a weight of O(1/n).

• In the standard i.i.d. setting where (X1, Y1), (X2, Y2), . . . , (Xn, Yn) i.i.d.∼ FXY , there exists a popula-
tion statistic τ(X, Y ) defined solely based on the joint distribution FXY . Each term in the sample
statistic satisfies:

E(γn(i, j)) = τ(X, Y ) + o(1).

Moreover, the population statistic τ(X, Y ) is non-negative and equals 0 if and only if X and Y are
independent, i.e., FXY = FXFY .

B Theorem Proofs

Theorem 1. The cross dependence sample statistic satisfies:

EE(τn(X⃗, Y⃗−l)) − τ(X, Y−l) = o(1),

Var(τn(X⃗, Y⃗−l)) = O( 1
n − l

).

Therefore, for each l ∈ {0, ..., L}, we have

τn(X⃗, Y⃗−l)
n→∞→ τ(X, Y−l)

in probability.

1
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Proof. First, applying the assumptions on the dependence measure to the cross dependence statistics yields:

τn(X⃗, Y⃗−l) =
∑n

i=l+1
∑n

j=l+1 γn−l(i, j)
(n − l)2 ,

E(γn−l(i, j)) = τ(X, Y−l) + o(1).

Here, each γn−l(i, j) is a function of (Xi, Xj , Yi−l, Yj−l), and remaining sample pairs like (Xu, Xv, Yw, Yz)
may also be used but with a weight of O(1/n).

As expectations are additive, it immediately follows that

E(τn(X⃗, Y⃗−l)) =
∑n

i=l+1
∑n

j=l+1 E(γn−l(i, j))
(n − l)2

=
∑n

i=l+1
∑n

j=l+1{τ(X, Y−l) + o(1)}
(n − l)2

= τ(X, Y−l) + o(1).

Next, the variance equals

Var(τn(X⃗, Y⃗−l)) =
Cov(

∑n
i=l+1

∑n
j=l+1 γn−l(i, j),

∑n
u=l+1

∑n
v=l+1 γn−l(u, v))

(n − l)4 .

Therefore, it suffices to consider each covariance term Cov(γn−l(i, j), γn−l(u, v)), and there are (n − l)4 such
terms.

When both |u − i| > M and |v − j| > M , the maximum dependent lag possible, we have

Cov(γn−l(i, j), γn−l(u, v)) = O( 1
n − l

).

Otherwise it is

Cov(γn−l(i, j), γn−l(u, v)) = O(1).

There are a total of O((n − l)2(n − M)2) covariance terms of magnitude O( 1
n−l ), while the remaining

O((n − l)3) covariance terms are of magnitude O(1). Consequently, as M = o(n), we have

Var(τn(X⃗, Y⃗−l)) =
O((n − l)2(n − M)2) ∗ O( 1

n−l ) + O((n − l)3) ∗ O(1)
(n − l)4

= O( 1
n − l

),

which converges to 0 as n increases.

With the expectation converging to the population statistic and the variance approaching 0, we can conclude
that

τn(X⃗, Y⃗−l)
n→∞→ τ(X, Y−l)

in probability.

Theorem 2. The temporal dependence sample statistic satisfies:

Tn(X⃗, Y⃗ ) n→∞→
L∑

l=0
τ(X, Y−l).

The estimated optimal dependence lag satisfies:

L̂∗ n→∞→ arg max
l∈[0,L]

τ(X, Y−l).
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Proof. By Theorem 1, each τn(X⃗, Y⃗−l) converges to τ(X, Y−l) with a variance of O( 1
n−l ).

Recall the definition of the temporal dependence statistic Tn(X⃗, Y⃗ ) as

Tn(X⃗, Y⃗ ) =
L∑

l=0

(
n − l

n

)
· τn(X⃗, Y⃗−l).

Then the expectation satisfies

E(Tn(X⃗, Y⃗ )) =
L∑

l=0

(
n − l

n

)
· τ(X, Y−l) + o(L)

n→∞→
L∑

l=0
τn(X⃗, Y⃗−l)

by noting that L is fixed and the weight n−l
n converges to 1. Moreover, the variance satisfies

V ar(Tn(X⃗, Y⃗ )) = O( L2

n − L
),

which also converges to 0. Consequently,

Tn(X⃗, Y⃗ ) n→∞→
L∑

l=0
τ(X, Y−l)

in probability.

Similarly, the estimated optimal dependence lag satisfies

L̂∗ = arg max
l∈[0,L]

(
n − l

n

)
· τn(X⃗, Y⃗−l)

n→∞→ arg max
l∈[0,L]

τ(X, Y−l)

in probability.

Theorem 3 (Asymptotic Validity). Under the null hypothesis that X⃗ and Y⃗ are independent for all lags
l ∈ [0, L], the test statistic satisfies:

Tn(X⃗, Y⃗ ) n→∞→ 0.

Moreover, the block-permutation test is asymptotically valid, i.e.,

Prob(Tn(X⃗, Y⃗ ) ≥ zn,α) n→∞→ α.

Proof. By Theorem 2, we have

Tn(X⃗, Y⃗ ) n→∞→
L∑

l=0
τ(X, Y−l).

From the assumption of the population measure, when Xt and Yt are independent for all lags l ∈ [0, L], we
must have

τ(X, Y−l) = 0

for all l ∈ [0, L]. As a result,

Tn(X⃗, Y⃗ ) n→∞→ 0

3
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To establish the asymptotic validity of the block permutation test, it suffices to prove that when X⃗ and Y⃗
are independent, we have:

sup|FTn(X⃗,Y⃗ ) − FT b
n
| n→∞→ 0.

In other words, if the true null distribution and the permuted distribution is asymptotically the same, then
it follows that under the null hypothesis:

Prob(Tn(X⃗, Y⃗ ) ≥ zn,α) n→∞→ α.

Here, Tn(X⃗, Y⃗ ) is a function of (Xi, Xj , Yu, Yv) for i, j, u, v = 1, 2, . . . , n, and the permuted statistic
Tn(X⃗, Y⃗πB

) is the same function but on (Xi, Xj , Yu′ , Yv′), where u′ and v′ represent the permuted indices of
u and v. Therefore, it suffices to prove that under the null hypothesis, the distribution of (Xi, Xj , Yu′ , Yv′)
converges to the distribution of (Xi, Xj , Yu, Yv) for sufficiently large n. Note that under the standard
i.i.d. setting, these two distributions are identical under the null hypothesis where X and Y are independent.

We first consider the case where both u and v belong to the same block. In this case, u′ and v′ will also
be in the same block and differ by the same lag difference. Furthermore, due to the stationary assumption,
FYu,Yv

= FYu′ ,Yv′ . Now, as we are examining the null distribution where X⃗ and Y⃗ are independent, it follows
that

FXi,Xj ,Yu,Yv = FXi,Xj FYu,Yv = FXi,Xj FYu′ ,Yv′ = FXi,Xj ,Yu′ ,Yv′ .

Namely, (Xi, Xj , Yu, Yv) and (Xi, Xj , Yu′ , Yv′) are identically distributed in this case.

Next we examine the case where u and v belong to different blocks. Given our assumption of a maximum
dependence lag M , if |u−v| > M and |u′ −v′| > M for the permuted indices, we can establish the following:

sup|FXi,Xj ,Yu,Yv
− FXi,Xj ,Yu′ ,Yv′ |

=sup|FXi,Xj
FYu,Yv

− FXi,Xj
FYu′ ,Yv′ |

≤sup|FXi,Xj
(FYu,Yv

− FYu
FYv

)| + sup|FXi,Xj
(FYu

FYv
− FYu′ FYv′ )|

+ sup|FXi,Xj
(FYu′ FYv′ − FYu′ ,Yv′ )|

= o(1)

Here, the first and third terms are o(1) as per our maximum dependence lag assumption, while the second
term is exactly 0 because the marginals within the brackets remain identical before and after permutation.
Consequently, in this case, (Xi, Xj , Yu, Yv) is asymptotically equivalent in distribution to (Xi, Xj , Yu′ , Yv′).

Finally, in the case where u and v belong to different blocks, there are two additional possibilities: either
|u − v| ≤ M or |u − v| ≤ M . In either case, we no longer have exact distribution equivalence nor asymptotic
equivalence. The number of instances where (Xi, Xj , Yu, Yv) does not match (Xi, Xj , Yu′ , Yv′) in distribution
is at most O(MB), which equals o(n2) by our assumption on M and B.

Therefore, taking all the above arguments together, as the sample size n goes to infinity, we have:

Prob(sup|FXi,Xj ,Yu,Yv
− FXi,Xj ,Yu′ ,Yv′ | → 0) → 1

for any random block permutation πB satisfying our assumption. As the result,

Prob(sup|FTn(X⃗,Y⃗ ) − FTn(X⃗,Y⃗πB
)| → 0) → 1.

Namely, the sample statistic and the block-permuted statistic have asymptotically the same distribution,
and the test is asymptotically valid.

Theorem 4 (Testing Consistency). Under the alternative hypothesis that X⃗ and Y⃗ are dependent for some
lag l ∈ [0, L], the test statistic satisfies

Tn(X⃗, Y⃗ ) n→∞→ c > 0.

Moreover, the block-permutation test is asymptotically consistent, i.e.,

Prob(Tn(X⃗, Y⃗ ) ≥ zn,α) n→∞→ 1.
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Proof. From the assumption on the dependence measure, when there exists at least one lag l such that the
two time series are dependent, we must have:

τ(X, Y−l) = c−l > 0.

As all other cross dependence sample statistics are non-negative, it follows that

Tn(X⃗, Y⃗ ) n→∞→
L∑

l=0
c−l > 0

To prove consistency under the permutation test, it suffices to show that at any type 1 error level α, when
the two time series are dependent for some lag, the p-value of sample dependence measure is less than α
as the sample size approaches infinity. Note that Theorem 8 in Shen et al. (2020) proved consistency of
standard permutation test between two i.i.d. sample data, and the follow-on proof has similar steps but with
significant adjustment for the block permutation procedure.

In the block permutation test, the p-value can be expressed as follows:

Prob(Tn(X⃗, Y⃗πB
) > Tn(X⃗, Y⃗ ))

=
B∑

w=0
Prob(Tn(X⃗, Y⃗πB

) > Tn(X⃗, Y⃗ )|πB is a partial derangement of size w)

× Prob(partial derangement of size w).

This expression conditions on the block permutation being a partial derangement of size w ∈ [0, B], where
w = 0 implies that πB is a derangement where no two blocks remain in their original positions, and w = B
means that πB does not permute any blocks.

As B → ∞, from the basic property of derangement4 we have

Prob(partial derangement of size w) → e−1/w!.

Because Tn(X⃗, Y⃗ ) → c > 0 under dependence, it suffices to prove that for any c > 0,

lim
n→∞

e−1
B∑

w=0
Prob(Tn(X⃗, Y⃗πB

) > c| partial derangement of size w)/w! → 0. (1)

We decompose the above summations into two different cases. The first case is when w is of fixed size, then
X⃗ and Y⃗πB

are asymptotically independent. This is because, for fixed w, the number of observations that are
not moved is fixed and asymptotically goes to 0, and all remaining blocks are shifted to different positions.
By the maximum dependence lag M , which is o(n), and the number of samples per block being larger than
M , the block permutation makes all other observation pairs asymptotically independent. Therefore, given
i, j, and i′, j′ being their block-permuted indices, we must have

sup|FXi,Xj ,Yi′ ,Yj′ − FXi,Xj
FYi′ ,Yj′ | = o(1)

so long |i′ −i| > M and |j′ −j| > M , which asymptotically holds for all blocks who moved the block position.
Therefore, when w is a fixed size, X⃗ and Y⃗πB

are asymptotically independent, and we have

Tn(X⃗, Y⃗πB
) → 0

as the sample statistic converges to the population, and the population statistic equals 0 under independence.

The other case is the remaining partial derangements πB of increasing size w, but these partial derangements
occur with probability converging to 0. Formally, for any α > 0, there exists B1 such that

e−1
+∞∑

w=B1+1
1/w! < α/2.

4https://en.wikipedia.org/wiki/Rencontres_numbers
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This is because
B∑

w=0
1/w! is bounded above and converges to e. Then back to the first case, we can find

B2 > B1 such that for any w ≤ B1 and all B > B2,

Prob(Tn(X⃗, Y⃗πB
) > c| partial derangement of size w) < α/2.

Therefore, for all B > B2:

e−1
B∑

w=0
Prob(Tn(X⃗, Y⃗πB

) > c| partial derangement of size w)/w!

< e−1
B1∑

w=0
α/2w! + e−1

B∑
w=B1+1

1/w!

< α.

Thus the convergence in Equation 1 holds.

In conclusion, at any type 1 error level α > 0, the p-value of the temporal dependence sample statistic under
the block permutation test will eventually be less than α as n increases. Therefore, the proposed test is
consistent against all dependencies with finite second moments, and its testing power converges to 1 when
the time series X⃗ and Y⃗ are dependent.
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