
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIRA: PARAMETER-EFFICIENT HADAMARD HIGH-
RANK ADAPTATION FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Hadamard High-Rank Adaptation (HiRA), a parameter-efficient fine-
tuning (PEFT) method that enhances the adaptability of Large Language Models
(LLMs). While Low-rank Adaptation (LoRA) is widely used to reduce resource
demands, its low-rank updates may limit its expressiveness for new tasks. HiRA
addresses this by using a Hadamard product to retain high-rank update parameters,
improving the model capacity. Empirically, HiRA outperforms LoRA and its vari-
ants on several tasks, with extensive ablation studies validating its effectiveness.
Our code will be released.

1 INTRODUCTION

Recent advancements in pre-trained Large Language Models (LLMs) (Touvron et al., 2023; Zhang
et al., 2022; Achiam et al., 2023) have significantly enhanced performance across various natural
language processing tasks. Traditionally, adapting those LLMs to specific tasks required full fine-
tuning, wherein all model parameters are updated. However, due to the massive number of param-
eters in those LLMs, full fine-tuning becomes computationally prohibitive, especially in resource-
constrainted environments.

To address this challenge, parameter-efficient fine-tuning (PEFT) methods have been developed to
adapt LLMs by updating only a small subset of parameters. Building on this approach, several recent
studies (Lester et al., 2021; Liu et al., 2022; Hu et al., 2021; Liu et al., 2024) have introduced methods
that maintaining the integrity of the original architecture by freezing the majority of the model
parameters and introducing updates to a limited set. Notably, LoRA (Hu et al., 2021) exemplifies
PEFT by integrating a low-rank matrix decomposition into the update ∆W = L1L2, where L1 ∈
Rd×r and L2 ∈ Rr×k are low-rank matrices with the rank at most r. This technique significantly
reduces computational costs required compared to updating the full-rank parameter matrix W .

However, previous studies (Jiang et al., 2024; Liu et al., 2023; 2024) have shown that LoRA and most
of its variants (Lialin et al., 2023; Hayou et al., 2024) do not perform well when applied to complex
tasks, such as commonsense reasoning that requires training on a single dataset but evaluating across
multiple sub-tasks. One potential reason for LoRA’s limitations in these scenarios is that its update
matrix, ∆W , which is derived from the multiplication of low-rank matrices L1 and L2, is confined
to a maximum rank of r. Consequently, although ∆W is a d × k matrix, its rank cannot exceed r,
which may limit the expressiveness of ∆W , particularly for more complex tasks. A natural solution
to this issue is to raise the rank of the update parameter matrix to increase its capability. However,
due to resource constraints, we still hope to follow the PEFT strategy. This gives rise to our research
question: “Is it possible to achieve a higher-rank adaptation for LLMs under the PEFT strategy?”

To answer this question, in this paper, we propose a Hadamard high-Rank Adaptation (HiRA) for
LLMs. The central innovation of HiRA is to express the update parameter matrix ∆W as the
Hadamard product (a.k.a. elementwise product) of the original parameter matrix in the LLM and a
low-rank matrix to achieve a high-rank adaptation, thus increasing its rank and also expressiveness.
Due to a property of the Hadamard product that Rank(O1⊙O2) ≤ Rank(O1)×Rank(O2) for two
matrices O1 and O2 with an equal size (Million, 2007), where ⊙ denotes the Hadamard product and
Rank(·) gives the rank of a matrix, the Hadamard product could have a higher rank even though one
of the two matrices in the Hadamard product is low-rank.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

As an illustration, where the experimental setting is detailed in Appendix A.1, Figure 1 shows that
the average rank of update parameters in HiRA is much higher than that in LoRA (i.e., 2837 vs. 32),
which demonstrates that the proposed HiRA could possess high-rank update parameter matrices
while keeping the same number of trainable parameters as LoRA. The increased rank of ∆W in
HiRA could enhance its expressiveness, as demonstrated in our experimental section.

2800

200

300

400

500

2 4 8 16 24 28 30 32
0

r

W
 R

an
k

HiRA: Rank(W)
LoRA: Rank(W)
MoRA: Rank(W)

Figure 1: Rank comparison of update
parameters ∆W among LoRA, MoRA,
and the proposed HiRA.

Through comprehensive experiments, we demonstrate
that HiRA significantly outperforms LoRA and its vari-
ants, showcasing the effectiveness of the proposed HiRA.
Extensive ablation studies further elucidate the impact of
different components in the HiRA, confirming its advan-
tages and practical utility.

In summary, the contributions of this paper are as follows.

• We are the first to apply the Hadamard product to the
parameter-efficient adaptation of LLMs.

• Based on the Hadamard product, we propose HiRA,
a novel high-rank adaptation strategy for LLMs. The
proposed HiRA method significantly increases the
rank of update parameter matrices, enhancing the
model’s expressive power and adaptability.

• We conduct extensive experiments and analyses to
demonstrate the effectiveness of HiRA.

2 RELATED WORKS

Low-rank adaptation PEFT methods aim to reduce the requirement for substantial computa-
tional resources when adapting LLMs to downstream tasks or language domains. These methods
typically involve training a small subset of additional parameters as model weights for downstream
tasks. Current prevalent PEFT methods can be divided into three main categories. The first category
encompasses low-rank adaptation-based approaches. LoRA (Hu et al., 2021), a seminal example,
employs the product of two low-rank matrices to approximate the update weight during fine-tuning.
This product seamlessly merges into the original weights without altering the model architecture or
incurring additional computational overhead during inference. As an extension, DoRA (Liu et al.,
2024) decomposes the original weight into magnitude and directional components, and then updates
the direction component using LoRA. MoRA (Jiang et al., 2024) compresses inputs via some pre-
defined functions, then transforms via a square “higher-rank” matrix, and finally decompresses to
achieve a higher-rank adaptation for LLMs. In contrast, the proposed HiRA employs the Hadamard
product to achieve a higher-rank adaptation (as empirically demonstrated in Figures 1 and 7) in a
similar way to LoRA, aiming to enhance the expressiveness of the trainable parameters by increas-
ing the rank of the update weight. Unlike MoRA, which applies complex static compression and
decompression functions that can complicate the weight merging into the original LLM, HiRA can
easily merge the updated weights into the LLM as what LoRA did.

Other PEFT methods The second category comprises prompt-based methods, which integrate
extra trainable virtual tokens into the input of LLMs and focus exclusively on training those tokens.
Representative methods include Prompt Tuning (Lester et al., 2021), which introduces a series of
virtual tokens for task-specific adaptations at the initial layer, and P-Tuning (Liu et al., 2022), which
adds virtual tokens at every layer instead of the initial layer. Although prompt-based methods add a
negligible number of trainable parameters into the input, they are notably sensitive to initialization
(Wu et al., 2024). Moreover, due to the quadratic computational complexity of transformer archi-
tectures (Vaswani et al., 2017), prompt-based approaches could increase computational costs during
inference proportionally to the length of the prompt. The third category includes adapter-based
methods. Those methods insert trainable modules, such as adapter layers, into the original frozen
LLMs. Typical methods include Adapters (Houlsby et al., 2019) and Compacter (Karimi Mahabadi
et al., 2021) that add linear layers to LLMs. Parallel adapters (He et al., 2021) integrate adapters in
parallel for performance enhancement. Those methods modify the architecture of original models
during training and inference, potentially increasing overhead compared to the original LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

decompose

decompose

Figure 3: An illustration of the proposed HiRA method in comparison to the LoRA method.

3 MOTIVATIONS

32 128 256 512 1024
r

65

70

75

80

85

90

95

Pe
rfo

rm
an

ce
 (%

)

BoolQ
PIQA
SIQA

ARC-C
ARC-E
OBQA

HellaS
WinoG
Average

Figure 2: Performance of Llama-3-8B
on commonsense reasoning using dif-
ferent LoRA configurations.

Effective fine-tuning of LLMs requires a careful balance
between model expressiveness and computational effi-
ciency. Hence, existing studies use LoRA with lower
ranks (e.g., 32 or 64). Such setting achieves good per-
formance on some tasks. For more complex tasks such as
commonsense reasoning, we find that LoRA with higher
ranks can significantly enhance performance of Llama-
3-8B as illustrated in Figure 2. Our results indicate that
especially for complex tasks, updates on model parame-
ters with a higher rank could be helpful to achieve better
performance. This observation complements existing re-
search by highlighting scenarios where high-rank adapta-
tions offer significant advantages.

However, increasing the rank in LoRA results in height-
ened computational demands, which conflicts with the
objectives of PEFT, and it becomes more difficult to train,
often leading to issues like gradient explosion, as detailed in Appendix A.3. Therefore, there is a
need for a method that enables high-rank adaptation without incurring addtional computational bur-
dens. The proposed HiRA method addresses this need, as introduced in the next section.

4 METHODOLOGY

4.1 RANK ANALYSIS

A limitation of LoRA and its variants relying on the product between two low-rank matrices is
that the maximum achievable rank of the update parameter is inherently constrained. W0 ∈ Rd×k

denotes the original parameter matrix and its rank is denoted by r0, where r0 ≤ min(d, k). The
update parameter matrix ∆W in LoRA is assumed to be the product of L1 ∈ Rd×r and L2 ∈ Rr×k,
where r is much smaller than d and k, i.e., ∆W = L1L2. Due to the property of the rank, the
maximum rank of ∆W is r. Thus, the low-rank property of ∆W may limit its capability to capture
high-rank updates. As a result, such a low-rank update parameter may limit the rank of the final
tuned parameter denoted by W ′ (i.e., W ′ = W0 +∆W) since

Rank(W0 +∆W) ≤ Rank(W0) + Rank(∆W) ≤ r0 + r,

where the first equality holds due to the property of the rank function. Therefore, W ′ has a maxi-
mum rank of min(min(d, k), r0 + r). Consequently, the low-rank property of ∆W may limit the
expressiveness of W ′. To address this, we propose the HiRA method to learn ∆W with a higher
rank under the PEFT strategy, which could enhance expressiveness and performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4.2 ENHANCING THE RANK VIA HADAMARD PRODUCT

The Hadamard product of two matrices P and Q with the same size gives a matrix O satisfying
oij = pijqij , where pij , qij , and oij denote the (i, j)th entry in P , Q, and O, respectively. So the
Hadamard product is also known as the elementwise product between two matrices. A nice property
of the Hadamard product is that

Rank(P ⊙Q) ≤ Rank(P)× Rank(Q), (1)

where ⊙ denotes the Hadamard product. According to the inequality (1), we can see that the max-
imal achievable rank of the Hadamard product of two matrices is upper-bounded by the product of
their ranks. When P and Q have appropriate sizes to make matrix multiplication feasible, we have

Rank(PQ) ≤ min(Rank(P),Rank(Q)). (2)

Compared the inequalities (1) and (2), we can see that the upper-bound of the rank of the Hadamard
product is much larger than that of the matrix multiplication even when P or Q or both have a
low rank. Note that the update parameter in LoRA relies on the matrix multiplication of two low-
rank matrices and inequality (2) implies that the update parameter in LoRA is low-rank. From this
perspective of the upper-bound of the rank, the Hadamard product could help improve that.

The upper-bound of the rank may not precisely reflect the actual rank, but it gives the possible
maximal rank of the Hadamard product. To the best of our knowledge, the lower-bound analysis
of the rank for the Hadamard product is only for P and Q with special structures (e.g., positive
semidefinite matrices (Horn & Yang, 2020)). Empirically we find that the Hadamard product could
enhance the rank as demonstrated in Figures 1 and 7.

4.3 FORMULATION

Built on the Hadamard product, we give a general formulation for the update parameter matrix as

∆W = R⊙Whi, (3)

where Whi is the trainable parameter and R is a fixed matrix. Based on inequality (1), we obtain

Rank(∆W) ≤ Rank(R)× Rank(Whi). (4)

When R has a high rank, inequality (4) suggests that ∆W can also achieve a high rank, potentially
exceeding min(d, k). To ensure parameter efficiency, we restrict Whi to be low-rank, that is,

Whi = AB, (5)

where A ∈ Rd×r, B ∈ Rr×k, and r is much smaller than min(d, k). This decomposition defined in
Eq. (5) indicates that Whi has a maximum rank of r, confirming its low-rank nature.

Based on Eqs. (3) and (5), it is easy to see that when R is chosen to be a matrix of all ones, Eq. (3)
gives the formulation of the update parameter matrix in LoRA, making LoRA a special case of
HiRA. However, such setting of R seems not so informative as it does not utilize any information
in the pre-trained LLMs. Instead, in HiRA, we use the frozen parameter W0 in LLMs to be R since
W0 could contain useful information of LLMs. By combining all the above considerations together,
we can obtain the update parameter for the proposed HiRA method as

∆W = W0 ⊙ (AB). (6)

Based on the inequality (4), the rank of ∆W defined in Eq. (6) is upper-bounded by r0r, allowing
for potentially high rank, as illustrated in Figure 3. Here, r is set equal to the dimension of LoRA,
ensuring that the number of trainable parameters remains same and meets the requirements of PEFT.

During the training, W0 remains frozen, while A and B serve as trainable parameters to facilitate
the model updating. For a linear layer h = W0x, HiRA modifies the forward pass of this layer as

h = W ′x = W0x+ (W0 ⊙ (AB))x.

The calculation of W ′ yields a computational complexity O(drk + dk) = O(drk), which is equiv-
alent to that in LoRA. To ensure that the initial value of update parameters will not modify the
original LLMs, we require the initial value of update parameters to be zero matrices. To achieve
that, the initial values for Whi could be zero matrix. Under this requirement, A is initialized to be
zero matrices, while B is initialized with the kaiming initialization (He et al., 2015).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.4 EFFICIENT MODEL ADAPTATION FOR INFERENCE

During production deployment, HiRA facilitates efficient inference by pre-computing and merging
the update parameters into W0 to form W ′ = W0 + W0 ⊙ (AB). This enables LLMs to switch
between tasks swiftly, as the original parameters can be recovered by through element-wise division
by AB + 1. Then, the LLM can be adapted to new tasks using HiRA. Notably, integrating the
update parameters directly into W0 eliminates computational overhead during inference and avoids
additional latency commonly associated with other PEFT techniques like Prompt Tuning and P-
Tuning. Moreover, MoRA introduces complex mapping functions to compress the input into a
relatively high dimension and then decompress back, which cannot be easily merged into the original
parameters in LLMs only if the function mappings in the compression and decompression can be
represented by a transformation matrix and will incur additionally computational overhead.

4.5 RELATIONS WITH INTRINSIC DIMENSIONALITY

Previous studies (Li et al., 2018; Aghajanyan et al., 2021) show that LLMs have a low intrinsic
dimensionality, meaning that only a small subset of trainable parameters is necessary for effective
fine-tuning. While LoRA (Hu et al., 2021) suggests a low rank for the update parameter matrix
∆W , our findings complement this by showing that the rank of ∆W can be enhanced under the
low intrinsic dimensionality of Whi based on the Hadamard product. It is crucial to differentiate
between the intrinsic dimensionality and the rank of ∆W ; although a low intrinsic dimensionality
implies that only a few parameters need to be fine-tuned, it does not inherently mandate low rank.
Our method highlights that increasing the rank of ∆W is beneficial for enhancing model flexibility
and performance, even within a compact parameter space of a low intrinsic dimensionality.

4.6 THE EXPRESSIVE POWER OF HIRA

In this section, we analyze the expressive power of HiRA. In HiRA, given the pre-trained weight
matrix W0, the updated weight is defined as W0 +W0 ⊙ (AB). We denote by E the optimal update
and measure the expressive power by the minimal difference between the updated weight and E.
For LoRA with rank r, the minimum difference is equal to the (r + 1)-th largest singular value,
denoted by σr+1(E) (Zeng & Lee, 2024). In Theorem 1, we analyze the expressive power of HiRA.

Theorem 1. (The Expressive Power of HiRA) Consider the optimal parameter update E and the
HiRA update with the form W0 ⊙Whi, where the rank of Whi is less than r. Then we have

min
Whi:Rank(Whi)<r

∥∥W0 ⊙Whi − E
∥∥
2
≤ σr+1(E ⊘W0) ∥W0∥2 ,

where ⊘ denotes the element-wise division.

According to Theorem 1, the expressive power of HiRA depends on E ⊘ W0 rather than E alone
in LoRA. A detailed proof and analysis are provided in Appendix B. The key distinction between
HiRA and LoRA lies in the role of W0, whose high-rank properties are inherently tied to the con-
tained information. In this context, W0 in HiRA serves a dual role: it confines and facilitates the
adaptation. While the information in W0 limits the flexibility of the update matrix, preventing it
from achieving an unconstrained high-rank matrix, the pre-trained knowledge embedded in W0 also
aids the adaptation process, allowing for more efficient fine-tuning.

4.7 GRADIENT ANALYSIS

The distinction between HiRA and LoRA also lies in how their gradients interact with the pre-
trained weight matrix, W0. Let y′ = W0x + ∆Wx and y represent the predicted and true labels.
For simplicity, we consider a linear neural network with the mean squared error loss L.

In LoRA, the gradients are computed as ∂L
∂A = B⊤(y − y′)(−x⊤) and ∂L

∂B = (y − y′)(−x⊤)A,
which are independent of W0. In contrast, the gradients in HiRA are given by

∂L
∂A

= B⊤ (W0 ⊙
(
(y − y′)(−x⊤)

))
,

∂L
∂B

=
(
W0 ⊙

(
(y − y′)(−x⊤)

))
A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

This reveals that HiRA could leverage the information encoded in W0 to guide the adaptation. Thus,
HiRA can potentially enhance performance when the pre-trained model has already captured pat-
terns relevant to downstream tasks.

5 EXPERIMENT

In this section, we conduct experiments on three types of tasks to evaluate the proposed HiRA
method.

5.1 DATASETS

Commonsense Reasoning. We utilize eight sub-tasks with predefined training and testing datasets
(Hu et al., 2023)1, combining 170,420 query-answer pairs for fine-tuning LLMs and selecting 120
random entries as a validation set. The sub-tasks include BoolQ (Clark et al., 2019) (yes/no QA),
PIQA (Bisk et al., 2020) (physical commonsense), SIQA (Sap et al., 2019) (social reasoning), Hel-
laSwag (Zellers et al., 2019) (commonsense NLI), WinoGrande (Sakaguchi et al., 2021) (fill-in-
the-blank), ARC-c and ARC-e (Clark et al., 2018) (multiple-choice science questions), and OBQA
(Mihaylov et al., 2018) (multi-step reasoning). Table 11 presents the dataset statistics.

Open-domain Dialogue Generation. We use the ConvAI2 dataset (Dinan et al., 2019), including
17,878 training and 1,000 testing multi-turn conversations. Each dialogue features persona profiles
of 4–5 descriptive sentences and conversational history. Following (Liu et al., 2020; Song et al.,
2021; Huang et al., 2023b;a), we adopt a self-persona setting, revealing only the speaker’s persona.

Mathematical Reasoning. For this task, we employ MetaMath (Yu et al., 2023) as the training
corpus and GSM8K (Cobbe et al., 2021) as the test dataset.

5.2 EXPERIMENTAL SETTINGS

Evaluation Metric. To assess the performance on the commonsense reasoning datasets, we employ
accuracy as the primary metric for each sub-task. For each test instance, the language models decode
answers from the provided queries. We then search for the presence of specific answer keywords
(e.g., ”true” or ”false” for BoolQ). The first occurrence of the keyword is recorded as the model’s
response. If no relevant keywords are identified, the model is considered to have failed to correctly
answer the commonsense reasoning question. This method allows us to consistently evaluate the
performance of model responses across all eight sub-tasks, and is adopted by (Hu et al., 2023;
Liu et al., 2024). For the CONVAI2 dataset, we use the BLEU (Papineni et al., 2002) and BERT
Score (Zhang et al., 2019) as the evaluation metrics. For the mathematical reasoning task, we utilize
the accuracy as the evaluation metric.

Baseline Methods. We compare the HiRA with prompt-based methods including Prompt Tuning
(Lester et al., 2021) and P-tuning (Liu et al., 2022), and low-rank adaptation methods including
LoRA (Hu et al., 2021), DoRA (Liu et al., 2024), and MoRA (Jiang et al., 2024). Our experiments
use the Llama-2-7B (Touvron et al., 2023) and Llama-3-8B (Dubey et al., 2024) open-source LLMs.

Implementation Details. Following the identical training setup to (Liu et al., 2024) except learning
rate adjustments, we implement HiRA on the Llama-2-7B and Llama-3-8B models with r = 16
and r = 32, respectively. The AdamW optimizer (Loshchilov & Hutter, 2019) is employed with
a learning rate 0.001, which warms up for 100 steps. For the commonsense reasoning dataset, we
fine-tune LLMs for 3 epochs, with evaluations at every 80 step to select the best checkpoint based
on the validation set. We place LoRA, DoRA, MoRA and HiRA on the query, key, value weights,
and two linear layers (i.e., down and up projection) in attention modules. To ensure fair comparisons
among LoRA, DoRA, MoRA, and HiRA, we maintain the same or comparable numbers of trainable
parameters. For Prompt Tuning and P-Tuning, which inherently involve fewer trainable parameters
due to their reliance on prefix soft prompts, we adjust accordingly to keep the number of trainable
parameters comparable. The detail can be found in Appendix A.1. HiRA is evaluated over 5 runs
with different random seeds. Experiments on the CONVAI2 dataset use 1 training epoch, while the
mathematical reasoning task uses 2 epochs, which is the only difference from the settings above.

1https://github.com/AGI-Edgerunners/LLM-Adapters/tree/main/dataset

6

https://github.com/AGI-Edgerunners/LLM-Adapters/tree/main/dataset

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Accuracy comparison among various PEFT methods on commonsense reasoning datasets.
Results for ChatGPT, LoRA, and DoRA are sourced from (Liu et al., 2024). The best performance
within each LLM is indicated in bold, while the second best performance is highlighted in underline.

Model Method Params (%) BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

ChatGPT - - 73.10 85.40 68.50 79.90 89.80 74.80 78.50 66.10 77.01

Llama-2-7B

Prompt Tuning 0.0012 55.93 12.35 30.50 6.06 8.63 9.40 6.91 40.57 21.29
P-Tuning 0.7428 58.75 36.02 0.20 0.17 1.98 0.80 0.01 0.00 12.24

LoRA (r = 32) 0.8256 69.80 79.90 79.50 64.70 79.80 81.00 83.60 82.60 77.61
DoRA (r = 32) 0.8256 71.80 83.70 76.00 68.20 83.70 82.40 89.10 82.60 79.69
MoRA (r = 32) 0.8241 72.17 80.79 79.53 71.42 85.31 81.20 29.09 80.19 72.46
HiRA (r = 16) 0.4128 69.82 80.20 78.20 71.33 85.90 81.00 86.99 83.43 79.61
HiRA (r = 32) 0.8256 71.22 83.35 79.53 73.81 86.74 84.60 88.12 83.98 81.42

Llama-3-8B

Prompt Tuning 0.0010 56.85 45.05 36.13 31.57 32.74 29.20 14.01 50.12 36.96
P-Tuning 0.6240 59.97 11.64 8.19 7.42 8.63 9.60 1.77 37.65 18.11

LoRA (r = 32) 0.7002 70.80 85.20 79.90 71.20 84.20 79.00 91.70 84.30 80.79
DoRA (r = 32) 0.7002 74.60 89.30 79.90 80.40 90.50 85.80 95.50 85.60 85.20
MoRA (r = 32) 0.6997 74.28 87.43 80.71 79.61 91.16 85.60 43.53 86.74 78.63
HiRA (r = 16) 0.3513 73.85 89.12 81.06 82.59 93.06 87.40 94.85 86.74 86.08
HiRA (r = 32) 0.7002 75.40 89.70 81.15 82.90 93.27 88.32 95.36 87.70 86.72

Table 2: Results on the CONVAI2 dataset, where BERT F1, BERT-R, and BERT-P denote the F1,
Precision, and Recall based on the BERT score, respectively.

Model Method Params (%) BLEU BERT F1 BERT-R BERT-P Meteor R-L Average

Llama-2-7B

Prompt Tuning 0.0012 0.04 72.44 77.38 68.23 0.80 0.80 36.62
P-Tuning 0.7428 0.60 83.29 83.33 83.28 15.11 12.36 46.33
MoRA (r = 32) 0.8241 1.09 84.09 84.65 83.59 10.97 9.57 45.66
LoRA (r = 32) 0.8256 1.82 84.41 84.71 84.16 11.38 10.55 46.17
DoRA (r = 32) 0.8256 1.73 84.18 84.61 83.81 11.25 10.41 46.00
HiRA (r = 16) 0.4128 2.56 83.97 84.12 83.86 13.35 12.58 46.74
HiRA (r = 32) 0.8256 2.70 84.86 84.98 84.77 13.56 12.80 47.28

Llama-3-8B

Prompt Tuning 0.0012 1.45 82.99 82.99 83.05 14.72 13.13 46.39
P-Tuning 0.7428 1.50 81.52 81.07 82.01 15.49 13.55 45.86
MoRA (r = 32) 0.8241 1.60 84.22 84.06 84.43 12.37 11.19 46.31
LoRA (r = 32) 0.8256 2.26 84.32 84.00 84.67 12.51 11.77 46.59
DoRA (r = 32) 0.8256 2.29 84.32 84.06 84.62 12.63 11.78 46.62
HiRA (r = 16) 0.4128 3.32 84.84 84.41 85.30 14.93 13.94 47.79
HiRA (r = 32) 0.8256 3.41 84.81 84.40 85.25 14.87 14.05 47.80

5.3 RESULTS ON COMMONSENSE REASONING TASKS

As shown in Table 1, HiRA consistently outperforms all baseline methods in terms of average accu-
racy across both the Llama-2-7B and Llama-3-8B models. For r = 32, HiRA achieves an average
accuracy of 81.42% for the Llama-2-7B model, surpassing the best baseline, DoRA, which records
79.69%. In the case of the Llama-3-8B model, HiRA shows a significant improvement in terms of
the average accuracy (86.72% vs. 85.20%) over the best-performing baseline (i.e., DoRA). These
results underscore HiRA’s effectiveness in leveraging the Hadamard product to enhance the model
capacity and performance within the PEFT strategy.

In contrast, for r = 16, HiRA achieves an average accuracy of 79.61% for Llama-2-7B model,
utilizing half the number of trainable parameters compared to LoRA and DoRA while achieving
comparable or even performance. Similarly, for the Llama-3-8B model, HiRA with r = 16 achieves
an impressive average accuracy of 86.08%. This demonstrates HiRA’s capability to deliver strong
performance while maintaining a lower intrinsic dimensionality.

5.4 RESULTS ON CONVERSATIONAL TASK

According to the results on the CONVAI2 dataset as shown in Table 2, HiRA consistently outper-
forms all baseline methods across all comparison metrics. Specifically, HiRA with r = 32 achieves
the highest average score of 47.80%, closely followed by HiRA with r = 16, which also performs
exceptionally well with an average score of 47.79% despite using only half of the number of train-
able parameters in LoRA and its variants. Both configurations of HiRA surpass DoRA and LoRA,
which exhibit similar results with average scores of 46.62% and 46.59%, respectively. MoRA, while
not as strong as LoRA in this task, still outperforms Prompt Tuning. Those results further substan-
tiate the superiority of HiRA in both parameter efficiency and performance across various tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.5 RESULTS ON MATHEMATICAL REASONING TASKS

Table 3: Results on mathematical rea-
soning tasks.

Model Method Trainable GSM8K

Llama-2-7B

Prompt Tuning 0.0012 5.91
P-Tuning 0.7428 1.44
LoRA (r = 32) 0.8256 15.16
DoRA (r = 32) 0.8256 14.56
MoRA (r = 32) 0.8241 15.77
HiRA (r = 16) 0.4128 46.85
HiRA (r = 32) 0.8256 46.63

Llama-3-8B

Prompt Tuning 0.0012 15.62
P-Tuning 0.7428 2.65
LoRA (r = 32) 0.7002 65.89
DoRA (r = 32) 0.7002 66.12
MoRA (r = 32) 0.6997 67.98
HiRA (r = 16) 0.4128 67.63
HiRA (r = 32) 0.7002 70.81

We evaluate the performance of HiRA on mathematical
reasoning tasks using the MetaMath dataset for training
and the GSM8K benchmark for evaluation. As shown in
Table 3, HiRA significantly outperforms baseline meth-
ods, achieving an accuracy of 70.81%. This represents
a notable improvement over LoRA (65.89%), DoRA
(66.12%), and MoRA (67.98%). Even with fewer train-
able parameters (r = 16), HiRA remains competitive,
achieving 67.63%. On the Llama-2-7B model, HiRA
delivers strong results, achieving 46.85%, a substan-
tial increase compared to LoRA (15.16%) and its vari-
ants. These results demonstrate HiRA’s superior ability
to adapt to complex mathematical reasoning, attributed to
its high-rank updates, which enhance the model’s expres-
sive power while maintaining parameter efficiency.

6 ABLATION STUDIES

6.1 SINGULAR VALUE ANALYSIS OF FULL FINE-TUNING, LORA AND HIRA

To further analyze the advantages of HiRA, we calculate the singular values of update parameter
matrix in full fine-tuning (FFT), LoRA, and HiRA. In Figure 4, we present the number of singular

0 10 20 30
Model Layer (r=32)

0

1000

2000

3000

4000
Wq

0 10 20 30
Model Layer (r=32)

0

200

400

600

800

1000
Wk

0 10 20 30
Model Layer (r=32)

0

200

400

600

800

1000
Wv

0 10 20 30
Model Layer (r=32)

0

1000

2000

3000

4000
Wup

0 10 20 30
Model Layer (r=32)

0

1000

2000

3000

4000
Wdown

FFT
LoRA r=32
LoRA r=128
LoRA r=512
MoRA
HiRA

Figure 4: Count of singular values exceeding 0.005 across layers for FFT, LoRA, MoRA, and HiRA.

values exceeding 0.005 for each layer. FFT produces diverse singular value distributions across dif-
ferent layers, reflecting the difference in the ease of updating layers for fine-tuning. Notably, HiRA
exhibits similar trends to those of FFT, indicating its higher rank is crucial for effective optimization.
In contrast, the inherently low-rank structure of LoRA may limit its expressive power.

0 10 20 30
Model Layer (r=32)

10 2

10 1

100

101

102
Wq

0 10 20 30
Model Layer (r=32)

10 2

10 1

100

101

Wk

0 10 20 30
Model Layer (r=32)

10 2

10 1

100

101

Wv

0 10 20 30
Model Layer (r=32)

10 1

100

101

102

Wup

0 10 20 30
Model Layer (r=32)

10 2

10 1

100

101

102
Wdown

FFT
LoRA r=32
LoRA r=128
LoRA r=512
MoRA
HiRA

Figure 5: Sum of squared singular values across layers for FFT, LoRA, MoRA, and HiRA.

Figure 5 presents the sum of the squared singular values per layer, which corresponds to the squared
Frobenius norm. The results indicate that MoRA and LoRA with rank=32 yields substantially larger
singular values, as reported in (Lialin et al., 2024). Those large singular values suggest that its
updates make strong adjustments in certain directions on the pre-trained model to swiftly adapt to
new tasks. However, excessively large singular values (i.e., the spectral norm) may increase the risk
of overfitting, consequently impairing the generalization ability (Bartlett et al., 2017). Moreover,
overly large singular values can induce gradient explosion or vanishing issues, thereby compromis-
ing the stability and convergence rate of subsequent training (Pennington et al., 2017). In contrast,
HiRA tends to maintain smaller singular values as FFT did.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6.2 IMPACT OF r ON MODEL PERFORMANCE

2 4 8 16 20 24 28 32
r

60

65

70

75

80

85

90

95

Pe
rfo

rm
an

ce
 (%

)

BoolQ
PIQA
SIQA

ARC-c
ARC-e
OBQA

HellaS
WinoG
Average

Figure 6: Performance of HiRA across
tasks when r increases.

Figure 6 illustrates the impact of the parameter dimen-
sion r to the model performance across multiple com-
monsense reasoning tasks. As r increases from 2 to 32,
there is a consistent and notable improvement in perfor-
mance, with the average accuracy rising from 83.16%
to 86.72%. This trend underscores the importance of
a higher-rank structure in enhancing the model ability
to generalize across diverse tasks. Notably, tasks such
as PIQA and HellaSwag exhibit significant gains, with
PIQA improving by 2.37% as r increases, highlighting
the critical role of r in tasks that require advanced rea-
soning capabilities. Interestingly, even at r = 8, HiRA
still outperforms LoRA with r = 32, demonstrating the
superiority of HiRA to efficiently leverage a smaller number of trainable parameters to achieve good
performance, making HiRA a compelling choice even under constrained resources.

6.3 IMPACT OF DIFFERENT CHOICES OF R

Table 4: Performance comparison between different choices of R defined in Eq. (3). HiRArand

denotes a variant using randomly initialized R instead of W0. HiRA denotes the vanilla version
where R equals W0. Both methods are tuned on the Llama-3-8B model.

Model BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

HiRA 75.40 89.70 81.15 82.90 93.27 88.32 95.36 87.70 86.72
HiRArand 62.17 50.38 33.62 26.62 26.39 26.40 25.06 50.36 37.63

In this section, we explore the impact of different choices for R in Eq. (3) on performance in
commonsense reasoning tasks. Specifically, we compare with a variant, HiRArand, where R is
randomly generated from a uniform distribution [0, 1] before the training and remains fixed. As
shown in Table 4, both methods use identical training protocols by utilizing the same optimizer,
learning rate, and training epochs, yet HiRA significantly outperforms HiRArand. This highlights
the effectiveness of using W0 as R. Moreover, as discusses in Section 4.4, using W0 for R aids in
recovering W0 from the merged parameters W ′ given A and B, whereas HiRArand requires storing
separately to achieve that, which could leading to additional storage costs.

6.4 RANK ANALYSIS

2500

2600

2700

2800

2900

500

600

0 5 10 15 20 25 30
0

100

Model Layer (r = 32)

Ra
nk

(
W

) HiRA: Rank(W)
MoRA: Rank(W)
LoRA: Rank(W)

Figure 7: Average rank of ∆W
for HiRA, MoRA, and LoRA
tuned on the Llama-3-8B.

In this section, we compare the average rank of the update pa-
rameter matrix ∆W over layers for HiRA, LoRA, and MoRA,
which have comparable numbers of trainable parameters. As
shown in Figure 7, HiRA possess ∆W with much higher ranks
than LoRA and MoRA, indicating that HiRA can achieve high-
rank adaptation under the PEFT strategy via the Hadamard prod-
uct. Notably, as the layer goes deeper, the rank of ∆W first in-
creases and then fluctuates, which indicates that deeper layers
may need a higher-rank ∆W to adapt to new tasks. Overall,
HiRA attains higher-rank ∆W ’s across all layers, which corre-
lates with improved performance as detailed in Table 1.

6.5 ANALYSIS ON PLACEMENT OF HIRA IN TRANSFORMERS

As shown in Table 5, we analyze the effectiveness of HiRA when applied to any subset of weight
matrices within the Transformer, including fully connected (FC) layers and query (Q), key (K), and
value (V) in attention module, across multiple commonsense reasoning tasks. The results indicate
that applying HiRA to the FC layers and the combination of QKV matrices yields the best perfor-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Performance of the Llama-3-8B model with HiRA integrated into various components.
Component BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

FC, QKV 75.40 89.70 81.15 82.90 93.27 88.32 95.36 87.70 86.72
FC 73.30 89.45 81.17 82.51 92.89 87.60 94.82 86.58 86.04
QV 73.09 88.85 81.06 80.38 92.68 86.20 94.37 85.87 85.31
QKV 72.26 89.23 80.30 80.89 92.97 84.80 94.37 86.19 85.13
QK 71.38 87.49 78.92 80.80 91.29 83.00 93.68 84.37 83.86
V 67.46 87.60 79.48 79.01 91.20 82.20 92.91 83.58 82.93
Q 68.59 86.51 77.64 79.61 90.99 81.20 92.68 81.93 82.39
K 68.20 86.07 77.74 80.03 90.82 80.00 92.29 81.37 82.07

mance across most tasks. In contrast, applying HiRA to individual components leads to inferior
performance. Hence, we choose to apply HiRA on both FC layers and the combined QKV matrices.

6.6 COMBINATION WITH LORA

Table 6: The results of the HiLoRA, where the Llama-3-8B model is used. The best performance is
shown in bold, while the second best performance is highlighted in underline.

Model BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

LoRA (r = 32) 70.80 85.20 79.90 71.20 84.20 79.00 91.70 84.30 80.79
HiRA (r = 32) 75.40 89.70 81.15 82.90 93.27 88.32 95.36 87.70 86.72

HiLoRA (r1 = 2, r2 = 30) 73.76 84.98 80.60 74.57 88.38 84.60 88.68 86.27 82.73
HiLoRA (r1 = 4, r2 = 28) 74.22 90.26 82.80 82.25 93.48 89.80 96.13 88.48 87.18
HiLoRA (r1 = 8, r2 = 24) 73.52 89.77 82.65 83.36 93.81 89.60 96.04 89.03 87.22
HiLoRA (r1 = 16, r2 = 16) 74.77 89.88 81.73 83.28 92.93 88.20 95.52 88.08 86.80
HiLoRA (r1 = 20, r2 = 12) 75.84 90.42 82.14 84.22 93.73 87.80 96.45 89.27 87.48
HiLoRA (r1 = 24, r2 = 8) 74.89 89.61 81.68 82.85 92.93 86.20 95.68 89.34 86.65
HiLoRA (r1 = 28, r2 = 4) 73.64 88.96 81.06 83.11 93.14 87.80 95.51 88.71 86.49
HiLoRA (r1 = 30, r2 = 2) 73.46 89.50 83.06 82.34 93.10 89.00 95.86 88.87 86.90

In this section, we explore the combination of HiRA with LoRA to investigate the impact of integrat-
ing both techniques to the performance. Specifically, such combination, which is called HiLoRA in
this section for clarity, formulates the update parameter matrix as ∆W = W0 ⊙AB+L1L2, where
A ∈ Rd×r1 , B ∈ Rr1×k, L1 ∈ Rd×r2 , and L2 ∈ Rr2×k. It is easy to see that when r2 becomes 0,
HiLoRA degenerates to HiRA, and if r1 equals 0, HiLoRA becomes LoRA.

To compare HiLoRA with HiRA and LoRA fairly, we ensure the same numbers of trainable pa-
rameters by setting r in HiRA and LoRA to r1 + r2. Table 6 presents the results of HiLoRA with
various configurations on r1 and r2. The results indicate that increasing r1 generally improves per-
formance. HiLoRA with r1 = 20 and r2 = 12 achieves the highest average score, excelling in tasks
like HellaSwag and ARC-c. This suggests that a higher intrinsic dimension for HiRA is preferable
over LoRA in HiLoRA, which demonstrates the usefulness of HiRA that could have larger capac-
ity. Moreover, most configurations of r1 and r2 perform comparably or better than HiRA and LoRA
with r = 32, indicating that the combination of LoRA and HiRA is promising for fine-tuning LLMs.

7 CONCLUSION

In this paper, we introduced HiRA, a novel high-rank adaptation that maintains comparable numbers
of trainable parameters while enhancing the rank of update parameters. HiRA offers a cost-effective
alternative to LoRA, providing similar benefits but without additional inference overhead. Extensive
experiments demonstrate the effectiveness of the HiRA method. In our future work, we are interested
in applying HiRA to more applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 7319–7328, Online, August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.568. URL https://aclanthology.org/2021.
acl-long.568.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander H. Miller, Kurt Shuster, Jack Ur-
banek, Douwe Kiela, Arthur D. Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W.
Black, Alexander I. Rudnicky, Jason Williams, Joelle Pineau, Mikhail S. Burtsev, and Jason We-
ston. The second conversational intelligence challenge (convai2). arXiv:1902.00098, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large
models. ArXiv, abs/2402.12354, 2024. URL https://api.semanticscholar.org/
CorpusID:267750102.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Roger A Horn and Charles R Johnson. Topics in matrix analysis. Cambridge university press, 1994.

11

https://aclanthology.org/2021.acl-long.568
https://aclanthology.org/2021.acl-long.568
https://aclanthology.org/N19-1300
https://api.semanticscholar.org/CorpusID:267750102
https://api.semanticscholar.org/CorpusID:267750102

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Roger A. Horn and Zai Yang. Rank of a Hadamard product. Linear Algebra and Its Applications,
591:87–98, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 5254–5276, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
319. URL https://aclanthology.org/2023.emnlp-main.319.

Qiushi Huang, Shuai Fu, Xubo Liu, Wenwu Wang, Tom Ko, Yu Zhang, and Lilian Tang. Learning
retrieval augmentation for personalized dialogue generation. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2523–2540, Singapore, December 2023a. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.154. URL https://aclanthology.org/
2023.emnlp-main.154.

Qiushi Huang, Yu Zhang, Tom Ko, Xubo Liu, Bo Wu, Wenwu Wang, and H Tang. Personalized
dialogue generation with persona-adaptive attention. Proceedings of the AAAI Conference on
Artificial Intelligence, 37(11):12916–12923, Jun. 2023b. doi: 10.1609/aaai.v37i11.26518. URL
https://ojs.aaai.org/index.php/AAAI/article/view/26518.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-efficient fine-
tuning. arXiv preprint arXiv:2405.12130, 2024.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural Information Processing Systems, pp. 1022–
1035, 2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates. In International Conference on Learning Representations,
2023. URL https://api.semanticscholar.org/CorpusID:259836974.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. ReloRA: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2024.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, Bonita Bhaskaran,
Bryan Catanzaro, Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang, Parikshit Deshpande,
Siddhanth Dhodhi, Sameer Halepete, Eric Hill, Jiashang Hu, Sumit Jain, Brucek Khailany, Kishor
Kunal, Xiaowei Li, Hao Liu, Stuart F. Oberman, Sujeet Omar, Sreedhar Pratty, Jonathan Raiman,
Ambar Sarkar, Zhengjiang Shao, Hanfei Sun, Pratik P Suthar, Varun Tej, Kaizhe Xu, and Haoxin
Ren. Chipnemo: Domain-adapted llms for chip design. ArXiv, abs/2311.00176, 2023. URL
https://api.semanticscholar.org/CorpusID:264833257.

12

https://aclanthology.org/2023.emnlp-main.319
https://aclanthology.org/2023.emnlp-main.154
https://aclanthology.org/2023.emnlp-main.154
https://ojs.aaai.org/index.php/AAAI/article/view/26518
https://aclanthology.org/2021.emnlp-main.243
https://api.semanticscholar.org/CorpusID:259836974
https://api.semanticscholar.org/CorpusID:264833257

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qian Liu, Yihong Chen, Bei Chen, Jian-Guang Lou, Zixuan Chen, Bin Zhou, and Dongmei Zhang.
You impress me: Dialogue generation via mutual persona perception. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 1417–1427, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.131. URL
https://aclanthology.org/2020.acl-main.131.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adapta-
tion. ArXiv, abs/2402.09353, 2024. URL https://api.semanticscholar.org/
CorpusID:267657886.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 61–68, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8. URL
https://aclanthology.org/2022.acl-short.8.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pp. 2381–2391, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL
https://aclanthology.org/D18-1260.

Elizabeth Million. The hadamard product. Course Notes, 3(6):1–7, 2007.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, Association for Computational Linguistics, pp. 311–318, USA,
2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//doi.org/10.3115/1073083.1073135.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep learn-
ing through dynamical isometry: theory and practice. Advances in neural information processing
systems, 30, 2017.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European signal processing conference, pp. 606–610. IEEE, 2007.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Reece Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. Lora vs full fine-
tuning: An illusion of equivalence. arXiv preprint arXiv:2410.21228, 2024.

Haoyu Song, Yan Wang, Kaiyan Zhang, Weinan Zhang, and Ting Liu. Bob: Bert over bert for
training persona-based dialogue models from limited personalized data. In Association for Com-
putational Linguistics, 2021.

Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Proceedings of the 20th
international conference on machine learning (ICML-03), pp. 720–727, 2003.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

13

https://aclanthology.org/2020.acl-main.131
https://api.semanticscholar.org/CorpusID:267657886
https://api.semanticscholar.org/CorpusID:267657886
https://aclanthology.org/2022.acl-short.8
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/D18-1260
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, 2017.

Junda Wu, Tong Yu, Rui Wang, Zhao Song, Ruiyi Zhang, Handong Zhao, Chaochao Lu, Shuai Li,
and Ricardo Henao. Infoprompt: Information-theoretic soft prompt tuning for natural language
understanding. Advances in Neural Information Processing Systems, 36, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A TRAINING DETAILS

A.1 TRAINING HYPERPARAMETERS

Table 7 outlines hyperparameters used for tuning the Llama-2-7B and Llama-3-8B models with
HiRA across two tasks: commonsense reasoning and CONVAI2. Both tasks utilize the same hyper-
parameter set, with the primary distinction being the number of epochs; the commonsense reasoning
task runs for three epochs, whereas CONVAI2 runs for a single epoch. Each experiment is conducted
separately, employing varying r for a single run on each model. The best results are chosen based on
the validation loss. For baseline methods, the hyperparameters also reuse the above configurations.
Different PEFT methods could have different hyperparameters to be set for comparable or the same
number of trainable parameters.

Table 7: Hyperparameters for HiRA.
Hyperparameter Value
Optimizer AdamW
Weight Decay 0
Base Model [Llama-2-7B, Llama-3-8B]
Learning Rate [0.0001, 0.0002]
r [2, 4, 8, 16, 24, 28, 30, 32]
Warm Up 100 steps
Batch Size 32
Target Modules q proj, k proj, v proj, up proj, down proj
Evaluation Steps Every 80 steps

Table 8: The statistics of the CONVAI2 dataset.
Data Split Utterances Dialogues Personas

Train 131,438 17,878 1,155
Test 7,801 1,000 100

A.2 STATISTICS OF THE CONVAI2 DATASET

We conduct experiments using the ConvAI2 dataset (Dinan et al., 2019), a benchmark for open-
domain dialogue generation tasks. As shown in Table 8, this dataset consists of 17,878 training
and 1,000 testing multi-turn conversations collected from crowdworkers. Each dialogue features
persona profiles that provide four to five sentences describing each speaker’s background, along
with the conversational history between the two interlocutors. In our experiments, by following (Liu
et al., 2020; Song et al., 2021; Huang et al., 2023b;a), we utilize a self-persona setting, where only
the speaking interlocutor’s persona is revealed, while the persona of the other remains undisclosed.

A.3 EXPERIMENTAL SETTINGS FOR LORA WITH DIFFERENT RANKS

In this section, we detail the experimental settings used for fine-tuning the Llama-3-8B model with
various LoRA configurations. The specific hyperparameters, including the rank (r), learning rate
(lr), and batch size, are outlined in Table 9.

Table 9 lists the specific configurations used for each LoRA rank. Higher ranks, such as r = 1024,
required a lower learning rate of 1.00e − 06 and a smaller batch size of 8 to prevent issues like
gradient explosion. In contrast, lower ranks like r = 32 could be trained with a higher learning rate
of 1.00e− 04 and a larger batch size of 72.

Table 10 provides the general hyperparameters that were consistent across all experiments, ensuring
a fair comparison between different configurations. These settings were designed to optimize the
fine-tuning process for the Llama-3-8B model while maintaining computational efficiency.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 9: LoRA Configurations with Different Ranks, Learning Rates, and Batch Sizes.
LoRA Config Learning Rate (lr) Batch Size
r=1024 1.00e-06 8
r=512 1.00e-06 16
r=256 1.00e-05 32
r=128 5.00e-05 72
r=32 1.00e-04 72

Table 10: General Hyperparameters Used Across All Experiments.
Hyperparameter Value
Optimizer AdamW
Weight Decay 0
Base Model Llama-3-8B
Warm Up 100 steps
Target Modules q proj, k proj, v proj, up proj, down proj
Evaluation Steps Every 80 steps

A.4 TRAINING COST

The computational cost for training on the commonsense reasoning task requires 14 GPU hours
over 3 epochs on Nvidia-A100 80G GPU on Llama-3-8B, while the CONVAI2 task requires 9 GPU
hours for a single epoch under the HiRA (r = 32) on Nvidia-A100 80G on Llama-3-8B.

A.5 STATISTICS OF COMMONSENSE REASONING DATASET

As illustrated in Table 11, the training set comprises a mix of eight sub-tasks totalling 170, 300
entries, while the validation set contains a random selection of 120 entries. The test dataset also
covers these eight sub-tasks and is evaluated using a single trained model.

Table 11: The detailed statistics of commonsense reasoning datasets.
Dataset Data Number Type

Train 170,300 Mixed
Validation 120 Mixed

Test
BoolQ 3,270 Yes/No
PIQA 1,830 Option
SIQA 1,954 Option
HellaSwag 10,042 Option
WinoGrande 1,267 Option
ARC-e 2,376 Option
ARC-c 1,172 Option
OBQA 500 Option

A.6 GPU MEMORY CONSUMPTION AND RUNNING TIME ANALYSIS

This section presents a comparative analysis of GPU memory consumption and running time be-
tween the LoRA method and the proposed HiRA configurations under similar settings of trainable
parameters. The experiments were conducted using the LLaMA-3-8B model.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 12: Comparison of GPU Memory Consumption and Running Time
Configuration GRAM (GB) Training Hours
LoRA (r = 32) 65.48 15 hours 0 minutes 56 seconds

HiRA (r = 32) 61.49 14 hours 09 minutes 32 seconds

EXPERIMENTAL SETUP

• Model: LLaMA-3-8B
• Batch Size: 72
• Epochs: 3
• Data Size: 170k entries
• LoRA Rank: 32
• HiRA Rank: 32

B PROOF OF HIRA’S EXPRESSIVE POWER

In this section, we give the details proof of the expressive power of HiRA in comparison to LoRA.
We begin by introducing the Eckart-Young-Mirsky Theorem (Eckart & Young, 1936), which pro-
vides the optimal low-rank approximation of a matrix. We will refer to this theorem as Lemma 1.
Lemma 1. (Eckart-Young-Mirsky Theorem) The best rank-r approximation of a matrix W in the
spectral norm is given by the (r + 1)-th largest singular value, i.e.,

min
Ŵ :Rank(Ŵ)<r

∥∥∥W − Ŵ
∥∥∥
2
= σr+1(W).

According to Theorem 5.5.1 in (Horn & Johnson, 1994), we have the following Lemma 2.
Lemma 2. For matrices A and B, the Hadamard product satisfies ∥A⊙B∥2 ≤ ∥A∥2 ∥B∥2.

Theorem 1. (The Expressive Power of HiRA) Consider the optimal parameter update E and the
HiRA update with the form W0 ⊙Whi, where the rank of Whi is less than r. Then we have

min
Whi:Rank(Whi)<r

∥∥W0 ⊙Whi − E
∥∥
2
≤ σr+1(E ⊘W0) ∥W0∥2 ,

where ⊘ denotes the element-wise division.

Proof. The proof proceeds as follows

min
Whi

∥∥W0 ⊙Whi − E
∥∥
2
= min

Whi

∥∥W0 ⊙ (Whi − E ⊘W0)
∥∥
2

≤ min
Whi

∥W0∥2
∥∥(Whi − E ⊘W0)

∥∥
2

= σr+1(E ⊘W0) ∥W0∥2 .
In this analysis, we assume that W0 contains no zeros and use ⊘ to denote the element-wise division.
The optimization objective minWhi

∥∥W0 ⊙ (Whi − E ⊘W0)
∥∥
2

is equivalent to the weighted low-
rank approximation problem, which is NP-hard (Srebro & Jaakkola, 2003). As a result, we can
analyze it by applying the upper bound provided by Lemma 2. This indicate that HiRA’s expressive
power is linked to the singular value of E ⊘W0.

Notably, HiRA can exhibit greater expressive power than LoRA, particularly since the updated
weights correspond to the original weights. For instance, consider the following matrices

E =

[
2 1
1 2

]
, W =

[
4 2
1 2

]
, E ⊘W =

[
0.5 0.5
1 1

]
.

In this toy example, we find that σr+1(E ⊘W) = 0, while σr+1(E) = 1. Thus we have σr+1(E ⊘
W) ∥W∥2 < σr+1(E).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C COMPARISON OF EFFECTIVE RANK WITH DIFFERENT METHODS

We conducted additional experiments to analyze the effective rank (Roy & Vetterli, 2007) of differ-
ent fine-tuning methods, as presented in Figure 8. Unlike simply calculating the rank or counting the

0 10 20 30
Model Layer (r=32)

0

1000

2000

3000

Wq

0 10 20 30
Model Layer (r=32)

0

200

400

600

800

1000
Wk

0 10 20 30
Model Layer (r=32)

0

200

400

600

800

1000
Wv

0 10 20 30
Model Layer (r=32)

0

1000

2000

3000

4000
Wup

0 10 20 30
Model Layer (r=32)

0

1000

2000

3000

4000
Wdown

FFT
LoRA r=32
LoRA r=128
LoRA r=512
MoRA
HiRA

Figure 8: Effective rank across layers for FFT, LoRA, MoRA, and HiRA.

number of singular values above a given threshold, the effective rank accounts for the full singular
value spectrum. For a matrix A of size M ×N with K = min{M,N}, the effective rank is defined
as follows:

erank(A) = exp

(
−

Q∑
k=1

pk log pk

)
, pk =

σk

∥σ∥1
,

where σk denotes the k-th largest singular value and ∥ · ∥1 is the l1-norm of the singular values.

From the results, we can observe that the update matrix obtained by FFT achieves the highest ef-
fective rank. For the query component, MoRA shows behavior closer to FFT, while for the value
component—and especially for the projection layer (up and down components)—HiRA exhibits
better. Conversely, even LoRA with rank=512 offers a relatively lower effective rank. This analysis
follows a similar approach to that in (Shuttleworth et al., 2024).

D EVALUATION ON TRANSFER LEARNING TASKS

We trained HiRA and LoRA separately on eight commonsense reasoning tasks and evaluated their
performance on these tasks. As shown in the Figure 9, HiRA demonstrates strong transferability
across tasks, achieving high scores on related tasks. This indicates its ability to generalize effectively
beyond the specific task it was trained on.

(a) (b)

Figure 9: Transferability analysis for (a) LoRA and (b) HiRA. Each row represents the performance
of a fine-tuned model trained on a specific task dataset when evaluated across eight different tasks.

In comparison, LoRA exhibits more pronounced overfitting. While it performs well on its training
task (e.g., boolq-lora scores 71.44 on boolq), its performance drops significantly on other tasks. In
contrast, HiRA maintains respectable transferability, as seen with arce-hira, which achieves 64.23
on siqa, 70.20 on obqa, and 58.56 on winog, outperforming LoRA in these cases. HiRA also excels

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

at harder tasks requiring more complex reasoning, such as HellaSwag (hellas) and WinoGrande
(winog). On the other hand, LoRA performs relatively better on simpler tasks like BoolQ and
PIQA, but its overfitting tendency causes significant drops in performance on unrelated tasks.

In summary, HiRA shows superior generalization and is less prone to overfitting compared to LoRA.
Evaluating HiRA on transfer learning tasks could further validate its robustness and adaptability.

E IMPACT OF MORE CHOICES OF R

E.1 REDUCING THE RANK OF R

To validate the correlation between the rank of ∆W and expressiveness, we conducted an addi-
tional experiment by reducing the rank of R on LLaMA-3-8B across commonsense reasoning tasks.
Specifically, R is derived from W0, the pretrained weight matrix, using SVD decomposition. We
retained only the top-v singular values and the corresponding singular vectors to form a reduced-
rank version, W0[:v]

. The results, presented in Table 13, show that increasing the rank of R generally
improves the performance across tasks.

Table 13: Performance comparison between R with different ranks based on W0.
Model Rank BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

R = W0,[:32] 32 73.67 88.63 80.04 80.97 93.18 86.00 94.31 86.58 85.42
R = W0,[:128] 128 74.16 89.23 82.04 80.89 93.10 87.20 95.11 87.45 86.15
R = W0,[:512] 512 74.34 89.88 81.99 82.25 93.86 88.20 95.38 87.61 86.69
R = W0 (Ours) 2852 75.40 89.70 81.15 82.90 93.27 88.32 95.36 87.70 86.72

E.2 USING W0’S IN ADJACENT LAYERS AS R

We experimented with a smoothed version of W0 by incorporating information from adjacent layers.
Specifically, the smoothed W0 (R = Wsmooth) was computed as the average of the upper, current,
and lower layers for the same transformer component. The results, summarized in the Table 14,
show that the smoothed W0 achieves an average score of 83.71, slightly lower than the original
W0, which achieves 86.72. While smoothing provides competitive performance, the original W0

retains a clear advantage, likely due to its direct alignment with the pretrained weights, preserving
task-specific expressiveness and parameter efficiency.

Table 14: Performance comparison between smoothed W0 and W0 used as R.
Model BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

R = Wsmooth 72.02 83.84 79.84 81.23 90.24 85.60 92.07 84.85 83.71
R = W0 (Ours) 75.40 89.70 81.15 82.90 93.27 88.32 95.36 87.70 86.72

F EXPERIMENTAL EVIDENCE ON HIRA’S EXPRESSIVE POWER

Theorem 1 establishes an upper bound on the approximation error of HiRA, which is proportional to
σr+1(E ⊘W0), in contrast to the σr+1(E) in LoRA. In this section, we use experimental evidence
to prove the advantages of σr+1(E ⊘W0).

Since the optimal update matrix E comes from a complex distribution and is not predetermined,
directly proving this inequality is challenging. We approximate the optimal update matrix E through
the update matrix of full fine-tuning (FFT), denoted by Ẽ, such that:

E ≈ Ẽ = ∆W = Wfft −W0,

where Wfft denotes the weights of the fully fine-tuned models.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Directly comparing the singular values of Ẽ ⊘W0 and Ẽ may be influenced by the norm of W0. To
mitigate this, we compute the normalized singular values for comparison. Additionally, we analyze
the effective rank as described in Appendix C to provide further insights.

The singular values of Ẽ ⊘ W0 exhibit a faster rate of decline compared to those of Ẽ, as demon-
strated in Figure 10. This comparison uses normalized singular values to account for the influence
of W0’s scaling. Furthermore, Figure 11 demonstrates that the effective rank of Ẽ ⊘W0 is lower

0 1000 2000 3000 4000
Model Layer (r=32)

0.0

0.1

0.2

0.3

0.4
Wq

0 200 400 600 800 1000
Model Layer (r=32)

0.0

0.2

0.4

0.6

Wk

0 200 400 600 800 1000
Model Layer (r=32)

0.0

0.1

0.2

0.3

0.4

0.5
Wv

0 1000 2000 3000 4000
Model Layer (r=32)

0.00

0.05

0.10

0.15

0.20

Wup

0 1000 2000 3000 4000
Model Layer (r=32)

0.00

0.05

0.10

0.15

0.20
Wdown

E
E W0

Figure 10: Normalized singular values of layers for Ẽ and Ẽ ⊘W0.

0 10 20 30
Model Layer (r=32)

500

1000

1500

2000

2500

3000

Wq

0 10 20 30
Model Layer (r=32)

200

400

600

800

1000
Wk

0 10 20 30
Model Layer (r=32)

200

400

600

800

1000
Wv

0 10 20 30
Model Layer (r=32)

1000

1500

2000

2500

3000

3500

4000
Wup

0 10 20 30
Model Layer (r=32)

1000

1500

2000

2500

3000

3500

4000
Wdown

E
E W0

Figure 11: Effective rank across layers for Ẽ and Ẽ ⊘W0.

than that of Ẽ. Those findings indicate that Ẽ ⊘W0 aligns more effectively with low-rank approx-
imations compared to Ẽ, supporting the conclusion that HiRA can leverage the Hadamard product
to fully utilize the knowledge embedded in the full-rank W0.

20

	Introduction
	Related Works
	Motivations
	Methodology
	Rank Analysis
	Enhancing the Rank via Hadamard Product
	Formulation
	Efficient Model Adaptation for Inference
	Relations with Intrinsic Dimensionality
	The Expressive Power of HiRA
	Gradient Analysis

	Experiment
	Datasets
	Experimental Settings
	Results on Commonsense Reasoning Tasks
	Results on Conversational Task
	Results on Mathematical Reasoning Tasks

	Ablation Studies
	Singular Value Analysis of Full Fine-Tuning, LoRA and HiRA
	Impact of r on Model Performance
	Impact of Different Choices of R
	Rank Analysis
	Analysis on Placement of HiRA in Transformers
	Combination with LoRA

	Conclusion
	Training Details
	Training Hyperparameters
	Statistics of the CONVAI2 Dataset
	Experimental Settings for LoRA with Different Ranks
	Training Cost
	Statistics of Commonsense Reasoning Dataset
	GPU Memory Consumption and Running Time Analysis

	Proof of HiRA's Expressive Power
	Comparison of Effective Rank with Different Methods
	Evaluation on Transfer Learning Tasks
	Impact of More Choices of R
	Reducing the Rank of R
	Using W0's in Adjacent Layers as R

	Experimental Evidence on HiRA's Expressive Power

