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Abstract—Convolutional Neural Networks (CNN), particularly
low latency models such as MobileNets have excelled in many
applications, including object detection in images, speech recog-
nition and natural language processing, but they are vulnerable
to subtle perturbations that are virtually imperceptible to the
human eye yet can deceive the network into misclassifying images.
To enhance the robustness of such CNNs against adversaries,
conventional adversarial training methods treat all data points
as equally important and susceptible to attack.

A weighted adversarial learning algorithm is developed in a
Stackelberg game framework. This approach prioritizes data
points that are more susceptible to attacks during network
training. To further optimize the algorithm, we employ a Rein-
forcement Learning (RL) agent to fine-tune the hyperparameters
of the model, thereby increasing its robustness. Our findings
indicate an increased robustness of 66.18% of the Weighted
Adversary Reinforced Stackelberg Learning (WARS) against
the traditional adversarial training of 64.72% in a one epoch
training, using the CIFAR-10 dataset. We conclude that the
WARS represents a valuable adversarial training method for
bolstering the robustness of low latency CNN models.

Index Terms—convolution neural networks, game theory,
Stackelberg games, adversarial training

I. INTRODUCTION

Pre-trained Convolutional Neural Networks (CNNs) classi-
fiers exhibit high accuracy on natural datasets but are vul-
nerable to adversarial attacks. These attacks induce misclas-
sifications by introducing noise to the natural datasets. The
perturbations added to the datasets are imperceptible to the
human eye yet sufficient to deceive the classifier, effectively
compromising their reliability in real-world applications such
as on medical devices, smartphones and other edge devices
where data can be easily manipulated [1].

MobileNets, characterized by compact and shallow archi-
tectures compared to larger CNNs exhibit reduced capacity

to capture intricate details rendering them more susceptible to
adversarial attacks. The increasing importance and complexity
of mobile networks make MobileNets appealing targets for
cyber adversaries. Adversarial attacks pose a significant threat,
particularly on CNN embedded vision applications and mobile
devices. Attackers manipulate visual data subtly, introducing
perturbations that can lead to incorrect classifications or com-
promise of the MobileNets [2], [3].

Adversarial Training has emerged as a promising approach
to fortify CNNs against these adversarial attacks [4]–[7]. It
involves training the models on perturbed data to enhance
their robustness [8]–[11]. Standard Adversarial Training (AT)
method involves computing an unweighted average of losses
across all training data points, treating all adversarial examples
equally during training [12]–[16]. However, this approach
assumes that adversaries lack incentives or preferences to
selectively target specific data points. In reality, attackers
may strategically focus on data points that could lead to
catastrophic outcomes, even if the classifier exhibited high
overall accuracy. Such targeted attacks highlight the logical
significance of considering the cost-effectiveness and impact
of attacks, urging the incorporation of importance weights
during training for better defence.

The sequential interaction between defenders and adver-
saries can be framed as a Stackelberg game to optimize
the defender’s performance [17]. In contrast to simultaneous
games for adversarial training, sequential games involve first
the leader’s commitment to a strategy, then a data distribution
transformation by the attacker after observing the leaders
strategy and finally the defender’s selection of a robust model
[3], [18]–[21]. Perturbing natural data during the data transfor-
mation stage aims at maximizing classification loss [22]–[26],
which highights the significance of implementing a weighted
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adversarial training algorithm to capture the transformed ad-
versarial sample. In our study, we introduce a reinforced
weighted adversarial training, conceptualized as a Stackel-
berg game, to model the interaction between the defender
and an adversary. This approach aims to achieve a robust
MobileNet CNN. Our approach prioritizes vulnerable data
points during adversarial training to minimize classification
loss. The Stackelberg game solution yields an optimal pure
strategy model with learning parameters that enhance model
generalization across perturbation and distribution attacks. The
major contributions of this work is listed as follows:

• We improved the accuracy of a Mobilenet CNN model by
incorporating an effective yet simple weighting algorithm
to traditional adversarial training methods.

• We optimized the model using a reinforcement learning
algorithm that learns optimal hyper tuning parameters to
increase the robustness of the model [27]–[29].

• We showed that a Stackelberg equilibrium strategy is
beneficial for a learner faced with an adversary in a
sequential game interaction.

II. LITERATURE REVIEW

MobileNets are unique for their efficiency in mobile and
edge devices primarily due to their depthwise seperable con-
volutions, which reduces computation in the first few layers
[30]. However, studies have revealed that MobileNets are
prone to adversarial attacks that can significantly impair their
performance in image classification tasks. Even slight pertur-
bations on images can cause substantial declines in classi-
fication accuracy [31]–[34]. To counter these vulnerabilities,
adversarial training methods have been proposed, aiming to
bolster the resilience of deep neural networks against such
attacks. Adversarial training methods were initially proposed
to enhance the resilience of deep neural networks against
adversarial attacks. Over time, this approach has proven to be
highly adaptable, finding applications in various domains of
machine learning. The core idea revolves around the genera-
tion of adversarial examples during the training process, which
forces the model to adjust and refine its decision boundaries.
Prominent methodologies utilised include the Fast Gradient
Sign Method [35] , Projected Gradient Descent (PGD) [36]
and adversarial training employing generative models [37].

Research indicates that models trained with single-step
adversarial training methods may overfit, reducing their ef-
fectiveness against adversaries. However, integrating dropout
scheduling into single-step adversarial training can result in
more robust models. A hyperparameter introduced to control
overfitting enables these models to defend not only against
single-step but also multi-step attacks [38]. For instance,
Feature-Level Adversarial Training (FLAT) is designed to
ensure consistent predictions for both original and adversarial
example pairs, and utilizing variational word masks further
guides the model to focus on datapoints that enhances accuracy
and robustness against adversarial attacks [39]–[42].

Numerous studies have also modelled adversarial training
as a simultaneous game between a classifier and an adversary.

In such games, the adversary perturbs data using point-wise
perturbations to transform the training data, with the goal
of increasing misclassification errors for the classifier while
avoiding detection [43]–[46]. The problem is formulated as
a worst-case min-max game, where both the classifier and
the adversary aim to minimize the adversarial loss. Strong
perturbation attacks are achieved through Projected Gradient
Descent (PGD) to train robust learning models in a single-
step min-max interaction [47]. Additionally, results from PGD-
based attacks can be emulated using Fast Gradient Sign
Method (FGSM) by reducing the curvature along the per-
turbed direction projected by FGSM. This is accomplished
by regularizing the curvature of the attack and restraining
the projection to align with those generated by PGD attacks.
An introduced hyperparameter controls the curvature along
the attack direction and regularizes the model [48]. A game
theory framework proposed by Ambar et al. explores attacks
and defenses, leading to equilibrium in a simultaneous game
setting [2], [8], [43], [49]–[51].

In the context of adversarial attacks on reinforcement
learning algorithms, these attacks are presented as generated
noises that result in the misclassification of the learning
algorithm [48], [52]–[54]. Rajeswaran et al. investigate an
ensemble of models for robust reinforcement learning, com-
bining deep neural networks with reinforcement learning to
create a robust agent. The interaction between the adver-
sary and the reinforcement learning agent is akin to a min-
max game theory formulation [55]. Adversarial training in
reinforcement learning enhances robustness against attacks
that mislead the reinforcement learning agent into believing
it is in a worst-performing trajectory state, leading to sub-
optimal actions [56]–[59]. While adversarial training based on
a min-max formulation is often overly pessimistic and may
not generalize well over test distributions, a more practical
approach involves sequential interactions between classifiers
and adversaries. In this scenario, the defender initially selects
a model while knowing the existence of an optimal adversary.
The adversary then chooses a strategy while considering the
defender’s choice [17]. This hierarchical nature of Stackelberg
games provides the defender with a first-mover advantage,
constraining the adversary’s choices to optimize their own
payoff. For example, a game can be modelled as an op-
timization problem between a data generator and a learner
within a Stackelberg game framework [60], [61]. Gao et al.
demonstrated the existence of Stackelberg equilibrium that
converge to an optimal robust classifier in interactions between
Deep Neural Networks (DNNs) and adversaries. Adversaries
not only focus on perturbing data but can also manipulate the
dataset distribution to maximize classification errors during
test time. Traditional adversarial defense mechanisms train
models on a uniform training data distribution, which may
not generalize well to unseen adversarial data distributions at
test time. The Adversarial Risk Importance method is effective
in generalizing well under both uniform and non-uniform
attacks [62]. Furthermore, Distributionally Robust Optimiza-
tion (DRO) has been combined with adversarial training to



produce more robust models [63]–[67]. The goal of adversarial
training is to reduce classification loss during test time, which
necessitates a hierarchical interaction occurring sequentially
between classifiers and adversaries.

Combining both Stackelberg game and weighted adversarial
learning methods provides an effective defense mechanism
that generalizes well across test distributions for a defender.
While several works have independently explored game theory
frameworks, reinforcement learning and distribution-based ro-
bust optimization, this paper introduces a novel approach by
combining both Stackelberg games and reinforced weighted
adversarial training. The objective is to obtain a classifier that
effectively generalizes to both perturbation and targeted attacks
particularly those deployed against mobile and edge devices.

III. SYSTEM MODELLING AND ANALYSIS

A. Preliminaries

We have a training set of n pairs (xi, yi)
N
i=1∈ X × Y

drawn independently and identically (iid) from a distribution
D. Here xi represents the CIFAR-10 data examples and yi
denotes the corresponding labels. Our primary goal is to
develop a robust MobileNet classifier model parameterized by
θ that effectively maps the input space to the output space,
denoted as fθ: X −→ Y while minimizing a loss function
l(x, y; θ) on adversarial data x

′
. In this context, we introduce

the L∞ norm metric d(x, x
′
) on X and a boundary ball

Bϵ(x) = {x′
: d(x, xi) ≤ ϵ} around x, an adversary’s goal

is to perturb the data examples xi to x
′

i within a defined
budget ϵ > 0 with the aim of maximizing the adversarial loss
l(fθ(x

′

i ), yi) during the training process.

B. Stackelberg game

Consider a sequential 2-player non-zero sum Stackelberg
game G= (SL, SF , u) where Sl and Sf are strategy spaces
for the classifier leader and adversary follower of game and
u : SL × SF −→ R is the payoff function. The leader has a
set of strategies sl ∈ SL and the followers set of strategies is
given by sf ∈ SF . For a Stackelberg equilibrium there exist a
rational best response mapping function f : SL −→ SF such
that u2 (sl, f (sl)) ≥ u2 (sl, sf ) ∀sl ∈ SL , sf ∈ SF .

The leader makes the first move by selecting a strategy
sl ∈ SL to minimize the u1, knowing the existence of
a follower. After knowing sl, the follower picks sf2 ∈
SF to maximize their own payoff u2 where sf2 = f (sl) .
Hence, the Stackelberg equilibrium strategies (s∗l , s

∗
f ) pair

for leader and follower is s∗l ∈ argminsl∈SL
u1( sl, sf2)

and s∗f ∈ argmaxsl∈SL
u2 ( s

∗
l , sf ) respectively such that

u2 (s
∗
l , f(s

∗
l )) ≤ u2 (sl , sf2). This gives the leader an ad-

vantage that imposes a solution favorable for himself while
optimizing against the follower’s anticipated strategy sf2.

Proposition 3.1 A Stackelberg equilibrium strategy exists
with the defender as the leader and adversary the follower if
SL and SF are compact sets and UL and UF are continuous
on SL × SF .

Proof. Since the rational adversarial response strategy
(sl, f(sl)) is a subset of the compact set SL×SF we only need

to show that set of adversarial responses is closed. If (s0l , s
0
f ) is

the closure of Ωf and (snl , s
n
f ) are sequence of points converg-

ing to (s0l , s
0
f ) in Ωf . We show that Ωf is closed and (s0l , s

0
f ),

a point on the boundary, is contained in Ωf . If (s0l , s
0
f ) /∈ Ωf

then ∃(s0l , s∗f ) ∈ Ωf such that Uf (s
0
l , s

∗
f ) > Uf (s

0
l , s

0
f ). Let

Uf (s
0
l , s

∗
f ) − Uf (s

0
l , s

0
f ) = β. since UF is continuous on

SL × SF and (sn0l , sn∗f ) → (s0l , s
∗
f ) then ∃ δ1 > 0 such that

|Uf (s
n0
l , sn∗f )− U

f
(s0l , s

∗
f )| <

β
3 . Similarly, as (sn0l , sn∗f ) →

(s0l , s
∗
f ) ∃ δ2 > 0 such that |Uf (s

n0
l , sn0f )− U

f
(s0l , s

0
f )| <

β
3

and |Uf (s
n0
l , sn0f )− U

f
(s0l , s

0
f )| <

β
3 , ∀(sl, sf ) ∈ SL × SF .

Therefore, we have
|Uf (s

n0
l , sn0f )− U

f
(s0l , s

0
f )| < β

3 = Uf (s
n0
l , sn0f ) <

Uf (s
0
l , s

0
f ) +

β
3

Uf (s
n0
l , sn0f ) < Uf (s

0
l , s

∗
f ) − β + β

3 = Uf (s
n0
l , sn0f ) <

Uf (s
0
l , s

∗
f )−

2β
3

= Uf (s
n0
l , sn0f ) < Uf (s

n0
l , s∗f )−

β

3

= Uf (s
n0
l , sn0f ) < Uf (s

n0
l , s∗f )

This contradicts the fact that Uf (s
n0
l , sn0f ) is a sequence in

UF , therefore (sn0l , sn0f ) ∈ UF and UF is closed.

C. Adversarial Training as a Stackelberg game

Traditional methods of adversarial training [68] aims to
solve a minimax problem between a classifier and attacker by
minimizing the loss on the input perturbations. The solution
converges to an equilibrium such that for a given dataset S =
{(xi, yi)}ni=1, the model fθ minimizes the expectation of
adversarial loss function as shown

min
θ

1

n

n∑
i=1

{
max

x
′
i∈Bϵ[xi]

l(fθ(x
′

i), yi)

}
(1)

The model adjust its parameters θ to the adversarial perturba-
tions by treating all generated adversarial samples x

′
equally

when estimating the adversarial loss at test time. The classifier
strategy sl ∈ SL is a parameter θ that gives minimum training
loss l on a training set (xi, yi)

N
i=1. The strategy minimizes the

payoff empirical risk on the dataset, as shown below:

sl = min
θ

L(θ) = min
θ

1

n

n∑
i=1

(l(fθ(xi), yi)) (2)

The payoff function uF : SL × SF−→ R of the follower is
the adversarial loss derived during attack at test time. After
observing the classifier fθ the adversary chooses a strategy
sf ∈ Sf that maximally perturbs the original data. To achieve
the attack, the optimal strategy sf = {x

′
: x + δ} is the best

response to θ and maximizes the loss L in equation below. The
maximum perturbation δ is derived using projected gradient
descent (PGD) algorithm in the l∞ norm ball. The payoff
function L of the adversary selecting sf is given as

uF= L
′
(θ) =

n∑
i=1

max
x
′
i∈Bϵ(x,δ)

(
l(fθ(x

′

i), yi)
)

(3)



s.t Bϵ(x, δ) = {δ : d(x, x
′
) ≤ ϵ}

The adversary selects a best response sf that guarantees
a high payoff . The solution to (3) obtains a perturbation δ
which also maximizes L′

(θ).
In other words, the adversary searches for a strategy sf

obtained using (PGD) that maximizes the adversary’s payoff
while observing the classifier’s strategy sl.

On the other hand, the best response for the leader is
calculated by considering the adversary’s strategy sf = {x

′
:

x+δ} as a function of the classifier’s payoff L(θ). The leaders
Stackelberg strategy s∗l is consequently denoted as

s∗l = min
θ

L
′
(xi

′
) = min

θ
max

x
′
i∈Bϵ(x,δ)

(
l(fθ(x

′

i), yi)
)

(4)

D. Defining the Weighing Parameter ci

Learning the model parameters requires estimating the loss
imposed by potential adversaries. The losses which differ from
natural data are derived from adversarial samples generated
by adversarial perturbations added to the original samples.
The derivative of the summation of individual losses from
xi

′
in a training batch updates the parameter of the model.

To maximise the loss in the inner loop, strong xi
′
, that

is adversarial samples that guarantee high losses, are more
represented, weaker xi

′
are less represented and xi

′
that do

not misclassify yi at all are least represented in the adversarial
distribution . The loss in fact, guides the model into ultimately
learning the parameter of the model to accurately predict
the on the adversarial samples. Afterall, the essence of an
adversarial attack is to generate the maximum possible loss
and adversarial samples do not contribute equally to the overall
loss of the distribution D′.

L′ = E(X,Y )∼D,X′∈Bϵ[X,ϵ] (l(f(X
′), Y )) (5)

A priority attacker selects a strategy sf ∈ Sf that not only
perturbs the data but also ensures a maximum adversarial
payoff loss L′. Not all adversarial samples result in incorrect
predictions with PGD attack; therefore, a priority attacker
modifies the data distribution D such that the effective ad-
versarial samples that confidently mislead the model fθ into
generating outputs different from y are more represented.

For the model to be aware of the underlying distribution
of strong adversary samples and generalize effectively over
benign adversarial data, we introduce a the weighting mecha-
nism that prioritizes adversary data x

′

i during training. Stronger
adversarial examples, those that result in misclassifications i.e.,
f (xi) = z such that z ̸= yi label yi with a higher margin
are assigned greater weight, while the weaker adversarial ex-
amples are given lower weight. The strength of an adversarial
sample is determined by its classification margin which is the
difference between the probabilities of the wrongly predicted
label and the correct label. A larger difference indicates a
stronger adversarial sample and vice versa. We define the
weight ci > 0 as a function of the classification margin m
of the adversarial sample hence we have:

m(x, y, f) = max
z ̸=y

P (f(x) = z)− P (f(x) = y) (6)

L
′
(xi

′
) =

n∑
i=1

max
x
′
i∈Bϵ(x,δ)

cil(fθ(x
′

i), yi) (7)

=

n∑
i=1

max
x
′
i∈Bϵ(x,δ)

eφm(x
′
i,y,f) l(fθ(x

′

i), yi) (8)

Give that ci = eφm(x
′
i,y,f) and φ > 0 is a hypertuning

parameter
The Stackelberg equilibrium strategy s∗l for the leader now

becomes

s∗l = min
θ∈H

max
x
′
i∈Bϵ(x,δ)

eφm(x
′
i,y,f)l(fθ(x

′

i), yi) (9)

E. Weighted Adversarial Reinforced Training

Adversarial training involves the exploration of hyperpa-
rameters to achieve an optimized model. Once a hyperpa-
rameter configuration is established, it remains unchanged
until the completion of the entire training epoch, resulting
in the acquisition of a robust model. We propose an al-
ternative approach, wherein instead of adhering to a single
hyperparameter throughout all epochs, we dynamically adjust
the hyperparameter during training. This adaptation process
aims to yield a better-optimized model for the defender by
end of the training. In pursuit of hyperparameter optimization,
the defender employs the SARSA (State-Action-Reward-State-
Action) algorithm. Specifically, the objective is to learn the
hyperparameter denoted as φ with the intention of enhancing
the accuracy of the selected strategy within a single training
epoch. Indeed, the retraining is at the cost of additional overall
epochs until an optimal accuracy is reached [51], [58], [69].
A Q-value function Q(s∗l , φ) is estimated using a Stackelberg
equilibrium strategy-state s∗l and an action φ from a previous
φ

′
. The defender takes and action φ and observes the next

strategy state s∗
′

l and reward r. The reward r ensures that the
accuracy of current state is higher than the previous one, the
Q-value estimate uses the following update rule:

Q(s∗l , φ) = Q(s∗l , φ)+ ∝ (r+ γQ(s∗
′

l , φ
′
)−Q(s∗l , φ)) (10)

where ∝ and γ is the learning rate and discount factor of the
reinforcement learning process.

IV. EXPERIMENT

We conducted experiments using the Weighted Adversary
Stackelberg (WAS) Training model and fine-tuned its perfor-
mance with a Reinforcement Learning (RL) algorithm on a
pretrained MobileNet [70], resulting in the Weighted Adversar-
ial Reinforced Stackelberg (WARS) model. In our experiment,
we employed an adversarial attacker to perturb the CIFAR-10
dataset using the PGD attack. We varied the attack’s strength
by adjusting the parameter k. The perturbed dataset was used
to assess the accuracy and robustness of the WAS MobileNet.

We evaluated the adversarial robustness of our WARS
model on the CIFAR-10 dataset, benchmarking it against
traditional adversarial training methods under PGD attacks.



Algorithm 1. Weighted Adversarial Reinforced Stackelberg training
Inputs: Pre-trained MobileNet fθ ,dataset {xi}Ni=1,
batch size, k, epsilon, alpha learning rate;
Output: Robust MobileNet;
Observe the model and perturb dataset wrt to the model
for k do:

x
′
= Π

Bϵ(x
′
)
x+ αsign(∇xfθ(x

′
))

s∗l − Solve Weighted Adversarial Stackelberg game to minimize L′
(xi

′
)

for mini batches in {xi
′}Ni=1,:

for xi
′

in mini batches:

L′
(xi

′
) =eφm(x

′
i,y,f)l(fθ(x

′
i), yi)

θ = θ −∇θL
′
(xi

′
)

Initialize γ, α, λ, fθ(x
′
i)

while reward>0:

Set φ=
{
φ+ 1 if state = 0
φ− 1 if state = 1

θ = minθ∈H max
x
′
i∈Bϵ(x,δ)

eφm(x
′
i,y,f)l(fθ(x

′
i), yi)

evaluatefθ(x
′
i) accuracy

reward = current accuracy-previous accuracy

Q(s∗l , φ) = Q(s∗l , φ)+ ∝ (r + γQ(s∗
′

l , φ
′
)−Q(s∗l , φ))

return reward, φ, current accuracy

We applied the WARS algorithm to enhance 3 additional pre-
trained models: ResNet-56, shufflenetv2, and vgg13 bn [70]
, using different values of k, such as 7 and 20 to evaluate
the effectiveness of our algorithm. The results demonstrated
that our method consistently achieved higher test accuracy
compared to traditional adversarial training methods. We used
the concept of Natural accuracy An representing the accuracy
of the pre-trained model fθ on the natural CIFAR-10 dataset.
After subjecting the model to PGD attacks with varying k,
denoted as k-steps, the corresponding accuracy A

′

n of the pre-
trained model on the perturbed dataset x

′
consistently fell

below An, for all the values of k. After training, the resulting
WAS model becomes more robust than the initial pre-trained
fθ showing accuracy AR consistently greater than A

′

n but still
less than An. The WARS model fine-tunes the hyper-parameter
φ of the WAS to achieve an accuracy A∗

R equals to or greater
than AR, such that A

′

n < AR ≤ A∗
R .

The hyper-parameter φ was initially set to 0.7 in the
WAS model but improved by the WARS training process for
enhanced robustness. As shown in Fig.1, Fig.2, Fig.3 and Fig.4
we observe that in addition to the improved test accuracy, the
training loss reduced significantly in a single training epoch,
a contrast to traditional adversarial training, which does not
exhibit the same behaviour. It’s worth noting that the WARS
training resulted in a wider range of loss values compared to
AT training, and we attribute this to the distribution-aware
weight assigned to potential adversarial data points during
training, increasing the overall training loss of the model.

We illustrate how an attacker, observing the pre-trained
model fθ, employs PGD to perturb and launch an attack
against the target model. The extent of perturbation depends
on the selected value of k, subsequently reducing the accuracy
of the pre-trained models. In our Stackelberg game illustration,
the defender selects an equilibrium strategy by observing
the attack and choosing a WAS model parameter (through
retraining on the perturbed dataset) to minimize losses on the

Fig. 1. Epoch training loss for Adversarial Trained and WARS trained
mobilenetv2

Fig. 2. Epoch training loss for Adversarial Trained and WARS trained
shufflenetv2

perturbed dataset.
Weighted Adversarial Stackelberg Training leads to im-

proved accuracy compared to the original pre-trained model.
Further enhanced learning accuracy is achieved after retraining
with a hyper-parameter φ . For a moderate preset hyper-
parameter φ = 7 an overall increase in accuracy is observed
across all models. The WARS model further improves the
training hyper-parameter during retraining.

As seen in Table 1, a PGD attack with k=20 results in
stronger attack dataset, significantly reducing the accuracy of
all models. Attack steps with k=7 used by the attacker also
lead to decreased accuracy in the models. Larger k values
consistently decrease the overall accuracy of all models. For k
values consistently reduce the , the impact of the attack is more
pronounced in ResNet-56, with accuracy dropping to 10.23%
from the initial natural accuracy of 94.46%. The higher the K,



Fig. 3. Epoch training loss for Adversarial Trained and WARS trained
RestNet56

Fig. 4. Epoch training loss for Adversarial Trained and WARS trained vggh

TABLE I
WARS TRAINING FOR VARIOUS PGD STEPS FOR A RESNET-56 MODEL

ON CIFAR-10 DATASET.

Models An% k A
′
n% AR% φ A∗%

R

vgg13 bn 94.24 20 14.17 78.22 0.8 78.22
7 17.78 78.22 0.7 78.22

mobilenetv2 x1 4 93.88 20 7.21 74.91 0.8 79.1
7 10.66 78.11 0.9 80.01

shufflenetv2 x2 0 93.63 20 12.24 78.14 0.8 79.83
7 16.89 76.26 0.8 79.11

ResNet-56 94.46 20 6.81 79.83 0.8 81.23
7 10.23 79.33 1 80.45

Fig. 5. Accuracy for the different Adversarial Trained and WARS trained
CNN in a single Epoch

TABLE II
EPOCH ACCURACY OF THE WAS TRAINING FOR k=7 ON VARIOUS CNN

MODELS USING CIFAR-10 DATASET.

Models E=2 E=3 E=4 E=5 E=6 A∗
R%

vgg13 bn 79.46 78.29 78.68 77.32 78.42 78.22
mobilenetv2 78.56 77.73 77.96 77.57 78.68 79.12
Shufflenetv2 77.06 76.68 78.39 78.89 77.99 79.83
ResNet-56 79.52 80.18 79.99 79.92 80.19 81.23

the greater the image distortion, and even when the distortion
is imperceptible, the attack still significantly reduces the
model’s accuracy. After retraining, using distribution-aware
Stackelberg training, the accuracy improves to 60.67% , and
the WAS model fine-tunes it further to an accuracy of 65.67%
with a WARS φ of 1.0. The training involved 8 epochs
for the WARS training, with additional epochs based on
when the model reaches optimal accuracy. For the ResNet-56
model, default epoch training and adversarial accuracy reached
78.11%, and the WARS trained model optimized the accuracy
to 80.01% with a φ of 0.8.

From Table II, epoch accuracy for WAS training gradually
improves after each epoch from an initially low A

′

n of the orig-
inal model. The original pre-trained model exhibits reduced
accuracy after the attack, with MobileNet showing an AR of
10.66%, dropping to 78.11% at the final epoch after achieving
78.68% accuracy. However, the WARS model fine-tunes the
model back to an optimized accuracy of 80.01%. The ResNet-
56 model’s accuracy is optimized to 80.45% after reaching an
φ 1.0, up from a previous WAS accuracy of 79.33%, while
the vgg13 bn accuracy for both WAS and WARS training
remained 78.22% at the default φ of 0.7.

A. Discussion

In this research, we have developed a novel adversarial
training approach for MobileNet CNNs, conceptualizing it
as a dynamic interaction within a WAS game framework.



TABLE III
EPOCH ACCURACY OF THE WAS TRAINING FOR k=20 ON VARIOUS CNN

MODELS USING CIFAR-10 DATASET.

Models E=1 E=2 E=3 E=4 E=5 A∗
R%

vgg13 bn 77.33 77.53 77.75 77.79 78.22 78.22
mobilenetv2 76.73 77.23 77.98 79.35 75.92 80.01
Shufflenetv2 76.19 76.12 77.94 78.75 77.93 79.11
ResNet-56 78.86 76.58 80.2 78.52 77.73 80.45

By strategically emphasizing adversarial data points during
training, our methodology has substantially improved the
model’s accuracy. This is achieved by prioritizing adversarial
inputs that are more likely to cause misclassifications, thereby
training the MobileNet model to develop a bias that enhances
its resilience during adversarial attacks.

When comparing our WAS model to traditional AT methods,
we observe a notable superiority in terms of robustness under
adversarial conditions. Although the WAS model initially
shows a broader range of training losses compared to AT
models, it demonstrates a more rapid decrease in training loss
within a single epoch, particularly when applied to dataset like
CIFAR-10, tailored for MobileNet’s architecture.

Moreover, our research introduces the WARS training
methodology. This refined approach further strengthens the
MobileNet model’s resilience against adversarial attacks. Our
empirical findings, as detailed in the accompanying tables,
show consistent enhancements in the performance of Mo-
bileNet across various levels ofφ increments in the training
process. This iterative and strategic reinforcement leads to
a discernible improvement in accuracy with each successive
training epoch, underscoring the efficacy of the WARS ap-
proach in crafting a more robust MobileNet CNN.

V. CONCLUSION

In this paper, we have designed a novel adversarial train-
ing methodology, conceptualized as a Weighted Adversarial
Stackelberg game, specifically tailored for training a robust
MobileNet CNN. Our research demonstrates the effective-
ness of the Stackelberg equilibrium model in enhancing Mo-
bileNet’s resilience against adversarial attacks. We further
augment this model’s robustness by incorporating a SARSA
algorithm, which acts as a defensive mechanism, fine-tuning
the MobileNet architecture to counteract such attacks more
effectively, we also showed the effectiveness of our methods
on other CNN models.

Our approach in the Stackelberg game formulation centres
on assigning asymmetric weights that focus more on adver-
sarial data points during testing. This strategy significantly
reduces misclassification errors in MobileNet. We derive a
pure strategy model with optimized learning parameters by
solving the Stackelberg game. This outcome empowers the
MobileNet model to generalize more effectively and exhibit
increased robustness to targeted and perturbation attacks.
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