
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DS-LLM: LEVERAGING DYNAMICAL SYSTEMS TO
ENHANCE BOTH TRAINING AND INFERENCE OF
LARGE LANGUAGE MODELS.

Anonymous authors
Paper under double-blind review

ABSTRACT

The training of large language models (LLMs) faces critical computational cost
challenges, hindering their scaling toward AGI and broader adoption. With model
sizes doubling approximately every 3.4 months and training costs surging from
$64 million for GPT-4 in 2020 to $191 million for Gemini Ultra in 2023, the
economic strain is unsustainable. While optimizations like quantization provide
incremental improvements, they fail to address the fundamental bottleneck. In this
work, we propose DS-LLM, a novel framework leveraging dynamic system (DS)-
based machines, which exploit Natural Annealing to instantaneously converge to
minimum energy states, enabling orders-of-magnitude gains in efficiency. Un-
like traditional methods, DS-LLM maps LLM components to optimization prob-
lems solvable via Hamiltonian configurations and utilizes DS machines’ contin-
uous electric current flow for hardware-native gradient descent during training.
We mathematically demonstrate the equivalence between existing LLMs and DS-
LLMs and offer a viable approach to build a DS-LLM from a trained conventional
LLM. Evaluations using different sizes of models showcase a 1,238× speedup and
a 116,563× energy reduction on training, a 127× speedup and a 37,545× energy
reduction on inference, while maintaining consistent accuracy.

1 INTRODUCTION

Large language models are currently driving rapid advancements in AI, with their model sizes dou-
bling approximately every 3.4 months. This exponential growth demands unprecedented computa-
tional power for both training and inference. The cost of training an LLM from scratch has surged
from $64 million for GPT-4 in 2020 to $191 million for Gemini Ultra in 2023. Today, most cloud and
HPC resources are dedicated to LLMs, leading to significant societal and environmental cost and en-
ergy concerns. Meanwhile, Moore’s Law, the fundamental driver behind IT and AI development for
decades, is losing momentum, exacerbating the situation. While improving traditional computing
methods remains crucial, the need to pioneer new energy-efficient architectures—potentially sup-
ported by intelligence-carried designs—is becoming increasingly urgent to ensure the sustainable
and affordable scaling of AI models, particularly LLMs.

Some emerging candidates include quantum computing (Kerenidis et al., 2024), optical computing
(Anderson et al., 2024), and computing-in-memory (Tu et al., 2023), etc. These emerging systems
hold great potential but each faces distinct technical challenges and generally requires further devel-
opment. Is it feasible, in the near term, to rely on mature CMOS-based technology to train LLMs
as quickly as CNNs, by reducing training time from 10 million hours to 10,000 hours, meanwhile
cutting energy consumption from 20 terajoules to 200 megajoules?

Recently, Dynamical-System-based (DS) machines have emerged which incorporate an
electrodynamics-based model that naturally converges to the minimum energy state by following
the physical dynamics of electrons. By correctly setting the initial state, boundary conditions, and
final state, various problems can be embedded into this “Natural Annealing” process. Because no
external energy is theoretically required during such a process, DS machines are extremely energy
efficient and have already demonstrated remarkable potential in some real-world applications. For
example, solving complex optimization problems like MAX-CUT in (Hamerly et al., 2019), work-

1

28782
高亮

28782
文本框
A-Q1

28782
高亮

28782
文本框
D-Q5

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of DS-LLM.

ing on graph learning problems including traffic predictions in (Pan et al., 2023), air quality, taxi
demand, and pandemic progression in (Wu et al., 2024). DS machines are implemented through
CMOS-compatible analog processors that operate at room temperature. Previous work on graph
learning problems has shown over 1, 000× speedup and more than 100, 000× energy reduction,
while achieving even better accuracy compared to state-of-the-art (SOTA) Graph Neural Networks
(GNNs) on commercial GPUs.

Then, is it feasible to leverage DS machines to accelerate LLMs? Unfortunately, no existing work
provides a solution for mapping existing models like LLMs onto DS machines. The prior works
like (Wu et al., 2024) ignore the architecture of mature neural networks and directly fit the data
to the energy landscape of DS machine. For highly complex tasks like natural language processing
(NLP), the energy landscape of a DS model would be much more intricate to fit the data distribution.
Building and learning such an energy landscape could be extremely challenging-can we leverage
existing, well-researched LLMs to help guide this process? In other words, can we equivalently
perform neural networks like LLMs on DS machines using the powerful Natural Annealing process?

To this end, we propose the Dynamical System-based Large Language Model (DS-LLM), which
serves as an algorithmic framework to bridge LLMs and DS machines. DS-LLM constructs the
energy landscape of DS machines based on a reference LLM, enabling them to reproduce forward
outputs and harness the power of Natural Annealing for LLM inference. For training, we introduce
an Electric-Current-Loss based online training approach that allows LLM training on the same hard-
ware. This method directly leverages the rapidly evolving electric current in DS machines, which
naturally acts as gradients to continuously optimize parameters, thereby instantly shaping the en-
ergy landscape. The equivalence between DS-LLM and traditional LLMs, for both inference (Sec-
tion 3.2-3.3) and training (Section 3.4), is mathematically proven and empirically verified through
evaluation on models ranging from GPT2-124M to Llama2-7B. Experimental results showcase a
1,238× speedup and a 116,563× energy reduction on training, a 127× speedup and a 37,545×
energy reduction on inference, while maintaining consistent accuracy.

To our knowledge, this is the first work to harness the computing power of DS machines to accelerate
existing models, particularly LLMs. The main contributions of this work are summarized as follows:

• We propose DS-LLM, the first algorithm framework to bridge LLMs to existing DS machines,
unlocking the remarkable power of Natural Annealing to equivalently perform LLMs on DS ma-
chines with theoretical and empirical proof.

• We propose an online continuous training method to achieve rapidly backpropagation on DS
machines, significantly enhance the training speed and energy efficiency.

2 BACKGROUND AND PRELIMINARY KNOWLEDGE

2.1 DYNAMICAL-SYSTEM-BASED MACHINE

(1) Hamiltonian and Natural Annealing: Dynamical systems implicitly incorporate an energy-
based DS model and its energy function is called Hamiltonian, a fundamental concept in physics
to describe the total energy of a system. The Hamiltonian of the backbone DS machine (Wu et al.,
2024) is augmented from the Ising model which is a statistical physics model widely used in the

2

28782
高亮

28782
文本框
A-Q1

28782
高亮

28782
文本框
B-W3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

modeling of interacting spins. The Hamiltonian is as below:

H = −
N∑
i ̸=j

Jijσiσj +

N∑
i

hiσ
2
i , σi ∈ R (1)

where σ are system spins, J are coupling parameters representing the correlations among spins,
and h are spins’ self-reaction intensity to external influence. While retaining the strengths of the
Ising model, this new Hamiltonian lifts its binary constraint to support real values, achieving high
performance on graph learning problems.

The computing power of DS machines stems from the process of Natural Annealing, an inherent
characteristic of dynamical systems. In systems such as interacting spin models, the Hamiltonian
naturally decreases due to spin interactions. From a physics perspective, this occurs because spins
tend to settle into lower energy states, guiding the system toward optimal solutions. To harness
Natural Annealing, the parameters J and h are programmed based on the target problem, shaping
the Hamiltonian’s energy landscape to align the desired outcomes with its minimum states. As the
programmed DS machine initiates Natural Annealing from random initial conditions, the system
rapidly converges to an energy minimum, with the spin dynamics stabilizing at the target results.

(2) DS machine Hardware: Since programming interacting spins can be prohibitively expensive,
the backbone DS machine (Wu et al., 2024) is built on electronic dynamical systems, which are
implemented using current CMOS technology.

Figure 2: The backbone DS machine Hard-
ware.

As Fig. 2 shows, corresponding to equation 1, each
spin σi is implemented as a nano-scale capaci-
tor within a node unit (Ni), with its voltage rep-
resenting spin value. Each capacitor is coupled
with a programmable resistor, forming a feedback
loop within the node unit that serves as the self-
reaction parameters h. Capacitors from different
node units (Ni&Nj) are structurally connected by a
programmable resistor in coupling unit CUij to per-
form the coupling parameters J . Natural Anneal-
ing in this system is driven by voltage imbalances
across capacitors, which guide the natural movement
of electrons toward equilibrium, propelling the sys-
tem to evolve toward energy minima.

The convergence of the Natural Annealing, in other words, the spontaneous energy decrease of the
Hamiltonian with time (dH/dt ≤ 0) can be theoretically guaranteed by Lyapunov stability analysis
(Blaquiere, 2012). As Fig. 2 shows, for each spin σi, its electrodynamics behavior is designed as:

dσi

dt
=

N∑
i ̸=j

Jijσj − hiσi = −1

2

∂H
∂σi

(2)

Then, following the chain rule we have:

dH
dt

=
∑
i

∂H
∂σi

dσi

dt
= −1

2

∑
i

(
∂H
∂σi

)2 ≤ 0 (3)

As the equations show, the system’s electrodynamics inherently drive the Hamiltonian toward a local
minimum. To escape local minima and achieve better solutions, several techniques can be employed
such as spin-flipping and noise injection (Afoakwa et al., 2021).

2.2 LARGE LANGUAGE MODELS

In this paper, LLMs refer to pre-trained Transformer models with billions of parameters, such as
GPT, Llama, Gemini, and Claude, which are among the most popular models today. Since the
Transformer model was introduced in (Vaswani, 2017), it has been successfully developed and has
demonstrated impressive performance not only in natural language processing (NLP) tasks but also
in areas such as computer vision (Wang et al., 2023) and audio processing (Ghosal et al., 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

While modern LLMs are evolving toward multi-modal capabilities to handle tasks with mixed infor-
mation, this work focuses on the implementation of the classic Transformer model as an early-stage
exploration.

A classic Transformer consists of both an encoder and a decoder, whereas mainstream commercial
models like GPT are decoder-only. Despite this distinction, the key components of both encoder and
decoder are similar: multi-head self-attention, feed-forward Multilayer Perceptrons (MLPs), linear
projection layers, and layer normalization. In this work, we focus on the implementation of decoder-
based models, such as GPT-2 and OPT, with methods that can be adapted to other Transformer
variants.

While matrix multiplication remains a key computing demand in LLMs, like in CNNs, the bot-
tleneck of computing is the attention layer. Multi-head self-attention contributes to the impressive
performance of LLMs at the cost of extremely high computational requirements. Considering each
token xi as a row vector, the break down of multi-head self-attention of each head is:

qi = xiWQ, ki = xiWK , vi = xiWV (4)

f(qi, kj) = exp(
qik

T
j√
d
) (5)

Ai =

N∑
j=1

f(qi, kj)vj∑N
j=1 f(qi, kj)

(6)

where WQ, WK , and WV are learned weight matrices, and qi, ki, vi are the row vectors representing
the query, key, and value for token xi, respectively. Function f(qi, kj) measures the similarity be-
tween query and key. Consequently, the computation in the attention layer involves a weighted sum,
along with matrix multiplications and an exponential function. Based on the above decomposition,
the next chapter will demonstrate how the Transformer model can be implemented on DS machines
using Natural Annealing.

3 DS-LLM: MAPPING LLM ONTO DS MACHINE

3.1 OVERVIEW

In this chapter, we present a detailed, step-by-step guide on leveraging DS machines to enhance
LLMs on both inference and training. As illustrated in Fig. 1, while traditional transformer mod-
els are executed on digital GPUs using CUDA and tensor cores, DS-LLM maps the original model
into the energy landscape of DS machines, leveraging Natural Annealing for the forward pass. Ad-
ditionally, whereas conventional transformers are trained offline using backpropagation, DS-LLM
introduces an online Electric-Current-Loss based training method to implement rapid backprop-
agation. Thus, both inference and training of LLM are accelerated by harnessing the immense
computing power of DS machines.

In the following subsections, we will first introduce the key method to map existing models to the
energy landscape of DS machines, followed by a further extension of it to implement the entire trans-
former model with minor augmentations based on existing DS machines. Finally, we propose the
Electric-Current-Loss training method and explain how it works as an online rapid back-propagation.

3.2 MAPPING METHOD

The mapping of existing models to DS machines can follow two different approaches: one based
on the Hamiltonian level and the other on the electrodynamics level. To illustrate, we begin with a
single linear layer. Consider the input matrix X ∈ Rn×din , the output matrix Y ∈ Rn×dout , and the
weight matrix W ∈ Rdout×din , along with an optional bias vector b ∈ Rdout . Since the bias term
b can be incorporated into the matrix multiplication operation, we will omit it for simplicity. Thus,
the function of this layer can be written as a single matrix multiplication Y = XWT .

On the Hamiltonian level, to leverage the Natural Annealing process on DS machines, we must
shape the energy landscape so that its minimum energy state corresponds to the desired output.
To achieve this, we define a target function F that minimizes the squared Frobenius norm of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

difference (or Euclidean distance) between the output state of the DS machine, YDS, and the desired
output, XDSW

T . This forms the following minimization problem:

F = ∥YDS −XDSW
T ∥2F =

∑
i,l

(yil −
∑
j

wijxjl)
2 (7)

where w, x, and y represent elements of the matrices W , XDS, and YDS, respectively, and i,j,
and l correspond to the dimensions n,din, and dout. The target function F reaches its minimum,
Fmin = 0, when YDS = XDSW

T . Since the absolute value of Fmin is not crucial, and
∑

j wijxjl

remains constant during inference, we can simplify the target function by eliminating its second-
order term:

F̂ =
∑
(i,l)

y2il − 2
∑
(i,l)

(yil

N∑
j

wijxjl) (8)

After transforming the linear layer’s computation into a minimization problem, we program the DS
machine by aligning its Hamiltonian with this simplified target function, F̂ . As shown in equation 8,
F̂ is a special case of the Hamiltonian described in equation 1. In this case, the spins σ are divided
into two groups: xij , representing the input, and yil, representing the output. The self-reaction
parameters hi are set to 1 for yil, while the coupling parameters J are assigned 2wij between cor-
responding spins xjl and yil, with all other elements set to 0. The value of hi for xij does not affect
the convergence in equation 3 because the input xij is fixed, resulting in dxij/dt = 0.

This configuration maps the target function F̂ to the Hamiltonian of the DS machine, enabling
the computation of this layer via Natural Annealing process. During this process, the Hamiltonian
will continuously decrease until it reaches a minimum (which is also the minimum of F̂), where
YDS = XDSW

T naturally emerges.

On the electrodynamics level, we can arrive at a similar conclusion. As seen in equation 2, the
electrodynamics behavior is governed by the coupling parameters J and self-reaction parameters h.
According to Lyapunov stability analysis (Blaquiere, 2012), all spins should stabilize at a specific
value when the system reaches a stable point, i.e., a local minimum. Hence, the electrodynamics of
all spins must satisfy a boundary condition where dσ/dt = 0. Dividing the spins σ into two groups,
as before—input x and output y —along with the boundary condition, we arrive at:

yi =

∑N
j Jijxj

hi
(9)

In this scenario, the spin electrodynamics exhibit a solvable stable point, allowing us to directly
program J and h to map the desired matrix multiplication results onto the spin dynamics. Evidently,
this leads to the same mapping setup as in the Hamiltonian-level analysis.

It is a fortunate coincidence that the backbone DS machine is naturally compatible with matrix
multiplication, one of the key computational demands in LLMs. However, when extending this
mapping method to more general functions, such as other operations in LLMs, the backbone DS
machine requires slight augmentation to support them.

3.3 TRANSFORMER IMPLEMENTATION

Based on the proposed mapping method, we then analyze the implementation of key components
besides matrix multiplication in transformer, and finally the whole model.

Recall the decomposition of self-attention layer, except linear projection layer in equation 4 which is
already implemented, there are still three key operations in attention layer left: a) Query-Key matrix
multiplication; b) Exponential function; c) Weighted-Sum operation, where a and b are shown in
equation 5, and c is shown in equation 6. Fig. 3 illustrates the implementation of these three key
operations, with detailed explanations provided below. The previously introduced implementation
of linear layer (also the matrix multiplication operation between weights and features) is also shown
in the figure as a reference.

a) Query-Key Matrix Multiplication: Unlike the typical multiplication in a linear layer, this opera-
tion occurs between two feature matrices generated online, rather than between features and weights.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Implementation of key operations.

In the linear layer analysis, we assumed the weight matrix W is obtained offline and loaded onto
programmable resistors in the coupling units. Fortunately, these resistors in the backbone DS ma-
chine are implemented using transistors, and programming them is accomplished by adjusting the
voltage on their control ports—a common technique in CMOS design. Meanwhile, the spins in DS
machines are represented by capacitors, where the voltage corresponds to the spin value. Thus, we
can map the feature matrix K onto the programmable resistors by connecting the output voltage of
the spins to the control ports of the resistors with necessary scaling circuits.

b) Exponential approximation: The exponential function is computationally expensive and re-
quires a high-order Taylor expansion for approximation. Based on a pre-experiment, we explore the
trade-off between model accuracy and hardware cost and select a 3rd-order Taylor expansion as an
approximation. Details of this trade-off can be found in Appendix.

exp(xi)Taylor3 = 1 + x+ 1/2x2 + 1/6x3 (10)

As Fig. 3 shows, both the second and third order terms are implemented in the same way as the
Query-Key Matrix Multiplication. We will show the experiments results later in evaluation part
to demonstrate that this approximation achieves comparable or even superior performance to the
original exponential function.

c) Weighted-Sum: Similar to the matrix multiplication, we can build the target function:

F =
∑
i

(yi −
∑

j f(qi, kj)vj∑
j f(qi, kj)

)2 =
∑
i

(

∑
j f(qi, kj)yi −

∑
j f(qi, kj)vj∑

j f(qi, kj)
)2 (11)

Since the probability of
∑

j f(qi, kj) keeping zero is negligible in an evolving dynamical system,
we multiply it on equation 11 and reduce the constant terms:

F̂ = −
∑
i,j

f(qi, kj)yivj +

N∑
i

1

2

∑
j

f(qi, kj)y
2
i (12)

In this setup, we program f(qi, kj) to Jij like in the Query-Key Matrix Multiplication. Notice
that 1

2

∑
j f(qi, kj) can be regarded as a matrix multiplication operation between f(qi, kj) and an

all-ones vector, which can be mapped to DS machine as a simplified linear layer. The results are
connected to the programmable resistors in node units, where hi =

1
2

∑
j f(qi, kj) for yi, and set

hi = 0 for vj . With this setup, the Weighted-Sum operation in equation 6 can also be mapped to the
Hamiltonian described in equation 1.

At this point, we have most of the essential components of a transformer model. The other operations
which have relatively lower computing demanding like LayerNorm and activation are handled by
auxiliary functional units. Details of other operations can be found in the appendix.

Next, we demonstrate how to map the entire transformer model onto a DS machine. Assuming the
original model consists of multiple layers, each decomposed into P operations, its function can be
expressed as:

y = f (P) ◦ f (P−1) ◦ · · · ◦ f (2) ◦ f (1)(x) (13)

Since we have confirmed that the mapping method works for each computational component, we
can now construct the general target function as follows:

F̂ (p) = (x(p+1))2 − 2x(p+1)f (p)(x(p)) (14)

Here, we combine the mapping of all individual target functions by using the output of each
lower layer as the input to the higher layer, where x1 is the initial input and xP+1 is the fi-
nal output. It’s important to note that when combining them, the influence between spins is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

unidirectional—from lower to higher layers—i.e., ∂F̂ (p+1)/∂x(p) = 0. Therefore, the Natural
Annealing process converges in each operation, ensuring that F̂ (P) reaches its minimum when
x(P+1) = f (P) ◦ f (P−1) ◦ · · · ◦ f (1)(x1).

In this setup, the entire transformer-based model can be mapped onto DS machines. With global
natural annealing, the model achieves the desired output when the system reaches its global energy
minimum.

3.4 ONLINE TRAINING WITH ELECTRIC-CURRENT-LOSS

After accelerating the forward pass of LLMs using Natural Annealing, we go further to enhance the
training of LLMs. The core idea is that a perfectly trained DS machine should reach the energy
minimum when its output spins match the ground truth from the training data. Based on our electro-
dynamics analysis of the mapping method, we propose an Electric-Current-Loss (ECL), leveraging
the physical currents in DS machine to achieve rapid online training.

Figure 4: The feed back path of
Electric-Current-Loss training.

As illustrated in Fig. 4, for a linear layer, when Natural
Annealing converges, for each output spin yi, the total
incoming electric current Iiin =

∑N
j Jijxj at the node

unit must balance the internal current IiR = hiyi flow-
ing through the resistor within the same node, ensuring
that the capacitor voltage (representing the spin values)
remains stable (dyi/dt = 0). Referring to equation 9, if
we map the ground truth output ŷi onto the output spins
and fix their values, we can define the internal current ref-
erence as ÎiR = hiŷi. The difference between the incoming current Iiin and the reference current ÎiR
forms a new loss function, expressed as LEC =

∑N
i (Iiin − ÎiR)

2. This difference is equal to the
current through the sampling resistor r, IiL = Iiin − IiR. We then update the parameters Jij (notice hi

= 1 is constant) using gradient descent:

∆Jij =
∂LEC

∂Jij
=

∂LEC

∂IiL

∂IiL
∂Jij

= 2IiLxj (15)

As depicted in Fig. 4, the multiplication of the loss current IiL by the spin values xj or ŷi can be
implemented at the circuit level. The resulting current is then fed back to the control port of the
programmable resistors in the coupling units (CUs) and nodes. Consequently, the parameters are
updated as Jij → Jij − ∆Jij∆t by integrating the result current on the control capacitor of the
programmable resistors over a time interval ∆t.

We propose this training method, named Electric-Current-Loss (ECL) online training, which aims
to minimize the loss function LEC. Currently, this method only supports single-layer DS machines,
where a ground truth ŷi is available. It’s worth noting that brain-inspired methods, such as predictive
coding (Song et al., 2020), have been proposed to generate internal reference values for each layer,
providing a lot of opportunities for extending ECL to multi-layer DS machines. However, in this
early-stage research, we focus on conventional backpropagation training to provide a baseline on
how to combine ECL with backpropagation to enable efficient LLM training on DS machines.

In the training of most LLMs, the loss in the output layer is typically computed using softmax
with cross-entropy, yielding ∂L/∂xi = yi − ŷi, where xi represents the input logits. Referring
to equation 9 and equation 14, after the DS machine completes the Natural Annealing process, the
output spin value yi should converge to the desired computational result f (P)(x(P)). If we map the
ground truth ŷi to the output spin of the final layer, we obtain:

∂L

∂xi
= yi − ŷi =

Iiin − IiR
hi

= IiL (16)

Thus, the gradients of the logits can be realized as an electric current using the ECL train-
ing method. As shown in Fig. 5, the gradients in other layers are calculated by the ac-
tivations and the electric current loss from the later layer. Since the gradient of a matrix
multiplication operation is itself a matrix multiplication, this calculation can also be mapped

7

28782
高亮

28782
文本框
B-Q2

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

on DS machines. For some special non-polynomial operations, the calculation will be han-
dled by additional auxiliary circuits. Additionally, the mapping of forward process is direc-
tional and thus the connections and CUs from later layers to previous layers are not utilized.

Figure 5: ECL-based online backpropaga-
tion.

Therefore we can leverage these CUs for the calcu-
lation of gradients without incurring extra cost. The
gradients are then integrated on the controlling ca-
pacitors, updating the parameters. In this way, we
combine ECL with backpropagation, creating an on-
line training method that gets rid of output readout
and leverages the fast forward computing of DS ma-
chines.

4 EVALUATION

4.1 MODEL AND TRAINING SETUP

Models: We apply DS-LLM to two open-source models of varying sizes: GPT-2 (base and medium)
(Radford et al., 2019), OPT-1.3B and OPT-2.7B (Zhang et al., 2022), and Llama2-7B(Touvron et al.,
2023).

Tasks and Datasets: For all three models, we fine-tune and evaluate on five datasets from the GLUE
benchmark (Wang et al., 2019): SST-2 (Socher et al., 2013) for Single-Sentence Tasks, MRPC
(Dolan & Brockett, 2005) and QQP (DataCanary et al., 2017) for Paraphrase Tasks, QNLI (Ra-
jpurkar et al., 2016) and RTE (Dagan et al., 2006) for Inference Tasks. Additionally, we pre-train
GPT-2-medium from scratch on OWT (Gokaslan & Cohen, 2019) to evaluate the impact of the
DS-LLM attention approximation.

DS machine evaluation: Although the backbone DS machine chip has been manufactured and
provides some public accessibility, this work requires additional augmentations. Therefore, we
employ a CUDA-based Finite Element Analysis (FEA) software emulator to simulate the Natural
Annealing process of DS machines. Upon publication, we plan to open-source the CUDA-based
emulator to support open research and design. Additionally, the power consumption are evaluated
using the Cadence Mixed-Signal Design Environment, with 45 nm CMOS technology.

Experiments Setup: The fine-tuning on the GLUE benchmark was conducted on 4 Nvidia A100
40GB GPUs. The global batch size was set to 32 for GPT-2 (124M), 16 for GPT-2-medium (355M)
and OPT-1.3B, and 8 for OPT-2.7B and Llama2-7B. We fine-tuned all models for 2 epochs on QQP
and 3 epochs on the other datasets. The optimizer used was AdamW with an initial learning rate of
2e-5, and all other parameters were kept as default, as provided by the Hugging Face Transformers
library. For pre-training GPT-2-medium, we utilized 80 Nvidia A100 40GB GPUs with a global
batch size of 480 and trained the model for 120,000 iterations. The optimizer was AdamW with
a 6e-4 initial learning rate, and other parameters were also kept at default settings. The inference
experiments are using the same global batch size as in the fine-tuning experiments.

4.2 ACCURACY COMPARISON BETWEEN DS-LLM AND ORIGINAL LLMS

In order to verify the accuracy loss of the proposed mapping method (DS-LLM) and training method
(ECL), we fine-tune and evaluate the models on selected datasets to compare the accuracy across
three model types: a) the original LLMs, trained offline and inferred on GPUs; b) DS-LLM models,
trained offline on GPUs but inferred on DS machines; and c) DS-LLM-ECL models, trained online
and inferred on DS machines. As shown in Table 1, the accuracy of DS-LLM models is comparable
to that of the original LLMs, with some even outperforming them, demonstrating that the approx-
imation loss during mapping is minimal and the mapping method is effective. The DS-LLM-ECL
models also maintains good accuracy, validating the feasibility of the ECL online training method.

We further validate the training behavior and convergence speed of the proposed DS-LLM mapping
method and the DS-LLM-ECL online training approach. The fine-tuning trajectories of the original
LLMs, DS-LLM, and DS-LLM-ECL models are visualized in Fig. 6. Additionally, we present the
training curves of the original LLMs and DS-LLM during GPT-2 Medium pretraining; unfortunately,
we are unable to pretrain DS-LLM-ECL models due to computational limitations. Notably, both DS-

8

28782
高亮

28782
高亮

28782
文本框
B-Q2

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Accuracy comparison (in Accuracy (%)): the higher the better.
Task Paraphrase Tasks Inference Tasks Single-Sentence Tasks

Dataset MRPC QQP RTE QNLI SST2
GPT2 75.00 88.43 63.18 88.03 91.63

GPT2-DS 76.72 89.04 63.54 88.28 91.29
GPT2-DS-ECL 76.91 89.24 63.11 87.94 90.82

GPT2-M 79.66 90.57 68.59 91.05 93.58
GPT2-M-DS 79.17 90.55 70.40 90.33 93.35

GPT2-M-DS-ECL 79.31 90.09 70.41 89.73 93.06
OPT1.3B 84.07 90.94 77.26 91.09 92.43

OPT1.3B-DS 87.01 88.48 78.70 91.41 92.20
OPT1.3B-DS-ECL 86.57 88.59 78.05 91.45 91.81

OPT2.7B 86.52 91.03 82.33 93.15 94.08
OPT2.7B-DS 86.54 90.98 82.48 93.27 94.04

OPT2.7B-DS-ECL 86.74 90.67 82.44 93.41 94.25
Llama2-7B 90.01 91.10 88.45 95.75 96.58

Llama2-7B-DS 89.47 90.95 88.70 95.69 96.32
Llama2-7B-DS-ECL 89.56 91.08 88.57 95.73 95.79

Figure 6: Visualization of training trajectories.

Table 2: Performance comparison on training time and energy consumption.
Metric Training time (s) Energy Consumption (J)
Dataset MRPC QQP RTE QNLI SST2 MRPC QQP RTE QNLI SST2
GPT2 5.17E+1 2.12E+3 4.56E+1 8.32E+2 3.07E+2 4.14E+4 1.69E+6 3.65E+4 6.66E+5 2.46E+5

GPT2-DS-ECL 4.44E-2 4.37E+0 3.00E-2 1.26E+0 8.04E-1 3.77E-1 3.71E+1 2.55E-1 1.07E+1 6.83E+0
GPT2-M 1.62E+2 9.00E+3 1.55E+2 3.42E+3 1.32E+3 1.30E+5 7.20E+6 1.24E+5 2.74E+6 1.05E+6

GPT2-M-DS-ECL 9.25E-2 9.10E+0 6.25E-2 2.63E+0 1.68E+0 7.86E-1 7.74E+1 5.31E-1 2.23E+1 1.42E+1
OPT1.3B 1.78E+2 2.42E+4 1.77E+2 6.46E+3 2.83E+3 1.42E+5 1.94E+7 1.42E+5 5.17E+6 2.27E+6

OPT1.3B-DS-ECL 2.22E-1 2.18E+1 1.50E-1 6.30E+0 4.02E+0 1.89E+0 1.86E+2 1.28E+0 5.36E+1 3.42E+1
OPT2.7B 3.90E+2 7.34E+4 3.71E+2 2.02E+4 1.20E+4 3.12E+5 5.87E+7 2.97E+5 1.61E+7 9.59E+6

OPT2.7B-DS-ECL 4.81E-1 4.73E+1 3.25E-1 1.37E+1 8.71E+0 4.09E+0 4.02E+2 2.76E+0 1.16E+2 7.40E+1
Llama2-7B 1.55E+3 2.17E+5 1.49E+3 6.27E+4 3.46E+4 1.24E+6 1.73E+8 1.19E+6 5.02E+7 2.77E+7

Llama2-7B-DS-ECL 1.22E+0 1.20E+2 8.25E-1 3.47E+1 2.21E+1 1.04E+1 1.02E+3 7.01E+0 2.95E+2 1.88E+2

Table 3: Performance comparison on inference time and energy consumption.
Metric Inference time (s) Energy Consumption (J)
Dataset MRPC QQP RTE QNLI SST2 MRPC QQP RTE QNLI SST2
GPT2 1.38E-1 1.17E+1 1.43E-1 1.84E+0 2.84E-1 1.10E+2 9.37E+3 1.14E+2 1.47E+3 2.27E+2

GPT2-DS 2.04E-3 4.69E-1 3.60E-3 6.48E-3 2.16E-3 5.51E-3 1.27E+0 9.72E-3 1.75E-2 5.83E-3
GPT2-M 4.46E-1 3.79E+1 3.23E-1 5.42E+0 8.75E-1 3.57E+2 3.03E+4 2.58E+2 4.34E+3 7.00E+2

GPT2-M-DS 4.25E-3 9.78E-1 7.50E-3 1.35E-2 4.50E-3 1.15E-2 2.64E+0 2.03E-2 3.65E-2 1.22E-2
OPT1.3B 6.28E-1 6.28E+1 6.86E-1 1.07E+1 1.23E+0 5.02E+2 5.03E+4 5.49E+2 8.56E+3 9.82E+2

OPT1.3B-DS 1.02E-2 2.35E+0 1.80E-2 3.24E-2 1.08E-2 2.75E-2 6.33E+0 4.86E-2 8.75E-2 2.92E-2
OPT2.7B 1.94E+0 2.05E+2 2.11E+0 3.24E+1 4.01E+0 1.55E+3 1.64E+5 1.69E+3 2.60E+4 3.21E+3

OPT2.7B-DS 2.21E-2 5.08E+0 3.90E-2 7.02E-2 2.34E-2 5.97E-2 1.37E+1 1.05E-1 1.90E-1 6.32E-2
Llama2-7B 6.35E+0 6.28E+2 6.98E+0 1.09E+2 1.35E+1 5.08E+3 5.02E+5 5.58E+3 8.76E+4 1.08E+4

Llama2-7B-DS 0.0561 12.903 0.099 0.1782 0.0594 1.51E-1 3.48E+1 2.67E-1 4.81E-1 1.60E-1

LLM and DS-LLM-ECL exhibit convergence curves that closely match those of the original models,
demonstrating that the mapping and online training methods effectively replicate the performance
of traditional LLMs on DS machines.

4.3 PERFORMANCE OF DS-LLM OVER LLMS ON GPU

Table. 2 compares the total training time on the whole dataset and estimated energy consumption
between the original model on GPU and DS-LLM-ECL on the DS machine. On average across all
fine-tuning tasks, DS-LLM-ECL achieves a 1,238× speedup and a 116,563× reduction in energy
consumption. The power consumption of the 4 A100 40GB GPUs is estimated at 800 watts, while
the DS machine consumes approximately 8.5 watts.

Table. 3 shows the comparison of total inference time on the whole evaluation dataset and energy
consumption between the original LLMs on GPU and DS-LLM on the DS machine. On average

9

28782
高亮

28782
高亮

28782
文本框
B-Q3

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
文本框
C-W1

28782
文本框
C-W1

28782
文本框
C-W1

28782
文本框
D-Q3

28782
文本框
D-Q3

28782
文本框
D-Q3

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

across all inference tasks, DS-LLM delivers a 127× speedup and a 37,545× reduction in energy
consumption. During inference, the DS machine primarily performs Natural Annealing, consuming
significantly less energy than during training, resulting in a power consumption of just 2.7 watts.

The performance of GPUs are evaluated based on naive implementation without special optimization
technologies. There are lots of GPU optimization works like vLLM can obviously improve the
performance of GPU.

Table 4: Comparison on Llama2-7B with low-precision CPU and edge devices.
Solutions Token Generation Rate (tokens/s) Energy Efficiency (tokens/KWh)

Low Precision CPUs(Shen et al., 2023) 45.4 1.63E+6
Cambricon-LLM(Yu et al., 2024) 3.55 3.60E+6

DS-LLM (this work) 3.03E+4 4.04E+10

4.4 COMPARISON WITH LOW-PRECISION IMPLEMENTATIONS FOR EDGE DEVICES

For a more comprehensive evaluation on inference, we also compared our DS-LLM with some low-
precision implementations for edge devices, including accelerating LLM inference on low-precision
CPU(Shen et al., 2023) and a new edge device Cambricon-LLM(Yu et al., 2024) on Llama2-7B
model. The power of the CPU work is estimated as 100W, which is lower than any specific CPU
they used. The results show that DS-LLM achieves orders of magnitudes higher token generation
rate and energy efficiency than the references. This is because both low-precision CPUs and edge
devices rely on digital computing paradigms that execute step-by-step, instruction-based operations.
In contrast, DS machines operate without the need for micro-instructions, leveraging continuous
natural annealing through analog currents. This enables DS machines to achieve exceptional speed
and energy efficiency.

5 RELATED WORK

The early-stage research on DS machines is rooted in the Ising model, which supports only binary
spin values and primarily addresses binary optimization problems (Afoakwa et al., 2021). Our
backbone DS machine was proposed in NPGL (Wu et al., 2024) and applied to graph learning
problems. However, NPGL employs an individual learning method that ignores the architecture of
Neural Networks, limiting its ability to leverage existing technologies effectively.

There are several variants of dynamical systems, such as optical (Inagaki et al., 2016) and oscillator-
based (Lo et al., 2023) Ising machines. Although these approaches show promise, they have yet to
be successfully integrated into machine learning applications. To the best of our knowledge, this
work represents the first attempt to combine existing machine learning models, particularly Large
Language Models (LLMs), with DS machines.

6 CONCLUSION

In this work, we introduce DS-LLM, the first algorithmic framework that bridges LLMs to exist-
ing DS machines, harnessing the power of Natural Annealing to efficiently execute LLMs on DS
hardware. For training, we propose the ECL-based online training method, enabling DS-LLM to be
trained on the same hardware used for inference. The mathematical equivalence between DS-LLM
and traditional LLMs is proven and validated through experiments on models from GPT-2 to OPT-
1.3B. Results demonstrate consistent accuracy while achieving a 1,238× speedup and 116,563×
energy savings during training, along with a 127× speedup and 37,545× energy reduction in infer-
ence. In conclusion, DS-LLM presents a promising new solution for the community, with significant
opportunities for further exploration in future studies.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we have provided detailed descriptions of the experimen-
tal settings in Section 4.1. The CUDA-based Finite Element Analysis emulator used in this study

10

28782
高亮

28782
高亮

28782
文本框
B-W1

28782
高亮

28782
文本框
D-Q4-2

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

is adapted from the one used in (Afoakwa et al., 2021). We also plan to open-source this emulator
upon publication.

REFERENCES

Richard Afoakwa, Yiqiao Zhang, Uday Kumar Reddy Vengalam, Zeljko Ignjatovic, and Michael
Huang. Brim: Bistable resistively-coupled ising machine. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 749–760. IEEE, 2021.

Maxwell Anderson, Shi-Yuan Ma, Tianyu Wang, Logan Wright, and Peter McMahon. Optical
transformers. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=Xxw0edFFQC.

Austin Blaquiere. Nonlinear system analysis. Elsevier, 2012.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment chal-
lenge. In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché
Buc (eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object
Classification, and Recognising Tectual Entailment, pp. 177–190, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. ISBN 978-3-540-33428-6.

DataCanary, hilfialkaff, Lili Jiang, Meg Risdal, Nikhil Dandekar, and tomtung. Quora question
pairs, 2017. URL https://kaggle.com/competitions/quora-question-pairs.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL
https://aclanthology.org/I05-5002.

Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, and Soujanya Poria. Text-to-audio gen-
eration using instruction-tuned llm and latent diffusion model, 2023. URL https://arxiv.
org/abs/2304.13731.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Ryan Hamerly, Takahiro Inagaki, Peter L. McMahon, Davide Venturelli, Alireza Marandi, Tat-
suhiro Onodera, Edwin Ng, Carsten Langrock, Kensuke Inaba, Toshimori Honjo, Koji Enbutsu,
Takeshi Umeki, Ryoichi Kasahara, Shoko Utsunomiya, Satoshi Kako, Ken ichi Kawarabayashi,
Robert L. Byer, Martin M. Fejer, Hideo Mabuchi, Dirk Englund, Eleanor Rieffel, Hiroki Take-
sue, and Yoshihisa Yamamoto. Experimental investigation of performance differences between
coherent ising machines and a quantum annealer. Science Advances, 5(5):eaau0823, 2019. doi:
10.1126/sciadv.aau0823.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units, 2017. URL https://openreview.net/forum?id=Bk0MRI5lg.

Yang Hu, Xinhan Lin, Huizheng Wang, Zhen He, Xingmao Yu, Jiahao Zhang, Qize Yang, Zheng
Xu, Sihan Guan, Jiahao Fang, Haoran Shang, Xinru Tang, Xu Dai, Shaojun Wei, and Shouyi
Yin. Wafer-scale computing: Advancements, challenges, and future perspectives [feature]. IEEE
Circuits and Systems Magazine, 24(1):52–81, 2024. doi: 10.1109/MCAS.2024.3349669.

Takahiro Inagaki, Yoshitaka Haribara, Koji Igarashi, Tomohiro Sonobe, Shuhei Tamate, Toshimori
Honjo, Alireza Marandi, Peter L. McMahon, Takeshi Umeki, Koji Enbutsu, Osamu Tadanaga, Hi-
rokazu Takenouchi, Kazuyuki Aihara, Ken ichi Kawarabayashi, Kyo Inoue, Shoko Utsunomiya,
and Hiroki Takesue. A coherent ising machine for 2000-node optimization problems. Science,
354(6312):603–606, 2016. doi: 10.1126/science.aah4243. URL https://www.science.
org/doi/abs/10.1126/science.aah4243.

Iordanis Kerenidis, Natansh Mathur, Jonas Landman, Martin Strahm, Yun Yvonna Li, et al. Quan-
tum vision transformers. Quantum, 8:1265, 2024.

11

https://openreview.net/forum?id=Xxw0edFFQC
https://kaggle.com/competitions/quora-question-pairs
https://aclanthology.org/I05-5002
https://arxiv.org/abs/2304.13731
https://arxiv.org/abs/2304.13731
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=Bk0MRI5lg
https://www.science.org/doi/abs/10.1126/science.aah4243
https://www.science.org/doi/abs/10.1126/science.aah4243

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hao Lo, William Moy, Hanzhao Yu, Sachin Sapatnekar, and Chris H Kim. An ising solver chip
based on coupled ring oscillators with a 48-node all-to-all connected array architecture. Nature
Electronics, 6(10):771–778, 2023.

Guy Ohayon, Theo Adrai, Michael Elad, and Tomer Michaeli. Reasons for the superiority of
stochastic estimators over deterministic ones: robustness, consistency and perceptual quality. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org,
2023.

Zhenyu Pan, Anshujit Sharma, Jerry Yao-Chieh Hu, Zhuo Liu, Ang Li, Han Liu, Michael Huang,
and Tony Geng. Ising-traffic: Using ising machine learning to predict traffic congestion under
uncertainty. Proceedings of the AAAI Conference on Artificial Intelligence, 37(8):9354–9363,
Jun. 2023. doi: 10.1609/aaai.v37i8.26121. URL https://ojs.aaai.org/index.php/
AAAI/article/view/26121.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text, 2016. URL https://arxiv.org/abs/1606.05250.

Anshujit Sharma, Richard Afoakwa, Zeljko Ignjatovic, and Michael Huang. Increasing ising ma-
chine capacity with multi-chip architectures. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, pp. 508–521, New York, NY, USA, 2022. As-
sociation for Computing Machinery. ISBN 9781450386104. doi: 10.1145/3470496.3527414.
URL https://doi.org/10.1145/3470496.3527414.

Haihao Shen, Hanwen Chang, Bo Dong, Yu Luo, and Hengyu Meng. Efficient llm inference on
cpus, 2023. URL https://arxiv.org/abs/2311.00502.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven
Bethard (eds.), Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics. URL https://aclanthology.org/D13-1170.

Ruibing Song, Chunshu Wu, Chuan Liu, Ang Li, Michael Huang, and Tony Tong Geng. DS-GL:
Advancing graph learning via harnessing nature’s power within scalable dynamical systems. In
2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pp.
45–57, 2024. doi: 10.1109/ISCA59077.2024.00014.

Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu, and Rafal Bogacz. Can the brain do back-
propagation? — exact implementation of backpropagation in predictive coding networks.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 22566–22579. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/fec87a37cdeec1c6ecf8181c0aa2d3bf-Paper.pdf.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

12

https://ojs.aaai.org/index.php/AAAI/article/view/26121
https://ojs.aaai.org/index.php/AAAI/article/view/26121
https://arxiv.org/abs/1606.05250
https://doi.org/10.1145/3470496.3527414
https://arxiv.org/abs/2311.00502
https://aclanthology.org/D13-1170
https://proceedings.neurips.cc/paper_files/paper/2020/file/fec87a37cdeec1c6ecf8181c0aa2d3bf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fec87a37cdeec1c6ecf8181c0aa2d3bf-Paper.pdf
https://arxiv.org/abs/2307.09288

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fengbin Tu, Zihan Wu, Yiqi Wang, Weiwei Wu, Leibo Liu, Yang Hu, Shaojun Wei, and Shouyi
Yin. Multcim: Digital computing-in-memory-based multimodal transformer accelerator with
attention-token-bit hybrid sparsity. IEEE Journal of Solid-State Circuits, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping
Luo, Tong Lu, Jie Zhou, Yu Qiao, and Jifeng Dai. Visionllm: Large language
model is also an open-ended decoder for vision-centric tasks. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 61501–61513. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/c1f7b1ed763e9c75e4db74b49b76db5f-Paper-Conference.pdf.

Christopher Wolters, Xiaoxuan Yang, Ulf Schlichtmann, and Toyotaro Suzumura. Memory is all you
need: An overview of compute-in-memory architectures for accelerating large language model
inference, 2024. URL https://arxiv.org/abs/2406.08413.

Chunshu Wu, Ruibing Song, Chuan Liu, Yunan Yang, Ang Li, Michael Huang, and Tong Geng.
Extending power of nature from binary to real-valued graph learning in real world. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=qT7DXUmX7j.

Zhongkai Yu, Shengwen Liang, Tianyun Ma, Yunke Cai, Ziyuan Nan, Di Huang, Xinkai Song,
Yifan Hao, Jie Zhang, Tian Zhi, Yongwei Zhao, Zidong Du, Xing Hu, Qi Guo, and Tianshi Chen.
Cambricon-llm: A chiplet-based hybrid architecture for on-device inference of 70b llm, 2024.
URL https://arxiv.org/abs/2409.15654.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

A APPENDIX

A.1 DISCUSSION

As an early-stage research endeavor, DS-LLM seeks to introduce a promising new computing
paradigm to address the growing computational demands of LLMs. Although still in its infancy,
this section aims to discuss and analyze its potential, challenges, and future directions.

a) Feasibility: First, we want to highlight that there are no fundamental challenges to integrate
DS machines into existing computing systems. DS machines, though architecturally distinct from
digital processors, are built using CMOS-compatible technology. This compatibility ensures they
can be integrated seamlessly into existing systems as co-processors (similar to TPUs or NPUs) via
interfaces like PCIe. Theoretically, no fundamental hardware adaptations are required.

From a system perspective, though this work is still in early stage, we agree that integration to the
existing computing infrastructure is very promising as future exploration. There are a lot of explo-
ration space on developing software tool-chain like compilers, optimizing memory management,
and pipelining tasks between DS machines and other processors. With all these works and software
tools help, we believe DS machines are inherently feasible for integration into digital systems and
work as a new type of co-processor like GPUs / TPUs / NPUs. Future work can explore hybrid
use cases that combine CPUs, GPUs, and DS machines based on their unique strengths to achieve
optimal performance.

13

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://proceedings.neurips.cc/paper_files/paper/2023/file/c1f7b1ed763e9c75e4db74b49b76db5f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c1f7b1ed763e9c75e4db74b49b76db5f-Paper-Conference.pdf
https://arxiv.org/abs/2406.08413
https://openreview.net/forum?id=qT7DXUmX7j
https://openreview.net/forum?id=qT7DXUmX7j
https://arxiv.org/abs/2409.15654
28782
高亮

28782
文本框
A-Q2

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Overall, while DS machines are not yet mature, their fundamental feasibility paves the way for
exciting opportunities in integration with existing computing infrastructures.

b) Scalability: While prior work like NP-GL was designed for small graphs with fewer than 1,000
nodes, the capacity of DS machines can be significantly expanded to handle much larger scales.
First, DS machines have demonstrated linear complexity with respect to the number of nodes (Song
et al., 2024), making them inherently scalable with increased chip area. For context, NP-GL oc-
cupies only about 5 mm2, whereas modern GPUs like the H100 have a die size of 814 mm2, and
wafer-scale chips—such as those with up to 46,255 mm2—are emerging (Hu et al., 2024). Based
on linear complexity, a single-chip solution could theoretically support millions of nodes within a
single DS machine.

Second, for even larger models or faster training, multi-chip approaches offer a viable path for-
ward. Existing research has explored multi-chip solutions for DS machines (Sharma et al., 2022),
where individual chips perform annealing with periodic synchronization. We are also investigat-
ing promising techniques such as deploying models across multiple DS machine chips to achieve
pipeline parallelism.

Overall, the scalability of DS machines is theoretically well-founded, offering both single-chip and
multi-chip solutions to meet the demands of increasingly large and complex models.

c) Model Flexibility Issues: This work focuses on classic operations in Transformer-based LLMs,
acknowledging that modern LLMs may include different operations such as varied activation func-
tions or embedding methods. Despite the diversity of LLM architectures, these operations can
generally be categorized as either polynomial or non-polynomial. Polynomial operations, which
can be broken down into basic addition and multiplication, are directly mappable to DS machines.
Non-polynomial operations, such as exponential function, require transformation into polynomial
approximations (e.g., via Taylor expansion) or the addition of auxiliary circuits, which may slightly
increase latency depending on their complexity. Fortunately, most high-computational-demand op-
erations, particularly in attention layers and FFNs, are polynomial or even linear. Thus, DS machines
offer high flexibility and adaptability for various models.

d) Stability: The stability of DS machines is inherently promising due to their fundamental char-
acteristics. Compared to modern GPUs, DS machines consume significantly less power, which
reduces the risk of overheating. Additionally, as DS machines rely on a stochastic annealing process
rather than deterministic computation, they are naturally more robust to noise and non-ideal factors
(Ohayon et al., 2023). We further evaluate this opinion in next subsection with experimental results.

e) Robustness on Circuit Non-idealities: For a comprehensive discussion, we address two types
of Non-idealities: dynamic noise (e.g., thermal noise) and static offset (e.g., fabricated non-linearity
and mismatch).

Table 5: Influence of dynamic noise on accuracy of DS-LLM.
Model Noise Level MRPC QQP RTE QNLI SST2

gpt2-DS-ECL 0 76.91 89.24 63.11 87.94 90.82
gpt2-DS-ECL 0.05 76.84 89.20 63.02 87.83 90.77
gpt2-DS-ECL 0.10 76.55 88.93 62.71 87.56 90.33
gpt2-DS-ECL 0.15 75.89 88.12 62.05 86.98 89.84

OPT1.3B-DS-ECL 0 86.57 88.59 78.05 91.45 91.81
OPT1.3B-DS-ECL 0.05 86.43 88.52 77.99 91.40 91.75
OPT1.3B-DS-ECL 0.10 86.15 88.31 77.63 91.22 91.43
OPT1.3B-DS-ECL 0.15 85.67 87.75 77.24 90.89 91.01

Dynamic noise: It has been proved that stochastic process like the natural annealing in DS machines
is usually more robust to noise than deterministic process(Ohayon et al., 2023). We setup an exper-
iment to evaluate the impact of varying noise levels on DS-LLM, where two models are fine-tuned
on the downstream datasets based on our work with dynamic noise injected into the simulation. The
dynamic noise was modeled as standard Gaussian noise with a standard deviation ranging from 0.05
to 0.15. The results demonstrate that DS machines exhibit high robustness to dynamic noise.

Static offset: Static offset is a common challenge in analog circuits, arising from factors like hard-
ware non-linearity and mismatches during fabrication. Our proposed online training method ad-
dresses this effectively by training and performing inference on the same hardware device. This

14

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
文本框
B-Q1

28782
文本框
B-Q1

28782
文本框
C-W2

28782
文本框
C-W2

28782
文本框
D-Q2-1

28782
文本框
D-Q3

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 7: Accuracy recovery for a pre-trained GPT2 model during finetuning on DS machines.

ensures that the model inherently adapts to the hardware’s biased patterns during training, resulting
in accurate inference despite non-idealities.

Moreover, when deploying a pre-trained model on different devices, a promising solution is to fine-
tune the model on the target hardware for a few batches. This allows the model to quickly adapt to
the specific biased pattern of the new hardware. We evaluate this method by finetuning a pre-trained
GPT2 model on DS machines with different offset level. The offset of DS machines is modeling
as standard gaussian noise with standard variation from 0 to 0.3. As shown in Fig. 7, the dash line
represents the inference accuracy without finetuning, while the solid line represents the inference
accuracy with finetuning. The results illustrates the recovery of model accuracy during the fine-
tuning process, underscoring the practicality and effectiveness of this approach.

f) Precision Constraints: The precision of computation in DS machines is inherently continuous
due to their analog nature. However, the precision of Analog-to-Digital Converters (ADCs) and
Digital-to-Analog Converters (DACs) used in the system do affect the overall accuracy. Fortunately,
ADCs and DACs are well-established technologies with numerous mature solutions that allow for
various design trade-offs—for instance, achieving 16-bit precision with lower power consumption
or 32-bit precision with higher power consumption. Such trade-offs align with and are theoreti-
cally compatible with existing quantization techniques, providing flexibility to balance precision
and power efficiency based on the application requirements.

g) Novelty and differential from prior work: The prior work NPGL(Wu et al., 2024) is not a map-
ping of existing GNNs including those who have attention mechanism. It ignores the architecture of
neural networks and directly fits the data with the Hamiltonian, which is a shallow fully connected
model without any hierarchy or structure as shown in Eq. (1). The parameter size of this model is
determined by the size of input data, making it fundamentally unable to support extremely complex
tasks like NLP which cannot fit in the shallow Hamiltonian. Therefore, rather than directly fitting
data into a shallow DS model as NPGL does, we propose a novel mapping method that enables the
deployment of existing deep neural networks (NNs) to DS machines. This allows us to leverage
well-established, mature model architectures, rather than working solely with the DS model itself.
To the best of our knowledge, this is the first work to map deep NNs—designed for traditional
computing architectures—onto DS machines, with LLMs chosen as a specific application.

h) Advantages over other emerging computing diagram: DS machines show high potential to
satisfy the increasing LLM computing demanding, while there are also other emerging computing
diagrams like quantum computing, optical computing and Computing-In-Memory works. We would
like to briefly compare DS machines with other approach and highlight our key advantages.

Quantum computing: Quantum computing is a promising avenue but is still constrained by scala-
bility issues and the need for complex error correction. As quantum systems scale, errors and noise
increase, demanding advanced error-correction techniques that are not yet fully mature. Existing
largest quantum computer from IBM has about 1100 qubits, which is too small to support LLM
computing tasks. Meanwhile, due to the technology requirements, nowadays building and running
quantum computers are still very expensive. In the contrast, DS machines are built on CMOS-

15

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
文本框
C-W2

28782
文本框
D-Q1-1

28782
文本框
D-Q1-2

28782
文本框
D-Q4-4

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

compatible technologies, which are highly mature and the cost of its fabrication is at the same level
of digital processors.

Optical Computing: The optical computing solutions also rely on special technology and is hard to
be integrated with digital systems. Building complex and accurate optical circuits can be a big chal-
lenge and very expensive, making the stability and feasibility of optical computer a larger challenge
than DS machines.

Computing-In-Memory (CIM): CIM technology is relatively feasible and CMOS compatible. Ex-
isting CIM works only supports inference, achieving up to 100s times acceleration and 2000 times
energy reduction (Wolters et al., 2024), which is much lower than our solution especially on energy
reduction. The insight behind this is that CIM still follows a traditional instruction-based paradigm,
completing computations step by step. In contrast, DS machines are driven by physical processes,
specifically natural annealing, which doesn’t require step-by-step control. This allows DS machines
to naturally perform complex tasks automatically without extra energy for controlling, achieving a
much higher energy efficiency.

Table 6: Trade-off on Taylor Expansion order.
Taylor Expansion order Validation loss Loss Drop Hardware cost (units)
Inf (baseline exponential) 3.25 0 -

1 3.35 0.10 1
3 3.28 0.03 6
5 3.27 0.02 15
7 3.27 0.02 28

i) Trade-off on Taylor Expansion: Before training the models, we conducted a pre-experiment by
fine-tuning a pre-trained GPT-2 model on a small dataset (Shakespeare, 300k) with different orders
of Taylor expansion. The results show that the 3rd-order expansion achieves sufficiently low valida-
tion loss, while the improvement from higher orders is marginal. In terms of hardware requirements,
the resource cost scales approximately linearly with the order of each term. For instance, a poly-
nomial like “x3 + x2 + x” requires around 6 resource units, while adding a term like “x5” would
demand an additional 5 units. Based on this trade-off, we selected the 3rd-order expansion as the
most balanced design choice. For those prioritizing accuracy over hardware efficiency, higher-order
expansions can be adopted and are compatible with our framework.

j) More inference metrics: For the inference comparison, we provide some more commonly used
metrics to better show the performance of DS-LLM.

Table 7: Additional Inference Metrics on average of all datasets.
Time to First Token (s) Token Generation Rate (token/s) Energy Efficiency (token/KWh)

GPT2 1.31E-4 7.62E+3 6.84E+7
GPT2-DS 1.20E-6 8.33E+5 1.11E+12

gpt2-m 3.92E-4 2.55E+3 2.38E+7
gpt2-m-DS 2.50E-6 4.00E+5 5.33E+11
OPT1.3B 6.85E-4 1.46E+3 1.37E+7

OPT1.3B-DS 6.00E-6 1.67E+5 2.22E+11
OPT2.7B 2.12E-3 4.72E+2 4.34E+6

OPT2.7B-DS 1.30E-5 7.69E+4 1.03E+11
Llama2-7B 7.08E-3 1.41E+2 1.35E+6

Llama2-7B-DS 3.30E-5 3.03E+4 4.04E+10

A.2 IMPLEMENTATION OF OTHER OPERATIONS

Due to the page limit, we only introduce the most important computing demanding operations in
Section 3. Here we provide the analysis and implementation of other operations.

a) Activation Functions: The activation function used in GPT-2 at its initial publication was the
ReLU function. However, many large language models (LLMs) have since transitioned to the Gaus-
sian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2017) for enhanced performance.

16

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
高亮

28782
文本框
D-Q2-2

28782
文本框
D-Q4-3

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The ReLU function is straightforward to implement in hardware by simply turning off the output
for spins with negative values. In contrast, the GELU function is more complex and is defined as
follows:

GELU(x) = 0.5x

(
1 + tanh

(√
2/π(x+ 0.044715x3)

2

))
(17)

The GELU function can be decomposed into matrix multiplication operations and the hyperbolic
tangent function. To approximate the tanh function, we employ the same Taylor series expansion
method used for the exponential function:

tanhTaylor(x) = x− x3

3
+

x5

5
(18)

Consequently, the implementation of the GELU function can be transformed into a series of matrix
multiplication operations, similar to the approach introduced for the exponential function in Fig. 3
in Section 3.3.

b) Layer Normalization: Layer normalization is a crucial function in Large Language Models
(LLMs). Unlike traditional Convolutional Neural Networks (CNNs), where normalization is per-
formed in the batch direction and can be fixed during inference, layer normalization involves com-
plex computations that cannot be avoided:

µ =
1

H

H∑
i=1

xi (19)

σ2 =
1

H

H∑
i=1

(xi − µ)2 (20)

x̂ =
x− µ√
σ2 + ϵ

(21)

y = γx̂+ β (22)

In this formulation, we can observe that the calculations of µ and y can be directly mapped to a
series of matrix multiplication operations, as previously discussed. Additionally, reduction circuits,
such as differential amplifiers, must be incorporated to handle the difference between xi and µ.
Furthermore, computing x̂ requires an additional circuit to manage the division operation. Thus, the
entire layer normalization operation can be effectively mapped to DS machines.

17

	Introduction
	Background and Preliminary Knowledge
	Dynamical-System-based Machine
	Large Language Models

	DS-LLM: Mapping LLM onto DS machine
	Overview
	Mapping Method
	Transformer Implementation
	Online Training with Electric-Current-Loss

	Evaluation
	Model and Training Setup
	Accuracy Comparison between DS-LLM and Original LLMs
	Performance of DS-LLM over LLMs on GPU
	Comparison with low-precision implementations for edge devices

	Related Work
	Conclusion
	Reproducibility Statement
	Appendix
	Discussion
	Implementation of other Operations

