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ABSTRACT

The training of large language models (LLMs) faces critical computational cost
challenges, hindering their scaling toward AGI and broader adoption. With model
sizes doubling approximately every 3.4 months and training costs surging from
$64 million for GPT-4 in 2020 to $191 million for Gemini Ultra in 2023, the
economic strain is unsustainable. While optimizations like quantization provide
incremental improvements, they fail to address the fundamental bottleneck. In this
work, we propose DS-LLM, a novel framework leveraging dynamic system (DS)-
based machines, which exploit Natural Annealing to instantaneously converge to
minimum energy states, enabling orders-of-magnitude gains in efficiency. Un-
like traditional methods, DS-LLM maps LLM components to optimization prob-
lems solvable via Hamiltonian configurations and utilizes DS machines’ contin-
uous electric current flow for hardware-native gradient descent during training.
We mathematically demonstrate the equivalence between existing LLMs and DS-
LLM:s and offer a viable approach to build a DS-LLM from a trained conventional
LLM. Evaluations using different sizes of models showcase a 1,238 x speedup and
a 116,563 x energy reduction on training, a 127 x speedup and a 37,545 x energy
reduction on inference, while maintaining consistent accuracy.

1 INTRODUCTION

Large language models are currently driving rapid advancements in Al, with their model sizes dou-
bling approximately every 3.4 months. This exponential growth demands unprecedented computa-
tional power for both training and inference. The cost of training an LLM from scratch has surged
from $64 million for GPT-4 in 2020 to $191 million for Gemini Ultra in 2023. Today, most cloud and
HPC resources are dedicated to LLMs, leading to significant societal and environmental cost and en-
ergy concerns. Meanwhile, Moore’s Law, the fundamental driver behind IT and Al development for
decades, is losing momentum, exacerbating the situation. While improving traditional computing
methods remains crucial, the need to pioneer new energy-efficient architectures—potentially sup-
ported by intelligence-carried designs—is becoming increasingly urgent to ensure the sustainable
and affordable scaling of Al models, particularly LLMs.

Some emerging candidates include quantum computing (Kerenidis et al., |2024), optical computing
(Anderson et al., 2024), and computing-in-memory (Tu et al., [2023)), etc. These emerging systems
hold great potential but each faces distinct technical challenges and generally requires further devel-
opment. Is it feasible, in the near term, to rely on mature CMOS-based technology to train LLMs
as quickly as CNNs, by reducing training time from 10 million hours to 10,000 hours, meanwhile
cutting energy consumption from 20 terajoules to 200 megajoules?

Recently, Dynamical-System-based (DS) machines have emerged which incorporate an
electrodynamics-based model that naturally converges to the minimum energy state by following
the physical dynamics of electrons. By correctly setting the initial state, boundary conditions, and
final state, various problems can be embedded into this “Natural Annealing” process. Because no
external energy is theoretically required during such a process, DS machines are extremely energy
efficient and have already demonstrated remarkable potential in some real-world applications. For
example, solving complex optimization problems like MAX-CUT in (Hamerly et al., 2019), work-
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Figure 1: Overview of DS-LLM.

ing on graph learning problems including traffic predictions in [2023), air quality, taxi
demand, and pandemic progression in (Wu et all 2024). DS machines are implemented through
CMOS-compatible analog processors that operate at room temperature. Previous work on graph
learning problems has shown over 1,000x speedup and more than 100,000x energy reduction,
while achieving even better accuracy compared to state-of-the-art (SOTA) Graph Neural Networks
(GNNs) on commercial GPUs.

Then, is it feasible to leverage DS machines to accelerate LLMs? Unfortunately, no existing work
provides a solution for mapping existing models like LLMs onto DS machines. The prior works
like ignore the architecture of mature neural networks and directly fit the data
to the energy landscape of DS machine. For highly complex tasks like natural language processing
(NLP), the energy landscape of a DS model would be much more intricate to fit the data distribution.
Building and learning such an energy landscape could be extremely challenging-can we leverage
existing, well-researched LLMs to help guide this process? In other words, can we equivalently
perform neural networks like LLLMs on DS machines using the powerful Natural Annealing process?

To this end, we propose the Dynamical System-based Large Language Model (DS-LLM), which
serves as an algorithmic framework to bridge LLMs and DS machines. DS-LLM constructs the
energy landscape of DS machines based on a reference LLM, enabling them to reproduce forward
outputs and harness the power of Natural Annealing for LLM inference. For training, we introduce
an Electric-Current-Loss based online training approach that allows LLM training on the same hard-
ware. This method directly leverages the rapidly evolving electric current in DS machines, which
naturally acts as gradients to continuously optimize parameters, thereby instantly shaping the en-
ergy landscape. The equivalence between DS-LLM and traditional LLMs, for both inference (Sec-
tion 3.2-3.3) and training (Section 3.4), is mathematically proven and empirically verified through
evaluation on models ranging from GPT2-124M to Llama2-7B. Experimental results showcase a
1,238 speedup and a 116,563 energy reduction on training, a 127x speedup and a 37,545 x
energy reduction on inference, while maintaining consistent accuracy.

To our knowledge, this is the first work to harness the computing power of DS machines to accelerate
existing models, particularly LLMs. The main contributions of this work are summarized as follows:

* We propose DS-LLM, the first algorithm framework to bridge LLMs to existing DS machines,
unlocking the remarkable power of Natural Annealing to equivalently perform LLMs on DS ma-
chines with theoretical and empirical proof.

* We propose an online continuous training method to achieve rapidly backpropagation on DS
machines, significantly enhance the training speed and energy efficiency.

2 BACKGROUND AND PRELIMINARY KNOWLEDGE

2.1 DYNAMICAL-SYSTEM-BASED MACHINE

(1) Hamiltonian and Natural Annealing: Dynamical systems implicitly incorporate an energy-
based DS model and its energy function is called Hamiltonian, a fundamental concept in physics
to describe the total energy of a system. The Hamiltonian of the backbone DS machine (Wu et al.,
2024)) is augmented from the Ising model which is a statistical physics model widely used in the
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modeling of interacting spins. The Hamiltonian is as below:

N N
H:_Zjijaiaj+zhia7;2a o, ER (1)
i£j i
where o are system spins, J are coupling parameters representing the correlations among spins,
and h are spins’ self-reaction intensity to external influence. While retaining the strengths of the
Ising model, this new Hamiltonian lifts its binary constraint to support real values, achieving high
performance on graph learning problems.

The computing power of DS machines stems from the process of Natural Annealing, an inherent
characteristic of dynamical systems. In systems such as interacting spin models, the Hamiltonian
naturally decreases due to spin interactions. From a physics perspective, this occurs because spins
tend to settle into lower energy states, guiding the system toward optimal solutions. To harness
Natural Annealing, the parameters .J and h are programmed based on the target problem, shaping
the Hamiltonian’s energy landscape to align the desired outcomes with its minimum states. As the
programmed DS machine initiates Natural Annealing from random initial conditions, the system
rapidly converges to an energy minimum, with the spin dynamics stabilizing at the target results.

(2) DS machine Hardware: Since programming interacting spins can be prohibitively expensive,
the backbone DS machine (Wu et al.l [2024) is built on electronic dynamical systems, which are
implemented using current CMOS technology.

Node Control Unit
C)
u

Column Programming Unit

As Fig. 2] shows, corresponding to equation [T} each DS machine
spin o; is implemented as a nano-scale capaci- i“ Hardware
tor within a node unit (IV;), with its voltage rep- I

resenting spin value. Each capacitor is coupled |3 ' i’{

with a programmable resistor, forming a feedback I

loop within the node unit that serves as the self- i’{

reaction parameters h. Capacitors from different _

node units (/V;&N;) are structurally connected by a i-J ii[ E]J

programmable resistor in coupling unit CUj; to per- : s

form the coupling parameters J. Natural Anneal- C : :

ing in this system is driven by voltage imbalances

across capacitors, which guide the natural movement Figure 2: The backbone DS machine Hard-
of electrons toward equilibrium, propelling the sys- ware.

tem to evolve toward energy minima.

The convergence of the Natural Annealing, in other words, the spontaneous energy decrease of the

Hamiltonian with time (dH /dt < 0) can be theoretically guaranteed by Lyapunov stability analysis
(Blaquiere} [2012). As Fig.[2]shows, for each spin o5, its electrodynamics behavior is designed as:

N
do; 10H
dt = Z JijO'j — hiai = _580'1- (2)
i#]
Then, following the chain rule we have:
dH OH do; 1 oM 5
o == <0 3

As the equations show, the system’s electrodynamics inherently drive the Hamiltonian toward a local
minimum. To escape local minima and achieve better solutions, several techniques can be employed
such as spin-flipping and noise injection (Afoakwa et al.| 2021)).

2.2 LARGE LANGUAGE MODELS

In this paper, LLMs refer to pre-trained Transformer models with billions of parameters, such as
GPT, Llama, Gemini, and Claude, which are among the most popular models today. Since the
Transformer model was introduced in (Vaswani, [2017), it has been successfully developed and has
demonstrated impressive performance not only in natural language processing (NLP) tasks but also
in areas such as computer vision (Wang et al.l 2023) and audio processing (Ghosal et al., [2023)).
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While modern LLMs are evolving toward multi-modal capabilities to handle tasks with mixed infor-
mation, this work focuses on the implementation of the classic Transformer model as an early-stage
exploration.

A classic Transformer consists of both an encoder and a decoder, whereas mainstream commercial
models like GPT are decoder-only. Despite this distinction, the key components of both encoder and
decoder are similar: multi-head self-attention, feed-forward Multilayer Perceptrons (MLPs), linear
projection layers, and layer normalization. In this work, we focus on the implementation of decoder-
based models, such as GPT-2 and OPT, with methods that can be adapted to other Transformer
variants.

While matrix multiplication remains a key computing demand in LLMs, like in CNNs, the bot-
tleneck of computing is the attention layer. Multi-head self-attention contributes to the impressive
performance of LLMs at the cost of extremely high computational requirements. Considering each
token x; as a row vector, the break down of multi-head self-attention of each head is:

qi = ﬂfiWQ, ki = 2Wk, vi = oWy 4

Qz‘ij
flaiky) = p(\/a

Y fla
ik (6)
Z Zj 1f(q“ i)

where Wq, Wi, and Wy, are learned weight matrices, and g;, k;, v; are the row vectors representing
the query, key, and value for token x;, respectively. Function f(g;, k;) measures the similarity be-
tween query and key. Consequently, the computation in the attention layer involves a weighted sum,
along with matrix multiplications and an exponential function. Based on the above decomposition,
the next chapter will demonstrate how the Transformer model can be implemented on DS machines
using Natural Annealing.

) &)

3 DS-LLM: MAPPING LLM ONTO DS MACHINE

3.1 OVERVIEW

In this chapter, we present a detailed, step-by-step guide on leveraging DS machines to enhance
LLMs on both inference and training. As illustrated in Fig. [T} while traditional transformer mod-
els are executed on digital GPUs using CUDA and tensor cores, DS-LLM maps the original model
into the energy landscape of DS machines, leveraging Natural Annealing for the forward pass. Ad-
ditionally, whereas conventional transformers are trained offline using backpropagation, DS-LLM
introduces an online Electric-Current-Loss based training method to implement rapid backprop-
agation. Thus, both inference and training of LLM are accelerated by harnessing the immense
computing power of DS machines.

In the following subsections, we will first introduce the key method to map existing models to the
energy landscape of DS machines, followed by a further extension of it to implement the entire trans-
former model with minor augmentations based on existing DS machines. Finally, we propose the
Electric-Current-Loss training method and explain how it works as an online rapid back-propagation.

3.2 MAPPING METHOD

The mapping of existing models to DS machines can follow two different approaches: one based
on the Hamiltonian level and the other on the electrodynamics level. To illustrate, we begin with a
single linear layer. Consider the input matrix X € R™*%~ | the output matrix Y € R™*%ut and the
weight matrix W € Rdewt*din along with an optional bias vector b € R%w¢. Since the bias term
b can be incorporated into the matrix multiplication operation, we will omit it for simplicity. Thus,
the function of this layer can be written as a single matrix multiplication Y = XW 7,

On the Hamiltonian level, to leverage the Natural Annealing process on DS machines, we must
shape the energy landscape so that its minimum energy state corresponds to the desired output.
To achieve this, we define a target function F' that minimizes the squared Frobenius norm of the
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difference (or Euclidean distance) between the output state of the DS machine, Ypg, and the desired
output, Xps W7 This forms the following minimization problem:

F = |Yos = XpsWT 5 =D (ya — Y wijzn)’ (7
il J

where w, =, and y represent elements of the matrices W, Xpg, and Yps, respectively, and 4,7,

and [ correspond to the dimensions n,d;,, and d,,;. The target function F' reaches its minimum,

Foin = 0, when Yps = XpsWT. Since the absolute value of F,,;, is not crucial, and Zj W T 41

remains constant during inference, we can simplify the target function by eliminating its second-

order term:

N
F=Y"ya—2> (yay wyz) ®)
(3,0) (3,0) J
After transforming the linear layer’s computation into a minimization problem, we program the DS
machine by aligning its Hamiltonian with this simplified target function, F. As shown in equation
Fisa special case of the Hamiltonian described in equation In this case, the spins o are divided
into two groups: x;;, representing the input, and y;;, representing the output. The self-reaction
parameters h; are set to 1 for y;;, while the coupling parameters J are assigned 2w;; between cor-
responding spins x;; and y;;, with all other elements set to 0. The value of h; for z;; does not affect
the convergence in equation because the input ;; is fixed, resulting in dx;; /dt = 0.

This configuration maps the target function F' to the Hamiltonian of the DS machine, enabling
the computation of this layer via Natural Annealing process. During this process, the Hamiltonian
will continuously decrease until it reaches a minimum (which is also the minimum of F), where
Yps = XpsW7T naturally emerges.

On the electrodynamics level, we can arrive at a similar conclusion. As seen in equation [2] the
electrodynamics behavior is governed by the coupling parameters .J and self-reaction parameters h.
According to Lyapunov stability analysis (Blaquierel |2012), all spins should stabilize at a specific
value when the system reaches a stable point, i.e., a local minimum. Hence, the electrodynamics of
all spins must satisfy a boundary condition where do/dt = 0. Dividing the spins o into two groups,
as before—input x and output y —along with the boundary condition, we arrive at:

SN Jijx;
= 9
Y I )
In this scenario, the spin electrodynamics exhibit a solvable stable point, allowing us to directly
program J and h to map the desired matrix multiplication results onto the spin dynamics. Evidently,

this leads to the same mapping setup as in the Hamiltonian-level analysis.

It is a fortunate coincidence that the backbone DS machine is naturally compatible with matrix
multiplication, one of the key computational demands in LLMs. However, when extending this
mapping method to more general functions, such as other operations in LLMs, the backbone DS
machine requires slight augmentation to support them.

3.3 TRANSFORMER IMPLEMENTATION

Based on the proposed mapping method, we then analyze the implementation of key components
besides matrix multiplication in transformer, and finally the whole model.

Recall the decomposition of self-attention layer, except linear projection layer in equation 4] which is
already implemented, there are still three key operations in attention layer left: a) Query-Key matrix
multiplication; b) Exponential function; ¢) Weighted-Sum operation, where a and b are shown in
equation 5] and c is shown in equation [6] Fig. [3]illustrates the implementation of these three key
operations, with detailed explanations provided below. The previously introduced implementation
of linear layer (also the matrix multiplication operation between weights and features) is also shown
in the figure as a reference.

a) Query-Key Matrix Multiplication: Unlike the typical multiplication in a linear layer, this opera-
tion occurs between two feature matrices generated online, rather than between features and weights.
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Figure 3: Implementation of key operations.

In the linear layer analysis, we assumed the weight matrix W is obtained offline and loaded onto
programmable resistors in the coupling units. Fortunately, these resistors in the backbone DS ma-
chine are implemented using transistors, and programming them is accomplished by adjusting the
voltage on their control ports—a common technique in CMOS design. Meanwhile, the spins in DS
machines are represented by capacitors, where the voltage corresponds to the spin value. Thus, we
can map the feature matrix K onto the programmable resistors by connecting the output voltage of
the spins to the control ports of the resistors with necessary scaling circuits.

b) Exponential approximation: The exponential function is computationally expensive and re-
quires a high-order Taylor expansion for approximation. Based on a pre-experiment, we explore the
trade-off between model accuracy and hardware cost and select a 3rd-order Taylor expansion as an
approximation. Details of this trade-off can be found in Appendix.

exp(T:)Taylors = 1 + = + 1/22% + 1/62° (10)

As Fig. [3 shows, both the second and third order terms are implemented in the same way as the
Query-Key Matrix Multiplication. We will show the experiments results later in evaluation part
to demonstrate that this approximation achieves comparable or even superior performance to the
original exponential function.

¢) Weighted-Sum: Similar to the matrix multiplication, we can build the target function:

F= Z Z f(qzv i) ) _Z( ij(%’akj)

Since the probability of )" . f(g;, k;) keeping zero is negligible in an evolving dynamical system,
we multiply it on equation [l 1|and reduce the constant terms:

N
S 1
F:—Zf(qz',kj)ywj+Z§Zf(qi,kj)yf (12)
i, i j

In this setup, we program f(g;, k;) to J;; like in the Query-Key Matrix Multiplication. Notice
that > ; f(ai, k;) can be regarded as a matrix multiplication operation between f(g;, k;) and an
all-ones vector, which can be mapped to DS machine as a simpliﬁed linear layer. The results are
connected to the programmable resistors in node units, where h; = % Z f(gi, k;) for y;, and set

h; = 0 for v;. With this setup, the Weighted-Sum operation in equation E] can also be mapped to the
Hamiltonian described in equation I}

)? (11)

i

At this point, we have most of the essential components of a transformer model. The other operations
which have relatively lower computing demanding like LayerNorm and activation are handled by
auxiliary functional units. Details of other operations can be found in the appendix.

Next, we demonstrate how to map the entire transformer model onto a DS machine. Assuming the
original model consists of multiple layers, each decomposed into P operations, its function can be
expressed as:

y= f(P) o f(Pfl) 0---0 f(2) o f(l)(;v) (13)

Since we have confirmed that the mapping method works for each computational component, we
can now construct the general target function as follows:

F®) = ((p+1))2 _ 9501 () (5, (P)) (14)

Here, we combine the mapping of all individual target functions by using the output of each
lower layer as the input to the higher layer, where x! is the initial input and ¥+ is the fi-
nal output. It’s important to note that when combining them, the influence between spins is
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unidirectional—from lower to higher layers—i.e., aﬁ(erl)/ 8zP) = (. Therefore, the Natural

Annealing process converges in each operation, ensuring that F'(P) reaches its minimum when
x(PJ"l) = f(P) o f(P_l) O+ of(l)(xl)'

In this setup, the entire transformer-based model can be mapped onto DS machines. With global
natural annealing, the model achieves the desired output when the system reaches its global energy
minimum.

3.4 ONLINE TRAINING WITH ELECTRIC-CURRENT-LOSS

After accelerating the forward pass of LLMs using Natural Annealing, we go further to enhance the
training of LLMs. The core idea is that a perfectly trained DS machine should reach the energy
minimum when its output spins match the ground truth from the training data. Based on our electro-
dynamics analysis of the mapping method, we propose an Electric-Current-Loss (ECL), leveraging
the physical currents in DS machine to achieve rapid online training.

As illustrated in Fig. {] for a linear layer, when Natural
Annealing converges, for each output spin y;, the total

incoming electric current I} = Z;V Jijx; at the node

unit must balance the internal current I} = h;y; flow- J:T_L N
ing through the resistor within the same node, ensuring T: -
that the capacitor voltage (representing the spin values) )

remains stable (dy;/dt = 0). Referring to equation@ if Figure 4: The feed back path of
we map the ground truth output g; onto the output spins .
and fix their values, we can define the internal current ref-

erence as Iy = h;y;. The difference between the incoming current I}, and the reference current I§

Electric-Current-Loss training.

forms a new loss function, expressed as Lgc = va (Il — I})%. This difference is equal to the

current through the sampling resistor r, I = Ii — I. We then update the parameters .J;; (notice h;
= 1 is constant) using gradient descent:

dLgc  OLgc 0L
AJ;; = e — 20y, 15
aJ; oI gy LT (15)

As depicted in Fig. 4] the multiplication of the loss current I} by the spin values z; or gj; can be
implemented at the circuit level. The resulting current is then fed back to the control port of the
programmable resistors in the coupling units (CUs) and nodes. Consequently, the parameters are
updated as J;; — J;; — AJ;;At by integrating the result current on the control capacitor of the
programmable resistors over a time interval At.

We propose this training method, named Electric-Current-Loss (ECL) online training, which aims
to minimize the loss function Lgc. Currently, this method only supports single-layer DS machines,
where a ground truth ¢; is available. It’s worth noting that brain-inspired methods, such as predictive
coding (Song et al |2020), have been proposed to generate internal reference values for each layer,
providing a lot of opportunities for extending ECL to multi-layer DS machines. However, in this
early-stage research, we focus on conventional backpropagation training to provide a baseline on
how to combine ECL with backpropagation to enable efficient LLM training on DS machines.

In the training of most LLMs, the loss in the output layer is typically computed using softmax
with cross-entropy, yielding OL/Jxz; = y; — yi, where x; represents the input logits. Referring
to equation [9] and equation [T4] after the DS machine completes the Natural Annealing process, the
output spin value y; should converge to the desired computational result f(©) (:z:(P )). If we map the
ground truth y; to the output spin of the final layer, we obtain:

oL N A
=y; — g = R
8va hi
Thus, the gradients of the logits can be realized as an electric current using the ECL train-
ing method. As shown in Fig. B the gradients in other layers are calculated by the ac-

tivations and the electric current loss from the later layer. Since the gradient of a matrix
multiplication operation is itself a matrix multiplication, this calculation can also be mapped

=1 (16)
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on DS machines. For some special non-polynomial operations, the calculation will be han-
dled by additional auxiliary circuits. Additionally, the mapping of forward process is direc-
tional and thus the connections and CUs from later layers to previous layers are not utilized.
Therefore we can leverage these CUs for the calcu-
lation of gradients without incurring extra cost. The
gradients are then integrated on the controlling ca-
pacitors, updating the parameters. In this way, we
combine ECL with backpropagation, creating an on-
line training method that gets rid of output readout
and leverages the fast forward computing of DS ma-
chines.

[
Iy, =Tin IR

ons P
“ Softmax&

CrossEntropy

4 EVALUATION

4.1 MODEL AND TRAINING SETUP

Models: We apply DS-LLM to two open-source models of varying sizes: GPT-2 (base and medium)
(Radford et al.,2019), OPT-1.3B and OPT-2.7B (Zhang et al., 2022), and Llama2-7B(Touvron et al.,
2023).

Tasks and Datasets: For all three models, we fine-tune and evaluate on five datasets from the GLUE
benchmark (Wang et al., 2019): SST-2 (Socher et al., 2013) for Single-Sentence Tasks, MRPC
(Dolan & Brockett, [2005) and QQP (DataCanary et al., 2017) for Paraphrase Tasks, QNLI (Ra-
jpurkar et al.l [2016) and RTE (Dagan et al., 2006) for Inference Tasks. Additionally, we pre-train
GPT-2-medium from scratch on OWT (Gokaslan & Cohen, 2019) to evaluate the impact of the
DS-LLM attention approximation.

DS machine evaluation: Although the backbone DS machine chip has been manufactured and
provides some public accessibility, this work requires additional augmentations. Therefore, we
employ a CUDA-based Finite Element Analysis (FEA) software emulator to simulate the Natural
Annealing process of DS machines. Upon publication, we plan to open-source the CUDA-based
emulator to support open research and design. Additionally, the power consumption are evaluated
using the Cadence Mixed-Signal Design Environment, with 45 nm CMOS technology.

Experiments Setup: The fine-tuning on the GLUE benchmark was conducted on 4 Nvidia A100
40GB GPUs. The global batch size was set to 32 for GPT-2 (124M), 16 for GPT-2-medium (355M)
and OPT-1.3B, and 8 for OPT-2.7B and Llama2-7B. We fine-tuned all models for 2 epochs on QQP
and 3 epochs on the other datasets. The optimizer used was AdamW with an initial learning rate of
2e-5, and all other parameters were kept as default, as provided by the Hugging Face Transformers
library. For pre-training GPT-2-medium, we utilized 80 Nvidia A100 40GB GPUs with a global
batch size of 480 and trained the model for 120,000 iterations. The optimizer was AdamW with
a 6e-4 initial learning rate, and other parameters were also kept at default settings. The inference
experiments are using the same global batch size as in the fine-tuning experiments.

4.2 ACCURACY COMPARISON BETWEEN DS-LLM AND ORIGINAL LLMS

In order to verify the accuracy loss of the proposed mapping method (DS-LLM) and training method
(ECL), we fine-tune and evaluate the models on selected datasets to compare the accuracy across
three model types: a) the original LLMs, trained offline and inferred on GPUs; b) DS-LLM models,
trained offline on GPUs but inferred on DS machines; and ¢) DS-LLM-ECL models, trained online
and inferred on DS machines. As shown in Table[T] the accuracy of DS-LLM models is comparable
to that of the original LLMs, with some even outperforming them, demonstrating that the approx-
imation loss during mapping is minimal and the mapping method is effective. The DS-LLM-ECL
models also maintains good accuracy, validating the feasibility of the ECL online training method.

We further validate the training behavior and convergence speed of the proposed DS-LLM mapping
method and the DS-LLM-ECL online training approach. The fine-tuning trajectories of the original
LLMs, DS-LLM, and DS-LLM-ECL models are visualized in Fig. @ Additionally, we present the
training curves of the original LLMs and DS-LLM during GPT-2 Medium pretraining; unfortunately,
we are unable to pretrain DS-LLM-ECL models due to computational limitations. Notably, both DS-
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Table 1: Accuracy comparison (in Accuracy (%)): the higher the better.

Task Paraphrase Tasks | Inference Tasks | Single-Sentence Tasks
Dataset MRPC | QQP RTE | QNLI SST2
GPT2 75.00 88.43 | 63.18 | 88.03 91.63
GPT2-DS 76.72 89.04 | 63.54 | 88.28 91.29
GPT2-DS-ECL 76.91 89.24 | 63.11 | 87.94 90.82
GPT2-M 79.66 90.57 | 68.59 | 91.05 93.58
GPT2-M-DS 79.17 90.55 | 70.40 | 90.33 93.35
GPT2-M-DS-ECL 79.31 90.09 | 70.41 | 89.73 93.06
OPT1.3B 84.07 90.94 | 7726 | 91.09 92.43
OPT1.3B-DS 87.01 88.48 | 78.70 | 91.41 92.20
OPT1.3B-DS-ECL 86.57 88.59 | 78.05 | 9145 91.81
OPT2.7B 86.52 91.03 | 82.33 | 93.15 94.08
OPT2.7B-DS 86.54 90.98 | 82.48 | 93.27 94.04
OPT2.7B-DS-ECL 86.74 90.67 | 82.44 | 9341 94.25
Llama2-7B 90.01 91.10 | 88.45 | 95.75 96.58
Llama2-7B-DS 89.47 90.95 | 88.70 | 95.69 96.32
Llama2-7B-DS-ECL | 89.56 91.08 | 88.57 | 95.73 95.79
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Figure 6: Visualization of training trajectories.

Table 2: Performance comparison on training time and energy consumption.

Metric Training time (s) Energy Consumption (J)

Dataset MRPC QQP RTE QNLI SST2 MRPC QQP RTE QNLI SST2
GPT2 5.17E+1 | 2.12E+3 | 4.56E+1 | 8.32E+2 | 3.07E+2 | 4.14E+4 | 1.69E+6 | 3.65E+4 | 6.66E+5 | 2.46E+5
GPT2-DS-ECL 4.44E-2 | 437E40 | 3.00E-2 | 1.26E+0 | 8.04E-1 | 3.77E-1 | 3.71E+1 | 2.55E-1 | 1.07E+1 | 6.83E+0
GPT2-M 1.62E+2 | 9.00E+3 | 1.55E+2 | 3.42E+3 | 1.32E+3 | 1.30E+5 | 7.20E+6 | 1.24E+5 | 2.74E+6 | 1.05E+6
GPT2-M-DS-ECL | 9.25E-2 | 9.10E+0 | 6.25E-2 | 2.63E+0 | 1.68E+0 | 7.86E-1 | 7.74E+1 | 5.31E-1 | 2.23E+1 | 1.42E+1
OPT1.3B 1.78E+2 [ 2.42E+4 | 1.77TE+2 | 6.46E+3 | 2.83E+3 | 1.42E+5 | 1.94E+7 | 1.42E+5 [ 5.17E+6 | 2.27E+6
OPT1.3B-DS-ECL | 2.22E-1 | 2.18E+1 | 1.50E-1 | 6.30E+0 | 4.02E+0 | 1.89E+0 | 1.86E+2 | 1.28E+0 | 5.36E+1 | 3.42E+1
OPT2.7B 3.90E+2 | 7.34E+4 | 3.71E+2 | 2.02E+4 | 1.20E+4 | 3.12E+5 | 5.87E+7 | 2.97E+5 | 1.61E+7 | 9.59E+6
OPT2.7B-DS-ECL. | 481E-1 | 473E+1 | 3.25E-1 | 1.37E+1 | 8.71E+0 | 4.09E+0 | 4.02E+2 | 2.76E+0 | 1.16E+2 | 7.40E+1
Llama2-7B 1.55E+3 | 2.17E+5 | 1.49E+3 | 6.27E+4 | 3.46E+4 | 1.24E+6 | 1.73E+8 | 1.19E+6 | 5.02E+7 | 2.77E+7
Llama2-7B-DS-ECL | 1.22E+0 | 1.20E+2 | 8.25E-1 | 3.47E+1 | 2.21E+1 | 1.04E+1 | 1.02E+3 | 7.01E+0 | 2.95E+2 | 1.88E+2

Table 3: Performance comparison on inference time and energy consumption.

Metric Inference time (s) Energy Consumption (J)
Dataset MRPC QQP RTE QNLI SST2 MRPC QQP RTE QNLI SST2
GPT2 1.38E-1 | 1.17E+1 | 1.43E-1 | 1.84E+0 | 2.84E-1 | I.I0E+2 | 9.37E+3 | 1.14E+2 | 1.47E+3 | 2.27E+2

GPT2-DS 2.04E-3 | 4.69E-1 | 3.60E-3 | 6.48E-3 | 2.16E-3 | 551E-3 | 1.27E+0 | 9.72E-3 | 1.75E-2 | 5.83E-3
GPT2-M 4.46E-1 | 3.79E+1 | 3.23E-1 | 5.42E+0 | 8.75E-1 | 3.57E+2 | 3.03E+4 | 2.58E+2 | 4.34E+3 | 7.00E+2
GPT2-M-DS 4.25E-3 | 9.78E-1 | 7.50E-3 | 1.35E-2 | 4.50E-3 | 1.15E-2 | 2.64E+0 | 2.03E-2 | 3.65E-2 | 1.22E-2
OPT1.3B 6.28E-1 | 6.28E+1 | 6.86E-1 | 1.07E+1 | 1.23E+0 | 5.02E+2 | 5.03E+4 | 5.49E+2 | 8.56E+3 | 9.82E+2
OPT1.3B-DS 1.02E-2 | 2.35E+0 | 1.80E-2 | 3.24E-2 | 1.08E-2 | 2.75E-2 | 6.33E+0 | 4.86E-2 | 8.75E-2 | 2.92E-2
OPT2.7B 1.94E+0 | 2.05E+2 | 2.11E+0 | 3.24E+1 | 4.01E+0 | 1.55E+3 | 1.64E+5 | 1.69E+3 | 2.60E+4 | 3.21E+3
OPT2.7B-DS | 2.21E-2 | 5.08E+0 | 3.90E-2 | 7.02E-2 | 2.34E-2 | 597E-2 | 1.37E+1 | 1.05E-1 | 1.90E-1 | 6.32E-2
Llama2-7B 6.35E+0 | 6.28E+2 | 6.98E+0 | 1.09E+2 | 1.35E+1 | 5.08E+3 | 5.02E+5 | 5.58E+3 | 8.76E+4 | 1.08E+4
Llama2-7B-DS | 0.0561 12.903 0.099 0.1782 0.0594 | 1.51E-1 | 3.48E+1 | 2.67E-1 | 481E-1 | 1.60E-1

LLM and DS-LLM-ECL exhibit convergence curves that closely match those of the original models,
demonstrating that the mapping and online training methods effectively replicate the performance
of traditional LLMs on DS machines.

4.3 PERFORMANCE OF DS-LLM OVER LLMs oN GPU

Table. [2| compares the total training time on the whole dataset and estimated energy consumption
between the original model on GPU and DS-LLM-ECL on the DS machine. On average across all
fine-tuning tasks, DS-LLM-ECL achieves a 1,238 x speedup and a 116,563 reduction in energy
consumption. The power consumption of the 4 A100 40GB GPUs is estimated at 800 watts, while
the DS machine consumes approximately 8.5 watts.

Table. [3] shows the comparison of total inference time on the whole evaluation dataset and energy
consumption between the original LLMs on GPU and DS-LLM on the DS machine. On average
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across all inference tasks, DS-LLM delivers a 127x speedup and a 37,545% reduction in energy
consumption. During inference, the DS machine primarily performs Natural Annealing, consuming
significantly less energy than during training, resulting in a power consumption of just 2.7 watts.

The performance of GPUs are evaluated based on naive implementation without special optimization
technologies. There are lots of GPU optimization works like VLLM can obviously improve the
performance of GPU.

Table 4: Comparison on Llama2-7B with low-precision CPU and edge devices.

Solutions Token Generation Rate (tokens/s) | Energy Efficiency (tokens/KWh)
Low Precision CPUs(Shen et al.[2023) 454 1.63E+6
Cambricon-LLM(Yu et al.; 2024) 3.55 3.60E+6
DS-LLM (this work) 3.03E+4 4.04E+10

4.4 COMPARISON WITH LOW-PRECISION IMPLEMENTATIONS FOR EDGE DEVICES

For a more comprehensive evaluation on inference, we also compared our DS-LLM with some low-
precision implementations for edge devices, including accelerating LLM inference on low-precision
CPU(Shen et all, 2023) and a new edge device Cambricon-LLM(Yu et al [2024) on Llama2-7B
model. The power of the CPU work is estimated as 100W, which is lower than any specific CPU
they used. The results show that DS-LLM achieves orders of magnitudes higher token generation
rate and energy efficiency than the references. This is because both low-precision CPUs and edge
devices rely on digital computing paradigms that execute step-by-step, instruction-based operations.
In contrast, DS machines operate without the need for micro-instructions, leveraging continuous
natural annealing through analog currents. This enables DS machines to achieve exceptional speed
and energy efficiency.

5 RELATED WORK

The early-stage research on DS machines is rooted in the Ising model, which supports only binary
spin values and primarily addresses binary optimization problems (Afoakwa et all [2021). Our
backbone DS machine was proposed in NPGL (Wu et al., 2024) and applied to graph learning
problems. However, NPGL employs an individual learning method that ignores the architecture of
Neural Networks, limiting its ability to leverage existing technologies effectively.

There are several variants of dynamical systems, such as optical (Inagaki et al.,[2016) and oscillator-
based (Lo et al.| 2023)) Ising machines. Although these approaches show promise, they have yet to
be successfully integrated into machine learning applications. To the best of our knowledge, this
work represents the first attempt to combine existing machine learning models, particularly Large
Language Models (LLMs), with DS machines.

6 CONCLUSION

In this work, we introduce DS-LLM, the first algorithmic framework that bridges LLMs to exist-
ing DS machines, harnessing the power of Natural Annealing to efficiently execute LLMs on DS
hardware. For training, we propose the ECL-based online training method, enabling DS-LLM to be
trained on the same hardware used for inference. The mathematical equivalence between DS-LLM
and traditional LLMs is proven and validated through experiments on models from GPT-2 to OPT-
1.3B. Results demonstrate consistent accuracy while achieving a 1,238 speedup and 116,563 x
energy savings during training, along with a 127 x speedup and 37,545 x energy reduction in infer-
ence. In conclusion, DS-LLM presents a promising new solution for the community, with significant
opportunities for further exploration in future studies.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we have provided detailed descriptions of the experimen-
tal settings in Section 4.1. The CUDA-based Finite Element Analysis emulator used in this study
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is adapted from the one used in (Afoakwa et al.l [2021). We also plan to open-source this emulator
upon publication.
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A APPENDIX

A.1 DISCUSSION

As an early-stage research endeavor, DS-LLM seeks to introduce a promising new computing
paradigm to address the growing computational demands of LLMs. Although still in its infancy,
this section aims to discuss and analyze its potential, challenges, and future directions.

a) Feasibility: First, we want to highlight that there are no fundamental challenges to integrate
DS machines into existing computing systems. DS machines, though architecturally distinct from
digital processors, are built using CMOS-compatible technology. This compatibility ensures they
can be integrated seamlessly into existing systems as co-processors (similar to TPUs or NPUs) via
interfaces like PCle. Theoretically, no fundamental hardware adaptations are required.

From a system perspective, though this work is still in early stage, we agree that integration to the
existing computing infrastructure is very promising as future exploration. There are a lot of explo-
ration space on developing software tool-chain like compilers, optimizing memory management,
and pipelining tasks between DS machines and other processors. With all these works and software
tools help, we believe DS machines are inherently feasible for integration into digital systems and
work as a new type of co-processor like GPUs / TPUs / NPUs. Future work can explore hybrid
use cases that combine CPUs, GPUs, and DS machines based on their unique strengths to achieve
optimal performance.
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810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827 Taylor Expansion order | Validation loss | Loss Drop | Hardware cost (units)
828 Inf (baseline exponential) 3.25 0 -

3.35 0.10 1
o 3.28 0.03 6
830

327 0.02 15
831 327 0.02 23
832

~| | W[

833

D-Q2-2|..,

835
836
837
838
839
840
841

D-Q4-3]%~

843

844
845

846
847 Time to First Token (s) | Token Generation Rate (token/s) | Energy Efficiency (token/KWh)
GPT2 131E-4 7.62E+3 6.84E+7
848 GPT2-DS 1.20E6 8.33E+5 T1IE+12
849 2pt2-m 3.92E4 2.55E+3 2.38E+7
850 gpt2-m-DS 2.50E-6 4.00E+5 5.33E+11
851 OPT1.3B 6.85E-4 1.46E+3 1.37E+7
OPT1.3B-DS 6.00E-6 1.67E+5 222E+11
852 OPT2.7B 2.12E3 172E+2 434546
853 OPT2.7B-DS 1.30E-5 7.69E+4 1.03E+11
854 Llama2-7B 7.08E-3 1.41E+2 1.35E+6
855 Llama2-7B-DS 3.30E-5 3.03E+4 4.04E+10

856

857

858 A.2 IMPLEMENTATION OF OTHER OPERATIONS
859
860
861
862 a) Activation Functions: The activation function used in GPT-2 at its initial publication was the

863 ReLU function. However, many large language models (LLMs) have since transitioned to the Gaus-
sian Error Linear Unit (GELU) (Hendrycks & Gimpell, [2017) for enhanced performance.

Due to the page limit, we only introduce the most important computing demanding operations in
Section 3. Here we provide the analysis and implementation of other operations.
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The ReLU function is straightforward to implement in hardware by simply turning off the output
for spins with negative values. In contrast, the GELU function is more complex and is defined as
follows:

3
GELU(z) = 0.5z (1 4+ tanh ( v2/m(z + 2'04471596 )>> a7

The GELU function can be decomposed into matrix multiplication operations and the hyperbolic
tangent function. To approximate the tanh function, we employ the same Taylor series expansion
method used for the exponential function:

x x
tanhmyior(2) =2 — - + — (18)

Consequently, the implementation of the GELU function can be transformed into a series of matrix
multiplication operations, similar to the approach introduced for the exponential function in Fig.
in Section 3.3.

b) Layer Normalization: Layer normalization is a crucial function in Large Language Models
(LLMs). Unlike traditional Convolutional Neural Networks (CNNs), where normalization is per-
formed in the batch direction and can be fixed during inference, layer normalization involves com-
plex computations that cannot be avoided:

1 H
= E;x (19)
o? = l§H:<rc- - p)? (20)
H i=1 '
. x—p
_ 21
* Vo?4e @D
y=v&+p (22)

In this formulation, we can observe that the calculations of 1 and y can be directly mapped to a
series of matrix multiplication operations, as previously discussed. Additionally, reduction circuits,
such as differential amplifiers, must be incorporated to handle the difference between x; and pu.
Furthermore, computing & requires an additional circuit to manage the division operation. Thus, the
entire layer normalization operation can be effectively mapped to DS machines.
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