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ABSTRACT

This work studies training instabilities of behavior cloning with deep neural net-
works. We observe that minibatch SGD updates to the policy network during
training result in sharp oscillations in long-horizon rewards, despite negligibly
affecting the behavior cloning loss. We empirically disentangle the statistical
and computational causes of these oscillations, and find them to stem from the
chaotic propagation of minibatch SGD noise through unstable closed-loop dy-
namics. While SGD noise is benign in the single-step action prediction objective,
it results in catastrophic error accumulation over long horizons, an effect we term
gradient variance amplification (GVA). We show that many standard mitigation
techniques do not alleviate GVA, but find an exponential moving average (EMA)
of iterates to be surprisingly effective at doing so. We illustrate the generality
of this phenomenon by showing the existence of GVA and its amelioration by
EMA in both continuous control and autoregressive language generation. Finally,
we provide theoretical vignettes that highlight the benefits of EMA in alleviating
GVA and shed light on the extent to which classical convex models can help in
understanding the benefits of iterate averaging in deep learning.

1 INTRODUCTION

Deep neural networks are increasingly used in machine learning tasks that contain feedback loops
as a defining characteristic: outputs of language models depend on previously predicted tokens
(Vaswani et al., 2017), recommendation systems influence the users to whom they give suggestions
(Krauth et al., 2020; Dean & Morgenstern, 2022), and robotic policies take actions in reactive control
environments (Ross & Bagnell, 2010; Laskey et al., 2017). Because these tasks are so complex, it
is standard practice to optimize surrogate objectives, such as next-token prediction, that typically
ignore feedback loops altogether (Pomerleau, 1988; Vaswani et al., 2017; Florence et al., 2022).

When training deep models by gradient updates on the surrogate objective, surrogate performance
often improves more or less monotonically as training progresses. At the same time, successive
iterates can exhibit wild variations in their performance on the task of interest. Because it is often
impractical to evaluate the desired performance metric at multiple checkpoints, these oscillations
imply that we have high risk of selecting and deploying a poor policy. Thus, in order to deter-
mine best practices, we must first understand whether better training or better data will fix these
instabilities. This leads us to ask:
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Figure 1: Typical reward instabilities over long-horizon (H = 1000) rollouts of neural behavior
cloners for the Walker2d-v4 MuJoCo locomotion task. Left: Rollout rewards (blue training
curves) oscillate dramatically over the course of training (evaluated every 5000 iterations), while
BC loss is stable. Center: Zoomed-in view of the highlighted region in (left). Large reward fluctua-
tions are evident even between consecutive gradient iterates. Right: Exhaustive evaluation of small
neighborhoods (in stochastic gradient directions) around iterates 115K and 120K, revealing a fractal
reward landscape ✓ 7! JH(⇡✓); this jaggedness is invisible in the 1-step behavior cloning objective
`BC(⇡✓). Iterate averaging (EMA) drastically mitigates these effects (green training curves). Details
are provided in Appendix C.1.1.

What causes instabilities in learning systems with feedback loops? To what ex-
tent can they be mitigated by algorithmic interventions alone, without resorting to
collecting additional data?

We explore this question in the context of behavior cloning (BC), a technique for training a policy to
optimize a multi-step objective in a purely offline manner. This is achieved by introducing a surro-
gate loss function `BC (behavior cloning loss) that measures the distance between actions generated
by some expert policy ⇡✓? and those taken by the learner’s policy, and then minimizing `BC over an
offline dataset of expert trajectories. BC is sufficiently broad as to capture important tasks ranging
from robotics and autonomous driving (Pomerleau, 1988; Codevilla et al., 2018; Chi et al., 2023)
to autoregressive language generation (Chang et al., 2023a), and is popular in practice due to its
simplicity and purely offline nature.

Our starting point is to observe that behavior cloning with deep neural networks exhibits training

instabilities in which the multi-step objective (JH ), or rollout reward, of nearby checkpoints oscil-
lates wildly during training, despite a well-behaved validation loss for `BC, even at the single iterate
frequency; Figure 1 exhibits this phenomenon for a sample training curve of a behavior cloning pol-
icy in the Walker2d-v4MuJoCo locomotion task (Towers et al., 2023; Todorov et al., 2012). This
oscillatory behavior is clearly undesirable; we cannot differentiate between low- and high-quality
iterates based on (validation loss for) `BC, and thus cannot reliably select a high-quality policy.

With regard to the final performance of BC, it is well understood that scarce or low-quality data can
lead to statistical challenges and consequent performance degradation of imitator policies; unsurpris-
ingly, better data often improves the quality of a learned policy. Unfortunately, existing approaches
to obtaining better data require either interactive access to the demonstrating expert (Ross & Bag-
nell, 2010; Laskey et al., 2017) or additional side information (Pfrommer et al., 2022; Block et al.,
2023a); these interventions may be costly or impossible in many applications. Thus, in this work we
treat the data generating process as fixed and aim to investigate whether we can mitigate oscillations
and improve the performance of BC solely through the application of better algorithmic choices.

1.1 CONTRIBUTIONS

In this paper, we aim to diagnose and ameliorate instabilities in behavior cloning that arise from
training on the surrogate cost alone in the purely offline setting. Our findings are as follows.

Diagnosis of rollout oscillations: gradient variance amplification. In Section 3, we conduct an
extensive empirical study (278 distinct interventions) of BC in continuous control tasks and inves-
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tigate the effects that architecture, regularization, and optimization interventions have on training
instability. We identify the presence of training oscillations and attribute them to gradient variance
amplification (GVA): the propagation of minibatch SGD noise through closed-loop dynamics, lead-
ing to catastrophic error amplification resembling butterfly effects in chaotic systems. We ablate
away much of the statistical difficulty, so that the presence of oscillations suggests that GVA is an
algorithmic rather than statistical pathology.

Mitigating GVA: stabilizers for unstable optimizers. In Section 4, we investigate mitigations for
GVA. Because GVA is caused by variance in the stochastic gradients, it can be ameliorated with
variance reduction. Indeed, we observe (Section 3.2) that i) aggressively decaying the learning rate,
and ii) greatly increasing the batch size through gradient accumulation, both have positive effects
on the stability of training. Unfortunately, both of these interventions come at a great increase in
compute cost. As such, our most significant finding (Section 4.1) is that iterate averaging by taking
an Exponential Moving Average (EMA) of the optimization trajectory (Polyak & Juditsky, 1992;
Ruppert, 1988), stabilizes training and mitigates GVA across a wide range of architectures and tasks,
with essentially no downsides. While iterate averaging is popular in many deep learning research
communities, this paper exposes iterate averaging as an essential design consideration when training
any deep model in the presence of feedback loops.

A preliminary study of GVA in language generation. In Section 4.2, we broaden our focus by
considering autoregressive sequence models. Our findings suggest that unstable optimizers, when

stabilized with iterate averaging to mitigate GVA, do not need full learning rate decay, entailing
potential computational and statistical benefits for training language models. For this reason, we
suggest that EMA and related filters be designated as stabilizers in their own right and incorporated
into deep learning pipelines in the same vein as modern optimizers and schedulers.

The applicability of convex theory. In Section 4.3, we complement our empirical results with the-
oretical vignettes. While the benefits of large learning rates cannot be explained in a convex setting,
we demonstrate that—conditional on using theoretically suboptimal learning rates—stochastic con-
vex optimization provides useful intuition for the causes and mitigations of GVA in deep learning.
With our empirical results, these findings add to a line of work on surprising near-convex behavior
in deep learning (Sandler et al., 2023; Frankle et al., 2020; Fang et al., 2022; Schaul et al., 2013).

1.2 RELATED WORK

Understanding and mitigating the effects of error amplification in behavior cloning has been the
subject of much empirical work (Ross & Bagnell, 2010; Laskey et al., 2017), but most approaches
use potentially impractical online query access to the expert policy; instead, we focus on a purely
offline setting.

Complicated value function landscapes and their effect on training have been investigated in the
context of planning in RL, with Dong et al. (2020) investigating natural examples of fractal reward
functions, Wang et al. (2021) examining the instabilities arising from poor representations, and
Emmons et al. (2021); Chang et al. (2023a) observing the fact that `BC is a poor proxy for JH . To
the best of our knowledge, there has not been a systematic study of training instability in the sense
of rollout reward oscillation of nearby checkpoints.

In the context of stochastic optimization and optimization for deep learning, many previous works
have attempted to reduce variance in theory (Polyak & Juditsky, 1992; Ruppert, 1988) and practice
(Izmailov et al., 2018; Busbridge et al., 2023; Kaddour, 2022; Kaddour et al., 2023). Of particular
note is Sandler et al. (2023), which demonstrates (empirically and in a toy theoretical setting) a
form of equivalence between learning rate decay and iterate averaging. Our focus is not on variance
reduction per se, but rather on the propagation of ,variance through unstable feedback loops. We
expand on the relationship between our work and Sandler et al. (2023) and discuss other related
work in Appendix B.

2 PRELIMINARIES

MDP formalism. We let M = (S,A, P, r,H, ⌫) denote a finite-horizon Markov decision process
(MDP), where S is an abstract state space, A is an abstract action space, P : S ⇥ A ! �(S) is
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a Markov transition operator. We denote by r : S ⇥ A ! [0, 1] a reward function and H 2 N is
the length of the horizon. Because we focus on continuous control tasks, we follow the notational
conventions of control theory, denoting states by x and actions by u. We let ⌫ 2 �(S) denote the
initial distribution such that a trajectory from M consists of x1 ⇠ ⌫ and xh+1 ⇠ P (· | xh,uh) for
all h.

The learner has access to a class of policies ⇡ : S ⇥ ⇥ ! �(A), where ⇥ is the parameter space
and ⇡✓ : S ! �(A) is the policy induced by parameter ✓ 2 ⇥. Given a policy ⇡✓ , we denote its
expected cumulative reward by JH(⇡✓) = E[

P
H

h=1 r(xh,uh)] where uh ⇠ ⇡✓(·|xh) and the ex-
pectation is with respect to both the transition dynamics of M and the possible stochasticity of the
policy. Our experiments focus on MDPs whose transition operators P are deterministic, i.e., there
exists a function f : S ⇥A ! S such that xh+1 = f(xh,uh) for all h. In this case the only stochas-
ticity of the system comes from the sampling of the initial state x1 ⇠ ⌫ (and possibly the policy).

Imitation learning and behavior cloning. In imitation learning, we are given an offline data set
of N trajectories Do↵ = {(x(i)

h
,u(i)

h
)1hH | 1  i  N} generated by an expert policy ⇡✓?

interacting with the MDP M. In this work, we always consider deterministic policies, i.e., where
for all x, ⇡✓(x) has support on a single action; in particular this holds for the expert ⇡✓? . The goal
of the learner is to produce a policy ⇡b✓ that maximizes the expected cumulative reward JH(⇡b✓)
over an episode. We focus on the popular behavior cloning (BC) framework, where we fix a loss
function `BC : A ⇥ A ! R that measures the distance from the actions produced by ⇡✓? , and learn
⇡b✓ by attempting to minimize the empirical risk of `BC over Do↵ ; we abuse notation by denoting
`BC(⇡✓) := EDoff [`BC(⇡✓(x),u)] The basic premise behind behavior cloning is that `BC should
be chosen such that if `BC(⇡b✓) ⌧ 1 then JH(⇡b✓) ⇡ JH(⇡✓?); that is, imitation of the expert is
a surrogate for large cumulative reward. In line with common practice in BC (Janner et al., 2021;
Shafiullah et al., 2022; Chi et al., 2023), the imitator policies in our experiments augment the state
with the previous action, i.e., ⇡✓ : S ⇥A ! A, which can be integrated into the previous formalism
by expanding the state space. For the special case of the first state x1, we always let u0 = 0.

Notation. Throughout the paper, we denote vectors by bold lower case letters and matrices by bold
upper case letters.1 We reserve ✓ for a parameter of our policy and JH for the cumulative reward
over a trajectory, omitting H when it is clear from context. For conciseness, we often refer to JH as
the reward; the per-step reward function r makes no appearance in the rest of the paper. Given a set
U , we let �(U) denote the class of probability distributions on U .

3 DIAGNOSIS OF ROLLOUT OSCILLATIONS: GRADIENT VARIANCE
AMPLIFICATION

3.1 INSTABILITIES IN BEHAVIOR CLONING OF MUJOCO TASKS

Experimental setup. We investigate instabilities in behavior cloning for the {Walker2d,
Hopper, HalfCheetah, Humanoid, Ant}-v4 environments from the OpenAI Gymnasium
(Towers et al., 2023), all rendered in MuJoCo (Todorov et al., 2012). We focus on Walker2d-v4
for the discussion that follows, and defer detailed discussion of further environments (which exhibit
similar behavior) to Appendix C. Our expert is a multilayer perceptron (MLP) trained with Soft Ac-
tor Critic (SAC) (Haarnoja et al., 2018) for 3M steps with stable-baselines3 (Raffin et al.,
2021), with out-of-the-box hyperparameters.2 The default imitator is a 4 layer MLP; details are in
Appendix C. We examine several widths and depths, as well as Transformer (Vaswani et al., 2017)
imitators.

Our first suite of experiments aims to isolate instability from statistical difficulties. We set up the
experiments to make the behavior cloning problem as easy as possible. First, we focus on the
“large-data” regime N = H = 1000, in which overfitting with respect to the BC loss `BC(⇡b✓) is
not a problem (see Figure 1), and thus poor rollout performance for JH(⇡b✓) cannot be blamed on

1In particular, we denote states by x and actions by u in order to emphasize that, in our experiments, they
are vectors in Euclidean space.

2By default, the Stable-Baselines3 SAC agent is stochastic, but we enforce determinism by selecting the
mean action of the resulting policy. This results in negligible degradations to the rewards; see Figure 5.
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insufficient data; this removes a typical source of statistical difficulty faced in applying behavior
cloning to domains such as robotics (Chi et al., 2023; Pfrommer et al., 2022; Ross & Bagnell, 2010;
Laskey et al., 2017). Beyond focusing on the large-data regime, (i) we consider only deterministic
dynamics and deterministic experts, and (ii) we include within our default model the same class of
MLPs that parameterize the expert policies, ensuring that expressivity is not an issue. As such, we
have placed ourselves in perhaps the easiest possible setting for behavior cloning.

In Figure 1 (Left), we compare the evolution of the BC loss `BC(⇡b✓) (on a validation set) and
reward JH(⇡b✓) for imitator policies in the Walker2d-v4 MuJoCo locomotion task. In this figure,
we observe extreme oscillatory behavior in JH(⇡b✓), juxtaposed with smoothly decaying `BC(⇡b✓).
In Figure 1 (Middle), we zoom in on the training trajectory between iterates 40K and 50K and
observe that the same instability persists even at the every-iterate level. Toward identifying what
causes these instabilities, Figure 1 (Right) displays an experiment in which we independently sample
two stochastic gradients of the training loss at a fixed checkpoint with good rollout reward. Policy
weights are then perturbed by small steps in each of the two directions, and we evaluate the resulting
reward JH(⇡b✓) over 20 rollouts, along with the BC loss `BC(⇡b✓) on a held-out validation set. We see
that nearby models vary erratically in terms of rollout performance, but vary smoothly in validation
BC loss. These findings are reproduced consistently across the other environments and architectures
in Appendix C; thus, we conclude:

(R1) The reward landscape is highly sensitive to small changes in policy parameters: small
perturbations in model weights induce butterfly effects in the reward JH(⇡b✓). In contrast, in
the same regions, the BC loss landscape ✓ 7! `BC(⇡✓) is well-behaved (nearly linear locally).

3.2 INSTABILITY IS CAUSED BY GRADIENT VARIANCE AMPLIFICATION

We now present compelling evidence that variance in stochastic gradients during training is re-
sponsible for training instability, because gradient variance is amplified through the sensitivity

of the rollout rewards to fluctuations in network parameters. In Figure 2, we visualize evolu-
tion of both `BC(⇡b✓) and JH(⇡b✓) over training for a variety of potential algorithmic interventions.
We find that neither changing the model architecture and scale (1st row) nor standard regulariza-
tion techniques (2nd row) ameliorate the training instabilities observed. We do see, however, that
aggressively decaying the learning rate and increasing the batch size (3rd row) significantly reduces
oscillations (at least when measuring mean rewards), at the expense of substantially slowing down
training. Thus, we conclude that fluctuations from stochasticity in the gradients are to blame for
oscillations in rollout rewards, and term this phenomenon gradient variance amplification (GVA).
To summarize:

(R2) GVA arises from algorithmic suboptimality rather than an information-theoretic limit.

Even with “infinite” training data (i.e., fresh trajectories with i.i.d. initial conditions at each
training step), rollout oscillations persist.

(R3) Training oscillations are not mitigated by many standard approaches to regularization,
including architectural interventions and increased regularization. On the other hand, oscilla-

tions are ameliorated by variance reduction techniques, such as large batch sizes, learning
rate decay, and iterate averaging.

Appendix C shows that (R2) and (R3) remain true across environments and model architectures. In
addition, we find that training instability is not the result of inadequate network architecture; we
observe oscillations across model scales, and for both MLP and Transformer architectures.

While Figure 2 shows that it is possible to quell GVA using small learning rates or large batch
sizes, this may not always be practical, as both interventions can incur steep computational costs.3
Even worse, the success of continuous optimization in deep learning depends on non-convex fea-
ture learning mechanisms (Chizat et al., 2019), and too small a learning rate or too large a batch
size can have deleterious effects on generalization.4 Thus, it is vital to seek interventions that are
holistically compatible with existing deep learning pipelines. Among these, Figure 2 highlights that

3As another unsatisfactory compromise, we also find that shallower models are less susceptible to GVA.
4We refer to some theoretical and empirical accounts in Appendix B.
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Figure 2: Highlights from a large suite of experiments, suggesting an algorithmic (rather than sta-
tistical) origin of reward oscillations. All plots use the 4-layer MLP architecture unless otherwise
specified. Blue curves show mean rewards over 20 initial conditions, while teal dots show disag-
gregated per-episode rewards (such that each point represents the rollout reward of a fixed initial
condition of the policy at the current iterate). These oscillations persist across dataset sizes, archi-
tectures, model scales, and choices of regularizers, and diminish toward the end of training as the
learning rate decays to 0. They are most strongly mitigated by variance reduction strategies. Here,
we opt for direct visualizations, providing a qualitative demonstration of GVA and its mitigations.
We accompany these with quantitative comparisons in Appendix C.1.2.

a large momentum coefficient is mildly helpful, but taking an exponential moving average (EMA)
of iterates (Polyak & Juditsky, 1992) is extremely effective. This motivates us to take a closer look
at the latter in Section 4 through another suite of experiments.

3.3 UNDERSTANDING GVA: MISMATCH BETWEEN BC LOSS AND ROLLOUT REWARD

The disparity between behavior cloning loss `BC(⇡b✓) and rollout reward JH(⇡b✓) has long been ap-
preciated in the imitation learning literature, and is understood to be caused by error amplification,
the process by which mildly erroneous predictions, when fed repeatedly through feedback loops,
result in highly suboptimal performance (Chen & Hazan, 2021; Wang et al., 2020a). More pre-
cisely, for given `BC and JH as well as a policy ⇡✓? and � > 0, we define the error amplification
constant at scale � to be the maximal value (with respect fo ✓) for JH(⇡✓?) � JH(⇡✓) such that
`BC(⇡✓) � `BC(⇡✓?) < �. The following proposition provides a simple theoretical illustration for
how small fluctuations in BC loss can be drastically amplified by feedback between imperfectly-
imitated policies and system dynamics.
Proposition 3.1 (Example of exponential error amplification). Let B� denote the set of �-Lipschitz
functions � : S ! A with �(0) = 0. For any � > 0, there exists a deterministic MDP with horizon
H and an expert policy ⇡✓? such that the dynamics are Lipschitz in both state and action and ⇡✓? is
Lipschitz in the state, and such that

sup
�2B�

{JH(⇡✓?) � JH(⇡✓? +�)} � ⌦(H) ·

⇣
e⌦(H�)

� 1
⌘
,

yet sup�2B�
`BC(⇡✓? +�)  O

�
H · �2

�
, where `BC is the `2 loss. Thus, the error amplification

constant is exponential in the time horizon.

Working model for GVA. Proposition 3.1 shows that even when `BC is uniformly small in a neigh-
borhood around ⇡✓? , the rollout loss can be exponentially large in the same neighborhood. At the
same time, there are good subsets of parameter space that do not experience this worst-case error
amplification in our construction. We therefore hypothesize that, when stochastic optimization con-
verges to a small neighborhood around zero-BC error models, it bounces between low-BC error
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Figure 3: Iterate averaging significantly mitigates GVA-induced reward oscillations, without need-

ing to change the learning rate schedule or batch size. These improvements hold across ar-
chitectures, dataset sizes, and some tasks. Column 2, bottom: Algorithmic instabilities are more
pronounced at smaller sample sizes; thus, stabilization can lead to improved sample efficiency.
Column 3: We recommend updating the EMA at every iterate, with an initial burn-in phase, and
with a tuned �(t) = t�↵ decay, to avoid divergence or slower progress. Columns 4-5: We verify that
the benefits of EMA are not exclusive to the Walker2d-v4 task; for some other tasks (including
the higher-dimensional Humanoid-v4), oscillations are more benign.

models that experience large error amplification, and those that do not. To recapitulate: GVA is the
phenomenon in which gradient stochasticity leads to optimization trajectories repeatedly visiting re-
gions of parameter space with catastrophic error amplification. Because our MuJoCo environments
involve nonlinear contact dynamics (while the example in Proposition 3.1 is linear), oscillations in
Figure 1 are even more chaotic than this example may suggest. We elaborate on this point further
by studying the advantages of EMA on a discontinuous “cliff loss” problem in Section 4.3.

4 MITIGATING GVA: STABILIZERS FOR UNSTABLE OPTIMIZERS

In Section 3.2, we isolated GVA as the primary cause of observed instabilities in BC (cf. Fig. 1)
and identified iterate averaging with EMA (Polyak & Juditsky, 1992) as a promising remedy. In this
section, we conduct an in-depth investigation of EMA as a mitigation. We start in continuous control
(Section 4.1), and find EMA works almost unreasonably well at reducing GVA in the experimental
testbed described in the prequel. Next, moving beyond continuous control (Section 4.2), we observe
analogous effects in autoregressive language generation. In both settings, we find iterate averaging
works so well as to eliminate the need for full learning rate decay; this leads us to recommend a
conceptual reframing of EMA as a stabilizer for training neural networks, akin to (and interacting
with) conventional optimizers and schedulers. We conclude (Section 4.3) by exploring the extent to
which intuition on benefits of iterate averaging from the theory of stochastic convex optimization
applies in our empirical settings.

4.1 THE OUTSIZED BENEFIT OF ITERATE AVERAGING

We recall the definition of the EMA method for iterate averaging (Polyak & Juditsky, 1992). Given
an optimization trajectory (✓(t))0t ⇢ Rd and a sequence (�t)1t ⇢ [0, 1], the EMA iterates (e✓(t)

� )
are5

e✓(0)
�

= ✓(0), and e✓(t+1)
�

= (1 � �t) · e✓(t)
�

+ �t · ✓(t+1). (4.1)

Many prior works have detailed the benefits of iterate averaging in stochastic convex optimization
and beyond (see Appendix B). Here, we investigate its effect on GVA. We begin by considering the

5Common heuristics include updating the EMA only after an initial “burn-in”, and annealing � with a
polynomial decay: �(t) = max(t�↵, �min). It is also customary to use �(t) to denote 1� �(t).
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same MuJoCo framework as in Section 3. In Figure 3, we produce similar plots to those in Section 3,
but this time juxtapose the vanilla trained models with an EMA of their iterates (further results and
details are deferred to Appendix C). We observe the following:

(R4) EMA iterate averaging strongly mitigates rollout oscillations. In every setup we consider,
across a variety of architectures and environments, EMA significantly reduces the oscillations
in rollout reward; in no instance does it hurt performance.

We provide quantitative comparisons for a wide range of interventions in Figures 8 to 11.

4.2 AUTOREGRESSIVE SEQUENCE MODELS AND LANGUAGE GENERATION

[...] One day, Tim and Spot were playing near the pit when they saw a big ball. They both wanted to play with...

15027-15035: ...the ball, but they didn’t want to share. Tim said, "I want the ball!" Spot barked, "No, I want the ball!" They started to fight over the
ball. Tim’s mom saw them fighting and said, "Stop fighting! You can both play with the ball if you share." Tim and Spot stopped fighting and [...]

15036-15037: ...it. Tim said, "Let’s share the ball, Spot!" Spot barked happily, and they both played with the ball together. As they played, a little
girl named Sue came by. She saw Tim and Spot sharing the ball and wanted to join them. Tim said, "Yes, you can play with us!" So, Tim, [...]

15038-15039: ...it. Tim said, "I want the ball!" Spot barked and wagged his tail. They both ran to the ball and started to play. As they played, the
ball went into the pit. Tim and Spot looked at each other, not knowing what to do. Then, a friendly frog jumped out of the pit with the ball [...]

15040-15049: ...the ball, but they didn’t want to share. Tim said, "I want the ball!" Spot barked, "No, I want the ball!" They started to fight over the
ball. As they fought, the ball rolled into the pit. Tim and Spot stopped fighting and looked at the pit. They were sad because they couldn’t [...]

Figure 4: GVA in natural language generation, with 270M-parameter Transformer models trained
on TinyStories. (Top row) Left: Validation loss curves with and without EMA. Center: Zooming in
on (left), evaluations at every update demonstrate small per-iterate loss fluctuations, which are even
smaller if EMA is applied; note that the green “lines” are also scatter plots. Right: Training paths
in (model loss, EMA loss) space. EMA enables training without learning rate decay; this mitigates
overfitting, resulting in the lowest-perplexity model. (Bottom) Examples of autoregressively gener-
ated text (with argmax decoding), where nearby training iterates can bifurcate. See Appendix C.2
for full results, including quantitative evaluations of these “butterfly effects” in generation.

We posit that GVA is a generic phenomenon that can manifest in disparate settings: whenever a
model’s predictions are applied within a (marginally stable or unstable) feedback loop, the closed-
loop dynamics can amplify small fluctuations in a deleterious manner. A natural and timely setting
with this structure—which complements continuous control–is autoregressive language modeling.
Here, a network’s parameters ✓ are optimized on a 1-step prediction loss, which takes the role of
`BC(⇡✓). The network ⇡✓ is then used to generate a sequence of symbols w1:H by iteratively rolling
out ⇡✓ : w1:h 7! wh+1. Such models have been paradigm-shattering in NLP, code synthesis, and
beyond. Motivated by the similarity of this pipeline to behavior cloning,6 we perform a smaller
set of analogous experiments on language generation. Our findings here parallel our findings for
continuous control, and show (i) the presence of GVA, and (ii) substantial benefits of iterate aver-
aging. In more detail, we train 270M-parameter 12-layer Transformer models on the TinyStories
dataset (Eldan & Li, 2023), which serves as an inexpensive surrogate for a full-scale pretraining
pipeline. Highlights are shown in Fig. 4, while Appendix C.2 provides full documentation, includ-
ing larger-scale training runs with a non-synthetic corpus (Wikipedia). We summarize our findings
below:

6Many works have investigated GPT-style pretraining through the lens of offline IL (Chang et al., 2023a).
There are many degrees of freedom in evaluating performance; thus, we do not commit to a canonical notion
of reward and measure GVA-induced oscillations via disagreements in long-horizon rollouts.
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(R5) Autoregressive LMs exhibit significant rollout oscillations throughout training. EMA sta-

bilizes the trajectory, accelerates training, and improves generalization, complementing
(and potentially obviating) standard practices in learning rate annealing.

4.3 TO WHAT EXTENT DOES CONVEX THEORY EXPLAIN THE BENEFITS OF EMA?

We close by providing mathematical intuition as to why iterate averaging with EMA can reduce
the oscillations caused by GVA. As discussed in Section 3.3, oscillations can occur when there is a
disparity between the BC loss `BC(⇡b✓) on which we train and the rollout reward function J(⇡b✓) on
which we evaluate. To study this phenomenon, we a consider simple, horizon-one behavior cloning
problem with a single action determined by the model parameter ✓. We take the training loss to be
a quadratic `BC(✓) =

1
2 · k✓ � µk

2, and the rollout reward J(·) to be

J(✓) =

(
� k✓ � µk

2 , k✓ � µk  ✏
�C, otherwise

, (4.2)

where C � ✏2 > 0 are constants. Here the training loss is convex, but rollout reward is not; the latter
exhibits a “cliff,” dropping sharply from �✏2 to �C once k✓ � µk > ✏. The pair (`BC, J) may be
thought of as a discontinuous, horizon-one analogue of the example in Proposition 3.1, illustrating
the contrast between extreme sensitivity of reward and insensitivity of the loss to the parameter
of interest. The reward function encapsulates discontinuities arising in control tasks from, e.g.,
contract forces. In the MuJoCo walker, “cliff”-type behavior may come from an expert policy close
to overbalancing the agent, with the learner’s policy falling down if the parameter is “over the cliff.”

We analyze SGD iterates ✓(t+1) = ✓(t+1)
� ⌘(✓(t)

� µ + w), where ⌘ > 0 is a constant step
size and w ⇠ N (0, I). This corresponds to SGD on a noisy version of the BC loss given by
˜̀BC(✓) := E[k✓t � u + wk

2], which satisfies Ew[˜̀BC(✓)] = `BC(✓) + constant. We show that
applying EMA to the resulting iterates achieves substantially higher rollout reward than vanilla SGD.

Proposition 4.1 (Informal version of Proposition D.6). Consider the setting in Eq. (4.2) for pa-
rameters C � ✏2 > 0 in dimension one, and let ✓(T ) denote the SGD iterate with learning rate
⌘ > 0 as described above. Let ✓̃(T )

� denote the EMA iterate (4.1) with fixed parameter �t ⌘ �  ⌘

satisfying � � 1/T . Then, E[`BC(✓(T ))] scales as ⇥(⌘), while E[`BC(✓̃
(T )
� )] scales as ⇥(�)  ⌘.

In particular, when ⌘ > c1✏, and � log(C/�)  c2✏, for absolute constants c1, c2 > 0, we find that

E[J(✓?) � J(✓(T ))] �
C

2 , but E[J(✓?) � J(✓̃(T )
� )]  O(�).

This proposition holds, which shows that the rollout performance for EMA can be arbitrarily small
relative to that of SGD, holds even in the regime where SGD is initialized at ✓(0) = µ (so that
both ✓(T ) and ✓(T )

� are unbiased estimates of µ), and thus highlights that EMA can reduce the
variance that arises from accumulation of SGD noise.7 Notice that Proposition 4.1 requires ⌘ �

� � 1/T , which is above the optimal step size of ⌘t = 1/t.8 Indeed, in Appendix D we show that
EMA, with the parameters we find empirically successful, only benefits optimization above these
aggressively-decayed theoretically optimal learning rate schedules. Thus, we conclude that convex

theory reveals the variance-reducing benefit of either learning rate decay or EMA, but does

not suggest which one is better. We defer further theoretical results to Appendix D, and present an
empirical study of a system motivated by the cliff loss in Appendix C.5; in particular, our analysis
provides a simple example where GVA provably occurs, both theoretically and empirically.

The above example reveals the difference between the statistical and algorithmic difficulties of
BC: with enough data, the empirical risk minimizer (sample mean) b✓ of BC loss exhibits `BC(✓) ⇠

1/T ⌧ ✏, which ensures JH is small; on the other hand, with minibatch SGD and too large a
learning rate, there is a noise floor on how close the non-EMA’d iterate b✓ will be to ✓?, ensuring that
JH is large.

7We compare to similar findings (Sandler et al., 2023) in Appendix B.
8Note that the ⌘t = 1

t
step size schedule gives the sample mean, which is the maximum likelihood estimator

for our objective.
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