
Published as a conference paper at ICLR 2025

RTOP-K: ULTRA-FAST ROW-WISE TOP-K SELECTION
FOR NEURAL NETWORK ACCELERATION ON GPUS

*Xi Xie
University of Connecticut
xi.xie@uconn.edu

*Yuebo Luo
University of Minnesota - Twin Cities
luo00466@umn.edu

*Hongwu Peng
University of Connecticut
hongwu.peng@uconn.edu

+Caiwen Ding
University of Minnesota - Twin Cities
dingc@umn.edu

ABSTRACT

Top-k selection algorithms are fundamental in a wide range of applications, in-
cluding high-performance computing, information retrieval, big data processing,
and neural network model training. In this paper, we present RTop-K, a highly ef-
ficient parallel row-wise top-k selection algorithm specifically designed for GPUs.
RTop-K leverages a binary search-based approach to optimize row-wise top-k se-
lection, providing a scalable and accelerated solution. We conduct a detailed anal-
ysis of early stopping in our algorithm, showing that it effectively maintains the
testing accuracy of neural network models while substantially improving perfor-
mance. Our GPU implementation of RTop-K demonstrates superior performance
over state-of-the-art row-wise top-k GPU implementations, achieving an average
speed-up of up to 11.49× with early stopping and 7.29× without early stopping.
Moreover, RTop-K accelerates the overall training workflow of MaxK-GNNs, de-
livering speed-ups ranging from 11.97% to 33.29% across different models and
datasets.
The GPU implementation can be found on Github†.

1 INTRODUCTION

Top-k selection is a classic algorithmic challenge that involves identifying the k largest or small-
est elements from n input elements based on some predefined ranking criteria. The top-k selection
algorithm has been widely applied in many traditional scenarios, such as high-performance comput-
ing (HPC) (Muneer, 2021), information retrieval (IR) (Ding & Suel, 2011), big data (Gaihre et al.,
2019), and data mining (Malkov & Yashunin, 2018). Today, the top-k algorithm is increasingly ap-
plied in the training and inference of neural network models. For example, the Avg-TopK (Özdemir,
2023) pooling method has achieved more successful results in image classification accuracy and
transfer learning models compared to traditional methods. TopK-SGD (Shi et al., 2019) applied to
gradient sparsification techniques significantly reduces the communication traffic without obvious
impact on the model accuracy. Combining top-k with sparse training (Jayakumar et al., 2021) can
maintain constant sparsity and perform well while reducing resource requirements. In a study (Cui
et al., 2021), a top-k attention loss function was introduced to address the top-k ranking prediction
problem.

Graph Neural Networks (GNNs) have drawn tremendous attention in the past years due to their
unique ability to extract latent information from graph data (Hu et al., 2020). In the design and
acceleration of GNN training and inference, GPU platforms have become the prevalent choice due
to their multiple advantages. Firstly, compared to other processing hardware, GPUs provide superior
processing power and memory throughput (Li et al., 2018). For example, the NVIDIA A6000 GPU
boasts an impressive computation capability of 38.7 Tera FLOPS and a memory throughput 768

*These authors contributed equally. +Corresponding author.
†https://github.com/xiexi51/RTopK

1

https://github.com/xiexi51/RTopK

Published as a conference paper at ICLR 2025

GB/s. Secondly, many leading supercomputers (such as Aurora and Eagle (LiveScience, 2023))
use GPUs as their primary computing resource. Thirdly, many applications and services related to
deep learning and neural networks are developed and deployed on GPU platforms. However, GNN
training and inference still typically pose strict challenges on latency and throughput (Xie et al.,
2023).

1. Top-k Selection

2. Feature aggregation

=

Output
1 2

43

6 7 8

5 +

Row-wise
Top-k

Feature

Figure 1: The core operation of MaxK-
GNN, which introduces row-wise top-k se-
lection into the GNN workflow to provide
non-linearity and acceleration.

Recently, MaxK-GNN (Peng et al., 2024) has
achieved great success in the acceleration and opti-
mization of GNN training and inference on GPUs.
As shown in Figure 1, this work introduces row-
wise top-k selection before the feature aggregation
step in GNNs, which not only provides nonlinearity
in GNNs to optimize the model’s expressive ability
but also demonstrates that performing SPMM oper-
ations in GNNs with the row-wise top-k-processed
right hand matrix can achieve several times speedup
over traditional workflows while maintaining good
model accuracy. The top-k selection operation
in Max-GNN necessitates performing a large-scale
row-wise top-k computation, i.e., executing top-k
operations simultaneously across a batch of vectors
on GPUs.

Traditional top-k algorithms and their GPU imple-
mentations (Gaihre et al., 2021; Zhang et al., 2023;

Li et al., 2024) are typically optimized for single queries or limited batched queries, that is, for
a large vector or a small batch of large vectors (typically with a batch size not exceeding 100).
However, the optimization focus for traditional scenarios differs from the row-wise top-k algorithm
required for GNN training and inference. Implementing and optimizing row-wise top-k algorithms
on GPUs pose challenges in terms of dispersion, parallelism, and efficiency. Since row-wise top-k
involves performing top-k operations on a large batch of vectors simultaneously, and each vector’s
length corresponds to the hidden dimension of the neural network layer (which usually does not
exceed 1024), it is crucial to allocate only a small and appropriate amount of GPU resources for
each vector. Under these limited resource constraints, the various optimization methods proposed
for large vectors in traditional top-k implementations may be overly complex and inefficient. We
should seek simple and efficient algorithms tailored to this scenario.

Additionally, we must consider the requirements and characteristics of applying row-wise top-k in
neural networks. We only need to select the values of the top-k elements in each row and their
indices in the vector. We do not need to perform sorting at all; neither the k selected elements
in each row nor the remaining elements require sorting. Furthermore, given the neural network’s
tolerant and robust nature, we can explore the feasibility of approximate top-k to further accelerate
the overall algorithm.

To efficiently implement row-wise top-k on GPUs for neural network applications, we introduce
RTop-K, a highly efficient parallel top-k selection algorithm designed for a large batch of limited-
size vectors, with the capability of approximation to further enhance the speed of the row-wise top-k
algorithm without compromising the accuracy of the neural network model.

We summarize our contributions as follows:

• We provide a comprehensive summary of GPU top-k selection algorithms and analyze
the performance limitations of state-of-the-art GPU implementations in the row-wise top-k
selection scenario.

• We propose a binary search-based top-k selection algorithm and provide a theoretical anal-
ysis of the effects of early stopping.

• We implement the binary search-based top-k selection algorithm on the GPU and con-
duct comprehensive tests, demonstrating that it outperforms state-of-the-art row-wise top-k
GPU implementations, with early stopping having minimal impact on testing accuracy.

2

Published as a conference paper at ICLR 2025

2 PRELIMINARY AND RELATED WORKS

2.1 TOP-K ALGORITHMS

The heap-based top-k algorithm (Cormen et al., 2009) uses a min-heap to maintain the top-k ele-
ments by comparing and replacing the heap root when a larger element is encountered. QuickSelect
(Dashti et al., 2013) leverages a partition-based approach similar to quicksort to find the k-th largest
element. The bucket-based algorithm (Yang et al., 2024) divides data into buckets, sorting only rel-
evant ones to find the top-k elements, which is effective for uniformly distributed data. RadixSelect
(Alabi et al., 2012) uses digit-wise sorting to identify the top-k elements efficiently. The bitonic top-
k algorithm (Shanbhag et al., 2018) employs bitonic sorting to merge and find the top-k elements in
parallel.

When considering these algorithms, we must take into account their suitability for GPU implementa-
tion and the optimization requirements for specific problem scenarios. For example, the heap-based
top-k algorithm is not well-suited for parallelization on GPUs because it relies on complex tree
structure operations and element-wise comparisons and swaps. Although QuickSelect, RadixSelect,
and the bitonic top-k algorithm can be successfully implemented on GPUs, they still require con-
siderable data access and resource demands when operating on a vector. This makes it difficult to
optimize for row-wise top-k scenarios, where a large batch of limited size vectors requires top-k
selection simultaneously, necessitating simplified operations and limited resource usage per vector.
The bucket-based top-k algorithm is more friendly to row-wise top-k scenarios but still requires
further simplification to enhance performance.

2.2 GPU ARCHITECTURE

The architecture of NVIDIA GPUs consists of an array of multithreaded Streaming Multiprocessors
(SMs) designed to execute thousands of threads concurrently. A function that runs on a GPU is
called a kernel.

Thread and Memory Hierarchy. NVIDIA GPUs organize threads into warps, with each warp
containing 32 threads that execute the same instruction simultaneously. Warps are grouped into
blocks, which reside on the same Streaming Multiprocessor (SM) and can communicate via shared
memory, a fast on-chip memory space. Blocks are further grouped into grids for specific kernel
launches. Threads access data from multiple memory spaces: device memory (large but slower,
accessible by all threads), shared memory (low-latency, for communication within a block), and
registers (fastest, partitioned among threads on an SM). The usage of registers can affect the number
of blocks that can be active on an SM.

Warp-Level Primitives. Warp-level primitives are a set of operations that allow threads within a
warp to cooperate and communicate efficiently. These include:

• Synchronization primitive: Ensures that all threads reach the same point in execution
before proceeding.

• Shuffle primitive: Allows threads to exchange values within a warp.

• Ballot primitive: Enables threads to collectively determine which threads meet a specified
condition by generating a mask representing the threads that satisfy the condition.

• Counting primitive: Counts the number of set bits in a given mask, often used in conjunc-
tion with the ballot primitive.

The flexible use of warp-level primitives is crucial for designing high-performance kernels, as the
efficiency of information sharing through these primitives can even surpass that of using shared
memory.

2.3 GPU TOP-K IMPLEMENTATIONS

Dr. Top-k(Gaihre et al., 2021) is a delegate-centric system that helps reduce the workload of GPU
top-k computations, including Radix Select, Bucket Select, and Bitonic Select. It achieves this by

3

Published as a conference paper at ICLR 2025

dividing the input into sub-ranges and selecting delegates from them, along with performing multi-
GPU optimizations. A work(Zhang et al., 2023) proposed two optimization methods, AIR Top-k
and GridSelect. AIR Top-k employs an iteration-fused design and adaptive strategy to minimize
CPU-GPU communication and memory traffic, while GridSelect uses a shared queue and parallel
two-step insertion to decrease costly operations, enhancing parallel top-k efficiency on GPUs. A re-
cent RadixSelect implementation RadiK(Li et al., 2024) utilizes an optimization framework tailored
for high memory bandwidth and resource utilization, along with an adaptive scaling technique for
enhanced robustness, that supports larger k values with high efficiency.

However, the above state-of-the-art GPU implementations are optimized for limited batches of large
vectors. For instance, Dr. Top-k, AIR Top-k, and RadiK are designed for scenarios where the vector
size is on the order of 220 (about one million elements), and the batch size does not exceed 100.
This is not suitable for row-wise top-k applications, where the typical vector size is less than 1024,
and the batch size can reach millions.

PyTorch’s top-k implementation (Pytorch, 2024) is suitable for row-wise top-k operations. It uses
RadixSelect as the underlying method, which, as analyzed in Section 2.1, is overly complex for each
limited-size vector. Moreover, its selection results are sorted, which is also unnecessary. Although
it can handle large batch sizes, its efficiency is suboptimal in scenarios where a minimalistic top-k
selection is critical for each single vector.

Algorithm 1 Binary Search-based Top-k Se-
lection Algorithm
Require: Vector v of size M , integer k
Ensure: Top-k largest elements and their in-

dices in v
1: min← min(v)
2: max← max(v)
3: ϵ← ϵ′ ·max
4: thres, cnt← max, 0
5: while thres−min > ϵ do
6: cnt← |{i | vi ≥ thres}|
7: if cnt < k then
8: max← thres
9: else if cnt > k then

10: min← thres
11: else
12: break
13: end if
14: thres← min+max

2
15: end while
16: borderline cnt← k − cnt
17: if borderline cnt ≥ 0 then
18: elems, indices ← {(vi, i) | vi ≥

thres}
19: Append the first borderline cnt pairs

of {(vi, i) | min ≤ vi < thres} to
elems, indices

20: else
21: elems, indices ← the first k pairs of

{(vi, i) | vi ≥ thres}
22: end if
23: return elems, indices

3 RTOP-K FRAMEWORK

The row-wise top-k operation involves finding the
largest (or smallest) k elements and their indices
in each row of a matrix. Without loss of gener-
ality, we assume finding the largest k elements.
Suppose a matrix has N rows and M columns;
the problem is equivalent to performing top-k se-
lection on N vectors of length M simultaneously.
Since N can be extremely large and M is lim-
ited, we need to apply a simplified algorithm to
each vector, ensuring that the algorithm can exe-
cute quickly with very limited computational re-
sources and memory access. We adopt a binary
search-based top-k algorithm, which is even more
convenient to execute than the bucket top-k algo-
rithm.

3.1 BINARY SEARCH-BASED
TOP-K SELECTION ALGORITHM

The algorithm, as illustrated in Fig. 2, first re-
trieves the min and max values of the vector,
and then uses several iterations of binary search
to determine a threshold thres. The min, max,
and thres values are updated in each iteration,
and the loop terminates when the number of ele-
ments filtered by the current threshold equals k.
One corner case that must be considered is when
v contains multiple equal or very close elements,
and these elements happen to be near the ”bor-
derline” during top-k selection. In this scenario,
relying solely on thres for selection makes it dif-
ficult or even impossible to extract exactly k ele-

ments. It can be verified that in such cases, these borderline elements are always located between
min and thres. Therefore, a second filtering step using min is sufficient to supplement the se-

4

Published as a conference paper at ICLR 2025

Min MaxThreshold
cn𝑡𝑡 > 𝑘𝑘

𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼

𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼 1

𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼 2

𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼 3

𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼 4

𝑚𝑚𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑚𝑚 𝑊𝑊

ℎ𝐼𝐼𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼 𝑖𝑖𝐼𝐼𝑚𝑚

𝐼𝐼𝑛𝑛
𝑚𝑚

𝐼𝐼𝑜𝑜
𝐼𝐼𝐼𝐼
𝑖𝑖𝐼𝐼
𝑛𝑛

cn𝑡𝑡 > 𝑘𝑘

cn𝑡𝑡 < 𝑘𝑘

cn𝑡𝑡 = 𝑘𝑘

Figure 2: Illustration of the binary search-based top-k selection algorithm.

Table 1: Cumulative percentage of iterations where the loop exits for different k values (ϵ =
10−4,M = 256). Results are based on 105 repeated experiments for each k.

Iteration k=16 k=32 k=64 k=96 k=128

3 4.13% 2.71% 1.96% 1.34% 1.58%
4 8.98% 5.32% 3.52% 3.00% 2.81%
5 17.90% 10.64% 6.92% 5.84% 5.59%
6 33.86% 21.40% 13.87% 11.72% 11.15%
7 54.43% 38.84% 27.12% 23.29% 22.11%
8 72.38% 59.17% 46.64% 41.35% 39.93%
9 84.53% 76.00% 66.21% 61.48% 60.35%

10 91.88% 86.81% 80.68% 77.37% 76.62%
11 95.81% 93.03% 89.79% 87.64% 87.18%
12 97.89% 96.45% 94.70% 93.57% 93.31%
13 98.97% 98.21% 97.35% 96.70% 96.60%
14 99.52% 99.12% 98.67% 98.34% 98.25%
15 99.76% 99.53% 99.34% 99.20% 99.17%
16 100.00% 100.00% 100.00% 100.00% 100.00%

Average Exit 7.60 8.29 8.95 9.52 9.60

lection and ensure that exactly k elements are chosen. The parameter ϵ represents the precision of
the algorithm, which determines the maximum width of the borderline and imposes an upper bound
on the number of iterations in the loop. When ϵ is set to 0, Algorithm 1 becomes an exact top-k
selection algorithm.

Algorithm 2 Binary Search-based Top-k Se-
lection Algorithm with Early Stopping
Require: Vector v of size M , integer k, inte-

ger max iter
Ensure: Top-k largest elements and their in-

dices in v
1: min← min(v)
2: max← max(v)
3: for iter ← 1 to max iter do
4: thres← min+max

2
5: cnt← |{i | vi ≥ thres}|
6: if cnt < k then
7: max← thres
8: else
9: min← thres

10: end if
11: end for
12: elems, indices ← {(vi, i) | vi ≥

min}
13: return first k pairs of elems, indices

Table 1 presents the statistical results of the itera-
tion counts at which the algorithm exits for differ-
ent values of k, with the vector’s size M = 256.
For each k value, 105 repeated experiments were
conducted, with the vector initialized with nor-
mally distributed elements. It can be observed
that the average iteration at exit ranges from 7.6
to 9.6, and the probability of the iteration count
being less than or equal to 13 exceeds 95%.

Algorithm 1 summarizes the complete binary
search-based top-k algorithm process. It contains
a number of branching conditions, and the loop
length executed by each warp can be different.
We attempt to further simplify it.

Given the inherent robustness of neural networks,
we can explore the feasibility of incorporating
early stopping into the algorithm. We present the
pseudocode for the early stopping algorithm and
then conduct a numerical analysis.

As shown in Algorithm 2, the introduction of
early stopping further simplifies the algorithm, with the main loop forcefully exiting in no more
than max iter iterations. The collection phase uses min as the threshold, ensuring that only one-

5

Published as a conference paper at ICLR 2025

Table 2: Statistics of early stop top-k selection for Different k Values and Maximum Iterations
(M=256). E1(%) represents the average relative error between the maximum element in early stop
top-k selection and the maximum element in the optimal top-k selection. E2(%) represents the
average relative error between the minimum element in early stop top-k selection and the minimum
element in the optimal top-k selection. Hit(%) represents the overlap ratio between the early stop
top-k selection and the optimal top-k selection.

k = 16 k = 32 k = 64 k = 96 k = 128

Iter E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%)
2 12.6 20.17 45.85 13.46 30.68 37.81 7.12 25.03 51.78 4.42 17.80 69.59 4.6 24.73 70.93
3 8.01 13.13 54.29 6.22 13.19 60.32 4.44 12.40 69.04 3.39 12.94 74.41 2.78 13.23 79.33
4 4.93 7.64 68.35 3.47 7.05 74.46 2.47 6.55 80.51 1.99 6.82 84.33 1.6 7.24 87.34
5 3.52 5.20 77.36 2.20 4.31 83.19 1.47 3.70 87.88 1.18 3.91 90.49 0.97 4.29 92.34
6 2.90 4.33 81.57 1.62 3.17 87.62 0.99 2.39 91.83 0.77 2.57 93.77 0.62 2.90 95.03
7 2.67 4.10 83.17 1.38 2.79 89.51 0.79 1.87 93.68 0.61 2.00 95.33 0.47 2.30 96.35
8 2.61 4.06 83.68 1.31 2.69 90.19 0.71 1.72 94.35 0.55 1.82 95.94 0.41 2.11 96.86

pass collection is needed. Table 2 summarizes the hit rate (overlap ratio) and the average relative
error between the early stopping top-k selection with different max iter settings and the optimal
top-k selection. The experiments were conducted with vectors of size M = 256 consisting of nor-
mally distributed elements, and 105 repeated experiments for each condition. When max iter ≥ 5
for k ≥ 32 (max iter ≥ 6 for k = 16), both the maximum element and the minimum element in the
early stopping top-k selection have an average relative error of no more than 5%. For k ≥ 64, only 4
iterations are needed for the hit rate between the early stopping top-k selection and the optimal top-k
selection to exceed 80%. These results indicate that the early stopping top-k selection is numerically
stable and controllable. We will further test the impact of early stopping top-k selection on model
accuracy in the experimental section.

Loop

Ballot & Pop Cnt

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐌𝐌𝐒𝐒𝐌𝐌𝐌𝐌𝐒𝐒𝐌𝐌

0.8 0.7 0.5 0.9 1 4 5 7

𝐄𝐄𝐥𝐥𝐒𝐒𝐌𝐌𝐒𝐒𝐥𝐥𝐥𝐥𝐥𝐥 𝐈𝐈𝐥𝐥𝐒𝐒𝐈𝐈𝐈𝐈𝐒𝐒𝐥𝐥

𝐆𝐆𝐥𝐥𝐌𝐌𝐆𝐆𝐒𝐒𝐥𝐥 𝐌𝐌𝐒𝐒𝐌𝐌𝐌𝐌𝐒𝐒𝐌𝐌

3. 𝐒𝐒𝐒𝐒𝐥𝐥𝐒𝐒𝐈𝐈𝐥𝐥𝐈𝐈𝐥𝐥𝐧𝐧

𝐆𝐆𝐥𝐥𝐌𝐌𝐆𝐆𝐒𝐒𝐥𝐥 𝐌𝐌𝐒𝐒𝐌𝐌𝐌𝐌𝐒𝐒𝐌𝐌

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐌𝐌𝐒𝐒𝐌𝐌𝐌𝐌𝐒𝐒𝐌𝐌

𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐥𝐥

2. 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐈𝐈𝐒𝐒𝐈𝐈𝐥𝐥𝐧𝐧

𝟏𝟏.𝐋𝐋𝐌𝐌𝐒𝐒𝐒𝐒𝐈𝐈𝐥𝐥𝐧𝐧

Max Min Max Min Max Min Max Min

Max MinMax Min

Max Min

Collect

Round 1

Broadcast

Round 2

Cnt Cnt

Cnt Iter n

Cnt Cnt Cnt Cnt

Collect

Round 1

Round 2

Broadcast

Cnt Cnt

Cnt Iter 2

Cnt Cnt Cnt Cnt

Collect

Round 1

Round 2

Broadcast

Cnt Cnt

Cnt Iter 1

Cnt Cnt Cnt Cnt

Collect

Round 1

Round 2

Broadcast

Figure 3: GPU implementation of the binary
search-based top-k selection algorithm.

3.2 GPU IMPLEMENTATION DESIGN

Both Algorithm 1 and Algorithm 2 are well-
suited for GPU implementation, where a sin-
gle warp processes a single vector of size M .
Fig. 3 illustrates the GPU implementation de-
sign, which can be divided into three stages:
loading, searching, and selecting.

Loading stage: In this stage, each vector is
loaded from global memory into the corre-
sponding shared memory, which is done by a
warp looping through it. A synchronization
barrier is set at the end of this stage.

Searching stage: In this stage, each vector is
handled by a single warp, assuming the warp
contains w threads (Fig. 3 illustrates w = 4,
while in actual hardware environments w =
32). The key point of the implementation is that
the max, min, and thres values at the begin-
ning and in each iteration need to be synchro-
nized across all threads within the warp. This
can be achieved using a combination of clas-
sic tree-reduction and broadcast primitives. The
first step is to obtain the max and min of the
vector. The vector is divided into ⌈M/w⌉ parts,
with each thread responsible for extracting the
maximum and minimum elements within its as-
signed part. Then, a tree-reduction using the
shuffle primitive is performed in log2 w steps

6

Published as a conference paper at ICLR 2025

k0.0

0.5

Ti
m

e
(m

s)
N=214, M=256, 8.46×

k0.0

0.5

N=214, M=512, 6.96×

k0.0

0.5

N=214, M=768, 5.28×

k0

2

Ti
m

e
(m

s)

N=216, M=256, 9.21×

k0

2

N=216, M=512, 7.88×

k0

2

N=216, M=768, 6.15×

k0

10

Ti
m

e
(m

s)

N=218, M=256, 8.92×

k0

10

N=218, M=512, 7.11×

k0

10

N=218, M=768, 5.71×

16 32 64 96 128
k

0

50

Ti
m

e
(m

s)

N=220, M=256, 8.95×

16 32 64 96 128
k

0

50
N=220, M=512, 7.15×

16 32 64 96 128
k

0

50
N=220, M=768, 5.67×

max_iter=2
max_iter=3

max_iter=4
max_iter=5

max_iter=6
max_iter=7

max_iter=8
no early stopping

Pytorch

Figure 4: Comparison of kernel execution time (ms) between RTop-K with different early stopping
max iter values and without early stopping (ϵ = 10−16), against PyTorch for various configurations
of (N , M , k), where N = 214, 216, 218, 220, M = 256, 512, 768, and k = 16, 32, 64, 96, 128. The
average speedup of the no early stopping version for each (N,M) setting is indicated in the title of
each subplot.

to obtain the maximum and minimum elements across the entire warp, and these values are broad-
casted to all threads within the warp. The second step is to perform a binary search to determine
the selection threshold. In each iteration, the count of elements exceeding the current threshold is
accumulated and broadcasted using the same tree-reduction method. Then, each thread uses cnt
to simultaneously update the max, min, and thres values. Once the exit condition is met or the
maximum number of iterations is reached, the final threshold is obtained.

Selecting Stage: A single warp performs a one-pass selection over each vector. Let cnt be the
number of elements greater than or equal to the final threshold thres, and define borderline cnt =
k− cnt. The selection applies two conditions simultaneously: selecting elements where x ≥ thres,
and, if needed, selecting additional elements where thres > x ≥ min.

If borderline cnt ≤ 0, the first condition is sufficient to produce k elements, and the second condi-
tion is skipped. Otherwise, when borderline cnt > 0, all elements satisfying the first condition are
selected, and the remaining borderline cnt elements are supplemented using the second condition.

To implement this efficiently, we use the ballot primitive to merge and broadcast the selection masks
across threads within a warp. The popcnt primitive is then used to compute the inclusive prefix sum
of selected elements for each thread. Based on the prefix sum, each thread finalizes its selection
decision: if the prefix sum exceeds k (for the first condition) or borderline cnt (for the second
condition), its selection is disabled. The values and indices of the final selected elements are written
to the output buffer in global memory.

This design requires no data writes outside of registers, except for loading the vector and dumping
the results. During the searching and selecting stages, warp-level primitives are utilized to achieve
highly optimized inter-thread collaboration. Moreover, each warp operates independently in parallel,
maintaining high overall efficiency.

4 EXPERIMENTS

4.1 SETUP AND CONFIGURATION

The CUDA source code of RTop-K is compiled using NVCC, version 12.6, and executed on an
NVIDIA A6000 platform running Ubuntu 22.04. We conduct comprehensive performance tests on

7

Published as a conference paper at ICLR 2025

Table 3: Average speed up of RTop-K compared to PyTorch implementation (ϵ = 10−16 for No
Early Stopping) across different M values.
Max Iteration 2 3 4 5 6 7 8 No Early Stopping

M=256 13.07 12.32 11.46 10.86 10.32 9.88 9.55 8.88
M=512 11.66 11.37 10.43 9.51 8.87 8.34 7.98 7.27
M=768 9.73 9.44 8.72 7.75 7.16 6.78 6.46 5.72

Average 11.49 11.04 10.20 9.37 8.79 8.34 7.99 7.29

Table 4: Graph data and the baseline testing accuracy of the MaxK-GNN based GNN model along
with the percentage of time spent on row-wise top-k operations during training.

GNN Model GraphSAGE GCN GIN

Graph #Nodes Acc(%) Top-k Prop(%) Acc(%) Top-k Prop(%) Acc(%) Top-k Prop(%)
Ogbn-products 2449029 80.08 19.81 76.6 19.61 77.77 19.67

Yelp 716847 61.09 26.09 48.26 25.84 43.16 25.92
Reddit 232965 96.74 11.66 95.18 11.61 94.96 11.62
Flickr 89250 53.44 26.86 50.42 26.78 51.73 26.73

the RTop-K kernel, covering various input matrix dimensions, with the number of rows N ranging
from 214 to 220, hidden dimensions M ranging from 256 to 768, and k values ranging from 16 to
128. In all cases, we evaluate the speed of RTop-K with different early stopping settings, including
max iter values from 2 to 8, as well as no early stopping (ϵ = 10−16). The results are com-
pared against the row-wise top-k implementation provided by PyTorch (Pytorch, 2024), which is
the state-of-the-art row-wise top-k implementation supporting a large number of rows. The latency
measurements are conducted using the Nsight Compute tool (NVIDIA, 2023).

We also integrate the RTop-K kernel into MaxK-GNN models to evaluate the overall speedup of
the entire training process and the impact of different early stopping settings on test accuracy. The
evaluation covers three models in MaxK-GNN: GraphSAGE (Hamilton et al., 2017), GCN (Kipf
& Welling, 2016), and GIN (Xu et al., 2019). The graph datasets used include Flickr (McAuley &
Leskovec, 2012), Yelp (Zeng et al., 2020), Reddit (William L. Hamilton, 2017), and Ogbn-products
(Hu et al., 2020).

4.2 RTOP-K KERNEL EVALUATION

Fig. 4 presents a comprehensive time profiling of RTop-K compared to the PyTorch implementa-
tion. It can be observed that RTop-K demonstrates significant speed improvements over PyTorch
across various early stopping max iter settings. Even with no early stopping, RTop-K significantly
outperforms PyTorch in all scenarios. Moreover, the dimension that has the most impact on the
speed-up ratio is M , while N and k have relatively smaller effects. Table 3 summarizes the average
speed-up of RTop-K relative to PyTorch for different values of M . When M = 256, the speed-up
varies from 9.55× to 13.07× across different max iter settings, and even with no early stopping,
the speed-up is still as high as 8.88×. On average, the speed-up ranges from 7.99× to 11.49× with
early stopping, and 7.29× with no early stopping.

We observe that the speed-up with no early stopping is close to that of max iter = 8, which
indicates that although the binary search requires many iterations in the worst-case, it typically exits
early in most cases. This observation is consistent with the results presented in Table 1. Even with
a few bad cases, the overall kernel speed remains unaffected.

4.3 MODEL TRAINING AND TESTING PERFORMANCE EVALUATION

Table 4 summarizes the proportion of time spent on row-wise top-k operations in several MaxK-
GNN training instances. It is evident that row-wise top-k operations account for a substantial portion
of the training time, ranging from 11.61% in the Reddit GCN training to 26.86% in the Flickr
GraphSAGE training. This indicates that optimizing row-wise top-k operations is meaningful for
improving their training efficiency.

8

Published as a conference paper at ICLR 2025

2 3 4 5 6 7 8
Max Iter

0.94

0.96

0.98

1.00

1.02
Ac

cu
ra

cy

SAGE - Reddit

2 3 4 5 6 7 8
Max Iter

0.52

0.54

0.56

Ac
cu

ra
cy

SAGE - Flickr

2 3 4 5 6 7 8
Max Iter

0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

SAGE - Ogbn-products

2 3 4 5 6 7 8
Max Iter

0.60

0.62

0.64

0.66

Ac
cu

ra
cy

SAGE - Yelp

2 3 4 5 6 7 8
Max Iter

0.94

0.96

0.98

1.00

1.02

Ac
cu

ra
cy

GCN - Reddit

2 3 4 5 6 7 8
Max Iter

0.48

0.50

0.52

Ac
cu

ra
cy

GCN - Flickr

2 3 4 5 6 7 8
Max Iter

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

GCN - Ogbn-products

2 3 4 5 6 7 8
Max Iter

0.46

0.48

0.50

0.52

Ac
cu

ra
cy

GCN - Yelp

2 3 4 5 6 7 8
Max Iter

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

GIN - Reddit

2 3 4 5 6 7 8
Max Iter

0.50

0.51

0.52

0.53

0.54

0.55

Ac
cu

ra
cy

GIN - Flickr

2 3 4 5 6 7 8
Max Iter

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

GIN - Ogbn-products

2 3 4 5 6 7 8
Max Iter

0.42

0.44

0.46

Ac
cu

ra
cy

GIN - Yelp

1.09

1.10

1.11

1.12

Sp
ee

d-
up

 R
at

io

1.29

1.30

1.31

1.32

1.33

1.34

Sp
ee

d-
up

 R
at

io

1.19

1.20

1.21

1.22

1.23

Sp
ee

d-
up

 R
at

io

1.28

1.29

1.30

1.31

1.32

Sp
ee

d-
up

 R
at

io

1.09

1.10

1.11

1.12

Sp
ee

d-
up

 R
at

io

1.29

1.30

1.31

1.32

1.33

Sp
ee

d-
up

 R
at

io

1.19

1.20

1.21

1.22

1.23

Sp
ee

d-
up

 R
at

io

1.27

1.28

1.29

1.30

1.31

1.32

Sp
ee

d-
up

 R
at

io

1.09

1.10

1.11

1.12

Sp
ee

d-
up

 R
at

io

1.29

1.30

1.31

1.32

1.33

Sp
ee

d-
up

 R
at

io
1.19

1.20

1.21

1.22

1.23

Sp
ee

d-
up

 R
at

io

1.27

1.28

1.29

1.30

1.31

1.32

Sp
ee

d-
up

 R
at

io

Accuracy Optimal Top-K Accuracy Overall Speed-up Ratio

Figure 5: Overall training speed-up ratio and testing accuracy of applying RTop-K to various MaxK-
GNN model training processes on different graphs. Setting: N = #Nodes, M = 256, k = 32.

The impact of applying RTop-K on speed and accuracy with different early stopping settings in the
actual training of these models is shown in Fig. 5, with the setting of N = #Nodes, M = 256,
and k = 32. For all GNN models and all graphs, the application of RTop-K effectively accelerates
the overall training workflow. Specifically, under different max iter settings, the average overall
training speed-up for Reddit ranges from 11.97% to 12.21%, for Flickr from 32.48% to 33.29%, for
Ogbn-products from 22.00% to 22.74%, and for Yelp from 31.21% to 32.42%.

It can be observed that the testing accuracy of the models remains high. Except for the GIN training
on Flickr, the testing accuracy across different max iter settings for other cases fluctuates around
the testing accuracy achieved with the optimal row-wise top-k selection. In many cases, applying
early stopping for row-wise top-k selection even results in higher testing accuracy. This is also a
manifestation of the inherent robustness of GNNs.

5 CONCLUSION

In this paper, we presented RTop-K, a highly efficient parallel row-wise top-k selection algorithm
for GPUs. By employing a binary search-based approach, RTop-K significantly accelerates top-k
operations while maintaining the accuracy of neural network models, as confirmed by our theoretical
analysis. Comprehensive kernel evaluations demonstrate that RTop-K outperforms state-of-the-art
GPU implementations, achieving an average speed-up of up to 11.49× with early stopping and
7.29× without early stopping. The evaluation of the overall MaxK-GNN training workflow with
RTop-K shows that RTop-K provides overall speed-ups ranging from 11.97% to 33.29% across
different models and datasets, with early stopping having almost no impact on testing accuracy.

6 ACKNOWLEDGMENTS

This research was supported in part by NSF SHF-2505770, Semiconductor Research Corporation
(SRC) Artificial Intelligence Hardware program.

9

Published as a conference paper at ICLR 2025

REFERENCES

Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. Fast k-Selection Algo-
rithms for Graphics Processing Units. Journal of Experimental Algorithmics, 17:4–2, 2012.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. MIT press, 2009.

Chaoran Cui, Jian Zong, Yuling Ma, Xinhua Wang, Lei Guo, Meng Chen, and Yilong Yin. Tri-
branch convolutional neural networks for top-k focused academic performance prediction, 2021.
URL https://arxiv.org/abs/2107.10424.

Ali Dashti, Igor Komarov, and Raissa M D’Souza. Efficient computation of k-nearest neighbour
graphs for large high-dimensional data sets on gpu clusters. PLoS One, 8(9):e74113, 2013. doi:
10.1371/journal.pone.0074113.

Shuai Ding and Torsten Suel. Faster Top-k Document Retrieval Using Block-Max Indexes. In
Proceedings of the 34th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 993–1002, 2011.

Anil Gaihre, Santosh Pandey, and Hang Liu. Deanonymizing Cryptocurrency with Graph Learning:
The Promises and Challenges. In Conference on Communications and Network Security (CNS),
pp. 1–3. IEEE, 2019.

Anil Gaihre, Da Zheng, Scott Weitze, Lingda Li, Shuaiwen Leon Song, Caiwen Ding, Xiaoye S.
Li, and Hang Liu. Dr. top-k: delegate-centric top-k on gpus. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384421. doi: 10.
1145/3458817.3476141. URL https://doi.org/10.1145/3458817.3476141.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Siddhant M. Jayakumar, Razvan Pascanu, Jack W. Rae, Simon Osindero, and Erich Elsen. Top-kast:
Top-k always sparse training, 2021. URL https://arxiv.org/abs/2106.03517.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Ang Li, Weifeng Liu, Linnan Wang, Kevin Barker, and Shuaiwen Leon Song. Warp-consolidation:
A Novel Execution Model for GPUs. In International Conference on Supercomputing, 2018.

Yifei Li, Bole Zhou, Jiejing Zhang, Xuechao Wei, Yinghan Li, and Yingda Chen. Radik: Scalable
and optimized gpu-parallel radix top-k selection. In Proceedings of the 38th ACM International
Conference on Supercomputing, ICS ’24, pp. 537–548, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400706103. doi: 10.1145/3650200.3656596. URL
https://doi.org/10.1145/3650200.3656596.

LiveScience. The 7 most powerful supercomputers in the world right
now. Available at https://www.livescience.com/technology/
7-most-powerful-supercomputers-in-the-world, 2023. Accessed: 2024,
Sep 30.

Yu A Malkov and Dmitry A Yashunin. Efficient and Robust Approximate Nearest Neighbor Search
Using Hierarchical Navigable Small World Graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(4):824–836, 2018.

Julian McAuley and Jure Leskovec. Image labeling on a network: Using social-network metadata for
image classification. 07 2012. ISBN 978-3-642-33764-2. doi: 10.1007/978-3-642-33765-9 59.

10

https://arxiv.org/abs/2107.10424
https://doi.org/10.1145/3458817.3476141
https://arxiv.org/abs/2106.03517
https://doi.org/10.1145/3650200.3656596
https://www.livescience.com/technology/7-most-powerful-supercomputers-in-the-world
https://www.livescience.com/technology/7-most-powerful-supercomputers-in-the-world

Published as a conference paper at ICLR 2025

Muneer. arrayfirerequest. Available at https://groups.google.com/g/
arrayfire-users/c/oDtQcI7afZQ/, 2021. Accessed: 2021, Mar 17.

NVIDIA. Nvidia nsight compute. https://developer.nvidia.com/nsight-compute,
2023. Accessed: 2023-08-20.

Hongwu Peng, Xi Xie, Kaustubh Shivdikar, Md Amit Hasan, Jiahui Zhao, Shaoyi Huang, Omer
Khan, David Kaeli, and Caiwen Ding. Maxk-gnn: Extremely fast gpu kernel design for acceler-
ating graph neural networks training. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 2, pp.
683–698, 2024.

Pytorch. torch.topk. https://pytorch.org/docs/stable/generated/torch.
topk.html, 2024. Accessed: 2024-08-15.

Anil Shanbhag, Holger Pirk, and Samuel Madden. Efficient Top-K Query Processing on Massively
Parallel Hardware. In Proceedings of the 2018 International Conference on Management of Data,
pp. 1557–1570. ACM, 2018.

Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsification
in distributed deep learning, 2019. URL https://arxiv.org/abs/1911.08772.

Jure Leskovec William L. Hamilton, Rex Ying. Inductive representation learning on large graphs.
arXiv preprint arXiv:1706.02216, 2017.

Xi Xie, Hongwu Peng, Amit Hasan, Shaoyi Huang, Jiahui Zhao, Haowen Fang, Wei Zhang, Tong
Geng, Omer Khan, and Caiwen Ding. Accel-gcn: High-performance gpu accelerator design for
graph convolution networks. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 01–09, 2023. doi: 10.1109/ICCAD57390.2023.10323722.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Yiqing Yang, Guoyin Zhang, Yanxia Wu, Zhixiang Zhao, and Yan Fu. Split-bucket partition (sbp):
a novel execution model for top-k and selection algorithms on gpus. J. Supercomput., 80(11):
15122–15160, March 2024. ISSN 0920-8542. doi: 10.1007/s11227-024-06031-x. URL https:
//doi.org/10.1007/s11227-024-06031-x.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Jingrong Zhang, Akira Naruse, Xipeng Li, and Yong Wang. Parallel top-k algorithms on gpu: A
comprehensive study and new methods. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’23, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400701092. doi: 10.1145/3581784.3607062.
URL https://doi.org/10.1145/3581784.3607062.

Cüneyt Özdemir. Avg-topk: A new pooling method for convolutional neural networks. Expert
Systems with Applications, 223:119892, 2023. ISSN 0957-4174. doi: https://doi.org/10.1016/
j.eswa.2023.119892. URL https://www.sciencedirect.com/science/article/
pii/S0957417423003937.

A THE EXPECTATION OF THE ITERATION COUNTS OF ALGORITHM 1

Assume that a vector v of length M has elements that follow a normal distribution N(µ, σ2).
The probability that an element x exceeds a threshold thres is given by P (x > thres) =

1− Φ
(

thres−µ
σ

)
, where Φ is the cumulative distribution function of the normal distribution. If the

expected number of elements selected from v is k, the expectation of thres, denoted as E(thres),
satisfies:

11

https://groups.google.com/g/arrayfire-users/c/oDtQcI7afZQ/
https://groups.google.com/g/arrayfire-users/c/oDtQcI7afZQ/
https://developer.nvidia.com/nsight-compute
https://pytorch.org/docs/stable/generated/torch.topk.html
https://pytorch.org/docs/stable/generated/torch.topk.html
https://arxiv.org/abs/1911.08772
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1007/s11227-024-06031-x
https://doi.org/10.1007/s11227-024-06031-x
https://openreview.net/forum?id=BJe8pkHFwS
https://doi.org/10.1145/3581784.3607062
https://www.sciencedirect.com/science/article/pii/S0957417423003937
https://www.sciencedirect.com/science/article/pii/S0957417423003937

Published as a conference paper at ICLR 2025

M ·
(
1− Φ

(
E(thres)− µ

σ

))
= k =⇒ E(thres) = µ+ σ · Φ−1

(
1− k

M

)
(1)

Considering the distinguishable interval δ between the k-th and (k + 1)-th largest elements, the
length of this interval is:

δ =
1

M · f(E(thres))
(2)

where

f(E(thres)) =
1

σ
√
2π

exp

(
− (E(thres)− µ)2

2σ2

)
is the probability density at E(thres). The length of the initial search interval D is given by:

D = max(v)−min(v) ≈ 2σ
√
2 lnM (3)

Each iteration of binary search halves the search interval length and moves closer to E(thres). The
expected number of iterations E(n) required for the algorithm to exit is determined by the search
interval shrinking to within δ. Thus, E(n) can be approximated as:

E(n) ≈ log2

(
D

δ

)
= log2

(
2σ
√
2 lnM ·M · f(E(thres))

)
= log2

(
2M

√
lnM

π

)
− 1

2 ln 2

(
Φ−1

(
1− k

M

))2

(4)

We compared the calculation results of Equation (4) with more detailed experimental results, as
shown in Table 5. It can be observed that the results match well, but E(n) is always slightly larger
than the measured average exit. This could be because the estimation of the initial search interval,
D ≈ 2σ

√
2 lnM , is valid only when M is sufficiently large. When M is not large enough, the lack

of tail samples causes the actual initial search interval to be smaller.

B A COMPREHENSIVE ANALYSIS OF THE PERFORMANCE OF RTOP-K WHEN
APPLIED TO VARYING VECTOR SIZES

Our design fixes one warp to process one vector. As the vector size M increases, the shared memory
required per warp also increases. Given that the available shared memory per block has a limit, on
the A6000 GPU, we allocate only ⌊8192/M⌋ warps per block. For M > 8192, our current shared
memory-based acceleration strategy cannot be directly applied.

For M ≤ 8192, the speedup of RTop-K relative to PyTorch is shown in Figure 6.

Considering the lower-bound speed of RTop-K (no early stopping version):

• When M is below 1280, RTop-K achieves more than a 5× speedup over PyTorch.
• When M is between 1280 and 3072, RTop-K achieves a 2× to 5× speedup over PyTorch.
• When M is between 3072 and 6144, RTop-K achieves a 1× to 2× speedup over PyTorch.
• When M is between 6144 and 8192, RTop-K is slower than PyTorch, with only the early

stopping version using a small max iter still being faster than PyTorch.

Theoretically, as shown in Equation (4), the expected number of search iterations for Algorithm 1
is:

E(n) = log2

(
2M

√
lnM

π

)
− 1

2 ln 2

(
Φ−1

(
1− k

M

))2

< log2

(
2M

√
lnM

π

)
= O(logM)

12

Published as a conference paper at ICLR 2025

Table 5: Cumulative percentage of iterations where the loop exits in Algorithm 1, for different M,k
values, with ϵ = 0. Experimental results are based on 104 repeated experiments for each M,k
couple, and theoretical values E(n) are also provided.
Iters M, k

256
64

256
128

1024
64

1024
128

1024
256

1024
512

4096
64

4096
128

4096
256

4096
512

8192
64

8192
128

8192
256

8192
512

1 0.12 1.5 0 0 0.02 0.53 0 0 0 0 0 0 0 0
2 0.17 1.5 1.25 0.17 0.02 0.53 0.41 0.41 0.18 0 0.12 0.23 0.24 0.02
3 1.98 1.62 1.27 0.5 0.62 0.54 0.43 0.41 0.2 0.08 0.3 0.24 0.25 0.02
4 3.48 2.9 1.93 1.31 0.99 0.7 1.54 0.63 0.36 0.33 1.11 0.7 0.32 0.15
5 6.88 6.06 4.05 2.42 1.67 1.25 2.83 1.34 0.76 0.61 2.43 1.3 0.7 0.31
6 13.96 11.64 8.18 4.49 3.24 2.64 5.4 2.84 1.64 1.06 4.68 2.62 1.46 0.75
7 27.3 23.03 16.09 9.42 6.41 5.16 11.13 5.99 3.37 2.15 9.18 5.28 2.98 1.6
8 46.47 40.18 30.63 18.77 12.7 10.19 21.56 12.05 6.89 4.15 19.25 10.62 5.59 3.27
9 66.34 60.57 50.71 35.21 24.91 19.69 39.04 24.37 13.69 8.23 34.8 21.5 11.49 6.72

10 81.07 76.76 69.08 55.43 43.92 35.98 60.23 42.59 26.65 16.71 55.41 38.13 22.42 13.3
11 90.11 87.67 82.99 72.93 63.57 55.7 76.59 62.55 46.7 31.29 73.09 58.45 39.96 25.94
12 95.17 93.48 90.71 84.79 78.45 73.32 87.42 78.11 66.36 52.28 85.21 75.11 60.66 44.97
13 97.46 96.8 95.19 91.9 88.37 85.06 93.42 87.9 81.06 70.87 92.16 86.37 77.12 64.65
14 98.68 98.35 97.59 95.86 93.82 92.47 96.48 93.18 89.91 83.91 96.29 92.63 87.55 80.25
15 99.46 99.21 98.79 97.95 96.87 96.32 98.24 96.3 94.73 91.34 98.15 96.39 93.48 89.3
16 99.73 99.56 99.43 98.89 98.46 98.06 99.21 98.14 97.35 95.39 99.11 98.19 96.73 94.46
17 99.85 99.72 99.71 99.51 99.18 99.03 99.59 99.02 98.51 97.65 99.48 99.18 98.35 97.29
18 99.96 99.85 99.9 99.73 99.62 99.44 99.77 99.45 99.2 98.8 99.77 99.59 99.21 98.66
19 99.99 99.93 99.95 99.84 99.84 99.67 99.87 99.75 99.64 99.38 99.89 99.76 99.54 99.33
20 99.99 99.98 99.97 99.9 99.93 99.85 99.95 99.87 99.84 99.76 99.98 99.89 99.8 99.69
21 99.99 99.99 99.98 99.95 99.97 99.93 99.97 99.94 99.95 99.95 99.99 99.98 99.94 99.84
22 99.99 99.99 99.99 99.96 99.99 99.95 99.99 99.98 99.98 99.97 99.99 99.98 99.96 99.9
23 99.99 99.99 99.99 99.99 99.99 99.96 100 99.98 100 99.98 100 100 99.99 99.94
24 100 99.99 100 100 99.99 99.97 - 100 - 99.99 - - 100 99.96
25 - 99.99 - - 100 99.99 - - - 99.99 - - - 99.98
26 - 100 - - - 100 - - - 99.99 - - - 99.99
27 - - - - - - - - - 100 - - - 99.99
28 - - - - - - - - - - - - - 100

Avg 8.72 9 9.53 10.31 10.87 11.24 10.07 10.95 11.73 12.46 10.3 11.14 12.02 12.8

E(n) 9.08 9.41 9.87 10.62 11.24 11.57 10.36 11.2 12 12.75 10.54 11.41 12.26 13.06

13

Published as a conference paper at ICLR 2025

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
92

19
20

20
48

21
76

23
04

24
32

25
60

26
88

28
16

29
44

30
72

32
00

33
28

34
56

35
84

37
12

38
40

39
68

40
96

42
24

43
52

44
80

46
08

47
36

48
64

49
92

51
20

52
48

53
76

55
04

56
32

57
60

58
88

60
16

61
44

62
72

64
00

65
28

66
56

67
84

69
12

70
40

71
68

72
96

74
24

75
52

76
80

78
08

79
36

80
64

81
92

M

1

2

5

10

20

Sp
ee

du
p

Speedup by M and Selected max_iter
max_iter = 2
max_iter = 5
max_iter = 8
No Early Stopping

Figure 6: Speedup of RTop-K relative to PyTorch for different vector sizes M and number of vectors
N = 65536. The average speedup for each case is computed over k = 64, 128, 256, 512 and k < M .
Precision ϵ = 10−16 is used for the no early stopping version.

In each iteration, a reduction operation of length M is required. Since one warp is fixed for one
vector, the time complexity of this reduction is equivalent to serial reduction, which is O(M).
Therefore, the total time complexity of Algorithm 1 is O(M logM). In contrast, PyTorch’s un-
derlying operation, RadixSelect, has a time complexity of O(M). Thus, when M is sufficiently
large, Algorithm 1 will lag behind traditional algorithms.

However, from a practical perspective, for M ≤ 8192, as shown in Table 5, the growth of E(n)
is very slow. Additionally, since the search range has a lower bound (depending on the data type),
the number of search iterations has an upper bound. Moreover, the searching stage is fully executed
in shared memory, which leads to a decreasing proportion of time spent in the searching stage
compared to the loading and selecting stages, as these involve increasing global memory accesses
with the growth of M .

Therefore, we believe the actual time complexity of Algorithm 1 is less than O(M logM). As M
increases, the relative speedup of RTop-K compared to PyTorch decreases primarily because the
relative efficiency of PyTorch’s RadixSelect improves (the proportion of its initialization, histogram
construction, and indexing overhead decreases).

We also evaluated the performance of Algorithm 1 with different precision settings, and the results
are shown in Figure 7.

We found that precision has almost no impact on speed. Even with the setting of ϵ = 0, as shown
in Table 5, Algorithm 1 exits within 16 iterations in the vast majority of cases, and the remaining
rare cases have a negligible impact on the overall performance. This is also because the searching
stage is fully executed in shared memory, making Algorithm 1 less sensitive to the number of search
iterations.

14

Published as a conference paper at ICLR 2025

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
92

19
20

20
48

21
76

23
04

24
32

25
60

26
88

28
16

29
44

30
72

32
00

33
28

34
56

35
84

37
12

38
40

39
68

40
96

42
24

43
52

44
80

46
08

47
36

48
64

49
92

51
20

52
48

53
76

55
04

56
32

57
60

58
88

60
16

61
44

62
72

64
00

65
28

66
56

67
84

69
12

70
40

71
68

72
96

74
24

75
52

76
80

78
08

79
36

80
64

81
92

M

1

2

5

10

20

Sp
ee

du
p

Speedup by M and Selected Precision, No Early Stopping
= 0.0001
= 1e 16
= 0

Figure 7: Speedup of RTop-K (no early stopping version) relative to PyTorch for different vector
sizes M and different precisions, with the number of vectors N = 65536. The average speedup for
each case is computed over k = 64, 128, 256, 512 and k < M .

15

	Introduction
	Preliminary and Related Works
	Top-k Algorithms
	GPU Architecture
	GPU Top-k Implementations

	RTop-K Framework
	Binary Search-based Top-k Selection Algorithm
	GPU Implementation Design

	Experiments
	Setup and Configuration
	RTop-K Kernel Evaluation
	Model Training and Testing Performance Evaluation

	Conclusion
	Acknowledgments
	The expectation of the iteration counts of Algorithm 1
	A comprehensive analysis of the performance of RTop-K when applied to varying vector sizes

