DATASET А

758	We evaluate the performance of TFPS on eight widely used datasets, including four ETT datasets
759	(ETTh1, ETTh2, ETTm1 and ETTm2), Exchange, Weather, Electricity, and ILI. This subsection
760	provides a summary of the datasets:
761	I
762	• ETT ¹ (Zhou et al., 2021) (Electricity Transformer Temperature) dataset contains two elec-
763	tric transformers, ETT1 and ETT2, collected from two separate counties. Each of them
764	has two versions of sampling resolutions (15min & 1h). Thus, there are four ETT datasets:
765	ETTm1, ETTm2, ETTh1, and ETTh2.
766	• Exchange-Rate ² (Lai et al., 2018) the exchange-rate dataset contains the daily exchange
767	rates of eight foreign countries including Australia, British, Canada, Switzerland, China,
768	Japan, New Zealand, and Singapore ranging from 1990 to 2016.
769	• Weather ³ (Wu et al., 2021) dataset contains 21 meteorological indicators in Germany,
770	such as humidity and air temperature.
771	• Electricity ⁴ (Wu et al., 2021) is a dataset that describes 321 customers' hourly electricity
772	consumption.
773	1
774	• ILI ⁵ (Wu et al., 2021) dataset collects the number of patients and influenza-like illness ratio in a weekly frequency.
775	ratio in a weekly nequency.
776	For the data split, we follow Zeng et al. (2023) and split the data into training, validation, and testing
777	by a ratio of 6:2:2 for the ETT datasets and 7:1:2 for the others. Details are shown in Table 5. The
778	best parameters are selected based on the lowest validation loss and then applied to the test set for

d testing e 5. The best parameters are selected based on the lowest validation loss and then applied to the test set for performance evaluation.

Table 5: The statistics of the datasets.

Datasets	Variates	Prediction Length	Timesteps	Granularity	Average MMD [*] (Time Domain)	Average MMD [*] (Frequency Domain)
ETTh1	7	{96, 192, 336, 720}	17,420	1 hour	0.938	0.340
ETTh2	7	{96, 192, 336, 720}	17,420	1 hour	0.582	0.635
ETTm1	7	{96, 192, 336, 720}	69,680	15 min	1.371	0.328
ETTm2	7	{96, 192, 336, 720}	69,680	15 min	1.213	0.815
Exchange-Rate	8	{96, 192, 336, 720}	7,588	1 day	0.805	0.485
Weather	21	{96, 192, 336, 720}	52,696	10 min	0.129	0.236
Electricity	321	{96, 192, 336, 720}	26,304	1 hour	0.026	0.005
ILI	7	{24, 36, 48, 60}	966	1 week	0.125	0.234

* A large MMD indicates a more severe drift.

MAXIMUM MEAN DISCREPANCY В

Maximum mean discrepancy (MMD) is a kernel-based statistical test used to determine whether given two distribution are the same. Given an X, the feature map ϕ transforms X to an another space \mathcal{H} such that $\phi(X) \in \mathcal{H}$. \mathcal{H} is Reproducing Kernel Hilbert Space (RKHS) and we can leverage the kernel trick to compute inner products in \mathcal{H} :

$$X, Y \quad \text{such that} \quad k(X, Y) = \langle \phi(X), \phi(Y) \rangle_{\mathcal{H}}.$$
(13)

Feature means. The mean embeddings of a probability distribution P is a feature map that transforms $\phi(X)$ into the mean of each coordinate of $\phi(X)$:

$$\mu_P(\phi(X)) = [\mathbb{E}[\phi(X_1)], \cdots, \mathbb{E}[\phi(X_m)]]^T.$$
(14)

¹https://github.com/zhouhaoyi/ETDataset

²https://github.com/laiguokun/multivariate-time-series-data

³https://www.bgc-jena.mpg.de/wetter/

⁴https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014 ⁵https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

The inner product of the mean embeddings of $X \sim P$ and $Y \sim Q$ can be written in terms of kernel function:

$$\langle \mu_P(\phi(X)), \mu_Q(\phi(Y)) \rangle_{\mathcal{H}} = \mathbb{E}_{P,Q}[\langle \phi(X), \phi(Y) \rangle_{\mathcal{H}}] = \mathbb{E}_{P,Q}[k(X,Y)].$$
(15)

Maximum mean discrepancy. The MMD measures the distance between the mean embeddings of two samples, X and Y, in the RKHS:

$$MMD^{2}(P,Q) = \|\mu_{P} - \mu_{Q}\|_{\mathcal{H}}^{2}, \qquad (16)$$

For convenience we omit the $\phi(\cdot)$ terms. If we use the norm induced by the inner product such that $||x|| = \sqrt{\langle x, x \rangle}$, the Eq. 16 becomes:

$$\mathrm{MMD}^{2}(P,Q) = \langle \mu_{p} - \mu_{Q}, \mu_{p} - \mu_{Q} \rangle = \langle \mu_{p}, \mu_{p} \rangle - 2\langle \mu_{p}, \mu_{Q} \rangle + \langle \mu_{Q}, \mu_{Q} \rangle.$$
(17)

Using the Eq. 15, finally above expression becomes:

$$MMD^{2}(P,Q) = \mathbb{E}_{P}[k(X,X)] - 2\mathbb{E}_{P,Q}[k(X,Y)] + \mathbb{E}_{Q}[k(Y,Y)].$$
(18)

Empirical estimation of MMD. In real-world applications, the underlying distribution are usually unknown. Thus, an empirical estimate of Eq. 18 can be used:

$$MMD^{2}(X,Y) = \frac{1}{m(m-1)} \sum_{i \neq j} k(x_{i}, x_{j}) - \frac{2}{mn} \sum_{i,j} k(x_{i}, x_{j}) + \frac{1}{n(n-1)} \sum_{i \neq j} k(y_{i}, y_{j}),$$
(19)

where x_i and x_j are samples from P, y_i and y_j are samples from Q, and k(x, y) is the kernel function, often the Gaussian (RBF) kernel.

C DISTRIBUTION SHIFTS IN BOTH TIME AND FREQUENCY DOMAINS

The time series \mathcal{X} is segmented into N patches, where each patch $\mathcal{P}_n = \{x_{n1}, x_{n2}, \dots, x_{nP}\}$ consists of P consecutive timesteps for $n = 1, 2, \dots, N$. For the frequency domain, we apply a Fourier transform \mathcal{F} to each patch \mathcal{P}_n , obtaining its frequency-domain representation as $\hat{\mathcal{P}}_n = \mathcal{F}(\mathcal{P}_n)$.

Each patch's probability distribution in the time domain is denoted as $p_t(\mathcal{P}_n)$, representing the statistical properties of \mathcal{P}_n , while its frequency domain distribution, denoted as $p_f(\hat{\mathcal{P}}_n)$, captures its spectral characteristics.

The distribution shifts between two patches \mathcal{P}_i and \mathcal{P}_j are characterized by the comparing their probability distributions in both time and frequency domains. These shifts are defined as:

$$\mathcal{D}_t(\mathcal{P}_i, \mathcal{P}_j) = |d(p_t(\mathcal{P}_i), p_t(\mathcal{P}_j))| > \theta,$$
(20)

$$\mathcal{D}_f(\hat{\mathcal{P}}_i, \hat{\mathcal{P}}_j) = |d(p_f(\hat{\mathcal{P}}_i), p_f(\hat{\mathcal{P}}_j))| > \theta,$$
(21)

where d is a distance metric, such as MMD values or Kullback-Leibler divergence, and θ is a threshold indicating a significant distribution shift. If $\mathcal{D}_t(\mathcal{P}_i, \mathcal{P}_j)$ or $\mathcal{D}_f(\hat{\mathcal{P}}_i, \hat{\mathcal{P}}_j)$ exceeds θ , this implies a significant distribution shift between the two patches in either domain.

D RELATED WORK

Mixture-of-Experts. Mixture-of-Experts (MoE) models have gained attention for their ability to scale efficiently by activating only a subset of experts for each input, as first introduced by Shazeer et al. (2017). Despite their success, challenges such as training instability, expert redundancy, and limited expert specialization have been identified (Puigcerver et al., 2023; Dai et al., 2024). These issues hinder the full potential of MoE models in real-world tasks.

Recent advances have integrated MoE with Transformers to improve scalability and efficiency. For
 example, GLaM (Du et al., 2022) and Switch Transformer (Fedus et al., 2022) interleave MoE layers with Transformer blocks, reducing computational costs. Other models like state space models

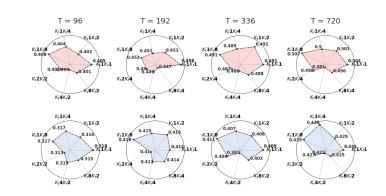


Figure 7: Results of expert number experiments for ETTh1 and ETTh2.

(SSMs) (Pióro et al., 2024; Anthony et al., 2024), (Alkilane et al., 2024) combines MoE with alternative architectures for enhanced scalability and inference speed.

In contrast, our approach introduces MoE into time series forecasting by assigning experts to specific time-frequency patterns, enabling more effective, patch-level adaptation. This approach represents a significant innovation in time series forecasting, offering a more targeted and effective way to handle varying patterns across both time and frequency domains.

- E MORE MODEL ANALYSIS
- 890 891 892

893 894

864

865

866

867

868

870

871

872

873

874

875 876 877

878 879 880

882

883

884

885

887

889

E.1 ANALYSIS OF EXPERTS

895 Detailed Results on the Number of Experts.

We provide the full results on the number of experts for the ETTh1 and ETTh2 dataset in Figure 7.

In Figure 6, we set the learning rate to 0.0001 and conducted four sets of experiments on the ETTh1 and ETTh2 datasets, $K_t = 1$, $K_f = \{1, 2, 4, 8\}$, to explore the effect of the number of frequency experts on the results. For example, $K_t 1K_f 4$ means that the TFPS contains 1 time experts and 4 frequency experts. We observed that $K_t 1K_f 2$ outperformed $K_t 1K_f 4$ in both cases, suggesting that increasing the number of experts does not always lead to better performance.

In addition, we conducted three experiments based on the optimal number of frequency experts to verify the impact of varying the number of time experts on the results. As shown in Figure 7, the best results for ETTh1 were obtained with $K_t 4K_f 2$, $K_t 8K_f 4$, $K_t 4K_f 4$, $K_t 4K_f 4$, while for ETTh2, the optimal results were achieved with $K_t 2K_f 2$, $K_t 2K_f 4$, $K_t 4K_f 2$ and $K_t 4K_f 2$. Combined with the average MMD in Table 5, we attribute this to the fact that, in cases where concept drift is more severe, such as ETTh1 in the time domain, more experts are needed, whereas fewer experts are sufficient when the drift is less severe.

910 Comparing Inter- and Intra-Cluster Differences via MMD.

911 We present the heatmaps of inter-cluster and intra-cluster MMD values obtained using linear layers 912 and PI in Figure 8. The diagonal elements represent the average MMD values of patches within 913 the same clusters. If these values are small, it indicates that the difference of patches within the 914 same cluster is relatively similar. The off-diagonal elements represent the average MMD values 915 between patches from different clusters, where larger values mean significant differences between 916 the clusters. We observe that when using PI, the intra-cluster drift is smaller, while the inter-cluster 917 shift is more pronounced compared to the linear layer. This indicates that our identifier effectively 918 classifies and distinguishes between different patterns.

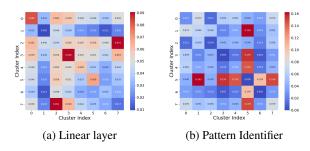


Figure 8: Heatmap showing the MMD values of inter- and intra-cluster patches on ETTh1.

Table 6: Detailed results of the comparison between TFPS and normalization methods. The best results are highlighted in **bold** and the second best are underlined.

			TF	DC					FEDf	ormer				
Μ	odel	IMP.		F 3	+ 5	SIN	+ S	AN	+ Dis	h-TS	+ N	IST	+ R6	evIN
			(0	ur)	(202	24a)	(202	23b)	(20	23)	(20	22)	(20	21)
Μ	etric	MSE	MSE	MAE										
-	96	-1.0%	0.398	0.413	0.413	0.372	0.383	0.409	0.390	0.424	0.394	0.414	0.392	0.413
Ч	192	3.8%	0.423	0.423	0.443	0.417	0.431	0.438	0.441	0.458	0.441	0.442	0.443	0.444
ETTh1	336	-0.3%	0.484	0.461	0.465	0.448	0.471	0.456	0.495	0.486	0.485	0.466	0.495	0.467
-	720	4.5%	0.488	0.476	0.509	0.490	0.504	0.488	0.519	0.509	0.505	0.496	0.520	0.498
0	96	31.3%	0.313	0.355	0.412	0.357	0.300	0.355	0.806	0.589	0.381	0.403	0.380	0.402
ETTh2	192	26.0%	0.405	0.410	0.472	0.453	0.392	0.413	0.936	0.659	0.478	0.453	0.457	0.443
H	336	36.7%	0.392	0.415	0.527	0.527	0.459	0.462	1.039	0.702	0.561	0.499	0.515	0.479
-	720	37.9%	0.410	0.433	0.593	0.639	0.462	0.472	1.237	0.759	0.502	0.481	0.507	0.487
1	96	4.1%	0.327	0.367	0.373	0.320	0.311	0.355	0.348	0.397	0.336	0.382	0.340	0.385
ETTm1	192	2.9%	0.374	0.395	0.394	0.366	0.351	0.383	0.406	0.428	0.386	0.409	0.390	0.411
Ë.	336	5.3%	0.401	0.408	0.418	0.405	0.390	0.407	0.438	0.450	0.438	0.441	0.432	0.436
щ	720	-0.5%	0.479	0.456	0.451	0.475	0.456	0.444	0.497	0.481	0.483	0.460	0.497	0.466
2	96	33.5%	0.170	0.255	0.326	0.211	0.175	0.266	0.394	0.395	0.191	0.272	0.192	0.272
ETTm2	192	32.3%	0.235	0.296	0.402	0.316	0.246	0.315	0.552	0.472	0.270	0.321	0.270	0.320
Ë.	336	35.0%	0.297	0.335	0.465	0.399	0.315	0.362	0.808	0.601	0.353	0.371	0.348	0.367
щ	720	35.9%	0.401	0.397	0.555	0.547	0.412	0.422	1.282	0.771	0.445	0.422	0.430	0.415
r	96	28.4%	0.154	0.202	0.280	0.215	0.179	0.239	0.244	0.317	0.187	0.234	0.187	0.234
ιthέ	192	23.3%	0.205	0.249	0.314	0.264	0.234	0.296	0.320	0.380	0.235	0.272	0.235	0.272
Weather	336	19.8%	0.262	0.289	0.329	0.293	0.304	0.348	0.424	0.452	0.289	0.308	0.287	0.307
	720	18.4%	0.344	0.342	0.382	0.370	0.400	0.404	0.604	0.553	0.359	0.352	0.361	0.353
1^{s}	t (2 nd)	Count	24	(8)	9 ((4)	7 (1	24)	0 ((1)	0	(1)	0 ((2)

RESULTS OF THE COMPARISON BETWEEN TFPS AND NORMALIZATION METHODS E.2

In this section, we provide the detailed experimental results of the comparison between TFPS and five state-of-the-art normalization methods for non-stationary time series forecasting: SIN (Han et al., 2024a), SAN (Liu et al., 2023b), Dish-TS (Fan et al., 2023), Non-Stationary Transformers (NST) (Liu et al., 2022), and RevIN (Kim et al., 2021). The results of SIN are from Han et al. (2024a), other results are from Liu et al. (2023b). We report the evaluation of FEDformer over all the forecasting lengths for each dataset and the relative improvements in Table 6. It can be concluded that TFPS achieves the best performance among existing methods in most cases. The improvement is significant with an average MSE decrease of 18.9%. We attribute this improvement to the accurate identification of pattern groups and the provision of specialized experts for each group, thereby avoiding the over-stationarization problem often associated with normalization methods.

F METRIC ILLUSTRATION

We use mean square error (MSE) and mean absolute error (MAE) as our metrics for evaluation of all forecasting models. Then calculation of MSE and MAE can be described as:

$$MSE = \frac{1}{H} \sum_{i=L+1}^{L+H} (\hat{Y}_i - Y_i)^2,$$
(22)

$$MAE = \frac{1}{H} \sum_{i=L+1}^{L+H} \left| \hat{Y}_i - Y_i \right|,$$
(23)

where \hat{Y} is predicted vector with H future values, while Y is the ground truth.

G ALGORITHM OF TFPS

We provide the pseudo-code of TFPS in Algorithm 1.

H BROADER IMPACT

Real-world applications. TFPS addresses the crucial challenge of time series forecasting, which is a valuable and urgent demand in extensive applications. Our method achieves consistent state-of-the-art performance in four real-world applications: electricity, weather, exchange rate, illness. Researchers in these fields stand to benefit significantly from the enhanced forecasting capabilities of TFPS. We believe that improved time series forecasting holds the potential to empower decision-making and proactively manage risks in a wide array of societal domains.

Academic research. TFPS draws inspiration from classical time series analysis and stochastic process theory, contributing to the field by introducing a novel framework with the assistance pattern recognition. This innovative architecture and its associated methodologies represent significant advancements in the field of time series forecasting, enhancing the model's ability to address distribution shifts and complex patterns effectively.

Model Robustness. Extensive experimentation with TFPS reveals robust performance without exceptional failure cases. Notably, TFPS exhibits impressive results and maintains robustness in datasets with distribution shifts. The pattern identifier structure within TFPS groups the time series into distinct patterns and adopts a mixture of pattern experts for further prediction, thereby alleviating prediction difficulties. However, it is essential to note that, like any model, TFPS may face challenges when dealing with unpredictable patterns, where predictability is inherently limited. Understanding these nuances is crucial for appropriately applying and interpreting TFPS's outcomes.

- Our work only focuses on the scientific problem, so there is no potential ethical risk.

I LIMITATIONS

Though TFPS demonstrates promising performance on the benchmark dataset, there are still some limitations of this method. First, the patch length is primarily chosen heuristically, and the current design struggles with handling indivisible lengths or multi-period characteristics in time series.
While this approach works well in experiments, it lacks generalizability for real-world applications.
Second, the real-world time series data undergo expansion, implying that the new patterns continually emerge over time, such as an epidemic or outbreak that had not occurred before. Therefore, future work will focus on developing a more flexible and automatic patch length selection mechanism, as well as an extensible solution to address these evolving distribution shifts.

1026 Algorithm 1 Time-Frequency Pattern-Specific architecture - Overall Architecture. 1027 **Input**: Input lookback time series $X \in \mathbb{R}^{L \times C}$; input length L; predicted length H; variables number 1028 C; patch length P; feature dimension D; encoder layers number n; random Gaussian distribution-1029 1030 initialized subspace $\mathbf{D} = [\mathbf{D}^{(1)}, \mathbf{D}^{(2)}, \cdots, \mathbf{D}^{(K)}]$, each $\mathbf{D}^{(j)} \in \mathbf{R}^{q \times d}$, where $q = C \times D$ and 1031 d = q/K. Technically, we set D as 512, n as 2. 1032 **Output**: The prediction result \hat{Y} . 1033 1034 $\triangleright \, X \in \mathbb{R}^{C \times L}$ 1: X = X.transpose 1035 $\triangleright X_t^0 \in \mathbb{R}^{C \times N \times D}$ 2: $X_{PE} = \text{Patch}(X) + \text{Position Embedding}$ 1036 1037 3: ⊳ Time Encoder. 1038 4: $X_t^0 = X_{PE}$ 1039 5: for l in $\{1, ..., n\}$: 1040 1041 6: $X_t^{l-1} = \text{LayerNorm} (X_t^{l-1} + \text{Self-Attn} (X_t^{l-1})).$ $\triangleright X_t^{l-1} \in \mathbb{R}^{C \times N \times D}$ 1042 $\triangleright \, X_t^l \in \mathbb{R}^{C \times N \times D}$ 7: $X_t^l = \text{LayerNorm} (X_t^{l-1} + \text{Feed-Forward} (X_t^{l-1})).$ 1043 1044 8: End for 1045 $\triangleright z_t^l \in \mathbb{R}^{C \times N \times D}$ 9: $z_t = X_t^l$ 1046 10: ▷ Pattern Identifier for Time Domain. 1047 1048 \triangleright Eq. 6 of the paper $s_t \in \mathbb{R}^{C \times N \times D}$ 11: $s_t = \text{Subspace affinity}(z_t, \mathbf{D})$ 1049 \triangleright Eq. 7 of the paper $\widetilde{s}_t \in \mathbb{R}^{C \times N \times D}$ 12: $\tilde{s}_t = \text{Subspace refinement}(s_t)$ 1050 1051 13: ▷ Mixture of Temporal Pattern Experts. 1052 14: $G(s) = \text{Softmax}(\text{TopK}(s_t))$ 1053 15: $h_t = \sum_{k=1}^K G(s) \text{MLP}_k(z_t)$ \triangleright Eq. 10 and Eq. 11 of the paper $h_t \in \mathbb{R}^{C \times N \times D}$ 1054 1055 16: ▷ Frequency Encoder. 1056 \triangleright Eq. 2 of the paper $X_f^0 \in \mathbb{R}^{C \times N \times P}$ 17: $X_f^0 = X_{PE}$ 1057 18: for l in $\{1, \ldots, n\}$: 1058 $\triangleright \, X_f^{l-1} \in \mathbb{R}^{C \times N \times D}$ 1059 19: $X_f^{l-1} = \text{LayerNorm} (X_f^{l-1} + \text{Fourier} (X_f^{l-1})).$ 20: $X_f^l = \text{LayerNorm} (X_f^{l-1} + \text{Feed-Forward} (X_f^{l-1})).$ $\triangleright X_f^l \in \mathbb{R}^{C \times N \times D}$ 1061 1062 21: End for 1063 $\triangleright z_f^n \in \mathbb{R}^{C \times N \times D}$ 22: $z_f = X_f^l$ 1064 23: ▷ Pattern Identifier for Frequency Domain. \triangleright Eq. 6 of the paper $s_f \in \mathbb{R}^{C \times N \times D}$ 24: s_f = Subspace affinity (z_f, \mathbf{D}) 1067 25: \tilde{s}_f = Subspace refinement (s_f) \triangleright Eq. 7 of the paper $\widetilde{s}_f \in \mathbb{R}^{C \times N \times D}$ 1068 26: ▷ Mixture of Frequency Pattern Experts. 1069 1070 27: $G(s) = \text{Softmax}(\text{TopK}(s_f))$ 1071 28: $h_f = \sum_{k=1}^{K} G(s) \text{MLP}_k(z_f)$ \triangleright Eq. 10 and Eq. 11 of the paper $h_f \in \mathbb{R}^{C \times N \times D}$ 1072 $\triangleright h \in \mathbb{R}^{C \times N \times 2 * D}$ 1073 29: $h = \text{Concat}(h_t, h_f)$ 1074 30: for c in $\{1, \ldots, C\}$: 1075 31: $\hat{Y} = \text{Linear}(\text{Flatten}(h)).$ \triangleright Project tokens back to predicted series $\hat{Y} \in \mathbb{R}^{C \times H}$ 1076 1077 32: End for 1078 33: $\hat{Y} = \hat{Y}$.transpose $\triangleright \hat{Y} \in \mathbb{R}^{H \times C}$ 1079 34: **Return** \hat{Y} \triangleright Output the final prediction $\hat{Y} \in \mathbb{R}^{H \times C}$

Table 7: Multivariate long-term forecasting results for Traffic. The input lengths is L = 96. The best results are highlighted in **bold** and the second best are underlined.

Mod	-1	IMP.	TF	PS	TSL	ANet	Fľ	TS	iTrans	former	TFDN	let-IK	Patch	nTST	Time	esNet	DLi	near	FEDf	ormer
Mou		IIVIF.	(0	ur)	(20	24)	(20	24)	(20)	24a)	(20	23)	(20	23)	(202	23a)	(20	23)	(20	22)
Metr	ric	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	21.1%	0.427	0.296	0.475	0.307	0.651	0.388	0.428	0.295	0.519	0.314	0.446	0.284	0.586	0.316	0.650	0.397	0.575	0.357
Traffic	192	17.7%	0.445	0.298	0.478	0.306	0.603	0.364	0.448	0.302	0.513	0.314	0.453	0.285	0.618	0.323	0.600	0.372	0.613	0.381
manne	336	17.0%	0.459	0.307	0.494	0.312	0.610	0.366	0.465	0.311	0.525	0.319	0.467	0.291	0.634	0.337	0.606	0.374	0.622	0.380
	720	15.1%	0.496	0.313	0.528	0.331	0.648	0.387	0.501	0.333	0.561	0.336	0.501	0.492	0.659	0.349	0.646	0.396	0.630	0.383
1	st Cour	nt	1	7	()	()	1	1	()	()	()	()	()

Table 8: Experiment results under hyperparameter searching for the long-term forecasting task. The best results are highlighted in **bold** and the second best are underlined.

м	odel	IMP.	TF	PS	TSL	ANet	Fľ	TS	iTrans	former	TFDN	let-IK	Patch	nTST	Time	sNet	Dlii	near	FEDf	ormer
IVI	ouei	IIVIF.	(0	ur)	(20	24)	(20	24)	(202	24a)	(20	23)	(20	23)	(202	23a)	(20	23)	(20)22)
Μ	etric	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MA
_	96	1.5%	0.372	0.404	0.368	0.394	0.374	0.395	0.387	0.405	0.360	0.387	0.375	0.400	0.389	0.412	0.384	0.405	0.385	0.42
F	192	5.7%	0.401	0.410	0.413	0.418	0.407	0.414	0.441	0.436	0.403	0.412	0.414	0.421	0.441	0.442	0.443	0.450	0.441	0.46
Ē	336	9.8%	0.409	0.402	0.412	0.416	0.429	0.428	0.491	0.463	0.434	0.429	0.432	0.436	0.491	0.467	0.447	0.448	0.491	0.47
	720	11.2%	0.423	0.433	0.473	0.477	0.425	0.446	0.509	0.494	0.437	0.452	0.450	0.466	0.512	0.491	0.504	0.515	0.501	0.49
2	96	9.3%	0.268	0.325	0.283	0.344	0.274	0.337	0.301	0.350	0.271	0.329	0.278	0.336	0.324	0.368	0.290	0.353	0.342	0.38
E	192	10.4%	0.329	0.376	0.331	0.378	0.337	0.377	0.380	0.399	0.333	0.372	0.339	0.380	0.393	0.410	0.388	0.422	0.434	0.44
Ē	336	17.7%	0.329	0.401	0.319	0.377	0.360	0.398	0.424	0.432	0.361	0.396	0.336	0.380	0.429	0.437	0.463	0.473	0.512	0.49
	720	9.0%	0.412	0.441	0.407	0.449	0.386	0.423	0.430	0.447	0.382	0.418	0.382	0.421	0.433	0.448	0.733	0.606	0.467	0.47
-	96	10.2%	0.281	0.329	0.291	0.353	0.303	0.345	0.342	0.377	0.283	0.330	0.288	0.342	0.337	0.377	0.301	0.345	0.360	0.40
<u>B</u>	192	8.5%	0.324	0.354	0.329	0.372	0.337	0.365	0.383	0.396	0.327	0.356	0.334	0.372	0.395	0.406	0.336	0.366	0.395	0.42
E	336	8.2%	0.359	0.404	0.357	0.392	0.372	0.385	0.418	0.418	0.361	0.375	0.367	0.393	0.433	0.432	0.372	0.389	0.448	0.45
щ	720	8.2%	0.409	0.408	0.423	0.425	0.428	0.416	0.487	0.457	0.411	0.409	0.417	0.422	0.484	0.458	0.427	0.423	0.491	0.47
0	96	8.9%	0.158	0.243	0.167	0.256	0.165	0.255	0.186	0.272	0.158	0.244	0.164	0.253	0.182	0.262	0.172	0.267	0.193	0.28
Tm2	192	5.7%	0.222	0.302	0.221	0.294	0.220	0.291	0.254	0.314	0.219	0.282	0.221	0.292	0.252	0.307	0.237	0.314	0.256	0.32
E	336	8.5%	0.268	0.316	0.277	0.329	0.274	0.326	0.316	0.351	0.273	0.317	0.277	0.329	0.312	0.346	0.295	0.359	0.321	0.30
щ	720	12.0%	0.344	0.373	0.356	0.382	0.367	0.383	0.414	0.407	0.346	0.374	0.365	0.384	0.417	0.404	0.427	0.439	0.434	0.42
	1 st Co	ount	2	21	1	3	()	()	1	7	1	1	()	()	(0

TRAFFIC RESULTS J

We conducted addition experiments on high-dimensional Traffic dataset to further evaluate the per-formance and generalizability of TFPS, as shown in Table 7.

Κ HYPERPARAMETER-SEARCH RESULTS

To ensure a fair comparison between models, we conducted experiments using unified parameters L = 96 and reported results in the main text.

In addition, considering that the reported results in different papers are mostly obtained through hyperparameter search, we provide the experiment results with the full version of the parameter search. We searched for input length among 96, 192, 336, and 512. The results are included in Table 8. All baselines are reproduced by their official code.

We can find that the relative promotion of TFPS over TFDNet is smaller under comprehensive hyperparameter search than the unified hyperparameter setting. It is worth noticing that TFPS runs much faster than TFDNet according to the efficiency comparison in Table 11. Therefore, considering performance, hyperparameter-search cost and efficiency, we believe TFPS is a practical model in real-world applications and is valuable to deep time series forecasting community.

L VISUALIZATION OF CLUSTERING

Figure 9 presents the t-SNE visualization of the learned embedded representation on the ETTh1. In the Figure 9 (a), where the pattern identifier is replaced with a linear layer, the representation lacks clear clustering structures, resulting in scattered and indistinct groupings. In contrast, Figure 9 (b) shows the visualization of the representation learned by the proposed method, which effectively captures discriminative features and reveals significantly clearer clustering patterns.

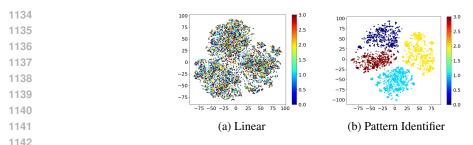


Figure 9: Visualization of the embedded representations with t-SNE on ETTh1. The left figure shows the visualization when the Patch Identifier is replaced with a Linear Layer for comparison, while the right figure shows the visualization of the proposed method.

Table 9: Comparison between TFPS and MoE-based methods. The best results are highlighted in bold and the second best are underlined.

Mode	-1	IMP.	TF	PS	Mc	ьLE	M	oU	KAN	4TSF	
Mou	21	IIVIF.	(0	ur)	20	24	20	24	202	24b	
Metr	ic	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MA	
	96	-4.3%	0.398	0.413	0.383	0.392	0.381	0.403	0.382	0.40	
ETTh1	192	1.7%	0.423	0.423	0.434	0.426	0.429	0.430	0.430	0.42	
EIINI	336	1.6%	0.484	0.461	0.489	0.478	0.488	0.463	0.498	0.46	
	720	8.2%	0.488	0.476	0.602	0.545	0.499	0.484	0.494	0.47	
	96	10.4%	0.313	0.355	0.413	0.360	0.317	0.358	0.318	0.35	
ETTEL 2	192	10.3%	0.405	0.410	0.525	0.416	0.409	0.414	0.419	0.41	
ETTh2	336	7.1%	0.392	0.415	0.423	0.434	0.397	0.420	0.447	0.45	
	720	8.4%	0.410	0.433	0.453	0.458	0.412	0.434	0.477	0.47	
	96	13.5%	0.327	0.367	0.338	0.380	0.465	0.442	0.333	0.37	
ETTm1	192	10.6%	0.374	0.395	0.388	0.403	0.483	0.455	0.384	0.39	
EIIMI	336	11.8%	0.401	0.408	0.417	0.431	0.540	0.488	0.407	0.41	
	720	7.3%	0.479	0.456	0.486	0.472	0.583	0.509	0.483	0.46	
	96	13.9%	0.170	0.255	0.238	0.271	0.179	0.263	0.175	0.26	
ETTm2	192	3.8%	0.235	0.296	0.247	0.305	0.243	0.303	0.244	0.30	
ETTMZ	336	3.3%	0.297	0.335	0.308	0.343	0.306	0.343	0.308	0.34	
	720	13.7%	0.401	0.397	0.583	0.419	0.405	0.404	0.405	0.40	
1 ^s	t Coun	it	3	0		1		1		0	

COMPARED WITH MOE-BASED METHODS Μ

As shown in Table 9, unlike MoE-based methods that rely on the Softmax function as a gating mechanism, our approach constructs a pattern recognizer to assign different experts to handle distinct patterns. This results in TFPS achieving relative improvements of 2.3%, 9.0%, 10.6%, and 9.1% across the four datasets, respectively.

Ν **COMPARED WITH DISTRIBUTION SHIFT METHODS**

As shown in Table 10, we compare with the methods for distribution shift. This results in TFPS achieving relative improvements of 6.7%, 6.6%, 4.8%, and 5.9% across the four datasets, respec-tively.

EFFICIENCY ANALYSIS

To make this clearer, we present the results of ETTh1 for a prediction length of 192 from Table 2 and include additional results on runtime and computational complexity in Table 11. Due to the sparsity of MoPE, TFPS achieves a remarkable balance between performance and efficiency:

Performance Superiority: TFPS achieves an MSE of 0.423, outperforming TSLANet (0.448), FITS (0.445), PatchTST (0.460), and FEDformer (0.441). This represents a 5.6% improvement over TSLANet and a 8.0% improvement over PatchTST, highlighting its significant accuracy gains.

Mode	-1	IMP.	TF	PS	Ko	opa	SO	LID		Net
WIGH	-1		(0	ur)	202	24b	202	24a	20	24
Metr	ic	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	7.9%	0.398	0.413	0.385	0.407	0.440	0.439	0.425	0.402
ETTh1	192	10.3%	0.423	0.423	0.445	0.434	0.492	0.466	0.452	0.443
EIIII	336	4.9%	0.484	0.461	0.489	0.460	0.525	0.481	0.492	0.482
	720	4.4%	0.488	0.476	0.497	0.480	0.517	0.496	0.504	0.496
	96	10.6%	0.313	0.355	0.318	0.360	0.318	0.359	0.382	0.362
ETTh2	192	4.7%	0.405	0.410	0.378	0.398	0.414	0.418	0.435	0.426
ETTHZ	336	4.8%	0.392	0.415	0.415	0.430	0.398	0.421	0.426	0.419
	720	6.8%	0.410	0.433	0.445	0.456	0.424	0.441	0.456	0.437
	96	6.8%	0.327	0.367	0.329	0.359	0.329	0.370	0.374	0.392
ETTm1	192	2.0%	0.374	0.395	0.380	0.393	0.379	0.400	0.385	0.435
EIIIII	336	8.7%	0.401	0.408	0.401	0.411	0.405	0.412	0.473	0.458
	720	2.0%	0.479	0.456	0.475	0.448	0.482	0.464	0.496	0.483
	96	5.3%	0.170	0.255	0.179	0.261	0.175	0.258	0.184	0.274
ETTm2	192	3.8%	0.235	0.296	0.246	0.305	0.241	0.302	0.248	0.384
ETTIIZ	336	3.4%	0.297	0.335	0.310	0.348	0.303	0.342	0.313	0.374
	720	9.0%	0.401	0.397	0.405	0.402	0.456	0.436	0.425	0.43
1 st Count		t	2	5	(5	0		1	

Table 10: Comparison between TFPS and methods for Distribution Shift. The best results are highlighted in **bold** and the second best are underlined.

Table 11: The GPU memory (MB) and speed (inference time) of each model.

	TFPS	TSLANet	FITS	iTransformer	TFDNet-IK	PatchTST	TimesNet	DLinear	FEDformer
MSE	0.423	0.448	0.445	0.441	0.458	0.460	0.441	0.434	0.441
GPU Memory (MB)	9.643	0.481	0.019	3.304	0.246	0.205	2.345	0.142	62.191
Average Inference Time (ms)	6.457	2.100	1.202	2.949	407.853	17.851	72.196	0.789	259.001

> While DLinear achieves an MSE of 0.434, TFPS still demonstrates a 2.5% relative improvement, making it the most accurate model among all baselines.

Efficiency Gains: TFPS maintains competitive runtime and memory efficiency.

- Runtime: TFPS runs in 6.457 ms, making it 2.8× faster than PatchTST (17.851 ms) and $11.2 \times$ faster than TimesNet (72.196 ms).
- Memory Usage: TFPS uses 9.643 MB of GPU memory, significantly less than FEDformer (62.191 MB) and comparable to iTransformer (3.304 MB). This makes TFPS suitable for resource-constrained applications while maintaining superior performance.

Balancing Trade-offs: While lightweight models like DLinear (0.434 MSE, 0.789 ms runtime) are slightly more efficient, TFPS delivers a substantial performance improvement of 2.5%, providing a well-rounded solution that balances accuracy and efficiency effectively.

Р HYPERPARAMETER SENSITIVITY

In this section, we analysis the impact of the hyperparameters α and β on the performance.

Specifically, we performed a grid search to optimize the hyperparameters α_t $\{0.0001, 0.001, 0.01\}$ and $\alpha_f = \{0.0001, 0.001, 0.01\}$, as shown in Figure 10 (a). After extensive testing, we ultimately fixed at $\alpha_t = \alpha_f = 10^{-3}$ in our experiments.

In addition, we conducted a grid search to optimize the balance factors $\beta_t = \{0.01, 0.05, 0.1, 0.5, 1\}$ and $\beta_f = \{0.01, 0.05, 0.1, 0.5, 1\}$. The performance under different parameter values is displayed in Figure 10 (b), from which we have the following observations:

• Firstly, the performance is affected when the value of β is too low, indicating that the proposed clustering objective plays a crucial role in distinguishing patterns.

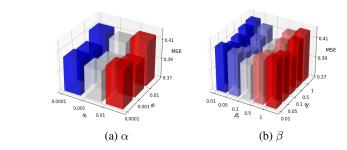


Figure 10: Parameter sensitivity of α and β of the proposed method on the ETTh1-96 dataset.

Table 12: In the table, w/ Imaginary indicates that we incorporate both the real and imaginary parts into the network.

		ET	Th1			ET	Гh2	
	96			720			336	120
TFPS	0.398	0.423	0.484	0.488	0.313	0.405	0.392	0.410
w/ Imaginary	0.397	0.424	0.487	0.486	0.312	0.406	0.391	0.399

• Second, an excessive β also has a negative on the performance. One plausible explanation is that the excessive value influences the learning of the inherent structure of original data, resulting in a perturbation of the embedding space.

• Overall, we recommend setting β around 0.1 for optimal performance.

Q FULL ABLATION

1270 Q.1 IMPACTS OF REAL/IMAGINARY PARTS

To further validate the robustness of our approach, we adopted similar operations in FreTS to conduct experiments incorporating both the real and imaginary parts. The results in the Table 12 show that the performance of TFPS with the real part only is very similar to that when both parts are included, while requiring fewer parameters. This further reinforces the conclusion that TFPS remains highly effective even when focusing solely on the real part of the Fourier transform.

1277 Q.2 ABLATION ON PI

The PI module plays a crucial role in identifying and characterizing distinct patterns within the time series data, while the gating network dynamically selects the most relevant experts for each segment. This collaborative mechanism allows the model to specialize in handling different patterns and adapt effectively to distribution shifts, thus mitigating the overfitting risks that arise from treating all data equally.

To validate the importance of PI empirically, we have conducted the ablation experiments comparing
the model's performance by replacing the PI module with a linear layer in the Table 3 of main text.
In addition, we supplement some ablation experiments in Table 13 to further verify the effectiveness
of PI.

Q.3 ABLATION ON R_1 AND R_2

We conducted ablation experiments to further verify the important roles of R_1 and R_2 , as shown in Table 14.

- **R** REPLACE MOPE WITH ALTERNATIVE DESIGNS

Here we provide the complete results of alternative designs for TFPS.

Table 13: Ablation study of PI components. The model variants in our ablation study include the following configurations across both time and frequency branches: (a) inclusion of the Time PI; (b) inclusion of the Frequency PI; (c) exclusion of both. The best results are in **bold**.

Time DI	Frequency PI		ET	Гh1			ET	Th2	
	Frequency F1	96	192	336	720	96	192	336	720
\checkmark	\checkmark	0.398	0.423	0.484	0.488	0.313	0.405	0.392	0.410
\checkmark	×	0.404	0.454	0.490	0.503	0.322	0.413	0.410	0.425
X	\checkmark	0.405	0.456	0.493	0.509	0.324	0.415	0.412	0.430
X	×	0.407	0.458	0.497	0.513	0.328	0.418	0.419	0.435

1303 1304 1305

1306 1307

1308

Table 14: Ablation study of Loss Constraint. The model variants in our ablation study include the following configurations across both time and frequency branches: (a) inclusion of the R_1 ; (b) inclusion of the R_2 ; (c) exclusion of both. The best results are in **bold**.

P.	R_2		ET				ET		
-	_	96			720				
					0.488				
\checkmark	X	0.408	0.449	0.500	0.498 0.491	0.320	0.418	0.415	0.429
X	\checkmark	0.403	0.434	0.493	0.491	0.316	0.413	0.405	0.418
X	×	0.412	0.456	0.509	0.503	0.328	0.425	0.420	0.435

Table 15: Multi-output predictor and a stacked attention layer are used to replace MoPE in ETTh1 and ETTh2 datasets.

ETTh1

336

0.484

0.492

0.492

192

0.423

0.435

0.452

720

0.488

0.491

0.508

96

0.313

0.317

0.334

96

0.398

0.403

0.399

TFPS

Multi-output Predictor

Attention Layers

ETTh2

336

0.392

0.399

0.409

192

0.405

0.407

0.407

720

0.410

0.425

0.451

1	32	1
1	32	1
1	32	3

1323 1324

1325

As show in Table 15, we have conducted addition experiments where we replaced the MoPE module with weighted multi-output predictor and stacked self-attention layers, keeping all other components and configurations identical. The results demonstrate that our proposed method significantly outperforms them, which validates the importance of the Top-K selection and pattern-aware design in enhancing the model's representation capacity. In contrast, multi-output predictor and self-attention typically treats all data points uniformly, which may limit its ability to capture subtle distribution shifts or evolving patterns across patches.

1333 1334

- 1335
- 1336
- 1337 1338
- 1339
- 1340
- 1341
- 1342 1343
- 1343
- 1345
- 1346
- 1347

1348

1349