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Abstract

We introduce CameraBench, a large-scale dataset and benchmark designed to as-
sess and improve camera motion understanding. CameraBench consists of ∼3,000
diverse internet videos, annotated by experts through a rigorous multi-stage quality
control process. One of our core contributions is a taxonomy or “language” of
camera motion primitives, designed in collaboration with cinematographers. We
find, for example, that some primitives like “follow” (or tracking) require under-
standing scene content like moving subjects. We conduct a large-scale human study
to quantify human annotation performance, revealing that domain expertise and
tutorial-based training can significantly enhance accuracy. For example, a novice
may confuse zoom-in (a change of intrinsics) with translating forward (a change
of extrinsics), but can be trained to differentiate the two. Using CameraBench,
we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs),
finding that SfM models struggle to capture semantic primitives that depend on
scene content, while VLMs struggle to capture geometric primitives that require
precise estimation of trajectories. We then fine-tune a generative VLM on Camer-
aBench to achieve the best of both worlds and showcase its applications, including
motion-augmented captioning, video question answering, and video-text retrieval.
We hope our taxonomy, benchmark, and tutorials will drive future efforts towards
the ultimate goal of understanding camera motions in any video. Project page:
https://linzhiqiu.github.io/papers/camerabench

1 Introduction

We must perceive in order to move, but we must also move in order to perceive.
– J. J. Gibson, The Ecological Approach to Visual Perception [21]

Humans perceive the visual world through movement. Motion parallax [54], for instance, enables
precise depth perception essential for navigating the physical world [20]. Similarly, camera motion is
crucial for modern vision techniques that process videos of dynamic scenes. For example, Structure-
from-Motion (SfM) [55, 64, 78] and Simultaneous Localization and Mapping (SLAM) [14, 18, 59]
methods must first estimate camera motion (pose trajectory) to reconstruct the scenes in 4D. Likewise,
without understanding camera motion, video-language models (VLMs) [61, 72, 75] would not fully
perceive, reason about, or generate video dynamics.

Human perception of camera motion. Understanding camera motion comes naturally to humans
because we intuitively grasp the “invisible subject” – the camera operator who shapes the video’s
viewpoint, framing, and narrative. For example, in a video tracking a child’s first steps, one can
sense a parent’s joy through their handheld, shaky movement. Professional cinematographers and
filmmakers even use camera motion as a tool [15, 58] to enhance visual storytelling and amplify the
emotional impact of their shots. Hitchcock’s iconic dolly zoom moves the camera forward while
zooming out, maintaining the subject’s framing while altering the background to create the impression
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Figure 1: Examples of camera movements. We show videos with their camera trajectories: a tracking
shot of a toddler (row 1, left), Hitchcock’s dolly zoom effect (row 2, left), Spielberg’s dramatic pan and tilt
in Jurassic Park (row 3, left), Nolan’s roll shot in Inception (row 1, right), a pedestal-up shot from The
Legend of Zelda (row 2, right), and a selfie by an amateur photographer, arcing to showcase the scenery while
centering themselves (row 3, right). Please watch the videos at our website.

of vertigo. In Jurassic Park (1993), Spielberg uses a slow upward tilt and rightward pan to
evoke a sense of awe as the protagonists (and the audience) first see the dinosaurs. In Inception (2010),
Nolan uses a camera roll to mirror shifting gravity, blurring the line of reality. Similarly, game
developers use camera movement to enhance player immersion. In Legend of Zelda: Breath of the
Wild (2017), a smooth pedestal-up shot transitions from the character’s viewpoint to a breathtaking
aerial view, hinting at the journey ahead. Even amateur photographers use camera motion as a tool;
for example, selfie videos allow one to play the role of both the cinematographer and the subject. See
Figure 1 for examples.

Computational approaches to camera motion. In contrast, classic computer vision methods learn
camera motion from what is “visible” in the frame, relying on techniques like SfM and SLAM to
estimate camera poses from video sequences. While these geometry-based approaches perform well
on simple, static scenes, it is unclear how well they generalize to dynamic, real-world videos due to
the difficulty of separating camera motion from scene dynamics [41, 66]. Moreover, these approaches
do not capture the high-level semantics of camera motion [58], such as the intent behind a shot (e.g.,
tracking a subject or revealing a scene) or the context in which the motion occurs (e.g., handheld,
gimbal-stabilized, or vehicle-mounted). On the other hand, recent multimodal vision systems like
GPT-4o and Gemini [49, 52, 61] show strong human-like perceptual capabilities through large-scale
training, yet their ability to understand camera motion remains largely untested. Inspired by these
end-to-end approaches, we propose a data-driven framework for benchmarking and developing
models that can perceive camera motion as humans do. However, this seemingly straightforward task
poses challenges overlooked by prior work, as we detail next.

Challenges and our approach. We find major issues in widely-used datasets with camera motion
annotations, such as MovieNet [30], AVE [1], and DREAM-1K [65]. First, many lack a clear or
correct specification of motion types, often conflating fundamental concepts like translation with
rotation or zoom. Second, these datasets often assign contradictory labels to the same video (e.g.,
labeling a video as both static and moving, which are mutually exclusive). Third, they lack careful
oversight, resulting in significant annotation errors. To address these issues, we collaborate with
professional cinematographers to develop a comprehensive taxonomy, a robust label-then-caption
framework, and a training program backed by a large-scale human study to improve annotation
quality. These efforts allow us to scale over 150K high-quality annotations across 3,381 videos.

CameraBench. We introduce CameraBench to benchmark and develop models for human-like
understanding of camera motion, using our initial set of videos (each reviewed by at least one author
during the quality control phase). Our comprehensive annotations, which include both labels and
captions, allow us to evaluate models on a wide range of tasks, including binary classification of
motion primitives, video-text retrieval, video captioning, and video question-answering (VQA). We
evaluate a diverse set of 20 models, including discriminative [37, 38, 42, 52, 68] and generative
VLMs [4, 36, 43, 49, 61, 77], and SfM/SLAM [41, 64, 66] methods. Although not all models can
perform every task (e.g., SfM/SLAM cannot perform VQA tasks or reason about object-centric
motion), we ensure fair comparisons by carefully designing the benchmarking protocol.

Findings. We find that classic SfM/SLAM methods [55] often fail to handle dynamic or low-parallax
scenes (e.g, when the camera is stationary or only rotating), thus struggling with even classifying
basic motion primitives (e.g., “Is the camera moving up or not?”). We also observe that recent
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Figure 2: Issues in previous camera motion datasets and our solutions. Existing work contains critical
flaws: (1) Inaccurate specification, e.g., MovieNet [30, 53] conflating translation with rotation or zoom.
(2) Contradictory annotations, e.g., AVE [1] labels over 1,000 clips as both static (locked) and moving
(including pan and tilt). (3) No quality control, even recent VLM benchmarks [5, 60, 65] contain major
mistakes such as flipping motion direction. See Appendix A for analysis. Section 4 shows how we address
them by working with professionals to design (1) a taxonomy via iterative refinement, (2) a reliable annotation
framework for complex motion, and (3) a training program with expert oversight to improve data quality.

Table 1: Comparison with prior human-annotated datasets. We compare skill coverage, reference frame of
motion, annotation format, and data quality. See Appendix A for a detailed report. A question mark indicates
either confusion between translation, rotation, or zoom, or missing public information. CameraBench uniquely
offers broader skill coverage, three reference frames (camera/object/ground), expert verification, manual shot
segmentation, tutorial-based training, and rich labels and captions for benchmarking video-language models.

Benchmark Year Data #Label Skill Coverage Ref Frame Expert Tutorial Multi Motion Cut
Access Rot Trans Zoom Arc Track Cam Obj Gnd Reviewed Trained Label Caption Method

MovieNet [30] 2020 ✓ 4 ? ? ? ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Auto
MovieShot [53] 2021 ✓ 4 ? ? ? ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Auto
AVE [1] 2022 ✓ 5 ? ? ? ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ Auto
DREAM-1K [65] 2024 ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ Auto
VDC [5] 2024 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ Auto
Cinematic2K [40] 2024 ✗ 11 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ? ? ✗ ? Manual
VidComposition [60] 2024 ✓ 7 ? ? ? ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ Auto

CameraBench (Ours) 2025 ✓ 50 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Manual

learning-based SfM/SLAM methods like MegaSAM [41, 66] handle dynamic scenes much better and
outperform the classic COLMAP [55] by 1-2x. However, they may still confuse camera motion with
object or scene motion in complex scenarios. We argue that our benchmark serves as a reality check
for future SfM/SLAM methods, helping identify areas for improvement. On the other hand, we find
that generative VLMs show promise in understanding camera motion, particularly in tasks requiring
semantic reasoning (e.g., tracking shot). This motivates us to use our dataset to post-train VLMs for
better camera motion understanding. With our small-scale yet high-quality fine-tuning data, we show
that VLMs can achieve 1-2x improvements across both discriminative and generative tasks.

Contributions. We (1) introduce a taxonomy of camera motion primitives, developed in collaboration
with domain experts; (2) design a robust annotation framework and training program to improve data
quality; (3) collect a benchmark featuring real-world videos of dynamic scenes across diverse genres
and motions; and (4) analyze the strengths and limitations of existing models to guide future research.
We hope our data, taxonomy, and models can improve understanding of camera motions in any video.

2 Related Work

Camera motion in vision datasets. Existing datasets typically represent camera motion in three
ways: (1) Camera trajectory. Per-frame camera poses provide a geometric description of motion,
but obtaining ground-truth trajectories for real-world dynamic scenes is nearly impossible. For
example, datasets [12, 29, 32, 45, 80] like RealEstate10K rely on multi-view geometry methods [55]
to estimate pseudo ground-truth trajectories, and they are mostly limited to static scenes. To achieve
more accurate trajectories, some datasets use simulators with camera control to generate synthetic
videos [31, 56]. However, camera trajectories only offer a camera-centric view of motion, ignoring
object and scene context. (2) Motion labels. Datasets with discrete labels often suffer from poor
specification and cover only a limited set of motion categories. MovieNet [30, 53] defines only four
types of movements and focus solely on movies. AVE [1] expands the taxonomy but confuses rotation
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Figure 3: Taxonomy of camera motion primitives. Our taxonomy, developed in collaboration with cin-
ematographers and vision researchers, is the first to comprehensively capture camera motion across object-,
ground-, and camera-centric reference frames, using precise cinematography terms [15] to eliminate ambiguity.
It covers camera steadiness, translation, rotation, intrinsic changes, and common object-centric movements, all
detailed in this paper. We refine the taxonomy iteratively over three months by annotating real-world videos and
incorporating feedback from researchers and cinematographers to ensure both accuracy and completeness.

as translation (e.g., grouping pan and truck) and intrinsic as extrinsic change (e.g., grouping dolly
and zoom). We also find that AVE contains contradictory annotations, such as videos labeled as both
“static” and “pan”. Recent datasets [40] add object-centric motion labels like tracking shot but
force videos into a single label, failing to capture co-occurring motions. (3) Motion descriptions.
Recent video-language models [28, 40, 65] leverage human-collected motion descriptions, but their
datasets, taxonomies, or annotation guidelines are either not open-source or undocumented. Lastly,
we note that existing datasets that involve camera motion often have limited coverage of videos,
featuring only static scenes [80], narrow domains (e.g., only movies [1, 30]), or unedited footage [23].

Camera motion in generative models. Our study is partly inspired by the growing interest in
incorporating camera movement into video generative models. For instance, text-to-video generation
models [70, 73] often learn camera control using synthetic camera movements, or are trained and
evaluated on largely static scenes with SfM-estimated camera trajectories [2, 3, 10, 25, 33, 39, 47,
56, 69, 71, 72, 72, 79, 81]. Yet, it remains unclear whether SfM can reconstruct accurate trajectories
for real-world or synthetic videos. While there is a large body of work analyzing the robustness of
camera motion estimation using sensitivity analysis [11, 13, 19], these methods typically assume
access to ground-truth 2D point correspondences, which are difficult to obtain in in-the-wild video
sequences. More recently, models like MovieGen [51] and Skyreels [6] train in-house classifiers
to augment captions with camera motion labels, while Goku [9] uses a captioner [75] to generate
motion descriptions. However, none of these works have open-sourced their datasets.

3 Camera Motion Requires Clear Specification and Expert Oversight

We analyze seven previous datasets that claim to cover camera motion and identify critical issues that
limit their usefulness. We summarize these issues, analyze why they arise, and outline our solutions.

Key issues in prior datasets. Many existing datasets suffer from one or more critical flaws. (1)
They lack a clear or correct specification of motion. For example, MovieNet [30] incorrectly defines
forward translation (dolly-in) as a zoom, conflating physical camera movement with intrinsic lens
change. (2) Their annotation frameworks are often inconsistent [1], leading to contradictory labels
such as assigning both static (locked) and pan to the same video. (3) They lack expert verification
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and quality control. For instance, even recent test benchmarks [5, 60, 65] for video-language models
contain over 50% errors when describing camera motion, e.g., hallucinating tilt-down as tilt-up.
We provide interactive web viewers in the supplement to visualize these errors.

Why these issues arise. While humans can intuitively perceive camera motion, converting that
perception into data annotations is far from trivial. First, motion can be ambiguous without a
specified reference frame. For example, people might describe a bird’s-eye-view camera moving
“forward” along its optical axis as moving “downward”, because it descends toward the ground.
In general, humans tend to describe camera motion based on the scene or object context, such as
saying “The camera is following the subject” in a tracking shot, while the camera actually leads
the subject by moving backward (row 1, left of Figure 1). Many camera movement terms are
also misunderstood. Amateurs often confuse zoom-out (intrinsic lens change) with dolly-out
(extrinsic camera movement). Finally, while prior work often treats camera motion as a classification
task [30, 51], internet videos may contain complex motion patterns. For example, a drone camera
might smoothly move forward before abruptly reversing direction mid-flight, making it unreasonable
to classify as either dolly-in or dolly-out.

Our solution. These challenges suggest that camera motion is harder to annotate than previously
assumed and requires both accurate definitions and careful oversight (see Figure 2). This motivates us
to work with professional cinematographers, who use precise terminology to describe motion when
planning shots and communicating intent to directors and crew [58]. Our collaborators include film
school students and professionals with over 10 years of experience from the US and China. Together,
we develop a comprehensive taxonomy, a robust annotation framework, and an annotator training
program, described next.

4 Taxonomy Design, Annotation Framework, and Training Program

We first introduce our taxonomy and annotation framework, then present a large-scale human study
used to design a structured training program that significantly improves annotator performance.

Iterating on the taxonomy with hands-on annotation. We work closely with cinematographers,
who use established terminology to describe how the camera moves to frame subjects, reveal scenes,
and guide viewer perspective [15, 17, 58]. Our team takes a hands-on, iterative approach: over several
months, we annotate real-world videos, hold weekly discussions to resolve disagreements, and refine
label definitions by adding missing terms and clarifying edge cases. To capture diverse camera
motion patterns, we source videos from platforms like YouTube across a wide range of genres (e.g.,
nature, film, advertisements, news, video games, abstract art, selfies, sports, tutorials, drone footage,
studio productions, performance shows, screen recordings, vlogs, anime, motion graphics), types (2D,
2.5D, 3D, synthetic, real), perspectives (e.g., first-person, third-person), devices (e.g., smartphones,
dashcams, GoPros, steadicams, fisheyes), and post-production effects (e.g., overlays, framings,
mixed reality). We adhere to YouTube Standard licenses for all videos. Unlike prior datasets [1] that
rely on automatic shot segmentation [57], we manually segment each video into single, continuous
shots for accurate annotation. See Appendix B for detailed statistics.

Taxonomy overview. After reaching perfect consensus on an initial set of ∼800 videos, our team
finalizes a taxonomy of over 50 motion primitives (where prior work [1, 30] defines only 4 to 5).
Due to space constraints, we present an overview in Figure 3, show example annotations in Figure 5,
and refer readers to Appendix F for detailed definitions:

• Motion type. The camera motion is nonexistent (no), clear and consistent (simple), subtle (minor),
or ambiguous/conflicting (complex).

• Steadiness. The camera remains still (static) or exhibits different levels of shakiness (no
shaking, minimal shaking, unsteady, very unsteady).

• Translation. The camera physically moves forward or backward (dolly), up or down (pedestal),
or to the right or left (truck).

• Rotation. The camera rotates along its own axis to the right or left (pan), up or down (tilt), or
clockwise or counterclockwise (roll).

• Intrinsic change. The camera adjusts its focal length to zoom in or out (zoom).
• Object-centric movements. The camera orbits around a subject (or the frame center) in a circular path

(arc), or tracks a moving subject from behind (tail-tracking), the front (lead-tracking),
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(a) Human study (b) Human performance during training programs

Figure 4: Human study and training program. We hire ∼100 participants from diverse backgrounds,
including non-expert with limited knowledge about camera movements and experts from the filmmaking industry
with hands-on cinematography experience. Figure (a) shows the average accuracy of both groups in selecting
motion primitives on 30 videos, where experts clearly outperform non-experts. In addition, around 80% of
participants who review our multimodal guidelines (including textual definitions, video examples, and edge
cases) significantly outperform the remaining 20% who only see textual definitions. Figure (b) shows that
extended practice with detailed error feedback boosts accuracy for all participants. We hire only those who
complete all five rounds (with 30 videos each) to annotate our dataset.

the side (side-tracking), from an aerial view (aerial-tracking), or using other motions
(tilt-/pan-/arc-tracking). We also consider whether the camera moves or zooms to make
the subject appear larger or smaller within the frame.

• Others. We include the speed of camera movement (slow/regular/fast), cinematic effects
(dolly-zoom/motion-blur), and scene movement (static/mostly-static/dynamic).

Comments on the taxonomy. We also specify the motion direction for the above primitives
(in/out/up/down/right/left/CW/CCW). Humans tend to interpret camera translation relative to the
ground due to a natural bias toward gravity: in Figure 5 (row 1, left), the camera moves forward
(dolly-in) while pointing directly at the ground in a bird’s-eye-view. Yet, most humans describe
it as moving downward (pedestal-down). Appendix D explains how we resolve this ambiguity
using two questionnaires to separately label camera translation in ground-centric and camera-centric
frames. Finally, some primitives like steadiness and speed are inherently perceptual. To reduce
subjectivity, we include reference videos in our labeling policy to improve annotator agreement. For
model evaluation, we do not use these labels directly and instead focus on unambiguous questions
(e.g., whether the camera shakes or not, rather than how much it shakes).

Annotation framework. A common approach to annotating camera motion is to treat each aspect as a
classification task [1, 30], e.g., “Does the camera pan right or left?” with options like “pan-right”,
“pan-left”, or “no-pan.” However, real-world videos often contain conflicting or ambiguous
motions, making direct classification unreliable. While recent work directly describes camera motion
using natural language [40, 65], we find this approach error-prone. For instance, annotators often
miss translation when rotation dominates the video. This challenge is amplified in our setup, as we
intentionally source diverse videos that span single, consistent motions (e.g., dolly-in), compound
motions (e.g., dolly-in + zoom-out), ambiguous motions (e.g., subtle movement or lack of depth),
and sequential motions (e.g., tilt-up followed by tilt-down). To address these challenges, we
adopt a “label-then-caption” approach to robustly annotate complex camera motion. First, annotators
determine whether the camera motion is clear and consistent. If so, they classify each aspect directly.
If motion is ambiguous or conflicting, they only answer when confident, leaving others as “I am
not sure.” These unanswered questions are excluded from the final dataset. Next, we ask annotators
to provide a natural language description to capture conflicting movements (e.g., “The camera first
pans left, then right”) or uncertain cases (e.g., “A 2D cartoon without depth cues to determine actual
camera movement”). To better capture how camera motion impacts visual storytelling, we encourage
annotators to describe why the camera moves in a particular way, e.g., revealing the scene and
following the subject.

Human study for quality annotation. We use our expert-annotated videos to conduct a human study
using LabelBox under an educational license. We recruit over 100 participants via crowdsourcing
platforms, university and film school boards, and professional studios. These participants come from
diverse backgrounds – half with cinematography experience (professional cinematographers and film
school students) and half without (graphic/UI/UX designers, freelancers, and college students from
fields like literature and computer science). Initially, 20 participants annotate 30 videos based on our
taxonomy definitions. Figure 4-(a) shows that expert participants with cinematography experience
outperform non-experts by more than 15% in accuracy.
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Figure 5: Example annotations. Our videos (left) are annotated with binary labels for ∼50 camera motion
primitives from our taxonomy, along with language descriptions capturing key motion aspects. We visualize the
caption word cloud on the top-right and a pie chart of video genres on the bottom-right. Note that the other
genre includes more tags such as dashcam, drone, selfie, ads, mixed media, animals, art, sports, lectures, screen
recordings, and etc. See our website for videos.

Figure 6: VQA examples of CameraBench. We evaluate 9 challenging camera motion understanding skills
(with 81 sub-tasks detailed in Appendix G). Each question is paired with a positive video (answer: “Yes”) and a
negative video (answer: “No”), ensuring a vision-centric benchmark that cannot be solved blindly [22, 35, 43].

Training program for improving annotation performance. Non-experts often struggle with
confusable motions, such as rotation vs. translation or extrinsic vs. intrinsic changes, due to a
limited understanding of parallax effects [54]. To address this, we prepare training materials with
detailed textual guidelines, positive/negative video examples, and edge cases. Figure 4-(a) shows
that our tutorials benefit not just non-experts – even cinematographers finding the examples helpful.
Next, incoming annotators attend lectures given by the authors and complete five more rounds of
exams (30 videos each). After each exam, we send a detailed feedback report to help them correct
misunderstandings. Figure 4-(b) shows that extended practice further improves performance by
10-15% as participants better align with our policy. We hire only those who successfully complete all
training and continuously monitor their performance through random audits. For any disagreements,
we hold feedback sessions and revise annotations to reach consensus. See Appendix D for details on
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Figure 7: Failures of SfM/SLAM. Left: a lead-tracking shot where the camera moves backward (relative
to the ground) as the subject walks forward. Since the subject’s framing remains unchanged and the background
lacks distinct textures, MegaSAM [41] fails to detect camera translation and COLMAP [55] crashes. Right: a
roll shot in a low-parallax scene where both methods do not converge and output nonexistent translation.

Table 2: Binary classification on motion primitives defined in the camera-centric frame. We report
Average Precision per primitive. We find that (1) recent SfM/SLAM methods like MegaSAM [41] significantly
outperform COLMAP [55], but all methods remain far from solving this task with ∼50% AP. (2) Generative
VLMs clearly outperform discriminative ones. Motivated by this, we fine-tune Qwen2.5-VL [4] on a separate
training set of ∼1400 videos (no overlap with the test set). We show that simple SFT (highlighted in green)
significantly boosts performance by 1-2x, making it match the SOTA MegaSAM in overall AP. We bold the best
and underline the second-best results; finetuned VLMs are ranked separately.

Model Translation (Dolly/Pedestal/Truck) Zooming Rotation (Pan/Tilt/Roll) Static Avg
In Out Up Down Right Left In Out Right Left Up Down CW CCW

Random Chance 29.3 9.7 6.7 8.6 15.8 11.5 11.1 10.2 15.0 15.4 12.7 7.7 8.9 10.2 9.7 12.2

SfM/SLAM
COLMAP 36.2 13.1 11.9 19.7 34.1 30.0 13.9 14.2 43.9 46.4 28.3 19.1 42.1 48.7 7.5 27.3
VGGSFM 56.6 28.9 28.7 38.2 48.9 35.3 21.7 17.3 60.9 58.7 46.6 43.3 61.4 55.5 16.7 41.3
DUSt3R 70.3 37.3 41.7 30.2 41.5 35.6 18.2 24.6 59.4 63.8 32.9 27.3 61.0 57.9 42.6 43.0
MASt3R 65.4 34.3 35.1 59.6 43.7 38.1 42.2 46.6 66.6 58.0 63.2 40.3 50.4 53.5 45.6 49.5
CUT3R 88.0 65.5 38.7 54.6 42.5 36.5 15.9 21.3 59.1 65.0 65.0 47.5 60.7 66.2 37.6 50.9
MegaSAM 87.0 58.3 43.0 48.4 59.1 58.0 11.1 10.2 77.9 82.4 75.6 57.7 67.4 76.9 60.1 58.2

CLIPScore
UMT-B16-CLIP 27.0 10.4 9.0 20.0 19.4 11.8 11.8 9.9 11.9 13.5 13.1 8.4 18.8 15.6 10.0 14.0
UMT-L16-CLIP 27.2 9.8 12.3 10.8 18.5 11.5 17.5 8.9 16.0 17.4 21.9 8.3 7.3 10.0 13.0 14.0
LanguageBind-CLIP 32.7 13.2 7.8 11.2 14.2 11.7 14.4 9.4 20.1 16.4 14.1 8.5 13.8 9.5 10.9 13.9
LanguageBindV1.5-CLIP 33.6 14.5 11.0 10.3 15.0 11.8 14.2 10.1 19.9 16.7 16.1 9.2 17.6 10.2 10.4 14.7
InternVideo2-S2-CLIP 41.7 9.4 5.8 9.7 15.0 12.0 15.0 9.9 20.6 18.8 14.7 9.1 8.3 10.8 11.4 14.2

ITMScore
UMT-B16-ITM 31.7 11.5 11.4 14.3 16.6 12.8 12.3 9.2 15.1 16.9 16.2 10.0 14.2 12.1 8.9 14.2
UMT-L16-ITM 40.6 10.6 8.5 17.6 21.9 23.6 12.4 9.8 21.3 33.2 31.0 11.2 13.5 12.3 9.4 18.4
InternVideo2-S2-ITM 52.4 12.6 10.5 14.7 15.8 19.7 21.1 16.7 29.4 29.1 24.5 18.4 17.2 13.4 14.0 20.6

VQAScore
LLaVA-OneVision-7B 46.8 13.5 12.6 16.9 23.7 20.2 10.7 14.4 33.5 33.6 16.9 31.4 19.3 20.8 18.8 22.2
LLaVA-Video-7B 54.7 15.2 16.5 19.3 27.1 23.6 16.2 16.9 33.6 36.8 26.9 37.2 16.1 21.7 22.1 25.6
InternVideo2-Chat-8B 69.9 18.5 19.3 17.6 17.9 23.4 12.2 10.4 22.6 22.7 17.2 22.8 19.6 16.4 20.2 22.0
Tarsier-Recap-7B 59.7 15.1 25.7 23.7 28.8 21.5 14.4 15.0 22.8 27.3 24.6 21.6 15.2 18.7 30.7 21.0
InternLMXComposer2.5-7B 49.0 10.6 11.4 10.4 14.6 10.6 11.8 16.5 14.3 13.9 14.7 17.5 11.7 18.1 21.8 16.5
InternVL2.5-8B 67.9 12.9 28.1 25.9 23.4 23.2 18.6 32.1 37.4 30.9 37.6 36.9 11.5 25.3 23.4 29.5
InternVL2.5-26B 63.6 11.8 21.1 23.6 27.2 19.4 21.8 31.6 42.5 38.3 44.9 43.6 14.3 18.2 25.1 29.8
mPLUG-Owl3-7B 47.6 12.9 13.9 16.9 17.3 18.5 12.9 10.6 31.4 26.6 26.1 37.0 10.4 12.2 17.8 20.8
GPT-4o 66.3 29.2 21.1 38.2 38.0 21.9 41.7 39.3 44.7 42.1 43.6 35.5 24.0 28.7 32.0 36.4
InternVL3-8B 61.2 15.5 18.8 29.0 30.5 27.3 29.5 28.1 41.6 49.3 42.0 36.5 21.3 22.3 20.1 31.5
InternVL3-78B 72.0 18.2 19.6 32.5 33.8 29.4 26.4 33.4 47.2 53.5 47.8 40.3 27.6 25.0 22.6 36.8
Qwen2.5-VL-7B 56.0 14.9 18.7 30.5 34.5 27.6 29.8 43.4 62.7 66.7 54.5 34.1 18.8 24.2 19.8 35.8
Qwen2.5-VL-32B 57.6 16.4 20.2 32.1 36.0 29.2 31.4 45.0 64.3 68.2 56.0 35.6 20.2 25.7 21.2 37.3
Qwen2.5-VL-72B 58.0 16.8 20.6 32.5 36.4 29.5 31.7 45.4 64.7 68.6 56.4 36.0 20.6 26.1 21.6 37.7

Qwen2.5-VL-7B (Ours SFT) 83.9 38.6 27.8 47.8 67.9 50.0 54.5 75.8 79.2 83.8 76.3 67.6 32.3 41.0 73.6 60.0
Qwen2.5-VL-32B (Ours SFT) 85.6 40.1 29.3 49.4 69.6 51.5 56.0 77.3 80.7 85.4 77.9 69.2 33.9 42.7 75.4 61.6
Qwen2.5-VL-72B (Ours SFT) 86.8 41.3 30.5 50.6 70.7 52.6 57.1 78.5 81.9 86.6 79.1 70.4 35.0 43.8 76.6 62.8

this process. As of this writing, we have over 150K binary labels across 3,381 fully annotated videos.
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5 CameraBench for Motion Understanding

We repurpose our motion primitive labels and captions for both discriminative (classification,
retrieval) and generative (VQA, captioning) tasks.

Baselines. We evaluate a diverse set of 20 models, including 6 SfM/SLAM methods: COLMAP [55]
and learning-based variants such as MegaSAM [41], CUT3R [66], and others [16, 64, 67]. We also
report 3 discriminative VLMs [38, 82] like InternVideo2 [68] and 11 generative VLMs including
Qwen2.5-VL [4], GPT-4o [49], and LLaVA-Video [77], among others [36, 61, 68, 75, 76].

Classification of motion primitives. We evaluate models on binary classification of motion primi-
tives, restricted to those defined in the camera-centric frame to align with SfM/SLAM outputs. For
SfM/SLAM, we compute the seven degrees of translation, rotation, and focal change from estimated
camera extrinsics and intrinsics (if available) between the first and last frame. For discriminative
VLMs, we use textual definitions of each primitive (“The camera pans to the left.”) to compute
matching scores. For generative VLMs, we compute VQAScore [44], i.e., the probability of “Yes” to
a binary question (“Does the camera pan to the left?”). Appendix G details prompts for VLMs.

Results. Table 2 shows that (1) learning-based SfM/SLAM methods like MegaSAM significantly
outperform COLMAP and set the state-of-the-art. Nonetheless, no methods fully solve this task,
as the best overall AP remains ∼50%. Figure 7 shows failure cases, e.g., SfM/SLAM struggles
with low-parallax (rotation only) scenes. (2) While weaker than SfM/SLAM, generative VLMs like
GPT-4o show promising results, significantly outperforming discriminative VLMs. This motivates us
to fine-tune Qwen2.5-VL using supervised fine-tuning (SFT) on a separate set of ∼1400 videos (with
no overlap with the testset). Despite the small dataset size, our SFT model achieves ∼2x performance,
matching that of MegaSAM. We note that certain motions like roll remain particularly challenging
for VLMs, likely due to their long-tailed nature [50] in internet videos.

Beyond camera-centric motion primitives. We collect ∼10K VQA samples across 9 top-level
skills and 81 sub-tasks. Crucially, these tasks go beyond camera-centric frame reasoning to evaluate
more aspects such as object-centric motion, scene dynamics, steadiness, and more. Some tasks
also require logical (e.g., verifying if only one motion type exists or if a motion is absent) and
linguistic reasoning (e.g., checking if a motion description is accurate). We follow community best
practices [22, 35], pairing each question with two videos with opposite answers so that models cannot
answer blindly without seeing the video (see Figure 6).

VQA results. Table 3 shows that all open-source VQA models perform at or below chance on
CameraBench. Nonetheless, our SFT model – fine-tuned on our small training set – achieves state-of-
the-art results across all skills, especially the most challenging ones (e.g., Tracking Shot and Only
Motion) that require object-centric and logical reasoning.

Other tasks. We summarize key findings: (1) Captioning (Figure 8). We prompt VLMs with
“Describe the camera movements in this video”. Our SFT model generates more accurate captions
than state-of-the-art VLMs, both qualitatively and quantitatively, as measured by metrics like SPICE
and LLM-as-a-Judge. (2) Video-text retrieval (Table 4). We use video pairs in CameraBench’s VQA
tasks to evaluate retrieval performance and show that generative VLMs (using the discriminative
VQAScore [44]), outperform other baselines. (3) Motion control in image-to-video generation
(Figure 17). While we focus on video understanding, we note that finetuning CogVideoX1.5-I2V [74]
using CameraBench can potentially improve its camera motion control.

6 Conclusion

Limitations. Future work may explore post-training techniques beyond SFT [24, 42]; for example,
optimizing preset prompts [46] could further improve VLM performance. We leave camera motion
control in video generation as future work. Lastly, given the complementary strengths of SfM/SLAM
and VLMs, integrating them could be promising for advancing video understanding.

Conclusions. We take the first step toward human-like camera motion understanding by introducing
a taxonomy of motion primitives and a robust annotation framework, developed in collaboration
with cinematographers. We implement a training program to transform laypeople into proficient
annotators of camera movements. We curate a diverse benchmark to analyze existing models and
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Table 3: VQA evaluation. We report both accuracy (Acc) and question accuracy (Q-Acc) [35] that scores
a point only if both videos are answered correctly for a given question. We bold the best and underline the
second-best results; finetuned models (highlighted in green) are ranked separately. While most VLMs perform at
or below chance, our SFT model achieves the best overall performance.

Model
Motion & Scene Motion Motion Confusable Has Shot Only Complex Avg
Steadiness Dynamics Speed Direction Motion Motion Tracking Motion Description Overall

Acc Q-Acc Acc Q-Acc Acc Q-Acc Acc Q-Acc Acc Q-Acc Acc Q-Acc Acc Q-Acc Acc Q-Acc Acc Q-Acc Acc Q-Acc

Random Chance 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0

mPLUG-Owl3-7B 51.8 15.5 64.9 35.1 61.5 31.6 48.6 13.1 49.2 12.7 54.1 24.3 53.2 17.1 45.9 8.6 63.4 39.7 55.8 25.4
LLaVA-Video-7B 53.5 12.8 66.1 36.2 57.2 22.4 52.1 17.8 49.9 5.4 54.9 13.9 59.9 29.2 51.3 2.9 68.0 41.8 58.8 24.1
LLaVA-OneVision-7B 54.3 19.6 63.8 31.0 69.0 54.0 53.1 24.2 55.4 20.7 60.9 28.2 60.7 31.3 43.3 6.1 52.3 6.3 57.1 24.7
InternVideo2-Chat-8B 52.4 13.7 64.4 31.6 51.7 5.2 50.2 2.9 49.7 13.8 52.2 5.5 48.5 2.3 50.9 4.3 50.6 1.3 51.3 5.3
Tarsier-Recap-7B 51.8 12.3 62.8 29.2 50.5 4.8 49.8 2.5 49.0 12.5 51.5 5.0 47.8 2.0 50.2 3.8 49.8 1.0 50.6 4.8
InternLMXComposer2.5-7B 52.8 12.8 57.8 19.5 56.6 17.2 49.6 1.7 53.3 14.8 53.2 9.9 49.1 11.6 51.2 2.4 48.4 7.8 51.7 9.3
InternVL2.5-8B 54.4 14.9 59.8 23.0 57.5 31.6 51.3 12.8 49.7 0.0 58.1 22.5 55.2 14.1 50.0 0.0 50.0 0.0 54.5 16.7
InternVL2.5-26B 56.2 17.3 63.5 26.4 60.8 35.2 53.8 15.6 51.2 14.5 60.3 25.8 58.4 18.9 52.5 2.4 53.6 3.8 57.2 19.8
InternVL3-8B 54.4 14.9 59.8 23.0 57.5 31.6 51.3 12.8 49.7 0.0 58.1 22.5 55.2 14.1 50.0 0.0 50.0 0.0 54.5 16.7
InternVL3-78B 56.2 17.3 63.5 26.4 60.8 35.2 53.8 15.6 51.2 14.5 60.3 25.8 58.4 18.9 52.5 2.4 53.6 3.8 57.2 19.8
Qwen2.5-VL-7B 55.7 20.8 60.6 24.1 69.0 40.2 55.8 23.5 51.7 20.7 60.4 28.1 57.2 25.2 48.4 11.5 66.6 38.8 58.4 25.9
Qwen2.5-VL-32B 57.2 22.0 62.1 25.4 70.5 41.5 57.3 24.7 53.2 21.9 61.9 29.3 58.7 26.3 49.8 12.7 68.1 40.0 59.9 27.1
Qwen2.5-VL-72B 57.7 22.4 62.1 25.8 71.0 41.4 57.8 25.1 53.2 22.2 62.4 29.7 59.2 26.3 50.4 13.1 68.6 40.4 60.3 27.4
GPT-4o 55.8 27.0 52.6 10.3 61.2 32.2 58.1 32.8 53.3 20.4 64.1 36.2 51.7 20.2 42.1 8.5 61.9 32.7 59.0 29.8
Gemini-2-Flash 53.6 25.2 46.8 2.9 56.6 29.3 44.5 17.2 41.1 8.8 46.5 20.5 46.5 24.1 39.2 15.1 63.8 37.4 51.8 24.9
Gemini-2.5-Pro 58.2 28.7 51.3 11.6 60.1 34.5 48.9 21.4 45.7 13.2 52.3 25.8 49.7 26.9 42.8 15.3 64.5 39.1 54.7 28.2

Qwen2.5-VL-7B (Ours SFT) 72.2 48.0 75.6 53.4 81.6 63.2 70.3 46.3 54.7 13.3 75.2 54.9 75.9 52.0 59.9 21.2 77.0 55.0 71.4 45.3
Qwen2.5-VL-32B (Ours SFT) 74.0 49.5 77.4 55.0 83.5 64.8 72.2 47.8 56.4 14.7 77.1 56.4 77.7 53.4 61.6 22.6 78.7 56.5 73.2 46.8
Qwen2.5-VL-72B (Ours SFT) 74.5 49.9 77.9 55.0 83.5 65.2 72.7 48.2 57.0 14.7 77.1 56.8 78.2 53.8 62.1 23.0 79.2 56.9 73.6 47.1

Model Caption Generation
SPICE ROUGE-L BLEU-2 METEOR LLM-Judge

mPLUG-Owl3-7B 0.22 0.20 0.08 0.19 0.08
LLaVA-Video-7B 0.23 0.23 0.12 0.19 0.09
LLaVA-OneVision-7B 0.22 0.21 0.10 0.20 0.09
InternVideo2-Chat-8B 0.22 0.21 0.11 0.19 0.13
Tarsier-Recap-7B 0.23 0.22 0.11 0.20 0.14
InternLMXComposer2.5-7B 0.21 0.19 0.08 0.19 0.10
InternVL2.5-8B 0.20 0.10 0.04 0.21 0.08
InternVL2.5-26B 0.23 0.20 0.09 0.23 0.11
InternVL3-8B 0.20 0.15 0.05 0.17 0.08
InternVL3-78B 0.18 0.16 0.06 0.18 0.07
Qwen2.5-VL-7B 0.18 0.12 0.05 0.28 0.16
Qwen2.5-VL-32B 0.24 0.17 0.08 0.29 0.18
Qwen2.5-VL-72B 0.25 0.19 0.10 0.30 0.19
GPT-4o 0.20 0.16 0.06 0.25 0.10
Gemini-2-Flash 0.24 0.21 0.10 0.22 0.07
Gemini-2.5-Pro 0.20 0.15 0.06 0.27 0.14

Qwen2.5-VL-7B (Ours SFT) 0.48 0.45 0.31 0.44 0.20
Qwen2.5-VL-32B (Ours SFT) 0.52 0.50 0.35 0.46 0.22
Qwen2.5-VL-72B (Ours SFT) 0.54 0.53 0.38 0.47 0.23

Figure 8: Camera motion captioning. Left: Example camera motion descriptions generated by our SFT model
vs. GPT-4o and Gemini-2.5-Pro (see more in Figure 15 and Figure 16). Right: Automated evaluation of camera
motion captions. We use both standard metrics (e.g., SPICE) and LLM-as-a-judge. For the latter, we prompt
GPT-4o with: “Reference caption: “{reference}” Candidate caption: “{candidate}” Does the candidate caption
match the reference caption? Answer Yes or No.” We then report the average confidence score P(Yes) [44].

suggest directions for future improvement. Lastly, we show that our high-quality dataset can be used
to fine-tune VLMs for improved camera motion understanding.
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Towards Understanding Camera Motions in Any Video
Supplementary Material

Outline

Below is the outline of the supplement:

• Section A provides a detailed error analysis of prior datasets.

• Section B shows more statistics and examples of CameraBench.

• Section C details the annotation framework.

• Section D details our guidelines, training program, and quality control pipeline.

• Section E details the experimental setup and provides additional results.

• Section F details our label taxonomy.

• Section G details the 9 top-level skills and 81 sub-tasks in CameraBench.

A Error Analysis of Prior Datasets

We document key issues in seven widely-used datasets and benchmarks that claim to cover camera
motion. Because many errors are best understood visually, we encourage readers to explore the
original videos and our expert annotations via the interactive HTML reports linked below.

Detailed issues in prior datasets. Many existing datasets suffer from one or more of the following
problems:

(1) Lack of clear or correct specification. For example, MovieNet [30] and MovieShot [53]
incorrectly define forward translation (dolly-in) as a zoom, quoting “the camera zooms in for
a push shot”, thereby conflating physical camera movement with intrinsic lens change. AVE [1]
conflates rotation with translation by grouping pan and truck into the same category, and defines this
group as “when the camera is moving horizontally while its base remains in a fixed position”, which
is blatantly incorrect from a cinematographer’s perspective. Other testing benchmarks [5, 40, 60, 65]
do not provide any taxonomy or definition for each label at all.

(2) Inconsistent annotation frameworks. AVE [1] labels over 500 video clips as both static
(locked) and pan, which are mutually exclusive. None of the prior datasets provide clear guidelines
for annotating conflicting or compound motions, such as pan-left followed by pan-right, or
truck-left combined with zoom-in.

(3) No expert verification. Even recent test benchmarks such as VidComposition [60], DREAM-
1K [65], and VDC [5], which claim to include high-quality human-written captions or QA pairs,
contain significant errors when describing or reasoning about camera motion. Common issues include
mislabeling motion type, incorrect direction, or omitting motion entirely.

(4) Additional issues. These include missing common motion types (e.g., arc, tracking shots),
unclear reference frames (e.g., “move down” without specifying whether it’s ground-relative or
camera-relative), no handling of shot transitions (treating multiple disjoint clips as a single shot), and
narrow domain coverage (e.g., film-only datasets).

Detailed reports. Below we highlight representative issues in recent datasets, some with links to
interactive reports for further inspection:

• MovieNet and MovieShot (2020 and 2021): These two datasets are the earliest with human-
annotated camera motion labels, but they only include four coarse types: zoom-in (for both
forward movement and zooming in), zoom-out (for backward movement or zooming out),
static (no motion), and pans and tilts (for any lateral movement or rotation). This
specification is clearly inaccurate and incomplete, prompting follow-up work like AVE [1]
to address these limitations.
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• AVE (2022) (link to our interactive web viewer): AVE [1] defines five motion types:
pan/truck, tilt/pedestal, locked, zoom/dolly, and handheld. This is a clear im-
provement over earlier datasets by separating pans and tilts and considering steadiness.
However, it still conflates translation with rotation and zoom. Our expert team reviews the
shot motion labels of 50 randomly sampled clips from AVE, and find that the error rate
exceeds the accuracy, with more than half containing incorrect or contradictory annotations.
In addition, over 1,000 clips are labeled as both static (locked) and motion types such
as pan or tilt. We believe this results from a lack of clear labeling guidelines for han-
dling inconsistent motions, as well as the absence of expert review during crowd-sourced
annotation.

• VDC (2024) (link to our interactive web viewer): We review 20 randomly sampled captions
from the VDC benchmark, which claims human review and serves as ground-truth for the
CVPR’25 LOVE detailed video captioning challenge. We provide a detailed critique of their
camera descriptions (with video IDs) in our interactive web viewer. Most captions omit both
motion type and direction, and frequently hallucinate non-existent motion such as pans and
zooms. In this sample, 60% of the captions fail to correctly describe camera motion.

• DREAM-1K (2024) (link to our interactive web viewer): DREAM-1K was first introduced
in Tarsier [65] to evaluate detailed video captioning. While the paper claims to cover
camera motion, the benchmark includes only sparse and often vague motion descriptions.
Only few captions mention camera movement, and those that do frequently contain factual
errors – such as hallucinating motion direction (e.g., pan-left as pan-right) or conflating
translation with rotation (e.g., describing tilt-down as moving downward). In a random
sample of 30 videos, only ∼30% of the motion-related descriptions were accurate.

• VidComposition (2024) (link to our interactive web viewer): We first note that this video
QA benchmark [60] contains many uncut videos – each composed of multiple disjoint
clips with distinct camera motions – making it unclear which clip the question refers to.
After retrieving the ground-truth answers from the official evaluation server, we are still
unable to determine their labeling policy. Our best guess is that a motion label is applied if
any clip in the video shows the motion; otherwise, most of their answers would be clearly
incorrect. Following this assumption, our expert team conducts a random audit of 20 QA
pairs from VidComposition and found that over 55% were inaccurate. Several questions
had multiple valid answers, and others had wrong answers (e.g., a truck-left shot was
mis-labeled as pan-left). Also, although their paper appendix suggests this benchmark
asks about tracking motion, we are unable to find such questions. By an exhaustive search of
their dataset, we are only able to find seven motion types: pan-up, pan-down, pan-left,
pan-right, zoom-in, zoom-out, and static. Lastly, although this benchmark provides
a caption for each video, the captions completely omit any mention of camera movement.

• Cinematic2K (2024): Because this dataset [40] is not open-sourced, we can only gather
information from their technical report, which claims to have 11 motion types: pan-left,
pan-right, tilt-up, tilt-down, dolly-in, dolly-out, tracking-shot, zoom-in,
zoom-out, rack-focus, and still.

We invite readers to explore these examples and videos to better understand the challenges of
annotating camera motion and the need for rigorous specification and expert oversight.

B CameraBench Details

Dataset statistics. CameraBench consists of 3,381 video clips with an average duration of 5.7
seconds and a frame rate of 29.4 FPS. The training split includes 1,402 videos. Using the same set of
skills and tasks (detailed in Appendix G), we generate 230K video-QA pairs and 1,402 video-caption
pairs for training.

Word clouds. Figure 9 shows the word cloud of our collected camera motion descriptions and
metadata such as shot compositions, genres, points of views, and capturing devices.

More examples. Figure 10 presents more annotation examples from our dataset.
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Figure 9: Word clouds of our camera motion captions (left) and metadata (right), including genres, types, shot
compositions, point of views, capturing devices, and post-production effects.

Figure 10: More annotation examples from our dataset.

C Annotation Framework

Framework. We design our annotation framework to ensure precision and efficiency by preventing
contradictory labels and eliminating redundant work. We detail how we annotate the ∼50 motion
primitives and descriptions below. Given a video, we first ask:

• Is there camera motion? First, check if the video has any camera motion (including small
movements like handshakes). If yes, select the motion steadiness; otherwise, select static
and then stops.

• Is the motion clear and consistent? If there is camera motion, choose simple for clear
and consistent motion, complex for ambiguous or conflicting motion, or minor for small,
barely noticable motion.

Next, if the camera motion is simple, all motion primitives must be labeled comprehensively; other-
wise, they are treated as negative samples (e.g., a simple-motion video not labeled as pan-right
or pan-left is automatically assigned to no-pan). For complex-motion or minor-motion
videos, annotators only select clearly identifiable, unambiguous primitives (e.g., consistent and
non-conflicting motion). For example, if a camera first performs dolly-in and then dolly-out, the
video is labeled as complex, with none of dolly-in, dolly-out, or no-dolly assigned. In these
scenarios, annotators provide a description explaining the complex motion patterns. If the motion is
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too intricate to fully describe, they should focus on what is clear and noticeable or simply state the
reason for the camera movement (e.g., “a handheld shot tracking a subject” or “a first-person
camera following a person’s perspective as they look around”). For 2D anime or
cartoons, we ask annotators to select complex-motion (except for only zooming motion), as these
videos lack depth cues to determine actual camera movement. Note that for camera translation, we
ask annotators to label and describe movement relative to the ground, as this aligns with most people’s
intuition. We then use a separate questionnaire to re-label videos with camera-centric translation
primitives, including dolly and pedestal.

Annotation interface. Figure 11 shows the annotation interface we use, and Figure 12 lists example
questions in our annotation framework. This interface allows annotators to watch the video and revise
their answers as many times as needed before submission, as it is common to adjust previous labels
based on later questions.

Figure 11: Annotation interface based on LabelBox.

Figure 12: Example questions in our annotation framework.
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D Training Program and Quality Control

Tutorials. To help participants familiarize themselves with camera movements and align with our
labeling policy, we provide a tutorial with clear guidelines, textual definitions, video examples, and
complex edge cases. Figure 13 shows a few random pages from our guidelines.

Caption guidelines. Labeling complex-motion videos can be challenging when movements are
conflicting, sequential, occur at different speeds, or lack sufficient background or depth cues. To
improve clarity in such complex scenarios, we ask annotators to provide descriptions that include (1)
the purpose of the movement (if clear), such as following a subject, revealing a scene, or enhancing
immersion; (2) the major camera motions, such as panning, arcing, or zooming, and whether the
movement is steady or shaky. We ask annotators to provide details when the motions are sequential
and easy to perceive. If the motion is highly intricate or fragmented, we ask them to write a high-level
summary instead.

Caption quality. For motion descriptions, we ask annotators to focus on the following three criteria:
(1) clearness: Does the description clearly convey the intended information? (2) conciseness: Is the
description expressed in as few words as possible without losing clarity? (3) grammar and fluency:
Does the text sound natural and free of errors? Annotators are encouraged to use LLMs like ChatGPT
to polish their initial description (e.g., for grammar refinement). The suggested prompt is: Please
help me polish my text to make it clear, concise, and grammatically correct.
Maintain the intended meaning and tone while improving readability. Avoid
using overly complex or fancy words unless necessary. If the text includes
specific details, ensure they remain intact. Additionally, make sure the
polished version flows naturally and is easy to understand.

Training program. Before annotating the main dataset, participants undergo five rounds of training,
each with 30 videos. After each round, they receive a detailed PDF report (Figure 14) showing their
accuracy and a comparison with the ground truth, helping them review and refine their responses. If
participants still have doubts, the authors of this paper offer direct guidance. After five rounds, their
performance typically improves by 15–20%.

Quality control pipeline. We hire only annotators who successfully complete all training. Each
annotator is then assigned a specific role to ensure annotation accuracy and consistency:

1. Labeler: Each video is independently labeled by two labelers.
2. Reviewer: Reviewers check for consensus and resolve label disagreements.

Beyond these roles, the authors of this paper conducted an additional review of all videos, correcting
inaccurate labels and refining motion descriptions to ensure clarity and accuracy.

E Experimental Setup and Results

More video captioning examples. Figure 15 and Figure 16 compare our SFT model with other
VLMs on more videos.

Video-text retrieval results. Table 4 and Table 5 show Text Score, Video Score, and Group Score
on all video-text retrieval tasks.

Motion control for image-to-video generation. While our main focus is on video understanding,
we conduct a preliminary experiment by fine-tuning CogVideoX-1.5 (5B) [74] to generate video from
a single input image and a caption describing camera motion. Using the CameraBench training split,
we fine-tune the model and evaluate on randomly selected test samples (Figure 17).Compared to the
original CogVideoX, the fine-tuned model shows improved control over camera motion such as dolly,
zoom, and arc. We plan to explore video generation and its evaluation more deeply in future work.
We plan to further explore video generation and evaluation in future work [7, 8, 27, 48, 63].

VLM details. For discriminative VLMs, we adapt their official codebases to compute CLIPScore [26,
52] and ITMScore [37] for video-text matching scores. For generative VLMs, we also adapt their
official codebases but implement the logic to calculate VQAScore [34, 44] for discriminative scoring.
While GPT-4o provides a logprob API for computing VQAScore, Gemini-2/2.5 disables its logprob
API during this work. We note that almost all VLMs utilize uniform frame sampling; however, the
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Figure 13: Example guidelines from our tutorial.

Figure 14: Examples of our PDF feedback to participants. Wrong answers are colored in red.

number of frames used varies across models. To ensure optimal performance on our dataset, we use
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Figure 15: Comparing motion descriptions for different VLMs (example 1 of 2).

the recommended number of frames for each model. We set the number of frames sampled to 4 for
GPT-4o. Notably, some models deviate from simple uniform sampling. Gemini-2/2.5 [61] processes
video file inputs directly, with its frame sampling procedure hidden from the user. We also note that
Qwen2.5-VL [4] uses frames-per-second (FPS) sampling. Unlike uniform sampling, FPS sampling
ensures a consistent number of frames per second of video.

We use a separate training set of ∼1,400 videos (with no overlap with the test set) to fine-tune
Qwen2.5-VL [4] using the official supervised fine-tuning code. Our main results are based on full
fine-tuning. For full fine-tuning, we adopt DeepSpeed ZeRO-3 while freezing the vision tower and
multi-modal projector. Training was done for 5 epochs. The learning rate for the 7B model was
2.0e-5 and 1.0e-5 for the 32B and 72B models, with cosine scheduling and a warmup ratio of 0.05.
We use a multinode setup with 3 8-GPU nodes of NVIDIA H-100 GPUs. Hyperparameter details for
the best runs are shown in Table 6, Table 7, and Table 8. We ablate the number of frames sampled
per second (FPS) using Qwen-2.5-7B finetuned on training set using different FPS rates on the
binary classification tasks, and observe a consistent performance boost with higher FPS (e.g., 8)
outperforming lower FPS (e.g., 2) across the board. Results are shown in Table 9. As such, we stick
with 8 FPS for our SFT models. To finetune our model, we make use of the LLaMA-Factory codebase.
All settings are the same for all 3 model sizes except for the learning rates. For comparison, we also
run LoRA fine-tuning (rank 64) with a slightly higher learning rate of 2e-4 on the 7B model, which
we find to be optimal. We found full fine-tuning to outperform LoRA fine-tuning after 5 epochs.

SfM/SLAM details. We benchmark six classic and learning-based SfM and SLAM methods. For
COLMAP [55], we use the default parameters for feature extraction, matching, and mapping but
replace exhaustive matching with sequential matching using a window size of 10 to balance accuracy
and speed. Due to COLMAP’s sensitivity to initialization, we also evaluate VGGSfM [64], which
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Figure 16: Comparing motion descriptions for different VLMs (example 2 of 2).

incorporates a learning-based front-end for feature extraction and matching, along with a learnable
camera and point initializer for improved convergence. We observe that VGGSfM converges quickly
and therefore use exhaustive matching for this method while keeping its default hyperparameters.
Additionally, we evaluate DUST3R [67], MAST3R [16], and CUT3R [66], which propose a unified
paradigm for solving 3D tasks using pointmap prediction. To benchmark MAST3R efficiently, we
replace its default exhaustive pair optimization strategy with a more efficient sparse optimization
method to prevent out-of-memory (OOM) errors. For all these methods, we resize the longer side of
images to 512 and utilize their 512-size checkpoints, aligning with the official evaluation procedures.
Finally, we evaluate MegaSAM [41], a recently released method designed for 4D reconstruction in
dynamic videos. We use its default parameters but skip the final causalSAM step, as it optimizes
only the depth rather than the points. To convert the camera poses obtained from SfM and SLAM
methods into motion primitive scores, we use a straightforward approach based on the normalized
relative pose between the first and last frames of the trajectory. We calculate the normalization factor
by calculating the average distance of all reconstructed 3D points to the origin. The motion scores
are derived as follows: translation scores are directly taken from the relative translation values along
the three axes, while rotation scores are computed from the relative rotation along the roll, pitch, and
yaw axes. We convert all axes to align with OpenCV’s axis convention to ensure consistency. Lastly,
the zoom score is determined by calculating the ratio of the focal lengths between the first and last
frames. For CUT3R and MegaSAM, we use a video sampling strategy of max(30FPS, 200 frames) to
ensure continuous motion. In contrast, for COLMAP, DUST3R, and Mast3R, we sample at 1 FPS
to enable efficient inference and avoid OOM errors. We further ablate MegaSAM’s performance at
2, 4, and 8 FPS and observe only minimal differences compared to the default sampling strategy in
Table 9.
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Table 4: Evaluation on video-text retrieval. We compare CLIPScore, ITMScore, and VQAScore models on
skill-based and caption-based video-text retrieval tasks, measured by Text, Video, and Group scores as defined
in [35, 62]. Skill-based task refers to evaluating on all 8 skills except for Complex Description. Caption-based
task refers to evaluating on the Complex Description skill. We show that repurposing generative VLMs
(especially our SFT model) for discriminative scoring using VQAScore sets the state-of-the-art.

Model Skill-based Task Caption-based Task

Text Image Group Text Image Group

Random Chance 25.0 25.0 16.6 25.0 25.0 16.6

CLIPScore 21.6 5.8 3.5 44.0 26.7 19.8
UMT-B16 26.8 4.1 2.8 46.0 19.0 13.0
UMT-L16 23.7 4.4 2.6 39.5 17.3 11.1
LanguageBind 24.0 9.7 6.2 53.6 39.6 33.2
LanguageBindV1.5 24.1 8.3 5.4 55.9 38.7 33.0
InternVideo2-S2 9.3 2.3 0.7 25.0 18.9 8.6

ITMScore 17.6 9.5 4.3 42.7 37.2 25.3
UMT-B16 14.7 9.1 3.9 30.6 33.0 18.7
UMT-L16 19.9 10.7 5.0 45.2 37.0 26.2
InternVideo2-S2 18.2 8.7 4.1 52.3 41.7 31.0

VQAScore 28.3 39.7 20.5 54.2 53.0 39.0
mPLUG-Owl3-7B 26.2 38.4 19.6 57.6 52.8 42.7
LLaVA-OneVision-7B 24.3 39.7 18.8 56.4 53.0 40.9
LLaVA-Video-7B 17.8 40.9 13.3 53.5 50.7 37.2
InternVideo2-Chat-8B 21.4 18.0 8.0 41.2 26.3 16.1
Tarsier-Recap-2 35.1 23.1 15.4 43.4 30.4 22.6
InternLMXComposer-2.5-7B 14.3 33.0 9.8 40.4 54.2 29.5
InternVL-2.5-8B 22.0 43.9 17.5 55.8 51.4 38.7
InternVL-2.5-26B 22.1 45.1 18.7 57.4 54.2 39.1
InternVL-3-8B 31.9 46.0 25.0 60.2 57.3 45.8
InternVL-3-78B 35.7 44.6 26.8 63.4 60.5 48.2
Qwen2.5-VL-7B 35.0 40.8 24.2 65.5 63.0 51.8
Qwen2.5-VL-32B 41.4 42.7 29.5 65.6 67.7 53.0
Qwen2.5-VL-72B 43.8 44.5 32.1 67.8 69.2 56.4
GPT-4o 38.3 42.4 25.8 39.9 40.3 31.6

Qwen2.5-VL-7B (SFT) 44.6 59.1 42.7 83.4 85.2 76.7
Qwen2.5-VL-32B (SFT) 45.8 61.2 43.9 83.5 86.2 77.6
Qwen2.5-VL-72B (SFT) 46.3 62.2 44.4 83.5 86.7 78.1

F Full Taxonomy

We provide the full taxonomy below:

Motion type. The camera motion is nonexistent (no), clear and consistent (simple), subtle (minor),
or ambiguous/conflicting (complex). Refer to Table 10 for details.

Steadiness. Steadiness affects visual clarity and motion perception in video analysis. While pro-
fessional cinematography favors stability, intentional shake adds stylistic effects, like in handheld
footage. We select if the camera remains still (static) or exhibits different levels of shakiness (no
shaking, minimal shaking, unsteady, very unsteady). Refer to Table 11 for details.

Translation. The camera physically moves forward or backward (dolly), up or down (pedestal),
or to the right or left (truck). Refer to Table 12 for definitions. Note that for camera translation, the
choice of reference frame is crucial for consistent annotation. We define two reference frames: (1)
The camera-centric reference frame defines motion relative to the camera’s own coordinate system,
where translations like forward and backward follow the camera’s initial orientation. While widely
used in existing datasets, it can sometimes be unintuitive for human perception. (2) In contrast, the
ground-centric reference frame defines motion relative to the “world” coordinate system, typically
the ground plane. To ensure we label direction consistently in the ground-centric reference frame, we
define forward motion (dolly-in) in a bird’s-eye view (looking directly downward at the ground)
as moving “north” or toward the top of the frame, and backward motion (dolly-out) as moving
“south” or toward the bottom. Similarly, in a worm’s-eye view (looking directly upward at the sky),
forward motion is defined as moving “south” (toward the bottom of the frame), and backward motion
as moving “north” (toward the top). This approach aligns camera motion with human perception of
directional movement. See Figure 18 for examples.

Rotation. The camera rotates along its own axis to the right or left (pan), up or down (tilt), or
clockwise or counterclockwise (roll). Refer to Table 13 for details. Note: Pure camera rotation
(without translation) does not produce a parallax effect. Take pan-left as an example: the entire
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Table 5: Evaluation of video-text retrieval models. We compare all VLMs on text, video, and group score
across all skills.

Model
Motion & Scene Motion Motion Confusable Has Tracking Only Avg
Steadiness Dynamics Speed Direction Motion Motion Shot Motion Overall

T V G T V G T V G T V G T V G T V G T V G T V G T V G

Random Chance 25.0 25.0 16.6 25.0 25.0 16.6 25.0 25.0 16.6 25.0 25.0 16.6 25.0 25.0 16.6 25.0 25.0 16.6 25.0 25.0 16.6 25.0 25.0 16.6 25.0 25.0 16.6

CLIPScore
UMT-B16 25.0 3.0 2.4 21.8 3.5 0.0 36.8 2.3 2.3 23.3 0.2 0.2 27.1 1.7 0.6 31.1 6.9 4.8 24.2 5.8 3.6 15.8 1.4 0.7 26.8 4.1 2.8
UMT-L16 15.9 2.0 1.4 12.6 2.3 2.3 40.2 3.5 3.5 21.9 1.3 0.5 18.6 2.8 0.6 27.8 7.5 4.6 27.3 4.6 3.0 13.0 2.2 0.0 23.7 4.4 2.6
LanguageBind 17.2 6.8 3.7 18.4 8.1 5.8 33.3 13.8 10.3 22.6 5.8 4.0 26.6 5.1 2.8 25.3 11.1 7.6 28.5 17.0 10.3 18.0 6.5 1.4 24.0 9.7 6.2
LanguageBindV1.5 18.9 5.4 2.4 20.7 10.3 5.8 32.2 10.3 9.2 21.7 3.8 2.5 22.0 7.9 5.7 25.7 10.0 6.6 30.6 12.4 8.5 17.3 6.5 3.6 24.2 8.3 5.4
InternVideo2-S2 1.4 3.0 0.0 32.2 3.5 3.5 2.3 3.5 1.2 9.6 0.0 0.0 8.5 4.5 2.3 13.4 2.1 0.8 1.2 3.6 0.3 8.6 2.2 0.7 9.3 2.3 0.7

ITMScore
UMT-B16 0.7 4.7 0.0 2.3 8.1 1.2 16.1 5.8 2.3 11.6 3.6 1.6 22.0 5.7 1.7 18.9 13.8 5.8 23.3 12.7 8.2 4.3 4.3 2.2 14.7 9.1 3.9
UMT-L16 13.5 8.8 4.1 26.4 8.1 6.9 29.9 10.3 3.5 12.3 2.0 0.7 13.0 5.1 1.1 24.8 16.9 8.0 20.9 13.6 7.0 7.9 3.6 0.7 19.1 10.7 5.0
InternVideo2-S2 18.2 9.8 6.1 6.9 10.3 2.3 37.9 6.9 4.6 7.4 2.9 0.7 29.9 7.9 4.5 21.3 11.7 4.5 19.1 10.0 7.3 9.4 2.9 1.4 18.2 8.7 4.1

VQAScore
mPLUG-Owl3-7B 18.2 39.9 15.9 54.0 79.3 52.9 48.3 41.4 28.7 23.9 17.0 9.2 13.0 20.9 6.8 31.8 48.6 27.4 22.7 44.2 18.2 7.2 18.0 3.6 26.2 38.4 19.6
LLaVA-Video-7B 11.5 39.2 10.1 51.7 74.7 50.6 31.0 51.7 25.3 15.7 14.5 6.0 15.8 15.8 5.1 8.9 54.9 8.4 39.4 53.3 33.6 18.0 12.2 6.5 17.8 40.9 13.3
LLaVA-OneVision-7B 20.3 46.6 18.2 47.1 77.0 47.1 50.6 46.0 39.1 17.7 14.1 6.0 8.5 18.1 3.4 23.9 49.5 20.9 39.4 52.7 32.4 10.8 13.0 5.8 24.3 39.7 18.9
InternVideo2-Chat-8B 14.9 16.9 5.1 33.3 71.3 33.3 37.9 28.7 10.3 20.8 9.8 5.2 18.6 18.1 9.6 28.2 18.7 9.9 11.5 16.4 3.6 2.9 5.8 1.4 21.4 18.0 8.0
InternVideo2-Chat-26B 17.6 22.6 9.8 23.0 48.3 20.7 44.8 29.9 24.1 42.5 17.2 13.9 20.3 10.2 5.1 47.3 29.9 22.3 27.6 19.1 11.5 7.2 3.6 0.7 35.1 23.1 15.4
InternLMXComposer2.5-7B 32.1 43.6 25.7 9.2 69.0 8.1 31.0 44.8 28.7 22.8 17.5 10.1 11.9 19.2 6.2 7.5 37.4 6.8 5.5 32.7 2.7 10.8 19.4 4.3 14.3 33.0 9.8
InternVL2.5-8B 14.5 52.0 12.8 51.7 70.1 50.6 36.8 43.7 29.9 14.0 17.9 4.7 17.8 29.6 14.8 19.4 62.4 18.5 29.7 53.3 18.1 2.4 9.8 2.4 22.0 43.9 17.5
InternVL2.5-26B 15.5 53.4 15.2 55.2 77.0 55.2 50.6 62.1 47.1 15.5 18.3 8.6 4.4 26.7 4.4 29.6 57.3 27.7 42.2 62.3 34.2 0.0 14.6 0.0 22.1 45.1 18.7
InternVL3-8B 17.2 54.7 16.6 52.9 74.7 49.4 59.8 43.7 37.9 20.6 16.1 8.7 11.9 29.9 6.8 38.5 59.4 35.8 46.4 52.4 31.8 16.6 24.5 8.6 31.9 46.0 25.0
InternVL3-78B 21.6 58.3 19.4 55.7 76.2 52.1 63.1 45.4 39.8 24.2 19.5 10.3 15.8 33.7 9.6 42.3 61.8 39.2 49.7 54.9 35.4 18.3 27.1 10.4 35.7 48.6 27.8
Qwen2.5-VL-7B 29.1 55.7 24.7 41.4 72.4 40.2 59.8 50.6 33.3 20.8 18.8 9.8 16.4 27.7 10.7 43.9 60.2 40.7 46.4 13.0 7.6 13.0 10.1 2.9 35.0 40.8 24.2
Qwen2.5-VL-32B 43.6 63.9 42.9 37.9 70.1 37.9 65.5 50.6 36.8 34.0 23.7 15.0 26.6 17.0 10.7 47.5 59.3 43.7 46.1 23.9 15.5 15.1 5.8 2.9 41.4 42.7 29.5
Qwen2.5-VL-72B 46.5 67.1 45.3 39.2 70.8 38.5 67.8 51.3 38.6 37.3 26.4 16.8 30.2 20.8 12.4 49.3 60.7 45.2 47.5 27.8 17.6 16.2 8.3 3.8 43.7 44.5 32.1
GPT-4o 27.4 43.2 22.6 2.3 73.6 2.3 52.9 46.0 28.7 40.7 34.7 26.0 33.3 29.9 17.5 43.2 54.7 36.2 45.5 26.7 16.4 24.5 16.6 10.1 38.3 42.4 25.8

Qwen2.5-VL-7B (SFT) 45.5 59.2 45.5 53.0 65.8 53.0 53.8 63.4 53.8 83.8 98.4 74.6 61.7 57.5 36.7 83.9 125.8 83.2 53.3 66.3 52.7 43.6 66.5 43.6 44.6 59.1 42.7
Qwen2.5-VL-32B (SFT) 50.3 60.9 50.1 52.6 65.8 52.3 55.4 62.8 53.8 91.4 97.7 78.2 70.3 62.3 40.9 82.4 119.9 82.2 54.8 67.2 54.1 44.6 67.1 44.6 45.8 61.2 43.9
Qwen2.5-VL-72B (SFT) 52.0 61.9 51.6 53.1 65.1 52.9 55.7 62.8 54.4 93.6 99.2 80.4 71.8 61.5 39.3 84.7 122.1 84.4 54.4 68.5 54.3 45.3 68.1 45.1 46.3 62.2 44.4

Figure 17: Fine-tuning CogVideoX-1.5 on CameraBench improves motion control. We show three
random test examples comparing the original CogVideoX and our LoRA fine-tuned model. Fine-tuning on
CameraBench’s motion-rich captions improves the model’s ability to follow motion instructions like dolly, zoom,
and arc.

scene appears to rotate leftward, but the relative positions of objects remain unchanged. In contrast,
for truck-left, closer objects move faster due to camera translation.

Intrinsic change. The camera adjusts its focal length to zoom in or out (zoom). Refer to Table 14 for
details. Pure camera zooming (without translation) does not create a parallax effect; it magnifies the
scene while preserving object positions, making the scene appear to scale around the optical center.
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Table 6: SFT hyperparameters for Qwen-2.5-VL-7B.

Hyperparameter Value
finetuning_type full

per_device_train_batch_size 4
gradient_accumulation_steps 2

learning_rate 2.0e-5
num_train_epochs 6.0
lr_scheduler_type cosine

warmup_ratio 0.05
freeze_vision_tower true

freeze_multi_modal_projector true
video_fps 8.0

video_max_pixels 16384
image_max_pixels 262144

deepspeed ds_z3_config.json
template qwen2_vl

bf16 true
flash_attn fa2

Table 7: SFT hyperparameters for Qwen-2.5-VL-32B.

Hyperparameter Value
finetuning_type full

per_device_train_batch_size 1
gradient_accumulation_steps 2

learning_rate 1.0e-5
num_train_epochs 6.0
lr_scheduler_type cosine

warmup_ratio 0.05
freeze_vision_tower true

freeze_multi_modal_projector true
video_fps 8.0

video_max_pixels 16384
image_max_pixels 262144

deepspeed ds_z3_config.json
template qwen2_vl

bf16 true
flash_attn fa2

In contrast, camera translation introduces parallax, causing closer objects to change size within the
frame more quickly.

Object-centric movements. The camera orbits around a subject (or the frame center) in a circular
path (arc), or tracks a moving subject from behind (tail-tracking), the front (lead-tracking),
the side (side-tracking), from an aerial view (aerial-tracking), or using other motions
(tilt-/pan-/arc-tracking). We also consider whether the camera moves or zooms to make the
subject appear larger or smaller within the frame. Refer to Table 15 for details.

Others. We include the speed of camera movement (slow/regular/fast), motion effects
(dolly-zoom/motion-blur), and scene movement (static/mostly-static/dynamic). Refer
to Table 17 for details.

G Skills and Tasks in CameraBench

Skills, tasks, and their textual definitions. We detail all 9 top-level skills and their 81 sub-tasks in
Table 18. Additionally, we report the textual definitions used to construct the prompts for VLMs.
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Table 8: SFT hyperparameters for Qwen-2.5-VL-72B.

Hyperparameter Value
finetuning_type full

per_device_train_batch_size 1
gradient_accumulation_steps 2

learning_rate 1.0e-5
num_train_epochs 6.0
lr_scheduler_type cosine

warmup_ratio 0.05
freeze_vision_tower true

freeze_multi_modal_projector true
video_fps 8.0

video_max_pixels 16384
image_max_pixels 262144

deepspeed ds_z3_config.json
template qwen2_vl

bf16 true
flash_attn fa2

Table 9: FPS/SFT ablations. We report Average Precision (AP) for binary classification of camera-centric
motion primitives. Our results show that higher FPS generally improves performance. Additionally, full fine-
tuning of Qwen-2.5-7B outperforms LoRA-based fine-tuning.

Model/FPS Translation (Dolly/Pedestal/Truck) Zooming Rotation (Pan/Tilt/Roll) Static Avg
In Out Up Down Right Left In Out Right Left Up Down CW CCW

MegaSAM
2 FPS 65.9 43.3 19.4 21.3 36.6 35.8 11.1 10.2 62.9 75.8 68.2 59.5 73.1 85.9 19.6 45.9
4 FPS 72.7 42.6 23.0 31.8 44.6 39.9 11.1 10.2 72.6 78.8 79.0 60.9 72.5 70.4 24.4 49.0
8 FPS 75.0 43.4 27.6 42.8 46.2 39.9 11.1 10.2 77.9 82.4 75.6 57.6 67.3 76.8 19.7 50.2
30 FPS 73.8 43.9 24.2 29.1 45.3 44.2 11.1 10.2 79.5 82.2 73.8 65.3 71.5 75.8 22.0 50.1
Qwen-2.5-LoRA-SFT
2 FPS 76.9 37.6 12.3 26.6 58.6 36.9 46.3 62.1 72.7 82.2 68.2 57.0 32.6 37.4 63.0 51.3
4 FPS 78.6 40.4 15.1 29.8 61.0 39.6 49.1 65.2 75.6 84.3 69.9 59.7 35.3 40.2 66.2 54.2
8 FPS 81.3 43.1 16.9 32.2 62.5 42.3 50.8 68.3 77.5 86.4 73.2 60.6 37.5 43.7 68.1 56.7
Qwen-2.5-Full-SFT
2 FPS 78.2 42.7 22.2 41.9 56.3 48.5 45.2 63.5 71.9 82.6 65.4 52.9 33.6 41.3 61.2 56.8
4 FPS 80.3 46.0 24.8 47.6 61.3 52.0 48.8 68.5 74.7 83.6 67.7 55.9 37.7 45.7 63.3 58.4
8 FPS 83.2 48.6 27.2 48.8 62.6 54.3 51.3 70.7 77.6 86.9 70.4 58.0 38.5 46.3 65.2 59.3

Figure 18: We define moving forward (dolly-in) for a bird’s-eye view camera in a ground-centric reference
frame as movement toward the north (the top of the frame) to maintain label consistency.
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Table 10: Motion type definitions and guidelines.

Motion Type Options Definition

Motion Type

no-motion The camera remains stationary with no intentional movement.
Note: Unintentional shaking belongs to “no motion”.

minor-motion
The camera moves slightly and intentionally, such as a gentle
pan or zoom. The motion is noticeable but remains subtle
and not significant.

simple-motion

The camera moves significantly in a straightforward manner,
such as a steady pan, tilt, arc, or simple tracking shot. Note:
Select this even if the video combines two or more motions,
as long as they occur simultaneously at roughly the same
speed.

complex-motion

The camera exhibits complex movements that are difficult to
classify. This includes: (1) Conflicting Motion: Opposing
movements occur, such as panning left then right, often seen
in drone maneuvers, video game shots, or fast-paced action
scenes. (2) Sequential Motion: Two or more movements
happen one after another rather than simultaneously (e.g.,
moving forward, then shifting position after stopping). (3)
Simultaneous Motions at Different Speeds: Multiple simulta-
neous movements occur at significantly different speeds. (4)
Unclear Motion / Missing Background Information: If the
motion is difficult to analyze due to motion blur or lack of
background cues.

Table 11: Steadiness definitions and guidelines.

Steadiness Options Definition

Steadiness

static The camera remains completely stationary with no
movement or vibration.

no-shaking
The camera moves smoothly with no detectable shake,
typically using high-end stabilizers. Select only if (1) the
camera is moving and (2) no unintended motion is present.

minimal-shaking

The camera exhibits slight shaking, whether stationary or
moving, maintaining a mostly stable shot. Select even if
stationary with slight shake. Note: Select even if stationary
with slight shake.

unsteady
The camera shows moderate shaking, whether stationary or
in motion, introducing noticeable but controlled instability.
Note: Select even if stationary with noticeable shake.

very unsteady
The camera shakes consistently, typical of unstabilized
handheld or action footage. Note: Select only if shaking is
consistent throughout the video.

Table 12: Camera translation definitions and guidelines.

Translation Options Definition

Dolly
dolly-in/
dolly-out

The camera moves forward or backward relative to the
ground plane and the initial frame.

no-dolly The camera does not move forward/backward during the
shot.

Pedestal

pedestal-up/
pedestal-down

Select this when the camera moves upward or downward
clearly and consistently relative to the ground or the
orientation of the initial frame.

no-pedestal Select this label when the camera does not move
leftward/rightward during the shot.

Truck
truck-left/
truck-right

The camera physically moves to the left or right, changing
its position relative to the initial frame.

no-truck The camera does not move to the left or right during the
shot.

27



Table 13: Camera rotation definitions and guidelines.

Rotation Options Definition

Pan
pan-left/
pan-right

The camera rotates its angle by pivoting left or right with
respect to the initial frame.

no-pan The camera does not pan left or right.

Tilt

tilt-up/
tilt-down

The camera rotates its angle up or down vertically with
respect to the initial frame.

no-tilt The camera does not tilt up or down.

Roll

roll-CW/
roll-CCW

The camera performs a clear and consistent clockwise (CW)
or counterclockwise (CCW) roll by rotating around its own
optical center.

no-roll The camera does not roll clockwise/counterclockwise.

Table 14: Camera intrinsic change definitions and guidelines.

Zooming Options Definition

Zoom
zoom-in/
zoom-out

The camera adjusts its focal length to zoom in or out,
changing the frame size. Note: This differs from physical
camera movement.

no-zoom The camera does not adjust its focal length during the video.
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Table 15: Object-centric movement definitions and guidelines.

Object-centric Motion Options Definition

Arc
arc-CW/
arc-CCW

The camera moves in a circular or semi-circular motion
around the subject (or the frame center) in a clockwise or
counterclockwise direction.

no-arc The camera does not move in a circular or semi-circular
motion during the video.

Arc-Tracking arc-tracking
The camera moves in a circular or semi-circular path around
the moving subject, often referred to as an orbit or circular
tracking shot.

no-arc-tracking The camera does not track or does not move in a circular or
semi-circular path around the moving subject.

Lead-Tracking lead-tracking
The camera moves ahead of the moving subject, capturing
their face or front as they follow the camera’s path. This is
also referred to as a leading shot.

no-lead-tracking The camera does not track or does not move ahead of the
moving subject.

Tail-Tracking tail-tracking
The camera follows directly behind the moving subject,
keeping their back in view as they move forward. This is
also known as a follow shot or chase shot.

no-tail-tracking The camera does not track or does not move behind the
moving subject.

Side-Tracking side-tracking
The camera moves parallel to the moving subject, following
them from the side as they move through the scene. This is
often referred to as a trucking shot in film terminology.

no-side-tracking The camera does not track or does not move parallel to the
moving subject.

Aerial-Tracking aerial-tracking The camera tracks the moving subject from a high vantage
point, often using a drone or crane to follow their movement.

no-aerial-tracking The camera either does not track the moving subject or is
not positioned at a high vantage point.

Pan-Tracking pan-tracking The camera remains in a fixed position but pivots
horizontally to follow the subject as they move.

no-pan-tracking The camera does not track the subject or does not pivot
horizontally to follow their movement.

Tilt-Tracking tilt-tracking The camera tilts up or down to follow the vertical movement
of the subject.

no-tilt-tracking The camera does not track the subject or does not pivot
vertically to follow their movement.

Subject Size Change
subject-larger The camera moves or zooms in towards the tracked subject,

making them appear larger in the frame.

subject-smaller The camera moves or zooms away from the tracked subject,
making them appear smaller in the frame.

no-subject-change The camera neither moves towards nor away from the
subject.

Table 16: Camera movement speed definitions and guidelines.

Motion Speed Options Definition

Moving Speed
slow The camera moves at a noticably slow pace.

regular The camera moves at a regular pace. If the speed does not
stand out as particularly slow or fast, it is considered regular.

fast The camera moves quickly, such as in a crash zoom or whip
pan.
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Table 17: Others definitions and guidelines.

Others Options Definition

Camera Movement Speed
slow The camera moves at a noticeably slow pace.

regular The camera moves at a regular pace. If the speed does not stand
out as particularly slow or fast, it is considered regular.

fast The camera moves quickly, such as in a crash zoom or whip pan.

Cinematic Motion Effects
frame-freezing A visual effect where scene motion is paused or frozen

mid-action, creating a still frame within a moving sequence.

dolly-zoom
A camera effect where the background appears to compress or
stretch while the subject stays the same size, often used to create
a sense of unease.

motion-blur
A visual effect where moving objects blur due to slow shutter
speed or camera movement, often used to emphasize speed and
fluid motion in action scenes.

Scene Dynamics
static The entire scene, including all subjects and background, remains

completely motionless throughout the video.

mostly-static The scene is largely still, with only minor elements or small parts
exhibiting movement.

dynamic
A significant portion of the frame is occupied by dynamic
movement of subjects or scene elements (excluding camera
motion) that visibly alters the scene.
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Table 18: All tasks for each top-level skill in CameraBench. We list all 81 tasks of 9 skills in CameraBench.

Skill Description Tasks

Motion & Steadiness

Evaluates how steady the
camera is and whether it
moves in a controlled manner,
including shake detection and
fixed vs. moving camera
states.

Clear Moving Camera, Fixed Camera Shake, Stable vs.
Shaky Camera, Fixed vs. Moving Camera. (4 Tasks in
Table 19)

Scene Dynamics
Determines whether a scene is
static or dynamic, and detects
frame freeze effects.

Static vs. Dynamic Scene, Frame Freeze Effect. (2 Tasks in
Table 20)

Motion Speed

Evaluates the speed of camera
movements, distinguishing
between slow-moving and
fast-moving shots, and detects
motion blur.

Slow vs. Fast Movement, Motion Blur Effect. (2 Tasks in
Table 16)

Motion Direction

Classifies the direction of
camera motion, including
forward/backward,
upward/downward,
leftward/rightward, panning,
tilting, rolling, and complex
movement types like crane
and arc shots.

Dolly In vs. Out (Ground), Pedestal Up vs. Down (Ground),
Truck Left vs. Right, Pan Left vs. Right, Tilt Up vs. Down,
Roll CW vs. CCW, Side Tracking Left vs. Right, Lead vs.
Tail Tracking, Arc CCW vs. CW, Crane Up vs. Down, Dolly
Zoom In vs. Out, Zoom In vs. Out. (12 Tasks in Table 22)

Confusable Motion

Distinguishes between
commonly confused motion
types, such as zooming versus
physical movement,
translation versus rotation,
and differentating the
reference frame in which the
motion happens.

Zoom In vs. Dolly In, Zoom Out vs. Dolly Out, Only Zoom
In vs. Only Dolly In, Only Zoom Out vs. Only Dolly Out,
Pan Right vs. Truck Right, Pan Left vs. Truck Left, Only
Pan Right vs. Only Truck Right, Only Pan Left vs. Only
Truck Left, Tilt Up vs. Pedestal Up, Tilt Down vs. Pedestal
Down, Only Tilt Up vs. Only Pedestal Up, Only Tilt Down
vs. Only Pedestal Down, Dolly In Camera vs. Ground, Dolly
Out Camera vs Ground, Pedestal Up Camera vs. Ground,
Pedestal Down Camera vs. Ground. (16 Tasks in Table 23)

Has Motion

Determines whether the
camera exhibits motion,
including intrinsic changes
(zoom) and physical
movement (translation,
rotation, or arc motion).

Zoom In, Zoom Out, Dolly In, Dolly Out, Pedestal Up,
Pedestal Down, Truck Right, Truck Left, Pan Right, Pan
Left, Tilt Up, Tilt Down, Roll CW, Roll CCW, Arc CW, Arc
CCW, Crane Up, Crane Down. (18 Tasks in Table 24)

Tracking Shot

Identifies whether the camera
is tracking a subject, specifies
different types of tracking
shots.

General Tracking, Aerial Tracking, Arc Tracking,
Front-Side Tracking, Rear-Side Tracking, Lead Tracking,
Tail Tracking, Tilt Tracking, Pan Tracking, Side Tracking,
Tracking Subject Larger, Tracking Subject Smaller. (12
Tasks in Table 25)

Only Motion

Identifies cases where the
camera performs a single
motion type without any other
movement.

Only Zoom In, Only Zoom Out, Only Dolly In, Only Dolly
Out, Only Pedestal Up, Only Pedestal Down, Only Truck
Right, Only Truck Left, Only Pan Right, Only Pan Left,
Only Tilt Up, Only Tilt Down, Only Roll CW, Only Roll
CCW. (14 Tasks in Table 26)

Complex Description

Determines whether a given
motion description correctly
describes the camera
movement in a video.

Complex Description. (1 Task)
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Table 19: Motion & Steadiness Tasks

Tasks Questions Descriptions

Clear Moving Camera
Positive: Does the camera have noticeable
motion beyond minor shake or wobble?

Positive: A video where the camera has
noticeable motion beyond minor shake or
wobble.

Negative: Is the camera free from noticeable
motion beyond minor shake or wobble?

Negative: A video where the camera is free
from noticeable motion beyond minor shake
or wobble.

Fixed Camera Shake
Positive: Is the camera completely still
without any motion or shaking?

Positive: A video where the camera remains
completely still with no motion or shaking.

Negative: Is the camera stationary with
minor vibrations or shaking?

Negative: A video where the camera is
mostly stationary but has minor vibrations or
shaking.

Stable vs. Shaky Camera
Positive: Is the camera movement
exceptionally smooth and highly stable?

Positive: A video where the camera
movement is exceptionally smooth and
highly stable.

Negative: Does the camera show noticeable
vibrations, shaking, or wobbling?

Negative: A video where the camera shows
noticeable vibrations, shaking, or wobbling.

Fixed vs. Moving Camera
Positive: Is the camera completely still
without any visible movement?

Positive: The camera is completely still
without any visible movement.

Negative: Is the camera not completely still
and shows visible movement?

Negative: The camera is not completely still
and shows visible movement.

Table 20: Scene Dynamics Tasks

Tasks Questions Descriptions

Static vs. Dynamic Scene
Positive: Is the scene in the video completely
static?

Positive: A video where the scene is
completely static.

Negative: Is the scene in the video dynamic? Negative: A video where the scene is
dynamic and features movement.

Frame Freeze Effect
Positive: Does the video contain a frame
freeze effect at any point?

Positive: A video that contains a frame
freeze effect at some point.

Negative: Is the video free from any frame
freeze effect?

Negative: A video that is free from any
frame freeze effect.

Table 21: Camera Motion Speed Tasks

Tasks Questions Descriptions

Slow vs. Fast Movement
Positive: Does the camera have noticeable
motion but at a slow motion speed?

Positive: A video where the camera has
noticeable motion at a slow speed.

Negative: Does the camera have noticeable
motion but at a fast motion speed?

Negative: A video where the camera has
noticeable motion at a fast speed.

Motion Blur Effect
Positive: Does the video contain noticeable
motion blur?

Positive: The video exhibits a motion blur
effect.

Negative: Is the video free from any
noticeable motion blur?

Negative: The video is free from any
noticeable motion blur.
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Table 22: Camera Motion Direction Tasks

Tasks Questions Descriptions

Dolly In vs. Out (Ground)
Positive: Is the camera moving forward in
the scene?

Positive: A shot where the camera is moving
forward within the scene.

Negative: Is the camera moving backward in
the scene?

Negative: A shot where the camera is
moving backward within the scene.

Pedestal Up vs. Down (Ground)
Positive: Does the camera move upward
relative to the ground?

Positive: The camera is moving upward
relative to the ground.

Negative: Does the camera move downward
relative to the ground?

Negative: The camera is moving downward
relative to the ground.

Truck Left vs. Right
Positive: Does the camera move leftward in
the scene? Positive: The camera moves leftward.

Negative: Does the camera move rightward
in the scene? Negative: The camera moves rightward.

Pan Left vs. Right Positive: Does the camera pan to the left? Positive: The camera pans to the left.

Negative: Does the camera pan to the right? Negative: The camera pans to the right.

Tilt Up vs. Down Positive: Does the camera tilt upward? Positive: The camera tilts upward.

Negative: Does the camera tilt downward? Negative: The camera tilts downward.

Roll CW vs. CCW Positive: Does the camera roll clockwise? Positive: The camera rolls clockwise.

Negative: Does the camera roll
counterclockwise?

Negative: The camera rolls
counterclockwise.

Side Tracking Left vs. Right
Positive: Is it a side-tracking shot where the
camera moves left to follow the subject?

Positive: A side-tracking shot where the
camera moves left to follow the subject.

Negative: Is it a side-tracking shot where the
camera moves right to follow the subject?

Negative: A side-tracking shot where the
camera moves right to follow the subject.

Lead vs. Tail Tracking
Positive: Is it a tracking shot with the camera
moving ahead of the subject?

Positive: A tracking shot where the camera
moves ahead of the subject.

Negative: Is it a tracking shot with the
camera following behind the subject?

Negative: A tracking shot where the camera
follows behind the subject.

Arc CCW vs. CW
Positive: Does the camera move in a
counterclockwise arc? Positive: The camera arcs counterclockwise.

Negative: Does the camera move in a
clockwise arc? Negative: The camera arcs clockwise.

Crane Up vs. Down
Positive: Is the camera craning upward in an
arc?

Positive: The camera cranes upward in an
arc.

Negative: Does the camera move downward
in a crane shot?

Negative: The camera cranes downward in
an arc.

Dolly Zoom In vs. Out

Positive: Does the shot feature a dolly zoom
effect with the camera moving backward and
zooming in?

Positive: The camera performs a dolly zoom
effect with backward movement and
zoom-in.

Negative: Does the shot feature a dolly
zoom effect with the camera moving forward
and zooming out?

Negative: The camera performs a dolly
zoom effect with forward movement and
zoom-out.

Zoom In vs. Out Positive: Does the camera zoom in? Positive: The camera zooms in.

Negative: Does the camera zoom out? Negative: The camera zooms out.
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Table 23: Confusable Motion Tasks

Tasks Questions Descriptions

Zoom In vs. Dolly In
Positive: Does the camera zoom in without
physically moving forward?

Positive: A video where the camera zooms
in without physically moving forward.

Negative: Does the camera physically move
forward without zooming in?

Negative: A video where the camera
physically moves forward without zooming
in.

Zoom Out vs. Dolly Out
Positive: Does the camera zoom out without
physically moving backward?

Positive: A video where the camera zooms
out without physically moving backward.

Negative: Does the camera physically move
backward without zooming out?

Negative: A video where the camera
physically moves backward without zooming
out.

Only Zoom In vs. Only Dolly In
Positive: Does the camera only zoom in
without any other camera movement?

Positive: A video where the camera only
zooms in with no other movement.

Negative: Does the camera only move
forward without any other camera
movement?

Negative: A video where the camera only
moves forward with no other movement.

Only Zoom Out vs. Only Dolly Out
Positive: Does the camera only zoom out
without any other camera movement?

Positive: A video where the camera only
zooms out with no other movement.

Negative: Does the camera only move
backward without any other camera
movement?

Negative: A video where the camera only
moves backward with no other movement.

Pan Right vs. Truck Right
Positive: Does the camera pan right without
moving laterally to the right?

Positive: The camera pans right without
moving laterally to the right.

Negative: Does the camera move laterally to
the right without panning right?

Negative: The camera moves laterally to the
right without panning right.

Pan Left vs. Truck Left
Positive: Does the camera pan left without
moving laterally to the left?

Positive: The camera pans left without
moving laterally to the left.

Negative: Does the camera move laterally to
the left without panning left?

Negative: The camera moves laterally to the
left without panning left.

Only Pan Right vs. Only Truck Right
Positive: Does the camera only pan right
with no other movement?

Positive: A video where the camera only
pans right with no other movement.

Negative: Does the camera only move
laterally to the right with no other
movement?

Negative: A video where the camera only
moves laterally to the right with no other
movement.

Only Pan Left vs. Only Truck Left
Positive: Does the camera only pan left with
no other movement?

Positive: A video where the camera only
pans left with no other movement.

Negative: Does the camera only move
laterally to the left with no other movement?

Negative: A video where the camera only
moves laterally to the left with no other
movement.

Tilt Up vs. Pedestal Up
Positive: Does the camera tilt up without
moving physically upward?

Positive: The camera tilts up without
physically moving upward.

Negative: Does the camera move physically
upward without tilting up?

Negative: The camera moves physically
upward without tilting up.

Tilt Down vs. Pedestal Down
Positive: Does the camera tilt down without
moving physically downward?

Positive: The camera tilts down without
physically moving downward.

Negative: Does the camera move physically
downward without tilting down?

Negative: The camera moves physically
downward without tilting down.

Only Tilt Up vs. Only Pedestal Up
Positive: Does the camera only tilt up with
no other movement?

Positive: A video where the camera only tilts
up with no other movement.

Negative: Does the camera only move
physically upward with no other movement?

Negative: A video where the camera only
moves physically upward with no other
movement.

Only Tilt Down vs. Only Pedestal Down
Positive: Does the camera only tilt down
with no other movement?

Positive: A video where the camera only tilts
down with no other movement.

Negative: Does the camera only move
physically downward with no other
movement?

Negative: A video where the camera only
moves physically downward with no other
movement.

Dolly In Camera vs. Ground

Positive: Does the camera move forward
only relative to its initial viewing direction
but not relative to the ground?

Positive: The camera moves forward only
relative to its initial viewing direction but not
relative to the ground.

Negative: Does the camera move forward
relative to both the ground and its initial
viewing direction?

Negative: The camera moves forward
relative to both the ground and its initial
viewing direction.

Dolly Out Camera vs Ground

Positive: Does the camera move backward
only relative to its initial viewing direction
but not relative to the ground?

Positive: The camera moves backward only
relative to its initial viewing direction but not
relative to the ground.

Negative: Does the camera move backward
relative to both the ground and its initial
viewing direction?

Negative: The camera moves backward
relative to both the ground and its initial
viewing direction.

Pedestal Up Camera vs. Ground

Positive: Does the camera move upward only
relative to its initial viewing direction but not
relative to the ground?

Positive: The camera moves upward only
relative to its initial viewing direction but not
relative to the ground.

Negative: Does the camera move upward
relative to both the ground and its initial
viewing direction?

Negative: The camera moves upward
relative to both the ground and its initial
viewing direction.

Pedestal Down Camera vs. Ground

Positive: Does the camera move downward
only relative to its initial viewing direction
but not relative to the ground?

Positive: The camera moves downward only
relative to its initial viewing direction but not
relative to the ground.

Negative: Does the camera move downward
relative to both the ground and its initial
viewing direction?

Negative: The camera moves downward
relative to both the ground and its initial
viewing direction.
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Table 24: Has Motion Tasks

Tasks Questions Descriptions

Zoom In Positive: Does the camera zoom in? Positive: The camera zooms in.

Negative: Is the camera free from any zoom
in effects?

Negative: The camera is free from any zoom
in effects.

Zoom Out Positive: Does the camera zoom out? Positive: The camera zooms out.

Negative: Is the camera free from any zoom
out effects?

Negative: The camera is free from any zoom
out effects.

Dolly In
Positive: Is the camera moving forward in
the scene?

Positive: The camera is moving forward
within the scene.

Negative: Is the camera free from any
forward motion?

Negative: The camera is free from any
forward motion.

Dolly Out
Positive: Is the camera moving backward in
the scene?

Positive: The camera is moving backward
within the scene.

Negative: Is the camera free from any
backward motion?

Negative: The camera is free from any
backward motion.

Truck Left
Positive: Does the camera move laterally to
the left?

Positive: The camera moves laterally to the
left.

Negative: Is the camera free from any
leftward lateral movement?

Negative: The camera is free from any
leftward lateral movement.

Truck Right
Positive: Does the camera move laterally to
the right?

Positive: The camera moves laterally to the
right.

Negative: Is the camera free from any
rightward lateral movement?

Negative: The camera is free from any
rightward lateral movement.

Pedestal Up
Positive: Does the camera move upward
relative to the ground?

Positive: The camera moves upward relative
to the ground.

Negative: Is the camera free from any
upward pedestal motion?

Negative: The camera is free from any
upward pedestal motion.

Pedestal Down
Positive: Does the camera move downward
relative to the ground?

Positive: The camera moves downward
relative to the ground.

Negative: Is the camera free from any
downward pedestal motion?

Negative: The camera is free from any
downward pedestal motion.

Pan Left Positive: Does the camera pan to the left? Positive: The camera pans to the left.

Negative: Is the camera free from any
leftward panning motion?

Negative: The camera is free from any
leftward panning motion.

Pan Right Positive: Does the camera pan to the right? Positive: The camera pans to the right.

Negative: Is the camera free from any
rightward panning motion?

Negative: The camera is free from any
rightward panning motion.

Tilt Up Positive: Does the camera tilt upward? Positive: The camera tilts upward.

Negative: Is the camera free from any
upward tilting motion?

Negative: The camera is free from any
upward tilting motion.

Tilt Down Positive: Does the camera tilt downward? Positive: The camera tilts downward.

Negative: Is the camera free from any
downward tilting motion?

Negative: The camera is free from any
downward tilting motion.

Roll CW Positive: Does the camera roll clockwise? Positive: The camera rolls clockwise.

Negative: Is the camera free from any
clockwise rolling motion?

Negative: The camera is free from any
clockwise rolling motion.

Roll CCW
Positive: Does the camera roll
counterclockwise? Positive: The camera rolls counterclockwise.

Negative: Is the camera free from any
counterclockwise rolling motion?

Negative: The camera is free from any
counterclockwise rolling motion.

Arc CW
Positive: Does the camera move in a
clockwise arc?

Positive: The camera moves in a clockwise
arc.

Negative: Is the camera free from any
clockwise arc movement?

Negative: The camera is free from any
clockwise arc movement.

Arc CCW
Positive: Does the camera move in a
counterclockwise arc?

Positive: The camera moves in a
counterclockwise arc.

Negative: Is the camera free from any
counterclockwise arc movement?

Negative: The camera is free from any
counterclockwise arc movement.
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Table 25: Tracking Shot Tasks

Tasks Questions Descriptions

General Tracking
Positive: Does the camera track the subject
as they move?

Positive: The camera tracks the subject as
they move.

Negative: Is the video not a tracking shot? Negative: The video is not a tracking shot.

Aerial Tracking
Positive: Does the camera track the subject
from an aerial perspective?

Positive: The camera tracks the subject from
an aerial perspective.

Negative: Is the video not a tracking shot
from an aerial perspective?

Negative: The camera is not tracking the
subject from an aerial perspective.

Arc Tracking
Positive: Does the camera follow the subject
while moving in an arc?

Positive: A tracking shot where the camera
follows the subject while moving in an arc.

Negative: Is the video not a tracking shot
with arc movement?

Negative: The camera is not tracking the
subject with arc movement.

Front-Side Tracking
Positive: Is it a tracking shot with the camera
leading the subject from a front-side angle?

Positive: A tracking shot where the camera
leads the subject from a front-side angle.

Negative: Is the camera not leading the
subject from a front-side angle in a tracking
shot?

Negative: The camera is not leading the
subject from a front-side angle in a tracking
shot.

Rear-Side Tracking

Positive: Is it a tracking shot with the camera
following behind the subject at a rear-side
angle?

Positive: A tracking shot where the camera
follows behind the subject at a rear-side
angle.

Negative: Is the camera not following
behind the subject at a rear-side angle?

Negative: The camera is not following
behind the subject at a rear-side angle.

Lead Tracking
Positive: Is it a tracking shot with the camera
moving ahead of the subject as they move?

Positive: A tracking shot where the camera
moves ahead of the subject as they move.

Negative: Is the camera not moving ahead of
the subject in a tracking shot?

Negative: The camera is not moving ahead
of the subject in a tracking shot.

Tail Tracking
Positive: Is it a tracking shot with the camera
following behind the subject as they move?

Positive: A tracking shot where the camera
moves behind the subjects as they move.

Negative: Is the camera not following
behind the subject in a tracking shot?

Negative: The camera is not following
behind the subject in a tracking shot.

Tilt Tracking
Positive: Does the camera tilt to track the
subjects as they move?

Positive: A tracking shot where the camera
tilts to follow the subjects.

Negative: Is the camera not tilting to track
the subjects?

Negative: The camera is not tilting to track
the subjects.

Pan Tracking
Positive: Does the camera pan to track the
subjects as they move?

Positive: A tracking shot where the camera
pans to follow the subjects as they move.

Negative: Is the camera not panning to track
the subjects?

Negative: The camera is not panning to track
the subjects.

Side Tracking

Positive: Is it a tracking shot with the camera
moving from the side to follow the subject as
they move?

Positive: A tracking shot where the camera
moves from the side to follow the subject.

Negative: Is the camera not moving from the
side to track the subject?

Negative: The camera is not moving from
the side to track the subject.

Tracking Subject Larger
Positive: Does the subject appear larger
during the tracking shot?

Positive: The subject looks larger during the
tracking shot.

Negative: Does the subject being tracked not
appear larger in size?

Negative: The subject being tracked does not
appear larger in size.

Tracking Subject Smaller
Positive: Does the subject appear smaller
during the tracking shot?

Positive: The subject looks smaller during
the tracking shot.

Negative: Does the subject being tracked not
appear smaller in size?

Negative: The subject being tracked does not
appear smaller in size.
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Table 26: Only Motion Tasks

Tasks Questions Descriptions

Only Zoom In
Positive: Does the camera only zoom in with
no other movement?

Positive: The camera only zooms in without
any other movement.

Negative: Does the camera not just zoom in? Negative: The camera does not just zoom in.

Only Zoom Out
Positive: Does the camera only zoom out
with no other movement?

Positive: The camera only zooms out
without any other movement.

Negative: Does the camera not just zoom
out?

Negative: The camera does not just zoom
out.

Only Dolly In

Positive: Does the camera only move
forward (not zooming in) with respect to the
ground?

Positive: The camera only moves forward
(not zooming in) relative to the ground.

Negative: Does the camera not just move
forward with respect to the ground?

Negative: The camera does not just move
forward relative to the ground.

Only Dolly Out

Positive: Does the camera only move
backward (not zooming out) with respect to
the ground?

Positive: The camera only moves backward
(not zooming out) relative to the ground.

Negative: Does the camera not just move
backward with respect to the ground?

Negative: The camera does not just move
backward relative to the ground.

Only Pedestal Up
Positive: Does the camera only move upward
(not tilting up) with respect to the ground?

Positive: The camera only moves upward
(not tilting up) relative to the ground.

Negative: Does the camera not just move
physically upward?

Negative: The camera does not just move
physically upward.

Only Pedestal Down

Positive: Does the camera only move
downward (not tilting down) with respect to
the ground?

Positive: The camera only moves downward
(not tilting down) relative to the ground.

Negative: Does the camera not just move
physically downward?

Negative: The camera does not just move
physically downward.

Only Truck Right

Positive: Does the camera only move
rightward without any other camera
movements?

Positive: The camera only moves rightward
without any other camera movements.

Negative: Does the camera not just move
laterally to the right?

Negative: The camera does not just move
laterally to the right.

Only Truck Left

Positive: Does the camera only move
leftward without any other camera
movements?

Positive: The camera only moves leftward
without any other camera movements.

Negative: Does the camera not just move
laterally to the left?

Negative: The camera does not just move
laterally to the left.

Only Pan Right

Positive: Does the camera only pan
rightward without any other camera
movements?

Positive: The camera only pans rightward
without any other camera movements.

Negative: Does the camera not just pan
right?

Negative: The camera does not just pan
right.

Only Pan Left
Positive: Does the camera only pan leftward
without any other camera movements?

Positive: The camera only pans leftward
without any other camera movements.

Negative: Does the camera not just pan left? Negative: The camera does not just pan left.

Only Tilt Up
Positive: Does the camera only tilt upward
without any other camera movements?

Positive: The camera only tilts upward
without any other camera movements.

Negative: Does the camera not just tilt up? Negative: The camera does not just tilt up.

Only Tilt Down

Positive: Does the camera only tilt
downward without any other camera
movements?

Positive: The camera only tilts downward
without any other camera movements.

Negative: Does the camera not just tilt
down?

Negative: The camera does not just tilt
down.

Only Roll CW

Positive: Does the camera only roll
clockwise without any other camera
movements?

Positive: The camera only rolls clockwise
without any other camera movements.

Negative: Does the camera not just roll
clockwise?

Negative: The camera does not just roll
clockwise.

Only Roll CCW

Positive: Does the camera only roll
counterclockwise without any other camera
movements?

Positive: The camera only rolls
counterclockwise without any other camera
movements.

Negative: Does the camera not just roll
counterclockwise?

Negative: The camera does not just roll
counterclockwise.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We explain how we collect our dataset in section 3 and 4. We open-sourced all
data and code for reproduciblity of our dataset and experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include limitations in the last section of the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Dataset is available on our website.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please check out our website.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training and testing details are reported in our appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Most of our experiments are not stochastic.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our codebase discloses minimal GPU requirements.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We acknowledge the limitations of our generative models in the supplement.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We explain the potential misuse of our generative models in the supplement.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our videos are scraped from Youtube under their Youtube Standard licenses.
We release other annotations under CC-BY 4.0 license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The main paper and the supplement clearly explains each aspect of our dataset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We include instructions and screenshots in the supplement. We paid above the
minimal wage in the country of data collector.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [Yes]
Justification: We discuss how we encourage annotators to use LLMs for better quality
captions.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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