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Abstract
This paper introduces a novel approach to im-
proving the training stability of self-supervised
learning (SSL) methods by leveraging a non-
parametric memory of seen concepts. The pro-
posed method involves augmenting a neural net-
work with a memory component to stochastically
compare current image views with previously en-
countered concepts. Additionally, we introduce
stochastic memory blocks to regularize training
and enforce consistency between image views.
We extensively benchmark our method on many
vision tasks, such as linear probing, transfer learn-
ing, low-shot classification, and image retrieval on
many datasets. The experimental results consol-
idate the effectiveness of the proposed approach
in achieving stable SSL training without addi-
tional regularizers while learning highly trans-
ferable representations and requiring less com-
puting time and resources. Code at https:
//github.com/sthalles/MaSSL.

1. Introduction
Self-supervised learning (SSL) based on join-embedding
architectures currently holds state-of-the-art performance on
many representation learning benchmarks. Among different
methods, clustering-based approaches (Caron et al., 2021;
2018; 2019; Asano et al., 2019; Silva & Ramı́rez Rivera,
2023) appear to be the most successful recipe for learning
self-supervised features in the visual domain. SSL cluster-
ing methods learn image representations by discretizing the
embedding space. They set up optimization tasks that in-
volve learning a finite set of prototypes or centroids based on
the self-supervised signal coming from views of an image.
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Despite their high ability to learn representations, cluster-
ing methods are notoriously difficult to train due to their
susceptibility to training collapse.

We argue that learning the prototypes via gradient descent
is the primary source of poor training instability in SSL
clustering methods. Due to the lack of human labels and ex-
cessive noise from the self-supervised signals, the network
attempts to cluster all the embeddings into a single proto-
type as the most efficient way to optimize the loss function.
Current methods avoid collapse by employing additional
regularizers that force representations to spread evenly in
the space over the prototypes. Examples include: (1) the
combination of centering and target sharpening (Caron et al.,
2021; Zhou et al., 2022), (2) the mean entropy maximization
(ME-MAX) (Assran et al., 2021; Silva & Ramı́rez Rivera,
2023), and (3) the Sinkhorn-Knopp (Asano et al., 2019;
Caron et al., 2020). In addition, state-of-the-art SSL meth-
ods based on Vision Transformers (ViTs) use the full output
of the Transformer ([CLS] + patch token) and optimize the
MIM (Masked Image Modeling) pretext task on the patch
embeddings (Zhou et al., 2022; Oquab et al., 2023). De-
spite performance gains, this architectural choice drastically
increases computational costs and training time.

Motivated by the current landscape of SSL methods, we pro-
pose a new stable method that exceeds current approaches
on many retrieval and transfer tasks while reducing com-
puting resources and training time. Based on the intuition
that learning relies on memory, we present a non-parametric
approach that poses the SSL problem in terms of learning
from past experiences. We augment a neural network with a
memory component that holds a snapshot of the most recent
image representations seen by the model. Unlike previous
approaches that use memory/queues to mine negatives (He
et al., 2020) or positives (Dwibedi et al., 2021) in a con-
trastive learning setup, our proposed memory allows the
network to learn visual representations by comparing cur-
rent events (views of an image) with previously experienced
concepts (image representations from previous iterations)
in memory. We named this method Memory Augmented
Self-Supervised Learning (MaSSL).

In addition to the working memory, we introduce the con-
cept of stochastic memory blocks. Stochastic blocks allow
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the network to retrieve a random subset of representations
from previous iterations. These representations symbol-
ize concepts previously seen by the model and are used as
anchors to enforce consistency between the current image
views. We show that stochastic memory blocks regular-
ize the learning problem, making our method stable even
without additional regularizers to prevent mode collapse.
Finally, our loss optimizes for consistency between views of
an image by matching their view-memory similarity distri-
butions, which means that views of an image must activate
similar memory representations with similar scores. In other
words, views should output consistent similarity patterns
when compared to representations of other images in the
memory. Figure 1 presents a pictorial overview of our learn-
ing architecture.

Our contributions are threefold:

• A novel SSL pretext task that learns visual representa-
tions by formulating multiple discriminative tasks based
on comparing the current perceived signal to previously
experienced concepts stored in memory.

• A stochastic memory, implemented through a non-
parametric distribution of the past image representations
and a memory block mechanism that allows representa-
tion learning in a prototype-free manner.

• A simple SSL learning framework that does not require
additional regularizers to avoid training collapse and op-
erates on the [CLS] token of the ViT, reducing the pre-
training time and memory requirements while learning
highly transferable representations.

2. Related Work
Self-supervised learning has evolved from more special-
ized pretext tasks such as solving rotations (Gidaris et al.,
2018), jigsaw puzzles (Noroozi & Favaro, 2016), and rela-
tive positions (Doersch et al., 2015), to a predominant set
of tasks based on instance discrimination (He et al., 2020;
Chen et al., 2020; Chen & He, 2021; Silva et al., 2023).
Current methods mainly differ from one another on (1) how
they avoid mode collapse and (2) how they pose the view-
invariance task, which may be embedding- (Grill et al.,
2020) or clustering-based (Caron et al., 2020). Current
state-of-the-art SSL is based on the Transformer architec-
ture (Dosovitskiy et al., 2020). Some approaches formulate
their loss function over the [CLS] token only (Caron et al.,
2021), while the most recent and powerful methods use the
full output of the Transformer, i.e., [CLS] + patch tokens
(Zhou et al., 2022; Oquab et al., 2023).

Memory banks or queues in SSL are not new concepts.
Many proposed techniques (Misra & Maaten, 2020; Chen
et al., 2021) rely on storing representations in a container,
often called support set or queues. In MoCo (Chen et al.,

2021) and PIRL (Misra & Maaten, 2020), the memory is
used as a source of negative representations, i.e., the cur-
rently processed image is pushed away from distinct image
representations in a queue in a contrastive task by minimiz-
ing the InfoNCE (Oord et al., 2018) loss. Alternatively,
Dwibedi et al. (2021) uses an extra queue as a source of pos-
itives. Specifically, the support set is used to bootstrap near-
est neighbors for the current views, framing a contrastive
learning task that approximates views of an image to their
neighbors’ representations.

MaSSL uses the memory container differently. To begin,
MaSSL is a negative-free contrastive1 method. Hence, it
does not need to bootstrap negatives for its learning objec-
tive, nor does it have an explicit term in the loss function to
push representations apart and avoid collapse. Most impor-
tantly, MaSSL uses the memory to formulate discriminative
tasks. Intuitively, if the currently perceived image is similar
to one or more images the model has seen (in memory),
they should relate with a strong similarity score. Conversely,
if the current image is not semantically similar to one or
more images in the memory, they should relate with a weak
similarity score. On top of that, MaSSL’s learning objective
forces multiple views of the same image to agree on how
they relate to previously perceived representations.

Similar to MaSSL, Assran et al. (2021) proposed a semi-
supervised method, termed PAWS, that employs a support
set composed of uniformly distributed labeled examples as
anchors to optimize for views’ consistency. While MaSSL
may be regarded as an SSL version of PAWS, translating the
learning problem in the former to an SSL setup is not trivial.
PAWS takes advantage of the additional, free-of-noise signal
to incorporate biases into the learning problem, stabilizing
the training process. In addition to human labels, PAWS uses
a regularizer to spread views’ assignments over the examples
in the support set. In contrast, MaSSL does not require
human-labeled examples to learn visual representations, nor
does it employ regularizers to prevent collapse.

3. Methodology
Inspired by how humans recall and generalize observations
based on memory comparisons, we introduce a memory
(based on a non-parametric distribution) to our methods, al-
lowing the network to contrast representations from current
events to previous iterations. In addition, we regularize the
learning process using a stochastic memory partition strat-
egy, forcing the representations to be general and not suscep-
tible to particular shortcuts. Figure 1 depicts an overview of
our proposed method.

1The literature uses the misnomer “non-contrastive” to refer
to methods that do not explicitly use negative examples while
learning the representations. We, however, argue that there is a
better way of naming these methods.
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Figure 1. Learning from memory. Given two or more views of an image, each view is encoded by the student and teacher encoders,
resulting in respective vector representations z1 and z2. Each view’s representation is compared against representations of previously
seen images in memory, resulting in respective similarity distributions. Note that the working memory M is split into blocks, Mi, of
randomly chosen representations. The learning objective, L, forces the similarity distributions of views w.r.t. the memory representations
to be consistent. In a case where the model perceives an image of a dog, the interaction between what it currently sees and what it
remembers should produce (1) strong similarity scores for previously seen dogs, (2) weak scores for non-related images in the memory,
and (3) interactions should be consistent among views.

Notation. Let x be an image from a large unlabeled dataset
X and xv a view of x, for v = 1, 2, . . . , Nv. We define f
and g as a pair of student and teacher vision encoders where
the student is trained with backpropagation, and the teacher
is distilled through exponential moving average (EMA) from
the student. Each encoder receives a view, xv , and produces
a low-dimensional representation zv , such that zvs = f(xv)
and zvt = g(xv), where the subscripts s and t represent
student and teacher branches.

In addition, we denote by M = {mk}Kk=0 a vector container
designed to simulate a working memory that temporarily
stores vector representations from images previously seen
during training by the model.

3.1. Memory

When humans experience something for the first time, there
is likely an additional excitement or surprise due to encoun-
tering novelty. When a similar experience happens again,
however, the surprise will probably not be the same. This
occurs because of memory and its essential role in learn-
ing. Indeed, the fact that humans can recognize the first
time hearing or seeing something is a testament to the fact
that we are constantly comparing what we perceive with
previous experiences to make sense of the world around us.

At a high level, memory allows for three crucial processes:
(1) acquisition of new information (encoding), (2) informa-
tion retention over time (storage), and (3) retrieval. Through
these processes, we can make sense of our present and take
informed actions based on past observations.

Our learning framework explores such characteristics of
memory. Given a pair of views x1 and x2, while most
SSL methods compare views directly or against learnable
prototypes, we seek to design a task that forces the neural
network to utilize previously experienced concepts as dis-
criminative cues to learn representations that are invariant
to view changes. This task (3) must produce consistent
predictions for different views of an image x based on the
similarity perspectives of representation vectors stored in
memory. In other words, a pair of views x1 and x2 must
have consistent similarity relationships to previous concepts
experienced by the model.

In practice, the memory is a non-parametric distribution that
stores encoded representations z(·) from the current batch of
image views. To update the memory, we implement a FIFO
protocol (First-In, First-Out), i.e., representations enter from
one end of the memory and are discarded from the other.
This storage pattern preserves an ordering bias in which one
end of the memory holds recently updated representations
while the other holds older ones. Since representations con-
stantly evolve during training, this ordering bias could drive
the learning algorithm to give more weight to the recently
remembered representations stored in one end of the mem-
ory. We break the ordering dependency by introducing a
stochastic component when retrieving representations from
memory. We show that such a strategy regularizes the model
and improves representations, cf. Section 5.3.

3.2. Optimizing over Random Memory Blocks

Inspired by Silva & Ramı́rez Rivera’s (2023) work on the
random partition pretext task, we empirically found that
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applying a similar principle to our proposed memory com-
ponent to break it into multiple disjoint subsets further im-
proves performance and training stability, cf. Section 5.3.
Randomizing the memory representations into independent
smaller blocks effectively mitigates the ordering bias that
arises from inserting recent experiences into one end of the
FIFO memory. This approach not only improves the overall
performance but also enhances the training stability of the
system. Consequently, we transition from a single task over
all representations in memory (ordered by insertion time) to
a series of smaller tasks, each operating on a small subset
of independent memory representations.

Let M = {M1,M2, . . . ,MB} form a partition of the set
M, where Mb, for b = 1, 2, . . . , B is a non-empty subset, a
memory block containing randomly chosen representations
sampled from M.

The framework starts by computing the representation vec-
tors z1 = f

(
x1

)
and z2 = g

(
x2

)
, independently, for each

view xv. Then, we retrieve a memory block Mb (a random
subset from M) and compute the similarity scores between
the views and the memory block as

p1s = softmax
(
cos

(
z1,Mb

)
/τs

)
, (1)

p2t = softmax
(
cos

(
z2,Mb

)
/τt

)
, (2)

where cos (·, ·) is the cosine similarity function, τs and τt are
student and teacher temperature hyper-parameters, and p1s
and p2t are the view-memory similarity relationship obtained
from comparing the views’ representations z1 and z2 and
the representations mk within a memory block Mb.

Intuitively, the term cos
(
z(·),Mb

)
compares what is being

perceived at the moment, i.e., the current image views x(·),
with what has been experienced in the past, Mb, creating a
view-memory similarity relationship p(·). Once we contrast
the current views’ and memory blocks’ representations, we
force the view-memory similarity relationship to be consis-
tent using a regular cross-entropy loss, such as

Lb

(
p1s, p

2
t

)
= −p2,bt log

(
p1,bs

)
, (3)

where the subscript b indexes the memory blocks Mb. The
overall loss is the aggregation over the memory block losses,
i.e., L =

∑
b Lb.

Optimizing the loss function (3) forces a consistent assign-
ment of views from the perspective of the representations
currently remembered by the model. Given a memory block
Mb of size Nb, the problem can be seen as a Nb-way classi-
fication task where each representation in a memory block
represents a different semantic perspective. This way, to
achieve consistency between the pair of views, the similarity
relationship between what the network remembers and the
different views of an image must be consistent. Intuitively, if
we consider C as the number of hidden classes in X and that

the memory M is large enough K ≫ C such that we can
assume the memory holds a fair number of representations
from each hidden category, we would strive for two main
properties when optimizing the loss function (3): (1) the
view-memory similarity relationship of each view should
be consistent and (2) the view-memory similarities should
be higher for cases where the current views and the recalled
representations share semantic structure, i.e. remembering
from a previously experienced concept.

4. Main Results
We assess MaSSL’s representations on a broader set of
computer vision benchmarks, focusing on the challenging
scenario of transfer learning with frozen features.

4.1. Transfer Learning

We follow the transfer learning evaluation protocol proposed
by Silva & Ramı́rez Rivera (2023) based on k-NN. We vali-
date MaSSL’s representations on eight datasets across four
different values of k and report results on Table 1. For a
fixed value of k = 20, MaSSL’s achieve better transfer
scores on five out of the eight (5/8) datasets, with k-NN
performance gains of +2.6 and +4.6 on AirCraft and GT-
SRB datasets respectively. On average, over all datasets,
MaSSL outperforms competitors with performance gains
of nearly +2.5 for all values of k. We report additional
experiments on Table A.1 in Appendix A.1.

In addition to the non-parametric k-NN benchmark, we train
logistic regression classifiers on top of the frozen features
of the pre-trained ViT-B encoder. In Table 2, we compare
the performance of SSL methods on six datasets. MaSSL’s
representations achieve higher transferable scores in four
of the six datasets (4/6), highlighting the high transfer-
learning power of MaSSL’s pre-trained representations.

4.2. Linear Evaluation

In Table 3, we report in-domain linear evaluations for ViT-
S/B backbones by training linear models with SGD, cf. Ap-
pendix A.2 for details on the protocol. Additionally, we
report k-NN performance on the full ImageNet-1M. MaSSL
performs on par with iBOT on both metrics, with a slight
performance gain on ViT-B. We report the supervised base-
line from Touvron et al.’s (2021) work for reference.

4.3. Image Retrieval Benchmark

Following previous work (Caron et al., 2021; Zhou et al.,
2022), we evaluate MaSSL’s pre-trained representations on
retrieval tasks based on landmark and copy detection.

Image Retrieval. We consider the widely used revisited
Oxford-5k and Paris-6k image retrieval datasets (Raden-
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Table 1. Transfer learning k-NN evaluation. We report top-1 accuracy (k = 20) for individual datasets and averages over all datasets for
k ∈ {10, 20, 100, 200}. Results for ViT-B/16.

PETS FLOWERS AIRCRAFT CARS COUNTRY FOOD STL GTSRB AVG @k

METHODS EPO. RESULTS FOR k = 20 10 20 100 200

MAE 800 19.4 16.9 9.7 6.0 5.0 11.9 64.6 27.6 20.9 20.1 16.9 15.2
MOCO-V3 300 83.8 70.2 27.4 22.4 14.3 64.5 97.5 56.1 55.3 54.5 52.2 51.3
DINO 800 90.1 84.6 38.5 32.7 15.9 70.7 98.9 64.7 62.0 62.0 60.8 60.2
IBOT 800 89.2 83.4 33.7 28.8 15.7 72.6 99.0 63.0 60.8 60.7 59.5 58.8
OURS 800 91.6 84.6 41.1 33.3 15.7 72.5 98.8 69.3 63.3 63.4 62.4 61.8

Table 2. Transfer learning with logistic regression. We report
top-1 accuracy for logistic regression models trained on top of the
frozen features of SSL ViTs pre-trained on the ImageNet-1M.

METHOD DTD C100 GTSRB CARS AIR PETS

DINO 73.3 82.6 86.8 70.3 66.1 93.5
IBOT 71.8 84.0 85.8 70.5 64.5 93.8
OURS 71.7 83.1 89.1 73.7 67.2 94.2

Table 3. Linear probing and k-NN evaluation on ImageNet-1M.

METHOD ARCH EPO. LINEAR k-NN

MOCO-V3 VIT-S/16 300 73.4 –
DINO VIT-S/16 300 76.2 72.8
IBOT VIT-S/16 300 77.4 74.6
OURS VIT-S/16 300 77.5 74.7

DEIT (SUP) VIT-S/16 800 79.8 –
DINO VIT-S/16 800 77.0 74.5
IBOT VIT-S/16 800 77.9 75.2
OURS VIT-S/16 800 77.8 75.1

DEIT (SUP) VIT-B/16 400 81.8 –
MOCO-V3 VIT-B/16 400 76.7 –
NNCLR VIT-B/16 1000 76.5 –
DINO VIT-B/16 400 78.2 76.1
IBOT VIT-B/16 400 79.5 77.1
OURS VIT-B/16 400 79.6 77.2

ović et al., 2018), containing 3 distinct sets of increasing
difficulty, each with query/database pairs. In Table 4, we
report mAP (mean average precision) on the Medium (M)
and Hard (H) sets, ensuring fair comparisons with previ-
ous work. For reference, we report the performance of a
supervised method (Revaud et al., 2019) tailored for image
retrieval tasks.

Among SSL methods, DINO is a strong baseline and beats
iBOT in most instances. MaSSL’s ViT-S surpasses DINO
in all scenarios while our ViT-B pre-trained encoder outper-
forms DINO in three out of the four (3/4) scenarios, only
losing in the Hard set of the Oxford-5k dataset by -0.2.

Copy Detection. In addition, we consider the INRIA Copy-
days dataset (Douze et al., 2009) for evaluation on the copy
detection task. Following Zhou et al.’s (2022) protocol, we
report mAP on the “strong” subset without additional dis-
tractors in Table 5. For ViT-B, MaSSL increases upon the

Table 4. Image retrieval. We report mAP on the revisited Oxford-
5k and Paris-6k retrieval datasets for different SSL methods using
pre-trained frozen features from different ViT backbones.

ROx RPar

METHOD ARCH EPO. M H M H

SUP RN101+R-MAC 100 49.8 18.5 74.0 52.1

MOCO-V3 VIT-S/16 300 21.7 5.1 38.9 13.1
DINO VIT-S/16 800 37.2 13.9 63.1 34.4
IBOT VIT-S/16 800 36.6 13.0 61.5 34.1
OURS VIT-S/16 800 38.5 15.9 63.4 34.8

MOCO-V3 VIT-B/16 300 30.5 8.6 54.3 23.5
DINO VIT-B/16 400 37.4 13.7 63.5 35.6
IBOT VIT-B/16 400 36.8 14.3 64.1 36.6
OURS VIT-B/16 400 39.3 14.1 65.8 38.1

Table 5. Copy detection. We report mAP on the “strong” subset of
the INRIA Copydays using frozen features from pre-trained ViTs.

METHOD ARCH EPO. MAP

DINO VIT-S/16 800 85.7
IBOT VIT-S/16 800 83.7
OURS VIT-S/16 800 85.5

DINO VIT-B/16 400 86.8
IBOT VIT-B/16 400 84.2
OURS VIT-B/16 400 87.6

baseline performance from DINO and iBOT by +0.8% and
3.4%, respectively.

4.4. Low-Shot and Long-Tailed Evaluation

In Table 6, we assess pre-trained representations on learning
from a few labeled examples, where we consider 1% and
10% of the ImageNet labels. Moreover, we measure the
impact of using different evaluation protocols on low-shot
classification by employing a non-parametric k-NN, a lo-
gistic regression estimator, and a linear model (single layer
MLP) trained with SGD. MaSSL outperforms DINO and
iBOT in most setups. Interestingly, for ViT-S, training a
linear model with SGD tends to underperform compared to
logistic regression or even k-NN. However, when more data
or a more complex encoder is used, k-NN acts as a lower
bound, while logistic regression and MLP alternate as the
most effective evaluators.
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Table 6. Low-shot classification on ImageNet-1M. Evaluations
on three protocols (k-NN, 1-layer MLP, and logistic regression)
and two data regimes (1% and 10% of ImageNet-1M labels).

METHOD ARCH PROTOCOL 1% 10%

DINO VIT-S/16 k-NN 61.3 69.1
IBOT VIT-S/16 k-NN 62.5 70.1
OURS VIT-S/16 k-NN 62.6 70.4
DINO VIT-S/16 LINEAR 60.5 71.0
IBOT VIT-S/16 LINEAR 61.5 72.6
OURS VIT-S/16 LINEAR 61.4 72.6
DINO VIT-S/16 LOGREG 64.5 72.2
IBOT VIT-S/16 LOGREG 65.9 73.4
OURS VIT-S/16 LOGREG 65.9 73.2

DINO VIT-B/16 k-NN 62.5 70.1
IBOT VIT-B/16 k-NN 66.3 72.9
OURS VIT-B/16 k-NN 68.8 74.1
DINO VIT-B/16 LINEAR 66.2 74.2
IBOT VIT-B/16 LINEAR 68.2 75.7
OURS VIT-B/16 LINEAR 70.4 76.4
DINO VIT-B/16 LOGREG 67.1 74.2
IBOT VIT-B/16 LOGREG 69.6 75.9
OURS VIT-B/16 LOGREG 71.3 76.3

Table 7. Low-shot and long-tailed evaluations. We report Top-1
accuracy for ViT-B/16 on low-shot and long-tailed ImageNet.

# IMAGES PER CLASS IMNET-LT

1 2 4 TOP-1

MOCO-V3 37.7± 0.3 47.8± 0.6 54.8± 0.2 56.7
DINO 39.2± 0.4 49.3± 0.8 57.6± 0.4 63.7
IBOT 42.2± 0.7 52.8± 0.3 60.6± 0.3 66.2
OURS 44.8± 0.4 56.3± 0.3 63.8± 0.2 67.9

In Table 7, we consider long-tailed learning and challenging
low-shot scenarios. We train linear models using frozen fea-
tures on the ImageNet-LT dataset (Liu et al., 2019), which
is a highly unbalanced version of the ImageNet-1M. We
report top-1 accuracy on the ImageNet-LT balanced test set.
In addition, we report top-1 accuracy on balanced subsets of
ImageNet-1M containing one, two, and four randomly cho-
sen examples per class. MaSSL shows significant learning
efficiency on extreme low-shot scenarios and robustness
to highly unbalanced data. Cf. Appendix A.3 for more
details.

4.5. Robustness Evaluation

Vision models rely on foreground and background infor-
mation when classifying objects in images. Even when
the correct object is present in an image, changes in the
background may cause the network to classify the object in-
correctly. To understand how background-robustness in SSL
methods, we follow the protocol from Zhou et al. (2022)
and assess the robustness of pre-trained SSL representations
against background changes using the ImageNet-9 (IN-9)
dataset (Xiao et al., 2020). The IN-9 evaluation protocol

Table 8. Robustness evaluation against background changes.
ViT-B results on the IM-9 dataset over 7 variants of fore-
ground/background mixing and masking.

BACKGROUND CHANGES CLEAN

OF MS MR MN NF OBB OBT IN-9

IBOT 91.9 89.7 81.9 79.7 54.7 17.6 20.4 96.8
OURS 91.0 90.2 83.0 80.4 53.4 15.8 23.7 97.6

Table 9. Clustering evaluation. We report (NMI) normalized
mutual information, (AMI) adjusted mutual information, and (ARI)
adjusted rand index.

IMAGENET-1% CIFAR-10

METHOD ARCH NMI AMI ARI NMI AMI ARI

DINO RN-50 69.2 46.2 21.7 39.6 39.5 28.0
CARP RN-50 70.3 48.0 23.9 49.0 48.9 38.7

DINO VIT-B/16 79.1 64.3 38.1 58.7 58.5 27.4
IBOT VIT-B/16 81.3 68.1 42.0 57.7 57.5 26.8
OURS VIT-B/16 81.7 68.7 44.1 58.7 58.4 27.2

masks/superimposes foregrounds on adversarially chosen
backgrounds to define the following seven variants: Only-
FG (OF), Mixed-Same (MS), Mixed-Rand (MR), Mixed-
Next (MN), No-FG (NF), Only-BG-B (OBB), and Only-BG-
T (OBT). In the first four variants, the original foreground
is kept while the background is modified. In the last three
variants, the original foreground is masked.

In Table 8, we report results for ViT-B backbones trained
for 400 epochs and then evaluated using a linear head for
100 epochs. Even though MaSSL only trains on the [CLS]
token of the ViT, it still surpasses iBOT, which performs
MIM (Masked Image Modeling) on the patch tokens, on
four out of the seven (4/7) variants.

4.6. Clustering Evaluation

In addition to the supervised evaluations in Section 4.2, we
assess pre-trained representations using unsupervised met-
rics on the ImageNet-1% and CIFAR-10 datasets in Table 9.
MaSSL outperforms iBOT in all cases and performs com-
parably to DINO.

4.7. Training Time and GPU Memory

One important advantage of MaSSL over other SSL methods
based on ViTs is the trade-off between training resources
(plus time) and performance. DINO and iBOT learn pro-
totypes using gradient descent. DINO trains 65 536 pro-
totypes, which translates into 16 777 216 extra trainable
parameters, given the standard representation vector dimen-
sion of 256. On the other hand, MaSSL avoids learning
prototypes from scratch and implements a stochastic non-
parametric memory component using representations from
previous iterations, which require negligible extra comput-
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Table 10. Training time and memory. We compare performance
(k-NN on ImageNet-1M), training time (hours), and memory re-
quirements (Gigabytes) for SSL methods based on ViT-S/16 back-
bones pre-trained with a global batch size of 1024 images.

100 EPOCHS 300 EPOCHS 800 EPOCHS

k-NN TIME k-NN TIME k-NN TIME MEM

DINO 69.7 24.2H 72.8 72.6H 74.5 180.0H 15.4G
IBOT 71.5 24.3H 74.6 73.3H 75.2 193.4H 19.5G
OURS 72.7 24.2H 74.7 72.4H 75.1 177.3H 15.1G

Figure 2. Visualization of MaSSL’s self-attention maps. Multiple
heads are displayed in different colors.

ing memory since it does not receive gradient updates. As
shown in Table 10, training MaSSL for 800 epochs using
a ViT-S backbone is nearly 9% faster, requires 25.6% less
memory, achieves comparable linear probing on ImageNet-
1M and better transfer performance on many datasets.

iBOT trains two sets of prototypes, each containing 8192
output neurons, and requires 4 194 304 trainable parameters
to learn the prototype layers. iBOT also uses the full output
of the transformer, i.e., the [CLS] plus patch tokens, which
drastically increases its memory footprint and training time.
Differently, MaSSL only trains on the [CLS] token of
the ViT, still delivering good transferable performance in
less time and with less memory. Overall, MaSSL achieves
the best trade-off between performance and training
resources. All methods were trained on two 8-GPU V100
machines with a batch size of 1024.

Figure 3. Sparse correspondence results for MaSSL.

4.8. Visualizing Self-Attention Maps

To analyze the internal representations of MaSSL and to
understand its powerful retrieval properties, we follow the
protocols of Caron et al. (2021); Zhou et al. (2022) and
visualize the attention maps of MaSSL’s pre-trained ViT-S
encoder. The [CLS] token is used as the query vector, and
the visualizations are from different heads of the last layer
displayed in various colors.

In Figure 2, we see the high attentive capabilities of MaSSL.
For instance, in the first column, we see individual heads
paying attention to different portions of the image, such as
the bird’s beak, different parts of its body, and the wood. In
the second column, we can visually isolate the monkey’s
top head, body, and face. In the third column, multiple
heads attend to different parts of the food. We present a
detailed visual overview of MaSSL’s self-attention layers in
Appendix C.1.

4.9. Sparse Correspondence

In Figure 3, we evaluate MaSSL’s performance on the sparse
correspondence task proposed by Zhou et al. (2022). The
task is to match patch representations from two images.
In the first row of Figure 3, we match patches from two
views of the same image, while in the second row, we match
patches from two distinct images of the same class. Inter-
estingly, even though MaSSL does not train at patch-level
representations, as iBOT, it still performs surprisingly well
on dense prediction tasks such as sparse correspondence.
We provide additional visualizations in Appendix C.2.

5. Ablations
In this section, we investigate the main components of
MaSSL. Unless otherwise specified, ablations experiments
are pre-trained for 100 epochs using the ViT-S architecture
varying hyperparameters according to the experiments.

5.1. The Effect of the Memory Size

One natural aspect of the proposed memory component in
Section 3.1 is how its size affects the learned representation.
Intuitively, a large memory retains information for longer,
allowing the model to compare the current image views to
a broader distribution of remembered concepts. Also, for
fixed block sizes Nb, a large memory M allows for more
blocks, increasing signal processing during training. On
the other hand, a smaller memory reduces the span and
distribution of stored concepts.

In Table 11, we investigate the effect of the memory size
on MaSSL’ performance. We fix the memory block size
as Nb = 4096 and vary the memory size K. We report
top-1 accuracy using k-NN. Experiments suggest that a
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Table 11. A larger memory benefits the learned representations.

K 8192 16384 32768 65536 131072

k-NN 67.8 69.9 70.5 71.9 71.9

Table 12. Larger block sizes Nb benefit the learned representations.

Nb 512 1024 2048 4096 8192 16384 32768

k-NN 67.8 68.5 70.0 71.2 71.8 71.9 70.6

larger memory benefits the learned representations up to a
certain point where performance saturates. Based on these
experiments, we set the memory size K = 65536 unless
otherwise stated.

5.2. The Effect of the Memory Block Size

While the memory M controls the span to which the model
can remember previous concepts, the memory block size
Nb controls the dimensionality of the optimization problem.
If Nb is too small, we might limit the variability of concepts
to which we compare the current image views to represen-
tations from past iterations. If Nb is too large, we might
encounter stability problems due to the weak self-supervised
signal from the augmented views.

In Table 12, we investigate how the block size hyperpa-
rameter affects our framework. We report top-1 accuracy
using k-NN for many configurations of Nb while keeping
the memory size K = 65536. Empirically, MaSSL is robust
to many configurations of Nb and does not collapse even
when using very large block sizes. The experiments suggest
an optimal value of Nb = 16384.

5.3. Sampling Memory Blocks

In Table 13, we compare different strategies to create mem-
ory blocks Mb from the main memory M. We consider
two protocols. Stochastic: A Memory block contains ran-
domly sampled (without replacement) representations from
the memory. Blockwise: A memory block is a contiguous
section of representations from the main memory.

Empirically, the Blockwise approach for memory blocks
collapses regardless of the block size Nb. This failure may
be due to the FIFO update rule of the memory, which adds
two properties to the learning mechanism. First, FIFO up-
dates add an ordering/sequence bias in the location of the
representations in memory, in which representations from
one end of the memory are older than representations on
the other end. Second, the FIFO updates shift (by a con-
stant value) representations at each iteration towards the
end of the memory. These update patterns make it easier
for the network to overfit to its memory and collapse the
representations.

Table 13. Strategies for sampling memory blocks. We report k-NN
top-1 accuracy for varying block sizes Nb.

BLOCK STRATEGY 512 1024 2048 4096

STOCHASTIC 67.8 68.5 70.0 71.2
BLOCKWISE 0.1 0.1 0.1 0.1

6. Discussion
Connection with SSL Clustering Methods. Self-
supervised clustering methods (Caron et al., 2020; 2021;
Silva & Ramı́rez Rivera, 2022; Silva & Ramı́rez Rivera,
2021) usually learn a set of prototypes using gradient de-
scent. The biggest challenge in this setup is avoiding train-
ing collapse by solving the cluster assignment problem.
Alternative approaches (Li et al., 2021) use classic machine
learning algorithms such as k-means to bootstrap centroids
and pose classification problems over the views. Regardless
of the strategy, however, these methods usually require an
explicit regularizer to avoid collapsed solutions. We can
view MaSSL from a clustering perspective where a set of
randomly chosen embeddings are selected at each iteration
to act as anchors or centroids. Intuitively, MaSSL’s learning
process may be seen as a form of randomly bootstrapping
centroids from memory, which acts as a form of approx-
imation of the training data embedding manifold. Once
initialized, these centroids are used to compute similarity
scores across views. This perspective hints that the memory
size K plays an important role and might depend on the
number of hidden classes in the training dataset. Intuitively,
the memory must be large enough to hold a fair number of
examples from each class, increasing the probability of a
good initialization of the prototypes, cf. Table 11.

7. Conclusion
We presented MaSSL, a memory-augmented self-supervised
model for visual feature learning. MaSSL draws on the in-
tuitive properties of memory to use information from past
training iterations to learn invariant representations for the
current image views. MaSSL offers interesting aspects such
as (1) the use of its memory component in the SSL task,
(2) the stochastic memory block sampling to regularize
training, and (3) the lack of additional regularizers to avoid
collapse. Moreover, MaSSL training architecture is simple
and relatively cheaper to train. We provided many experi-
mental results demonstrating our method’s effectiveness in
transfer and retrieval tasks.
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Table A.1. Transfer learning evaluation. We compare the top-1 k-NN accuracy of 9 SSL methods on 8 datasets. We report results for
k ∈ {10, 20, 100, 200}.

OXFORD-IIIT PET OXFORD FLOWERS-102 AIRCRAFT STANFORD CARS

METHOD ARCH 10 20 100 200 10 20 100 200 10 20 100 200 10 20 100 200

MOCO-V3 VIT-S/16 34.5 34.6 33.3 30.9 51.3 50.2 41.6 37.1 16.9 17.5 16.1 15.4 9.5 9.4 9.0 8.2
DINO VIT-S/16 91.8 91.2 90.7 90.2 83.4 82.5 81.6 82.0 39.9 40.1 35.9 33.4 27.8 27.9 27.2 26.5
IBOT VIT-S/16 91.8 91.4 90.8 90.5 83.4 82.0 80.9 81.2 39.7 39.3 36.0 32.8 25.8 25.5 24.7 23.2
OURS VIT-S/16 91.5 91.9 90.4 90.5 84.5 83.6 82.6 83.1 38.6 37.9 35.2 32.5 30.5 31.0 29.9 29.1

MAE VIT-B/16 21.0 19.4 15.7 14.3 18.7 16.9 10.2 9.2 9.5 9.7 8.3 6.6 6.3 6.0 4.8 4.8
MOCO-V3 VIT-B/16 83.4 83.8 81.4 80.4 74.9 70.2 64.3 66.0 28.5 27.4 23.1 21.6 23.4 22.4 21.3 20.0
DINO VIT-B/16 90.4 90.1 88.4 88.3 85.7 84.6 83.9 84.4 38.4 38.5 34.5 32.2 32.3 32.7 31.1 30.0
IBOT VIT-B/16 89.1 89.2 88.0 87.9 84.5 83.4 82.6 83.2 35.1 33.7 31.0 28.6 28.6 28.8 27.8 26.6
OURS VIT-B/16 91.9 91.6 90.9 90.9 85.3 84.6 84.3 84.4 42.0 41.1 36.6 34.6 33.0 33.3 32.9 32.4

COUNTRY-211 FOOD-101 STL-10 GTSRB

METHOD EP 10 20 100 200 10 20 100 200 10 20 100 200 10 20 100 200

MOCO-V3 VIT-S/16 7.6 7.5 7.2 6.6 28.6 31.1 34.3 34.1 66.8 67.1 64.4 62.3 38.2 38.4 37.7 36.8
DINO VIT-S/16 15.0 15.1 15.6 15.7 69.1 69.3 67.8 66.5 98.4 98.4 98.2 98.2 60.6 61.1 61.4 60.6
IBOT VIT-S/16 14.6 14.8 15.3 15.4 70.2 70.5 68.8 67.1 98.8 98.8 98.6 98.5 61.5 62.0 61.6 60.7
OURS VIT-S/16 14.5 15.0 15.5 15.6 69.7 70.3 68.9 67.7 98.3 98.3 98.2 98.0 64.9 65.7 65.2 64.2

MAE VIT-B/16 5.0 5.0 4.3 4.0 11.1 11.9 12.4 11.8 66.8 64.6 54.8 48.2 28.6 27.6 24.6 22.6
MOCO-V3 VIT-B/16 14.2 14.3 13.1 12.5 64.2 64.5 62.2 60.3 97.7 97.5 96.7 95.6 55.8 56.1 55.1 54.2
DINO VIT-B/16 15.5 15.9 16.1 16.3 70.4 70.7 69.2 67.6 98.9 98.9 98.8 98.7 64.4 64.7 64.7 64.1
IBOT VIT-B/16 15.4 15.7 16.1 16.1 72.0 72.6 70.4 68.8 99.0 99.0 98.9 98.8 62.9 63.0 61.4 60.3
OURS VIT-B/16 15.4 15.7 16.2 16.2 72.1 72.5 71.1 69.7 98.7 98.8 98.6 98.5 68.4 69.3 69.0 67.9

A. Evaluation Protocols
A.1. Transfer Learning with k-NN and logistic regression Models

k-NN evaluation. We strictly follow the protocol and evaluation scripts from (Silva & Ramı́rez Rivera, 2023) for transfer
learning using k-NN classifiers. We evaluate the following 8 datasets: Oxford-IIIT Pet, Oxford Flowers-102, AirCraft,
Standard Cars, Country, Food-101, STL-10, and GTSRB. For all experiments, we run k-NN with configurations of
k ∈ {10, 20, 100, 200}, and report the full results in Table A.1 where we compare the performance of different SSL methods
using the ViT-S and -B backbones for all datasets across 4 values of k.

Logistic regression evaluation. In Table 2, we report the transfer learning performance by training logistic regression
models on top of the frozen features of the pre-trained ViT-B encoder. We use the cyanure library (Mairal, 2019) logistic
regression implementation and the same set of hyper-parameters for all models. Below, we show the pseudo-code used to
create the logistic regression classifier object using cyanure.

classifier = Classifier(loss="logistic", penalty="l2",
solver="catalyst-miso", warm_start=False,
max_iter=args.epochs,
duality_gap_interval=10,
fit_intercept=False,
tol=1e-3,
random_state=0,
lambda_1=0.000002,
lambda_2=0.000002)

classifier.fit(X, y)

A.2. Linear Probing and k-NN Evaluations on ImageNet

Linear probing on ImageNet-1M. We closely follow the protocol and code scripts from (Zhou et al., 2022) to train linear
classifiers on the ImageNet-1M dataset on top of frozen features from pre-trained SSL methods. The evaluation script trains
linear models with SGD, sweeps over different learning rates, and outputs the best model.
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A.3. Low-Shot and Long-Tailed Evaluations

Low-shot on ImageNet.

Due to reproducibility issues, we adapted the linear probing evaluation script and reran the low-shot classification experiments
for DINO, iBOT, and MoCo-v3 using available subsets for 1% and 10% ImageNet labeled images from Chen et al. (2020),
cf. Table 6. Likewise, the evaluation script trains linear classifiers with SGD and sweeps over multiple learning rates. For
low-shot evaluations using logistic regression on top of the frozen features, we use the cyanure library (Mairal, 2019).

We train linear models with SGD on balanced subsets of the ImageNet dataset, where we allow a fixed number of examples
per class. In Table 7, we report top-1 accuracy for three versions of the ImageNet data where only one, two, and four images
are randomly sampled per class. We repeat the experiments 5 times and report top-1 accuracy and standard deviations.

Long-tailed learning on ImageNet. To validate MaSSL representations on highly unbalanced data, we train linear models
(single layer MLPs) on the ImageNet-LT dataset (Liu et al., 2019), which was designed as a long-tailed version of the
ImageNet-2012. Its sampling strategy follows a Pareto distribution with a power value λ = 6. The ImageNet-LT contains
115.8K images with a maximum of 1280 and a minimum of five images per class. In Table 7, we report performance (top-1
accuracy) on the balanced ImageNet-LT test set.

B. Implementation Details
We train a joint-embedding teacher-student architecture using ViTs as backbones. We create multiple views of an image
using different augmentation protocols. At each training iteration, we create 12 views from an image, 2 global views, each
of size 224× 224, and 10 local views, each of size 96× 96. We follow the same augmentation protocol previously utilized
by (Grill et al., 2020), namely a combination of color jittering, Gaussian blur, solarization, and random crop.

The student f and teacher g branches have different ViT encoders and projection heads. The projection head follows the
same architecture proposed by (Caron et al., 2020), i.e., a multilayer perceptron (MLP) with 3 layers, hidden size is 2048-d,
and Gaussian error linear units (GELU) activations. Only the student branch receives gradient updates. The teacher branch
is updated following an exponential moving average from the student’s network weights.

We only consider the [CLS] token from the Transformer encoder. For reference, the ViT-B encodes image views to
representation vectors of 768-d, which are then projected to a lower 256-d and normalized to have a unit hypersphere.

The memory M is a non-differentiable container that holds representations at each training iteration and is updated following
a FIFO (First-In, First-Out) strategy. The memory size is set to K = 65536 following the ablations experiments in
Section 5.1. Before optimization, the view-memory similarity distribution is split into disjoint subsets called memory blocks,
each of size Nb = 16384, Cf. Section 3.2.

MaSSL is trained with the AdamW optimizer (Loshchilov & Hutter, 2018), learning rate 1 × 10−5, and a global batch size of
1024. The learning rate follows a cosine decay without warmup towards 1 × 10−6. Following (Caron et al., 2021), the weight
decay follows a cosine schedule from 0.04 to 0.4. The student temperature is set to τs = 0.1, and the teacher temperature τt
is warmed up from 0.04 to 0.07 in the first 30 epochs.

B.1. PyTorch Style Pseudo-code

# D: Images' representation dimensionality
# K: Memory size
# NB: Memory block size
# B: Number of memory blocks
# N: Batch size
# z_i: Representation vector from the student encoder
# w_i: Representation vector from the teacher encoder

memory = torch.randn(D, K)
memory = F.normalize(memory, dim=0)

for x1, x2 in loader:
# student and teacher branches
z1, w1 = f(x1), g(x1) # [N, D]
z2, w2 = f(x2), g(x2) # [N, D]
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p1, p2 = matmul(z1, memory), matmul(z2, memory) # [N, K]
q1, q2 = matmul(w1, memory), matmul(w2, memory) # [N, K]

# sample cluster indices with no replacement
rand_proto_ids = torch.randperm(K)
split_embed_ids = stack(split(rand_proto_ids, NB))

ps, qs = [], []
for p, q in zip([p1, p2], [q1, q2]):

p_mb = fetch_mem_block(p, split_embed_ids)
q_mb = fetch_mem_block(q, split_embed_ids)

ps.append(p_mb)
qs.append(q_mb)

ps, qs = torch.cat(ps, dim=0), torch.cat(qs, dim=0)
loss = loss_fn(ps, qs)

# update memory
enqueue(memory, w1)
dequeue(memory)

# gradient descent steps

def loss_fn(ps, qs):
for i in range(len(ps)):

for j in range(len(qs)):
if i == j:

continue
consistency += cross_entropy(ps[i], qs[j])
terms += 1

consistency /= terms
return consistency

def cross_entropy(p, q):
p = torch.log_softmax(p, dim=-1)
q = torch.softmax(q, dim=-1)

loss = torch.sum(-q * p, dim=-1)
return loss

def fetch_mem_block(logits, proto_ids):
logits_gr = logits[:, proto_ids.flatten()]
logits_gr = logits_gr.split(NB, dim=1)
logits_gr = torch.cat(logits_gr, dim=0)
return logits_gr # [N * B, NB]

C. Additional Results
C.1. Visualizing Self-Attention Maps

We provide additional self-attention visualizations in Figure C.1. We strictly follow the generating scripts from Zhou et al.
(2022), and display attention maps from pre-trained ViT-S backbones using images sampled from the validation set of the
ImageNet-1M dataset, hence not used for training. In Figure C.1, for each image, we show attention maps from MaSSL,
iBOT, and DINO in this order from top to bottom. The protocol uses the [CLS] token as a query to extract attention maps
over multiple heads of the last layer. MaSSL learns comparable attentive maps to iBOT and DINO, where we can see the
attention maps segmenting the object in the image and different heads paying attention to different features in the image.
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C.2. Sparse Correspondence

We follow the sparse correspondence evaluation protocol proposed by (Zhou et al., 2022), where the task is to match patch
embeddings from the last layer of the ViT. We qualitatively compare MaSSL against iBOT and DINO using ViT-S/16
backbones pre-trained for 800. We consider two cases: (1) the pair of matching images contain views extracted from the
same image (Figure C.2) and (2) the pair contains two distinct images from the same class (Figure C.3). The protocol
matches local embeddings from two images, and at most 14×14 matched pairs can be extracted with a ViT-S. The evaluation
script displays the 12 correspondences with the highest self-attention scores. In Figure C.3, we show examples of feature
correspondences for image pairs drawn from a wide variety of classes containing buildings, animals, humans, vehicles, and
other objects. MaSSL can extract mostly correct correspondences despite augmentations on scale and color.
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Figure C.1. Visualizing self-attention maps. From top to bottom, in each triplet of rows, we report qualitative evaluations for MaSSL,
iBOT, and DINO. The columns show multiple attention heads of the last layer.
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Figure C.2. Visualization for sparse correspondence. We assess the ability to match local embeddings using pairs of views from the
same image. From top to bottom, in each triplet of rows, we report qualitative evaluations for MaSSL, iBOT, and DINO.
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Figure C.3. Visualization for sparse correspondence. We assess the ability to match local embeddings using a pair of images from the
same class. From top to bottom, in each triplet of rows, we report qualitative evaluations for MaSSL, iBOT, and DINO.
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