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Abstract Modified Rodrigues Parameters (MRPs) are

triplets in R3, bijectively and rationally mapped to qua-

ternions through stereographic projection. We present

here a compelling case for MRPs as a minimal degree-

of-freedom parameterization of orientation through novel

solutions to prominent problems in the fields of 3D vi-

sion and computer graphics. In our primary contribu-

tion, we show that the derivatives of a unit quaternion

in terms of its MRPs are simple polynomial expressions

of its scalar and vector part. Furthermore, we show that

updates to unit quaternions from perturbations in pa-

rameter space can be computed without explicitly in-

voking the parameters in the computations. Based on

the former, we introduce a novel approach for designing

orientation splines by configuring their back-projections

in 3D space. Finally, in the general topic of non-linear
optimization for geometric vision, we run performance

analyses and provide comparisons on the convergence

behavior of MRP parameterizations on the tasks of ab-

solute orientation, exterior orientation and large-scale

bundle adjustment of public datasets.
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1 Introduction

Orientation or attitude is a prominent facet of problems

pertaining to disciplines such as computer graphics,

computer vision, photogrammetry, robotics and aug-

mented reality. A typical example of such a problem in

computer animation is the interpolation of orientation

during a process known as key-framing, the main objec-

tive of which is to achieve aesthetically pleasing results

in the representation of the motion of a rigid object

not only in terms of translation, but also in terms of

the changes in its orientation [66].

In an inverse fashion, 3D computer vision deals with

3D reconstruction, also often referred to as structure

from motion estimation (SfM). This consists in using

sets of images depicting an unknown scene and cap-

tured from unknown locations, in order to automati-

cally extract a 3D geometric representation of the im-

aged scene plus the camera intrinsic parameters and

their poses, i.e. positions and orientations [26,45]. Sev-

eral solutions to the SfM problem involve the estimation

of the sought parameters by iteratively minimizing the

total geometric error pertaining to overdetermined sets

of image measurements. Considering that a 3D rota-

tion matrix has nine elements but only three degrees of

freedom (DoF), suitable (and preferably minimal) pa-

rameterizations of rotation are thus necessary in order

to intrinsically incorporate orthonormality constraints

on rotations during the optimization.

The modified Rodrigues parameters (MRPs) consti-

tute a minimal rotation parameterization with attrac-

tive properties. Despite being well-established in the
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field of aerospace engineering, MRPs are, to the best

of our knowledge, unheard of in the computer graph-

ics, vision and robotics communities. MRPs are essen-

tially the stereographic coordinates of quaternions and,

as such, they are mapped rationally and bijectively to

the quaternion sphere. This paper studies the represen-

tation of orientation via MRPs. An important finding

is that the Jacobian of a quaternion is a polynomial

function of its scalar and vector parts, thereby yielding

simple expressions in rotation derivatives. Furthermore,

it is shown that quaternions can be updated from a

given perturbation in parameter space without explic-

itly using the MRPs. These two findings are very impor-

tant for iterative optimization, because they allow both

Jacobian computation and orientation updates to be

carried out using exclusively quaternion components in

simple additions and multiplications. As a consequence,

iterative optimization completes with fewer calculations

in less time. The paper also demonstrates the applica-

bility of MRPs in problems related to orientation inter-

polation and pose estimation and provides experimen-

tal evidence that their use leads to new solutions or the

simplification of existing ones and, in most cases, the

improvement of performance.

The rest of the paper is structured as follows. A brief

overview of orientation representations with respect to

various applications is given in Section 2, followed by

descriptions of common problems involving parameter-

ized orientation and respective solutions in Section 3.

A derivation of the MRPs based on stereographic pro-

jection is provided in Section 4, whereas Section 5 dis-

cusses special properties of MRPs as vectors parallel

to the rotation axis; such properties include the rela-

tionship with axis-angle and Gibbs vectors as well as

the Cayley transform from MRPs to rotation matri-

ces. Section 6 focuses on the differentiation properties

of the MRP parameterization. In Section 7, the prob-

lem of smooth interpolation on the quaternion sphere

is examined and a general method for spline based fit-

ting is presented. Experimental results comparing the

performance of MRPs against different parameteriza-

tions of rotations are given in Section 8 and Section 9

summarizes the contributions of the paper.

2 Rotation Representations

The literature provides many representations of rota-

tion using 3 × 3 matrices and vectors of three or four

components. Representing spatial rotations is challeng-

ing due to their non commutativity and the fact that

their topology does not permit a smooth embedding

in Euclidean 3D space. Besides, different practical uses

of rotations have different requirements. This section

briefly presents the representations most commonly em-

ployed in the fields of graphics, robotics and vision, and

discusses their strengths and weaknesses.

2.1 Rotation matrices

Rotation matrices are 3× 3 orthonormal matrices that

arguably constitute the most intuitive representation of

orientation. The reason for this is that ordinary linear

algebra can be employed to express common operations

involving rotations. For example, a point can be ro-

tated using standard matrix-vector multiplication, two

rotations can be composed via matrix multiplication,

whereas a rotation can be inversed via matrix trans-

position. A rotation matrix consists of nine elements

but has only three DoFs due to the six independent

constraints imposed by orthonormality.

Being quadratic, these constraints are cumbersome

to impose, typically in the context of a Lagrangian

function. This, however, does not render the represen-

tation entirely unattractive. For instance, Carlone et

al. [7], Olsson and Eriksson [43] as well as Briales and

Jimenez [6] make explicit use of matrix orthonormality

constraints to formulate the Lagrangian of the camera

pose registration problem. The advantage of this ap-

proach is that it provides measures for the optimality

of solutions of relaxations by monitoring the duality

gap in the original problem.

In overall, rotation matrices are typically used to

represent rotations when transformations of objects such

as points and lines are involved but not very often used

in other operations such as interpolation and estima-

tion. For future reference, the set of all rotation matri-

ces is the 3D rotation group, denoted SO(3).

2.2 Euler angles

Euler angles define a rotation in terms of three consec-

utive elemental rotations around the orthogonal axes of

a Cartesian coordinate system. There exist twelve pos-

sible sets of Euler angles, depending on the chosen, non

commutative order of rotation axes. Even for a particu-

lar axes sequence, Euler angles are not unique since sup-

plementary and/or negative angles can yield the same

overall rotation [58]. Although an easily conceptualized

and minimal DoF encoding, there exist several argu-

ments as to why Euler angles are a parameterization

scheme unsuitable for most applications [51,16,28].

Notwithstanding their ambiguity, the primary draw-

back of Euler angles is that they suffer from singu-

larities near which infinitesimal changes in orientation

can cause large jumps in the values of their elemental
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constituent rotations [58,51]. When represented with

Euler angles, every orientation is at most 90 degrees

away from a singularity. Such a singularity, known as

gimbal lock from its physical manifestation in gyro-

scopes, occurs when two of the three rotation axes co-

incide and results in the loss of one degree of free-

dom, i.e. one rotation having no effect [44]. Since gim-

bal lock is a discontinuity in the Euler angle represen-

tation, it might have undesirable side-effects such as

ill-conditioning or instabilities in applications involving

rotation operations like iterative optimization, filtering,

averaging or interpolation. Thus, the use of Euler angles

in describing large and especially arbitrary rotations is

limited. Furthermore, the kinematic differential equa-

tions of Euler angles are fairly nonlinear, involving com-

putationally expensive trigonometric functions [51]. On

the other hand, being more understandable to humans,

Euler angles are commonly used in user interfaces for

3D rotations in graphics and CAD software. Another

favourable application concerns the use of Euler angles

with a linear Kalman filter for position and orientation

tracking, as they maintain a linear process model.

2.3 Axis-angle

Every rotation can be represented as a revolution by

an angle θ around an axis parallel to a unit 3-vector

u. The vector ω = θu is the angle-axis representation

of a rotation. This representation is not unique, since

an equivalent representation for the same rotation is

−(2π − θ)u. The matrix representation in SO(3) of an

axis-angle rotation ω is given by the infinite series

exp
(
[ω]×

)
= I +

∞∑
n=1

1

n!
[ω]

n
× , (1)

where [ω]× is the cross-product skew symmetric matrix

associated with ω
def
=
[
ω1 ω2 ω3

]T
:

[ω]× =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


Equation 1 is referred to as the exponential map and

can be evaluated with Rodrigues’ formula for θ = ‖ω‖ [48]:

R(ω) = exp
(
[ω]×

)
= I +

sin(θ)

θ
[ω]× +

1− cos(θ)

θ2
[ω]

2
×

(2)

The axis-angle representation is a many-to-one map-

ping and has singularities at θ = 2nπ, n ≥ 1. Fur-

thermore, although the formula converges to the iden-

tity matrix for very small values of θ, in practice it

presents numerical issues which call for approximating

sin(θ) and cos(θ) with their Taylor series expansions

near the origin and using them to simplify the two frac-

tions in eq. 2. On the other hand, it is surjective, i.e.

every rotation has a representation as the exponential

of a skew symmetric matrix. Since it is minimal and

does not require any additional constraints, the axis-

angle representation is very often employed in vision

and robotics problems. The terms axis-angle and expo-

nential map are used interchangeably.

Although the exponential map is periodic, a rotation

matrix logarithm1 from rotation matrices to axis-angle

vectors can be defined for θ ∈ (−π, π):

logR =
θ

2 sin θ

(
R−RT

)
(3)

θ = arccos

(
Tr (R)− 1

2

)
, (4)

where Tr() denotes a square matrix’s trace, i.e., the sum

of its diagonal elements. Evidently, the rotation matrix

logarithm converges to the zero vector at the identity,

but in practice it is necessary to resort to approxima-

tions in order to avoid the effects of very small numbers

in the denominator.

In the specific case where eq. 4 yields θ = π, the axis-

angle vector cannot be recovered with eq. 3. Instead, we

initially obtain the absolute values of the components

of ω as follows:

|ωi| =
√
rii + 1

2
, (5)

where i ∈ {1, 2, 3} and rij is the element of R in the ith

row and jth column. Since ω is sign-ambiguous, we may

choose the component which has the largest absolute

value to be positive. The remaining two components

can be recovered from the off-diagonal elements of R as

follows:

ωj =
rkj
ωk

, (6)

where k = arg maxi{|ωi|} and j ∈ {1, 2, 3} − {k}.

2.4 Unit quaternions

One of the most popular ways to unambiguously rep-

resent orientation in 3D is with the Euler - Rodrigues

parameters, as a location on the unit sphere in 4D. The

modern formalism for Euler - Rodrigues parameters

are unit quaternions, which form a multiplicative group

1 The formula in eq. 3 is readily obtained by taking the
difference R − RT using Rodrigues’ formula. Similarly, the
angle in eq. 4 is obtained by taking the trace of R+RT .
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that fully describes 3D rotations. Unit quaternions con-

stitute a redundant parameterization which does not

suffer from gimbal lock. However, their numerical esti-

mation in practice is complicated by the need to incor-

porate a unit norm constraint; more details on this are

provided in Section 3.2.

For consistency of notation throughout the rest of

the paper, the field of quaternions will henceforth be

denoted with H, and an arbitrary quaternion q ∈ H
will be written in the form

q = ρ+ υTϕ, (7)

where ρ ∈ R is the scalar part, υ ∈ R3 is the vector part

and ϕ =
[
i j k

]T
is the vector of the 3 imaginary units

(also referred to as fundamental quaternion units). The

reader is referred to [44,64,16,61,29] for more detailed

introductions on quaternions and their properties.

A quaternion q ∈ H such that ‖q‖ = 1, is called a

unit quaternion. Unit quaternions lie on the unit sphere

in 4D (also known as the quaternion sphere in kinemat-

ics or 3-sphere S3 in topology) and form a group un-

der multiplication which precisely describes the group

of rotations. In particular, provided a quaternion q =

ρ+ υTϕ such that ρ2 + υTυ = 1, it can be shown that

it corresponds to the following rotation matrix [41]:

R =
(
ρ2 − υTυ

)
I3 + 2υυT + 2ρ[υ]× (8)

It is worth noting that the formula in eq. 8 implies

that the elements of the rotation matrix are polyno-

mial expressions of the unit quaternion components. It
is also evident from eq. 8 that the same rotation ma-

trix corresponds to quaternions q and −q. Thus, when

treated as elements of the special 3×3 orthogonal group,

antipodal unit quaternions represent the same rotation.

In direct analogy to the exponential map from the

space of skew-symmetric matrices to the group of ro-

tation matrices, there exists an exponential map from

the space of axis-angle vectors to unit quaternions:

exp

(
1

2
ωTϕ

)
= cos

θ

2
+ sin

θ

2

(ω
θ

)T
ϕ, (9)

where ω ∈ R3 is the axis-angle vector or the rota-

tion associated with q and θ = ‖ω‖. Note that the

right-hand side of eq. 9 can be obtained with the Tay-

lor expansion of exp
(
1
2ω

Tϕ
)
, provided the observation(

ωTϕ
)2

= −θ2.

As in the case of rotation matrices, unit quaternions

can be mapped to the corresponding axis-angle vectors

via a logarithmic function:2

log q =
θ

2 sin θ
2

(q − q) (10)

θ = 2 arccos

(
q + q

2

)
, (11)

where q denotes the conjugate of q, i.e. q = ρ− υTϕ.

3 Common Problems and Standard Solutions

This section briefly describes prevalent problems involv-

ing parameterized orientation along with the most com-

mon solutions employed and their typical shortcomings.

Although applications may vary, these problems essen-

tially fall under two major categories, namely interpo-

lation of orientation and estimation of rotation param-

eters.

3.1 Interpolation of Orientation

The problem of interpolating rotational motion from a

sequence of key-orientations often arises in computer

animation, computer aided design and robot kinemat-

ics applications [30,11,59,49,53,27]. Since quaternions

conveniently possess the properties of a metric space

(i.e., R4), it is very common to perform this task on the

unit sphere in 4D where properties such as smoothness,

length and curvature can be measured and manipulated

with standard calculus.

Suppose that a sequence of key-orientations is given

in the form of unit quaternions q0, q1, ..., qn, ... and the
goal is to interpolate the sequence with a smooth spher-

ical curve. Possibly the most popular tool for elemen-

tary interpolation on a great arc between two successive

quaternions is Shoemake’s classic formula for spherical

linear interpolation (abbreviated as slerp) [56]:

slerp(qn qn+1;u) =
sin (1− u)Φ

sinΦ
qn+

sinuΦ

sinΦ
qn+1, (12)

where u ∈ [0, 1] is the interpolation parameter, Φ =

arccos (qn · qn+1) is the angle between qn, qn+1 and ·
denotes the dot product between quaternions as vectors

in R4.

Interpolation of more than two key orientations is

a far more challenging task, primarily because the con-

stituent segments of the curve have to be pieced smoothly

at the data points. A popular solution is Shoemake’s

spherical quadrangle interpolation (squad) [57]. In a

2 Formulas are derived from eq. 9 by considering q− q and
q + q respectively.
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nutshell, squad is the spherical analogue of parabolic

blending between quaternions qn and qn+1:

squad (qn, qn+1;u) =

slerp
(
slerp (qn, qn+1;u) , slerp (αn, αn+1;u (1− u))

)
,

(13)

where u ∈ [0, 1] is the interpolation parameter and αn,

αn+1 are auxiliary points chosen specifically to impose

smoothness at the key-points that can be computed

with the following formula:

αi = qi exp

(
− log (qiqi−1) + log (qiqi+1)

4

)
(14)

Shortly after Shoemake’s contribution, Duff followed

with [20], introducing a B-spline spherical curve inter-

polating the data similarly to planar B-splines. More re-

cently, a construction scheme in R3 for smooth quater-

nion curves was proposed in [32]. The main shortcom-

ing associated with the aforementioned methods is the

lack of a general strategy to enforce arc length and

curvature minimization constraints, owing to the com-

plexity of the corresponding expressions for the spher-

ical polynomial derivatives. In their thorough report

on Shoemake’s work, Dam et al. [13] show that find-

ing a generic, curvature minimizing smooth exponen-

tial curve on the sphere is highly impractical, primarily

due to the complicated derivatives of the curve. Another

ramification of the generally intractable differentiation

is that in most cases, speed adjustment is performed

purely numerically (cf. the chord-length approximation

method [67]).

Following Shoemake’s work, several solutions for ori-

entation interpolation have been introduced, taking mat-

ters from a different perspective. For instance, John-

stone and Wiliams [31] introduced a rational function

mapping 4D Bézier curves onto the quaternion sphere.

Although they were unaware at the time, this mapping

is the generalized form of stereographic projection [17],

which, without any precautions will cause distortions on

the sphere. Other geometric methods were proposed in

[47,3,46]. With the exception of the method by Roberts

et al. [47], these approaches focus on minimizing func-

tionals defined on characteristics of the curve such as

tangential velocity or centrifugal acceleration primarily

by making approximations to the actual expressions.

The common drawback of these approaches is that they

are relatively complex to implement and not so flexible

to configure under different circumstances.

An interesting alternative to the mainstream is the

work of Boumal [5], which optimizes a cost function di-

rectly over rotation matrices. Since it is difficult to fit a

parametric function on matrices with orthonormal con-

straints, Boumal defines a cost function over a sequence

of rotations with penalty terms on chordal distance3

from the key-rotations as well as on first and second

order finite differences in SO(n) to impose smoothness.

To iteratively optimize the cost function on the rota-

tion manifold, analytical expressions for the Riemanian

derivatives of the penalty terms are obtained as orthog-

onal projections of Euclidean matrix derivatives onto

the tangent space of the current rotation estimates [1].

The method can be adapted either for interpolation or

regression and applies to problems involving orthogonal

matrices of arbitrary dimensionality.

3.2 Estimation of Orientation and Rotation Matrix

Differentiation

At the very core of several key problems in computer

graphics, vision and robotics lies the problem of esti-

mating orientation. The typical formulation of orienta-

tion estimation problems involves a cost function which

is a sum of positive (by means of a suitable metric) er-

ror terms, in which the unknown rotation matrices act

on vectors measured in different coordinate frames. The

usual method of minimizing such a cost function is by

setting its derivatives equal to zero and solving the re-

sulting equations. The Jacobian of the rotation matrix

is therefore crucial to the estimation.

It becomes evident from the exponential map ex-

pression in eq. 1 that differentiation of the rotation

matrix R with respect to the axis-angle vector ω is

not trivial and the associated Jacobian contains com-
plicated transcendental expressions. Most importantly,

the derivative of the exponential map presents a “ma-

lignant” singularity at the origin, owed to the presence

of an angle in the denominator. A complete list of an-

alytic expressions for these derivatives can be found in

a report by Diebel [16].

Recently, Gallego and Yezzi [23] have discovered a

reasonably compact expression for the Jacobian of the

rotation matrix:

∂R

∂ωi
=
ωi[ω]× + [ω × (I3 −R) ei]×

θ2
R, (15)

where i ∈ {1, 2, 3} indexes the components of ω and

ei is the ith canonical basis vector of R3. It should be

stressed that despite the denominator θ2 in eq. 15, the

derivatives of the rotation matrix are continuous at the

origin, ω =
[
0 0 0

]T
and are equal to the cross product

skew symmetric matrices associated with the canonical

3 The Frobenius norm of the difference of rotation matrices.
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vectors ei (also known as the infinitesimal generators

of the Lie algebra so(3) and denoted Gi) [54]:

∂R

∂ωi

∣∣∣∣
ωi=0

= [ei]×
def
= Gi (16)

Gallego and Yezzi’s formula in eq. 15 is a significant

improvement, yet it still is not simple enough, let alone

it entails the evaluation of a few trigonometric expres-

sions. Furthermore, the singularity at the origin must

still be accounted for with the aid of Taylor approxima-

tions.

The alternative to computing the actual derivatives

of the rotation matrix with respect to the axis-angle

vector, is either the use of finite differences, or incre-

mental rotations with analytical derivatives at the iden-

tity. Suppose, for example, that we are attempting to

optimize the parameters of a rotation matrix in the

context of an iterative method. The idea is to replace

the rotation matrix R at step k with another rotation

R′ given by the product of the current estimate and a

perturbing rotation matrix exp
(
[u]×

)
which is initially

equal to the identity. Thus, instead of taking the actual

derivative of R with respect to its current axis-angle pa-

rameters as given in eq. 15, the much simpler derivative

of R′ in terms of u is taken at the origin:

∂R′

∂ui
= R

∂ exp
(
[u]×

)
∂ui

∣∣∣∣∣
ui=0

= RGi (17)

The workaround of eq. 17 found early advocates such

as Taylor [60], or Drummond and Cipolla [18] and is

popular in practice [19,33]. On the other hand, by all

accounts, it is not the actual derivative of the rotation

in terms of the axis-angle parameters, but rather the

derivative of an expression that has a corrective effect

on the current estimate. As such, it is a mapping that

has the characteristics of a retraction from the tangent

space of R to SO(3) as defined by Absil et al. [1] and

can therefore be used to provide a valid direction of

descent on the rotation manifold. The latter suggests

that the application scope of this approach is limited

only to problems involving iterative optimization.

A special class of problems which involve the recov-

ery of orientation and have attracted considerable at-

tention recently is that of rotation averaging [25,12,24,

10]. The objective in this case is to recover the absolute

or relative orientation most consistent with many esti-

mates. Typically, these problems are solved iteratively

and require the determination of a direction of descent

either in parameter space or directly on the rotation

manifold. Several solutions to rotation averaging prob-

lems presented by Hartley [25] incorporate the incre-

mental rotation approach of eq. 17 to establish descent

directions.

Another approach for obtaining the derivatives of a

rotation matrix is to parametrize it with a unit quater-

nion. Although practical by virtue of the rotation ma-

trix expression in terms of a quaternion in eq. 8, this

approach unfortunately requires imposing a hard unit-

norm constraint on the quaternion components. To im-

pose this constraint in the context of Euclidean bundle

adjustment, Lourakis and Argyros [37] optimize only

the vector part υ of a quaternion and implicitly obtain

the scalar part as ρ =
√

1− υTυ (cf. eq. 7). Clearly, this

does not allow for negative scalar parts and, therefore,

the rotation must be limited to the range [−π/2, π/2].

To overcome this, the initial orientation of every camera

before the optimization is retained and only the dif-

ference from the initial orientation is optimized. This

local update is is certain to lie within the aforemen-

tioned range and the approach is also referred to as an

incremental update in Section 6.2.2 of [59].

4 Derivation of Modified Rodrigues Parameters

with Stereographic Projection

Stereographic projection is a rational, bijective map-

ping from a sphere to a plane often encountered in

complex analysis, topology, quantum computing, etc.

However, it has been largely overlooked in the computer

graphics and vision communities as a practical means of

parameterizing orientation. In contrast, aerospace engi-

neering literature has several notable references to the

potential of this formalism, also known as the modified

Rodrigues parameters (MRPs), e.g. [68,58,63,50,40].

4.1 Derivation of Projection/Back-Projection Maps

To establish notation for the rest of the paper, a brief

derivation of the stereographic projection formulas is

in order at this point. Consider a unit quaternion q =

ρ+ υTϕ such that ρ ∈ R and υ ∈ R3 with ρ2 + υTυ =

1. We designate the “South Pole” of the sphere to be

the unit quaternion S = −1. Let now r (t) be the ray

parameterized by t ∈ R passing through q and a purely

imaginary quaternion ψTϕ:

r (t) = S + t
(
ψTϕ− S

)
, (18)

where ψ ∈ R3. Thus, the subspace of purely imaginary

quaternions can be regarded as an equatorial hyper-

plane that “slices” the 4D unit sphere along 3 canonical

directions through the origin and the “South Pole” as

the center of projection, through which, the unit quater-

nion q is projected onto ψTϕ in the hyperplane. A vi-

sualization of this projection is provided in Figure 1.
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Fig. 1: A visualization of stereographic projection in 3D.

The unit quaternion S = −1 is the center of projection

and ψTφ is a quaternion in the equatorial plane. The

ray r (t) = S + t
(
ψTϕ− S

)
intersects the unit sphere

at q.

When the ray intersects the sphere, the resulting

quaternions should have a unit norm, i.e., |r (t) |2 = 1.

Substituting the expression of r (t) from eq. 18 into the

unit norm constraint yields a solution for the parameter

t when the ray intersects q:

t =
2

1 + ‖ψ‖2
(19)

The unit quaternion can now be expressed in terms of

ψ by substituting eq. 19 into eq. 18:

q =
1− ‖ψ‖2

1 + ‖ψ‖2
+

2

1 + ‖ψ‖2
ψTϕ (20)

Conversely, it is fairly easy to project a unit quaternion

onto the equatorial hyperplane. It suffices to solve first

for ‖ψ‖2 in terms of the quaternion scalar part, ρ:

‖ψ‖2 =
1− ρ
1 + ρ

(21)

Thus, ψ can be expressed in terms of the components

of q using eqs. 20 and 21:

ψ =
υ

1 + ρ
(22)

It should be stressed here that the components of

ψ can assume infinite values. Thus, more rigorously,

ψ ∈ R3
, where R = R ∪ {−∞,+∞} is the affinely ex-

tended set of real numbers and this notation will be used

throughout the rest of this paper.

4.2 Related Parameterizations: The Gibbs Vector

For completeness, we remark that a representation closely

related to to MRPs is the Gibbs or classical Rodrigues

parameter vector g [58,51,25]. The Gibbs vector is de-

fined by the projection of the quaternion parameters

from the center of the unit sphere onto the hyperplane

tangent to its “South Pole”, given algebraically as:

g =
υ

ρ
(23)

Classical Rodrigues parameters provide a minimal DoF

representation that is singular and discontinuous at the

angle of rotation π. Using the axis-angle parameteriza-

tion ρ = cos
(
θ
2

)
and υ =

sin θ
2

θ ω, it is straightforward

to derive a relationship between g and ω [58]:

g =
tan θ

2

θ
ω (24)

As demonstrated in section 5, the relationship between

the Gibbs vector and the axis-angle vector given in

eq. 24 becomes particularly useful in deriving a Cay-

ley transform from the space of MRP vectors to the

respective rotation matrices.

5 Modified Rodrigues Parameters as Vectors

Parallel to the Rotation Axis

Depending on the choice of projection center, the re-

sulting expressions for the coordinates of the projected

quaternion on the equatorial plane will vary. In order

for these coordinates to be valid modified Rodrigues

parameters, the projection center should lie on the real

axis4 as is the case with the derivation of Section 4.

To state this more clearly, consider a unit quaternion

q = ρ + υTϕ where ϕ =
[
i j k

]T
and its axis-angle

parameterization, such that:

ρ = cos
θ

2

υ =
sin θ

2

θ
ω

with ω ∈ R3 and ‖ω‖ = θ. The vector of modified

Rodrigues parameters associated with q is the triplet of

stereographic coordinates ψ that back-projects to the

corresponding spherical point in the following way:

1− ‖ψ‖2

1 + ‖ψ‖2
= ρ = cos

θ

2
(25)

2ψ

1 + ‖ψ‖2
= υ =

sin θ
2

θ
ω (26)

4 In other words, it should be either 1 or −1.
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Thus, the vector part of the quaternion is always rep-

resented by 2ψ/(1 + ‖ψ‖2), which is collinear with the

parameter vector.

With ψ being parallel to υ, it follows from eq. 26

that it is also parallel to the rotation axis. This im-

plies that MRPs are a member of the so-called family

of vectorial parameterizations [4]. In particular, MRPs

and Gibbs vectors belong to the tangent family, which

enjoys certain important properties, the most promi-

nent of them being the inter-connections in terms of

the Cayley transform explained in Section 5.1. Using

eqs. 25 and 26, the relationship between the axis-angle

vector ω and the MRPs of a rotation is straightforward

for a rotation angle θ ∈ [0, 2π) [40,58]:

ψ =
tan θ

4

θ
ω (27)

Thus, comparing eq. 27 to the corresponding relation-

ship for Gibbs vectors in eq. 24, it can be inferred that

the MRP vector ψ has twice the rotational range of the

classical Rodrigues parameters g. In the special case

where θ = 2π, any MRP vector ψ with at least one

of its coordinates equal to “infinity” will back-project

to -1 on the quaternion sphere. More details on this

representation peculiarity are given in section 5.2.

Furthermore, using eqs. 26 and 25, it is easy to de-

rive a composition rule between MRP vectors based

on quaternion multiplication. Specifically, for the unit

quaternion product q3 = q1q2, we obtain the following

corresponding relationship in MRP space [58]:

ψ3 =
(1− ‖ψ2‖2)ψ1 + (1− ‖ψ1‖2)ψ2 − 2ψ1 × ψ2

1 + ‖ψ1‖2‖ψ2‖2 − 2ψ1 · ψ2

(28)

5.1 MRPs and the Cayley Transform

The Cayley transform is a mapping from the space of

skew-symmetric matrices directly to the group of ro-

tation matrices. In particular, it is straightforward to

show that the Cayley transform maps the skew sym-

metric matrix [g]× of a Gibbs vector to the respective

rotation matrix as follows [62,40]:

R =
(
I3 + [g]×

) (
I3 − [g]×

)−1
(29)

where I3 is the 3 × 3 identity matrix. It is relatively

easy to show that both factors in the product commute

and are invertible5 for any skew-symmetric matrix [g]×.

5 One way of showing this is to observe that matrices I3 +
[ψ]× and I3− [ψ]× have same eigenvectors and non-vanishing
complex conjugate corresponding eigenvalues.

The inverse Cayley transform maps a rotation matrix

to its corresponding Gibbs vector as follows:

[g]× = (R− I3) (R+ I3)
−1

(30)

The transformation from an MRP skew-symmetric

matrix [ψ]× to the corresponding rotation matrix is a

so-called 2nd order Cayley transform, given by the fol-

lowing mapping [62]:

R =
(
I3 + [ψ]×

)2 (
I3 − [ψ]×

)−2
(31)

It is worth outlining here the rationale behind the deriva-

tion of the Cayley transform for MRPs as expounded

by Schaub et al. [52]. The idea is to observe the rela-

tionship between classical Rodrigues parameters (Gibbs

vectors) and MRPs through axis-angle vectors as given

in eqs. 24, 27. Evidently, the rotation matrix obtained

by employing the first-order (standard) Cayley trans-

form formula of eq. 29 on [ψ]× yields a rotation matrix

with half the angle of the actual rotation that corre-

sponds to the MRP triplet. This can be demonstrated

with the aid of exponential notation:

exp

(
1

2
[ω]×

)
=
(
I3 + [ψ]×

) (
I3 − [ψ]×

)−1
, (32)

where R = exp
(
[ω]×

)
. Thus, since matrices I3 − [ω]×

and
(
I3 − [ω]×

)−1
commute, squaring both sides in eq.

32 yields the 2nd order Cayley transform for MRPs

given in eq. 31. Schaub et al. report that, unlike clas-

sical Rodrigues parameters, there exists no similar ex-

pression for the inverse mapping from rotation matrices

to MRPs [52].

5.2 Negated Quaternions and Shadow MRPs

Two antipodal (i.e., opposite) quaternions q and −q
represent the same rotation. Nevertheless, the stereo-

graphic coordinates of these two quaternions will dif-

fer. Markley calls the stereographic coordinates of the

negated quaternion shadow MRPs [40]. Shadow coordi-

nates can be easily worked-out from eq. 20:

η = − ψ

‖ψ‖2
(33)

It should be noted that the last formula is not valid

for ψ = (0, 0, 0), in which case the shadow quaternion

coincides with the center of projection (i.e., the chosen

“South Pole”) and the rotation has a single representa-

tion at the origin of the hyperplane. As the MRP vector

moves far away from the origin of the hyperplane, the

corresponding quaternions converge asymptotically to

q = −1 at the projection center. This is a direct conse-

quence of the fact that the line y = −1 is the asymptote
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Fig. 2: Plot of function (1 − t2)/(1 + t2) for |t| ≤ 20

shown in solid blue. The horizontal asymptote y = −1

is shown with a red dashed line.

at both +∞ and −∞ of function (1− t2)/(1 + t2), i.e.

the quaternion’s scalar part from eq. 25, as shown in

Figure 2. The plot clearly indicates that decay is fast

and for |t| ≥ 15, the function is already very close to

−1; it becomes even closer for larger values. For exam-

ple, the deviation of the function from −1 for t = 102

is in the order of 10−4.

The above observation suggests that it is possible to

approach the projection center with high accuracy us-

ing MRP vectors whose components are well within the

nominal floating point range. Hence, this is a reason-

able alternative to representing the quaternion at the

center of projection without resorting to shadow coordi-
nates which could cause discontinuities in applications

such as interpolation. However, as will be explained in

the following sections, our analysis is focused on the

quaternion sphere while MRPs are essentially used to

provide the theoretical underpinning that allows us to

work with unit quaternions without the need to impose

the norm constraint. Thus, with the exception of inter-

polation, unit quaternions can be directly manipulated

in terms of their MRPs, without having to explicitly

switch parameter domain.

6 Differential Properties of Unit Quaternions

with respect to Modified Rodrigues Parameters

It is clear from eqs. 26, 25 that the derivatives of a

unit quaternion with respect to its MRPs are rational

functions of ψ. This is an advantageous fact not only

from the aspect of computational efficiency but, most

importantly, in terms of the complexity of the resulting

expressions in the Jacobian [61]. In this section, we will

provide a very important novel observation regarding

these derivatives, which will not only simplify the com-

putation of the Jacobian of a rotation matrix (refer to

Appendix A for a complete set of formulas), but will

also provide simple relationships between the deriva-

tives of curves on the hyperplane and the derivatives of

their back-projections on the sphere.

6.1 Quaternion Jacobian

Proposition 1 Let q = ρ + υTϕ where ϕ =
[
i j k

]T
be a unit quaternion. Then, the Jacobian ∇q of q with

respect to its modified Rodrigues parameters is:

∇q = ∇
[
υ

ρ

]
= −

[
υυT − (1 + ρ) I3

(1 + ρ) υT

]
(34)

Proof Let ψ ∈ R3
be the MRPs of the unit quaternion.

It follows from eq. 26 that the derivative of the vector

part υ with respect to ψ will be:

∂υ

∂ψ
=
∂ 2ψ

1+‖ψ‖2

∂ψ
= −

2ψ
∂
(
1 + ‖ψ‖2

)
∂ψ

(1 + ‖ψ‖2)
2 +

2

1 + ‖ψ‖2
∂ψ

∂ψ

= − 2ψ2ψT

(1 + ‖ψ‖2)
2 +

2

1 + ‖ψ‖2
I3

= −
(

2ψ

1 + ‖ψ‖2

)(
2ψT

1 + ‖ψ‖2

)
+

2 + ‖ψ‖2 − ‖ψ‖2

1 + ‖ψ‖2
I3

= −
(

2ψ

1 + ‖ψ‖2

)(
2ψT

1 + ‖ψ‖2

)
+

(
1 +

1− ‖ψ‖2

1 + ‖ψ‖2

)
I3

= −υυT + (1 + ρ) I3

Similarly, using eq. 25, the derivative of the scalar part

in terms of ψ will be:

∂ρ

∂ψ
= −

(
1− ‖ψ‖2

) ∂ (1 + ‖ψ‖2
)

∂ψ

(1 + ‖ψ‖2)
2 +

∂
(
1− ‖ψ‖2

)
∂ψ

1 + ‖ψ‖2

=
∂ 1−‖ψ‖2

1+‖ψ‖2

∂ψ
= −

(
1− ‖ψ‖2

)
2ψT

(1 + ‖ψ‖2)
2 − 2ψT

1 + ‖ψ‖2

= −
(

2

1 + ‖ψ‖2

)(
2ψT

1 + ‖ψ‖2

)
= −

(
1 +

1− ‖ψ‖2

1 + ‖ψ‖2

)(
2ψT

1 + ‖ψ‖2

)
= − (1 + ρ) υT

The Jacobian formula of eq. 34 is very important

because it has low complexity of expressions and in-

volves only the quaternion components in simple addi-

tions and multiplications without the need of additional
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constraints. This means that, by virtue of the rotation

matrix expression in terms of a unit quaternion given in

eq. 8, the components of the rotation matrix Jacobian

tensor will in turn comprise simple polynomial expres-

sions of the quaternion components (see Appendix A).

In other words, the computation of the rotation ma-

trix derivatives entails exclusively multiplications and

additions on previously stored quantities.

6.2 Quaternion Updates from Perturbations in MRPs

Although the Jacobian of a unit quaternion with re-

spect to MRPs can be expressed without the explicit

presence of the parameters in the respective expres-

sions, it will however produce a perturbation in param-

eter space during iterative optimization. Thus, it would

appear that, in order to obtain the new quaternion es-

timate, one is required to convert it to MRPs, then

perform the update in R3 and eventually, convert the

resulting parameters to the new quaternion estimate. In

proposition 2, we show that the current estimate of a

quaternion can be updated without alternating among

parameter spaces.

Proposition 2 Consider a perturbation δ ∈ R3
in the

modified Rodrigues parameters of a unit quaternion q =

ρ + υTϕ. Then, the scalar and vector part of the unit

quaternion q′ = ρ′+υ′
T
ϕ corresponding to the perturbed

MRPs can be obtained as follows:

υ′ =
υ + (1 + ρ) δ

1 + υ · δ + 1
2 (1 + ρ) ‖δ‖2

(35)

ρ′ =
ρ− υ · δ − 1

2 (1 + ρ) ‖δ‖2

1 + υ · δ + 1
2 (1 + ρ) ‖δ‖2

(36)

Proof Let ψ be the MRP triplet associated with q.

Then, taking the stereographic projection formula in

eq. 26 for υ′, we have:

υ′ =
2 (ψ + δ)

1 + ‖ψ + δ‖2
=

2(ψ+δ)
1+‖ψ‖2

1+(ψ+δ)·(ψ+δ)
1+‖ψ‖2

=

2ψ
1+‖ψ‖2 + 2

1+‖ψ‖2 δ

1 +
(

2ψ
1+‖ψ‖2

)
· δ + 1

2

(
2

1+‖ψ‖2

)
‖δ‖2

=

2ψ
1+‖ψ‖2 +

(
1 + 1−‖ψ‖2

1+‖ψ‖2

)
δ

1 +
(

2ψ
1+‖ψ‖2

)
· δ +

(
1 + 1−‖ψ‖2

1+‖ψ‖2

)
‖δ‖2

=
υ + (1 + ρ) δ

1 + υ · δ + (1+ρ)
2 ‖δ‖2

Similarly, taking the stereographic projection formula

in eq. 25 for ρ′, yields:

ρ′ =
1− ‖ψ + δ‖2

1 + ‖ψ + δ‖2
=

1−(ψ+δ)·(ψ+δ)
1+‖ψ‖2

1+(ψ+δ)·(ψ+δ)
1+‖ψ‖2

=

1−‖ψ‖2
1+‖ψ‖2 −

(
2ψ

1+‖ψ‖2

)
· δ − 1

2

(
2

1+‖ψ‖2

)
‖δ‖2

1 +
(

2ψ
1+‖ψ‖2

)
· δ + 1

2

(
2

1+‖ψ‖2

)
‖δ‖2

=

1−‖ψ‖2
1+‖ψ‖2 −

(
2ψ

1+‖ψ‖2

)
· δ − 1

2

(
1 + 1−‖ψ‖2

1+‖ψ‖2

)
‖δ‖2

1 +
(

2ψ
1+‖ψ‖2

)
· δ + 1

2

(
1 + 1−‖ψ‖2

1+‖ψ‖2

)
‖δ‖2

=
ρ− υ · δ − 1

2 (1 + ρ) ‖δ‖2

1 + υ · δ + 1
2 (1 + ρ) ‖δ‖2

Propositions 1 and 2 have a significant impact in the

way rotations parameterized with MRPs are updated

during iterative optimization. In particular, proposition

1 ensures that the elements of the rotation matrix Ja-

cobian are computed with a few multiplications and

additions of previously stored numbers (i.e., the four

quaternion components); furthermore, proposition 2 en-

sures that the updated rotation matrix in each step of

the iterative method can be obtained without having to

compute the MRPs of the previous estimate. In other

words, both the Jacobian computation as well as the

update of the rotation matrix do not explicitly require

the use of MRPs and both can be computed with a few

primitive operations on previously stored numbers.

6.3 Arc Length of Quaternion Curves parameterized

with MRPs

Being a rational map, stereographic projection can be

used to back-project smooth 3D curves on the sphere.

The resulting spherical curves have certain differential

attributes which could be useful in manipulating their

properties in the more familiar space R3.

Lemma 1 For any unit quaternion q, the Gram matrix

of the Jacobian with respect to its MRPs is a scalar

multiple of the 3× 3 identity matrix:

(∇q)T∇q = (1 + ρ)
2
I3 (37)
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Proof Using the result of proposition 1, we have:

(∇q)T ∇q =

[
υυT − (1 + ρ) I3

(1 + ρ) υT

]T [
υυT − (1 + ρ) I3

(1 + ρ) υT

]
=
[
υυT − (1 + ρ) I3 (1 + ρ) υ

] [υυT − (1 + ρ) I3
(1 + ρ) υT

]
=
(
υTυ − 2 (1 + ρ) + (1 + ρ)

2
)
υυT + (1 + ρ)

2
I3

=

ρ2 + υTυ︸ ︷︷ ︸
1

− 1

 υυT + (1 + ρ)
2
I3

= (1 + ρ)
2
I3

A direct consequence of lemma 1, is that the columns

of the quaternion Jacobian must be orthogonal for ev-

ery unit quaternion q 6= −1. More formally:

Corollary 1 For any unit quaternion q 6= −1 , the

columns of the Jacobian of q with respect to its MRPs

constitute an orthogonal basis of the tangent space of

the quaternion sphere at q.

Lemma 2 Let ψ (t) = (x (t) , y (t) , z (t)) : R → R3

be a smooth curve. Then the unit quaternion function

q (t) = ρ (t) + (υ (t))
T
ϕ obtained as the stereographic

back-projection of ψ (t) on the quaternion sphere is also

smooth and the arc length s (t) of q (t) is given by the

following expression:

s (t) = 2

∫ t

0

1

1 + ‖ψ (u) ‖2
∥∥∥dψ
du

∥∥∥ du (38)

Proof It naturally follows from proposition 1 that, by

means of the chain rule, the first derivative will be a

product of smooth functions and consequently, higher

order derivatives will be the sum of such products. Thus,

the spherical back-projection of ψ (t) will be smooth.

Another way of arriving at this conclusion is to sim-

ply consider that stereographic projection is a ratio-

nal mapping and therefore maps smooth functions to

smooth functions.

To prove eq. 38, we make use of lemma 1, starting

from the standard formula for the arc length of q (t):

s (t) =

∫ t

0

√(
dq

du

)T
dq

du
du

=

∫ t

0

√(
∇q dψ

du

)T (
∇q dψ

du

)
du

=

∫ t

0

√√√√√(dψdu
)T

(∇q)T ∇q︸ ︷︷ ︸
=(1+ρ(u))2I3

dψ

du
du

=

∫ t

0

(1 + ρ (u))
∥∥∥dψ
du

∥∥∥ du

It can be easily inferred from eq. 25 that 1 + ρ (u) =
2

1+‖ψ(u)‖2 . Thus,

s (t) =

∫ t

0

2

1 + ‖ψ (u) ‖2
∥∥∥dψ
du

∥∥∥ du
7 Quaternion Interpolation

Quaternion interpolation is ubiquitous in the fields of

computer graphics, robotics and aerospace engineering

[55,22,8,21,44]. Generating smooth orientation paths

between key orientations is a very challenging task, pri-

marily because we wish to attach linear interfaces onto

steering mechanisms which, by definition, manipulate

objects (i.e. rotations) that reside in a spherical mani-

fold. In other words, the desired attributes of the gener-

ated sequences are hard to attain, due to the topological

non-linearities of the group of rotations.

Stereographic projection is a smooth, bijective map-

ping from R3 to the unit sphere in R4. Consequently,

lines in 3D become distorted on the sphere to account

for the incompatibility between the two topological spaces.

In this section, we provide a simple solution to cope

with the distortion caused by perspective projection,

while designing the spherical curve in the hyperplane.

The idea is to interpolate the derivative of the spherical

curve, in addition to interpolating the data.

7.1 Configuring Unit Quaternion Derivatives on the

Hyperplane

Suppose we wish to establish a relationship between the

derivative of a parametric unit quaternion curve q (t) =

ρ (t)+(υ (t))
T
ϕ and the derivative of the corresponding

MRP curve ψ (t). The chain rule for q (t) yields:

q′ (t) = ∇q ψ′ (t) , (39)

where ψ′ (t) =
dψ

dt
and∇q is the Jacobian of the quater-

nion curve at ψ. Clearly, eq. 39 defines a 4 × 3 linear

system of equations in the components of ψ′ (t). We

claim that for q (t) 6= −1 this system has the following

unique solution:

ψ′ (t) =
1

(1 + ρ)
2 (∇q)T q′ (t) (40)

Lemma 3 For the unit quaternion q = ρ + υTϕ, ex-

amine the 4 × 3 linear system ∇q ξ = b, where b ∈ R4

and ∇q is the Jacobian of q with respect to its modified

Rodrigues parameters.
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a) For q 6= −1, consider the vector:

ξ =
1

(1 + ρ)
2 (∇q)T b (41)

i) If b lies in the tangent space of q, then ξ is the

unique solution of the system.

ii) if b is not in the tangent space of q, then ξ is

the least squares minimizer of the system and

consequently, ∇q ξ is the projection of b on the

tangent space of q.

b) For q = −1:

i) If b 6= 0, the system has no solutions.

ii) If b = 0, any ξ ∈ R3 is a solution.

Proof The proof is trivial for q = −1. For q 6= −1, we

multiply by ∇q on the left to get the 3 × 3 equivalent

system:(
(∇q)T ∇q

)
ξ = (∇q)T b

From lemma 1, we know that the Gram matrix of the

gradient will be a non-zero scalar multiple of the iden-

tity:

(1 + ρ)
2
ξ = (∇q)T b

⇔ ξ =
1

(1 + ρ)
2 (∇q)T b

The solution of the 3× 3 overdetermined system in eq.

41 will satisfy all the original equations because b is in

the tangent space of q and we know from corollary 1

that it can be expressed as a linear combination of the

columns of ∇q.

7.2 Spherical Catmull-Rom Splines manufactured in

3D

Eq. 41 provides the means to configure the differen-

tial properties of a 4D spherical curve by manipulating

its projection in R3. To demonstrate how effective this

approach is in terms of eliminating projective distor-

tion, we present a sample scheme for designing spherical

Catmull-Rom splines [9].

Standard Catmull-Rom splines are composed of poly-

nomial segments with end-point derivatives that match

the slope of the linear segments that connect data-

points immediately preceding and trailing the end-points

(see Figure 3). We consider an analogue of Catmull-

Rom splines on the sphere in which we require the

derivative of the spherical curve at a specific data-point

to be collinear to the tangent-space projection of the

linear segment defined by the trailing and preceding

data-points (Figure 4).

Fig. 3: Standard Catmull-Rom interpolation. The tan-

gents at the data-points pn and pn+1 (shown as black

solid lines) are parallel to the linear segments defined

by pn−1, pn+1 and pn, pn+2 (shown with dashed lines).

Fig. 4: Spherical Catmull-Rom interpolation. The tan-

gents of the spherical curve at qn and qn+1 are paral-

lel to the projections of linear segments qn−1 qn+1 and

qn qn+2 onto the tangent spaces of qn and qn+1, respec-

tively.

To interpolate between two key-points qn and qn+1

according to the spherical analogue of Catmull-Rom

splines described in this section, we must solve for the

coefficients of a cubic polynomial ψ (t) = b3t
3 + b2t

2 +

b1t+b0, where b0, b1, b2, b3 ∈ R3 and t ∈ [0, 1]. It follows

that ψ (t) should interpolate the projections of two data

points at ψn and ψn+1 for t = 0 and t = 1, respectively.

Hence, the following conditions should apply:

b0 = ψn (42)

b3 + b2 + b1 + b0 = ψn+1 (43)
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Furthermore, we require that the tangents at the spher-

ical points are parallel to the chords that connect the

trailing and preceding data points, as shown in Figure

4. Thus, two additional constraints are obtained on the

coefficients of the cubic:

b1 =
λ (∇qn)

T
(qn+1 − qn−1)

(1 + ρn)
2 (44)

3b3 + 2b2 + b1 =
λ (∇qn+1)

T
(qn+2 − qn)

(1 + ρn+1)
2 , (45)

where ρi is the scalar part of qi and λ is a user-defined

positive scalar. Using eqs. 42, 43, 44 and 45, the coeffi-

cients of ψ (t) can be computed in the following order:

τ1 =
(∇qn)

T
(qn+1 − qn−1)

(1 + ρn)
2 (46)

τ2 =
(∇qn+1)

T
(qn+2 − qn)

(1 + ρn+1)
2 (47)

b0 = ψn (48)

b1 = λτ1 (49)

b3 = λτ2 + b1 − 2 (ψn+1 − b0) (50)

b2 = ψn+1 − b3 − b1 − b0 (51)

It should be noted that the scheme for designing

spherical Catmull-Rom splines is intended as an ex-

ample of a more general methodology for eliminating

perspective distortion by configuring the planar curve

to produce a back-projection that matches the desired

differential properties on the sphere. The result of eq.

41 is a tool with multiple uses when designing spherical

splines on the plane.

Figure 5 illustrates an 8-point spherical Catmull-

Rom spline along with the corresponding spherical quad-

rangle interpolation (squad) curve. Clearly, both curves

fulfill the primary requirement of smoothness. Still, a

more careful observation reveals that the spherical Catmull-

Rom spline achieves a generally shorter distance be-

tween the key-points in comparison to squad. Obtain-

ing shorter arc lengths in orientation interpolants is im-

portant in robotic and animation applications [14,27,

53,49] because they yield reduced torque in the rota-

tional motion. For similar reasons, minimal curvature

is an equally important attribute [13]. Particularly in

the case of animation, approximately constant speed in

spherical curves is desirable because it can be warped

into any desirable acceleration profile (e.g., trapezoidal

moves) [66]. In summary, it would appear that con-

nected great-arcs can be loosely regarded as the “ideal”

interpolants in terms of the aforementioned attributes

(minimal arc length, minimal curvature and constant

speed) if we could somehow overlook the lack of smooth-

ness at the end-points. In section 8.1, we study the

characteristics of generated Catmull-Rom and squad

Fig. 5: Spherical Catmull-Rom (blue) and squad inter-

polation (red) for 8 key-quaternions (black dots).

curves and use the great-arcs between data-points as

a benchmark to obtain quantifiable measures on their

performance.

8 Experimental results

This section presents experimental results comparing

the performance of MRPs in various applications against

alternative parameterizations of rotation.

8.1 Spherical Catmull-Rom Splines as Orientation

Interpolants

The method proposed in Section 7.2 for the design of

spherical Catmull-Rom (SCR) splines was merely a demon-

stration of the ways that the properties of a spherical

curve can be configured in the hyperplane. However, the

resulting curve, although not optimal in all aspects, ex-

hibits, besides smoothness, significant improvements in

terms of arc length and curvature when compared to

the one produced by squad. Furthermore, it approxi-

mates the great arcs between the key-points better than

squad in the majority of cases.

For demonstration, we performed comparisons on

three sequences of eight key quaternions each, gener-

ated by successive random “jumps” in polar coordi-

nates. In particular, the angles of each jump are uni-

formly sampled from a specified range in degrees. The

range from which the angles are sampled determines

the density of the key-points which in turn affects the

behavior of the interpolants. To observe the qualita-

tive characteristics of the spherical curves in datasets
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of varying sparsity, the angular jumps used in the three

generated sequences were sampled from the intervals

[10◦, 40◦], [10◦, 70◦] and [10◦, 100◦], respectively. Fig-

ures 6, 7, 8 illustrate arc length, speed and distance

from great arc for both spherical Catmull-Rom splines

and squad in the three aforementioned sequences.

The results indicate that SCR splines produce curves

that are often much more proximal to great arcs than

those obtained from squad, with generally shorter arc

lengths, suggesting that the quality of interpolation at-

tains similar, if not higher standards. The latter is an in-

dication that perspective distortion is either not present

or minimal as a direct consequence of configuring spher-

ical derivatives in the hyperplane. On the other hand,

squad presents speed patterns that match slerp closer

than SCR splines. This is not necessarily a bad trait,

primarily because SCR curves consistently produce a

symmetrical bell-shaped speed profile, which can be

perceived as a smooth trapezoidal pattern. It should

be noted that squad is twice differentiable at the key-

points, while SCR curves are only continuous in the

first derivative, a direct consequence of the definition

of Catmull-Rom splines. In summary, SCR curves are

smooth interpolants presenting little distortion on the

sphere and bell-shaped symmetrical speed patterns which

can be easily warped to produce other speed profiles.

On the other hand, velocity is not differentiable at the

key-points, a fact which may bear consequences, de-

pending on the application. It should be noted, how-

ever, that the underlying general interpolation ratio-

nale involving the interpolation of derivatives side-to-

side with data-points is a method successful in produc-

ing spherical interpolants which are devoid of distor-

tion and can be adapted to suit spherical interpolation

based on more general planar curves such as B-splines,

for instance.

8.2 Descent behavior of MRPs

Aiming to assess the descent behavior of MRPs in a

situation involving a single unknown rotation, we chose

to employ absolute orientation [29] as a test problem.

It is widely known that this problem can be dealt with

non-iteratively, e.g. [28,29,15,36]. However, our objec-

tive in this experiment was not to provide yet another

solution, but rather to benchmark how MRPs compare

against other parameterization schemes in the context

of a basic, quadratic minimization problem in only the

rotation parameters. Specifically, the parameterization

schemes compared with MRPs were axis-angle, normal-

ized quaternion and incremental rotation.

Given two 3×N matrices X and Y comprised of N

corresponding points in two different reference frames

with the same origin, absolute orientation requires de-

termining the rotation R(p∗), where

p∗ = arg min
p

∥∥R (p) Y −X
∥∥2, (52)

p ∈ R3 is the orientation parameter vector and ‖.‖ de-

notes the Frobenius norm for matrices.6

In our experimental setup, the dataset comprises

100 correspondences, i.e. matrices X and Y have size

3 × 100. The unrotated points X were sampled from

a 3D Gaussian with a covariance matrix 102I3, thus

producing a “spread” of roughly 10 metric units. The

ground-truth rotation matrix was synthesized by uni-

formly sampling the 3 Euler angles from the interval

[20◦, 80◦]. This rotation was then applied to every row

of X to yield Y .

To study the descent behavior of MRPs against al-

ternative parameterizations across multiple levels of noise,

the optimization was carried out for 100 incremental

standard deviation levels of noise from 0 to 2.5 using

the Levenberg-Marquardt algorithm [34,42]. The noise

is presumed Gaussian and was added to Y , which, by

virtue of the property of linear propagation of covari-

ance, is statistically equivalent to contaminating the rel-

ative position of the correspondences.

For each noise level, the same experiment (i.e., us-

ing the same ground-truth data) was repeated 40 times

from a random starting point to convergence and the

error in each step was recorded, as well as the overall

steps to convergence (or maximum permissible itera-

tions). Since we know that the absolute orientation cost

function has 4 stationary points which are the eigenvec-

tors of a data-dependent matrix, we would expect the

process to occasionally get stuck in one of the 3 subop-

timal points. In practice, we observed that this rarely

happens. However, to ensure that the descent observa-

tions are not biased by the occasional convergence to

local minima, we used median values for the error and

the number of steps to convergence. Figure 9 illustrates

plots of steps-to-convergence versus standard deviation

of Gaussian noise. It should be noted that the itera-

tive process terminates when any of the following con-

ditions are met: a) squared error below 10−6, b) change

in squared error below 10−12 and, c) the process has

reached 100 iterations.

The incremental rotation approach employed here

has been adopted by several notable pieces of work in

6 Solving absolute orientation amounts to estimating a ro-
tation and a translation. Yet, as explained by Horn in [28],
the problem can be re-formulated to an equivalent one involv-
ing only rotation. Historically, this rotation-only formulation
was originally introduced in astronautics as a satellite atti-
tude estimation problem by Wahba [65].
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(a) Arc length. (b) Speed. (c) Distance from great arc.

Fig. 6: Arc length, speed and distance from the great arcs for a sequence of 8 points generated using polar jumps

in the interval [10◦, 40◦] (to be viewed in color).

(a) Arc length. (b) Speed. (c) Distance from great arc.

Fig. 7: Arc length, speed and distance from the great arcs for a sequence of 8 points generated using polar jumps

in the interval [10◦, 70◦].

(a) Arc length. (b) Speed. (c) Distance from great arc.

Fig. 8: Arc length, speed and distance from the great arcs for a sequence of 8 points generated using polar jumps

in the interval [10◦, 100◦].

vision, e.g. [33,18,60,39]. The rationale behind this ap-

proach is to take advantage of the fact that the tangent

space of a rotation matrixR comprises all matricesRS×
where S× is a skew-symmetric matrix. It is therefore

possible to devise a very simple retraction [1] R′, which

maps the tangent space of R onto SO(3) by applying a

perturbing rotation on the right7 of R:

R′(S×) = R exp (S×) (53)

It can be easily shown that R′ is a retraction, since the

exponential map is smooth andR′([0]×) = Rexp
(
[0]×

)
=

7 Could also be applied on the left.
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Fig. 9: Steps to convergence for added Gaussian noise

up to 2.5 in a synthetic point-set with spread over 10

metric units.

R. Most importantly, R′ satisfies the local rigidity re-

quirement, since the directional derivative

dR′ (tU×)

dt

∣∣∣∣
]t=0

= RU×

is the identity mapping in the tangent space ofR for any

skew-symmetric matrix Ux. Consequently, the 3 descent

directions on the manifold are RG1, RG2, RG3 and

they are obtained by differentiating R′ at the origin.

The results of Fig. 9 clearly indicate that MRPs and

incremental rotations consistently reach a converged

state within 10 to 20 iterations, while normalized qua-
ternions and axis-angle parameters require roughly be-

tween 20 to 60 iterations. We conjecture that the in-

cremental approach combined with MRPs would most

likely improve the number of steps to convergence, but

the gain would be marginal. This conjecture is based

on the observation (using the formulas in Appendix A)

that the derivatives of a rotation matrix with respect

to MRPs at the origin are the scaled multiples of in-

finitesimal rotations, 4G1, 4G2, 4G3.

The evolution of error during the entire Gauss-Newton

process is consistent with the convergence rates of Fig.

9. Indicative plots of how the error evolves through-

out the Gauss-Newton process for three different added

Gaussian noise levels (standard deviation 0, 1.5 & 2.5)

are shown in Fig. 10. The error in each step is obtained

as the median estimate of the error-values in the same

step across 20 distinct Gauss-Newton executions. It is

clear that MRPs and incremental rotations present a

similar error curve with a very steep slope, as opposed

to the axis-angle parameters and, to a lesser extent, nor-

malized quaternion; furthermore, this pattern is consis-

tent throughout the various levels of noise. We attribute

this behavior primarily to the numerical stability of the

rotation derivatives associated with the MRPs and the

incremental rotation. In contrast, axis-angle and nor-

malized quaternion Jacobians contain variable quan-

tities in the denominator and very small/large values

in these quantities may produce unstable descent pat-

terns.

The noticeable abrupt “dives” in the error curves in

Figure 10 most likely correspond to periods in which

the Levenberg-Marquardt damping factor grows upon

successive steps in order to shorten the step size in the

search for a better solution. This would account for the

occasional nearly-constant error values for certain peri-

ods. Subsequently (but not in all cases), the error curve

introduces a steep “dive” that corresponds to a step

size that reached-out to an improved solution lying in

a steeper region of the search surface.

8.3 Sparse Bundle Adjustment

Given a set of images depicting a number of 3D points

from several different viewpoints, bundle adjustment

(BA) is the problem of simultaneously refining the 3D

coordinates of these points, as well as the parameters

of the relative motion and possibly the optical char-

acteristics of the camera(s) employed to acquire the

images, according to an optimality criterion involving

the cumulative image reprojection error of all points.

BA amounts to a large, non-linear optimization prob-

lem on the 3D structure and viewing parameters (i.e.,

camera pose and possibly intrinsic calibration and ra-
dial distortion). It is employed as the last step of most

feature-based 3D reconstruction pipelines, since its so-

lution yields a reconstruction which is optimal in the

MLE sense under the assumption that the noise per-

taining to the observed image features is zero-mean

Gaussian [37].

BA constitutes a special type of a non-linear least

squares problem, since the lack of interaction among pa-

rameters for different 3D points and cameras results in

the underlying normal equations having a special “ar-

rowhead” sparse block structure [35]. sba [37] is a soft-

ware package that efficiently solves BA using a sparse

variant of the Levenberg-Marquardt algorithm that ex-

ploits the particular zero pattern of the underlying nor-

mal equations.

With the aid of publicly available, real-world datasets

from [2], we tested different rotation parameterizations

applied to BA. These datasets originate from incremen-

tal 3D reconstruction for large-scale community photo

collections. More specifically, we used the first two data
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(a) Noise level 0. (b) Noise level 1.5. (c) Noise level 2.5.

Fig. 10: Median error versus iteration in the Gauss-Newton method for added Gaussian noise with standard

deviation 0, 1.5 and 2.5.

files from each of the “Ladybug”, “Trafalgar Square”,

“Dubrovnik”, “Venice” and “Final” datasets. The sba [37]

package was used to optimize those datasets using its

default, quaternion-based local rotation parameteriza-

tion described in Section 3.2. We also adapted sba to

employ a global rotation parameterization based on the

MRPs and compared it against the local quaternion pa-

rameterization. The results of the comparison are illus-

trated in Fig. 11, which shows the execution times and

the number of iterations for the two rotation parame-

terizations.

In all applications of sba, the default convergence

parameters were employed; in particular, the maximum

number of iterations was set to 150. With the excep-
tion of the last data file (namely ‘394-100368’), both

parameterizations converged to the same global min-

imum. In the last dataset, the parameterization em-

ploying MRPs required roughly four times more itera-

tions but converged to a better minimum, which corre-

sponded to over 60% lower average reprojection error

compared to that obtained with quaternions. For the

majority of datasets, both parameterizations required

very similar numbers of iterations to converge. How-

ever, MRPs converged with noticeably fewer iterations

for two datasets. The execution times were generally

lower for the parameterization based on MRPs, owing

to the simpler calculations involved in the evaluation

of the image projections and their derivatives. Still, we

note that the execution time for each iteration of sba

is dominated by the time needed for the linear algebra

operations involved in the solution of the normal equa-

tions (in particular, the Cholesky factorization of the

Schur complement, cf. [37]), which does not depend on

the choice of rotation parameterization.

Fig. 11: Execution times for various BA datasets and

two rotation parameterizations (orange for MRPs and

blue for quaternions). Notice the logarithmic scale in

the vertical axis. Following [2], each dataset in the hori-

zontal axis is labeled as C-P, C and P being respectively

the numbers of cameras and 3D points it involves. The

actual execution times are shown in bold near the top

of every bar. The numbers in italics near the bar bot-

toms are the iterations needed for convergence. The in-

creased execution time required by MRPs for the right-

most dataset is due to that they required 4 times more

iterations but converged to a much better minimum.

8.4 Exterior Orientation

Exterior orientation refers to the estimation of the po-

sition and orientation of a camera given its intrinsic

parameters and a set of n≥ 3 correspondences between

known 3D points and their 2D image projections. This

problem, also known as the PnP or camera resection

problem8, has received much attention due to is appli-

8 Strictly speaking, camera resectioning is slightly different
since photogrammetrists define it as determining the projec-
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cability in various domains. Exterior orientation is typi-

cally dealt with by embedding minimal-size PnP solvers

to robust regression frameworks such as RANSAC (see

[38] and references therein). However, as minimal so-

lutions ignore much of the redundancy present in the

data, they suffer from inaccuracies. To remedy this,

an additional step comprised of non-linear optimization

with the Levenberg-Marquardt algorithm is employed

to minimize the reprojection error pertaining to all in-

liers [38].

Starting with the datasets employed for bundle ad-

justment in Section 8.3, we extracted the 3D points pro-

jecting to their first frames. Then, those 3D points along

with their projections in the first frame of each dataset

were used for estimating the corresponding camera poses

using the posest library implementing [38]. We also

modified the non-linear refinement step of posest to

employ a rotation parameterization based on MRPs

and compared it with its native axis-angle parameter-

ization. Since the execution times for pose estimation

are in most cases very small, and in order to accurately

measure them, each pose estimation was run 100 times

and the elapsed time scaled accordingly.

Figure 12 shows the execution times and the number

of iterations for both rotation parameterizations. Sim-

ilarly to the BA experiment described above, all opti-

mizations converged to the same poses for both param-

eterizations. However, the execution times pertaining

to MRPs are shorter, despite that the number of itera-

tions is occasionally slightly higher compared to those

spent for the exponential parameterization. Compared

to the BA experiment, the difference between the exe-

cution time performance of the two parameterizations

is more evident. This is due to the small size of the

non-linear minimization of the single view reprojection

error and its consequent low computational cost, and

clearly demonstrates the performance benefits gained

by the use of MRPs.

9 Conclusion

Modified Rodrigues parameters is a formalism for the

representation of orientation based on stereographic pro-

jection, originally introduced in the field of aerospace

engineering by Wiener [68] in 1962. Stereographic pro-

jection is a well-established mathematical construct with

primarily theoretical applications in complex analysis,

topology and projective geometry. However, the practi-

cal significance of this mapping in applied fields such as

tion matrix corresponding to a set of 3D-2D correspondences,
i.e. the camera intrinsics are unknown.

Fig. 12: Execution times for exterior orientation prob-

lems corresponding to the first frames of the datasets

employed in Section 8.3, using two rotation parameteri-

zations (orange for MRPs and blue for axis-angle). The

actual execution times are shown in bold near the top

of every bar, whereas the number of iterations are in

italics at the bar bottoms.

computer vision, graphics and robotics has been over-

looked.

This paper has advocated the use of MRPs for pa-

rameterizing rotations in problems arising in the fields

of computer graphics and vision. Its primary objec-

tive is to familiarize the community with this formal-

ism from the aspect of practical applications involving

the recovery and/or interpolation of orientation by em-

phasizing its graceful properties not only as a rational

parameterization but also in terms of differentiation.

In particular, it was shown that the Jacobian of a

quaternion is not only a rational function of its MRPs,

but also a polynomial function of its scalar and vec-

tor part. This is favorable from the perspective of non-

linear optimization problems involving the recovery of

orientation, considering that the Jacobians correspond-

ing to parametric unknowns such as normalized qua-

ternions or axis-angle vectors yield occasionally highly

complicated and non-rational expressions. In addition

to the succinct Jacobian, it was shown that the up-

date of a quaternion from a perturbation in its MRPs

does not require the use of the actual parameter vector.

This means that there is no need to move through pa-

rameter spaces in iterative optimization, which is also

an important benefit from a numerical and algorithmic

standpoint. To support our claims, this paper has also

provided experimental evidence regarding the practical

advantages stemming from the use of MRPs in small

as well as large-scale iterative optimization in classic

problems in 3D computer vision.
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Further advantages of MRPs include the flexibility

in constructing smooth quaternion curves with mini-

mal distortion in more intuitive ways. Specifically, we

presented a novel general strategy for designing quater-

nion splines in the hyperplane by interpolating not only

the key-points, but also the derivatives of the spherical

curve while working on its projection in the hyperplane.

This yields smooth rational interpolants with minimal

perspective distortion that are very competitive with

popular algorithms such as spherical quadrangle inter-

polation (squad).

Concluding, we briefly summarize the benefits of

MRPs and stereographic projection as an orientation

parameterizing scheme. It is a multi-purpose tool with

convenient properties that allows for less complicated

solutions in otherwise difficult, non-linear or even in-

tractable problems and offers efficiency up-to and be-

yond the standards of existing solutions as well as sim-

plicity of design and implementation. C++ and Matlab

code implementing most formulas in the paper is avail-

able in the following repository: https://github.com/

terzakig/Quaternion.

A Rotation Matrix Jacobian Tensor with

respect to MRPs

The derivatives of the elements of a rotation matrix R = [rij ]
in terms of MRPs are simple quadratic expressions of the

quaternion components, ρ and υ =
[
υ1 υ2 υ3

]T
and they are

obtained via the chain rule, using eqs. 8 and 34. Since the
Jacobian is a 3 × 3 × 3 tensor, it is more convenient to give
the gradient of each element separately:

∂r11

∂ψ
= 2

 υ1 (−υ2
1 + υ2

2 + υ2
3 + 1 − ρ2)

υ2
(
−υ2

1 + υ2
2 + υ2

3 − (1 + ρ)2
)

υ3
(
−υ2

1 + υ2
2 + υ2

3 − (1 + ρ)2
)
T

∂r12

∂ψ
= 2

 υ2 (−2υ2
1 + ρ+ 1) + υ1υ3 (2ρ+ 1)

υ1 (−2υ2
2 + ρ+ 1) + υ2υ3 (2ρ+ 1)

−ρ (−2υ2
3 + ρ+ 1) + υ3 (υ3 − 2υ1υ2)

T
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∂ψ
= 2
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υ1 (−2υ2
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ρ (−2υ2
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