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Abstract

While Reinforcement Learning (RL) has demonstrated promising results, its practi-
cal application remains limited due to brittleness in complex environments charac-
terized by attributes such as high-dimensional observations, sparse rewards, partial
observability, and changing dynamics. To overcome these challenges, we pro-
pose enhancing representation learning in RL by incorporating structural inductive
biases through Graph Neural Networks (GNNs). Our approach leverages a struc-
tured GNN latent model to capture relational structures, thereby improving belief
representation end-to-end. We validate our model’s benefits through empirical
evaluation in selected challenging environments within the Minigrid suite, which
offers relational complexity, against a baseline that uses a Multi-Layer Perceptron
(MLP) as the latent model. Additionally, we explore the robustness of these repre-
sentations in continually changing environments by increasing the size and adding
decision points in the form of distractors. Through this analysis, we offer initial
insights into the advantages of combining relational latent representations using
GNN:ss for end-to-end representation learning in RL and pave the way for future
methods of incorporating graph structure for representation learning in RL.

1 Introduction

(Deep) Reinforcement Learning (RL) encapsulates a flexible and dynamic interaction framework
between an agent and its environment [Sutton, 1999], where the goal is to develop an algorithm
that either finds the optimal solution in an episodic setting (Episodic RL) or learns to endlessly
adapt to changing circumstances (Continual RL) [Khetarpal et al., 2022, Abel et al., 2023]. Despite
this flexibility, real-world applications of RL often encounter challenges due to high-dimensional,
noisy, or partially observable environments, often causing RL algorithms to become brittle and
sample-inefficient [Wang et al., 2019, Meng and Khushi, 2019, Lu et al., 2020, Tomar et al., 2023,
Benjamins et al., 2023]. One reason for this is that most of the methods in the current research
landscape of RL, in the pursuit of generality, make minimal assumptions about the environment and
the task, often ignoring additional information about the task and environment that could be helpful.
When incorporated into RL methods as inductive biases, such side information can enhance their
performance and robustness [Mohan et al., 2024]. For example, incorporating a relational inductive
bias into a model in robotic manipulation allows the agent to generalize across combinations of
objects [Sancaktar et al., 2022].

Learning a meaningful representation by compressing observations into a latent state space for
the RL agent is a major challenge in scaling RL to complex scenarios. Such representations are
called state abstractions in MDPs [Dayan, 1993, Dean and Givan, 1997, Li et al., 2006] and history
abstractions in POMDPs [Littman et al., 2001, Castro et al., 2009]. Traditionally, these abstractions
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Figure 1: Observation Prediction using a structured dynamics model.

were hand-crafted, but modern approaches employ learned encoders to automatically filter irrelevant
observation parts. Consequently, numerous RL representation learning techniques have emerged in
the last years [Castro et al., 2021, Hansen-Estruch et al., 2022, Lan and Agarwal, 2023, Schwarzer
et al., 2021, Guo et al., 2020, Grill et al., 2020], making it a very active area of research in RL.
Self-prediction is a mechanism to imbue temporal consistency to abstractions by using a latent model
to predict the next latent state [Guo et al., 2019, 2020, Grill et al., 2020, Schwarzer et al., 2021,
Lee et al., 2021, Tang et al., 2023], given the current abstract state and action. The latent model
additionally allows predicting future observations [Schrittwieser et al., 2020, Subramanian et al.,
2022, Ni et al., 2024]. Yet, explicit utilization of structural information in self-predictive learning
remains limited.

In this work, we step towards closing this gap by using relational inductive biases to enhance the
latent model and studying its impact on representation learning and the RL algorithm. We particularly
do this using Graph Neural Networks (GNNs) [Battaglia et al., 2018], adept at capturing relational
structures within the environment. The GNN operates on a representation of the concatenated latent
state produced by a Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] belief
encoder with the action as a node feature. This hybrid model is designed to improve sample efficiency
and generalization capabilities by leveraging the task’s temporal and relational structure. In doing
s0, it addresses the limitations of previously used MLP-based latent models in partially observable
settings.

We empirically evaluate our approach on Minigrid [Chevalier-Boisvert et al., 2023] by first demon-
strating the benefit of our proposed latent model for representation learning for sample efficiency
on environments particularly hard for end-end observation predictive representations. We further
demonstrate its robustness to a combination of size changes and distractors over baselines that use
MLP as the latent model. Our results indicate that the GNN-enhanced latent models can provide rich
representations for model-free RL algorithms in partially observable and sparse reward environments
and performance gains in environments where dynamics change over time. We finally discuss addi-
tional investigations into the latent GNN model’s capabilities beyond representation learning and lay
out the next steps for scaling this approach to more complex domains.

2 Background

In this section, we provide the necessary background to understand our approach. After a brief recap
of the fundamentals of RL and Markov Decision Process (MDP), we delve into state abstractions
and formally introduce self-predictive abstractions. We subsequently introduce Partially Observable
Markov Decision Process (POMDP) and Observation Predictive (OP) abstractions, which we further
use to build our method.

2.1 MDPs and Reinforcement Learning

A discounted MDP is represented by a tuple M = (S, A, P, R,~). At each time step ¢, an agent
observes the state s; ~ S of the environment and chooses an action a; ~ A using a policy
m(as | s¢) to transition into a new state sy 1. The transitions are governed by the dynamics function
P:8 x AxS8 — RT, and for each transition, the agent receives a reward according to the reward
function R : § x A — R. After the first reward, all rewards are discounted by a discount factor .



Value-based RL is a class of algorithms in which an agent interacts with the MDP and repeatedly
performs two steps: (i) Policy Evaluation: It computes a value function Q™ (s, a) quantifying the
expected return after taking action « in state s: Q™ (s,a) = E, [ Zfit Yol | se = s,a0 = a} ;
and, (ii) Policy Improvement: It learns a new policy that selecting actions that maximize Q7 (s, a):
m'(s1) € argmax,, ¢ 4 Q(st, ar)

The successive application of these two steps leads to the agent discovering the optimal state-action
value function Q* (s, a), which subsequently leads to the optimal policy 7* [Sutton and Barto, 2018].
Q-Learning [Watkins and Dayan, 1992, Silver et al., 2016] is an off-policy method that learns Q* (s, a)
through a recursive update mechanism:

Q" (st,ar) = Ex[R(s4,a0) + Igleaj((Qw(StHv ar))] ey

2.2 State abstractions and Self-prediction

One way to tackle the curse of dimensionality when scaling RL to problems with large state spaces is
by learning a compact state representation, allowing the agent to use this representation instead of the
original state space. This can be formalized by an encoder ¢ : S — Z, that maps the states to abstract
states z € Z, also known as state abstractions [Li et al., 2006], or latent states [Gelada et al., 2019].

State abstractions can broadly be categorized based on the nature of the equivalences they preserve [Li
et al., 2006]. @Q*-irrelevant abstractions aggregate states that have the same optimal )-values.
Formally, if ¢+ (s;) = ¢+ (s;), then Q*(s;) = Q*(s;). These are learned by an encoder (¢¢-) as
a byproduct of learning an encoder ¢ through a value function Q(¢(s), a) using a model-free RL
algorithm. However, they do not preserve information about the environment transitions or the reward
structure.

A stronger state abstraction is the model-irrelevant abstraction, which aggregates states if they
have the same transition probabilities and reward functions, thereby preserving one-step transition
probabilities. Formally, a model predictive encoder ¢y, should satisfy two properties:

AP, : Zx A — A(Z) sit. P(zey1 | $t,at) = Po(2zeq1 | dn(st),ar) (ZP)
P, : Z x A—=R s.t. E(T’t+1 | ht,at) = Rz(qu(ht,at)) (RP)

Here, ZP requires that the latent state is sufficient to predict the distribution over the next latent
state in conjunction with the action, while RP ensures the same for the reward. ZP is also known
as self-prediction [Ni et al., 2024]; such abstractions are also called self-predictive abstractions.
Consequently, such abstractions can be learned using self-predictive learning wherein a latent model
is trained to predict the next latent state [Grill et al., 2020, Guo et al., 2020]. A crucial aspect in
learning ZP end-to-end is representational collapse since ¢(h) = ¢ (where ¢ is a constant matrix) is
also a solution to ZP. Therefore, practical methods mitigate this by learning ZP along with RP and/or
¢o+ using additional techniques such as online encoders with regularization [Francois-Lavet et al.,
2019, Gelada et al., 2019], Empirical Moving averages of online encoders as a target [Schwarzer et al.,
2021, Hansen et al., 2022, Ghugare et al., 2023, Zhao et al., 2023], and stop gradients or detached
target encoders [Lehnert and Littman, 2020, Zhang et al., 2021, Ye et al., 2021, Tang et al., 2023,
Tomar et al., 2023].

2.3 POMDPs and Belief Abstractions

POMDPs, defined as a tuple Mo = (O, A, P, R, ), model scenarios where the agent cannot observe
the whole state s. Insated, if has access to observations o € O based on the state s € S, and must
utilize a history h; := {01, a1, 09, as,...0:} € Hy, by concatenating observations and actions, where
‘H. represents the set of all possible histories at time step ¢. A unique optimal value function for
POMDP exists when the POMDP has a time-invariant finite-dimensional state [Subramanian et al.,
2022].

An RL agent operating in a POMDP needs to maintain a belief [Kaelbling et al., 1998] — a probability
measure over the current state of the environment — since multiple (s, a) pairs can lead to the same
observation o. Computing such beliefs for high dimensional environments can quickly become
intractable [Subramanian et al., 2022]. Therefore, the agent requires a history encoder that maps the
history to an abstract representation ¢o : H; — Z, producing a history abstraction z = ¢o(h) € Z.



These abstractions must be recurrent in that they can predict the distribution over subsequent latent
representations in conjunction with the next observation and action (Rec). This is a known property
of belief state generators [Kaelbling et al., 1998], and encoders such as LSTMs [Hochreiter and
Schmidhuber, 1997] and feedforward MLPs can satisfy this condition.

. ZXxAX O = Z st ¢(heyr = Y (do(hi), ar, 0641) (Rec)

To further preserve transition dynamics similar to the model-irrelevance, such abstractions should
additionally satisfy a variant of ZP, called the Observation-prediction, entailing that the latent state
along with the action is sufficient to predict the distribution over next observations (OP).

ElPO 1 ZxA— A(O) s.t. P(Ot+1 | ht,(lt) = Po(0t+1 | ¢O(ht),at) (OP)

A widely used practical technique related to OP is Observation Reconstruction (OR) [Yarats et al.,
2021], where the latent state is used to reconstruct the observation, and the reconstruction loss is
used as an auxiliary objective. Such abstractions are learned along with ZP and RP by belief-based
methods [Wayne et al., 2018, Hafner et al., 2019, Han et al., 2020, Lee et al., 2020]

3P, : Z — A(O) s.t. P(oyy1 | he,ar) = Po(og1 | do(he),ar) (OR)

One of the key contributions of Ni et al. [2024] is theoretically demonstrating that OP is implied by a
combination of ZP and OR, thereby allowing us to repurpose the latent model commonly used to
learn ZP to predict the next observation. We utilize their end-to-end setup with the target encoder as
an EMA of online encoders for our representation learning method.

3 Method

In this section, we outline our method, the overview of which has been presented in Figure 2. We
first start by defining what we mean by relational structure in the environment and how we consider
capturing it using an inductive bias in Section 3.1. We then explain our architecture and the graph
construction process in Section 3.2.
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Figure 2: Training Setup. The LSTM generates embeddings using observation history, actions, and
rewards, capturing temporal dependencies to create a belief state z. The R2D2 agent uses this to
select the next action. During optimization, the structured model predicts the next observation.

3.1 Relational Structure

Relational structure refers to a form of decomposition in an environment that can be captured using a
set of representations that are interactionally complex [Mohan et al., 2024]. Mathematically, these
relationships can be described using higher-order interactions among latent representations. Consider



an encoder ¢ : H{ — KC that maps a history h € H to a set of factors £ = {k;,...xn}. Now let ¢ be
a function that describes relations between groups of m entities (m being the order of the relation)
in KC. Thus, the inputs to ) are m-tuples of factors {k1,...Km}, which it maps to a multiset of
symbols {w} ™. In other words, 7 describes relations between m input entities using symbols w, and
the multiset allows us to more generally describe the case where similar relations may exist between
different factors:

P (K)™ = {w} @)

A typical way to define such relationships is by considering the factors in /C as entities in a scene,
thereby grounding the relationship as measurements between these entities. Examples of such entities
include objects and distances between them [Sancaktar et al., 2022].

A more general way to capture such relationships is using GNNs, which we do in our method.
Notably, we do not make any assumptions about the nature of the factors. Instead, we treat the latent
space captured in a belief representation as a set of particles with actions as additional node attributes
and learn relationships between them. A reductive way to think about them might be to consider
each node as encoding attributes of the history of partial observations, such as the position of the key
and door or distance to the wall. However, since they exist in the belief space, we do not enforce
them to encode such attributes explicitly. Instead, we use a structured model to encode this as a soft
inductive bias in the latent space. Naturally, the underlying assumption for our approach to work is
the existence of interactional complexity in the environment. This assumption holds for environments
involving interactions between entities such as the key and a door; therefore, we expect a relational
approach like ours to show benefit.

3.2 Architecture

Belief Encoding and Training. The first step is to convert the observation histories to a belief
state. We achieve this using a recurrent encoder to output a latent state z using observations, one-hot
encoded actions, and rewards. Any RL agent can now use this latent state, and in our setup, we
consider the R2D2 [Kapturowski et al., 2019] agent as the RL method. This agent is trained with
the value-loss [Sutton, 1988], which incentivizes the latent embedding z to be a ¢~ abstraction.
We refine this latent space using an observation-predictive latent model trained with an auxiliary
predictive loss that incentivizes z to be an observation-predictive (belief) abstraction ¢o. Both
of these losses are optimized together in an end-to-end manner. We additionally consider reward-
predictive representations for some environments, such as unlocked and obstructed mazes in minigrid,
where observation prediction alone is insufficient. We add another 2-layer MLP for these particular
environments to predict rewards. This network, however, is trained in a phased manner, where the
optimization of the observation prediction and RL happens separately from the reward-prediction
mechanism, following the recommendation set out by Ni et al. [2024].

Graph Construction. The latent model works on a m-nearest neighbors graph in the latent space
with m = 4, based on the feature space distance. Each node includes a one-hot encoded action as an
additional attribute, providing a richer context for learning relationships. The graph is designed to be
sparse, with each node connected to its four nearest neighbors. This sparse graph structure reduces
computational complexity and enhances the model’s scalability.

Message Passing. After constructing the graph, the nodes with actions as attributes are passed
through two bi-directional message-passing layers. During this phase, each node in the graph updates
its state by aggregating information from its neighboring nodes. Firstly, for each node, the features of
its neighboring nodes are aggregated by concatenating the features of the source node x; and the target
node x;. This concatenated vector is then passed through a multi-layer perceptron (MLP). The MLP
consists of two fully connected layers with a ReLU activation function in between, transforming the
combined features to capture more complex interactions. The result of this MLP is then used to update
the target node’s features. This process is repeated across multiple message-passing layers, with each
layer refining the node features by incorporating more information from the nodes’ neighbors in both
directions.



Prediction and training. After the message-passing steps, the updated latent states are decoded to
produce the final node representations. The output of the network has the same dimensionality as the
observation flattened observation dimensions. This output is trained using the MSE loss between
the predicted output ¢’ and the actual next observation o', and this forms the representation learning
auxiliary loss. When combined with the bellman loss of the R2D2 agent, the latent space learns a
representation that is both Q*-irrelevant and OP.

Reward Module. For environments with multiple subtasks and sparse rewards, OP alone is insuffi-
cient [Ni et al., 2024]. Instead, it needs to be combined with an explicit reward prediction using the
latent state and action, thereby incorporating a RP abstraction. For these environments, we utilize a
two-layer MLP for such a module in addition to the latent model and train it using a phased training
procedure, where the reward module is optimized separately from the end-to-end optimization of the
bellman and representation learning loss.

4 Experiments

In this section, we empirically investigate the effectiveness of our structured latent model. We
employ the Minigrid suite [Chevalier-Boisvert et al., 2023], which consists of a series of mini-levels
designed to test various aspects of learning and adaptation. The RL agent in our experiments is
the R2D2 agent [Kapturowski et al., 2019], a variant of the DQN designed for environments with
long-term dependencies. However, the proposed architecture can work with any RL agent. In the
following paragraphs, we divide our analysis based on specific research questions. Our presented
results have been performed across 5 seeds with the aggregated standard deviation. We utilize the
same hyperparameters as Ni et al. [2024] and refer the reader to appendix section E.3 of their paper.

Performance on static environments. We first evaluate our model (Graph_0P) on selected envi-
ronments in Minigrid. Our general baseline is the minimal observation predictive algorithm proposed
by Ni et al. [2024] (OP). We mainly consider environments with some interactional complexity and
difficulty for observation prediction. R2D2, without representation learning, fails to accumulate
notable returns in these environments, as indicated by the curves in Ni et al. [2024]. Therefore, we
only focus on representation learning methods as our baselines. Moreover, we run each environment
until the baselines demonstrate convergent behavior. Based on the learning curves provided by Ni
et al. [2024], we narrow down the environments to the following four static ones:

1. MiniGrid-DoorKey-8x8-v0:The agent must pick up a key to unlock a door and reach the
green goal in a 8 x 8 grid.

2. MiniGrid-ObstructedMaze-1D1-vO: A blue ball is hidden in a maze with two rooms.
A locked door separates the two rooms, and the doors are obstructed by a ball. The keys are
hidden in boxes.

3. MiniGrid-KeyCorridorS3R2-v0: The agent has to pick up an object behind a locked
door. The key is hidden in another room, and the agent has to explore the environment to
find it.

4. MiniGrid-UnlockPickup-v0: The agent must pick up a box behind a locked door in
another room.

These environments share the commonality of subtasks the agent needs to solve before reaching
the goal. Additionally, apart from the DoorKey environment, all others require additional reward
prediction due to the sparsity of the reward in the original task. Therefore, we additionally use a
baseline combination of observation and reward prediction (AIS), trained using a phased training
procedure. Consequently, as explained in the previous section, we also incorporate a reward module
with our graph prediction (Graph_AIS). Interestingly, we noticed performance gains only when the
reward module was trained using the phased training procedure and not when both observation
prediction and reward prediction were done in a phased manner. We suspect this to be the case
because of the interdependence between the latent representation and the relational structure in the
ground MDP, which might get lost during the phased procedure since the Q-values are detached from
the computation graph.

Our results are presented in Figure 3. At first glance, the Graph-based representation learning methods
outperform the MLP-based methods in all the cases. However, another interesting observation is that



1.0 _ 1.0
0.8 0.8
wv wv
£0.6 £0.6
3 3
@ @
o o
504 204
0.2 0.2
0.0 0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Env Steps (x10%) Env Steps (x10%)
(a) MiniGrid-DoorKey-8x8-v0 (b) MiniGrid-0ObstructedMaze-1D1-v0
1.0 1.0
—e— OP
Graph_OP (ours)
0.8 0.8] —e— AIS
—e— Graph_AIS (ours)
w w
£0.6 £0.6
3 3
@ @
o< o
= =
0.4 0.4
=4 o A
0.2 0.2
0.0 0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Env Steps (x10%) Env Steps (x104)
(c) MiniGrid-KeyCorridorS3R2-v0 (d) MiniGrid-UnlockPickup-vO

Figure 3: Performances on static environments.

for environments that require explicit reward prediction, the benefits of Graph_0P over OP can be
lesser. This replicates the inefficiencies of pure observation prediction in these environments since
the reward is extremely sparse in the subtasks, and therefore, the latent space learned from pure
observation prediction is not sufficiently informative for RL.

Adapting to environment changes. One key benefit of relational inductive bias is that a method
can exploit this across environmental changes. Therefore, a natural question would be: How adaptable
are the model representations when faced with dynamically changing environments? We investigate
this by creating a scenario where an agent must continually adapt to environmental variations. The
continual nature of this setup allows us to evaluate the adaptability of learned representations in such
scenarios.

We introduce changes to the DoorKey environment specifically targeted toward two aspects of learned
representations: (i) Number of decisions: We introduce distractions in the environment that increase
the decisions that the agent has to make. In the DoorKey Environment, we introduce additional
colorless keys, forcing the agent to focus on the colored Key. (ii) Changed Topology: We additionally
investigate how the learned representations overfit the environment’s topology by testing the agent on
an environment with increased size.

Figure 4 shows the performance of the structured model against the baseline using MLP for ob-
servation prediction for different types of changes. We mainly consider scenarios that become
progressively harder in terms of the types and frequency of changes going left to right. The top two
figures demonstrate the performance of observation prediction in the scenario where the agent has to
adapt to new distractors every 800K step (left) and adapt to increased size at 1M steps. The bottom
left figure shows the scenario in which the grid increases in size every 1M step, and a distractor is
simultaneously added. In this scenario, the difficulty comes with both the changes co-occurring, albeit



around 1M steps, the amount of time it takes to demonstrate some form of return accumulation in the
static version of the environment. Finally, we consider another dimension of hardness in frequency,
where the agents need to adapt to a new distractor every 600K step and a size increment every 1M
step in the bottom right figure. We can notice that the performance degrades for both methods as
soon as changes occur. Naturally, the recovery becomes increasingly difficult as we increase the
magnitude of change. Therefore, in the final figure, neither method has enough time to return to
stable performance in the rapidly changing new environment. In all of these scenarios, the Graph_0P
method consistently demonstrates more robust performance and generally outperforms the MLP
baseline OP, indicating that incorporating a graph-based inductive bias enhances the performance in
these scenarios. The impact of distractions seems more pronounced than size, as shown in Figure
4(a). On the other hand, size does not individually significantly impact the overall policy, as can
be seen by the ability of both agents to maintain performance and keep improving even when the
size changes in Figure 4(b). This could additionally result from the size only increasing by one unit,
which could be a relatively more straightforward change since the optimal behavior — get the key,
get to the door, go to the goal — also remains similar for the new environment. Distractors, on the
other hand, force the agent to focus on the particular kind of key that opens a given door, which could
be argued to be relatively more challenging.
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Figure 4: Performances on Dynamic Variations of MiniGrid-DoorKey-8x8-v0.

Compound changes particularly impact both methods since the size change forces the agent to explore
more, while the distractors force the agent to focus on the right kind of key. Given that in DoorKey,
the agent has to traverse a subgoal of getting to a key before reaching a door and then going to the
goal, changing the size and adding distractors together degrades performance faster. We see this
effect in Figures 4(c) and 4(d) as a general pattern. In both of these cases, we see that the graph-based
agent Graph_OP is more robust to the changes compared to the MLP baseline. This highlights the
particular advantage that the relational inductive bias offers by allowing the state representations



to be model relational dependencies in addition to temporal consistency that comes naturally with
self-prediction. We leave an extended analysis of this robustness to future work.

5 Related Work

Our work touches upon three important areas in RL: Abstractions, GNNs in RL, and incorporating
structure in RL. Consequently, in the following paragraphs, we divide our related work along these
lines.

State and History Abstractions in RL. State abstractions are active areas in RL, and a complete
categorization of approaches is beyond the scope of this work. We defer the reader to Table 1
in Ni et al. [2024] for a unified overview of state and history representations. Most methods in
this literature can be categorized based on their objective and architecture. Classic model-free and
model-based methods [Moerland et al., 2023] learn QQ*—irrelevant abstractions in their values since
the policy and value do not share representations with the model [Sutton, 1990, Sutton et al., 2008,
Janner et al., 2019]. Model-irrelevant abstractions have been studied under a variety of techniques,
such as bi-simulation [Ferns et al., 2004, Gelada et al., 2019, Castro et al., 2021, Hansen-Estruch
et al., 2022, Lan and Agarwal, 2023], variational inference [Eysenbach et al., 2021, Ghugare et al.,
2023], and successor features [Dayan, 1993, Barreto et al., 2017, Borsa et al., 2019, Lehnert and
Littman, 2020, Scarpellini et al., 2024]. Observation predictive representations have been used to
formulate belief states [Kaelbling et al., 1998, Wayne et al., 2018, Hafner et al., 2019, Han et al.,
2020, Lee et al., 2020] and predictive state representations [Littman et al., 2001, Zhang et al., 2019].
Self-supervised learning for representation learning in RL has been a recent line of work for learning
model-irrelevant abstractions [Guo et al., 2020, Grill et al., 2020, Schrittwieser et al., 2020, Schwarzer
et al., 2021, Hansen et al., 2022, Ghugare et al., 2023, Zhao et al., 2023]. Ni et al. [2024] unify all
these representations to propose a minimalistic algorithm to learn model-irrelevance abstractions
using self-prediction. Our work adds to it by using a structured model for learning the ¢, and ¢o.

Structure in RL. Incorporating task structure as inductive bias into the RL pipeline has been
done throughout the last years. Structural assumptions about the problem can be divided into
various granularities, depending on the nature of decomposability in a problem [Mohan et al., 2024].
Consequently, these assumptions can then be utilized to bias the learning pipeline. Our work assumes
a relational decomposition in joint state-action space. Such assumptions have previously been applied
through modeling frameworks such as Relational MDPs [Dzeroski et al., 2001, Guestrin et al., 2003]
and object-oriented MDPs [Diuk et al., 2008]. However, we neither model entities in the environment
separately nor handcraft any form of first-order representation in the value function [Guestrin et al.,
2003, Fern et al., 2006, Joshi and Khardon, 2011]. Instead, we use a latent representation that does
not assume that entities are already factored in the state space [Zambaldi et al., 2019].

GNNs in RL. GNNs have increasingly been used in RL in recent years for various applications
due to their ability to capture relationships. These include but are not limited to modeling environ-
ments [Chen et al., 2020, Chadalapaka et al., 2023], agent’s morphology in embodied control [Wang
etal., 2018, Oliva et al., 2022], relationships between different action sets in RL [Jain et al., 2021],
and concurrent policy optimization method [Wang and van Hoof, 2022]. We share similarities to
methods that use GNNs as structured models, used for applications such as learning the latent transi-
tion dynamics in simple manipulation tasks [Kipf et al., 2020], the dynamics of joints of physical
bodies [Sanchez-Gonzalez et al., 2020], obtaining object-centric representations from images and
RRT planners [Driess et al., 2022], or computing intrinsic reward and online planning [Sancaktar
et al., 2022]. We add to this line of work by using GNNs for representation learning.

6 Conclusion and Future Work

This paper presented a novel approach to enhancing latent representations using a structured latent
model for observation prediction in sparse and partially observable settings. We enhanced the belief
representation generated by a recurrent encoder capturing temporal context by incorporating a GNN
latent model that utilizes concatenated states and actions as node features, thereby capturing richer
relationships between the belief state and actions. Our experiments on a subset of interactionally rich
minigrid tasks demonstrated that agents utilizing this latent space representation exhibit improved



performance. Moreover, representations learned using the relational inductive bias tend to be more
robust to changes in size and against added distractions.

While our approach demonstrates improvements in agent navigation tasks within the Minigrid
environment, several limitations warrant discussion. Firstly, we have not yet scaled our method to
more complex environments, such as robotic control [Freeman et al., 2021, Todorov et al., 2012],
or more complicated navigation scenarios [Cobbe et al., 2020, Samvelyan et al., 2021]. Therefore,
these environments present additional challenges and complexities and are ideal next steps for further
empirical insights. Moreover, since the current framework is agnostic to the RL algorithm, we want
to incorporate more algorithms into it. Furthermore, the latent space representation used in our model
is relatively simple. Although this approach is practical for the considered Minigrid environments,
extending our latent space to 3D point clouds could allow the graph neural network to provide a
richer representation of the environment, enabling it to process and predict complex interactions with
greater fidelity. Therefore, we plan to extend our framework into a hierarchical model that can exploit
the dynamics captured by a richer representation.

Despite these limitations, our current findings offer a foundation for future research. Addressing
these challenges will be crucial for advancing the capabilities of Graph-based latent models in
reinforcement learning and extending their applicability to more demanding and diverse scenarios.
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