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Abstract

The emerging field of topological signal processing brings methods from Topologi-
cal Data Analysis (TDA) to create new tools for signal processing by incorporating
aspects of shape. In this paper, we present an overview of the python package
teaspoon , which brings together available software for computing persistent ho-
mology, the main workhorse of TDA, with modules that expand the functionality of
teaspoon as a state-of-the-art topological signal processing tool. These modules
include methods for incorporating tools from machine learning, complex networks,
information, and parameter selection along with a dynamical systems library to
streamline the creation and benchmarking of new methods. All code is open source
with up to date documentation, making the code easy to use, in particular for signal
processing experts with limited experience in topological methods.

1 Introduction

Topological signal processing is a newly emerging field with an ever growing collection of tools.
Using Topological Data Analysis (TDA) for signal processing allows for an analysis of the underlying
shape of a time series. These methods are well backed by theory [1, 2] and have shown success in
numerous application areas including machining dynamics [3, 4, 5, 6, 7], finance [8, 9], and gene
expression [10, 11].

Here we present the python package, teaspoon, that provides state-of-the-art topological signal
processing tools as well as wrappers for available persistent homology software. While some
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TDA based packages exist for python (e.g. Scikit-TDA and Giotto-TDA), the teaspoon package
specifically provides modules design to tackle questions related to signal processing and time series
analysis from the viewpoint of topology. In comparison, other existing packages are designed for
more general applications for TDA.

In the teaspoon package there are currently five main modules: dynamical systems, machine
learning, complex networks, information, and parameter selection with several sub-modules for
each as shown in Fig. 1. The dynamical systems library is currently hosting 60 dynamical systems
including maps, flows, and collected data sets. The machine learning library contains code for
numerous persistence diagram featuriztion and kernel methods. Specifically, this module includes
the template function featurization methods described in [12, 13] as well as persistence landscapes
[14], persistence images [15], Carlsson coordinates [16], persistence paths and signature [17, 18]
and the multi-scale kernel method [19]. The complex networks module contains code to represent
a time series as a network using ordinal partitions [20] or k nearest neighbors [21]. This module
also provides several methods for calculating distances between nodes based on the adjacency
matrix, which allows for the calculation of the persistent homology of the resulting networks. The
information theory module implements entropy based functions for signal processing persistence
diagram analysis. Lastly, the parameter selection module currently provides multiple algorithms for
the automatic selection of the delay τ and dimension n parameters for state space reconstruction and
permutation entropy.

In this work, we outline the features available in each module as well as features that will be added in
the future. The goal of this package is to provide a range of topological signal processing tools in one
unified framework. Additionally, for most of these modules, further documentation and examples of
the functions are provided in the teaspoon documentation webpage1.

Figure 1: Tree structure of teaspoon.

2 Dynamical Systems Library (DynSysLib)

The dynamical systems library (DynSysLib) is a teaspoon module that provides a wide selection
of dynamical system simulation models with many from [22]. Most of the available dynamical
systems are able to exhibit both periodic and chaotic responses. In general, these systems can be
separated into three categories: (1) flows, (2) Maps, and (3) Collected data. A full list of the available
dynamical systems are provided in tables 1 and 2 of the appendix. The module has a single function
DynamicSystems, which allows a wide range of the simulation control with the user being able to
control as little as the system of interest and the desired dynamical state (chaotic or periodic) or
provide detailed simulation parameters such as initial conditions, system parameters, and solution
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time. The function output is the resulting time series response. For details on the default parameters
used, equations of motion, and examples, please see the teaspoon documentation webpage1.

3 Machine Learning Module

In this section, we describe the machine learning module in teaspoon. Machine learning module
provides automated feature matrix generation and classification, and it is suitable for the applications
where persistence diagrams can be computed. There are three main files inside the module and
these are Base.py, feature_functions.py, and PD_Classification.py. Here, we will explain
the necessary functions in each of these files and show how to use these functions to perform machine
learning using Topological Data Analysis (TDA).

3.1 Parameter Buckets

The parameter bucket is a tool to hold all necessary parameters for the featurization functions as well
as the classification algorithms. This includes parameters such as the classification algorithm, the
size of the test set, as well as the desired persistence diagram featurization method. The parameter
buckets are implemented as classes in the Base.py file. The basic structure is implemented as a class
ParameterBucket, however there are two more specialized classes, InterPolyParameters and
TentParameters that are dedicated for parameters to the template functions introduced in Ref.[12].
These parameter buckets also have the functionality to use the template function featurization on
localized regions of the persistence diagrams, using an adaptive partitioning method described in
Ref.[13].

The rest of the parameter buckets are used for other featurization methods. The
LandscapesParameterBucket is for persistence landscapes [14], which requires an input for
the landscape number that will be used to generate feature matrix. The CL_ParameterBucket is
used to set parameters for classification using Persistence Images [15], Carlsoon Coordinates [16],
persistence paths and signature [17, 18] and kernel method [19].

3.2 Featurization

The file feature_functions.py contains functions that compute the topological features mentioned
above. F_ and CL_ suffixes indicate that corresponding functions are designed for featurization and
classification, respectively. First, for the template featurizations, there are two main functions, tents
and interp_polynomial. These functions compute the collection of template functions based on a
grid formed using parameters from the corresponding parameter buckets.

In addition to these, there is PLandscape class that uses PLandscapes function to compute the
persistence landscapes for a given persistence diagram [14]. This class has an option to define
L_number which returns specific landscapes in an array. Output of PLandscapes is a dictionary
that includes all landscapes, total number of landscapes and the desired landscapes if user defines
L_number. PLandscape class can also plot persistence landscapes. If user does not define the
desired landscapes to plot, all landscapes will be plotted. F_Landscape uses persistence landscapes
to compute feature matrix as explained in Ref. [23]. The inputs of the function are persistence
landscapes, parameter bucket object that is explained in Sec. 3.1.

The second featurization method is persistence images. We utilized Persistence Images package
to compute persistence images. F_Image takes persistence diagrams, pixel size, variance of the
Gaussian distribution, the numbers of persistence diagrams whose image will be plotted, and transfer
learning option. If transfer learning option is set to true, second set of persistence diagrams should be
provided. Then, it will compute feature matrices for both sets of diagrams. Carlsson Coordinates
is the third featurization method [16]. It has five coordinates that depend on birth and death times
of persistence diagrams. F_CCoordinates takes persistence diagrams and computes these five
features. It has second input, FN that defines how many feature will be computed. Feature vectors

are generated using
FN∑
i=1

(
FN
i

)
combinations of five coordinates. F_CCoordinates will return these

feature vectors, number of combinations and combinations in a list.
1http://elizabethmunch.com/code/teaspoon
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Another featurization method is persistence path and signatures [17, 18]. F_PSignature function
computes signatures on persistence landscapes. The first two levels of signatures are currently coded
in the function. The inputs are persistence landscapes and the number of the landscape which will
be used to compute the signatures. Then it returns the feature matrix to be used in the classification.
Final featurization method is kernel method for persistence diagrams. KernelMethod computes the
kernel between given two persistence diagrams. It also has sigma input which is a variable in the
formula of the kernel given in Ref. [19]. After computing pairwise kernels between the diagrams, it
can be used as pre-defined kernel in Support Vector Machine (SVM) algorithm for classification.

3.3 Classification

Classification functions are embedded in PD_Classification. Most of the functions take feature
functions and parameter bucket object as input. They divide the given feature matrix into training set
and test set with respect to test size defined in the parameter bucket. Classification can be performed
using four classification algorithms: Support Vector Machine (SVM), Logistic Regression (LR),
Random Forest (RF) and Gradient Boosting (GB). For the kernel method, LibSVM package [24]
is utilized to insert pre-computed kernel matrix for classification. Additionally, the featurization
methods can be used to create feature vectors compatible with any scikit-learn classification algorithm.

We also include the option of Transfer learning in classification for most of the featurization methods
except kernel method. In this type of classification, a classifier is trained on a data set and tested on
another one. One can refer to Ref. [25] for more details about transfer learning. When user defines
the transfer learning as true in parameter bucket, feature functions will be computed for training and
test persistence diagrams separately. In both classification type, training and test set will be generated
10 times randomly. Mean classification score, standard deviation for training and test set and total
runtime for the classification are given as output.

4 Complex Networks Module

The teaspoon module provides the Python implementation of the algorithms used in [26], which
provides methods for analyzing the dynamic state of a time series based on the persistent homology of
the network representations of time series. The general pipeline, as shown in Fig. 2, is as follows: (1)
represent a time series as a network as described in Section 4.1, (2) Generate a distance matrix from
the undirected and weighted adjacency matrix as described in section 4.2, and (3) apply 1-D persistent
homology to the distance matrix. The persistence diagram point summaries can be generated to
analyze the dynamic state of the underlying time series.

Figure 2: The persistent homology of complex networks pipeline.

4.1 Network Representations of Time Series

There are currently two available algorithms in the complex networks module to represent a time
series as a complex network. Specifically, these are k Nearest Neighbor (k-NN) networks [21] and
ordinal partition networks [20]. For our implementation of these algorithms we use the adjacency
matrix as our graph data structure.

For the ordinal partition network a permutation sequence needs to be generated by using the function
permutation_sequence, which requires a time series and the permutation dimension n and delay
τ . For selecting the dimension and delay we suggest using the parameter selection module. Using
the permutation sequence, the resulting adjacency matrix is formed using the AdjacenyMatrix_OP
function, which creates edges in the graph based on permutation transitions.
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Two steps are required to generate k-NN networks. First, the time series needs to have its state space
reconstructed through Takens’ embedding, which is done through the function Takens_Embedding.
This function requires the time series and the embedding dimension and delay. The dimension and
delay can be selected using the parameter selection module. Next, the k-NN are found using the k_NN
function and specifying k which has a default of k = 4. Using the list of neighbors, an adjacency
matrix is formed using the Adjacency_KNN function by treating each embedded vector as a node and
adding edges when two nodes are k-NN.

The next step in the pipeline is to define algorithms to represent distances between nodes in the
network based on the adjacency matrix, which is discussed in the subsequent section.

4.2 Distance Matrix

Two steps are required to assign distances between nodes in a network: (1) apply an edge weight
algorithm to represent distances for adjacent nodes and (2) implement a distance algorithm for
non-adjacent nodes.

For the first step we provide the following edge weight functions: unweighted, inverse, and difference.
Specifically, the unweighted option changes all the edge weights to 1, the inverse sets the weight to
the element-wise reciprocal, and the difference finds the maximum edge weight and sets the new
edge weight as the difference between the max edge weight and that edge’s weight.

The second step requires a method for defining distances between non-adjacent nodes. To do this
we offer two options: the shortest-path distance and effective network resistance [27]. Both of these
steps are implemented through the DistanceMatrix function.

5 Information Module

The information theory module currently provides three functions for information entropy calculations.
The first two are the calculation of the permutation entropy [28] and multi-scale permutation entropy
as PE and MsPE, respectively. Permutation entropy has been shown to be a useful tool for analyzing
signal complexity and has very few requirments for its application. The third function is the persistent
entropy [29] through the function PersistentEntropy, which calculates the entropy of a persistence
diagram given the lifetimes from the persistence diagram.

6 Parameter Selection Module

The parameter selection module provides code for the functions used in [30] and [31] for automatically
calculating the dimension n and delay τ parameters for both permutation entropy and Takens’
embedding (state space reconstruction). For details on each of the methods please reference their
respective publications as some are more suitable for non-linear time series or have time series
requirements. A comprehensive list of the available methods are provided in Table 3.

7 Future Work

In the future, we would like to include two new modules as well as improve the complex networks
module by adding a de-noising procedure for ordinal partition networks. The first new module would
focus on sublevel set persistence, with code to quickly compute sublevel set persistence on 1-D
functions as well as a statistical analysis function for providing confidence intervals for points in the
persistence diagram. The second module is for quick persistence diagram computation, which will
include methods such as the Bézier curve approximation, point cloud clustering, and boot strapping
point clouds and persistence diagrams.
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Appendix

Table 1: Available flows and maps in dynamic systems library module.

Dissipative Flows Conservative Flows Driven Dissipative Flows Maps

Lorenz Att. Simple Driven Driven Pendulum Logistic
Rossler Att. Nose-Hoover Osc. Driven Van der Pol Osc. Henon
Chua Circuit Labyrinth Chaos Shaw Van der Pol Osc. Sine
Coupled Lorenz-Rossler Henon-Heiles Osc. Forced Brusselator Tent
Coupled Rossler-Rossler Ueda Osc. Linear Congruent
Double Pendulum Duffing’s Two-well Osc. Ricker’s Pop.
Diffusionless Lorenz Att. Duffing Van der Pol Osc. Gauss
Complex Butterfly Rayleigh-Duffing Osc. Cusp
Chen’s Att. Pincher’s
Hadley Att. Sine-circle
ACT Att. Lozi
Rabinovich-Fabrikant Att. Delayed Logistic
Rigid Body Feedback Tinkerbell
Moore-Spiegel Osc. Burgers
Thomas Att. Holmes
Halvorsen’s Att. Kaplan-Yorke
Burke-Shaw Att.
Rucklidge Att.
WINDMI
Simple Quadratic Flow
Simple Cubic Flow
Simple Piecewise Flow
Double Scroll

Table 2: Available functions, noise models, and medical data in dynamical systems library module.

Functions Noise Models Medical Data

Sine Gaussian Electrocardiogram
Incommensurate Sine Uniform Electroencephalogram

Rayleigh

Table 3: Parameter selection methods available in parameter selection module for both the delay and
dimension parameters.

Algorithm Reference(s) Dimension or Delay

Mutual Information [32, 30] Delay
Autocorrelation [33, 30] Delay

Frequency Analysis [34, 30, 31] Delay
Multi-scale Permutation Entropy [35, 30] Delay

Permutation Auto-mutual Information [36, 30] Delay
SW1PerS [1, 31] Delay

False Nearest Neighbors [37, 30] Dimension
Multi-scale Permutation Entropy [35, 30] Dimension

Singular Spectrum Analysis [38, 30] Dimension
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