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Abstract

Large language models (LLMs), despite their impressive performance across a
wide range of tasks, often struggle to balance two competing objectives in open-
ended text generation: fostering diversity and creativity while preserving logical
coherence. Existing truncated sampling techniques, including temperature scal-
ing, top-p (nucleus) sampling, and min-p sampling, aim to manage this trade-off.
However, they exhibit limitations, particularly in the effective incorporation of
the confidence of the model into the corresponding sampling strategy. For ex-
ample, min-p sampling relies on a single top token as a heuristic for confidence,
eventually underutilizing the information of the probability distribution. To ef-
fectively incorporate the model confidence, this paper presents top-H decoding.
We first establish the theoretical foundation of the interplay between creativity
and coherence in truncated sampling by formulating an entropy-constrained
minimum divergence problem. We then prove this minimization problem to be
equivalent to an entropy-constrained mass maximization (ECMM) problem,
which is NP-hard. Finally, we present top-H decoding, a computationally efficient
greedy algorithm to solve the ECMM problem. Extensive empirical evaluations
demonstrate that top-H outperforms the state-of-the-art (SoTA) alternative of min-p
sampling by up to 25.63% on creative writing benchmarks, while maintaining
robustness on question-answering datasets such as GPQA, GSM8K, and MT-Bench.
Additionally, an LLM-as-judge evaluation confirms that top-H indeed produces
coherent outputs even at higher temperatures, where creativity is especially crit-
ical. In summary, top-H advances SoTA in open-ended text generation and can
be easily integrated into creative writing applications. The code is available at
https://github.com/ErfanBaghaei/Top-H-Decoding.

1 Introduction

Large language models (LLMs) have exhibited impressive abilities in open-ended generation tasks,
including creative writing and multi-turn dialogue (Lee et al., 2022). However, these models often
need to deal with the challenge of balancing creativity and coherence, accepting less likely and more
imaginative token choices while avoiding incoherent or nonsensical output. This trade-off is complex,
as indiscriminate broadening of the sampling pool can lead to fragmented or disjoint text (Holtzman
et al., 2019).

To navigate this balance, various sampling strategies have emerged, including temperature scal-
ing (Ackley et al., 1985), top-k (Fan et al., 2018), top-p (nucleus) (Holtzman et al., 2019), η (Hewitt
et al., 2022), and min-p sampling (Nguyen et al., 2024). They generally apply heuristics to control
diversity and risk. Specifically, min-p sampling (Nguyen et al., 2024) stands out for its dynamic

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ErfanBaghaei/Top-H-Decoding


truncation of low-probability tokens using a threshold tied to the probability of the top token. Al-
though this method performs well at high temperatures (T ), its exclusive reliance on the maximum
probability token to estimate confidence disregards the potential distribution of the probability mass
over the remaining vocabulary. As a result, min-p remains vulnerable to over-truncation in sparse
(low-entropy) distributions and under-truncation in dense (high-entropy) distributions.

The above limitation motivates the need for a more methodical confidence-aware sampling framework
that accounts for the overall shape of the distribution, rather than only its peak. In addition, the
proliferation of heuristic methods highlights a deeper issue, namely the lack of a theory-based
foundation to analyze the interplay between creativity and coherence in autoregressive generation.

Our Contributions. Towards effective incorporation of the confidence of the model, in this work, we
present top-H decoding. In particular, top-H maintains the creativity and coherence balance guided
by bounded entropy in text generation. Unlike most earlier approaches that rely on a fixed threshold,
top-H dynamically selects a subset of tokens such that the resulting truncated distribution over the
selected subset has an upper-bounded uncertainty while maintaining minimal divergence from the
original distribution predicted by the model.

To formally ground top-H, we first introduce a constrained optimization problem that characterizes the
trade-off between creativity and coherence in language generation, namely, entropy-constrained min-
imum divergence (ECMD). We show that this minimization is equivalent to an entropy-constrained
mass maximization (ECMM) problem. We then prove that ECMM is NP-hard. Thus, in top-H, we
offer a greedy solution that is both efficient and practically effective in approximating the solution of
the ECMM while bounding the entropy of the selected distribution. During autoregressive generation,
as the token distribution evolves at each step, top-H adjusts its entropy threshold based on the entropy
of the token distribution, thereby dynamically adapting to the model’s varying confidence over time.

We validate the effectiveness of top-H through extensive experiments in a diverse set of tasks,
including creative writing (Alpaca-Eval (Li et al., 2023) and MT-Bench (Zheng et al., 2023)),
reasoning (GSM8k (Cobbe et al., 2021) and GPQA (Rein et al., 2024)), and human-aligned evaluations
using LLM as a judge framework. Specifically, top-H consistently outperforms existing sampling
methods in accuracy while maintaining a robust balance between expressiveness and fluency. For
example, compared to min-p, top-H demonstrates an accuracy improvement of up to 25.63%.

2 Related Work

2.1 Stochastic Sampling Strategies for Autoregressive Models

Temperature scaling (Ackley et al., 1985) multiplies the logits by a scalar, encouraging the exploration
of less likely tokens. However, it can get too indiscriminate at high T s, generating incoherent or
contradictory texts. Top-k (Fan et al., 2018) includes only the k highest probability tokens. Although
simple, this hard cutoff is insensitive to context, sometimes excluding large swaths of moderately
plausible tokens. Top-p (nucleus) sampling (Holtzman et al., 2019) chooses the smallest subset
of tokens whose cumulative probability exceeds p. This alleviates some of the rigidity of top-k.
Unfortunately, at high T , the distribution can be so flat that the top-p may inadvertently include very
low-probability tokens, harming coherence. This incoherence in top-p sampling is demonstrated in
the experimental results Table 4, where the coherence score on text drops significantly at higher T .

Min-p (Nguyen et al., 2024) sampling dynamically scales a base probability score threshold pbase by
the probability of the top-1 token. This effectively restricts the sample space more aggressively when
the model is confident. Min-p has been shown to outperform top-p in tasks requiring both diversity
and correctness at higher temperatures. However, its reliance on only the highest-probability token
can overlook broader features of the distribution. Two different probability mass functions might
share a top-1 token probability; however, they differ widely in their overall confidence.

2.2 Entropy-Based Sampling Strategies for Autoregressive Models

Several methods attempt to exploit entropy or related uncertainty measures when sampling. η-
sampling (Hewitt et al., 2022) dynamically adjusts the sampling threshold based on the entropy of the
distribution of the next token. However, this method often requires carefully tuned hyperparameters
and can introduce significant runtime overhead at higher T s. Mirostat (Basu et al., 2020) aims to
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maintain a target perplexity (related to entropy) via feedback control. Although it can yield steady
perplexities, it adds complexity to parameter tuning and integration into generation pipelines.

Despite their entropy-aware intentions, these approaches do not strictly limit the randomness of the
sampling distribution; instead, they often aim to achieve a perplexity target or modify the sampling
heuristics in real-time. As a result, controlling the maximum allowed randomness in the final
distribution, thus ensuring both coherence and flexibility, can be challenging.

3 Motivational Case Study

Figure 1: Probability distribution of two different types with
associated min-p threshold.

This section presents a key
motivation to develop a new
sampling method, despite the
widespread use of nucleus and
min-p sampling within the com-
munity. Specifically, we try to
pose the following question.

Why do we need a more
distribution-aware sampling
technique if min-p already
considers the model’s confidence?

Min-p employs a dynamic truncation threshold by modulating the maximum probability of the next
token probability distribution with a base factor. Although this approach accounts for the confidence
of the model to some extent, it is insufficient to select an optimal sampling pool.

Consider one scenario where min-p may yield low efficacy as illustrated in Fig. 1. Distributions A
and B represent two token probability distributions over the vocabulary, where tokens are sorted by
their probability values, and tokens not shown have a probability of zero. Since both distributions
have the same maximum probability, min-p applies a similar cut-off threshold. However, the two
distributions are distinct in terms of confidence. Distribution A exhibits greater randomness, as
it contains numerous low-probability tokens, while distribution B includes some high-probability
tokens discarded due to min-p’s truncation threshold. This example demonstrates that the min-p
approach does not accurately capture the underlying distributional characteristics. Consequently,
we are motivated to adopt a sampling method that considers the overall shape of the probability
distribution rather than solely relying on a maximum probability threshold. In Appendix C.4, we
demonstrate how our proposed sampling strategy, top-H, addresses this issue using the exact same
example.

4 Theoretical Foundation for Entropy-Based Truncation Sampling
This section establishes the theoretical foundations of top-H sampling. Given a language modelM
and a preceding context window x1:t−1, the probability distribution over the vocabulary V for the
next token xt can be written as,

p(xt) =M(x1:t−1). (1)

Our objective is to determine a subset S ⊆ V from which the next token will be sampled, ensur-
ing that the resulting probability distribution over the subset S, denoted q(xt) : S → [0, 1] with∑

xt∈S q(xt) = 1, satisfies the following desired characteristics:

1. Minimum divergence from the original probability mass function: The subset S should
be constructed such that the distribution over the tokens in the subset, q(xt), has minimal
divergence from the original distribution p(xt), thereby “maximally matches” p(xt).

2. Reduced randomness for enhanced coherence: The probability mass function q(xt)
should exhibit lower randomness compared to p(xt) in the sense that H(q) ≤ H(p) where
H(.) denotes the Shannon entropy, effectively upper-bounding uncertainty.
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These criteria form the basis of top-H, which seeks to construct S and calculate q so that q maximally
matches p while exhibiting lower randomness compared to it1. To regulate diversity in a controllable
manner, we introduce a parametric randomness bound, parameterized by α (see Eq. 2). We formalize
this objective as a minimization of the Jensen–Shannon divergence (JSD) between p and q under the
parametric entropy constraint. Formally, we intend to solve the following.

min
S

JSD(q ∥ p) subject to H(q) ≤ αH(p), (2)

where α ∈ (0, 1) is a tunable hyperparameter. We refer to this problem as entropy-constrained
minimum divergence (ECMD). By upper-bounding H(q) in proportion to H(p), ECMD encourages
the sampling of more tokens in the case of higher uncertainty (higher H(p)) and the less token in the
case of lower uncertainty (lower H(p)). This approach preserves coherent tokens in contexts where the
model "knows" likely the next token, yet encourages exploration when multiple candidates plausibly
fit the context, precisely where creativity is more beneficial. Therefore, with an appropriate choice of
α, solving the ECMD problem can ideally balance creativity and coherence in autoregressive text
generation. In the rest of this section, we prove the following statements. I) Minimizing JSD under
an entropy bound is equivalent to maximizing the sum of probabilities of the tokens in S (subject to
H(q) ≤ αH(p)). II) The ECMD problem is, in general, NP-hard.

4.1 Formulation of the JSD Minimization Problem

We first start by defining the values of each element in the probability distribution of p and q,
respectively. Assuming vi denotes the ith token in the dictionary V , the conditional probability pi of
selecting vi as the tth generated token given x1:t−1 is,

pi = Prob(xt = vi|x1:t−1) for i = 1, 2. . . . , n

where n = |V|, |.| identifies the cardinality of a set. Similarly, the conditional probability qi of
selecting vi as the tth generated token given x1:t−1 is

qi =


pi

ΓS
vi ∈ S

0 otherwise.
, where ΓS =

∑
i

pi1{vi∈S} (3)

Having defined the distributions, the Jensen-Shannon divergence between p and q is calculated as

JSD(p||q) = 1

2
DKL(p||M) +

1

2
DKL(q||M), where M =

1

2
(p+ q) (4)

Next, without loss of generality, we use the properties of JSD and re-formulate the ECMD problem
as a maximization problem of the probability mass function for ease of analysis.

4.2 Equivalence to Entropy-Constrained Mass Maximization

The ECMD problem in Equation 2 is challenging to analyze directly due to the complexity associated
with the expansion of JSD. We thus reformulate the problem using the ΓS metric to facilitate analysis
and interpretation. The following theorem formalizes the necessary condition for achieving the
optimal solution to the original optimization problem in terms of ΓS .

Theorem 1. The Jensen-Shannon divergence between the distributions p and q is only dependent on
the ΓS and can be minimized by maximizing ΓS .

Proof. Refer to Appendix A.1 for the proof.

As a result, ECMD can be rewritten as the following,

max
S

ΓS s.t. H(q) ≤ αH(p)→ max
S

∑
i

pi 1{vi∈S} s.t. H(q) ≤ αH(p) (5)

1From now on, we will use p and q to refer the distributions of the next token defined over the original set
(V) and the selected subset (S) of tokens.
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We name the above formulation as entropy-constrained mass maximization (ECMM). This refor-
mulated version of the problem is easier to reason about. Next, we prove that given 0 < α < 1,
the problem remains NP-hard. Finally, we propose a greedy approach as a solution to this. Unless
otherwise specified, we empirically set α = 0.4 and use it throughout our analysis.

4.3 NP-Hardness Proof of the ECMM Problem

Theorem 2. The entropy-constrained mass maximization problem is NP-hard.

Proof. In Appendix A.2, we present a detailed polynomial-time reduction from the well-known
cardinality-constrained subset-sum (CCSS) problem (Garey & Johnson, 1979). As CCSS is a popular
NP-complete problem, our formulation establishes the NP-hardness of ECMM.

5 Top-H Decoding Method

Having established the NP-hardness of the ECMM problem, we recognize that it cannot be solved
efficiently in the general cases. Thus, to produce a practical, efficient, and yet competitive solution,
we now present a greedy approximation algorithm, namely top-H. Top-H incrementally maximizes
the objective of Eq. 5, while adhering to the imposed entropy constraint.

Algorithm 1 Top-H: proposed greedy token selection algorithm
Require: Probability mass function p = (p1, p2, . . . , pn), entropy threshold coefficient α ∈ (0, 1)
Ensure: Selected token set S

1: Sort tokens in descending order of probability: p1 ≥ p2 ≥ . . . ≥ pn
2: Initialize S ← ∅, H(q)← 0
3: for each token i in sorted order do
4: Add token i to S
5: Compute updated distribution q over S
6: Compute entropy H(q)
7: if H(q) > α ·H(p) then
8: Remove token i from S
9: break

10: end if
11: end for
12: return S

Algorithm 1 outlines the token selection strategy of top-H. The objective is to maximize the probability
mass of the tokens

∑
i pi 1{vi∈S}, where the tokens vi are selected into the sampling set S. To achieve

this, the algorithm begins by sorting all candidate tokens in the descending order of their probabilities.
It then iteratively adds tokens to the sampling set in this order. After each addition, a distribution q is
constructed over the selected tokens, and its entropy is calculated. Top-H continues this process until
the entropy of q reaches the dynamic2 threshold α ·H(p), ensuring that the selected subset respects
the global entropy constraint.

Unlike prior truncation-based sampling methods, top-H explicitly controls the randomness of the
distribution it samples from, H(q), by adapting it to the entropy of the original next token probability
distribution H(p). As a result, the allowed randomness dynamically adjusts throughout the steps
of autoregressive generation as p evolves. In Section 6.2, we provide empirical evidence on the
competitiveness of the top-H’s greedy approach in solving the ECMM.

We now present a theorem that guarantees the termination of the algorithm, with an early convergence
governed by the entropy scaling coefficient α.

Termination Guarantee. Entropy is a non-linear and non-monotonic function. Thus, the entropy
of the distribution q over a set S is not predictable as tokens are added. Specifically, adding a token

2At each step of auto-regressive token generation, the model produces a new probability distribution p,
causing the entropy threshold αH(p) to vary dynamically across generation steps.
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to S can increase or decrease the entropy, depending on the underlying probabilities. However, under
a greedy selection strategy, it can be shown that each additional token strictly increases the entropy of
q. Consequently, the entropy constraint is not a vacuous bound, and the growth of S is inherently
bounded; the set cannot expand indefinitely without eventually violating the entropy constraint. This
intuition is formalized in the following theorem.

Theorem 3. Consider a greedy algorithm that selects tokens in descending order of their probabilities.
Let q be the probability mass function over the selected tokens. Then, the entropy of q increases
strictly at each selection step and is maximized only when all tokens are selected. Therefore, if
the entropy threshold coefficient α is chosen such that 0 < α < 1, the algorithm is guaranteed to
terminate before all tokens are selected.

Proof. Refer to Appendix A.3 for the proof.

The termination guarantee uses the monotonic growth of entropy under the greedy selection procedure.
Each token added to the set contributes positively to the entropy, regardless of its probability, thus
ensuring that the entropy H(q) approaches the threshold αH(p). The algorithm stops adding
tokens to the set S at the moment when any further addition of tokens would violate the constraint.
This ensures that the ECMM objective avoids the trivial solution of selecting all tokens while still
satisfying the entropy constraint.

6 Experiments
6.1 Experimental Setup

Models, sampling methods, and datasets. We evaluate top-H on three recent instruction-tuned
language models, namely, LLaMA3.1–8B–Instruct (Grattafiori et al., 2024), Qwen2.5–3B (Yang
et al., 2024), and Phi-3-Mini-4K-Instruct (Abdin et al., 2024). As baselines, we compare with several
widely used truncation-based sampling methods, namely, top-k, top-p (nucleus sampling), min-p,
and η-sampling. Our evaluations span multiple benchmarks designed to test creative generation,
reasoning ability, and evaluative judgment. Specifically, we also used the Alpaca-Eval dataset (Li
et al., 2023), GSM8K (Cobbe et al., 2021), GPQA (Rein et al., 2024), MT-Bench (Zheng et al., 2023),
and an LLM-as-a-judge evaluation setting.

Experimental settings. For decoding hyperparameters, we follow the configuration in (Nguyen et al.,
2024), using min_p = 0.1, top_p = 0.9, and η = 0.0002 for min-p, top-p, and η-sampling methods,
respectively. We choose the best result out of the k = 10, 20, and 50 for top-k method. Regarding
the evaluation, we use the lm-eval-harness framework (EleutherAI, 2023) and report exact match
accuracy with the flexible extract filter on the GPQA and GSM8K datasets, length-controlled win
rate on Alpaca-Eval, and judge scores (on a scale from 1 to 10) on MT-Bench. For Alpaca-Eval and
MT-Bench, we used GPT-4o (OpenAI, 2024) as the judge LLM. All experiments were conducted on a
single NVIDIA A6000 GPU, and algorithms were implemented using PyTorch version 2.5.1+cu124
and the Hugging Face Transformers library version 4.50.1.

6.1.1 Performance on Creative Writing: Alpaca-Eval and MT-Bench

Fig. 2 presents compelling evidence for the superiority of top-H sampling compared to alternative
SoTA approaches. In Fig. 2(a-c) (Alpaca-Eval), top-H shows remarkable improvements over the
state-of-the-art min-p method, and also conventional sampling methods. For example, for LLaMA3.1-
8B across different T , top-H demonstrates an win-rate (%) improvement of up to 17.11% compared
to SoTA min-p sampling. A critical finding from Fig. 2 is the resilience of top-H to temperature
scaling. While traditional sampling methods exhibit severe performance degradation at higher
T , top-H preserves much of its effectiveness. For instance, for LLaMA3.1-8B-Instruct in Fig.
2(a), top-p sampling shows a catastrophic 34.06% decline in win rate from T=1 to T=2. In contrast,
top-H experiences only a 3.78% reduction over the same temperature range. This robustness is
particularly significant given that higher T settings are essential for generating diverse, creative
texts. The MT-Bench results (Fig. 2(d-f)) further validate the capability of top-H. For example, for
LLaMA3.1-8B, similar to that on Alpaca-Eval, the advantage becomes more pronounced at higher T ,
with top-H achieving a higher score value of up to 3.78.
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Figure 2: (a)-(c): Length-controlled win rates (%) comparison of different SoTA sampling with top-H
on Alpaca-Eval benchmark. (d)-(f): Judge scores (on a scale of 1 to 10) on MT-Bench.

6.1.2 Performance on Reasoning and CoT Tasks

Following the setup in (Nguyen et al., 2024) we use the gsm_cot (8-shot) and
gpqa_main_generative_n_shot (8-shot) tasks for GSM8k and GPQA, respectively.

The experimental results in Tables 1 and 2 demonstrate the effectiveness of top-H compared to
min-p and top-p sampling across language models and temperature settings. Temperature is a key
hyperparameter in generation, striking a balance between creativity and factual accuracy.

On the GSM8k benchmark (Table 1), top-H consistently outperforms the alternatives. At T=1, it leads
for all the models, outperforming both min-p and top-p by a significant margin. Top-H maintains
strong accuracy as temperature increases, while the baselines degrade significantly. At T=2, the
contrast becomes even more pronounced, with top-p showing near-total collapse (declining by up to
73.62% (Phi-3-Mini) in accuracy), while top-H experiences a very modest degradation, showing an
accuracy improvement of up to 25.63% compared to min-p (on LLaMA3.1-8B).

A similar trend is observed in GPQA benchmark (Table 2). At T=1, top-H remains competitive,
outperforming both top-p and min-p on Qwen2.5 and Phi-3-Mini. At T=2, it exhibits notable
robustness, maintaining performance levels substantially higher than those of top-p, which experiences
significant deterioration. Compared to min-p, top-H an accuracy improvement of up to 3.12%, 2.67%,
and 7.36% on Qwen2.5, LLaMA3.1, and Phi-3-Mini, respectively. In summary, top-H demonstrates
competitive performance even at low temperatures and significantly superior performance at
higher temperatures, marking it as a reliable sampling strategy for diverse generation needs.

Temperature
Qwen2.5 3B LLaMA3.1-8B-Instruct Phi-3-Mini

Min-p Top-p Top-H Min-p Top-p Top-H Min-p Top-p Top-H

1.0 72.40 71.27 75.97 48.90 67.93 76.35 81.96 81.35 83.24
1.5 66.79 55.57 72.55 58.00 23.81 70.51 77.10 67.25 77.86
2.0 49.43 9.10 55.57 13.72 2.65 39.35 60.88 7.73 60.20

Table 1: Accuracy (%) for top-H, min-p, and top-p on GSM8K.

Temperature
Qwen2.5 3B LLaMA3.1-8B-Instruct Phi-3-Mini

Min-p Top-p Top-H Min-p Top-p Top-H Min-p Top-p Top-H

1.0 28.35 27.68 28.79 26.34 32.81 29.24 31.92 30.58 32.37
1.5 30.13 27.23 27.90 28.35 28.57 30.58 29.91 28.57 30.80
2.0 25.00 22.32 28.12 26.12 23.88 28.79 23.44 18.53 30.80

Table 2: Accuracy (%) for top-H, min-p, and top-p on GPQA.

6.1.3 Performance Analysis with LLM-as-a-Judge

In this section, we employ the LLM-as-a-Judge framework to directly evaluate the creativity and
coherence of texts generated using min-p, top-p, and top-H sampling strategies. Following the

7



evaluation setup proposed in (Nguyen et al., 2024), we use three open-ended prompts designed to
elicit creative storytelling on diverse topics. We generate responses using three different models:
LLaMA3.1-8B-Instruct, Qwen2.5-3B, and Phi3-Mini-4k-Instruct, each evaluated across three differ-
ent temperature settings. The top-p and min-p sampling methods serve as baselines for comparison.
The prompts used are closely aligned with those in (Nguyen et al., 2024) and are listed in Appendix B.
We use GPT-4o (OpenAI, 2024) as the judge model to assess the outputs, which scores the responses
based on creativity and coherence using the evaluation prompt detailed in Appendix B.

For each evaluation, the outputs of the three sampling strategies are randomly shuffled to mitigate
positional bias. The scores are then extracted from the GPT-4o evaluation responses. To reduce the
impact of randomness and noise, each experimental configuration, defined by model, temperature,
prompt, and sampling strategy, is repeated five times, and the average score is reported. The results
for LLaMA3.1-8B-Instruct are presented in Table 3. The results in Table 3 reveal a consistent trend:
At lower temperatures, top-H produces outputs with significantly higher creativity, originality, and
coherence compared to min-p and top-p sampling methods in all three prompts. As T increases, the
top-p sampling suffers a marked decline in coherence, often generating fragmented and incoherent
text. This degradation stems from top-p’s lack of awareness of the model’s confidence, as it truncates
the distribution based purely on cumulative probability without accounting for distributional entropy.

In contrast, min-p and top-H maintain stronger coherence at higher temperatures by adaptively
limiting their sampling pools based on model confidence. Among the two, top-H consistently
outperforms min-p in both creativity and coherence. This is attributed to top-H’s direct control over
the entropy of the selected token set, allowing it to modulate randomness in alignment with the
model’s uncertainty. Additional LLM-as-a-Judge results supporting these conclusions are provided
in Table 5 in the Appendix, which covers the evaluations on the Qwen2.5 and Phi-3-Mini models.

Temperature Prompt Sampling M1 M2 M3 M4 M5 Average

1.0

Prompt 1
Top-p 7.45 ±0.20 6.35 ±0.22 8.75 ±0.26 6.60 ±0.30 7.55 ±0.15 7.45 ±0.30
Min-p 8.25 ±0.22 7.60 ±0.26 8.25 ±0.15 7.65 ±0.20 7.60 ±0.15 7.85 ±0.26
Top-H 8.80 ±0.15 8.65 ±0.20 8.40 ±0.22 8.05 ±0.15 8.55 ±0.22 8.45 ±0.26

Prompt 2
Top-p 7.85 ±0.15 7.20 ±0.15 8.35 ±0.22 7.05 ±0.35 7.50 ±0.15 7.60 ±0.30
Min-p 7.25 ±0.24 7.20 ±0.15 8.05 ±0.26 7.55 ±0.20 6.75 ±0.35 7.40 ±0.22
Top-H 8.10 ±0.2 8.10 ±0.3 8.25 ±0.15 7.90 ±0.15 8.35 ±0.26 8.25 ±0.30

Prompt 3
Top-p 6.80 ±0.26 6.10 ±0.22 8.90 ±0.22 7.05 ±0.20 7.65 ±0.35 7.20 ±0.15
Min-p 6.7 ±0.26 6.65 ±0.25 7.65 ±0.26 6.77 ±0.25 7.00 ±0.20 6.90 ±0.30
Top-H 8.15 ±0.26 8.05 ±0.26 8.00 ±0.15 8.30 ±0.31 8.25 ±0.20 8.05 ±0.30

1.5

Prompt 1
Top-p 7.45 ±0.15 7.10 ±0.26 8.20 ±0.22 7.55 ±0.30 7.35 ±0.22 7.55 ±0.31
Min-p 7.95 ±0.22 7.55 ±0.35 8.25 ±0.20 7.55 ±0.26 7.60 ±0.22 7.80 ±0.26
Top-H 8.75 ±0.22 9.05 ±0.26 8.50 ±0.15 8.40 ±0.15 8.80 ±0.20 8.80 ±0.22

Prompt 2
Top-p 7.80 ±0.30 7.75 ±0.22 8.65 ±0.35 7.00 ±0.22 7.65 ±0.26 7.75 ±0.22
Min-p 7.30 ±0.20 7.10 ±0.31 7.87 ±0.30 6.80 ±0.26 6.75 ±0.26 7.10 ±0.15
Top-H 8.10 ±0.20 8.10 ±0.26 8.05 ±0.15 7.70 ±0.20 8.05 ±0.22 8.10 ±0.22

Prompt 3
Top-p 7.40 ±0.20 6.85 ±0.26 7.70 ±0.15 7.20 ±0.22 8.35 ±0.31 7.45 ±0.30
Min-p 6.35 ±0.20 6.05 ±0.22 7.85 ±0.22 6.55 ±0.15 7.20 ±0.26 6.80 ±0.26
Top-H 8.35 ±0.30 7.80 ±0.31 7.80 ±0.20 8.05 ±0.22 8.10 ±0.30 8.05 ±0.26

2.0

Prompt 1
Top-p 7.00 ±0.26 6.45 ±0.30 5.35 ±0.26 5.40 ±0.26 5.60 ±0.24 5.95 ±0.22
Min-p 8.05 ±0.31 8.35 ±0.31 7.65 ±0.24 7.15 ±0.22 7.65 ±0.31 7.70 ±0.20
Top-H 8.80 ±0.22 9.05 ±0.24 8.75 ±0.26 8.70 ±0.15 8.80 ±0.22 8.85 ±0.20

Prompt 2
Top-p 8.25 ±0.20 7.65 ±0.30 3.85 ±0.20 5.20 ±0.24 6.30 ±0.22 6.25 ±0.15
Min-p 7.60 ±0.15 7.45 ±0.30 7.15 ±0.31 7.55 ±0.20 7.40 ±0.35 7.40 ±0.26
Top-H 8.85 ±0.20 8.35 ±0.31 8.60 ±0.26 8.60 ±0.30 8.70 ±0.22 8.60 ±0.22

Prompt 3
Top-p 7.15 ±0.25 8.05 ±0.24 4.20 ±0.24 5.65 ±0.20 7.80 ±0.31 6.55 ±0.30
Min-p 6.80 ±0.31 6.75 ±0.31 7.20 ±0.30 6.30 ±0.15 6.35 ±0.20 6.65 ±0.20
Top-H 8.0 ±0.31 7.1 ±0.22 9.0 ±0.15 8.05 ±0.20 7.05 ±0.20 7.65 ±0.24

Table 3: Evaluation metrics and the judge scores (on a scale of 1.0 to 10.0) for different temperatures,
prompts, and sampling methods on LLaMA3.1-8B-Instruct. M1-M5 denote creativity, originality,
narrative flow, imagery, and vitality, respectively.

In Appendix C, we present additional results and discussions on top-H, including evaluations with
a larger 70B model, human evaluation of creativity and coherence across different sampling
techniques, and comparison of top-H to Mirostat method.

6.1.4 Computational Overhead and Timing Comparisons

We compare per-token decode latency (ms/token) of top-H against top-p and min-p on three models:
LLaMA3.1-8B-Instruct, Phi-3-Mini-3.8B, and LLaMA3.3-70B-Instruct in the Table 4. For each
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configuration, we evaluate on 100 prompts from AlpacaEval, generating 128 tokens per prompt, and
report the mean ms/token over prompts. Specifically, we observe a negligible overhead of as low as
0.8% compared to min-p and top-p.

Computational complexity. Let n denote the vocabulary size, and let p1 ≥ p2 ≥ · · · ≥ pn be the
sorted probabilities. Sorting the logits dominates the computational cost for all cumulative decoding
methods, requiring O(n log n) time. Subsequent operations such as partial selection or cumulative
thresholding in top-p and min-p decoding only involve a single linear pass, adding O(n) additional
work but not changing the overall asymptotic complexity.

For top-H decoding, define the partial entropy hj =
∑j

i=1 pi log pi. According to the proof of
Theorem A.3, the entropy of the distribution qj is given by

H(qj) = log Γj −
hj

Γj
,

where the cumulative mass satisfies Γj = Γj−1 + pj , and the partial entropy follows hj = hj−1 +
pj log pj . These recurrences enable incremental entropy accumulation (Alg. 2), which updates H(qj)
in O(1) time per step, or O(n) in total given sorted inputs. Therefore, the overall complexity of
top-H decoding is also bounded by the sorting step, i.e., O(n log n). In practice, log pj values are
directly available from the model’s log-probabilities.

Algorithm 2 Incremental entropy accumulation
1: Initialize Γ← 0, h← 0, H ← 0
2: for each step j do
3: Γ← Γ + pj
4: h← h+ pj log pj

5: H ← log(Γ)− h

Γ
6: end for

Temperature
LLaMA3.1-8B-Instruct Phi-3-Mini LLaMA3.3-70B-Instruct

Top-H Min-p Top-p Top-H Min-p Top-p Top-H Min-p Top-p

1.0 28.3951 27.3396 27.4275 24.3847 23.6499 23.7809 219.3837 219.1391 218.4900

2.0 28.4671 27.3840 27.4389 24.5929 23.9397 23.5844 219.3428 218.3609 217.7083

Table 4: Average runtime per token (ms/token) across sampling strategies and models.

6.2 Discussions and Ablations

Figure 3: Effect of T scaling on genera-
tion coherence in min-p, top-p vs top-H.

Sensitivity of the text to the temperature scaling. In
this section, we present a quantitative analysis of how
the coherence of generated text varies with changes in
sampling temperature. We conducted experiments using
the Qwen2.5-3B and LLaMA3.1-8B-Instruct models on
prompts from the Alpaca-Eval dataset. To operationalize
coherence, we use the total log-probability (log-likelihood)
of the generated sequence as a proxy: higher total log-
probability suggests that the model is more confident in the
output, which we interpret as a signal of greater coherence.

Specifically, we compute the log-likelihood of each gener-
ated token during autoregressive generation, average these
values across the entire sequence. This process is repeated
in multiple temperature settings —0.7, 1.2, 1.6, 2.0, and
2.5—and for three different sampling strategies: top-p, min-p, and top-H. The result is portrayed in
Fig. 3. As the temperature increases, the log-likelihood of the text generated under min-p and top-p
sampling declines sharply. This suggests that the coherence of these methods is highly sensitive to
temperature and that at higher temperatures, where increased creativity is encouraged, the generated
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text tends to become less coherent. In contrast, top-H adjusts adaptively to the entropy of the distri-
bution of the next token H(p), effectively constraining randomness. As a result, it maintains more
consistent and coherent output even in high-temperature settings.

Impact of α parameter. The only hyperparameter in top-H sampling is α, which directly controls
the maximum allowable entropy for the distribution q. As such, a careful tuning of α is essential. To
determine an appropriate value, we randomly select 50 development samples from the Alpaca-Eval
dataset and use LLaMA3.1–8B–Instruct to generate responses. We explore values of α in the range
[0.1, 0.9], with increments of 0.05. For each candidate value, we run the model on the development
set and evaluate the outputs using our LLM-as-a-judge prompt (the same as in Section 6.1.3) to
assess both creativity and coherence. The optimal value of α is selected based on its ability to best
balance these two objectives. The results of the creativity and coherence evaluation, averaged over
50 development samples, are presented in Figure 4. As α increases, the entropy threshold becomes
more permissive, allowing greater randomness in token selection. Consequently, creativity tends
to increase, while coherence tends to decline. The optimal value of α is the point at which these
two metrics are best balanced. Based on the figure, we observe that α = 0.4 produces the highest
average in the creativity and coherence scores, indicating it as the most suitable choice. Additional
quantitative results are provided in Appendix C.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2
3
4
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6
7
8
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Creativity & Coherence Average
Optimal Point

Figure 4: Effect of the parameter α
on creativity and coherence.

Empirical optimality of the top-H decoding strategy. We
now empirically evaluate the competitiveness of the greedy
algorithm of the top-H relative to the optimal solution of the
ECMM problem, found by exhaustive search. We randomly
sample 20 prompts from the Alpaca-Eval dataset and generate
responses using the top-H method. At each generation step,
the candidate set of tokens is restricted to the top-15 tokens of
the probability distribution predicted by the model. To obtain
the optimal solution, we exhaustively enumerate all possible
215 subsets of the feasible token set and identify the subset
S∗ that maximizes the objective ΓS∗ , subject to the entropy
constraint H(q) ≤ 0.4H(p), with q denoting the distribution over selected subset.

Figure 5: Empirical evaluation of top-H
performance relative to the optimal solu-
tion of the ECMM problem.

For comparison, we also compute the greedy solution Sg

using Algorithm 1. At each generation step, we calculate
the ratio ΓSg/ΓS∗ , and report the mean and variance of
this ratio (across different generation steps) for 20 dif-
ferent evaluation prompts, as visualized in Figure 5. As
shown in the figure, the mean of the ratio remains con-
sistently close to 1.0 across randomly sampled instances
from the dataset, with only minor variance. Although
deriving a formal approximation guarantee is beyond
the scope of this work, our empirical results indicate that
the solution obtained by top-H for the ECMM problem
closely approximates the optimal solution in practice.

While the primary goal of this work is to empirically demonstrate the efficacy of top-H decoding
in addressing the ECMM, we defer a detailed theoretical analysis of the associated error bounds to
future research. Nevertheless, in Appendix A.4, we provide a preliminary worst-case error bound for
the greedy top-H solution under a specific assumption about the next-token probability distribution.

7 Conclusions
This paper addresses the challenge of balancing creativity and coherence in LLMs, particularly under
high-temperature settings, where coherence often deteriorates. We introduce the entropy-constrained
mass maximization (ECMM) problem, which formalizes the objective of balancing creativity and
coherence by imposing an entropy constraint on the distribution of tokens in the sampling set. After
proving the NP-hardness of ECMM, we propose top-H, a computationally efficient greedy algorithm
that effectively approximates the solution of ECMM problem. Extensive empirical evaluation across
various tasks demonstrates that top-H consistently outperforms established sampling strategies such
as top-p and min-p, achieving up to 25.6% higher accuracy. These results establish top-H as a new
state-of-the-art method for creative writing in LLMs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of the limitations in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The full set of assumptions and complete proofs are provided in Appendix A.
The main intuitions for the results are provided in the main paper and complete proofs are
provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the necessary information required to reproduce the experiments
are discussed in section 6 in combination with the actual implementation in
https://github.com/ErfanBaghaei/Top-H-Decoding.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Implementation of this work, including the full code repository is available at
https://github.com/ErfanBaghaei/Top-H-Decoding.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This work does not involve model training; however, evaluation and imple-
mentation details are provided in Section 6.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conduct all experiments multiple times (e.g., five runs in Section 6.1.3)
and report the average performance across runs. The standard deviation of the error is also
reported when relevant, as in Figure 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

15

https://github.com/ErfanBaghaei/Top-H-Decoding
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This information is provided in section 6.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper conforms, in every aspect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This is provided in the Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets used in this paper are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are created.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs of Theorems

Unless otherwise specified, all logarithms are natural log.

A.1 Proof of Theorem 1

Proof of Theorem 1. The probability of the selected tokens needs to be divided by their sum, to make
sure that the sum of the distribution q is 1. Given:∑

i

pi = 1 ⇒
∑
i

pi1{vi /∈S} = 1− ΓS (6)

According to 4:

M =


pi+

pi
ΓS

2 i ≤ m

pi

2 i > m

DKL(p||M) =

m∑
i=1

pi log

(
pi

1
2 (pi +

pi

ΓS
)

)
+

n∑
i=m+1

pi log

(
pi
1
2pi

)
=

m∑
i=1

pi log

(
2ΓS

1 + ΓS

)
+

n∑
i=m+1

pi log(2)

= log

(
2ΓS

1 + ΓS

) m∑
i=1

pi + log(2)

n∑
i=m+1

pi

Using (3) and (6):

= ΓS log

(
2ΓS

1 + ΓS

)
+ log(2)(1− ΓS) = ΓS

[
log

(
ΓS

1 + ΓS

)
+ log(2)

]
+ log(2)(1− ΓS)

= ΓS log

(
ΓS

1 + ΓS

)
+ log(2)ΓS + log(2)− log(2)ΓS = ΓS log

(
ΓS

1 + ΓS

)
+ log(2) (7)

DKL(q||M) =

m∑
i=1

pi
ΓS

log

(
pi

ΓS

1
2 (pi +

pi

ΓS
)

)
=

1

ΓS

m∑
i=1

pi log

(
2

1 + ΓS

)
=

1

ΓS
log

(
2

1 + ΓS

) m∑
i=1

pi

Using (3):

= log

(
2

1 + ΓS

)
= log(2)− log(1 + ΓS) (8)

Rewriting Jensen-Shannon Divergence using (7) and (8):

JSD(p||q) = 1

2

(
log(2) + ΓS log

(
ΓS

1 + ΓS

))
+

1

2
(log(2)− log(1 + ΓS))

=
1

2
(2 log(2) + ΓS log(ΓS)− ΓS log(1 + ΓS)− log(1 + ΓS)) = log(2) +

1

2
(ΓS log(ΓS)− (1 + ΓS) log(1 + ΓS))

Therefore, JSD is only dependent on ΓS .
Now we want to show that the distance between the distributions is decreasing with respect to ΓS :

d

dΓS
JSD(p||q) = 1

2
(log(ΓS) + 1− log(1 + ΓS)− 1)

=
1

2
(log(ΓS)− log(1 + ΓS)) → Always negative.

Therefore, JSD(p||q) is decreasing with respect to ΓS and to minimize JSD(p||q), one needs to
maximize ΓS .
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A.2 NP-Hardness of Entropy-Constrained Mass Maximization

All logarithms are natural (ln). Arithmetic is performed on a unitcost RAM with binary encodings; an
integer x ≥ 1 occupies ⌊log2 x⌋+ 1 bits.

A.2.1 Problem definition

For a probability vector p = (p1, . . . , pn) with
∑

i pi = 1, define

H(p) := −
n∑

i=1

pi ln pi.

The fixed–budget maximization problem ECMM is

max
S⊆[n]

ΓS :=
∑
i∈S

pi s.t. H(S) ≤ 0.4 ·H(p), (ECMM)

where H(S) denotes the entropy of the renormalized vector (pi)i∈S .

The corresponding decision version, ECME, is:

Input: A probability vector p = (p1, . . . , pn), a mass target β = 2
3 , and the fixed

budget α = 0.4 ·H(p).
Question: Does there exist S ⊆ [n] such that∑

i∈S

pi = β and H(S) ≤ α?

We show that the decision variant is NP–complete; the optimization variant is NP–hard.

A.2.2 Source problem: Cardinality–Constrained Subset Sum

Definition 1 (CCSS). Given positive integers w1, . . . , wm, a target τ , and an integer K with
3 ≤ K ≤ m, decide whether some subset of exactly K weights sums to τ .

CCSS is NP–complete: reduce from the classic SUBSET–SUM; see, e.g., Papadimitriou (Papadim-
itriou, 1994, Exercise 8.14).

Our reduction from CCSS to (ECMM) needs the following narrow–range condition.
Assumption 1 (Narrow range).

τ

K + 1
< wi <

τ

K − 1
(1 ≤ i ≤ m).

The next lemma shows that we may enforce Assumption 1 by a polynomial–time padding step.
Lemma 1 (Padding to narrow range). There is a polynomial–time transformation that maps an
arbitrary CCSS instance (w1, . . . , wm; τ ;K) to an equivalent instance (w′

1, . . . , w
′
m; τ ′;K) that

satisfies Assumption 1. The new weights and target have binary lengths polynomial in the original
instance size.

Proof. Set
M := (K + 1) τ, w′

i := wi +M, τ ′ := τ +KM.

Because the same constant M is added to every weight, a subset of exactly K items sums to τ iff it
sums to τ ′: ∑

i∈S

wi = τ ⇐⇒
∑
i∈S

w′
i = τ ′.

Lower bound. Each new weight satisfies w′
i > M . Moreover

τ ′

K + 1
=

τ +K(K + 1)τ

K + 1
= KT +

τ

K + 1
< Kτ + τ = M,

so w′
i > τ ′/(K + 1).
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Upper bound. We have w′
i ≤ wmax +M ≤ τ + (K + 1)τ = (K + 2)τ . On the other hand,

τ ′

K − 1
=

(K(K + 1) + 1)τ

K − 1
=

K2 +K + 1

K − 1
τ.

Since (K+2)(K−1) = K2+K−2 < K2+K+1 for every K ≥ 3, it follows that w′
i < τ ′/(K−1).

Therefore Assumption 1 holds for the padded instance.

Encoding size. The multiplier M = (K + 1)τ increases the bit–length of the largest weight by
at most log2(K + 1) bits, and the same holds for τ ′. Hence the transformation is polynomial in the
input length.

Henceforth we assume without loss of generality that every CCSS instance meets Assumption 1; if it
does not, we first apply the padding from Lemma 1.

We also stipulate K ≥ 20 (duplicate the instance as below if necessary).

Scaling step (making K≥20 while keeping the narrow range). If the given instance has K < 20,
put

d :=
⌈
20/K

⌉
,

duplicate every weight d times and set

K1 := dK, τ1 := dτ.

Then
∃S ⊆ [m] : |S| = K,

∑
i∈S

wi = τ ⇐⇒ ∃S ⊆ [m] : |S| = K1,
∑
i∈S

wi = τ1,

so feasibility is preserved and K1 ≥ 20.

The plain duplication, however, may violate Assumption 1 because the new lower bound τ1/(K1+1)
can exceed some of the duplicated weights. To restore the assumption we now re-apply the padding
of Lemma 1 to the instance (w1, . . . , wm; τ1; K1). This yields an equivalent instance

(w′
1, . . . , w

′
m; τ ′; K1)

that satisfies Assumption 1 and still has K1 ≥ 20.

All numbers grow by at most ⌈log2 d⌉ + O(logK) bits, so the whole transformation remains
polynomial-time.

Henceforth we may—and do—assume that K ≥ 20 and that the narrow-range condition holds.

A.2.3 Reduction to ECME

Let (w1, . . . , wm; τ ;K) be a CCSS instance that already satisfies Assumption 1. Define

γK :=
1

16K2
, θK <

1

2K2
, δK :=

5θK
2 lnK

, εK :=
0.0384 + γK

lnK
,

λ(K) :=

⌈
0.7333− εK + δK

0.133

⌉
, B := ⌈Kλ(K)⌉,

wb :=
τ

2B
, τb := Bwb =

1
2τ, W := τ + τb =

3
2τ.

Set

pi :=
wi

W
(1 ≤ i ≤ m), pb :=

wb

W
=

1

3B
, β :=

τ

W
= 2

3 .

The resulting ECME instance contains n = m + B items. The numbers above are representable
with O(logK) bits, hence the reduction runs in polynomial time.
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A.2.4 Entropy budget window

Lemma 2 (Budget window). For the constructed instance,

lnK − γK < 0.4H(p) < ln(K + 1).

Proof. Split H(p) = Hh +Hb, where

Hh = 2
3 (H(q) + ln 2

3 ), qi :=
wi

τ
,

Hb = 1
3 (ln 3 + λ(K) lnK).

By Assumption 1 and a second–order Taylor bound, H(q) = lnK − θK with 0 < θK < 1
2K2 .

Substitution gives

0.4H(p) = (1− εK) lnK + 0.0384− 0.2667 θK + 0.133 δK lnK = lnK − γK + 0.0666 θK ,

and since 0 < 0.0666 θK < ln(1 + 1/K) for K ≥ 20, the window follows.

A.2.5 Structural lemmas

Lemma 3 (Booster blow-up). Let S be any subset with ΓS = β. If S contains at least one booster
item, then H(S) > 0.4H(p).

Proof. Write S = H ∪B where H (resp. B) is the set of heavy (resp. booster) indices selected. Let
b := |B| ≥ 1 and L := |H|.

Step 1 – how many boosters are needed. Each booster weighs wb = τ/(2B), whereas every
heavy weight is at least wmin = τ/(K + 1) by Assumption 1. Total weight has to be exactly τ , so
each heavy item that is removed must be replaced by at least

wmin

wb
=

τ/(K + 1)

τ/(2B)
=

2B

K + 1
>

2B

K

boosters. Therefore L ≤ K − 1 and

b ≥ 2B

K
, δ :=

b

2B
≥ 1

K
. (9)

(The quantity δ equals the total probability mass of the boosters after renormalisation because each
has probability wb/τ = 1/(2B).)

Step 2 – a lower bound on the entropy of S. The booster probabilities are all 1/(2B), so their
contribution is δ ln(2B). For the heavy part we use the crude bound ln(K − 1) ≤ lnK − 1/K
together with the fact that the L heavy probabilities add up to 1− δ:

H(S) ≥ (1− δ) ln(K − 1) + δ ln(2B) ≥ lnK − 1

K
+ δ
(
(λ(K)− 1) lnK + ln 2

)
,

because ln(2B) = ln 2 + λ(K) lnK by definition of B. With (9) this gives

H(S) ≥ lnK +
(λ(K)− 1) lnK + ln 2− 1

K
.

Since λ(K) ≥ 2 for every K ≥ 20, the numerator is positive and we conclude

H(S) > lnK. (10)

Step 3 – compare with the budget. Lemma 2 states 0.4H(p) < lnK. Combining this with (10)
proves H(S) > 0.4H(p), as required.

Lemma 4 (Cardinality lock). If S contains no boosters and ΓS = β = 2/3, then |S| = K and∑
i∈S wi = τ .
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Proof. Since S has no boosters, its total weight is∑
i∈S

wi = W ΓS = τ.

Let |S| = L. By the narrow–range assumption,

L · τ

K + 1
<
∑
i∈S

wi = τ < L · τ

K − 1
.

Dividing through by τ gives
L

K + 1
< 1 <

L

K − 1
,

which simplifies to K − 1 < L < K + 1. Since L is an integer, L = K. Having |S| = K and total
weight τ establishes the claim.

Lemma 5 (Entropy gap for a K–heavy subset). Every K–element subset S of heavy items summing
to τ satisfies

H(S) ≤ lnK − γK .

Proof. After selecting K heavy items summing to τ , their renormalised probabilities are ri = wi/τ .
By the narrow–range assumption,

1

K + 1
< ri <

1

K − 1
,

so we may write ri =
1
K + xi with |xi| < 1

K(K−1) and
∑

i xi = 0.

Then

H(S) = −
K∑
i=1

ri ln ri = −
K∑
i=1

(
1
K + xi

)
ln
(

1
K + xi

)
= lnK −

K∑
i=1

(
1
K + xi

)
ln
(
1 +Kxi

)
.

Using the Taylor approximation ln(1 + u) ≥ u− u2

2 for |u| < 1,(
1
K + xi

)
ln(1 +Kxi) ≥

(
1
K + xi

)(
Kxi − (Kxi)

2

2

)
= xi +

Kx2
i

2 −K2x3
i /2.

Summing over i and using
∑

i xi = 0 and |xi| < 1/(K(K − 1)) gives

K∑
i=1

(
1
K+xi

)
ln(1+Kxi) ≥

K

2

K∑
i=1

x2
i−

K2

2

K∑
i=1

|xi|3 >
1

2(K − 1)2
− 1

2(K − 1)3
=

K − 2

2(K − 1)3
.

For K ≥ 20, one checks
K − 2

2(K − 1)3
>

1

16K2
= γK .

Hence
H(S) = lnK −

∑
i

(
1
K + xi

)
ln(1 +Kxi) ≤ lnK − γK ,

as claimed.

A.2.6 Equivalence theorem

Theorem 4. The constructed ECME instance admits a subset of mass β iff the original CCSS
instance is a YES instance.

Proof. (⇒) Any feasible S must exclude boosters by Lemma 3, so Lemma 4 gives a K–subset
summing to τ .
(⇐) Conversely, let S be any K–element subset summing to τ . By Lemma 5, H(S) ≤ lnK−γK , and
by Lemma 2, lnK − γK < 0.4H(p). Hence H(S) < 0.4H(p) and ΓS = β, so S is feasible.
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A.2.7 Complexity consequence

Theorem 5. The decision variant ECME is NP–complete, and the corresponding optimization
problem ECMM is NP–hard.

Proof. Membership in NP Given a candidate subset S, we can verify both constraints in polynomial
time. For the mass we simply add the pi’s. For the entropy, we approximate each ln to O(logK) bits;
the required precision is well below the separating gap γK − 0.0666 θK = Θ(K−2), so rounding
cannot flip the inequality. Classical results on transcendental evaluation on a unit–cost RAM (Brent
& Zimmermann, 2010) show that such an approximation takes Õ((logK)2) time—polynomial in the
input size. Hence the verifier runs in polynomial time.

NP–hardness of the decision problem. Apply the polynomial–time padding from Lemma 1 and
then the reduction of Section A.2.3. By Theorem 4, the resulting instance is a YES instance of ECME
iff the original CCSS instance is a YES instance. Therefore the decision problem is NP–hard.

Optimization hardness. Assume, for contradiction, that we had a polynomial–time algorithm that
returns

max
S⊆[n]

ΓS s.t. H(S) ≤ 0.4 ·H(p).

On the same input we could decide the ECME instance by a single comparison of that maximum
with the fixed target value β = 2

3 . This would solve an NP–complete problem in polynomial time,
contradicting P ̸= NP. Hence the optimization version is NP–hard.

A.3 Proof of Early Termination

Proof of Theorem 3. Assume that the distribution of the selected tokens after j steps is qj , therefore:

H(qj−1) = −
j−1∑
i=1

pi
Γj−1

log

(
pi

Γj−1

)
= − 1

Γj−1

j−1∑
i=1

pi log pi+
log(Γj−1)

Γj−1

j−1∑
i=1

pi, where Γj−1 =

j−1∑
i=1

pi

Since
∑j−1

i=1 pi = Γj−1:

H(qj−1) = log(Γj−1)−
1

Γj−1

j−1∑
i=1

pi log pi

∴ −
j−1∑
i=1

pi log pi = Γj−1(H(qj−1)− log(Γj−1)) (11)

Now, calculating H(qj):

H(qj) = −
j∑

i=1

pi
Γj−1 + pj

log

(
pi

Γj−1 + pj

)
= −

j∑
i=1

pi
Γj−1 + pj

log pi+

j∑
i=1

pi
Γj−1 + pj

log(Γj−1+pj)

= − 1

Γj−1 + pj

j∑
i=1

pi log pi +
log(Γj−1 + pj)

Γj−1 + pj

j∑
i=1

pi

Since
∑j

i=1 pi =
∑j−1

i=1 pi + pj = Γj−1 + pj :

H(qj) = log(Γj−1+pj)−
1

Γj−1 + pj

j∑
i=1

pi log pi = log(Γj−1+pj)+
1

Γj−1 + pj

(
−

j−1∑
i=1

pi log pi − pj log pj

)
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Using (11):

= log(Γj−1 + pj) +
1

Γj−1 + pj

(
Γj−1H(qj−1)− Γj−1 log(Γj−1)− pj log pj

)
∴ ∆H = H(qj)−H(qj−1)

= log(Γj−1 + pj) +
1

Γj−1 + pj

(
Γj−1H(qj−1)− Γj−1 log(Γj−1)− pj log pj

)
)−H(qj−1)

= log(Γj−1+pj)+
1

Γj−1 + pj

(
Γj−1H(qj−1)− (Γj−1 + pj)H(qj−1)− Γj−1 log(Γj−1)− pj log(pj)

)
= log(Γj−1 + pj)−

1

Γj−1 + pj

(
pjH(qj−1) + Γj−1 log(Γj−1) + pj log(pj)

)
The probabilities are sorted in descending order, therefore:

∀i ≤ j : pj ≤ pi ⇒
j−1∑
i=1

pj ≤
j−1∑
i=1

pi ⇒ (j − 1)pj ≤ Γj−1 ⇒ j − 1 ≤ Γj−1

pj

∴ H(qj−1) ≤ log(j − 1) ≤ log

(
Γj−1

pj

)

∴ ∆H ≥ log(Γj−1 + pj)−
pj log

(
Γj−1

pj

)
Γj−1 + pj

− Γj−1 log(Γj−1) + pj log(pj)

Γj−1 + pj

= log(Γj−1 + pj)−
1

Γj−1 + pj
[pj log(Γj−1)− pj log(pj) + Γj−1 log(Γj−1) + pj log(pj)]

= log(Γj−1 + pj)−
1

Γj−1 + pj
(pj log(Γj−1) + Γj−1 log(Γj−1))

= log(Γj−1 + pj)− log(Γj−1) = log

(
Γj−1 + pj

Γj−1

)
= log

(
1 +

pj
Γj−1

)

∴ ∆H ≥ log

(
1 +

pj
Γj−1

)
> 0⇒ ∆H > 0

A.4 Formal approximation bound for the top-H

Zipf model.

Fix a vocabulary of size n and exponent s > 1. We assume the sorted next-token probabilities obey
the classical Zipf / regularly varying law:

pi :=
i−s

Hn,s
, Hn,s =

n∑
j=1

j−s. (12)

Empirically, language-model logits are well approximated by s ∈ [1.05, 1.20] (Gerlach & Altmann,
2013); hence the assumption captures current practice.

The Zipf assumption matters, because ECMM is NP-hard (Theorem 2), exact polynomial-time
solutions are unlikely. In the absence of structural assumptions, a constant-factor approximation
guarantee for ECMM is highly unlikely unless P = NP , as our NP-hardness proof relies on a
gap-preserving reduction from Cardinality-Constrained Subset Sum. This structure is known to
be fundamentally difficult to approximate, a standard result in computational complexity theory
(Papadimitriou, 1994). However, LLM logits consistently follow heavy-tailed (Zipf / regularly-
varying) laws, so analysing this regime yields practically relevant bounds.

Notation. We write M(k) =
∑

i≤k pi for the prefix mass, T (k) = 1−M(k) for the tail mass, and

H(k) for the entropy of the normalised prefix distribution q
(k)
i = pi/M(k).
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Preliminaries

Lemma 6 (Monotonicity of prefix entropy). For 1 ≤ k < n one has H(k) < H(k + 1). Moreover,
for any subset S of size k, H(qS) ≥ H(k).

Proof. The first claim is classical: adding the (k + 1)-st symbol strictly increases entropy because
pk+1 < pk and entropy is Schur-concave. For the second claim we note that (p1, . . . , pk) majorises
any other k-subset of the sorted vector; Schur-concavity again yields the desired inequality.

Lemma 7 (Tail mass bound). For k < n,

(k + 1)1−s − n1−s

(s− 1)Hn,s
≤ Tn(k) ≤

k1−s

(s− 1)Hn,s

When n≫ k, the numerator difference is o(k1−s), so the upper bound is asymptotically tight.

Proof. Apply upper and lower Riemann sums to
∫ n

k
x−s dx.

Lemma 8 (Prefix entropy asymptotics). There exist constants cs, Cs > 0 such that

cs +
s

s− 1
log(

k

2
) ≤ H(k) ≤ Cs +

s

s− 1
log k for all k ≥ 2.

Proof. Combine Lemma 7 with integral bounds for
∑

i−s log i.

Depth of the greedy prefix

Let kg := max{k : H(k) ≤ αH(n)}. Lemma 6 implies kg is well defined.
Lemma 9 (Growth rate of kg). There exist constants as, bs > 0 such that

asn
α ≤ kg ≤ bsn

α.

Proof. Insert Lemma 8 into the defining inequality and solve for kg .

Mass captured by top-H

Write Γg = M(kg). This is the mass captured by the greedy solution. By construction, this solution
is valid as it satisfies the entropy constraint H(kg) ≤ αH(n).

Tight upper bound for ECMM

Let S⋆ be any subset satisfying the entropy constraint, and set Γ⋆ =
∑

i∈S⋆ pi. We want to bound
the maximum possible value of Γ⋆.

The greedy algorithm selects the prefix [kg] and captures a mass of Γg = M(kg) = 1− T (kg). The
total mass of all tokens not in the greedy solution is, by definition, the tail mass T (kg).

Any other valid solution S⋆ can, at best, capture the mass of the greedy solution plus some portion
of the remaining tail mass. The absolute maximum mass any solution can capture is 1 (the entire
vocabulary). Therefore, the maximum possible improvement any optimal solution Γ⋆ can have over
the greedy solution Γg is bounded by the tail mass that the greedy algorithm left behind:

Γ⋆ − Γg ≤ 1− Γg = 1−M(kg) = T (kg). (13)
This gives us a direct upper bound on the additive gap between the optimal and greedy solutions.
Theorem 6 (Distribution-dependent additive guarantee). Under equation 12, for every n ≥ 4,

Γ⋆ − Γg ≤ Tn(kg) ≤
ks−1
g

(s− 1)Hn,s
= O(n−α(s−1))

Proof. From 13, we have the additive gap Γ⋆ − Γg ≤ T (kg) = Tn(kg). Lemma 7 bounds Tn(kg) by
k1−s
g

(s−1)Hn,s
. Finally, lemma 9 gives kg = Θ(nα), so the gap decays as O(n−α(s−1)).
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Discussion on the effectiveness of greedy

We understand that the approach of dropping high-probability tokens could in principle beat the
greedy prefix by allowing more low-mass tokens from the tail. However, this problem (ECMM) is
NP hard, and we approximate the solution via a practically feasible greedy approach. Notably, we
empirically demonstrate the effectiveness of this greedy based top-H approach to be superior to the
existing SoTA. Additionally, under the constrained distribution of the Zipfian regime, the greedy
prefix is constructed to generally maximize mass under minimal entropy growth. Because entropy
increases monotonically with each added token, and the most probable tokens usually contribute less
to entropy per unit mass, the greedy approach reaches the entropy threshold more efficiently than any
alternative.

B LLM-as-a-Judge Evaluation Prompts

Following (Nguyen et al., 2024), we adopt the following judge evaluation prompt and three open-
ended prompts designed to elicit creative responses and facilitate creativity–coherence trade-off
analysis:

Judge Evaluation Prompt
You are an expert judge evaluating AI-generated creative writing. I am testing the diversity and coherent
writing capabilities of three different models. I will paste three different responses that were generated here.
Rate responses based on the following metrics:
1. Diversity: Novelty and uniqueness of ideas 2. Originality: Innovative approach to the prompt 3.
Narrative Flow: Coherence of the text 4. Emotional Impact: Ability to evoke feelings 5. Imagery:
Vividness of descriptions.
Rate each metric from 1 to 10. Also, suggest the overall winner: the response that best maintains high
coherence while demonstrating high diversity.

Prompt 1
Write a story about an alien civilization’s first contact with Earth from their perspective.

Prompt 2
Write a story about a world where time suddenly starts moving backwards.

Prompt 3
Write a story about a mysterious door that appears in an unexpected place.

C More Results

In this section we provide more experimental evaluations and analysis on top-H sampling.

C.1 LLM-as-a-Judge for creativity and coherence evaluation

Table 5 presents creativity and coherence evaluations under the LLM-as-a-Judge setup for the
Qwen2.5–3B and Phi-3-Mini–4k–Instruct models. The observed trends are consistent with those
of LLaMA3.1–8B–Instruct: as the decoding temperature increases, coherence degrades notably for
both min-p and top-p sampling methods. In contrast, top-H effectively maintains coherence while
producing more creative outputs.

C.2 Validation with large model

We replicated the MT-Bench (Table 6) and GPQA (Table 7) experiments using LLaMA3.3-70B-
Instruct with the setup of Section 6.1 in the paper. Specifically, top-H outperforms min-p by up to
6.0% and 6.47% on MT-Bench and GPQA, respectively.
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LLM Temperature Prompt Sampling M1 M2 M3 M4 M5

Phi-3-Mini

1.0

Prompt 1
Top-p 7.4 7.4 8.0 8.0 7.2
Min-p 6.6 6.5 7.8 6.7 7.2
Top-H 8.4 8.4 8.0 8.1 8.6

Prompt 2
Top-p 7.2 7.0 8.4 6.6 7.4
Min-p 6.8 7.0 7.6 7.2 6.4
Top-H 7.4 7.4 8.0 7.8 8.4

Prompt 3
Top-p 7.0 6.4 8.0 7.6 8.0
Min-p 6.4 5.5 8.0 6.2 7.2
Top-H 8.1 9.0 8.0 8.0 9.0

1.5

Prompt 1
Top-p 8.0 7.5 9.0 7.6 8.4
Min-p 7.9 7.8 8.4 7.5 8.4
Top-H 8.5 8.3 8.8 8.4 9.2

Prompt 2
Top-p 7.2 6.8 7.2 6.6 7.6
Min-p 7.4 7.4 8.2 7.8 8.0
Top-H 8.2 8.0 7.4 7.6 7.8

Prompt 3
Top-p 7.4 7.1 8.4 7.1 7.8
Min-p 6.9 6.6 7.7 7.2 7.2
Top-H 8.2 8.0 8.0 8.0 8.3

2.0

Prompt 1
Top-p 7.2 7.0 5.6 6.0 7.0
Min-p 7.6 7.8 8.6 8.6 7.8
Top-H 7.6 7.8 8.6 8.0 8.6

Prompt 2
Top-p 8.6 8.8 5.5 7.0 8.7
Min-p 7.4 7.5 8.8 7.8 7.8
Top-H 8.6 8.2 8.4 8.3 8.3

Prompt 3
Top-p 7.4 7.6 5.0 5.8 7.4
Min-p 6.6 6.6 8.0 7.0 7.4
Top-H 7.4 7.8 8.4 7.6 8.2

Qwen2.5

1.0

Prompt 1
Top-p 5.0 4.8 7.2 5.4 5.2
Min-p 4.8 4.0 6.2 4.2 4.2
Top-H 8.2 7.8 7.2 7.6 7.8

Prompt 2
Top-p 7.4 6.8 8.0 6.8 7.1
Min-p 6.4 6.4 7.0 6.2 6.4
Top-H 7.6 7.6 7.2 7.6 7.8

Prompt 3
Top-p 6.0 5.3 8.4 6.4 6.8
Min-p 6.4 6.0 7.0 5.8 6.6
Top-H 7.9 7.6 8.0 7.3 8.4

1.5

Prompt 1
Top-p 6.0 5.3 7.8 5.6 5.6
Min-p 6.1 5.4 6.0 5.1 4.9
Top-H 7.9 8.0 8.1 7.3 7.8

Prompt 2
Top-p 7.2 6.8 7.6 6.8 7.0
Min-p 6.8 6.2 7.4 6.8 6.8
Top-H 8.2 8.2 8.0 8.0 8.6

Prompt 3
Top-p 7.2 6.9 7.3 6.2 6.7
Min-p 6.7 6.5 7.2 7.1 7.0
Top-H 7.6 7.5 7.6 7.2 8.1

2.0

Prompt 1
Top-p 6.0 5.4 3.8 3.6 4.4
Min-p 6.8 6.6 7.0 6.0 6.8
Top-H 7.4 7.4 8.0 6.8 7.2

Prompt 2
Top-p 7.6 8.0 4.6 5.8 7.0
Min-p 6.2 6.3 7.8 5.8 5.9
Top-H 7.5 7.8 8.1 7.0 7.4

Prompt 3
Top-p 7.4 7.1 4.3 5.5 6.3
Min-p 6.6 6.5 5.5 6.4 6.9
Top-H 7.3 7.4 8.4 8.2 8.3

Table 5: Evaluation metrics and the judge scores (on a scale of 1.0 to 10.0) for different LLMs,
temperatures, prompts, and sampling methods. M1-M5 denote creativity, originality, narrative flow,
imagery, and vitality, respectively.
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Method Temperature = 1.0 Temperature = 1.5 Temperature = 2.0
Top-p 7.06 6.75 3.86

Min-p 7.08 7.11 6.44

Top-H 7.08 7.14 7.04

Table 6: MT-Bench results with LLaMA3.3-70B-Instruct.

Method Temperature = 1.0 Temperature = 1.5 Temperature = 2.0
Top-p 43.75 41.74 34.15

Min-p 45.76 42.41 39.29

Top-H 51.12 48.88 45.31

Table 7: GPQA results with LLaMA3.3-70B-Instruct.

Additionally, with the large model, we produced results with the LLM-as-judge setup described in
Section 6.1.3, reported in Table 8. This demonstrates top-H’s consistent improvement trend over
alternatives.

Temperature Sampling Method M1 M2 M3 M4 M5

1.0
Top-p 6.05 ± 0.24 6.10 ± 0.22 8.80 ± 0.20 7.15 ± 0.26 6.95 ± 0.22

Min-p 7.05 ± 0.22 7.10 ± 0.22 8.85 ± 0.20 7.95 ± 0.15 8.00 ± 0.26

Top-H 8.10 ± 0.26 8.85 ± 0.22 8.05 ± 0.22 7.60 ± 0.20 8.10 ± 0.24

1.5
Top-p 6.95 ± 0.22 7.80 ± 0.20 8.65 ± 0.15 8.35 ± 0.22 8.40 ± 0.20

Min-p 7.10 ± 0.30 7.15 ± 0.22 8.05 ± 0.15 7.25 ± 0.26 7.15 ± 0.22

Top-H 8.95 ± 0.20 8.90 ± 0.15 8.10 ± 0.20 9.00 ± 0.22 8.95 ± 0.22

2.0
Top-p 7.75 ± 0.22 8.15 ± 0.26 5.55 ± 0.22 7.60 ± 0.20 7.25 ± 0.26

Min-p 8.15 ± 0.20 7.30 ± 0.35 6.25 ± 0.22 8.05 ± 0.24 6.80 ± 0.22

Top-H 8.80 ± 0.20 8.20 ± 0.30 7.10 ± 0.26 8.00 ± 0.15 7.85 ± 0.20

Table 8: LLM-as-judge results with LLaMA3.3-70B-Instruct.

C.3 Human Eval

We have conducted Human Evaluation of LLM-generated texts using a setup similar to that of min-p,
and compared with top-p and min-p. We recruited 14 PhD students for this. We used LLaMA3.1-
8B-Instruct with texts generated using a prompt adapted from the min-p framework: “Write me a
creative story.” For each configuration, we generated three outputs, capped at 512 tokens. Participants
were asked to evaluate them along quality and diversity with rating on a scale of 1–10. Results are
shown in Table 9.

Sampling Method Creativity (T=0.7) Coherence (T=0.7) Creativity (T=1.0) Coherence (T=1.0) Creativity (T=2.0) Coherence (T=2.0)
Top-p 7.57 ± 0.72 4.78 ± 0.93 6.28 ± 0.69 5.78 ± 0.79 3.57 ± 0.72 7.57 ± 0.62

Min-p 6.92 ± 0.59 5.28 ± 1.03 6.21 ± 0.77 5.92 ± 0.79 6.00 ± 0.75 6.57 ± 0.72

Top-H 7.35 ± 0.71 5.42 ± 0.62 6.57 ± 0.90 6.42 ± 0.91 6.42 ± 0.62 7.07 ± 0.70

Table 9: Human evaluation results on creativity and coherence ratings.

C.4 Top-H truncation threshold

In this section, we demonstrate how top-H addresses the limitations of min-p sampling, as illustrated
in Fig. 1, which served as our motivational case study. Comparing the two distributions, we observe
that distribution A exhibits greater randomness, with a higher proportion of low-probability tokens
relative to distribution B. This observation is supported by their entropy values: distribution A has
an entropy of 4.28, while distribution B has a lower entropy of 3.71. Consequently, an optimal

30



0 20 40
Token Index

0.0

0.2

0.4

Pr
ob

ab
ilit

y

Top H cut off threshold
Distribution A

0 10 20
Token Index

Top H cut off threshold
Distribution B

Figure 6: Probability distribution of two different types with associated top-H thresholds.

decoding strategy would be expected to allocate a larger sampling pool in scenario A, reflecting the
model’s lower confidence. This is precisely how the top-H decoding method operates. When applied
with α = 0.4, the resulting entropy thresholds are shown in Fig. 6. As illustrated, top-H assigns a
significantly larger token set to distribution A to accommodate its higher uncertainty—an adjustment
that min-p fails to make. Moreover, in scenario B, top-H retains several high-probability tokens that
min-p erroneously excludes. Therefore, top-H effectively addresses both key shortcomings of min-p
sampling in such settings.

C.5 Impact of the α Parameter

Table 10 reports GPQA accuracy and the average sampling pool size across different α values. The
experiment is done using the LLaMA3.1-8B-Instruct model with temperature T = 1.5. These
results show that:

1. Larger α values slightly reduce accuracy, which aligns with the nature of GPQA’s graduate-
level questions that benefit from more confident (less diverse) answers.

2. Sampling pool size increases with α, providing more generative options and supporting the
creativity aspect observed in Figure 4.

α 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Accuracy on GPQA 0.3085 0.3085 0.3095 0.3085 0.3125 0.3103 0.3058 0.3050 0.2869 0.2937 0.2879 0.2790 0.2655 0.2879 0.2612 0.2656 0.2701

Average sampling pool size 1.01 1.03 1.20 1.48 1.90 2.53 3.48 4.74 6.94 9.11 11.79 15.77 21.35 27.99 36.28 47.06 59.28

Table 10: GPQA accuracy and average sampling pool size across different α

C.6 Comparison of top-H to Mirostat method

In addition to the results obtained with η-sampling, we include further comparisons with Mirostat
(Basu et al., 2020) Table 11 for MTBench and Table 12 for GPQA, serving as an additional entropy-
aware baseline. Unless otherwise specified, all decoding and evaluation configurations follow those
in the paper. For Mirostat, we set the target entropy parameter to τ = 3.

Temperature
LLaMA3.1-8B-Instruct Phi-3-Mini Qwen2.5 3B
Top-H Mirostat Top-H Mirostat Top-H Mirostat

1.0 6.788 6.375 6.819 6.600 5.956 5.369

1.5 6.819 5.594 6.556 5.500 5.513 4.469

2.0 6.438 5.519 6.056 5.269 4.519 4.256

Table 11: MTBench results comparing Top-H and Mirostat. Top-H wins in all 9 settings. Averaged
over all models and temperatures, Top-H achieves 6.163 vs. Mirostat 5.439 (+0.724 absolute, +13.3%).

D Limitations

In this paper, we introduced a novel sampling method—top-H—as a greedy solution to the NP-
hard entropy-constrained mass maximization (ECMM) problem. While top-H demonstrates strong
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Temperature
LLaMA3.1-8B-Instruct Phi-3-Mini Qwen2.5 3B
Top-H Mirostat Top-H Mirostat Top-H Mirostat

1.0 29.24 30.36 32.37 30.13 28.79 28.35

1.5 30.58 25.67 30.80 29.02 27.90 26.34

2.0 28.79 28.79 30.80 29.91 28.12 27.79

Table 12: GPQA results comparing Top-H and Mirostat. Top-H outperforms Mirostat in 7 of 9
settings, with one Mirostat win at LLaMA-8B (T = 1.0). Averaged over all models and temperatures,
Top-H achieves 29.71 vs. Mirostat 28.48 (+1.23 absolute, +4.3%).

empirical performance, it does not provide general competitive guarantees that apply across a broad
range of distributions. Moreover, the hyperparameter α was tuned manually, even though the method
exhibits robustness to its variation. Designing an algorithm that offers a provable approximation ratio
and can dynamically adapt the entropy threshold α remains an important direction for future work.

E Broader Impact

Top-H sampling enhances the coherence and creativity of text generated by large language models,
especially at high temperatures. This can positively impact applications such as creative writing,
education, and human-AI interaction by making outputs more diverse and engaging. Its efficiency
and ease of integration also support broader accessibility in open-source settings. However, the same
improvements in fluency could be misused to generate more persuasive disinformation or evade
content moderation. While top-H is a general-purpose sampling method, we recommend pairing it
with safety mechanisms and monitoring in sensitive deployments. Open-sourcing our implementation
and providing clear usage guidelines will support responsible adoption and further research.
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