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ABSTRACT

Understanding living systems requires interpretable models to elucidate how
multi-omics data coordinate transcription and translation across spatiotemporal
scales. Inspired by large language models (LLMs), biological foundation mod-
els pretrained the omics sequences have shown exciting performance. However,
these biological models lack interpretability and transparency in explaining the
results. Motivated by advances in cross-modal alignment from vision—language
models (VLMs), it is naturally to integrate multi-omics data and nature language
into one system: multi-omics large language model (MOLLM), a LLM-based
model can understand multi-omics data. To understand the trends, challenges,
and limitations of MOLLMs, we provide a comprehensive empirical study on
MOLLMs. We systematically review recent progress on MOLLMs based on their
omics-encoding design and benchmark the performance gap between MOLLMs
with omics-specific models. The extensive experiments show that the proposed
multi-omics-encoding design outperforms existing MOLLMs by a large margin
and shows promise for narrowing the performance gap against specialist biologi-
cal models. Code is available at jhttps://anonymous.4open.science/r/mollm.

1 INTRODUCTION

Multi-omics data operate under the central dogma (Crick, |1970) through hierarchical and coupled
mechanisms to coordinate transcription and translation. This coordination shapes phenotypes across
spatiotemporal scales and plays a key role in trait prediction, disease mechanisms and drug de-
sign (Elzawahry et al.,|2014). Therefore, deepening the multi-omics understanding is essential for
explaining the complexity of biological processes and for advancing technologies in agriculture,
medicine, and pharmacy(Sledi & Caflischi 2018; [Lel )2020; |Ahmar et al., [2020).

In recent years, large language models (LLMs, i.e. generalist models) such as GPT-4 (Achiam et al.,
2023)) have excelled at natural language tasks. With modest instruction tuning, they often achieve us-
able performance in specialized domains (Wu et al.,[2024;|Yang et al.,2025b). Notably, multi-omics
data and natural language share similar fundamental structural properties, namely discrete sym-
bolic alphabets, compositional grammars, and hierarchical contextual dependencies (Dotan et al.,
2024; Sanabria et al., [2024). Thus, biological foundation models are inspired by LLM techniques.
Pre-trained in large-scale omics sequence data, they capture domain-critical signals such as cis-
regulatory motifs (Zhou et al., 2023) and long-range dependencies (Dalla-Torre et al., [2025]). Con-
sequently, as illustrated in Fig. [I|(a), the biological foundation models are used to encode raw omics
sequences into embeddings for specific downstream tasks (Sanabria et al., [2024; [Yuan et al., [2025).
In this work, we denote these models as omics-specific models (i.e. specialist models). These ap-
proaches typically produce direct task predictions without natural language responses or explain-
ability. And they always require redesigning or retraining when new tasks arise, which limits gen-
eralization. A separate line of work explores tool-calling agent pipelines that orchestrate external
bioinformatics tools, such as biological foundation models. Although built on LLMs, agent-based
methods lack interpretability and transparency in explaining the results (Shen, |[2024).

Notably, the success of coupling LLMs with vision encoders, exemplified by vision-language mod-
els (VLMs) (Achiam et al.l 2023} Dai et al., 2023} [Liu et al., 2023)), shows that cross-modal align-
ment could outperform unimodal approaches. Grounding visual inputs in natural language unifies
diverse downstream tasks. And enables VLMs to inherit interpretability and instruction-following
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capabilities from LLMs. Building on this paradigm, multi-omics large language models (MOLLM:s)
that integrate multi-omics sequences and human language have naturally emerged. The similarities
between multi-omics data and natural language make them naturally amenable to integration into
a common representational space (Nam et al.| 2024). Based on the observations from VLMs, it
is conjectured that multimodal integration can improve the biological task performance and inter-
pretability by leveraging the instruction-following capabilities and linguistic knowledge acquired
through large-scale pretraining on natural language.

To better understand the challenges of the multimodal integration mentioned above, we first review
the recent progress of MOLLMs with a focus on DNA, RNA, and protein, which are key modali-
ties in omics study (Karczewski & Snyder [2018). In this work, we categorize existing MOLLMs
into three types in terms of omics encoding: non-omics encoding (NOE), which omits biologi-
cal encoders; single-omics encoding (SOE), which uses a shared biological encoder; and multi-
omics encoding (MOE), which employs multiple biological encoders (Fig. [I). For NOE, recent
approaches (He et al., |2025} Xia et al.l 2025) fine-tune LL.Ms by treating multi-omics sequences as
text data. However, they overlook structural and biophysical priors intrinsic to biological data. As
a result, these methods fall short compared with omics-specific models. Meanwhile, several stud-
ies (Wang et al., [2024; [Fallahpour et al., |2025; [Lv et al., [2025) adopt SOE design and have shown
strong performance against NOE methods. They use a single-omics biological foundation model to
encode omics sequences into embeddings, which are then fed into an LLM. In this way, biological
priors are combined with the instruction-following capability of LLMs. Commonly, SOE methods
focus on single omics tasks and keep the language component frozen or only lightly tuned, which
limits generality across omics. An exception is ChatNT (de Almeida et al., [2025)), which projects
RNA and protein sequences into a single DNA-encoder. However, this approach sacrifices cross-
modal information and prevents end-to-end representational alignment. There are limited studies on
MOE. In this work, we design the first prototype MOE model for DNA, RNA, and protein.

Despite above progress, there is still a non-trival performance gap between MOLLMs and omics-
specific models on biological tasks. To systematically understand the current performance gap and
the capability limit of existing MOLLMs, it is necessary to quantitatively benchmark these models
in a comprehensive fashion. Following ChatMultiOmics (He et al., [2025), we select 9 common
biological tasks across single omics and multi-omics. In addition to the empirical understandings
of MOLLMs, the extensive experiments show that MOE outperforms general LLMs, NOE models
and SOE models by a large margin and shows promise for narrowing the performance gap against
omics-specific models. The empirical findings also suggest insights to future MOLLM design and
generalist-specialist learning paradigm (Shi et al.| 2023)).

Our contributions are summarized as follows:

* We present a comprehensive empirical study to understand the trends, challenges, and lim-
itations of MOLLMs. We systematically review recent progress on MOLLMs based on
their omics-encoding design and benchmark the performance gap between MOLLMs with
omics-specific models.

* We conduct extensive experiments fo facilitate the research on MOLLMs. The empirical
results show that the proposed MOE design achieves the most robust performance in omics
sequence understanding and has the potential to narrow the performance gap with omics-
specific models.

2 RELATED WORK

Recent efforts to create MOLLMs have explored several distinct architectural paradigms. One
straightforward approach fine-tunes LLMs by treating multi-omics sequences purely as text, without
a modular encoder-LLM separation. Representative models like ChatMultiOmics (He et al., [2025)),
Intern-S1 (Bai et al., 2025a) and NatureLM (Xia et al., 2025)) exemplify this direction, illustrating
the feasibility of processing DNA, RNA, and protein tasks within a unified textual framework by un-
dergoing continued pre-training on hundreds of billions of scientific sequence tokens or fine-tuning
on large-scale instruction—answer pairs. However, this method can overlook the rich structural and
biophysical priors intrinsic to biological data.
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Figure 1: Comparison of four paradigms for omics sequence understanding. (a) Omics-specific
models: biological encoders (e.g., DNA, RNA, or protein) trained or fine-tuned for specific tasks
without LLMs; (b) Non-Omics-Encoding: omics sequences treated as plain text for instruction tuned
LLMs to generate natural language outputs; (c) Single-Omics-Encoding: a single biological foun-
dation model (e.g., DNA, RNA, or protein) encodes omics sequences into embeddings that are fed
into an instruction tuned LLM to generate natural language outputs, illustrated with DNA; (d) Multi-
Omics-Encoding: integration of multiple biological encoders (e.g., DNA, RNA, and protein) with
instruction-tuned LLMs to support multi-omics understanding and natural language outputs.

To better incorporate these priors, a more prevalent strategy is to align a specialized biological
encoder with an LLM (Nam et al., [2024; [Fallahpour et al.| 2025} [Lv et al.,[2025). Large-scale pre-
training has produced powerful foundation models ideal for this role, such as Evolutionary Scale
Modeling (ESM) for proteins (Lin et al., 2022)) and Nucleotide Transformer (NT) for DNA (Dalla-
Torre et al.|, |2025)). Consequently, many studies integrate such encoders to combine domain-specific
knowledge with the instruction-following abilities of LLMs. For instance, BioReason embeds DNA
encoders into LLMs to enable multi-step biological reasoning (Fallahpour et all [2025). In pro-
teomics, ProtChatGPT (Wang et al.|[2024) builds an interactive protein analysis system by connect-
ing a protein encoder to an LLM via a protein-language pretraining transformer and a projection
adapter. Generative approaches like ProtT3 (Liu et al.l 2024)) connect a protein encoder to a text de-
coder to enable protein-to-text generation. Meanwhile, domain-focused methods include MutaPLM
(Luo et al., 2024), which is trained to generate natural language explanations for mutation effects.
A notable variant within this paradigm is ChatNT (de Almeida et al., 2025)), which is based on a
DNA-centric encoder (NT-v2) and maps RNA and protein sequences into DNA-like representations
to enable cross-omics reasoning. Building on these pioneering efforts, such models show the poten-
tial of aligning biological priors with LLMs. However, they are often limited by their reliance on
the perspective of single-omics encoding, which restricts cross-omics data fusion. In parallel, the
emergence of large-scale datasets like Biology-Instructions (He et al., 2025)) offers the possibility of
training and rigorously benchmarking a more comprehensive multi-omics-encoding paradigm. This
convergence of prior limitations and new resources sets the stage for our work to evaluate these three
paradigms and quantify the performance gaps between them and with domain-specialist models.

3 METHOD

The overall framework is shown in Fig.[T](d). This multi-omics-encoding model accepts queries that
contain one or more biological sequences together with a textual prompt. It supports three sequence
types: DNA, RNA, and protein. Let, = {D, R, P} denote the set of sequence modalities (DNA,
RNA, protein). For k € K, define the input sequence collection as S, = (Sk1, Sk,2, - - - Sk.0x )
where ¢}, € N is the length of sequences provided for modality k. And let ) denote the textual

query.
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TF-M PD300 CPD ncRNA Modif EC Sol AAN RPI

Group  Model MCC MCC MCC ACC AUC Fmax ACC MCC McCC A%
DeepSeck-R1 133 =099 —089 749 5097 568 5393 248 —144 1317
GLM4-9B-Chat 000 -025 -253 823 5005 091 5072 132 013 1206
GPT-40 Z138 867 —084 560 5047 580 5167 -320 117 1311

General  Qwen3-1.7B 108 —184 —424 687 5115 101 5042 —279 —118 1116

LLMs  Qwen3-4B 001 —059 -520 668 5024 182 5027 214 196 1144
Qwen3-SB 003 -357 -364 725 5015 109 4988 037 174 11.08
Qwen3-32B 09 —177 062 740 5166 141 5162 333 —-007 1258

Non-Omics-Encoding
ChatMultiOmics 32.21  56.13  44.19 63.09 59.06 19.79 63.02 1.06 74.26 45.87

Intern-S1 1.81 -1.14 -1.02 749 50.69 856 48.75 -5.24 147  12.37
NatureLM" 375 2594 14.71 0.00 51.54 11.81 4893  0.68 533 18.08
Single-Omics-Encoding
MOLLMs  BioReason 3439 5334 4384 - - - - - - 43.86
ChatNT" 2.11 4290 14.83 0.00 5193 - - - - 22.35
ProLLaMA”" - - - - - 1.85 4953  0.00 - 17.13
Multi-Omics-Encoding
Ours-1.7B 39.55 62.69 49.80 78.50 67.85 49.52 67.50 32.85 70.70 57.66
Ours-4B 3949  62.03 50.56 83.75 66.68 5545 66.69 34.76 70.70 58.90
Ours-8B 40.20 62.85 5097 84.74 67.51 66.51 67.39 40.52 71.20 61.32
DNABERT2 7121  83.81 71.07 - - - - - - -
GCN - - - 8573 - - - - - -
MultiRM - - - - 84.00 - - - - -
OSMs SaProt-GearNet — — - - - - 88.90 - - - -
DeepSol - - - - - - 77.00 - - -
DeepAAI - - - - - - - 5490 - -
ncRPI-LGAT - - - — - — — - 93.20 -

Table 1: Overall performance comparison across nine biological omics tasks for different model
categories. All MOE results are arithmetic means over three runs. “—” denotes a task not supported
by the model. Results under Omics-Specific Models (OSMs) are shown in gray to indicate the hy-
pothetical task upper bound in this work. To highlight strong performers, in each column (excluding
OSMs) the top two entries are emphasized: bold marks the best and underline marks the second
best. Results marked with * are obtained from publicly released checkpoints. Standard deviations,
task descriptions, and metric definitions are provided in the Appx. @

For each biological sequence S}, respectively, we use the modality-specific biological encoder Ency,
to obtain contextualized representations. We first apply the tokenizer 7}, associated with Ency, to
segment the sequence into tokens. A single token may correspond to one or more nucleotides for
DNA and RNA, whereas each token corresponds to one amino acid for proteins. The encoder Ency,
then maps the token sequence to token-level embeddings Ej, € RZ** % that capture rich biological
information, where L denotes the token sequence length and d denotes the dimensionality of the
token-level embeddings.. These embeddings E; are subsequently provided to the LLM as inputs for
training and inference.

The LLM serves as the primary reasoning and text generation module and must integrate the token-
level embeddings Ej, produced by the biological encoders. Because embedding dimensionalities
differ across modalities, we introduce a modality-specific linear projection matrices Wy to map
E}, into the LLM embedding space. Given E}, the projected representations Z;, € RLxXd1im gre
computed as:

Zi = E Wy, Wy, € R xdrim (1)

Here di,1n denotes the token-embedding dimension of the language model.

Finally, we construct the LLM input X by concatenating the embedding of the textual query
with the projected embeddings Z; corresponding to each biological sequence. The concatenation
order preserves the original placement of each sequence within the prompt; sequences may appear
at arbitrary positions in @), and the embedding blocks are interleaved accordingly.
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4 EMPIRICAL STUDY

4.1 EXPERIMENTAL SETTINGS

Datasets. To train a MOE capable of understanding DNA, RNA, and protein sequences, we use the
Biology-Instructions dataset (He et al., |2025), from which we select approximately 700K question
and answer pairs. The data cover three omics modalities: DNA, RNA, and protein, and span nine
tasks, including binary classification, multi-class classification, and multi-label classification. We
then systematically evaluate the MOLLM and a set of baseline methods on these nine tasks. Specif-
ically, the nine tasks are organized into four categories by input format. (1) Single-DNA inputs
cover transcription factor binding site detection in mouse (TF-M), promoter detection (PD300), and
core promoter detection (CPD); (2) single-RNA inputs cover non-coding RNA function classifica-
tion (ncRNA) and RNA modification prediction (Modif); (3) single-protein inputs cover Enzyme
Commission number prediction (EC) and protein solubility prediction (Sol); and (4) multi-sequence
inputs cover antibody-antigen neutralization (AAN), which takes two protein sequences, and RNA-
protein interaction prediction (RPI), which takes one RNA sequence and one protein sequence.
Dataset statistics and task descriptions are provided in the Appx.

Evaluation Metrics. In line with prior work (He et al.| [2025), we evaluate TF-M, PD300, CPD,
AAN, and RPI using the Matthews correlation coefficient (MCC); ncRNA and Sol using accuracy
(ACC); Modif using area under the ROC curve (AUC); and EC using Fmax. Definitions and com-
putational details are provided in the Appx.

Implementation Details. We use Qwen3 (Yang et al., 2025a) models with 1.7B, 4B, and 8B pa-
rameters as the language backbone, and adopt NT-500M and ESM2-650M as the omics encoders.
Following the LLaVA training paradigm (Liu et al.,2023)), we freeze the omics encoders and update
only the language model parameters and the modality-specific projection matrices. All experiments
are conducted on eight A100 GPUs. Full training configurations and implementation details are
provided in the Appx.[C.1].

Baselines. To systematically benchmark MOLLMSs on multi-omics biological sequence understand-
ing and quantify their performance gap against omics-specific models, we adopt a unified eval-
uation protocol and organize baselines into three categories: (1) omics-specific models, domain-
specialist models tailored to specific biological tasks that do not rely on natural language pretrain-
ing; (2) general large language models (General LLMs); and (3) multi-omics large language models
(MOLLMs), which can process both omics sequences and natural language. For each task, we treat
the omics-specific models as the performance upper bound.

Across nine benchmark tasks, we select omics-specific models that are widely recognized as leading:
DNABERT?2 (Zhou et al.| 2023) for TF-M, PD300, and CPD; GCN (Rossi et al., [2019) for ncRNA;
MultiRM (Song et al., 2021b) for Modif; SaProt-GearNet (Su et al., [2024) and DeepSol (Khurana
et al.,2018) for EC and Sol, respectively; and DeepAAI (Zhang et al.,[2022b)) and ncRPI-LGAT (Han
& Zhang| |2023b) for AAN and RPI, respectively. For general LLMs, we adopt representative
baselines including DeepSeek-R1 (DeepSeek-All [2025), GLM4-9B-Chat (GLM et al., [2024), GPT-
40 (Hurst et al., 2024), and Qwen3-1.7B, Qwen3-4B, Qwen3-8B, and Qwen3-32B (Yang et al.,
2025a).

For MOLLMSs, we adopt a finer-grained taxonomy from the perspective of omics-encoding: NOE,
SOE, and MOE. Specifically, we categorize ChatMultiOmics (He et al., [2025)), Intern-S1 (Bai
et al., [2025a), and NatureLM (Xia et al., [2025)) as NOE, and BioReason (Fallahpour et al., [2025),
ChatNT (de Almeida et al.,[2025), and ProLLaMA (Lv et al.,|[2025) as SOE. All models are evalu-
ated under matched experimental settings using task-aligned metrics. The complete list of models,
detailed descriptions, versions, and configurations is provided in the Appx.[C.2}

4.2 PERFORMANCE COMPARISON WITH STATE OF THE ART

As shown in Tab. [T} we systematically compare overall performance on multi-omics sequence tasks
under a unified evaluation protocol, covering omics-specific models, general LLMs, and multiple
MOLLM paradigms, we provide all the additional results in Appx. [C.3] First, general LLMs,
whether proprietary (e.g., GPT-40) or open source (e.g., DeepSeek-R1), exhibit limited perfor-
mance on multi-omics sequence tasks, indicating that generic linguistic capability alone is insuf-
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Figure 2: Performance comparison between the MOE and two baseline families, namely (i) high-
performing omics-specific models (OSMs) and (ii) methods that use only the corresponding omics
encoder with a classification head (Enc-Head). Overall, MOE achieves improvements over Enc-
Head on several tasks and narrows the performance gap with OSMs.

ficient for biological sequence understanding. Second, among MOLLM designs, approaches that
employ omics encoders consistently outperform those that do not. Using ChatMultiOmics as a point
of comparison, which introduces an additional pretraining stage beyond supervised finetuning to
inject biological sequence knowledge, does not adopt omics encoders, and uses an 8B parameter
size. MOE approach leads on eight of nine tasks and is comparable on the remaining one; even with
supervised finetuning only, our 1.7B variant surpasses ChatMultiOmics. Furthermore, relative to
single omics encoder approaches, MOE not only achieves superior performance on most metrics but
also covers a broader range of task types and modality combinations. For example, the RPI task in-
volves both RNA and protein sequences, which single omics encoders cannot directly handle. Taken
together, under the current evaluation setup, MOE outperforms other MOLLM variants overall and
represents a promising direction for future research.

4.3 COMPARISON OF MOLLMS WITH OMICS-SPECIFIC MODELS

Although many MOLLMs can handle multiple modalities and a variety of tasks within a unified
framework and achieve substantial gains over general natural language LLM baselines, this alone
does not demonstrate genuine fusion of generalist and specialist capabilities, namely equipping a
general-purpose model to solve domain-specialized tasks while retaining generality. In practice,
carefully engineered omics-specific models remain superior on most single-task settings. To assess
this gap systematically, we compiled omics-specific models recognized as leading on their respective
tasks across nine benchmarks and compared them with MOLLMs (see Tab. [I] and Fig. 2). The
results show that MOLLMs lag behind task-specific approaches on most single tasks. An exception
emerges on the more challenging ncRNA multi-class classification task, where the MOE approaches
the performance of leading domain models, suggesting that the paradigm can reach specialist-level
accuracy while preserving natural language output and interaction capabilities. t is worth noting that
specialist models require bespoke design and training for each task, whereas MOE shows greater
generality and scalability by covering multiple tasks with a single model.

Because the MOE approach incorporates the omics encoders NT and ESM, we further evaluated
their representational capacity on the target tasks. After adding a linear classification head to NT
and ESM and fine-tuning, performance improved on more than half of the tasks (see Fig.[2). This
indicates that coupling a large language model enhances biological sequence understanding and
facilitates task adaptation. It also implies that omics-specific models usually need additional task-
aware architectural and training design to achieve strong results, rather than simply attaching a linear
head, which runs counter to the goal of generality. In addition, EVO2, a leading backbone model in
genomics, was evaluated on our DNA task, with results reported in the Fig. [3|(a). EVO2-7B attains
higher scores than Ours-4B overall; however, on the CPD task our model reaches a comparable level
(50.56 vs. 52.70), indicating that MOE has strong potential.
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Figure 3: (a) Performance comparison between Ours-4B and EVO2-7B on DNA tasks. Results are
reported on TF-M, PD300, and CPD, with higher values indicating better performance. EVO2-7B
attains higher scores on all three tasks; (b) Heatmap of MOE performance across tasks (x axis) and
omics combinations (y axis). The Avg. column reports the mean score for each combination. Omics
combinations denote the training data: single omics DNA, RNA, or Protein; pairwise combinations
DNA and RNA (DR), DNA and Protein (DP), and RNA and Proteins (RP); and DNA, RNA, and
Protein (DRP), which uses all available omics data.

Overall, the MOE approach is narrowing the gap to omics-specific models while retaining high
generality: a single model can address multiple tasks. These properties indicate strong promise for
MOE within the MOLLM paradigm.

4.4 ANALYSIS OF CROSS-OMICS TRANSFER

To examine cross-omics knowledge transfer, we analyze a 4B setting where the model is trained
on single-omics datasets (DNA, RNA, Protein) and on each pairwise omics combination; results
are shown in Fig. 3] (b). We find that, for DNA-related tasks, adding RNA yields consistent gains,
whereas adding Protein alone provides no clear improvement. On CPD, using all three omics per-
forms best. For RNA-related tasks, adding DNA likewise improves performance. For protein-
specific tasks, training on Protein alone typically achieves the best results. For multi-sequence or
cross-omics interaction tasks, the RNA—Protein pairing strengthens AAN, and RPI obtains its best
results under joint training with all three omics. We find that modality gains are task-dependent
and reflect complementarity. Consequently, adding more modalities is not universally beneficial. In
DNA and RNA tasks, the two modalities typically complement each other. In protein-specific tasks,
introducing non-target modalities can dilute key signals, yielding limited benefits or even mild neg-
ative transfer. For tasks that require cross-omics sequence integration, such as RPI, multimodal joint
training is more advantageous.

4.5 ANALYSIS OF MULTI-TASK EFFECTS

To evaluate whether a larger variety of training tasks improves performance for MOLLMs with a
MOE design, in other words whether multitask training enhances shared representations and pro-
motes cross task transfer, we conduct a 4B study under identical training settings. We train separate
models on each of the nine tasks and another model on the union of all nine tasks, and we compare
their performance; results are shown in Fig. [l Overall, multi-task training yields substantial gains
on most tasks, with the largest benefits for tasks that rely on cross modal or cross sequence informa-
tion. For example, ncRNA accuracy increases from 44 to 84, and AAN MCC rises from near zero
to 35; PD300, CPD, Sol, and RPI also improve to varying degrees. In contrast, EC performs better
under single task training, which suggests that supervision from other tasks can introduce negative
transfer for protein specific functional prediction. Taken together, these results show that MOLLMs
with a MOE design benefit from diverse task training, though the gains are task dependent.
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Figure 4: Performance comparison of the MOE under single task training (Single-Task) versus joint
training on nine tasks (Multi-Tasks). With the exception of a few tasks such as EC, Multi-Task yields
better performance than Single-Task.

TF-M PD300 CPD NcRNA Modif EC Sol AAN RPI
Scale Average
MCC MCC MCC ACC AUC Fmax ACC MCC MCC
10% 28.31 49.08 36.75 9.59 55.55 3.19 60.32 0.95 122 2722
20% 31.78 54.06 39.15 22.34 60.93 546 6145 2094  59.05 39.46
30% 37.65 5896  44.19 4259 65.48 6.85 65.10  22.63 65.09 4539
40% 3840  59.64  47.11 56.38 66.22 2491 66.14 2844  66.72 5044
50% 40.25  60.30 45.84  71.26 66.04 4092  66.05 30.18 67.00  54.20

100% 39.49 62.03 50.56 83.75 66.68 55.45 66.69 34.76 70.70 58.90

Table 2: Investigating the effect of training data scale on MOE performance. For each task, we
uniformly sample 10%, 20%, 30%, 40%, and 50% of the training set and compare against using
100% of the data. Reported values are arithmetic means over three independent runs. In each
column, including the Average column, the top two entries are highlighted: bold indicates the best
and underline indicates the second best. Most tasks reach peak performance at 100% data. Detailed
experimental settings and results are provided in the Appx. @

4.6 ABLATION STUDY

In general LLM research, model performance typically improves with larger parameter counts and
more training data (Achiam et al.| [2023; [Isik et al., [2024), and in VLMs, higher image resolution
also yields better results (Bai et al.,|2025b). Whether these conclusions hold true for MOLLMs with
MOE remains an empirical question that requires further investigation. In this section, we present an
ablation study across nine tasks to evaluate the effects of parameter scaling, data scaling, and omics
sequence length within the MOE setting.

Parameter Scaling. We evaluate the performance of MOE with language backbones of 1.7B, 4B,
and 8B (see Tab[I). The results observed in the table clearly indicate that, by task type, ncRNA, EC,
AAN, and RPI, which involve multiclass, multilabel, and multi-sequence settings, are particularly
sensitive to model scale. In contrast, binary classification tasks such as TF-M, PD300, and CPD
are less sensitive to the parameter scale, which may be influenced by the inherent difficulty and
complexity of the tasks. Overall, it can be observed that for models with parameter sizes up to 8B,
the MOE follows the scaling law with respect to parameter scale, showing consistent performance
improvements as the model size increases.

Data Scaling. Under identical training settings we fine tune a 4B MOE using task-stratified random
samples comprising 10%, 20%, 30%, 40%, 50%, and the full 100% of the training set (see Table .
Overall, with the exception of TF-M, the other eight tasks achieve their best results with the full
dataset. Task responses to data scale vary across different tasks: several tasks saturate between 30%
and 50% of the data, and as a result, additional data provides only limited marginal gains, as seen
in tasks like PD300, Modif, and Sol. This suggests that task difficulty plays a significant role in
data demand, where relatively simpler or more redundant tasks show less sensitivity to data size.
At the same time, certain tasks exhibit clear threshold effects, indicating that performance improves
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Figure 5: Performance of MOE across six maximum omics sequence-length settings. Results are
reported for three backbone scales and nine tasks. Across nearly all tasks, performance improves as
the readable sequence length increases, with larger gains for tasks sensitive to long-range or cross-
sequence signals (e.g., ncRNA, EC, AAN, RPI). Several relatively local tasks (e.g., PD300, Sol)
show earlier saturation, indicating diminishing returns at very long lengths.

significantly once a certain amount of data is reached. For example, for EC, Fmax is 4.02 and 5.98
at 20% and 30% of the data, respectively, but rises substantially to 24.91 and 40.92 at 40% and 50%,
showing a sharp increase in performance once sufficient data coverage and diversity are provided.
This highlights the high sensitivity of such tasks to data quantity and diversity, and emphasizes that
certain tasks only show noticeable improvements once a minimum data scale is reached.

Omics Sequence Length. To translate the image-resolution effect from VLMs to MOE, we test
whether the maximum readable length of biological sequences affects performance. We vary the
maximum sequence length over six settings and evaluate three backbone scales (Fig. [5). Overall,
performance increases as the model processes longer and more complete sequences, indicating that
richer sequence context improves accuracy and robustness.

The gains are task dependent. Tasks that rely on dispersed regulatory signals or long-range depen-
dencies (e.g., ncRNA and EC) benefit markedly from longer inputs, showing steady or even accel-
erated improvements at larger lengths. Interaction-oriented tasks (AAN, RPI) also improve as the
model can jointly ingest longer partnered sequences, with notable jumps once the context exceeds
mid-range lengths, suggesting threshold effects for capturing cross-sequence cues. In contrast, sev-
eral relatively local or lower-complexity tasks (e.g., PD300, Sol, and CPD) tend to saturate earlier;
beyond a moderate length, additional tokens yield diminishing returns. These patterns are consis-
tent across different backbones, with larger models extracting slightly more benefit from extended
context, presumably due to greater capacity to model long-range structure.

5 CONCLUSION

In this paper we systematically review prior work and categorize MOLLMSs by omics encoding into
NOE, SOE, and MOE, and benchmark their ability to understand multi-omics sequences across di-
verse tasks. Empirically MOE delivers the most robust performance among existing general LLMs
and MOLLMs, and narrows the performance gap against omics-specific models. Extensive ex-
periments further show MOE is a promising research direction for designing MOLLMs that can
outperform specialist biological models in the future, which will be a landmark achievement in
generalist-specialist learning paradigm. In the following work, we will further consider incorporate
chain-of-thought technique into the MOLLM training.
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6 REPRODUCIBILITY STATEMENT

All experiments are conducted on the Biology-Instructions corpus (He et al.,[2025)). To ensure repro-
ducibility, our code is open-sourced and available at https://anonymous.4open.science/r/biomllm.

7 ETHICS STATEMENT

This study exclusively uses non-sensitive data that contain no human identifiable information. The
study is limited to in-silico analyses of anonymized molecular sequences; no human or animal sub-
jects were recruited, and no clinical data were accessed. The resulting models are intended for
research purposes only and are not meant to guide medical decisions or any form of genetic inter-
vention. We declare no competing financial or personal interests, and every experiment was carried
out in accordance with current Al-research ethical standards.
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A USAGE OF LLM

We used a large language model only for language polishing and improving readability (e.g., gram-
mar, wording, and title phrasing).

B DATASET DETAILS

B.1 TASKS DEFINITION
B.1.1 DNA TASKS

Promoter Detection 300 This task involves detecting promoter regions within a 300 base pair (bp)
window, which includes both the core promoter region and the surrounding regulatory elements.

Core Promoter Detection This task focuses on detecting a shorter, core sequence (usually around
50-100 bp) directly upstream of the transcription start site. Both tasks are important for understand-
ing gene regulation and can aid in studying transcriptional activity, identifying novel genes, and
mapping gene expression patterns. Model performance evaluation utilizes MCC, which captures
the model’s ability to predict promoter existence across different sequence contexts in a balanced
manner.

Transcription factor binding site detection in mouse This binary classification task determines
whether specific regions contain transcription factor binding sites in DNA sequences. These tran-
scription binding sites (TBS) are critical for controlling the initiation, enhancement, or repression
of transcription. The dataset from DNABERT-2 is utilized for this task [Zhou et al.| (2024])), contain-
ing numerous DNA sequences with annotated TBS information. Model performance is evaluated
using MCC, providing a fair measurement of the model’s ability to discover TBS in diverse DNA
sequences.

B.1.2 RNA TASKS

Non-coding RNA Function Classification This multi-label classification task predicts the func-
tional class of non-coding RNA (ncRNA) sequences. The model outputs one or more class labels
from a set of 13 possible ncRNA classes, including 'tRNA’, 'miRNA’, and 'riboswitch’. Accurate
ncRNA classification is essential for understanding their regulatory roles in gene expression and
their contributions to diverse biological processes and diseases. The nRC (non-coding RNA Clas-
sifier) dataset from (Fiannaca et al., [2017) is adopted for this task, utilizing features derived from
ncRNA secondary structures. The output assigns each RNA sequence to one or more functional
classes, enabling detailed examination of functional diversity within ncRNAs. Model performance
is evaluated using accuracy (Acc), reflecting the classification capability across all categories.

Modification Prediction This multi-label classification task predicts post-transcriptional RNA mod-
ifications from RNA sequences. The model outputs one or more modification types from a set of 12
widely occurring RNA modifications, including 'm6A’, 'm1A’, and 'm5C’. Precise identification of
RNA modification sites is essential for understanding RNA regulatory mechanisms and their roles
in biological processes. The MultiRM dataset from (Song et al., |2021a)) is employed, containing
RNA sequences annotated with multiple modification types. Model performance is evaluated using
the Area Under the Curve (AUC), capturing the prediction capability across different modification
contexts.

B.1.3 PROTEIN TASKS

Enzyme Commission Number Prediction This multi-label classification task predicts enzyme
functions by annotating protein sequences with corresponding EC numbers. The DeepFRI’s (Glig-
orijevi¢ et al., [2021) EC annotation dataset from PDB chains is adopted, where binary multi-hot
vectors are converted into corresponding EC numbers for language model compatibility. Perfor-
mance evaluation utilizes the Fmax metric. Accurate EC number prediction is crucial for under-
standing enzyme catalytic functions and accelerating the discovery of novel enzymatic activities,
with applications in biotechnology, industrial enzyme optimization, and drug development.
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Stability Prediction This regression task assesses the intrinsic stability of proteins under various
conditions, with each protein sequence mapped to a continuous stability score reflecting how well
the protein maintains its fold above a certain concentration threshold (e.g., EC50). The dataset from
Rocklin et al. (Rocklin et al., [2017) is employed, containing protease EC50 values derived from
experimental data. Model performance is assessed using Spearman’s correlation. Protein stability
prediction is essential in protein engineering, particularly for therapeutic applications where protein
integrity is crucial, reducing the need for experimental screening and facilitating the design of stable
proteins for various applications.

B.1.4 MULTI-OMICS TASKS

RNA-Protein Interaction Prediction This binary classification task identifies interactions between
non-coding RNAs (ncRNAs) and proteins based on their sequences. Since most ncRNAs interact
with proteins to perform biological functions, inferring these interactions facilitates understanding
of biological activities involving ncRNAs (Li et al.}2016)). The dataset from (Han & Zhang] [2023a)
is used, comprising 14,994 samples. The evaluation metric employed is MCC.

Antibody-Antigen Interaction Prediction This binary classification task determines interaction
relationships between antibodies and antigens based on their sequences. The objective is to establish
correspondence between antigens and antibodies and predict effective antibody characteristics for
new viral variants. The dataset sourced from (Zhang et al.,2022a)) contains 22,359 antibody-antigen
pairs. MCC is employed for performance assessment.

B.2 DATASET DIVISION

The datasets for each task were partitioned into training, validation, and test sets following estab-
lished benchmarks to ensure comprehensive evaluation of model performance across diverse biolog-
ical sequences. Tab. 3| provides a detailed breakdown of the dataset sizes for all tasks.

For DNA-related tasks, the datasets consist of substantial collections with approximately 100,000
sequences for promoter detection tasks (PD300 and CPD), while the transcription factor binding
site detection in mouse (TF-M) contains around 80,000 training samples. All DNA tasks maintain
consistent validation and test set sizes of approximately 10,000-12,000 samples each.

RNA tasks exhibit diverse dataset scales, with Modification Prediction (Modif) featuring the largest
training set of over 300,000 sequences, reflecting the abundance of available RNA modification data.
In contrast, Non-coding RNA Function Classification (ncRNA) utilizes a more focused dataset of
approximately 5,670 training samples but includes a larger test set of 4,840 samples for thorough
evaluation.

Protein tasks include Solubility Prediction (Sol) with approximately 62,000 training sequences
and Enzyme Commission Number Prediction (EC) with around 15,500 training samples. The
multi-omics tasks, Antibody-Antigen Neutralization (AAN) and RNA-Protein Interaction Predic-
tion (RPI), contain 22,359 and 14,994 training samples respectively, reflecting the specialized nature
of these interaction prediction tasks.

In total, the benchmark encompasses approximately 695,000 training samples, 49,500 validation
samples, and 51,100 test samples across all tasks, providing a robust foundation for evaluating model
generalization capabilities across different biological domains and task types.

B.3 TASK TYPES AND EVALUATION METRICS

B.3.1 BINARY CLASSIFICATION

This type of task asks the model to predict one of two possible classes. In our case, either positive
or negative. The evaluation pipeline involves first classifying via keywords based on the presence of
predefined positive or negative keywords. If keywords classification fails, the pre-trained sentiment
analysis model will be utilized as a fallback to determine the class based on the sentiment polarity
assigned with a higher probability score.
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Task Training/Validation/Test
DNA Tasks
Promoter Detection 300 (PD300) 94,712/11,840/11,840
Core Promoter Detection (CPD) 94,712/11,840/11,840
Transcription factor binding site detection in mouse (TF-M) 80,018/10,005/10,005
RNA Tasks
Modification Prediction (Modif) 304,661/3,599/1,200
Non-coding RNA Function Classification (ncRNA) 5,670/650/4,840
Protein Tasks
Solubility Prediction (Sol) 62,478/6,942/2,001
Enzyme Commission Number Prediction (EC) 15,551/1,729/1,919
Multi-Omics Tasks
Antibody-Antigen Neutralization (AAN) 22,359/1,242/3,301
RNA-Protein Interaction Prediction (RPI) 14,994/1,666/4,164
Total
All 695,155/49,513/51,110

Table 3: Data size (training/validation/testing) for each task in the benchmark. The table lists the
four tasks by category: DNA, RNA, Protein, and Multi-Omics; the number of samples is given after
each task in the format of “training/validation/testing”. The “All” row sums the sample size for all
tasks. The values in the table are raw sample counts, which are used in our paper to systematically
evaluate model performance across different tasks and data sizes.

* Matthews Correlation Coefficient (MCC): Provides a balanced measure for binary clas-
sifications, even when classes are imbalanced. The metric ranges from -1 to 1, where -1
indicates perfect inverse correlation, 0 indicates random predictions or no correlation, and
1 indicates perfect positive correlation.

Given true positives T'P, true negatives T'N, false positives F'P, and false negatives F' IV,
the MCC is computed as:

MO — TP xTN —-FPxFN @)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

* Accuracy Score (ACC): Calculates the proportion of correct predictions out of all predic-
tions made. It ranges from O to 1, where 0O indicates no correct predictions, 1 indicates all
correct predictions, and 0.5 as random predictions.

Given the total number of correct predictions C' and total predictions NV, the accuracy is
computed as:
C

ACC = N 3)

B.3.2 MULTI-CLASS CLASSIFICATION

This type of task asks the model to assign each input to one of several classes. In the non-coding
RNA family prediction task, the model is required to predict one of 13 classes.

* Accuracy Score (ACC): Calculates the proportion of correct predictions out of all predic-
tions made. It ranges from O to 1, where 0 indicates no correct predictions, 1 indicates all
correct predictions, and 0.5 as random predictions.

For multi-class classification with K classes, let C}, represent the number of correct pre-
dictions for class k and IV be the total number of predictions. The accuracy is computed
as:

_ Zf:l Cr
ACC = =N 4)
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B.3.3 MULTI-LABEL CLASSIFICATION

This type of task involves inputs that may belong to multiple classes and asks the model to predict all
of them. The evaluation process includes first extracting all relevant labels from the model outputs
and converting them into binary multi-hot vectors representing the presence or absence of each class.

* Area Under the ROC Curve (AUC): Measures the model’s ability to distinguish between
classes across all thresholds. The metrics range from O to 1, where 1 indicates perfect
ability to distinguish classes and 0.5 as random performance.

Let TPR(t) denote the true positive rate and F'PR(t) denote the false positive rate at
threshold ¢. The AUC is computed as:

1
AUC = / TPR(FPR)AFPR (5)
0

* Fmax Score (Fmax): Represents the maximum F1 score over all possible thresholds, pro-
viding a balanced measure of precision and recall in multi-label settings. The metric ranges
from O to 1, where 0 indicates the worst balance of no correct predictions and 1 indicates a
perfect balance between precision and recall.

Given precision Precision(t) and recall Recall(t) at threshold ¢, the Fmax score is com-
puted as:

(6)

Fmax = mtax

2 - Precision(t) - Recall(t)
Precision(t) + Recall(t)

C ADDITIONAL EXPERIMENTAL SETTINGS AND DETAILS

C.1 TRAINING CONFIGURATION

Component Value

Max length 3072 tokens

Omics window 1024 tokens

Batch/GPU 2 (train), 4 (eval)

Grad accum 4 steps

LR 3e-5, 10% warmup
Epochs 5

Precision bf16 + Flash-Attention-2
DeepSpeed ZeRO-2

Table 4: Key Hyper-parameters and Training Configuration.

C.2 DETAILED DESCRIPTION OF BASELINES

We provide detailed descriptions of all baseline models used in our experiments, organized into
three categories: (1) omics-specific models, (2) general large language models (LLMs), and (3)
multi-omics large language models (MOLLMs), further divided into non-omics-encoding (NOE),
single-omics-encoding (SOE), and multi-omics-encoding (MOE) types.

Omics-Specific Models These models are domain-specialist architectures designed for specific
biological tasks. They do not rely on natural language pretraining and are typically trained from
scratch or fine-tuned on task-specific data.

« DNABERT?2 (Zhou et al) [2023): DNABERT-2 is a foundational language model pre-
trained on an extensive collection of genomic sequences spanning 2,063 species. It incor-
porates key innovations such as byte-pair encoding (BPE) for tokenization and Attention
with Linear Biases (ALiBi) for position awareness, which together enhance computational
efficiency. The model delivers state-of-the-art, ready-to-use representations for a range of
genomic prediction tasks, including the identification of promoters, splice sites, and en-
hancers.
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* GCN (Rosst et al., [2019): The GCN model addresses the challenge of classifying non-
coding RNA function by leveraging their structural information. It represents each RNA
molecule as a graph, where nodes correspond to structural elements and edges capture
their complex interactions. A two-layer Graph Convolutional Network then processes this
graph to generate a functional prediction, achieving state-of-the-art accuracy on the Rfam
benchmark and identifying the key structural motifs that contribute to the classification.

* MultiRM (Song et al.,[2021b): MultiRM introduces a multi-label deep learning framework
for the simultaneous prediction of numerous RNA modification sites. Its architecture is
centered on a shared bidirectional GRU encoder that learns a common representation of
the RNA sequence, followed by an attention layer that specializes this information for
each modification type. This design eliminates the need for separate, single-task models,
providing a computationally efficient solution that uncovers both shared and modification-
specific sequence determinants across species.

» SaProt-GearNet (Su et al.| 2024): A structure-aware protein transformer that integrates se-
quence and structural information for enzyme function prediction. The hybrid transformer-
GNN pipeline first enriches raw sequences with 3-D structural contexts via SaProt’s vocab-
ulary, then refines these embeddings through GearNet’s message-passing layers to capture
both local motifs and global topology.

* DeepSol (Khurana et al.| 2018): DeepSol is an end-to-end deep learning framework that
predicts protein solubility directly from primary sequence data. By employing a convo-
lutional neural network (CNN) architecture, it automatically learns discriminative features
from amino acid sequences, achieving superior predictive accuracy over traditional meth-
ods and facilitating the identification of proteins with high expression yields.

* DeepAAI (Zhang et al. 2022b): DeepAAl is a deep learning framework that predicts
antibody-antigen interactions by learning adaptive relational graphs. The model constructs
separate graphs for antibodies and antigens based on their sequences, and then employs
Laplacian smoothing to propagate information, allowing it to infer functional representa-
tions for unseen antibodies. This graph-based methodology facilitates accurate prediction
of neutralization activity and binding affinity.

* ncRPI-LGAT (Han & Zhang, |2023b): The ncRPI-LGAT model predicts ncRNA-protein
interactions through a multi-step graph representation learning process. It begins by con-
structing a local network for each target RNA-protein pair and then transforms this sub-
graph into its corresponding line graph, where edges become nodes. A lightweight graph
attention network then operates on this line graph to learn embeddings for each RNA-
protein pair node by aggregating information from its neighbors.

General Large Language Models These are general-purpose language models without domain-
specific biological pretraining. They are evaluated in a zero-shot or few-shot setting on biological
tasks.

* DeepSeek-R1 (DeepSeek-Al| [2025): This model enhances its reasoning prowess through
a sophisticated training regimen that includes multi-stage preparation and cold-start data
integration prior to large-scale reinforcement learning. This approach refines the model’s
problem-solving strategies and output coherence, enabling it to excel in domains requiring
rigorous logical inference and precise computation.

¢ GLM4-9B-Chat (GLM et al., 2024): GLM4-9B-Chat is a 9-billion-parameter large lan-
guage model specifically fine-tuned for conversational interactions. It is designed to pro-
vide high-quality, responsive dialogue in both Chinese and English, serving as a versatile
foundation for bilingual chat applications and assistants.

* GPT-4o (Hurst et al.,2024): Designed as a comprehensive multimodal AI, GPT-40 demon-
strates state-of-the-art capabilities in understanding and generating content across text,
code, images, and audio. Its performance extends to a wide range of languages and tasks.
The model’s development incorporates rigorous safety evaluations and alignment measures,
ensuring its responsible deployment for a variety of applications.

* Qwen3 Series (Yang et al., [2025a): The Qwen3 Series represents a collection of open-
source large language models, available in multiple parameter scales including 1.7B, 4B,

19



Under review as a conference paper at ICLR 2026

8B, and 32B. These models are trained on extensive datasets encompassing multiple lan-
guages and specialized scientific corpora, making them versatile foundation models for a
wide range of applications.

Multi-Omics Large Language Models These models integrate biological sequences with natural
language processing capabilities. We categorize them based on their use of omics encoders.

NON-OMICS-ENCODING (NOE) These models treat omics sequences as plain text and do not
use biological encoders.

* ChatMultiOmics (He et al.,|2025)): ChatMultiOmics is an instruction-tuned large language
model that processes DNA, RNA, and protein sequences as a unified text modality. By fine-
tuning on a specialized corpus of biological instructions, it learns to interpret and reason
about multi-omics data within a natural language framework, enabling it to perform a wide
range of sequence analysis tasks through conversational interaction.

* Intern-S1 (Bai et al.,2025a): Intern-S1 is a scientific large language model trained on inter-
disciplinary data spanning biology, chemistry, and physics. Uniquely, it processes complex
scientific information directly without relying on domain-specific encoders for omics or
other specialized data types, demonstrating strong generalization capabilities across multi-
ple scientific fields.

* NatureLM (Xia et al., [2025): NatureLM is a large-scale scientific language model that
employs a unified tokenization strategy to pretrain on DNA, RNA, and protein sequences
concurrently. By processing these diverse biological modalities through a shared architec-
tural framework without separate omics encoders, it establishes a cohesive representation
of biological language, enabling cross-domain inference and generation capabilities.

SINGLE-OMICS-ENCODING (SOE) These models use a single biological encoder (e.g., DNA or
protein) aligned with an LLM.

* BioReason (Fallahpour et al.,2025): BioReason is a hybrid Al framework that combines a
specialized DNA sequence encoder (N'T-v2) with a large language model (LLM) to perform
complex, multi-step biological reasoning. This integration enables the LLM to directly
leverage structured genomic information, facilitating logical deduction and inference across
diverse biological questions based on DNA sequence input.

e ChatNT (de Almeida et al.,[2025): ChatNT introduces a unified biological sequence mod-
eling approach by mapping RNA and protein sequences into DNA-like representations
through a specialized DNA-centric encoder. This representation alignment enables seam-
less cross-omics reasoning within a coherent semantic space, allowing the model to inte-
grate information across different biological modalities for comprehensive analysis.

e ProLLaMA (Lv et al. [2025):ProLLaMA is a protein-specialized language model that
bridges protein sequence representations with natural language reasoning by aligning
ESM2 embeddings into a Llama-based LLM. This alignment creates a unified model ca-
pable of interpreting protein sequences through the semantic understanding of a general-
purpose language model.

C.3 DETAILED DESCRIPTION OF MAIN RESULTS

Model

Task (Metric)

TF-M PD300 CPD ncRNA  Modif EC Sol AAN RPI

Qwen3-1.7B 39.55*3¢ 62.69*09* 49.80%"3! 78.50*2% 67.85%80 49.52%072 67,50*78 32.852% 70.70*>*

Qwen3-4B
Qwen3-8B

39.49*072 62.03%9% 50.56*04 83.75%015 66.68*088 55.45%041 66.69*071 34.76*1% 70.70%04°

40.20*% 62.85%4 50.97*"% 84.74*"% 67.51°% 66.51*" 67.39**°% 40.52**1" 71.20*%

Table 5: Performance of Qwen3-Omics-SFT models on nine omics tasks (mean4std over three
runs). Bold: best; underline: second-best.
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C.4 DETAILED DESCRIPTION OF DATA SCALING LAW EXPERIMENTS

Data Scale TF-M  PD300 CPD NcRNA Modif EC Sol AAN RPI
10% 30466 6247 8001 9471 9471 2235 1555 1499 561

20% 60932 12495 16003 18942 18942 4471 3110 2998 1123
30% 91398 18743 24005 28413 28413 6707 4665 4498 1684
40 % 121864 24991 32007 37884 37884 8943 6220 5997 2246
50% 152330 31239 47356 40009 47356 11179 7775 7497 2807

Table 6: Training-set size (number of samples) used for each task when uniformly sampling 10%,
20%, 30%, 40%, and 50% of the original training data.
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D EXAMPLE SCENARIOS

D.1 TF-M

S

Task of TF-M

Question :
<dna>AAAAAACAAACAAATCAAAAATGGGCAAAAAAAAAAACCTAGCAAATAAAAAA
CCAAAAACAACAAAACACAAAAAAAAGCAGCAAAAAAAAAAAAAACAG</dna>: Assess
this DNA sequence for the presence of transcription factor binding sites.

Ground Truth:
Nope, I've not spotted any transcription factor binding sites in there.

Ours

My assessment shows that this sequence does not include areas where transcription factors can bind.

Qwen3-32B

CAGCAAAAAAAAAAAAAACAG<dna>: Assess this DNA sequence for the presence of
transcription factor binding sites.\nassistant\n<think>\n\n</think>\n\nAssessing a DNA sequence
for **transcription factor binding sites (TFBSs)** involves identifying short, conserved DNA
motifs known to interact with specific transcription factors. These motifs are typically 6-20 base
pairs in length and are often **palindromic** or have **specific sequence preferences** (e.g.,
TATA-box, GC-box, CAAT-box).

Summary of Findings\n\n| Feature | Present? | Notes |\n|--------|--------—-| [------] |

DeepSeek-R1

To get a definitive answer, you would need to:

Use Specialized Software: Run the sequence through a proper TFBS prediction tool like JASPAR,
MEME Suite, or TRANSFAC. These tools compare your sequence against large databases of
known motifs.

Experimental Validation: If this sequence is part of a suspected regulatory region, functional assays
like EMSA (Electrophoretic Mobility Shift Assay) or ChIP (Chromatin Immunoprecipitation)
would be required to confirm protein binding.

Genomic Context: The most important question is: Where is this sequence from? If it is upstream of
a gene's transcription start site, it might be worth investigating experimentally. If it's from an intron
or an intergenic region far from any gene, it is almost certainly non-functional for transcription
factor binding.

Intern-S1

To assess the provided DNA sequence for transcription factor binding sites (TFBS), we
systematically analyze it for known consensus motifs and structural patterns associated with
transcription factor recognition. Here's the breakdown:

**Final Answer:**

The DNA sequence contains potential transcription factor binding sites, including a **variant
CCAAT box** (positions 51-55) for NF-Y and a **GC-rich motif** (positions 22-27) resembling
an SP1 site. Additionally, extensive **poly-A tracts** may interact with AT-specific factors.
However, these are partial matches, and functional validation is required.

NatureLM

Aa.
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-

131

D.2 PD300
Task of PD300

Question:
<dna>CAGCCTCTCGACCGCCGGCCACCCGCCAGCCACGCGCGCCCAGACAGGAGGGCG
GCCGGGCGCTCGGCGGGGCGGGGCCTGCCGGGGGCGGGGCCTGCGGGCGGGGCGGGG
CCGCGGGAGGGCGGGGCCGGCGCGGCGAGCGCACCAGCAGCATCCTGGCTCAGCCGC
GGCGGTGGCGGGGGCGCAACCAGCGGGCCGAGGCGGCGGCGCCAGCGGCGCCTTAAA
TAGCATCCAGAGCCGGCGCGGGGCAGGGAGTGGGCTGCAGTGACAGCCGGCGGCGGA
GCGGCCGGTCCACGGAGG</dna>: Is there any evidence of TATA box, Initiator, or other
promoter-associated sequences here?

Ground Truth:
Promoter sequences are evident in the analyzed DNA sample.

() o=

Examination reveals promoter elements in the DNA fragment.

@ Qwen3-32B

assistant\n<think>\n\n</think>\n\nTo determine whether the given DNA sequence contains
promoter-associated features such as the **TATA box**, **Initiator (Inr)**, or other regulatory
elements, we need to carefully analyze the sequence for known consensus sequences and their
positioning relative to the transcription start site (TSS).\n\n---\n\n###

& DeepSeek-R1

Excellent question. This is a fundamental task in bioinformatics: scanning a DNA sequence for
known regulatory motifs.

Let's analyze the sequence you provided.

Short Answer

No, there is no strong, canonical evidence of a TATA box or Initiator (Inr) element in this sequence.
The sequence is overwhelmingly GC-rich and contains repetitive patterns that are more
characteristic of a CpG island, which is often associated with promoters of "housekeeping" genes.
These promoters typically lack TATA boxes.

Conclusion

The sequence CAGCCTCTCGACCGCCGGCC... does not contain evidence for a TATA box or a
clear Initiator element. Instead, its defining features are:

Extremely high GC content.

Abundance of CpG dinucleotides, identifying it as a CpG island.

Multiple repeats of Sp1/KLF-like binding sites (e.g., GGCGG, GGGCGQG).

This is a very strong signature of a TATA-less promoter commonly found for housekeeping genes.
The transcription start site for such a promoter would likely be located within this GC-rich region,
and initiation would be driven by the combined action of Sp1 and other factors binding to these GC-
rich motifs, rather than by a TATA box/TFIID complex.

In summary: The evidence points away from a classic TATA-driven promoter and strongly towards
a CpG island-associated, TATA-less promoter.
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£

D.3 CPD

Intern-S1

Let's break down the analysis of the provided DNA sequence to determine if there are any
promoter-associated sequences such as the TATA box or Initiator (Inr) elements.

##t# Final Answer
\[\boxed {\text{Yes, there is a TATA box (part of TTAAATAG), but no clear Initiator (Inr)
sequence is found.} }\]

NatureLM

CCCAAG

ChatNT

The measured CPD nucleotide range for this sequence is 24.15.

Task of CPD

Question:
<dna>GGGAGAAAAACGGGGAACCAGGAATGTTGGGAGGGGGACGAGGAATACAAGGA
GGGAGGGGAACACTGAG</dna> Is this sequence located near the transcription start site?

Ground Truth:
Core promoter sequences are absent in the 70 bp DNA fragment.

Ours

The 70 bp DNA sequence does not contain core promoter elements; characteristic motifs are absent.

Qwen3-32B

user\n<dna>GGGAGAAAAACGGGGAACCAGGAATGTTGGGAGGGGGACGAGGAATACA
AGGAGGGAGGGGAACACTGAG<dna> Is this sequence located near the transcription start
site?\nassistant\n<think>\n\n</think>\n\nTo determine if the DNA sequence
\n\n'<dna>GGGAGAAAAACGGGGAACCAGGAATGTTGGGAGGGGGACGAGGAATACAA
GGAGGGAGGGGAACACTGAG<dna>' \n\nis located near a **transcription start site (TSS)**,
we need to consider several key features commonly associated with promoter regions and TSSs,
especially in **eukaryotic** or **prokaryotic** organisms (as it was not specified which one we're
considering).\n\n---\n\n###

Conclusion\n\n- The sequence contains or is located **near a start codon (AUG)** when
transcribed.\n- It is **GC rich**, which is often seen in promoter regions.\n- There is **no obvious
TATA or CAAT box**, which could suggest a **TATA-less promoter**, common in some
eukaryotic genes.\n- The presence of a **start codon** and the sequence structure **strongly
suggest** that this DNA region is **located near the transcription start site (TSS)**, possibly in a
**eukaryotic** gene.\n\n---\n\n### »* Additional Steps for Confirmation\n\nl. **Align with
known TSS annotation**: If this sequence is from a known genome, use tools like **Ensembl**,
**UCSC Genome Browser**, or **CAGE** data to determine actual TSSs.\n2. **Check for RNA-
Seq or
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& DeepSeek-R1

I

Excellent question. This is a classic example of a sequence that looks very much like it is located
near a transcription start site.

The short answer is: Yes, it has very strong features that are almost always found in the promoter
region, immediately upstream of the transcription start site.

Here’s a breakdown of why, by analyzing the sequence features:

Conclusion

The sequence you provided exhibits the classic signature of a eukaryotic promoter, containing both
TATA-box-like and multiple GC-box elements. Therefore, it is very likely located near the
transcription start site, most likely directly upstream of it in the promoter region.

In summary: The evidence strongly points to YES.

Intern-S1

The solution I propose is Yes, it is.

NatureLM

CCCAAG

ChatNT

The measured CPD nucleotide range for this sequence is 24.15.

D.4 NCRNA

S

Task of ncRNA

Question:
<rma>GGATGCGATCATGTCTGCACTAACACACCGGATCCCATCAGAACTCCGAAGTTAA
GCGTGCTTGGGCGGGAGTAGTACTAGGATGGGCGACCCCTTAGGAAGTACTCGTGTTG
CATCCC<rna> Based on its structure, which RNA family does this sequence belong to?

Ground Truth:
The sequence is classified as belonging to the 5S_rRNA RNA family.

Ours

The sequence is identified as belonging to the SS_rRNA class of non-coding RNA.

wen3-32B

assistant\n<think>\n\n</think>\n\nTo determine which **RNA family** the sequence you've
provided belongs to, let's first analyze the **structure and features** of the given RNA
sequence.\n\nSequence:\n" \nGGATGCGATCATGTCTGCACTAACACACCGGATCCCATCAG
AACTCCGAAGTTAAGCGTGCTTGGGCGGGAGTAGTACTAGGATGGGCGACCCCTTAGG
AAGTACTCGTGTTGCATCCC\n'*\n\n---\n\n###

Answer:\n\nThis RNA sequence likely belongs to the **Vault RNA** family.\n\n---\n\n### &
Vault RNA Overview:\n- Size: ~140—160 nucleotides\n- Structure: Conserved stem-loop motifs\n-
Function: Involved in drug resistance and intracellular transport in eukaryotes\n- Expression: Found
in mammals, especially in cancer cells\n\nIf you'd like to confirm, you can run a **BLASTN** or
**RNAfold** analysis to identify the specific RNA family or species.
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. 4

&

D.5 MODIF

DeepSeek-R1

Let's break this down.
We have the RNA sequence:

**Final answer:**

\[

\boxed{4.5S\ SRP\ RNA}
\]

Intern-S1

I would respond by saying After analyzing the given sequence, the RNA family is identified as 7SK
RNA.

NatureLM

(null)

ChatNT

No, there is no evidence of a noncoding RNA family in this sequence.

Task of Modif

Question:
<rna>GGAAAAAGTGACACCAATCCTGAGTCCTTTGGACACTGGATACTGGGCATCGTTC
ATTGCCAGAAGTTTATAAAATCCTATTGGGAGAAAAGCAGGCTATC</rna> How does the
sequence relate to predicted RNA modification types?

Ground Truth:
The predicted RNA modifications for include Cm.

Ours

The RNA modifications predicted for the sequence are m5C.

wen3-32B

types?\nassistant\n<think>\n\n</think>\n\nThe RNA sequence you
provided:\n\n""\nGGAAAAAGTGACACCAATCCTGAGTCCTTTGGACACTGGATACTGGGC
ATCGTTCATTGCCAGAAGTTTATAAAATCCTATTGGGAGAAAAGCAGGCTATC\n" '\n\nis
a 129-nucleotide RNA sequence. To determine how it relates to **predicted RNA modification
types**, we must consider that RNA modifications

**Predicted Modification Types Summary**\n\n| **Modification** | **Potential Motifs /
Context** | **Evidence in Sequence** | **Notes** |\n| | |
| [\n| **m6A
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& DeepSeek-R1

&

D.6 EC

Excellent question. Analyzing an RNA sequence like this for potential modifications is a multi-step
process that moves from general principles to specific, testable predictions.

Here’s a detailed breakdown of how this sequence relates to predicted RNA modification types.
Summary Up Front

The sequence
GGAAAAAGTGACACCAATCCTGAGTCCTTTGGACACTGGATACTGGGCATCGTTCATTG
CCAGAAGTTTATAAAATCCTATTGGGAGAAAAGCAGGCTATC contains several sequence
motifs that are known to be hotspots for common RNA modifications. The most prominent
predictions would be for:

N6-methyladenosine (m® A): High probability due to multiple DRACH motifs (especially
GGACU).

A-to-I Editing: High probability due to a long stretch of adenosines (A-rich region) in a potentially
double-stranded context.

Pseudouridylation (¥): Possible, depending on the secondary and tertiary structure of the RNA.
5-methylcytosine (m® C): Less predictable from sequence alone, but potential sites exist.

It's crucial to remember that the final modification landscape is determined by the cellular context
(which enzymes are expressed) and the RNA's secondary/tertiary structure.

Conclusion

The provided RNA sequence is rich in motifs associated with post-transcriptional modifications.

The strongest prediction is for N6-methyladenosine (m° A) at specific DRACH sites (GGACA,
GGACU, AAACU).

It also has a high potential for A-to-I editing in the TTTATAAA region, contingent on the

formation of a double-stranded structure.

Predictions for pseudouridylation and 5-methylcytosine are possible but require structural or
experimental data for confirmation.

In a biological context, this RNA would likely be heavily modified, influencing its stability, splicing,
translation, and function.

Intern-S1

I would conclude that The computational analysis of the sequence suggests the presence of the
following RNA modifications: m1A.

NatureLM

(null)

ChatNT

Yes, there is a clear and prominent presence of a modification in this sequence.

Task of EC

Question:
<protein>MHHHHHHSSGVDLGTENLYFQSNAMDFPQQLEACVKQANQALSRFIAPLPFQNT
PVVETMQYGALLGGKRLRPFLVYATGHMFGVSTNTLDAPAAAVECIHAYSLIHDDLPAMD
DDDLRRGLPTCHVKFGEANAILAGDALQTLAFSILSDANMPEVSDRDRISMISELASASGIA
GMCGGQALDLDAEGKHVPLDALERIHRHKTGALIRAAVRLGALSAGDKGRRALPVLDKY
AESIGLAFQVQDDILDVVGDTATLGKRQGADQQLGKSTYPALLGLEQARKKARDLIDDAR
QALKQLAEQSLDTSALEALADYIIQRNK</protein> What enzymatic activity is associated with
this protein sequence?

Ground Truth:
The enzyme's role in biochemical pathways is detailed by EC number EC2.5.1.-,EC2.5.1.10.
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Sr

&

Ours

The types of reactions catalyzed by enzymes are classified under EC numbers. The type of reaction
it catalyzes falls under EC number EC2.5.1.-,EC2.5.1.10.

Qwen3-32B

user\n<protein>MHHHHHHSSGVDLGTENLYFQSNAMDFPQQLEACVKQANQALSRFIAPLP
FQNTPVVETMQYGALLGGKRLRPFLVYATGHMFGVSTNTLDAPAAAVECIHAYSLIHDDL
PAMDDDDLRRGLPTCHVKFGEANAILAGDALQTLAFSILSDANMPEVSDRDRISMISELAS
ASGIAGMCGGQALDLDAEGKHVPLDALERIHRHKTGALIRAAVRLGALSAGDKGRRALPV
LDKYAESIGLAFQVQDDILDVVGDTATLGKRQGADQQLGKSTYPALLGLEQARKKARDLI
DDARQALKQLAEQSLDTSALEALADYIIQRNK<protein> What enzymatic activity is
associated with this protein sequence?\nassistant\n<think>\n\n</think>\n\nTo determine the
enzymatic activity associated with the given protein sequence, I will analyze it for conserved
domains, motifs, and homology to known enzymes. Here's the step-by-step process and
analysis:\n\n---\n\n###

Conclusion**\n\nBased on sequence analysis:\n\n> &4 The protein sequence you provided is
associated with **protein kinase activity**, most likely **serine/threonine-specific kinase**.\n\n---
\n\n#### “\, Further Recommendations\n\nIf you'd like to be more precise:\n- Perform a **BLAST
search** using the NCBI database.\n- Use tools like **Pfam scan**, **SignalP**,
**PhosphoSitePlus**, or **KinBase**.\n\nLet me know if you want to do that or if you’re working
on a specific protein name or organism.

DeepSeek-R1

Excellent question. Analyzing a protein sequence to predict its function is a core task in
bioinformatics. Based on the sequence you provided, here is a detailed breakdown of the analysis
and the most likely enzymatic activity.

Summary Answer

The protein sequence you provided is highly likely to be a Serine Hydroxymethyltransferase
(SHMT).

SHMT is a key enzyme in one-carbon metabolism that catalyzes the reversible conversion of the
amino acid serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate.

Conclusion

The presence of the definitive pyridoxal phosphate (PLP)-binding motif and the results of a BLAST
search provide conclusive evidence that the protein sequence encodes Serine
Hydroxymethyltransferase (SHMT), an enzyme central to one-carbon metabolism and amino acid
interconversion.

Intern-S1

As for my answer, it is Upon reviewing the provided protein sequence, the corresponding enzyme's
activity is identified as <IUPAC> 1-deoxy-D-xylulose-5-phosphate synthase </[TUPAC> activity,
magnesium ion binding, thiamine pyrophosphate binding.

NatureLM

I-

ProLLaMA

Superfamily=<Amidase signature (AS) superfamily>
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D.7 SoL

Sr

Task of Sol

Question:
<protein>MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSAMLPNTGRLAGCTVFITGA
SRGIGKATALKAAKDGANIVIAAKTAQPHPKLLGTIYTAAEEIEAVGGKALPCIVDVRDEQQ
ISAAVEKAIKKFGGIDILVNNASAISLTNTLDTPTKRLDLMMNVNTRGTYLASKACIPYLKK
SKVAHILNISPPLNLNPVWFKQHCAYTIAKYGMSMY VLGMAEEFKGEIAVNALWPKTAIH
TAAMDMLGGPGIESQCRKVDIIADAAY SIFQKPKSFTGNFVIDENILKEEGIENFDVYAIKPG
HPLQPDFFLDEYPEAVSKKVESTGAVPELACGRTRAPPPPPLRSGC</protein> Solubility
prediction aims to assess if a sequence results in a soluble protein. Will this amino acid sequence
yield a soluble protein?

Ground Truth:
This protein has a high solubility potential.

Ours

Solubility is an expected property of this protein.

Qwen3-32B

user\n<protein>MGSSHHHHHHSSGLVPRGSHMA SMTGGQQMGRGSAMLPNTGRLAGCTVF
ITGASRGIGKAIALKAAKDGANIVIAAKTAQPHPKLLGTIYTAAEEIEAVGGKALPCIVDVR
DEQQISAAVEKAIKKFGGIDILVNNASAISLTNTLDTPTKRLDLMMNVNTRGTYLASKACIP
YLKKSKVAHILNISPPLNLNPVWFKQHCAYTIAKYGMSMY VLGMAEEFKGEIAVNALWPK
TAIHTAAMDMLGGPGIESQCRKVDIIADAAY SIFQKPKSFTGNFVIDENILKEEGIENFDVYA
IKPGHPLQPDFFLDEYPEAVSKKVESTGAVPELACGRTRAPPPPPLRSGC<protein> Solubility
prediction aims to assess if a sequence results in a soluble protein. Will this amino acid sequence
yield a soluble protein?\nassistant\n<think>\n\n</think>\n\nTo determine whether a given amino
acid sequence yields a **soluble protein**, we can analyze it based on **sequence features
associated with solubility** and compare it to known solubility predictors. Here's how we can
assess the protein sequence you provided:\n\n---\n\n###

**Final Prediction:**\n\n> **Yes**, this amino acid sequence is **likely to yield a soluble
protein**, especially under controlled expression conditions with proper tags and/or co-expression
with chaperones.\n\nLet me know if you'd like a detailed hydrophobicity plot or disorder prediction
for the sequence!

DeepSeek-R1

Based on the amino acid sequence you provided, here is a solubility prediction:
Prediction: This protein is likely to have LOW solubility.
Here is a breakdown of the reasoning:

Conclusion:

‘While the N-terminal His-tag will be useful for purification (likely under denaturing conditions if
the protein is insoluble), the intrinsic properties of the protein's amino acid sequence suggest a high
probability that it will form inclusion bodies (insoluble aggregates) when expressed in a system like
E. coli. To improve solubility, strategies like using a solubility-enhancing tag (e.g., MBP), lowering
the expression temperature, or trying different expression hosts would be highly recommended.

Intern-S1

I would say that The protein sequence you provided has been analyzed, and it is likely to be soluble.
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ProLLaMA

Superfamily=<NAD(P)-binding domain superfamily>

Task of AAN

Question:

Antibody-antigen binding assessment:
<protein>QVQLVQSGAEMKMPGASVKVSCKASGYTFTGNYIHWVRQAPGQGLEWMGWIA
PHSGDTSYAQRFQGRVTMTGDTSLSTAYMELSRLRSDDTAVYYCARGPFPNYYGPGSYW
GGLDFWGQGTLVSVSSXEIVMTQSPATLSVSLGERATLSCRTSQNVAYNFAWYQQKPGQA
PRLLIYEASSRATGTPARFSGSGFGTEFTLTISSMQSEDFAVYYCQQYNNWPSPFTFGPGTK
VHIKX</protein>> -
<protein>MRVMGILRSYQQWWIWGILGFWMLMICNVWGNLWVTVYYGVPVWKEAKTTL
FCASDAKAHKEEVHNIWATHACVPTDPNPQEIVLKNVTENFNMWKNDMVDQMHEDIISL
WDQSLKPCVKLTPLCVTLNCSDVKIKGTNATYNNATYNNNNTISDMKNCSFNTTTEITDK
KKKEYALFYKLDVVALDGKETNSTNSSEYRLINCNTSAVTQACPKVSFDPIPIHYCAPAGY
AILKCNNKTFNGTGPCNNVSTVQCTHGIKPVVSTQLLLNGSLAEEEVVIRFENLTNNAKIIIV
HLNESVEINCTRPSNNTRKSVRIGPGQTFFATGDIIGDIRQAHCNISRKKWNTTLQRVKEKL
KEKFPNKTIQFAPSSGGDLEITTHSFNCRGEFFYCYTSDLFNSTYMSNNTGGANITLQCRIKQ
IIRMWQGVGQAMY APPIAGNITCKSNITGLLLTRDGGKEKNDTETFRPGGGDMRDNWRSE
LYKYKVVEIKPLGIAPDKAKRRVVEREKRAVGIGAVFLGFLGAAGSTMGAASMTLTVQAR
QLLSGIVQQQSNLLRAIEAQQHMLQLTVWGIKQLQTRVLAIERYLKDQQLLGIWGCSGKLI
CTTAVPWNASWSNKSYEEIWGNMTWMQWDREINNYTNTIYSLLEESQNQQEKNEKDLLA
LDSWESLWSWFENITNWLWYIRIFIIIVGGLIGLRIIFAVLSIVNRVRQGY SPLSFQTLTPSPREP
DRLGRIEEEGGEQDRARSVRLVNGFLALAWEDLRSLCLFSYHRLRDLILIAARAAALLGRSS
LWGLQKGWEALKYLGSLVQYWGLELKKSAISLFDAIAITVAEGTDRIINIVQRISRAFYNIP
RRIRQGFEATLQ</protein>>

Ground Truth:
Based on multiple analytical methods, I conclude there's no Ab-Ag interaction.

Ours

No, the antibody sequence does not exhibit features indicative of binding to this antigen.

wen3-32B

VAEGTDRIINIVQRISRAFYNIPRRIRQGFEATLQ<protein>>\nassistant\n<think>\n\n</think>\n\
nTo assess **antibody-antigen binding**, we need to evaluate two sequences: the **antibody**
and the **antigen**. These are both long protein sequences in FASTA-like format.\n\nLet me parse
the sequences and perform a **binding assessment** based on known biological features
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DeepSeek-R1

Of course. This is a detailed assessment of the potential binding between the provided antibody (a
camelid VHH or "nanobody" sequence) and antigen (the HIV-1 gp41 protein).

Executive Summary

Based on the sequence analysis, the provided antibody fragment (a camelid VHH or potential
nanobody) has a high probability of binding to the antigen (the HIV-1 gp41 envelope glycoprotein).
The binding is likely specific and of high affinity, primarily targeting a key functional region of
gp41 known as the membrane-proximal external region (MPER). This is a highly conserved and
crucial area for viral fusion, making this a candidate for a broadly neutralizing antibody.

Conclusion

The antibody fragment described is highly likely to be a potent neutralizing agent against HIV-1 due
to its structural characteristics (long CDR-H3) and a specific motif (YYGPGSY) that is a known
signature for targeting the conserved and vulnerable MPER of the gp41 protein. This makes it a
promising candidate for further therapeutic development.

Disclaimer: This is a in silico assessment based on sequence analysis and known antibody paradigms.
Experimental validation (e.g., Surface Plasmon Resonance for affinity measurement, neutralization
assays) is required to confirm binding and function. The anomalous X in the sequence should be
clarified.

Intern-S1

The solution I propose is The binding assessment of the antibody and antigen is positive.

NatureLM

I

ProLLaMA

Superfamily=<Immunoglobulin-like domain superfamily>

Task of RP1

Question:

Can you predict if
<rna>AGTGCTATACTAGAGCTGGCTCCCAAGGACCCGCTGCCGCATTGCCTTTTGAAAC
AAAACAATGAACACGTTGGTAAAGGGGCCGTGCTTGTGTGTCGGTGACAAGGCGAGAT
CCCTGAGTCAGGTCAGGCTTGTAGATTCGAGTTCTGTTGCGAGTTTGATTGCCCCTCTG
ACTTTGTCCCCTGTACAACTAGGTTGATTAGGAATCAGCCAACTGTGTTCCCTGGGTGC
TCAGAAATCACAGCCCATATCCTCGAGAGGCCAAAATGAGAGCCAGGGGGTTCCAAGA
TGAGTGGCTGCTTCTGGCCGGGAGCAGGTTTTCAAGTCATTAGAACACTCTGGCCTTTC
CTGGAGGTGATCTTGGAGCCATTCCTGCCCCTTTCAAGAGGAGTTAATGCCCAGCTCTG
TTTAGAGAAAATTGGGGGAGATGATTGCTCATGTGGGTGATAAGAATCACCTCCCGTG
CAGGGGTCTGCATAGAACACTCCATAGGCAAACCT</rna> will interact with
<protein>MALAGAPAGGPCAPALEALLGAGALRLLDSSQIVIISAAQDASAPPAPTGPAAPA
AGPCDPDLLLFATPQAPRPTPSAPRPALGRPPVKRRLDLETDHQYLAESSGPARGRGRHPG
KGVKSPGEKSRYETSLNLTTKRFLELLSHSADGVVDLNWAAEVLKVQKRRIYDITNVLEGI
QLIAKKSKNHIQWLGSHTTVGVGGRLEGLTQDLRQLQESEQQLDHLMNICTTQLRLLSEDT
DSQRLAYVTCQDLRSIADPAEQMVMVIKAPPETQLQAVDSSENFQISLKSKQGPIDVFLCPE
ETVGGISPGKTPSQEVTSEEENRATDSATIVSPPPSSPPSSLTTDPSQSLLSLEQEPLLSRMGSL
RAPVDEDRLSPLVAADSLLEHVREDFSGLLPEEFISLSPPHEALDYHFGLEEGEGIRDLFDCD
FGDLTPLDF</protein> based on their sequences and structures?

Ground Truth:
My answer is positive.
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Ours

The interaction is predicted to be influenced by the presence of specific ions or molecules in the
cellular environment.

Qwen3-32B

TTDPSQSLLSLEQEPLLSRMGSLRAPVDEDRLSPLVAADSLLEHVREDFSGLLPEEFISLSPP
HEALDYHFGLEEGEGIRDLFDCDFGDLTPLDF<protein> based on their sequences and
structures?\nassistant\n<think>\n\n</think>\n\nTo determine whether the given RNA sequence will
interact with the provided protein sequence, we need to consider a few key aspects

! Final Verdict:\n\n> **Based on the sequences and structural motifs, it is plausible that the RNA
and protein will interact.** However, more detailed computational or

DeepSeek-R1

Unfortunately, based on the information you've provided (just the linear sequences), I cannot
reliably predict whether this RNA and protein will interact.

Here’s a detailed explanation of why this is a complex problem and what would be needed for a
more accurate prediction.

The Short Answer

It is highly unlikely they interact in a specific, biologically meaningful way. The protein sequence
(MALAGAPAGGPCAPALEALLG...) is MECP2, a crucial protein that binds to methylated CpG
sites on DNA to regulate gene expression. The RNA sequence provided is a generic, seemingly
random sequence without the specific structural or sequence motifs that MECP2 is known to
recognize.

Conclusion

Based on the primary sequences alone and the known biology of MECP2:

Prediction: No specific, high-affinity interaction is expected.

Confidence: Low to medium, due to the lack of structural information. There could be weak, non-
specific electrostatic interactions, but not a stable, functional complex.

To get a better prediction, you would need to provide the predicted or experimentally determined
structures of both molecules.

Intern-S1

As for my answer, it is Based on the analysis of the protein sequence, it seems that the protein is
capable of binding RNA.

NatureLM

GCCAGCCAGGTGAGGGCCTGAGGGAGGCCCTGTGGTGAGGAA
CTGAGG
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