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Abstract
Modern large language models require dis-001
tributed training strategies due to their size. The002
challenges of efficiently and robustly training003
them are met with rapid developments on both004
software and hardware frontiers. In this tech-005
nical report, we explore challenges and design006
decisions associated with developing a scalable007
training framework, and present a quantitative008
analysis of efficiency improvements coming009
from adopting new software and hardware so-010
lutions.011

1 Introduction012

Scaling up is one of the most common ways of ob-013

taining better language models (Raffel et al., 2020).014

Once the model size becomes large enough to pro-015

hibit fitting the entire model on a single device,016

new challenges arise. On the hardware side, ex-017

tensive amounts of compute resources with large018

memory and fast interconnect are needed. On the019

software side, algorithms need to be developed that020

efficiently utilize that hardware, and optimize the021

time and resources necessary to train a model.022

This technical report explores the challenges our023

team has faced when scaling language models to024

hundreds of billions of parameters, and how our025

proprietary framework, FAX, is designed to address026

those challenges. We focus on the breakthroughs027

in training efficiency achieved by using JAX (Brad-028

bury et al., 2018) to enable tensor and data paral-029

lelism through GSPMD (Xu et al., 2021), XLA,030

and Google Cloud TPU VMs (Spiridonov, 2021),031

highlighting the use of recently released TPU v4032

Pods (Selvan and Kanwar, 2021).033

2 The FAX Framework034

To accelerate research, development, and produc-035

tion of large language models, the underlying train-036

ing framework should make it easy to experiment037

with new model architectures and training algo-038

rithms, while also being seamlessly scalable and039
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Figure 1: Simplified DAG representations of a va-
riety of model architectures: decoder-only Trans-
former (Vaswani et al., 2017), Mixture of Experts
(Shazeer et al., 2017), and Bootstrap Your Own La-
tent (Grill et al., 2020). A versatile training framework
should make a wide range of architectures, including
those, easy to implement.

easy to integrate with other workflows, such as 040

model evaluation or data processing. 041

That motivates the modular design of FAX, 042

which allows for a maintainable and malleable 043

codebase, in which the data loading, hardware 044

acquisition, model serialization, model definition, 045

and compilation modules are all logically separate, 046

making it easy to change any one of those parts in 047

isolation, as new advancements are made. 048

2.1 Model Definition 049

A user’s configuration file is parsed into a precise 050

abstract description of a machine learning model. 051

The description is constrained to the form of a Di- 052

rected Acyclic Graph (DAG), the nodes of which 053

are parameterized functions (see Fig. 1). Those 054

often correspond to entities usually referred to as 055

‘layers’, such as Transformer blocks, but developers 056

are free to define any nodes they wish. 057

Having this abstract intermediate representation 058

of a model opens up possibilities for static analysis 059

– for example, the memory requirements or latency 060
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estimates for the model can be computed at this061

point. Such analysis can be used to aid model062

compilation and experiment design.063

2.2 Model Compilation using pjit064

Given the abstract model definition and avail-065

able hardware resources, this module compiles the066

model’s training step (and other required functions,067

e.g. validation step) into a function executed on all068

the provided hardware in a distributed fashion.069

Multiple implementations of this step can be070

written, and switched between, thanks to the mod-071

ularity of the framework. For example, the entire072

model may be compiled, with tensor-parallelism,073

onto a single hardware unit (such as a GPU, or a074

TPU Pod slice), or a strategy may be devised for075

partitioning the model DAG over multiple hetero-076

geneous hardware units.077

The backbone of FAX model compilation is the078

pjit (partitioned just-in-time compilation) fea-079

ture of JAX, which allows for compiling an arbi-080

trary JAX function into an SPMD (single program,081

multiple data) XLA computation that runs on multi-082

ple devices, potentially on multiple hosts. For each083

pjit-ted function, the programmer only needs to084

specify how the inputs and outputs of the func-085

tion shall be partitioned, although one can also add086

custom sharding constraints for any intermediate087

variables inside the function to further control the088

compilation.089

The use of pjit requires specifying a logical090

mesh of devices, which is simply an n-dimensional091

array of physical devices (e.g. TPU cores). Each of092

the dimensions of the logical mesh may be referred093

to as a ‘logical mesh axis’ and has an associated094

name. The partitioning specification for inputs and095

outputs of pjit-ted functions is then a description096

of which axes of the tensors should be partitioned097

across which logical mesh axes. A single axis of098

a tensor may be partitioned across one, none, or099

multiple logical mesh axes. For example, one may100

use a 2-dimensional logical mesh with ‘data par-101

allelism’ and ‘tensor parallelism’ axes, and then102

partition the batch and embedding dimensions of103

all activations along those two logical axes, respec-104

tively.105

pjit makes it straightforward to implement106

data and tensor parallelism, and experiment with107

the trade-offs between the two, and is a key mecha-108

nism powering the FAX training framework.109
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Figure 2: A simplified timing diagram (not to scale) of
a forward and backward pass through three layers, dis-
tributed across three devices. Left: pipeline parallelism,
right: tensor parallelism. Fi and Bi denote the forward
and backward pass of the ith layer, respectively. In the
tensor parallelism paradigm, each of those computations
is further partitioned into smaller computations Fi,j and
Bi,j , executed on devices Dj . The idleness in pipeline
parallelism can be traded off for increased inter-device
communication in tensor parallelism.

3 Model Parallelism in FAX 110

Contemporary large language models are too big 111

to be trained on a single accelerator. A 6.7B- 112

parameter model, for example, requires 25GiB of 113

memory for just the parameters (stored as float32). 114

Even a single state-of-the-art GPU (e.g. a 40GB 115

NVIDIA A100) or a TPUv4 accelerator may not be 116

large enough to train such a model, once memory 117

required for the optimizer state is accounted for. 118

Thus, partitioning the model across multiple accel- 119

erators is necessary. Two common ways of doing 120

that are pipeline parallelism and tensor parallelism, 121

illustrated in Fig. 2. 122

3.1 Pipeline Parallelism 123

A pipeline parallelism solution, such as 124

GPipe (Huang et al., 2019), would partition 125

the model into groups of consecutive layers. Each 126

batch of data then needs to be processed on one 127

accelerator, then the following one, and so on. 128

After the forward pass, the backward pass needs to 129

be run on the accelerators in reversed order. 130
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Pipeline parallelism is particularly effective131

when the user has access to multiple, possibly het-132

erogeneous, compute units without fast intercon-133

nect between them. The forward and backward134

functions of the given layers can be compiled inde-135

pendently, supporting heterogeneity, and the only136

communication is the passing of activations and137

gradients once per device, as opposed to tensor par-138

allelism, which requires collective communication139

after most of model layers.140

The main drawback of pipeline parallelism is141

that the accelerators spend significant amounts142

of time idle. Methods of decreasing the idle-143

ness exist, but come at a cost; for example,144

PipeDream (Narayanan et al., 2019) achieves that145

by introducing parameter staleness.146

3.2 Tensor Parallelism147

An alternative form of model parallelism, which in-148

troduces different trade-offs, is tensor parallelism149

– partitioning large tensors (model weights and ac-150

tivations alike) across accelerators. Large compu-151

tations, such as matrix multiplications, can then152

be performed in parallel across multiple devices153

and collated. The frequent need for all-gather op-154

erations may seem worrying, but with fast enough155

interconnect (such as that in TPU Pods), tensor156

parallelism can be the most efficient solution.157

We apply tensor parallelism to our transformer158

models by sharding all the large model weight ten-159

sors and the activations. This places almost no con-160

straints on the model, albeit we do require that the161

number of attention heads be divisible by the order162

of tensor parallelism, so that the heads of multi-163

headed attention blocks can be distributed across164

accelerators. pjit correctly infers the optimal165

sharding for any intermediate tensors, wherever we166

do not specify sharding constraints explicitly.167

3.3 Combining Multiple Kinds of Parallelism168

The model parallelism methods mentioned above169

are not mutually exclusive - in fact, both types170

of parallelism can be combined, and furthermore,171

they can be combined with data parallelism, which172

means processing different subsets of a batch of173

data on different devices in parallel.174

We found that as long as the model resides on175

a single hardware unit that has fast interconnect176

between the accelerators, it is sufficient and even177

optimal to use tensor and data parallelism only. We178

present quantitative results, supporting that state-179

ment, in Section 5.1.180

4 TPU v4 and Multi-Host Training 181

Two hardware types most commonly used for train- 182

ing large neural networks, at present, are Graphics 183

Processing Units (GPUs) and Google’s Tensor Pro- 184

cessing Units (TPUs) (Wang et al., 2019). We have 185

primarily been using the latter for our large scale 186

training. 187

4.1 Using TPU VMs for Distributed Training 188

Since 2021, Google Cloud offers direct access to 189

TPU VMs – a user can connect directly to a TPU 190

host machine, with direct access to a number of 191

TPU chips, set up their environment there, and run 192

code directly on the local devices. That procedure 193

can be scaled up to a larger TPU Pod slice (set 194

of TPU hosts residing in a single physical Pod) 195

containing multiple TPU VMs. Each VM may run 196

the same code on different data, and the VMs may 197

communicate over the Pod’s fast interconnect. 198

Running JAX on TPU Pods requires users to run 199

the code on all hosts in the Pod simultaneously. 200

The users need to explicitly handle coordination of 201

execution across TPU VMs. We use Ray (Moritz 202

et al., 2018), a distributed computing framework, 203

to achieve that. FAX establishes a Ray node cluster 204

consisting of a main host VM and TPU VMs. The 205

host is responsible for sending code and artifacts 206

required for training to the TPU VMs, running the 207

training step on each TPU VM using remote calls, 208

and retrieving metrics and other outputs. 209

4.2 Google Cloud TPU v4 Pods 210

We have recently been granted access to Google’s 211

new 4th generation TPUs, which more than dou- 212

ble the computational power of their predecessor, 213

TPU v3. TPU v4 cores provide 275 peak TFLOPS 214

of compute power (compared to TPU v3’s 122 peak 215

TFLOPS). That increase in performance has en- 216

abled us to iterate on ideas and validate them at a 217

much faster pace than before. 218

5 Results 219

5.1 Comparison to Previous Framework 220

Our previous proprietary training framework is 221

built with TensorFlow (Abadi et al., 2015) and uses 222

pipeline parallelism as the only means of scaling 223

the model. The unsuitability of that method for our 224

setting, related to sub-optimal hardware utilization 225

(‘pipeline bubbles’), is illustrated in Fig. 3. 226
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Figure 3: Comparison of the training step time of a
350M-parameter transformer model on TPU v4-32, us-
ing different kinds of model parallelism. The pipeline-
parallel training is optimized with GPipe (Huang et al.,
2019), with optimal micro-batch size, while the tensor-
parallel training uses the optimal sharding configuration.

Pod slice max model size step time
v4-16 13.7B 0.87s±0.02s

v4-128 86.6B 1.52s±0.02s
v4-512 340.0B 6.21s±0.08s

Table 1: Sizes of transformer models that can be trained
on a single TPU v4 Pod slice, without the need for
pipeline parallelism. The figures assume a batch size
of 1, sequence length of 2048, and maximal tensor par-
allelism. The Adam optimizer (Kingma and Ba, 2015)
was used for all experiments. The hidden dimensions
were fixed at 5120, 10240, 16384, for the three Pod slice
sizes respectively, while the number of layers was maxi-
mized, up to a precision of 10 layers. Standard deviation
of step time over 10 steps is given.

5.2 Model Scalability with TPU v4227

While FAX supports pipeline parallelism, given the228

number of TPU v4 cores available to us, we are229

able to train extremely large models using tensor230

and data parallelism only. The capacity of different231

sizes of TPU v4 Pod slices is presented in Table 1.232

Transitioning from TPU v3 to TPU v4, we have233

so far achieved a total speedup of around 1.7x (see234

Fig. 4). It is a remaining challenge to optimize our235

model compilation to maximally benefit from the236

faster computation of TPU v4.237

6 Challenges238

The possibilities unlocked by distributed training239

come at a cost of having to manage the complex-240

ity of distributed systems. Failures of individual241

hardware hosts do occur, and minimizing the lost242

Figure 4: Time spent computing the forward pass, loss,
and backward pass of a 124M-parameter transformer
model (batch size 32, sequence length 2048). The su-
perior compute power of TPU v4 chips is reflected in
the observed 1.7x speedup of the total step time. The
speedups for the forward and backward passes are 2x
and 1.6x, respectively, suggesting our backward pass
spends a larger portion of time on communication.

computation and engineering effort necessary to 243

restart training is a complex problem. 244

A further lesson we have learned is that ensuring 245

correctness of a framework for training large neural 246

networks is difficult, because the networks tend to 247

still achieve good (but sub-optimal) performance in 248

the presence of non-breaking bugs, and problems 249

that result in a slight performance deterioration may 250

long stay undetected. 251

7 Conclusions 252

The design of a versatile distributed training frame- 253

work needs to address multiple challenges. Meticu- 254

lous codebase design is required to enable seamless 255

scalability, efficient utilization of powerful com- 256

pute, and rapid prototyping of models and training 257

algorithms. 258

We have described the modular design of our 259

training framework and its utilization of state-of- 260

the-art hardware (TPU v4) and software (JAX and 261

pjit) to perform efficient, large-scale, parallel com- 262

putation. Our experiments illustrate the capabilities 263

of TPU v4, and the importance of the choice of 264

training parallelization strategy. 265
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