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Abstract

Watermarking has recently emerged as an effective strategy for detecting the generations of
large language models (LLMs). The strength of a watermark typically depends strongly on
the entropy afforded by the language model and the set of input prompts. However, entropy
can be quite limited in practice, especially for models that are post-trained, for example via
instruction tuning or reinforcement learning from human feedback (RLHF), which makes
detection based on watermarking alone challenging. In this work, we investigate whether
detection can be improved by combining watermark detectors with non-watermark ones. We
explore a number of hybrid schemes that combine the two, observing performance gains over
either class of detector under a wide range of experimental conditions.

1 Introduction

General usage of large language models (LLMs) has increased dramatically in recent years, and so has the
need for identifying texts generated by LLMs, or Al-generated content (AGC), in the wild. For example, an
academic institution may wish to know whether students are using an LLM to do their assignments, or an
LLM provider may want to understand where and how their model is being used. One may want to detect
whether the text was generated by a specific model or any model. Moreover, in the former case, the detecting
party may or may not have white-box access (concretely, an ability to compute log-probabilities) to the model
they wish to test against. Parties with white-box access are typically the model’s owners, and so we refer to
this setting as first-party (1P) detection. In contrast, we refer to the detection of one or more models where
white-box access is not available as third-party (3P) detection.

The aim of watermarking is to bias the model so that first-party detection becomes more tractable. Most
schemes do not modify the LLM’s training procedure but instead inject the watermark signal at inference
time as part of the autoregressive decoding loop (Aaronson, 2023; Bahri & Wieting, 2024; Kuditipudi et al.,
2023; Kirchenbauer et al., 2023; Dathathri et al., 2024). Meanwhile, non-watermark detection has mostly
been viewed as a binary classification task, with the goal of discriminating one class from another — typically
human-written text from text authored by one or more models. Strategies here include training a binary
classifier on labeled text samples or computing uncertainty-based scores, such as likelihood, under a specific
LLM (Zellers et al., 2019; Solaiman et al., 2019; Gehrmann et al., 2019; Su et al., 2023; Mitchell et al.,
2023). The focus of our work is on improving first-party detection by intelligently combining watermark- and
non-watermark-based detection approaches.

The entropy of an LLM’s distribution over possible responses conditioned on a specific prompt is a key
quantity in watermark detection. For example, Bahri & Wieting (2024) provides a lower-bound on the
detection ROC-AUC as a function of the entropy of the sampled next-token distribution. In all schemes,
watermark performance improves with more available entropy. As a concrete example, consider two input
prompts to a watermarked LLM: (1) “Where is Mount Whitney?” and (2) “Write me a dreamy haiku about
the John Muir Trail in California.” The first prompt is a fact-based inquiry whereas the second is more
open-ended in nature, so the entropy will likely be higher for the second prompt than for the first and the
generated haiku will be easier to detect via the watermark. The role of entropy for non-watermark detection
is less studied. We show how non-watermark detectors, when configured in a hybrid setup, can substantially
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bolster watermarking in low entropy regimes. For example, training a logistic regression model on watermark
scores and scores from a RoBERTa-based AGC classifier can boost watermarking test accuracy from 75%
to over 95%, a 20% absolute improvement, on the 20% of test prompts that afford the least amount of
entropy. We study how these two approaches to detection can be combined effectively for better predictive
performance than either part as well as computational advantages, and we recommend practical algorithms
for deployment.

2 Related Work

We provide a concise overview of prior work on watermarking and AGC detection.

2.1 Watermarking

Although watermarking, sometimes referred to as linguistic steganography, has a storied past, interest in its
application to modern large language models grew substantially after the seminal works of Kirchenbauer
et al. (2023) and Aaronson (2023). Many successful techniques employ pseudo-random functions (PRFs) and
cryptographic hashes and are applied token-by-token during the autoregressive decoding loop. Kirchenbauer
et al. (2023) uses a PRF to bias the next-token probability distribution so that certain tokens known only
to the watermarker are made more probable. The degree of bias is a hyper-parameter that trades off text
distortion and watermark strength. Aaronson (2023) proposes a clever strategy that selects the token in the
next-token distribution that has a high PRF value and a high likelihood in a way that makes the process
appear distortion-free. Kuditipudi et al. (2023) applies a scheme similar to Aaronson (2023) but to increase
robustness to attacks such as paraphrasing, the pseudo-random numbers are determined by cycling through a
secret, predetermined sequence of values rather than by n-grams. Meanwhile, SYNTHID (Dathathri et al.,
2024) samples a large number of tokens from the next-token distribution and pits them head-to-head in a
series of tournaments, the winner of which is selected as the next token. Lee et al. (2023) adapts Kirchenbauer
et al. (2023)’s scheme for the code-generation task by applying the watermark only at decoding steps that
have sufficient entropy.

Black-box schemes that only require a way to sample sequences from the LLM have been devised (Yang et al.,
2023a; Giboulot & Furon, 2024; Chang et al., 2024; Bahri & Wieting, 2024). Most notably, Bahri & Wieting
(2024) uses elements from Aaronson (2023) to construct a general framework for black-box distortion-free
watermarking, which can be used effectively when white-box access is available.

Ways of evading, spoofing, and even stealing watermarks have been extensively studied (Zhang et al., 2023; Gu
et al., 2023; Jovanovi¢ et al., 2024; Cheng et al., 2025). To address the weakness of many schemes to attacks
such as token substitution or paraphrasing, watermarking based on semantics or invariant features has also
been proposed (Liu et al., 2023; Hou et al., 2023; Ren et al., 2023; Yoo et al., 2023). Fernandez et al. (2023)
tests various watermarking schemes on classical NLP benchmarks and introduces new statistical tests — for
example, they suggest skipping duplicate n-grams during testing. Liang et al. (2024) conducts a comprehensive
assessment of watermarking strategies, finding that incorporating a non-watermark RoBERTa-based detector
like the way we do can help boost robustness to attacks. The purpose of our work is to generalize this focused
insight by proposing and then carefully evaluating various hybrid schemes.

2.2 AGC Detection

A powerful paradigm to detect AGC is to finetune a pretrained LM on sizable datasets for classification (Zellers
et al., 2019; Solaiman et al., 2019); notably, Hu et al. (2023) and Tian et al. (2023) do so via adversarial and
positive-unlabeled (PU) learning respectively, while Tay et al. (2020) applies it to the task of discriminating
different LM generators from one another.

A second camp of approaches focuses on capturing statistical patterns of AGC using little to no training
data — such as the intrinsic dimensionality of generated text (Tulchinskii et al., 2024), perplexity / rank /
log-rank (Gehrmann et al., 2019; Su et al., 2023), perplexity curvature (Mitchell et al., 2023), and n-gram
patterns (Yang et al., 2023b).
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Mireshghallah et al. (2024) shows, interestingly, that small LM generators make for better zero-shot detectors
than larger ones. Mao et al. (2024) leverages the observation that LLMs change more words when tasked to
rewrite human text than to rewrite AGC. Zhang et al. (2024) shows that existing detectors are inadequate for
detecting Al-revised human-written text, text that a human wrote with assistance from an LLM. Interestingly,
Russell et al. (2025) found that humans who use LLMs for writing tasks can outperform many commercial
and open source detectors even in the presence of paraphrasing and humanization.

As usage of large language models is still nascent, it remains to be seen precisely how they are used in the
wild, be it with good or nefarious intentions. Bahri et al. (2021) conducts a large-scale study to this end by
running a GPT-2 detector on half a billion web pages.

Ways to evade detection have been studied. For example, both Lu et al. (2023) and Kumarage et al. (2023)
propose a prompting strategy that encourages LLMs to produce more human-looking text, while Krishna
et al. (2024) presents a paraphrasing model called DIPPER that can successfully fool detectors.

3 Experimental Setup

The task of detection is not without inherent ambiguities. For example, suppose an LLM regurgitates text
from its (human) training corpus verbatim — should we consider this sample human or AGC? Arguments
can be made for both sides; for the purposes of our work, we consider it AGC.

As watermarking is most commonly studied in the 1P setting, our evaluation is restricted to the 1P setting
as well. However, we consider both 1P and 3P detectors in our hybrid scheme, as even a 3P detector can
provide lift for 1P detection when the negative class consists of human samples. We treat the problem as a
binary classification task, where positive samples come from our model, denoted M,, and negative samples
are either human or generations from a different model, denoted M; (theirs). We report performance metrics
for both the human and model negative classes separately, a distinction often missing in prior works. Each
dataset consists of prompts and human responses. For each prompt, we generate responses under M; and
M,, where the latter is equipped with various watermarking methods. We now discuss our choice of datasets,
watermarks, and detection strategies.

3.1 Models, Datasets, Hyperparameters, and Compute

We consider two distinct settings: when M, is GEMMA-TB-INSTRUCT (Team et al., 2024b)! and M, is
MISTRAL-7B-INSTRUCT (Jiang et al., 2023)? as well as the reverse assignment.

We use two test datasets: databricks-dolly-15k3 (Conover et al., 2023), an open source dataset of instruction-
following examples for brainstorming, classification, closed QA, generation, information extraction, open QA,
and summarization. Exactly replicating Bahri & Wieting (2024), we use prompts from the brainstorming,
generation, open QA (i.e. general QA), and summarization categories, whose human responses are at least 50
tokens long (save one example, which was removed because the prompt was extremely long); this amounts of
5,233 prompts total.

We use the training and test splits of eli5-category* (Fan et al., 2019). Prompts are formed by concatenating
the prompt and selftitle fields. Only examples whose prompt field is non-empty and contains a ? are kept —
for a total of 83,089 train and 4,855 test samples.

We always decode by random sampling with temperature 1 and do not employ top-p or top-k strategies. For
each prompt in both test datasets, we generate four non-watermarked responses, along with a watermarked
one under each scheme. We always force a minimum (maximum) of 250 (300) new tokens by disabling the
stop token for the first 250 tokens, re-enabling it, and stopping the generation at 300, regardless of whether
the stop token was encountered. For both the train and test split of eli5-category, the human response is

Thttps://huggingface.co/google/gemma-7b-it
?https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
Shttps://huggingface.co/datasets/databricks/databricks-dolly-15k
4nttps://huggingface.co/datasets/rexarski/elib_category
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taken to be the one with the highest score. Also, for the train split only, we run non-watermarked generation
enforcing a maximum of 300 tokens but no minimum number of tokens.

To simulate real-world use, we de-tokenize the outputs to obtain plain text, and re-tokenize them during
scoring. We study performance as a function of token length 7" < 250 by truncating samples to their first T’
tokens.

Experiments were run on 80GB A100 or H100 GPUs using PyTorch and HuggingFace’s Transformers models
with bfloat16 quantization for a total compute cost of about 2,000 GPU hours.

3.2 Entropy

Entropy is a key quantity in our analysis. With z denoting the input prompt and y ~ Py (- | ) the sampled
response of length T from model M, the response entropy H (z) is,

T T
E, —log Py (y | ©) =B, Y —log Pas(yi | y<ir @ ZE% —log Pur(yi | y<i, @),
i=1 yily<i
—H, (z.y<:)
=H;(x)

where H (x,y<;) is the entropy of the next-token distribution given prompt z and partial response y<; (of
length ¢ — 1) and H;(z) is this quantity averaged over partial responses. In other words, H;(z) is the entropy
of the next-token distribution for token position i that we see on average.

If we condone sample reuse for the sake of computational efficiency, then H;(x) and H(x) can be estimated
with i.i.d. samples {y!,...,y"} from Py (- | x) as,

n T
H;(x EZ (z y<z) and H(x :Z

We bucket prompts z in our test set by their estimated response entropy H (z) (where the responses used for
the estimate are sampled from the model sans watermarking) and analyze detection performance for each
bucket separately so as to directly observe the role of entropy on performance. We choose T'= 100 and n = 4.

3

3.3 Watermarks

The watermark schemes we consider here operate at a token level. To facilitate describing them below, let p
be the next-token probability distribution. Moreover, if F' is a cumulative distribution function (CDF), let
F[s] be a single draw from a pseudorandom number generator (PRNG) for F' seeded with integer seed s,
F(z) F evaluated at x, and Fy the CDF for the sum of % i.i.d. random variables where each is distributed
F. Furthermore, let named distributions represent their CDFs; for example, U(0,1)(0.5) is the CDF for
the standard uniform distribution evaluated at 0.5. Let our LLM have vocabulary V of size V and h be a
cryptographic hash function (e.g. SHA-256) from Z* to Z. K € Z is used to denote the secret integer key
that is known only to the watermarking party. For both watermark and non-watermark detection, higher
scores indicate higher confidence that the test query is watermarked / AGC.

Aaronson. At each step, Aaronson (2023) computes a pseudorandom number for each token i € V as,
u; = U(0,1)[h(K|wli)], where w is the preceding (n — 1)-gram, and | denotes concatenation. Token i* is
selected, where i* = argmax; ull /P At test time, n-grams {wi}?;l are extracted from the test query and the
detection score is given by,

- Zlog (1-R;), where R;=U(0,1)h(K|w;)].

Bahri & Wieting (2024) notes that s4 is not length-aware so that a single decision threshold across scores
involving various lengths results in poor performance. To remedy this, they propose length-aware score
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sac = Gamma(T,1)(sa) = x37(254). We use this length-aware score with n set to 4; this choice strikes a
good balance between generation quality / diversity and robustness to attacks.

Bahri. Bahri & Wieting (2024) recently proposed a distortion-free watermarking scheme that requires only
black-box access to an LLM. The scheme works by autoregressively sampling m sequences {Q;} from the
LLM, each roughly k tokens long. Let {X;} be the set of unique sequences from {Q;}, W, (X) represent the
set of n-grams for sequence X, and S; the set of seeds {h(K|w)}wew, (x,) that have had duplicates across
the X;’s removed and where a random unseen seed is added, if necessary, to ensure all S;’s are nonempty.
Then X+ is returned, where,

i* = argmax; u;n/ci, and c¢; = Zl[Qj =X;], and w; = Fjg, (Z F[s]) .

j=1 seS;

The score sp for sequence X with unique (i.e. de-duplicated) seeds S = {h(K|w)}wew, (x) is given as
sp = Flg) (e Fls]). We use the settings optimal for 1P detection where white-box access is available —
their flat scheme with sequence length k =1 and F = U(0,1). We set m = 1024 and n =4

Kirchenbauer. Kirchenbauer et al. (2023) uses the last n tokens to pseudorandomly partition the vocabulary
for the next token into two lists: a green list of size vV and a red list consisting of the remainder. A positive
bias of § is added to the logits of the green list tokens while those of the red list are left unchanged. This
has the effect of modifying p so that green list tokens are more probable. The score for a text consisting of
T tokens, Ty of which were found to be green is sxp = (T, —vT')//Ty(1 — 7). We incorporate the latest
updates to the algorithm,” such as including the current token in the n-gram and skipping duplicate n-grams
at test time. The scheme modifies the model probability so it’s not distortion-free, but a good balance
between watermark strength and generation quality can often be achieved. We set n = 4, v = 0.25, and
0 € {0.5,2,3}.

Kuditipudi. Using the last n tokens as the basis for the PRF has the downside that modifying just one
of the tokens changes the output and subsequently hurts detection. Kuditipudi et al. (2023) addresses this
limitation, which we describe in detail in the Appendix. We follow their methodology and use 256 seeds.
To expedite the permutation test, we precompute 5,000 reference values for the secret list. These values
are obtained by sampling snippets from the training set of C4-realnewslike (Raffel et al., 2019) across all
evaluated target lengths.

3.4 Detectors

We consider the following competitive 1P and 3P detection strategies. We omit techniques like Detect-
GPT (Mitchell et al., 2023), Ghostbuster (Verma et al., 2023), and DNA-GPT (Yang et al., 2023b) as the
baselines covered here, like RADAR (Hu et al., 2023) and Binoculars (Hans et al., 2024), were shown to
outperform them.

Log-Likelihood and Rank. We compute per-token log-likelihood (LLh) and rank features of the target
text under a model M (taken to be our model, M,), as done in prior work (Gehrmann et al., 2019).
We note that when scoring a response y, standard practice throughout the literature has been to use
Pu(y | @) as the likelihood, where ¢ is the null or empty prompt. This is incorrect; the true likelihood is:
Pr(y) = Egnyp, Pu(y | ), where f, is the distribution over prompts. Since the focus of this work is not
on new detection techniques but in novel combinations of existing watermark and detection strategies we
continue to define likelihood using the empty prompt. Our features are then:

lyl lyl

Lu(y) = ZIOgPM vi ly<i)- Bar(y) = 10> ZRM vi | y<i)

Shttps://github.com/jwkirchenbauer/lm-watermarking
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Ry (yi | y<q) is the absolute rank of y; in Py(- | y<;) — the rank is 1 (V) when y; is the most likely (least
likely) token in the next-token distribution. Meanwhile, Ly; represents the log-likelihood. AGC should have
high likelihood and low rank.

DetectLLM. Su et al. (2023) proposes a novel combination of zero-shot likelihood and rank features.
Specifically, they propose the Log-Likelihood Log-Rank Ratio (LRR) as:

>oieq log Pas(yi | y<i)

L ==
RR s (y) Z?:l log Ryr (yi | y<i) ’

where M, is used for M.

Binoculars. Hans et al. (2024) proposes a 3P detection scheme that leverages uncertainty scores from two
LLMs. The Binoculars score is:

_ S 1og Par, (ui | y<i)
ley:l1 Par, (- | y<i)T log Par, (- | y<i)

We use the recommended settings: FALCON-7B-INSTRUCT for M; and FALCON-7B for Ms.

BM17M2 (y)

RADAR. Hu et al. (2023) proposes an adversarial technique to jointly train an AGC detector with a
paraphraser. The paraphraser is trained to generate content that will evade the detector while the detector is
trained to discern the paraphraser’s outputs. They show the method outperforms baselines on 4 datasets and
8 LLMs. We use their open-source RoBERTa-large based detector.’

RoBERTa Classifier. As done in prior work, we fine-tune a RoBERTa (Liu et al., 2019) model for binary
classification. To detect M,, positive samples are random non-watermarked generations under M, and
negative ones are human responses and non-watermarked generations under M;. To train the classifier, we
use the entire train split of eli5-category (one positive and two negative samples for each prompt), fine-tuning
RoBERTa-large with Adam (Kingma & Ba, 2014) for 1 epoch using batch size 32, weight decay 0.01 and a
linear learning rate schedule with no warm-up and initial rate 5e-5. To make the detector robust to shorter
and truncated texts, the train set is augmented by additionally including a truncated version of each example
(to half the number of tokens).

3.5 Hybrid Detection

We explore a number of designs for hybrid detection. For methods that are trainable or require calibration, we
use held-out samples from whichever dataset is not used for testing. That is, when evaluating on databricks-
dolly-15k we use eli5-category for calibration (and vice-versa). This ensures that the new detector does not
overfit to the test distribution. For all non-cascade models below, scikit-learn (Buitinck et al., 2013)
(version 1.5.1) is used with the default hyperparameter settings.

One-sided WM — DET Cascade (1S). Here, we cascade the watermark and non-watermark detectors
together. If the sequence-level watermark score, denoted s,, equals or exceeds threshold \,, we predict positive
otherwise we predict positive if and only if the sequence-level detector score sg equals or exceeds threshold
Ad- Since most watermark detection schemes (at least the ones we evaluate here) are significantly more
computationally efficient than non-watermark ones that involve LM inference, by positioning them first in
the cascade, we save on compute as the latter is only run on residual samples. We quantify our savings later.
The hypothesis here is that when s,, is large, the sample is likely positive, but when it’s small, it could be
either a negative one or a positive one for which there was insufficient entropy to embed a strong watermark,
in which case we defer to the non-watermark classifier.

Two-sided WM — DET Cascade (2S). Here, if s,, > A" (h for high) we predict positive and if s,, < A
(1 for low) we predict negative, otherwise we predict positive if and only if s4 > Ay. This extends the
aforementioned one-sided cascade by baking in the hypothesis that while positives with low entropy have
small s,,, it is still not as small as those of negatives.

Shttps://github.com/IBM/RADAR
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WM | Det |WMOnly|DetOnly| 1S | 1S+ | 25 | 28+ | LR | LR+
LLh 90.4 91.7 93.9 | 2.2+04 | 94.3 | 2.6+04 | 96.8 | 5.1+o06

LLR 90.4 88.0 92.2 | 1.8+11 | 92.8 | 2.4+11 | 94.2 | 3.8+1.0

Aaronson || RoBERTa 90.4 86.0 94.7 | 4.3+1.0 | 94.7 | 4.3+1.0 | 98.3 | 8.0+0.9
Binoculars 90.4 93.1 94.8 | 1.7+0.4 | 95.0 | 2.0+0.4 | 96.8 | 3.7+o06

Radar 90.4 72.9 85.4 | -5.0+1.3 | 90.7 | 0.3+11 | 91.5 | 1.1+11

LLh 58.0 91.5 89.8 | -1.7+0.4 | 89.8 | -1.7+0.4 | 91.4 | -0.1x0.2

LLR 58.0 88.1 87.9 | -0.2+0.2 | 87.9 | -0.2+0.2 | 88.2 | 0.1+o0.3

Kir. (0.5) || RoBERTa 58.0 85.9 93.8 | 7.9+08 | 93.8 | 7.9+08 | 96.2 | 10.3+1.0
Binoculars 58.0 93.4 92.6 | -0.8+0.3 | 92.6 | -0.8+0.4 | 93.4 | -0.1x0.2

Radar 58.0 72.9 72.9 | 0.0+0.0 | 72.9 | 0.0+0.1 | 72.9 | 0.0+0.7

LLh 80.6 91.7 93.3 | 1.5+0.4 | 93.3 | 1.6x04 | 94.1 | 2.4+05

LLR 80.6 87.5 88.6 | 1.1+05 | 88.6 | 1.1x05 | 91.3 | 3.8+0.7

Kir. (2) || RoBERTa 80.6 85.1 92.1 | 7.0+07 | 92.1 | 7.0x07 | 96.7 | 11.6x1.0
Binoculars 80.6 92.9 93.9 | 1.1+04 | 94.0 | 1.1x04a | 95.0 | 2.1x05

Radar 80.6 72.1 75.0 | -5.6+1.6 | 81.8 | 1.2+15 | 83.4 | 2.8+15

LLh 90.2 90.0 93.5 | 3.3+0.s | 92.6 | 2.4+08 | 94.1 | 3.9+0.8

LLR 90.2 83.1 90.4 | 0.2+12 | 92.8 | 2.7+x11 | 94.3 | 4.1+11

Kir. (3) || RoBERTa 90.2 82.2 89.3 | -0.8+1.1 | 89.3 | -0.8+1.1 | 98.2 | 8.0+0.9
Binoculars 90.2 91.0 94.6 | 3.6x06 | 94.7 | 3.Tx0.7 | 95.9 | 4.9+0.6

Radar 90.2 72.1 89.9 | -0.3+1.2 | 90.8 | 0.6+1.2 | 91.2 | 1.0+1.2

LLh 89.9 92.2 94.6 | 2.4+04 | 95.0 | 2.8+05 | 95.3 | 3.1+o0s6

LLR 89.9 87.4 93.6 | 3.7x1.1 | 94.3 | 44411 | 94.5 | 4.6+1.1

Bahri || RoBERTa 89.9 85.2 92.9 | 3.0+1.0 | 92.9 | 3.0+1.0 | 98.6 | 8.7T+0.9
Binoculars 89.9 93.2 95.1 | 1.9+04 | 95.1 | 1.9404 | 96.0 | 2.8+05

Radar 89.9 72.4 85.4 | -4.4+1.4 | 90.4 | 0.5+12 | 90.3 | 0.4+1.2

LLh 61.0 91.3 90.0 | -1.4+0.3 | 89.9 | -1.4+0.3 | 91.3 | 0.0+0.3

LLR 61.0 89.2 89.4 | 0.3+0.2 | 89.4 | 0.2+0.2 | 89.9 | 0.7+0.4

Kuditipudi || RoBERTa 61.0 87.6 95.4 | 7.8+08 | 95.3 | 7.7+0.s | 96.0 | 8.5+0.8
Binoculars 61.0 93.9 94.1 | 0.1+02 | 94.0 | 0.1+02 | 94.3 | 0.4+03

Radar 61.0 72.1 72.2 | 0.1+01 | 72.2 | 0.1x01 | 72.4 | 0.3+1.1

Table 1: Main table of accuracy results when GEMMA-7B-INSTRUCT is applied to databricks-dolly-15k and
human examples are taken as negatives, with a target length of 100 tokens. 1S and 2S stand for the one-sided
and two-sided cascades respectively. 1S + is the percent improvement conferred by 1S over the watermark
and non-watermark detector, whichever is better. Firstly, we observe that it is not uncommon for the
non-watermark detectors to outperform the watermark ones on their own. For example, under Aaronson,
Binoculars gives 93.1% accuracy whereas the watermark detector obtains 90.4%. When combined with the
two-sided cascade (LR), performance boosts to 95.0% (96.8%). Watermarking is not a silver bullet and
non-watermark detection strategies can provide substantial complementary value. While one and two-sided
cascades provide a performance boost, the best gain is had with a simple learnable model like logistic
regression.

Logistic Regression (LR). An alternative to manually designing a cascade based on intuition
is to have a model learn the combination. To that end, we train a logistic regression model
(sklearn.linear_model.LogisticRegression) on z-score normalized {s,,,sq} features.

MLP. To see whether a higher capacity parametric model confers gains over logistic regression, we also train
a ReLU network (sklearn.neural_network.MLPClassifier) with 2 hidden layers of 100 units on {s, sq}
features.

Decision Tree. We also experiment with a decision tree with a max depth of 3 and Gini criterion for
splitting (sklearn.tree.DecisionTreeClassifier).
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Figure 1: Detection accuracy as a function of average response entropy of prompts. The response entropy of
each prompt is estimated using 4 non-watermarked generations and the prompts are partitioned based on 20%
percentiles. For example, accuracy at entropy x is computed on the 20% of prompts with the largest entropy
that is less than or equal to x. GEMMA-7B-INSTRUCT is applied to databricks-dolly-15k under Aaronson,
Kirchenbauer, and Bahri watermarking schemes. MISTRAL-7B-INSTRUCT generations are taken as negatives
with a target length of 100. Likelihood (LLh) and RoBERTa detectors are shown. We see that watermarking
performance improves with entropy, as we expect. While LLh also improves with entropy, the RoBERTa
classifier is strong and also fairly flat, which the hybrid approaches successfully leverage to significantly
improve watermarking in the low entropy regime. More results are in the Appendix.

3.6 Attacks

In practice, users of our model M, may act adversarially and attempt to evade detection. Following the
methodology of Bahri & Wieting (2024), we study how detectability of our approaches degrades under two
attack strategies — random token replacement and paraphrasing. While more advanced attacks exist, both
these attacks are very easy to deploy and furthermore prior work has shown simple paraphrasing to be highly
effective.

While some may argue it does not make sense to evaluate this setting because, quite simply, the text we are
trying to detect is no longer text produced from our model per se, we include it nonetheless. We corrupt only
the positive test samples (i.e. M,’s watermarked generations), leaving the negative test ones untouched. The
calibration dataset used for fitting parameters or thresholds is corrupted in the same way as the one used for
testing.

Random Token Replacement. Here, we corrupt a random p-percent of watermarked tokens by replacing
each with a random different token. p is taken to be {10, 20, 30,40}. This attack strategy is cheap for the
adversary to carry out, but it will significantly degrade the quality of the text.

Paraphrasing. In this attack, the adversary attempts to evade detection by paraphrasing the watermarked
text. We use Gemini-1.5-Pro (Team et al., 2024a) to paraphrase each non-truncated watermarked generation
using the prompt: “Paraphrase the following: {RESPONSE}”. We skip examples for which Gemini does not
return a response, for instance, for safety reasons.
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Figure 2: Detection accuracy of the cascades and logistic regression models as a function of the text length
T (in tokens) used for detection. The first T" tokens of each text is used and two standard error bars are
shaded. GEMMA-7B-INSTRUCT is applied to databricks-dolly-15k under Aaronson and human negatives. We
observe that for the watermark detector and all non-watermark detectors except the RoBERTa classifier,
performance improves sharply with more test tokens, as we expect. RoBERTa’s strong performance at low
token count is noteworthy and likely due to the training procedure which explicitly incorporates texts of
varying lengths. We find that cascades and LR combinations boost performance over either detector fairly
consistently across lengths, providing assurance to the practitioner that these combinations confer benefits no
matter the length of the test text.

3.7 Evaluation Criteria

Detection Performance. Our main metrics are centered solely around detection performance (as opposed
to the quality of the watermarked generations) with and without adversarial corruption, as that is the focus
of our work. We present two metrics.

(1) Partial ROC-AUC. We use partial ROC-AUC (pAUC) up to a max FPR, as utilized in Bahri & Wieting
(2024). Since cascades (1S and 2S) have multiple thresholds, we sweep over a grid of thresholds (in 1%
increments based on percentiles), record the (FPR, TPR) pairs that result from each threshold setting, and
then determine the ROC’s Pareto front, which is subsequently used to calculate pAUC using the trapezoidal
rule. All other methods use a single decision threshold and for them we check every test datapoint in
generating the (FPR, TPR) pairs, as is the standard practice (e.g. sklearn’s implementation). It is crucial
to note that the granularity of the threshold grid search for cascades has a significant impact on the metric
(especially so when the region of the ROC we are interested in is slim); performance should only increase the
more finely grained the search is, and when every datapoint is checked, it should never underperform either
detector since both cascades can represent any decision rule involving a single threshold on watermark or
non-watermark scores alike. In other words, any losses for 1S and 2S under this metric should be ignored.

Our main one-number summary is pAUC with FPR < 1%. The test datasets are always class balanced (i.e.
50/50 split), where negatives are either human responses or M,’s generations.

In the Appendix, we discuss in detail how this methodology can give an unfair advantage to techniques
with more tuneable decision thresholds and propose an alternative approach that attempts to remedy it.
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Figure 3: Detection accuracy of cascades and logistic regression as a function of the percentage of tokens
corrupted. Two standard error bars are shaded. GEMMA-7B-INSTRUCT is applied to databricks-dolly-15k
under different watermarking schemes using the RoBERTa classifier with human negatives and 100 tokens. We
observe that while watermark detectors all degrade with more corruption, the RoBERTa classifier maintains
consistently strong performance and that cascades and LR offer consistent improvements over either at all
corruption levels. More results are in the Appendix.

We continue to use it, notwithstanding, as only at most two additional thresholds are being tuned (so the
advantage conferred is small) and the alternative approach is not without its own disadvantages.

(2) Accuracy. We sidestep the concerns of (1) and the alternative approach discussed in the Appendix by
finding the thresholds that optimize the accuracy on the calibration dataset and reporting test set accuracy
using these thresholds. Since we are always class-balanced, accuracy here is equivalent to the arithmetic mean
of TPR and TNR. Other single scalar scores such as G-mean score (the geometric mean of TPR and TNR)
or F-score are also suitable, but we find no compelling reason to use them over simple accuracy, especially
since the observed trends are similar.

Due to the critical role of text length, we also study performance as a function of text length by truncating
the positive and negative samples to their first 7' € {25, 50, 75, 100, 150, 200, 250} tokens.

It is important to bear in mind that random text snippets (e.g. from wikipedia) are often used as negative
samples in other work, whereas our negatives are model or human answers to the same prompts used to
generate positive samples. The consequence is that there are far more semantic and syntactic similarities
between the two classes in our work, which makes our classification task intrinsically harder. Concretely,
positive and negative samples here will have more overlapping n-grams, the basis for many watermarking
schemes, and so discrimination via the watermark will be more challenging.

Computational Performance. Our proposed cascading approach offers computational benefits over non-
watermark detection alone, as watermark scoring is usually significantly cheaper than its counterpart. To that
end, we report the fraction 7 of test samples that are caught by the watermark detector (i.e. whose prediction
does not depend on the non-watermark detector). If C,(y), Ca(y), C.(y) represent the computational cost
(e.g. FLOPs) of detection based on watermark, non-watermark and cascade for sample y, respectively, then

EyCe(y) = EyCu(y) + (1 = 1)EyCaly)-

All standard errors reported are obtained by bootstrap resampling each class of the test set separately (500
times), to ensure that the resampled test datasets remain class-balanced. +2 standard errors are shown in all
tables and figures. In the Appendix, we estimate the sensitivity of our models’ performance on the calibration
data, again via bootstrapping.

4 Experimental Results

Tables 1, 3 (Appendix), 10 (Appendix), and 11 (Appendix) show the performance of various watermarking
schemes, detectors, and hybrid approaches, when GEMMA-7B-INSTRUCT is applied to databricks-dolly-15k,
human text is taken as the negative class, and the target length is 100 tokens. Unless indicated otherwise,
results are discussed under this setting. Many results are deferred to the Appendix.
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Standalone non-watermark detectors can outperform watermark ones. We first note that wa-
termarking is not a silver bullet; in fact, we see that non-watermark detectors can outperform watermark
ones in many cases. For example, under Aaronson, Binoculars and likelihood-based detection (LLh) achieve
93.1% and 91.7% accuracy respectively whereas watermark can only obtain 90.4%. The gains are even larger
for Kuditipudi, which performs rather poorly at 61%. Thus, we should keep in mind that sometimes simply
scoring the text using log-likelihood can outperform watermark-specific scoring.

Hybrid approaches boost performance across the board. We see that hybrid detection lifts perfor-
mance above either detection approach across the board. Observing We generally see marginal improvements
going from one-sided to two-sided cascades (with the exception of RADAR whose baseline performance at
72.9% for Aaronson is quite low) but much larger ones moving to the learned logistic regression model. For
example, LR with RoBERTa boosts Kirchenbauer (2) accuracy from 85.1% to 96.7% (11.6% gain). The same
effective combination boosts Bahri from 89.9% to 98.6% (8.7% improvement).

Cascade hit rates can be substantial and improve the more trustworthy watermarking is. In
Table 3 (Appendix) we see that the hit rates grow as the strength of the watermarking increases. For example,
under LLh, as Kirchenbauer’s § is cranked up 0.5 — 2 — 3, we see 1S ~ increase 0% — 8.5% — 22.2%.
Furthermore, the hit rates are large (i.e. the cascades prefer using the watermark scores for classification)
when the non-watermark detectors are less reliable. For example, for Aaronson, 1S « for Radar is 42.9% vs.
21.6% for LLh. This confirms our expectation that cascades learn to rely more on the watermarking signal
the more trustworthy it is. Furthermore, we observe that hit rates for two-sided cascades are generally higher
than those for one-sided cascades, and this is anticipated as it has more degrees of freedom (an additional
learnable threshold on the watermark scores).

For Aaronson, Bahri, and Kirchenbauer, v generally hovers around 20-40%. ~ under Kuditipudi is very low
since its watermark detector is not much better than random. If the cost of watermark detection is negligible
compared to its counterpart, as it often is, then cascading improves non-watermark computational efficiency
by 20-40%.

MLP and Tree generally offer gains similar to LR but risk overfitting. Among the learnable
approaches, we find not much benefit in going from simple LR to a deep MLP or the tree — the gains, if any,
are generally small, but there can be losses as well due to potential overfitting on the calibration dataset
(more parameters to learn). For example, under Aaronson, MLP improves over LR by an absolute 0.6%
(96.8% vs. 97.4%) but Tree loses by 2.7% (94.1%). Broadly, the tree under the hyperparameter setting we
explored was more at risk of overfitting and realizing losses than MLP. These insights all suggest that the
watermark and non-watermark scores are quite discriminative on their own and do not greatly benefit from
excessive learning. Thus, among the learnable options, we recommend simple LR to the practitioner. In the
Appendix, we analyze the decision boundaries learned by LR for the various non-watermark methods.

Weaker non-watermark detectors can offer stronger performance in a hybrid setup. Interestingly,
we observe that for each watermarking scheme, although the RoBERTa detector is never the best among
non-watermark detectors when evaluated alone, it confers the biggest gains when leveraged in hybrid detection.
For example, for Aaronson, log-likelihood (LLh) and RoBERTa achieve 91.7% and 86.0% respectively in
isolation, but RoBERTa makes LR 8% better than either detector whereas LLh only provides a 5.1% boost.
The difference is even starker for Binoculars (93.1% alone but only a 3.7% boost). This suggests that the
RoBERTa classifier provides more complementary signal than the other approaches. One factor here is its
strong performance in low entropy regimes, as discussed shortly.

Stronger watermarking can hurt non-watermark detection but generally improves hybrid
detection. We can observe the effect of watermarking on non-watermark detection by studying Kirchenbauer.
As the strength of its watermark § increases 0.5 — 3, watermark performance increases 58% — 90.2% as
expected. However, non-watermark performance can degrade a bit; for example, LLh degrades 91.5% — 90.0%
while RoBERTa drops more noticeably 85.9% — 82.2%. The reason for this drop is that stronger watermarks
distort the generated text more, pushing away from the original language model distribution that the non-

11



Published in Transactions on Machine Learning Research (01/2026)

watermark detectors were either scoring with or trained under. However, despite this, the hybrid LR approach
performs increasingly better with a stronger watermark; e.g. LR with RoBERTa goes 96.2% — 98.2%.

PAUC shows mostly consistent trends. Our observed trends are largely similar when pAUC (with a
max FPR of 1%) replaces accuracy as our metric. For example, under Aaronson, 2S improves LLh by 17%
and Binoculars by 14%, as shown in Table 10.

Hybrid approaches can significantly outperform watermarking alone when available entropy is
low. Figures 1 and 5 (Appendix) show the effect of entropy on performance. We see that watermarking
performance indeed depends on the amount of entropy available. For example, accuracy on the 20% of
prompts that afford the least amount of response entropy (whose estimation we described earlier) is about
10% worse in absolute terms than the 20% affording the most entropy. While LLh also improves with entropy,
the RoBERTa classifier is both strong and fairly flat, which the hybrid approaches successfully leverage.
Concretely, the cascades and logistic regression models with RoBERTa provide a near constant performance
in the high 90’s across the entire entropy spectrum. Lastly, hybrid approaches post improvements at all
entropy levels.

Hybrid approaches provide gains for short and long texts alike. An important research question is
how the length of the text (i.e. the number of tokens observed) impacts the performance of our methods.
Figure 2 studies this, and we find that for the watermark detector and all non-watermark detectors except
the RoBERTa classifier, performance improves sharply with more tokens. RoBERTa’s impressive performance
at low token counts is likely due to its training on texts of various lengths. We find that cascades and LR
boost performance over either detector consistently across target lengths, providing assurance that the hybrid
confers benefits no matter the length of the text.

Paraphrasing attacks degrade non-watermark detectors but destroy watermark ones and gains
from hybrid are minimal. Tables 18 and 19 (Appendix) show accuracy under the paraphrasing attack
when GEMMA-7B-INSTRUCT is applied to databricks-dolly-15k. We find that paraphrasing effectively removes
most of the watermarking signal, as watermark detection is near-random. As a result, the hybrid approaches
rely mostly on the non-watermark signal (which alone achieves around 70-80%) and the overall performance
boost is minimal. An intriguing exception is RoOBERTa, where both LR and MLPs are able to squeeze out
additional signal. For example, LR under Aaronson and RoBERTa confers an 8% gain.

Random token replacement attacks degrade watermark detectors but destroy non-watermark
ones except for RoOBERTa. Figure 3 shows the accuracy of the hybrid methods for the RoBERTa classifier
deteriorating with higher levels of token corruption. We observe that the classifier is surprisingly robust to
this kind of corruption despite having been trained on uncorrupted samples only and that hybrid methods
offer consistent improvements at all corruption levels. Figure 6 (Appendix) reports the performance for all
other detectors under Aaronson. Likelihood-based detectors (LLh, LLR, and Binoculars) fail completely
as even one bad token can cause the likelihood of the whole LLM-generated sequence to drop significantly,
becoming even lower than that of human text. The cascades match the performance of the watermark
detector here. However, LR does very well and this is an artifact of being trained on corrupted data —
specifically, it learns to flip the usual association and predict the negative class when the likelihood is high.

Observations carry over to when LLM generations comprise the negative class. Our insights
largely carry over to the case where generations of a different LLM comprise the negative class. These
results are presented in the Appendix. For instance, in Table 20 where GEMMA-7B-INSTRUCT is applied to
databricks-dolly-15k using MISTRAL-7B-INSTRUCT generations as negatives, we see that 2S (LR) improves
LLh by an absolute 2.9% (5.2%) and RoBERTa by 1.7% (1.9%) under Aaronson.

5 Conclusion

In this work, we explore schemes for first-party Al-generated content detection that combine watermark with
non-watermark detection. We observe that the two complement each other well, providing a substantial boost
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in performance over either. For practitioners looking to boost performance while keeping computationally
costs incurred by non-watermark detection low, we recommend the two-sided cascade. For those looking for
the best possible combination, we recommend the logistic regression model, which is less prone to overfitting
than deep neural networks or trees but nearly equally performant. AGC detection is becoming harder but its
societal implications and importance are only growing. We hope that this work will spur more interdisciplinary
research on the topic and lead to effective real-world deployments.
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A Appendix

A.1 Omitted Discussions

Kuditipudi. We describe the distortion-free algorithm of Kuditipudi et al. (2023) in detail. Consider a
secret, finite ordered list of seeds with length k. Begin watermarking by first selecting a position in the seed
list uniformly at random and then apply the selection rule of Aaronson (2023) with the PRNG seeded to the
current value. Advance to the next seed in the list (wrap-around if you are at the end) and repeat. Scoring is
performed via a permutation test that evaluates how compatible the query text is with the specific list of
seeds used during encoding versus any other random list of seeds of the same length. As the random starting
position is not known during scoring, an alignment score based on the Levenshtein distance is formulated
that considers alignments of various subsequences of the text and seeds. The proposed method is similar to
Aaronson (2023) with the difference of using a fixed list of seeds and a permutation test for scoring. The
upside is robustness to attacks; the downside is significantly higher computational cost during scoring. Larger
k offers more diversity and quality during generation but results in costlier and weaker detection.

ROC-AUC involving multiple thresholds. In the main text, we note that our methodology for computing
ROC-AUC or pAUC favors methods with more tuneable thresholds; we now elaborate further. To see this,
imagine you have a large neural network and ROC-AUC is calculated by first recording (FPR, TPR) pairs on
the test dataset as every combination of the network’s parameters is swept over. If AUC is subsequently
calculated by integrating under the Pareto front, then it would be misleadingly high, as you would have, in
effect, fitted the network to the test dataset.

Now, consider an alternative approach. For each method, the set of thresholds {r;} that achieve maximal
TPRQB-FPR on a (non-test) calibration dataset, for a uniform grid of 3, is recorded; these are the thresholds
corresponding to the ROC’s Pareto front when it is computed on the calibration dataset. Then (FPR, TPR)
pairs are computed on the test set using the aforementioned set of thresholds {7;}, and AUC / pAUC is
estimated on these pairs using the trapezoidal rule. While more ideal, it has one crucial drawback: while {7;}
gives (FPR, TPR) points that nicely cover the calibration ROC as the FPRs lie on a uniform grid on [0, 1],
this need not hold when the same thresholds are applied to the test set. In fact, we found that there can be
large regions of the test ROC with little to no coverage, and this introduces unacceptably large errors in the
estimation of AUC using the trapezoidal rule.

One might argue that we can just compare (FPR, TPR) pairs themselves rather than inaccurately estimated
AUC, but the trouble with this is that the (FPR, TPR)’s for different methods end up aligning on neither
the FPR nor TPR axis, which makes direct comparisons challenging.

B Omitted Figures

Figure 4 shows the decision boundary our logistic regression model learns for a specific setting. We see that
the learned model consistently puts more weight on the non-watermark detector scores than the watermark
ones and this is more pronounced for RoBERTa.

Figures 5 and 6 show, respectively, the effect of entropy and amount of token corruption on accuracy under
the Aaronson scheme.

C Omitted Tables

Table 2 shows the standard deviation of the test accuracy sampling distribution for our hybrid models
when the calibration data is bootstrap resampled (100 times) and the test samples are held fixed. Results
for each individual detector, 1S, 2S, and LR methods under Aaronson watermarking are depicted when
GEMMA-TB-INSTRUCT is applied to databricks-dolly-15k and human examples are taken as negatives, with a
target length of 100 tokens. We see that the standard deviations are low, suggesting low sensitivity to the
calibration data and fitting procedure.
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Figure 4: The decision boundary learned by our logistic regression (LR) model when GEMMA-7B-INSTRUCT
is applied to databricks-dolly-15k under the Aaronson scheme. Human responses are taken as negatives and
100 tokens are used. Our LR models are trained on top of z-score normalized watermark and non-watermark
scores. The area y >= x represents positive predictions (i.e. the sample is from our model). y = —z is shown
for reference. By noticing that the slope magnitude is less than one, we see the learned LR consistently puts
more weight on the non-watermark detector scores than the watermark ones and this is more pronounced for

RoBERTa.
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Figure 5: Detection accuracy of cascades and logistic regression as a function of average response entropy
of prompts. GEMMA-7B-INSTRUCT is applied to databricks-dolly-15k under the Aaronson scheme. Human
responses are taken as negatives and 100 tokens are used. Watermarking improves with entropy and hybrid

methods boast gains across the board.
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Figure 6: Detection accuracy of cascades and logistic regression as a function of the percentage of tokens
corrupted. Two standard error bars are shaded. GEMMA-7B-INSTRUCT is applied to databricks-dolly-15k
under Aaronson using human negatives and 100 tokens for various non-watermark detectors. We observe
strong performance from our hybrid approaches across corruption levels. Interestingly, logistic regression’s
performance improves with more corruption, for the likelihood-based detectors. While this is counterintuitive,
the explanation is that corrupting tokens of the positive samples via random flips will cause the likelihood
scores of the positive samples to drop significantly — far below those of the negative (human) samples. Since
the LR model is trained on corrupted data as well, it learns to achieve near perfect accuracy simply by
flipping its sign: high likelihood now indicates “negative” and low likelihood indicates “positive”, the reverse
of the non-corrupted case.

WM || Det | WM Only | Det Only | 1S | 2S | LR |
LLh 0.150 1.169 1.022 | 0.924 | 0.598
LLR 0.150 0.627 1.079 | 0.839 | 0.842
Aaronson || RoBERTa 0.150 1.233 0.649 | 0.647 | 0.051
Binoculars 0.150 0.439 0.444 | 0.388 | 0.282
Radar 0.150 0.000 2.456 | 0.343 | 0.268

Table 2: Standard deviation of the test accuracy sampling distribution when the calibration data is bootstrap
resampled 100 times and new hybrid models and decision thresholds are fit each time. Results are for each
individual detector, 1S, 2S, and LR methods under Aaronson watermarking when GEMMA-7B-INSTRUCT
is applied to databricks-dolly-15k and human examples are taken as negatives, with a target length of 100
tokens. We find that the standard deviations are rather low, especially for logistic regression, suggesting that
our findings are not too sensitive to randomness from the calibration data and fitting procedure.

Tables 3, 4, 5, 6, 7, 8, 9 report accuracy for human negatives and no corruption. Tables 10, 11, 12, 13, 14, 15,
16, 17 show pAUC for human negatives and no corruption. Tables 18 and 19 report accuracy for human
negatives under the paraphrasing attack. Tables 20, 21, 22, 23 report accuracy for LLM negatives and no
corruption.
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WM | Det | 1Sy | 2S5y | MLP | MLP + | Tree | Tree +

LLh 21.6+0.9 | 24.5+1.1 | 97.4 5.7+06 | 94.1 | 24104
LLR 27.4+0.9 | 38.7+1.3 | 95.6 52+10 | 93.9 | 3.6x10
Aaronson || RoBERTa | 24.2+1.0 | 24.2+1.0 | 97.8 7.5+0.9 | 87.0 | -3.4x1.2
Binoculars | 26.4+1.0 | 28.6+1.1 | 96.7 3.6+t06 | 95.0 | 1.9+056

Radar 429408 | 74.2+12 | 91.4 1.0+£11 | 91.2 | 0.8+1.1

LLh 0.0+0.0 0.1+0.1 92.1 0.6+03 | 91.9 | 0.3x0.2
LLR 0.0+0.0 0.1+0.1 88.1 0.0+0.4 | 86.9 | -1.2+0.4
Kir. (0.5) || RoBERTa | 0.0+0.0 | 0.1x0o1 | 92.4 | 6.5x0.7 | 86.3 | 0.4x0.2
Binoculars | 0.0+0.0 0.1%0.1 93.5 0.1+0.2 | 93.2 | -0.3x0.3

Radar 0.1+0.1 0.1+0.1 72.6 | -0.3x0.3 | 72.9 | 0.0x0.0

LLh 8.5+0.7 8.6+0.7 93.9 2.1+t05 | 94.9 | 3.1x05
LLR 16.7+1.0 | 16.7+1.0 | 91.7 4.2+06 | 91.6 | 4.1x0s
Kir. (2) || RoBERTa | 6.6+0.7 | 6.7x07 | 96.4 | 11.310.0 | 87.1 | 2.0x0.4
Binoculars | 12.1+0.s | 12.1+08 | 95.1 2.2+05 | 94.6 | 1.8+0.4

Radar 16.7+0.9 | 40.6+£1.4 | 82.0 1.3+15 | 79.4 | -1.2+1.5

LLh 222410 | 29.7+1.2 | 96.1 5.9+0.7 | 93.5 | 3.4+0s
LLR 33.1+0.9 | 51.0+1.3 | 95.1 5.0t1.0 | 93.8 | 3.6x1.1
Kir. (3) || RoBERTa | 22.0+1.0 | 22.1+1.0 | 97.5 74409 | 87.0 | -3.2+1.2
Binoculars | 30.5+0.0 | 36.3+1.1 | 95.7 | 4.T+06 | 94.6 | 3.5+05

Radar 51.4+0.s | 77.4+11 | 90.4 0.3+1.2 | 89.7 | -0.4+1.2

LLh 28.1+0.9 | 32.8+1.1 | 95.7 | 3.5+05 | 93.1 | 0.910.3
LLR 28.1+1.0 | 36.8+1.2 | 954 5.5+1.0 | 93.8 | 3.9+11
Bahri || RoBERTa | 21.4+1.0 | 21.4+1.0 | 98.1 82+0.0 | 87.0 | -2.8+1.2
Binoculars | 26.4+1.0 | 26.4+1.0 | 96.2 | 3.0x05 | 96.4 | 3.2+0.6

Radar 44.5+0.8 | 80.1x1.1 | 89.9 | -0.0+1.2 | 89.4 | -0.4+1.2

LLh 0.6+0.2 0.7+0.2 92.3 1.0+03 | 94.5 | 3.2+05
LLR 1.6+0.4 1.7+0.4 89.2 0.0+0.4 | 89.3 | 0.1x0.1
Kuditipudi || RoOBERTa | 0.6+o0.2 0.7+0.2 93.9 | 6.3+07 | 87.4 | -0.2+0.1
Binoculars | 0.6+0.2 | 0.7+02 | 93.8 | -0.2+0.3 | 93.9 | -0.0x0.5

Radar 0.6+0.2 0.7+0.2 73.2 1.1t07 | 72.2 | 0.0xo0.1

Table 3: Cascade hit rates and accuracies for MLP and Tree when GEMMA-7B-INSTRUCT is applied to
databricks-dolly-15k with human negatives and 100 tokens. We see that the hit rates grow as the strength of
the watermarking increases. For example, under LLh, as Kirchenbauer’s d is cranked up from 0.5 — 2 — 3,
we see 1S v increase 0% — 8.5% — 22.2%. Furthermore, the hit rates are large (i.e. the cascades prefer using
the watermark scores for classification) when the non-watermark detectors are less reliable. For example,
for Aaronson, 1S v for Radar is 42.9% vs. 21.6% for LLh. We also observe that hit rates for the two-sided
cascades are generally higher than those for one-sided cascade, and this is expected as it has more degrees of
freedom (an additional learnable threshold on the watermark scores). MLPs boost performance overall (they
improve RoBERTa by 7.5% under Aaronson), though this is not always the case with Tree (3.4% drop for
this same setting), and this is due to overfitting on the calibration dataset.

20



Published in Transactions on Machine Learning Research (01/2026)

WM | Det |WMOnly|DetOnly| 1S | 1S+ | 28 | 28+ | LR | LR+
LLh 90.3 96.6 979 | 1.3+05 | 98.2 | 1.6x05 | 98.5 | 1.9+06

LLR 90.3 93.8 96.4 | 2.7+0s8 | 96.2 | 2.5+0.7 | 97.5 | 3.7+0.7

Aaronson || RoBERTa 90.3 98.7 98.8 | 0.0+0.4 | 98.7 | 0.0x0.4 | 99.1 | 0.3+0.4
Binoculars 90.3 98.6 98.5 | -0.1+0.5 | 98.4 | -0.2+0.4 | 99.1 | 0.5+0.4

Radar 90.3 85.8 90.4 | 0.1x12 | 93.0 | 2.7x11 | 92.5 | 2.2+11

LLh 54.5 96.4 96.5 | 0.0+0.1 | 96.5 | 0.0+0.1 | 97.2 | 0.8+0.4

LLR 54.5 92.1 91.8 | -0.3+0.2 | 91.8 | -0.320.2 | 93.0 | 0.8+05

Kir. (0.5) || RoOBERTa 54.5 98.5 98.5 | 0.0x0.0 | 98.5 | 0.0x0.0 | 98.1 | -0.5%0.2
Binoculars 54.5 98.6 98.3 | -0.3+0.2 | 98.3 | -0.3+0.2 | 98.6 | 0.0+o0.3

Radar 54.5 85.8 85.6 | -0.2+0.2 | 85.1 | -0.6+0.5 | 78.9 | -6.8+1.1

LLh 79.9 96.4 96.2 | -0.2+0.5 | 96.0 | -0.4+0.5 | 96.6 | 0.3+0.6

LLR 79.9 91.1 93.1 | 2.1+0s8 | 92.6 | 1.6x00 | 95.2 | 4.1+0.0

Kir. (2) || RoBERTa 79.9 97.9 98.2 | 0.3x03 | 98.2 | 0.3x03 | 98.1 | 0.3+0.4
Binoculars 79.9 98.5 98.6 | 0.2+03 | 98.1 | -0.4+0.4 | 98.9 | 0.4+0.4

Radar 79.9 86.0 80.0 | -6.1+1.5 | 88.1 | 2.1+1.0 | 8.3 | 0.3+1.3

LLh 90.7 95.0 96.9 | 1.9407 | 97.3 | 2.3207 | 98.6 | 3.6+0.7

LLR 90.7 89.0 94.7 | 4.0+11 | 95.3 | 4.6x1.1 | 97.1 | 6.4+1.0

Kir. (3) || RoBERTa 90.7 97.1 98.7 | 1.7+05 | 98.7 | 1.6+05 | 98.8 | 1.8+05
Binoculars 90.7 97.5 98.0 | 0.5+05 | 98.4 | 0.9+05 | 98.7 | 1.2+05

Radar 90.7 85.8 90.7 -0.0j:l.z 94.2 3.5;{:1.1 93.2 2.5:{:1.2

LLh 90.2 96.9 98.2 | 1.3x05 | 98.5 | 1.6x05 | 98.8 | 1.9+05

LLR 90.2 91.3 95.5 | 4.2+10 | 96.8 | 5.6+08 | 98.5 | 7.3+o0s

Bahri || RoBERTa 90.2 97.7 98.4 | 0.7+05 | 98.8 | 1.1x04 | 99.0 | 1.3+0.4
Binoculars 90.2 98.7 98.7 | 0.0to0.4 | 98.7 | 0.1x0.4 | 99.0 | 0.3+0.4

Radar 90.2 85.4 90.3 | 0.1x13 | 91.8 | 1.6+1.2 | 92.1 | 2.0+1.2

LLh 62.1 97.7 96.9 | -0.840.3 | 96.9 | -0.8+0.3 | 96.6 | -1.1+0.4

LLR 62.1 92.7 91.8 | -0.9+0.5 | 91.8 | -0.9+05 | 95.4 | 2.7+0.7

Kuditipudi || RoBERTa 62.1 98.9 98.9 | -0.1+0.1 | 98.9 | -0.1+0.1 | 98.9 | -0.0+0.2
Binoculars 62.1 98.6 98.4 | -0.3+0.2 | 98.4 | -0.320.2 | 99.0 | 0.3+0.3

Radar 62.1 85.5 85.2 | -0.3+0.2 | 84.1 | -1.4+0.6 | 78.7 | -6.9+1.3

Table 4: Main table of accuracies when GEMMA-7B-INSTRUCT is applied to the test set of eli5-category with
human negatives and 100 tokens. The trends here are similar to those for other LLMs and test datasets, with
cascades and LR boasting improvements. There are sometimes anomalous losses, such as LR degrading 6.9%
under Radar and Kuditipudi, which is due to overfitting since LR could achieve neutrality by zeroing out the

watermark score and rely solely on the non-watermark one.
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WMH Det, ‘ 1S v ‘ 2S v ‘MLP‘MLP-{-‘Tree Tree +

LLh 24.5+1.0 | 48.5+15 | 98.5 1.94+06 | 98.2 | 1.6+0.5
LLR 33.6+1.0 | 51.2+1.5 | 96.7 2.9+07 | 96.4 | 2.6x0s
Aaronson || RoBERTa | 35.9+1.0 | 55.7+1.4 | 99.4 | 0.6+03 | 99.5 | 0.8+03
Binoculars | 35.9+1.0 | 54.3+15 | 99.1 0.5+04 | 96.5 | -2.1+05

Radar 50.1+0.s | 88.6+0.9 | 93.4 3.1x1.1 | 92.3 | 2.0x11

LLh 0.0x0.0 0.0+0.0 97.1 0.7+0.3 | 91.4 | -5.0x0.6
LLR 0.0+0.0 0.0+0.0 93.6 1.4+05 | 91.9 | -0.210.1
Kir. (0.5) RoBERTa | 0.0+0.0 0.0+0.0 98.6 0.0+0.1 | 98.3 | -0.2+0.1
Binoculars | 0.0+0.0 | 0.0x00 | 98.7 | 0.1x03 | 98.3 | -0.3+0.3

Radar 1.6+0.4 5.8+0.7 84.6 | -1.2+0.7 | 82.9 | -2.910.8

LLh 89408 | 13.8+1.0 | 96.6 0.3+06 | 94.8 | -1.5+0.6
LLR 18.8+1.1 | 29.3+1.3 | 95.7 4.7T+08 | 91.0 | -0.1x1.0
Kir. (2) RoBERTa | 12.8+0.9 | 12.8+0.0 | 98.6 0.7+0.4a | 97.7 | -0.2+0.1
Binoculars | 10.3+0.s | 20.7+1.2 | 98.6 | 0.1+0.4 | 99.0 | 0.5+0.3

Radar 45.8+1.1 | 59.5+1.4 | 88.9 2.9+1.1 | 89.7 | 3.6x0.9

LLh 27.6+1.1 | 50.1+1.5 | 98.7 3.7+0.7 | 98.1 | 3.1+o06
LLR 35.0+1.0 | 59.3+1.5 | 97.6 6.9+1.0 | 97.1 | 6.4x1.0
Kir. (3) || RoBERTa | 32.1x1.0 | 50.1x1.4 | 99.0 1.9405 | 97.3 | 0.3%0.6
Binoculars | 35.7+1.0 | 60.6+1.5 | 99.1 1.6+05 | 98.3 | 0.7+0.5

Radar 49.1+0.9 | 83.6+1.1 | 94.5 3.8+1.1 | 84.7 | -6.0+1.3

LLh 30.3+1.0 | 48.1+1.5 | 99.1 2.2+05 | 95.7 | -1.2+0.7
LLR 35.1+1.1 | B3.1+15 | 97.7 6.5+0.9 | 96.9 | 5.6+0.s
Bahri || RoBERTa | 35.2+1.0 | 43.1+1.3 | 99.0 1.3+04 | 994 | 1.7+0.4
Binoculars | 35.2+1.0 | 61.8+1.5 | 99.4 | 0.7+0.a | 99.3 | 0.6+0.4

Radar 47.6+0.9 | 86.6+1.0 | 93.1 2.9+12 | 86.8 | -3.3+1.3

LLh 0.7+0.2 0.7+o0.2 97.2 | -0.5+03 | 96.9 | -0.7+0.3
LLR 2.5+0.4 3.1+05 95.3 2.6+06 | 91.4 | -1.3+0.6
Kuditipudi || RoBERTa | 0.7+02 | 0.7202 | 99.0 | 0.1+o.r | 99.2 | 0.3%0.2
Binoculars | 0.7+0.3 0.7+0.3 98.7 | 0.1x03 | 97.8 | -0.8+0.4

Radar 3.6+0.6 | 13.0+1.0 | 85.0 | -0.5+0.8 | 85.4 | -0.2+0.7

Table 5: Cascade hit rates and accuracies of MLP and Tree methods when GEMMA-7B-INSTRUCT is applied
to the test set of eli5-category with human negatives and 100 tokens. The trends here are similar to those for
other LLMs and datasets.
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WM | Det |WMOnly|DetOnly| 1S | 1S+ | 25 | 25+ | LR | LR+
LLh 96.4 67.1 95.1 | -1.240.7 | 95.1 | -1.2+0.7 | 97.3 | 0.9+0.6

LLR 96.4 54.4 93.9 | -2.5+0s8 | 97.2 | 0.9+06 | 95.2 | -1.210s

Aaronson || RoBERTa 96.4 62.1 83.6 | -12.8+1.0 | 83.6 | -12.8+1.0 | 79.2 | -17.1x1.0
Binoculars 96.4 75.0 976 | 1.2+06 | 97.6 | 1.2+06 | 97.3 | 0.9z0.7

Radar 96.4 69.1 93.8 | -2.5+0s8 | 96.2 | -0.1x0.7 | 96.8 | 0.4+0.7

LLh 61.0 67.4 71.5 4.1+1.0 71.5 4.1+1.0 70.8 3.4+1.3

LLR 61.0 54.4 59.9 | -1.1+1.7 | 60.5 | -0.5+1.7 | 61.5 | 0.4+1.8

Kir. (0.5) || RoBERTa 61.0 62.2 66.2 | 4.0x06 | 66.2 | 4.0x06 | 76.3 | 14.1+0.8
Binoculars 61.0 73.4 76.7 | 3.3x1.0 76.7 | 3.3x1.0 76.8 | 3.4+o0.9

Radar 61.0 69.7 69.8 | 0.1+03 | 70.6 | 0.9+08 | 67.5 | -2.2+1.4

LLh 87.8 66.2 90.9 | 3.0+10 | 94.0 | 6.2+09 | 95.0 | 7.1xtos

LLR 87.8 52.6 84.8 | -3.1+13 | 91.0 | 3.2+11 | 91.6 | 3.8+1.0

Kir. (2) || RoBERTa 87.8 65.7 79.2 | -87+12 | 79.2 | -8.6+1.2 | 83.1 | -4.7+1.2
Binoculars 87.8 71.1 93.3 | 5.5+10 | 94.1 | 6.3+t1.0 | 95.5 | 7.7+1.0

Radar 87.8 69.7 85.8 -2.1;{:1.2 90.5 2.6:{:1.1 88.6 0.8;{:1.1

LLh 95.8 59.4 93.5 | -2.3x08 | 98.3 | 2.5+05 | 98.5 | 2.7x0s

LLR 95.8 50.3 92.6 | -3.2+08 | 97.3 | 1.5x0.7 | 97.5 1.7+0.7

Kir. (3) || RoBERTa 95.8 58.3 70.1 | -25.7+1.0 | 95.5 | -0.3+0.7 | 89.4 | -6.4+0.9
Binoculars 95.8 64.5 96.1 0.3+0.7 | 97.7 1.9+0.6 98.4 | 2.6+o0.6

Radar 95.8 67.1 94.7 | -1.1x0.7 | 97.1 1.3+07 | 95.7 | -0.1x0.7

LLh 96.7 70.9 97.1 | 0.4+06 | 979 | 1.2+05 | 97.3 | 0.6x05

LLR 96.7 55.7 93.5 | -3.2+08 | 97.2 0.4+0.6 97.4 0.6+0.6

Bahri || RoBERTa 96.7 62.6 80.4 | -16.4+1.0 | 80.4 | -16.4+1.0 | 91.6 | -5.1+0.8
Binoculars 96.7 77.6 96.5 | -0.2+0.6 | 98.7 1.9+0.6 97.4 | 0.6x0.6

Radar 96.7 68.8 94.5 | -2.3+07 | 97.1 | 0.4+06 | 97.0 | 0.3x0.6

LLh 78.5 65.1 91.4 | 129411 | 91.4 | 13.0+1.1 | 81.9 | 3.4+00

LLR 78.5 54.3 79.4 | 1.0+15 | 79.6 | 1.1+15 | 80.4 | 2.0+1.3

Kuditipudi || RoBERTa 78.5 66.6 775 | -1.0x1.4 | 77.5 | -0.9+1.3 | 80.4 | 2.0+1.3
Binoculars 78.5 73.3 94.1 | 15.6+£1.1 | 94.1 | 15.6+1.1 | 86.0 7.6+1.2

Radar 78.5 68.8 777 | -0.7+13 | 79.8 | 1.3+12 | 79.5 1.0+1.3

Table 6: Main table of accuracies when MISTRAL-7B-INSTRUCT is applied to databricks-dolly-15k with
human negatives and 100 tokens. The trends here are similar to those for other LLMs and test datasets.
We sometimes observe a loss for ROBERTa (e.g. 17.1% drop for LR under Aaronson). This is again due to
overfitting on the calibration set. The non-watermark detector performance on the calibration data (94.4%
accuracy on the test set of eli5-category) is better than on databricks-dolly-15k (only 62.1%) and the model
learns to put more weight on the non-watermark detector than it should. Note that this finding is partly
an artifact of the evaluation procedure. While the cascades have the same loss pattern, they do not under

pAUC since no out-of-distribution calibration data is used for them in this case (see Table 14).

23



Published in Transactions on Machine Learning Research (01/2026)

WM || Det 18 v 25y | MLP | MLP + | Tree | Tree +
LLh 43.9+0.6 | 44.0+06 | 97.3 0.9+0.6 97.9 1.6+0.6

LLR 43.9+0.6 | 95.1+05 | 96.1 -0.2+0.7 | 95.7 | -0.7+0.7

Aaronson || RoBERTa | 43.9+0.6 | 44.040.6 | 80.0 | -16.4+1.0 | 80.2 | -16.2+1.0
Binoculars | 43.9+0.6 | 44.0+0.6 | 97.4 1.0x0.7 97.8 1.5+0.6

Radar 43.9+0.6 | 95.1+05 | 96.7 0.3+0.7 93.9 | -2.5+0.8

LLh 29.1+12 | 29.2+12 | 72.8 5.44+1.0 70.6 3.2+1.3

LLR 43.3+1.3 | 48.8+1.3 | 62.3 1.2118 61.3 0.3+1.7

Kir. (0.5) RoBERTa | 0.1+o.1 0.2+0.1 74.6 12.4+08 | 74.0 | 11.8+0.8
Binoculars | 22.8+1.1 | 22.9+1.1 | 77.1 3.6100 | 77.3 | 3.8z0s

Radar 3.9+05 | 21.9+1.1 | 72.8 3.1+0.9 69.7 0.0+0.0

LLh 37.0+0.0 | 72.0+1.2 | 94.7 6.8+0.9 90.2 2.3+1.1

LLR 37.0+0.s | 87.0x0.9 | 90.5 2.7+1.1 91.3 3.4+1.0

Kir. (2) RoBERTa | 24.0+0.9 | 24.1+00 | 81.0 -6.8+1.2 | 74.7 | -13.1+1.2
Binoculars | 37.0+0.0 | 81.2+1.0 | 95.5 7.6+1.0 94.5 6.7+1.0

Radar 37.0+0.s | 87.0x00 | 91.1 3.241.1 87.2 | -0.7T+1.1

LLh 44.8+0.5 | 94.5+06 | 98.4 2.6+0.5 97.9 2.1+0.4

LLR 44.8+0.6 | 94.5+06 | 96.8 1.0+0.7 95.7 | -0.1x0.7

Kir. (3) || RoBERTa | 40.0x0.7 | 83.6x1.0 | 79.8 | -16.0x1.0 | 75.7 | -20.1x1.0
Binoculars | 44.8+0.6 | 83.4+1.0 | 98.3 2.5+0.6 95.6 | -0.2+0.7

Radar 44.8+0.6 | 96.8405 | 95.4 | -0.4+0.7 | 95.6 | -0.2+0.7

LLh 44.3+0.6 | 79.0+£1.1 | 98.9 2.1+0.4 96.3 | -0.5+0.7

LLR 44.3+0.6 | 90.6+08 | 97.4 0.7+0.6 93.9 | -2.9+0.8

Bahri || RoBERTa | 37.9+0s | 37.940s | 91.3 | -5.4+0s | 80.2 | -16.6+1.0
Binoculars | 44.5+0.6 | 87.1x0.0 | 99.1 2.4+0.5 96.8 0.1+o0.6

Radar 44.5+05 | 96.1+05 | 97.4 0.6+0.6 97.3 0.5+0.6

LLh 25.8+0.9 | 28.1+09 | 92.8 14.3+1.1 | 93.4 | 14.9+1.0

LLR 25.8+1.0 | 28.1+1.0 | 83.2 4.T+1.4 78.8 0.3+1.4

Kuditipudi || RoBERTa | 24.5+0.9 | 24.6+0.9 | 81.1 2.6+13 | 744 | -4.0x13
Binoculars | 25.840.9 | 25.9+0.0 | 95.3 16.8+1.0 | 94.9 | 16.4+1.0

Radar 28.2+0.9 | 92.3+0.7 | 79.8 1.4+1.2 75.6 | -2.9+1.3

Table 7: Cascade hit rates and accuracies of MLP and Tree methods when MISTRAL-7B-INSTRUCT is applied
to databricks-dolly-15k with human negatives and 100 tokens. The trends here are similar to those for other

LLMs and datasets.
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WM | Det |WMOnly|DetOnly| 1S | 1S+ | 25 | 28+ | LR | LR +
LLh 99.1 62.9 99.4 | 0.3202 | 99.8 | 0.7x03 | 99.9 | 0.8+0.

LLR 99.1 54.1 99.0 | -0.0+0.4 | 99.6 | 0.6+0.3 | 99.8 | 0.7+0.3

Aaronson || RoBERTa 99.1 94.4 99.4 | 0.3+03 | 99.8 | 0.7+0.3 | 99.9 | 0.8+0.3
Binoculars 99.1 67.9 99.8 | 0.7+0.3 | 99.9 | 0.8+0.3 | 99.9 | 0.8+0.3

Radar 99.1 75.0 99.1 | 0.0x0.4 | 99.2 | 0.1x0.4 | 99.0 | -0.0+0.4

LLh 63.6 59.0 66.2 | 2.6x1.2 | 66.2 | 2.6x1.2 | 62.6 | -1.0+1.5

LLR 63.6 53.6 65.3 | 1.7+10 | 65.2 | 1.6x1.0 | 64.3 | 0.7+1.0

Kir. (0.5) || RoBERTa 63.6 94.7 94.5 | -0.1x0.2 | 94.5 | -0.1x02 | 974 | 2.7+05
Binoculars 63.6 64.5 69.1 | 4.6x11 | 69.1 | 4.6x1.1 | 68.6 | 4.1+1.0

Radar 63.6 73.1 75.3 | 2.3x08 | 75.3 | 2.2+00 | 72.3 | -0.T+x1.7

LLh 94.2 57.8 97.1 | 2.9+05 | 98.6 | 4.4+06 | 98.6 | 4.5+06

LLR 94.2 55.4 94.2 | 0.0x09 | 96.9 | 2.7+08 | 97.2 | 3.0x0.7

Kir. (2) || RoBERTa 94.2 92.8 97.4 | 3.2+0s | 98.8 | 4.6+0.7 | 99.7 | 5.5+0.7
Binoculars 94.2 62.7 97.8 | 3.7+os | 98.6 | 4.4+0.7 | 98.6 | 4.5+0.7

Radar 94.2 73.3 93.9 | -0.3x0.9 | 96.7 | 2.5x08 | 95.0 | 0.8+0.9

LLh 98.9 55.4 98.9 | 0.0+0.0 | 99.7 | 0.8+03 | 99.9 | 1.0+o0.3

LLR 98.9 53.3 98.9 | 0.0+0.4 | 98.9 | -0.0+0.4 | 99.4 | 0.5+0.4

Kir. (3) || RoBERTa 98.9 86.5 99.3 | 0.440.4 | 99.6 | 0.7x0.4 | 99.9 | 1.0x05
Binoculars 98.9 57.8 99.3 | 0.4+0.4 | 99.5 | 0.6+0.4 | 99.6 | 0.7+0.3

Radar 98.9 70.9 98.5 | -0.4+05 | 99.1 | 0.2+0.4 | 99.1 | 0.240.4

LLh 98.9 66.6 99.7 | 0.8+0.2 | 99.8 | 0.9+03 | 96.1 | -2.8+0.5

LLR 98.9 53.5 98.8 | -0.0+0.4 | 99.5 | 0.7x03 | 98.8 | -0.0+0.4

Bahri || RoBERTa 98.9 95.3 99.3 | 0.440.4 | 99.9 | 1.0x03 | 98.3 | -0.6+0.5
Binoculars 98.9 68.9 99.3 | 0.4+0.4 | 99.8 | 0.9x03 | 96.6 | -2.2+0.6

Radar 98.9 77.5 98.8 | -0.0+0.4 | 99.0 | 0.1x0.4 | 98.6 | -0.3+0.4

LLh 94.5 57.8 98.7 | 4.2+06 | 98.7 | 4.2+06 | 84.5 | -9.9+1.1

LLR 94.5 53.5 95.8 | 1.3+0.9 | 95.6 | 1.2+00 | 91.1 | -3.3+1.1

Kuditipudi || RoBERTa 94.5 93.6 99.2 | 4.8407 | 99.2 | 4.8+07 | 96.5 | 2.0+0.s
Binoculars 94.5 62.2 99.0 | 4.5+0.7 | 98.9 | 4.5+0.7 | 88.4 | -6.0+1.2

Radar 94.5 71.5 90.7 | -3.8+1.1 | 93.0 | -1.4+1.0 | 92.8 | -1.6+1.0

Table 8: Main table of accuracies when MISTRAL-7B-INSTRUCT is applied to the test split of eli5-category
with human negatives and 100 tokens. The trends here are similar to those for other LLMs and datasets.
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WMH Det, ‘ 1S v ‘ 2S v ‘MLP‘MLP-{—‘TTee‘Tree—i—

LLh 50.4+0.3 | 91.8+0.8 | 99.9 0.8+0.3 | 99.6 | 0.6+0.3
LLR 50.8+0.3 | 98.6+0.3 | 99.7 | 0.7x03 | 99.6 | 0.6+0.3
Aaronson || RoBERTa | 50.4+0.2 | 92.0+0.7 | 99.9 | 0.8+03 | 99.7 | 0.6+0.3
Binoculars | 49.8+0.2 | 91.7+0s | 99.9 0.8+0.3 | 99.7 | 0.6+0.3

Radar 50.7+0.3 | 99.0+0.3 | 99.2 0.2+03 | 99.6 | 0.5+0.3

LLh 26.4+12 | 26.4+1.2 | 66.7 | 3.1+13 | 65.8 | 2.2+13
LLR 36.3+1.4 | 45.7+1.4 | 65.3 1.7+10 | 65.0 | 1.4+1.9
Kir. (0.5) RoBERTa | 1.9+0.4 1.9+0.4 95.9 1.2+04 | 94.0 | -0.7+0.2
Binoculars | 17.5+1.0 | 17.5+1.0 | 69.7 | 5.2+1.0 | 70.0 | 5.5+1.2

Radar 17.5+1.0 | 18.6+1.0 | 77.8 4.T+09 | 76.8 | 3.7x11

LLh 51.4+05 | 77.0+1.0 | 98.9 4.7+06 | 98.5 | 4.4+06
LLR 55.240.6 | 93.2+0.7 | 96.9 2.7T+0s | 98.0 | 3.8+0.7
Kir. (2) RoBERTa | 51.2+0.5 | 72.2+1.0 | 99.4 5.2+0.7 | 98.4 | 4.2+0.7
Binoculars | 50.4+0.5 | 77.1+1.1 | 98.7 4.5+07 | 98.3 | 4.1+o0s

Radar 55.4+0.6 | 91.8+0.7 | 97.1 2.9+0s | 97.2 | 3.1+0s

LLh 51.0+0.3 | 95.7+05 | 99.9 1.0+03 | 99.4 | 0.5+0.2
LLR 51.0+0.3 | 96.7+0.5 | 99.6 0.7+04 | 99.4 | 0.5+0.4
Kir. (3) || RoBERTa | 50.6+0.2 | 92.8+0.7 | 99.8 0.94+0.3 | 99.6 | 0.7xo0.3
Binoculars | 50.6+0.2 | 92.8+0.7 | 99.7 0.8+0.3 | 99.4 | 0.5+0.4

Radar 51.4+0.4 | 98.6+03 | 99.4 | 0.5+04 | 99.3 | 0.4+0.4

LLh 50.2+0.2 | 91.7x08 | 99.3 | 0.4x02 | 99.7 | 0.8%0.2
LLR 51.0+0.3 | 98.4+0.4 | 99.5 0.6+0.4 | 99.6 | 0.7+0.3
Bahri || RoBERTa | 50.6+0.2 | 97.840.4 | 99.7 | 0.8203 | 99.9 | 1.0+0.3
Binoculars | 50.6+0.2 | 93.84+0.6 | 99.5 | 0.6+0.3 | 99.7 | 0.8+0.3

Radar 51.0+0.3 | 99.6+0.2 | 99.2 0.3+0.4 | 99.1 | 0.2+0.4

LLh 46.5+0.6 | 46.6+0.6 | 98.6 4.1+06 | 99.0 | 4.5+0.6
LLR 48.9+0.6 | B8.T+0.0 | 96.6 2.1+09 | 97.1 | 2.7+0.9
Kuditipudi || RoBERTa | 46.0+0.6 | 46.1+0.6 | 99.2 | 4.7+0.7 | 99.2 | 4.810.7
Binoculars | 46.5+0.6 | 46.6+0.6 | 99.1 4.6+0.7 | 98.8 | 4.3+0s

Radar 48 9+0.6 | 71.94£1.1 | 94.1 | -0.3£1.0 | 94.6 | 0.1x1.0

Table 9: Cascade hit rates and accuracies of MLP and Tree methods when MISTRAL-7B-INSTRUCT is applied
to the test set of eli5-category with human negatives and 100 tokens. The trends here are similar to those for
other LLMs and datasets.
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WM |  Det | WMOnly|DetOnly| 1S | 1S+ | 25 |25+ | LR | LR +
LLh 78.9 72.3 88.4 | 9.6 | 959 | 17.0 | 944 | 155

LLR 78.9 59.8 81.2 | 23 932 | 143 | 754 | -3.5

Aaronson || RoBERTa 78.9 92.4 96.9 | 4.5 | 974 | 5.0 | 96.3 3.9
Binoculars 78.9 56.5 78.8 | -0.1 | 929 | 14.0 | 79.5 0.6

Radar 78.9 50.5 789 | -0.0 | 8.6 | 3.7 | 80.6 1.7

LLh 50.3 71.6 71.9 | 03 | 76.7| 5.1 | 724 0.8

LLR 50.3 59.2 59.2 | 0.0 |63.0| 3.8 | 59.2 0.0

Kir. (0.5) || RoBERTa 50.3 92.9 919 | -1.0 | 919 | -1.0 | 91.6 | -1.3
Binoculars 50.3 56.4 55.8 | -0.6 | 63.6 7.1 56.9 0.5

Radar 50.3 50.5 50.2 | -0.4 | 51.0 | 0.5 | 51.2 0.7

LLh 60.2 67.8 70.0 | 2.2 |[851 | 17.3 | 81.4 | 13.6

LLR 60.2 56.8 61.5 1.3 | 781 | 17.9 | 60.2 | -0.0

Kir. (2) || RoBERTa 60.2 92.8 935 | 0.7 |93.8| 1.0 | 93.9 1.1
Binoculars 60.2 55.4 60.5 0.3 80.7 | 20.5 | 63.2 3.0

Radar 60.2 50.5 60.3 | 0.1 |63.0| 2.8 | 61.6 1.5

LLh 7T 62.0 80.1 | 2.5 | 939 ]| 16.3 | 89.7 | 12.0

LLR 7.7 54.0 7721 -0.4 | 90.7 | 13.0 | 63.5 | -14.2

Kir. (3) || RoBERTa 7.7 91.8 96.1 | 4.3 | 96.7 | 4.9 | 96.2 4.4
Binoculars 7.7 53.6 747 | 2.9 | 91.2 | 13.5 | 742 | -3.5

Radar 7.7 50.5 7771 0.0 | 804 | 2.8 | 786 0.9

LLh 79.6 71.9 87.0 | 7.4 | 955 | 159 | 87.2 7.6

LLR 79.6 59.0 80.8 1.2 | 921 | 12.5 | 67.3 | -12.3

Bahri || RoBERTa 79.6 92.9 97.3 | 4.4 | 974 | 45 | 94.3 1.4
Binoculars 79.6 56.2 79.3 | -0.3 | 93.5 | 139 | 71.8 | -7.7

Radar 79.6 50.5 79.7 1 0.1 |83.0| 34 |76.6]| -3.0

LLh 52.1 71.5 71.8 | 0.3 | 81.8 | 10.3 | 75.6 4.1

LLR 52.1 59.2 59.2 | 0.0 | 685 | 94 | 60.3 1.1

Kuditipudi || RoBERTa 52.1 93.4 92.7 | -0.7 193.0| -04 | 91.0| -2.5
Binoculars 52.1 56.3 56.2 | -0.1 | 66.5 | 10.2 | 58.0 1.7

Radar 52.1 50.5 52.1 | -0.0 | 53.1 1.0 | 52.3 0.2

Table 10: Main table of pAUC results (1% max FPR) when GEMMA-7B-INSTRUCT is applied to databricks-
dolly-15k and human examples are used as negatives at a target length of 100 tokens.
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WM || Det | MLP | MLP + | Tree | Tree +
LLh 93.0 | 141 | 504 | -285
LLR 773 | -16 | 501 | -28.8

Aaronson || RoBERTa | 67.8 -24.5 50.7 | -41.7
Binoculars | 69.3 -9.6 51.9 -27.0
Radar 81.8 2.9 66.1 -12.8

LLh 70.8 -0.8 53.1 -18.5
LLR 59.2 0.1 54.5 -4.6
Kir. (0.5) || RoBERTa | 65.0 -27.9 50.7 | -42.2
Binoculars | 55.5 -0.9 53.7 -2.8
Radar 51.1 0.6 50.6 0.1

LLh 79.2 11.4 52.3 | -15.5
LLR 63.1 2.9 52.5 -7.7
Kir. (2) || RoBERTa | 64.2 -28.6 50.7 | -42.1
Binoculars | 58.7 -1.5 53.3 -6.9

Radar 62.3 2.1 52.3 -7.9

LLh 89.1 | 115 | 49.9 | -27.8
LLR 66.0 | -11.7 | 55.6 | -22.0
Kir. (3) || RoBERTa | 76.0 | -15.8 | 50.7 | -41.1
Binoculars | 66.9 | -10.8 | 50.0 | -27.6

Radar | 79.1 1.5 | 558 | -21.9

LLh 83.8 4.2 50.6 -29.0
LLR 63.4 -16.2 50.1 -29.5
Bahri || RoBERTa | 77.4 -15.5 50.7 -42.2
Binoculars | 64.8 -14.7 57.0 -22.6

Radar 79.9 0.3 59.2 -20.4

LLh 76.7 5.2 49.7 | -21.7
LLR 62.2 3.1 51.8 -7.4
Kuditipudi || RoBERTa | 59.3 -34.1 50.8 | -42.7
Binoculars | 56.5 0.2 53.7 -2.6

Radar 52.3 0.2 50.8 -1.3

Table 11: pAUC numbers (1% max FPR) of MLP and Tree methods when GEMMA-7B-INSTRUCT is applied
to databricks-dolly-15k and human examples are used as negatives at a target length of 100 tokens.
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WM |  Det | WMOnly|DetOnly| 1S | 1S+ | 25 |25+ | LR | LR +
LLh 79.3 98.8 99.4 | 0.6 |99.7| 1.0 | 99.9 1.1

LLR 79.3 92.2 974 | 51 | 986 | 6.3 | 97.8 5.5

Aaronson || RoBERTa 79.3 100.0 99.9 | -0.1 | 99.7| -0.3 | 994 | -0.6
Binoculars 79.3 98.8 99.2 0.3 99.3 0.5 99.3 0.5

Radar 79.3 51.7 794 | 0.1 |8.3]| 7.0 |82.7 3.4

LLh 50.4 98.9 979 | -1.0 | 88.3 | -10.7 | 98.8 | -0.2

LLR 50.4 92.1 90.2 | -1.9 | 91.2| -09 | 91.0| -1.1

Kir. (0.5) || RoBERTa 50.4 100.0 99.6 | -0.3 | 77.7 | -22.2 | 98.3 | -1.7
Binoculars 50.4 98.9 97.7 | -1.2 | 89.5| -94 | 98.6 | -0.3

Radar 50.4 51.7 50.4 | -1.3 | 53.0 | 1.2 | 51.8 0.1

LLh 59.7 98.4 98.2 | -0.1 | 989 | 0.5 | 98.8 0.4

LLR 59.7 89.5 90.6 1.1 929 | 34 | 919 2.3

Kir. (2) || RoBERTa 59.7 99.9 99.7 | -0.2 | 973 | -2.6 | 98.1 | -1.8
Binoculars 59.7 98.4 98.4 | -0.0 | 98.5 0.1 97.7 | -0.7

Radar 59.7 51.8 59.9 | 0.1 | 678 | 80 | 62.3 2.6

LLh 78.3 96.8 98.9 | 2.1 |99.3| 2.5 |99.5 2.7

LLR 78.3 84.1 93.5 | 9.3 964 | 12.3 | 96.3 | 12.1

Kir. (3) || RoBERTa 78.3 99.9 99.9 | -0.0 | 995 | -04 | 98.9 | -1.0
Binoculars 78.3 96.8 98.6 | 1.9 | 988 | 2.0 | 98.3 1.6

Radar 78.3 51.7 786 | 0.3 | 848 | 6.5 | 80.5 2.2

LLh 79.6 99.1 99.2 | 0.1 |99.7| 0.7 | 994 0.4

LLR 79.6 91.6 975 | 59 | 988 | 7.2 | 97.5 5.9

Bahri || RoBERTa 79.6 100.0 99.9 | -0.1 | 995 | -0.5 | 99.3 | -0.6
Binoculars 79.6 98.6 99.3 | 0.7 |199.6 | 1.0 | 99.3 0.7

Radar 79.6 51.6 79.8 1 0.2 |85.0| 54 | 84.0 4.4

LLh 51.2 98.9 97.4 | -1.5 | 94.2 | -4.8 | 99.1 0.1

LLR 51.2 93.0 90.7 | -2.3 | 93.1| 0.1 | 93.6 0.7

Kuditipudi || RoBERTa 51.2 100.0 99.6 | -0.4 | 79.8 | -20.2 | 99.0 | -1.0
Binoculars 51.2 98.9 97.6 | -1.2 | 93.0 | -5.8 | 98.9 0.0

Radar 51.2 51.7 51.1 | -0.6 | 53.9 | 2.2 | 54.1 2.3

Table 12: Main table of pAUC results (1% max FPR) when GEMMA-7B-INSTRUCT is applied to the test set
of eli5-category and human examples are used as negatives at a target length of 100 tokens.
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WM || Det | MLP | MLP + | Tree | Tree +

LLh 99.9 1.1 98.3 -0.5
LLR 99.1 6.9 95.8 3.6
Aaronson || RoBERTa | 99.5 -0.5 99.5 -0.5
Binoculars | 99.5 0.7 92.3 -6.5
Radar 85.5 6.2 57.1 -22.2

LLh 98.8 -0.1 97.0 -1.9
LLR 91.5 -0.6 90.6 -1.5
Kir. (0.5) || RoBERTa | 99.5 -0.5 99.9 -0.1
Binoculars | 98.7 -0.1 98.5 -0.4

Radar 53.4 1.6 53.0 1.3

LLh 98.7 0.4 96.8 -1.6
LLR 93.3 3.8 88.8 -0.7
Kir. (2) || RoBERTa | 98.6 -1.3 99.7 -0.3
Binoculars | 98.0 -0.4 93.7 -4.7

Radar 65.3 5.5 57.8 -2.0

LLh 99.6 2.8 97.4 0.6
LLR 97.7 13.5 93.7 9.5
Kir. (3) || RoBERTa | 989 | -1.0 |99.2 | -0.7
Binoculars | 98.7 1.9 95.3 -1.4

Radar 82.0 3.7 74.2 -4.1

LLh 99.5 0.4 97.7 -1.3
LLR 97.3 5.7 94.0 2.4
Bahri || RoBERTa | 99.2 -0.8 99.4 -0.6
Binoculars | 99.3 0.7 95.8 -2.8

Radar 83.9 4.3 70.3 -9.3

LLh 99.1 0.1 97.8 -1.1
LLR 93.0 0.0 85.3 =77
Kuditipudi || RoBERTa | 99.5 -0.5 99.9 -0.1
Binoculars | 98.9 0.0 98.6 -0.3

Radar 54.0 2.3 51.7 0.0

Table 13: pAUC (1% max FPR) of MLP and Tree methods when GEMMA-7B-INSTRUCT is applied to the
test set of elib-category and human examples are used as negatives at a target length of 100 tokens.
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WM || Det | WM Only | Det Only | 1S | 1S+ | 2S |2S+ | LR | LR +
LLh 96.2 50.8 94.1 | -2.1 | 98.7] 25 93.3| -2.9

LLR 96.2 50.2 942 | -2.0 | 97.1| 09 | 8.6 | -9.7

Aaronson || RoBERTa 96.2 76.5 97.3| 1.1 | 984 | 22 |97.1| 09
Binoculars 96.2 56.2 96.4| 0.2 | 985 | 23 |94.2| -2.0

Radar 96.2 50.5 96.2 | -0.0 | 96.6 | 0.4 |96.3| 0.1

LLh 51.0 50.5 50.8| -0.3 | 51.4] 04 |51.1] 0.1

LLR 51.0 50.3 50.7 | -0.3 | 51.1| 0.1 |50.7| -0.3

Kir. (0.5) || RoBERTa 51.0 76.1 73.9 | 2.2 | 764| 03 |53.0] -23.1
Binoculars 51.0 55.3 54.2 | -1.2 | 56.8 | 1.4 |56.6| 1.3

Radar 51.0 50.5 51.0| -0.1 | 51.7| 0.7 |51.7| 0.7

LLh 81.6 50.2 7971 -1.9 | 85.1] 3.5 |80.1]| -15

LLR 81.6 50.1 792 | -2.4 [ 832 1.6 | 76.7| -4.9

Kir. (2) || RoBERTa 81.6 72.4 87.9| 6.3 | 916 | 10.0 | 84.4| 28
Binoculars 81.6 52.7 80.2 | -1.3 | 88.6 | 7.0 | 88.4| 6.8

Radar 81.6 50.5 81.7| 02 | 849 | 3.3 |82.9]| 1.3

LLh 96.4 50.1 95.1 | -1.2 | 977 ] 1.3 |954]| -1.0

LLR 96.4 50.1 95.1| -1.2 | 97.0 | 0.6 |94.6| -1.7

Kir. (3) || RoBERTa 96.4 68.7 97.0 | 06 |98.4| 2.1 |962| -0.1
Binoculars 96.4 50.9 95.3 | -1.1 | 98.1| 1.8 |98.1| 1.7

Radar 96.4 50.4 964 | 01 |97.0| 0.7 |969| 0.5

LLh 97.0 50.7 96.1 | -0.9 ]99.2| 22 |91.0| -6.0

LLR 97.0 50.1 96.0 | -1.0 | 97.8 | 0.8 | 945 | -25

Bahri || RoBERTa 97.0 70.5 972 02 |98.6| 1.6 |96.8| -0.2
Binoculars 97.0 56.6 97.0 | 0.1 [99.0| 2.0 |91.5| -55

Radar 97.0 50.4 969 | -0.1 | 97.3| 0.3 |955| -15

LLh 77.4 50.5 76.5 | -0.9 | 81.0| 3.6 |64.7]| -12.7

LLR 77.4 50.3 76.3 | -1.1 | 782 | 0.8 | 545 | -22.9

Kuditipudi || RoBERTa 77.4 75.6 87.3 | 9.9 |87.8| 104 | 784 | 1.0
Binoculars 77.4 55.3 79.5 2.1 84.0 6.6 69.0 -8.4

Radar 77.4 50.5 7731 -0.1 | 780| 06 | 75.7| -1.7

Table 14: Main table of pAUC results (1% max FPR) when MISTRAL-7B-INSTRUCT is applied to databricks-
dolly-15k and human examples are used as negatives at a target length of 100 tokens.
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WM || Det | MLP | MLP + | Tree | Tree +

LLh 89.3 -6.9 54.4 -41.8
LLR 91.1 -5.1 55.9 -40.3
Aaronson || RoBERTa | 97.2 1.0 498 | -46.4
Binoculars | 94.0 -2.2 56.7 | -39.5

Radar 96.3 0.1 93.9 -2.3

LLh 50.5 -0.5 50.8 -0.2
LLR 50.3 -0.7 50.1 -0.9
Kir. (0.5) || RoBERTa | 50.0 -26.1 50.2 | -25.8
Binoculars | 55.4 0.1 52.1 -3.2

Radar 52.2 1.1 50.9 -0.1

LLh 63.0 -18.6 80.3 -1.3
LLR 76.4 -5.2 79.9 -1.7
Kir. (2) || RoBERTa | 84.7 3.1 49.8 | -31.8
Binoculars | 76.2 -5.4 78.0 -3.6

Radar 84.5 2.9 79.3 -2.3

LLh 92.7 | -3.6 | 813 -15.1
LLR 935 | -2.8 |83 -11.1
Kir. (3) || RoBERTa | 94.5 | -1.9 |50.2 | -46.1
Binoculars | 97.3 | 0.9 | 55.8 | -40.5
Radar | 97.1 | 0.7 |96.7| 03

LLh 82.1 -14.8 50.4 | -46.5
LLR 86.5 -10.4 50.1 | -46.9
Bahri || RoBERTa | 54.4 -42.6 50.4 | -46.6
Binoculars | 88.2 -8.8 50.9 | -46.0

Radar 96.1 -0.9 96.9 -0.0

LLh 55.0 -22.4 74.4 -3.0
LLR 59.7 -17.7 73.7 -3.7
Kuditipudi || RoBERTa | 51.4 -26.0 50.2 | -27.2
Binoculars | 58.2 -19.2 55.3 -22.1

Radar 77.4 0.0 77.2 -0.2

Table 15: pAUC (1% max FPR) of MLP and Tree methods when MISTRAL-7B-INSTRUCT is applied to
databricks-dolly-15k and human examples are used as negatives at a target length of 100 tokens.
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WM | Det | WMOnly|DetOnly| 1S |[1S+| 25 [2S+ | LR |LR +
LLh 99.8 61.0 100.0 | 0.2 | 100.0 | 0.2 | 100.0 0.2

LLR 99.8 52.5 99.7 | -0.1 99.9 0.1 99.9 0.1

Aaronson || RoBERTa 99.8 98.7 100.0 | 0.2 | 100.0 | 0.2 | 100.0 0.2
Binoculars 99.8 64.3 100.0 0.2 100.0 0.2 100.0 0.2

Radar 99.8 51.0 99.6 | -0.1 99.8 0.0 99.8 0.0

LLh 51.2 57.5 56.2 | -1.3 57.6 0.1 53.9 -3.6

LLR 51.2 52.7 52.4 | -0.3 52.6 | -0.0 51.5 -1.2

Kir. (0.5) || RoBERTa 51.2 98.5 98.0 | -0.5 90.5 | -8.0 98.1 -0.5
Binoculars 51.2 61.1 60.4 -0.8 60.4 -0.7 59.2 -1.9

Radar 51.2 50.9 51.2 | -0.0 52.8 1.6 52.1 0.8

LLh 95.1 56.3 96.5 1.3 97.6 2.4 96.5 1.4

LLR 95.1 52.6 94.1 -1.0 96.4 1.2 95.8 0.7

Kir. (2) || RoBERTa 95.1 98.4 99.9 1.5 99.9 1.5 99.8 1.4
Binoculars 95.1 59.3 96.9 1.7 97.8 2.7 97.2 2.0

Radar 95.1 50.9 95.1 -0.0 96.6 1.4 95.8 0.7

LLh 99.7 53.9 99.8 0.1 99.9 0.3 | 100.0 0.3

LLR 99.7 51.6 99.2 | -04 99.8 0.1 99.8 0.1

Kir. (3) || RoBERTa 99.7 95.1 100.0 | 0.3 | 100.0 | 0.3 | 100.0 0.3
Binoculars 99.7 54.6 99.7 0.0 99.9 0.2 99.8 0.2

Radar 99.7 50.8 99.5 | -0.1 99.7 0.0 99.7 0.1

LLh 99.7 64.9 100.0 | 0.3 | 100.0 | 0.3 83.8 | -15.9

LLR 99.7 52.0 99.0 | -0.7 99.8 0.1 78.6 | -21.1

Bahri || RoBERTa 99.7 99.1 100.0 | 0.3 | 100.0 | 0.3 | 100.0 0.3
Binoculars 99.7 65.1 99.8 0.1 100.0 | 0.3 83.0 | -16.7

Radar 99.7 50.9 99.6 | -0.2 99.7 | -0.0 98.3 -1.4

LLh 95.4 56.5 98.9 3.5 98.9 3.5 63.1 | -32.3

LLR 95.4 52.0 96.2 0.8 96.5 1.1 58.8 | -36.6

Kuditipudi || RoBERTa 95.4 98.2 99.9 1.7 99.2 1.0 99.9 1.7
Binoculars 95.4 59.7 99.4 4.0 99.3 3.9 70.5 | -24.9

Radar 95.4 50.8 95.4 | -0.0 95.6 0.2 85.4 | -10.0

Table 16: Main table of pAUC results (1% max FPR) when MISTRAL-7B-INSTRUCT is applied to the test
split of eli5-category and human examples are used as negatives at a target length of 100 tokens.
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WM || Det | MLP | MLP + | Tree | Tree +
LLh 100.0 | 02 | 948 -49
LLR 99.9 | 0.1 | 948 | -5.0

Aaronson || RoBERTa | 99.9 0.2 94.9 -4.9
Binoculars | 99.9 0.2 94.9 -4.9
Radar 99.8 0.1 94.8 -5.0

LLh 54.3 -3.2 55.8 -1.7
LLR 52.2 -0.5 50.7 -2.0
Kir. (0.5) || RoBERTa | 97.1 -1.4 97.1 -1.4
Binoculars | 60.1 -1.1 60.2 -1.0
Radar 53.2 2.0 52.4 1.2
LLh 97.2 2.1 83.2 -12.0
LLR 95.6 0.5 83.2 -12.0

Kir. (2) || RoBERTa | 99.6 1.2 98.8 0.4
Binoculars | 97.7 2.6 83.2 -11.9
Radar 96.5 1.3 83.2 -11.9

LLh 99.9 0.3 92.7 -7.0
LLR 99.8 0.1 92.7 -7.0
Kir. (3) || RoBERTa | 99.9 0.2 92.8 -6.9
Binoculars | 99.9 0.2 92.7 -6.9

Radar 99.8 0.1 92.7 -6.9

LLh 90.3 -9.4 91.8 -7.9
LLR 97.4 -2.3 91.8 -7.9
Bahri || RoBERTa | 100.0 0.3 86.1 -13.6
Binoculars | 97.1 -2.6 91.8 -7.9

Radar 97.7 -2.0 87.8 -11.9

LLh 87.5 -7.9 93.3 -2.1

LLR 87.8 -7.6 92.5 -2.8

Kuditipudi || RoBERTa | 99.8 1.6 98.3 0.1
Binoculars | 94.8 -0.6 93.5 -1.9

Radar 90.3 -5.1 92.6 -2.8

Table 17: pAUC (1% max FPR) of MLP and Tree methods when MISTRAL-7B-INSTRUCT is applied to the
test set of elib-category and human examples are used as negatives at a target length of 100 tokens.
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WM| Det |WMOnly|DetOnly| 1S | 1S4+ | 25 | 28+ | LR | LR +
LLh 50.0 74.4 74.7 | 0.3+0.2 | 74.7 | 0.3+0.2 | 74.4 | -0.0+0.0

LLR 50.0 71.7 71.7 | 0.0x01 | 71.7 | 0.0x01 | 71.7 | 0.0x0.0

Aaronson || RoBERTa 50.0 71.1 71.3 | 0.3x02 | 71.3 | 0.3x02 | 79.1 | 8.0+1.4
Binoculars 50.0 77.5 77.6 | 0.1+01 | 77.6 | 0.1+0.1 | 77.5 | 0.0+0.1

Radar 50.0 65.4 65.4 | 0.0+0.1 | 65.4 | 0.0+0.1 | 65.1 | -0.3+0.3

LLh 51.5 73.9 75.1 | 1.2+05 | 75.2 | 1.3z05 | 75.1 | 1.2+0.4

LLR 51.5 72.3 72.2 | -0.1x0.2 | 72.2 | -0.1x02 | 74.1 | 1.8+06

Kir. (0.5) || RoBERTa 51.5 70.6 70.4 | -0.2+0.2 | 70.5 | -0.240.2 | 79.1 | 8.4+1.4
Binoculars 51.5 77.1 772 | 0.1x03 | 77.3 | 0.2+03 | 77.3 | 0.2+03

Radar 51.5 65.9 65.9 | 0.0+0.0 | 65.9 | 0.0+0.1 | 65.8 | -0.1+0.1

LLh 52.5 75.8 73.9 | -1.9205 | 73.9 | -1.8+05 | 74.8 | -1.0+0.4

LLR 52.5 71.7 71.5 | -0.2+0.2 | 71.5 | -0.2+0.2 | 73.5 | 1.8+0.6

Kir. (2) || RoBERTa 52.5 71.3 71.3 | -0.0+0.0 | 71.3 | -0.0+0.1 | 79.7 | 8.3+1.4
Binoculars 52.5 77.0 771 | 0.1x04 | 77.2 | 0.2+04 | 77.1 | 0.1+03

Radar 52.5 65.7 65.7 | 0.0+0.0 | 65.7 | 0.0+0.1 | 65.6 | -0.1+0.4

LLh 54.5 76.1 76.1 | 0.0x01 | 76.2 | 0.1201 | 76.4 | 0.210.4

LLR 54.5 71.4 71.4 | 0.0+02 | 71.4 | 0.1+0.2 | 73.0 | 1.6+0.6

Kir. (3) || RoBERTa 54.5 72.1 72.3 | 0.2+02 | 72.3 | 0.3x02 | 79.9 | 7.9+13
Binoculars 54.5 76.6 76.3 | -0.3x0.4 | 76.3 | -0.320.4 | 76.6 | 0.0+0.5

Radar 54.5 65.3 65.3 | 0.0+0.0 | 65.3 | 0.0+0.3 | 65.9 | 0.6+0.7

LLh 50.4 74.5 74.4 | -0.1+01 | 74.4 | -0.1+01 | 75.7 | 1.2105

LLR 50.4 71.8 71.7 | -0.1x0.1 | 71.7 | -0.1x0.1 | 72.1 | 0.3+0.2

Bahri || RoBERTa 50.4 71.0 72.2 | 1.2404 | 72.2 | 1.2404 | 79.3 | 8.3+1.3
Binoculars 50.4 76.8 76.8 | 0.0+0.0 | 76.8 | 0.0x0.0 | 77.0 | 0.210.2

Radar 50.4 65.0 65.0 | 0.0x0.0 | 65.0 | 0.0x0.0 | 65.1 | 0.0%0.0

LLh 52.5 76.6 76.8 | 0.2+02 | 76.8 | 0.2+02 | 77.1 | 0.5+0.4

LLR 52.5 72.0 72.1 | 0.2+02 | 72.1 | 0.2+02 | 73.6 | 1.7+05

Kuditipudi || RoBERTa 52.5 71.4 71.5 | 0.1+01 | 71.5 | O.1xo2 | 78.9 | 7.5+1.4
Binoculars 52.5 78.3 78.4 | 0.1+01 | 784 | 0.1x01 | 77.9 | -0.5+0.5

Radar 52.5 65.5 65.5 | 0.0x0.1 | 65.1 | -0.4+0.6 | 66.0 | 0.5+0.7

Table 18: Main table of accuracies under the paraphrasing attack.

GEMMA-7B-INSTRUCT is applied to

databricks-dolly-15k and human examples are used as negatives at 100 tokens. We observe that paraphrasing,
an attack type known to be, a priori, challenging to defend against, does effectively remove most watermarking
signal, as watermark detection is near random. As a result, the hybrid approaches rely mostly on the
non-watermark signal and the overall performance improvement is minimal. An intriguing exception is
RoBERTa, where both LR and MLPs are able to juice out additional signal: LR under Aaronson and

RoBERTa confers an 8% gain.
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WM H Det ‘ 1S v ‘ 2S ~y ‘MLP‘MLP#—‘Tree‘Tree—&-

LLh 0.1+0.1 | 0.1+0.1 | 76.5 2.1+t06 | 77.8 | 3.4+0s8
LLR 0.1+0.1 | 0.1x0.1 | 72.0 0.3+0.3 | 74.1 | 2.4+0.7
Aaronson || RoBERTa | 0.1+0.1 | 0.1+0.1 | 79.0 | 8.0+1.4 | 71.0 | -0.0x0.1
Binoculars | 0.1+0.1 | 0.1+0.1 | 77.0 | -0.5+0.3 | 77.0 | -0.5+0.9

Radar 0.1+0.1 | 0.1+0.1 | 65.0 | -0.4+0.5 | 65.8 | 0.4+0.6

LLh 0.0+0.0 | 0.1+0.1 | 75.0 1.1+04 | 77.6 | 3.7T+0s
LLR 0.0+0.0 | 0.1+0.1 | 73.3 1.0+0.4 | 72.3 | 0.0%0.0
Kir. (0.5) RoBERTa | 0.0+0.0 | 0.1+0.1 | 77.7 7.0+13 | 70.4 | -0.3+0.2
Binoculars | 0.0+0.0 | 0.1+0.1 | 76.6 | -0.5+0.5 | 77.3 | 0.2+0.4

Radar 0.1+0.1 | 0.1x0.1 | 65.7 | -0.220.2 | 65.9 | 0.0x0.0

LLh 0.0+0.0 | 0.1x0.1 | 75.4 | -0.4+0.4 | 75.8 | 0.0x+0.0
LLR 0.0x0.0 | 0.1x0.1 | 72.7 1.0+0.4 | 74.9 | 3.3+0.9
Kir. (2) RoBERTa | 0.0+0.0 | 0.1+0.1 | 79.3 8.0+1.3 | 72.1 | 0.8+03
Binoculars | 0.0+0.0 | 0.140.1 | 76.9 | -0.1+0.4 | 77.2 | 0.2+0.4

Radar 0.0+0.1 | 0.1+0.1 | 65.7 | -0.0£0.4 | 66.6 | 0.9+0.7

LLh 0.0+0.0 | 0.1x0.1 | 75.9 | -0.3+0.5 | 77.0 | 0.9+0.6
LLR 0.0+0.0 | 0.1+0.1 | 73.0 1.7+06 | 74.1 | 2.7T+0s
Kir. (3) || RoBERTa | 0.0x0.0 | 0.1x0.1 | 79.7 | 7.6x13 | 73.0 | 0.9x0.4
Binoculars | 0.0+0.0 | 0.1+0.1 | 76.3 | -0.3+0.4 | 76.6 | -0.0+0.1

Radar 0.0+0.0 | 1.1+0.3 | 65.4 | 0.1+0.a | 64.7 | -0.6+0.6

LLh 0.0+0.0 | 0.0+0.0 | 75.7 1.1t05 | 781 | 3.6+o0s
LLR 0.0+0.0 | 0.0+0.0 | 71.4 | -0.3+0.3 | 75.1 | 3.4+0.7
Bahri || RoBERTa | 0.0+0.0 | 0.0+0.0 | 78.1 7113 | 71.3 | 0.3+0.3
Binoculars | 0.0+0.0 | 0.020.0 | 76.8 | 0.0x0.4 | 76.8 | 0.0x0.0

Radar 0.0+0.0 | 0.0+0.0 | 65.1 0.1+03 | 64.5 | -0.5+0.5

LLh 0.0+0.0 | 0.1+0.1 | 76.6 0.0+03 | 78.2 | 1.6+0.9
LLR 0.0+0.0 | 0.1+0.1 | 72.4 0.4+03 | 75.4 | 3.4+1.0
Kuditipudi || RoBERTa | 0.0+0.0 | 0.1+0.1 | 78.7 | 7.4+1.4 | 7T1.7 | 0.320.2
Binoculars | 0.0+0.0 | 0.140.1 | 78.3 | -0.0+0.5 | 78.3 | 0.0x0.0

Radar 0.1+0.1 | 2.5+0.4 | 65.8 0.4+0.5 | 64.8 | -0.6+0.6

Table 19: Cascade hit rates and accuracies of MLP and Tree methods when GEMMA-7B-INSTRUCT is applied
to databricks-dolly-15k under the paraphrasing attack (human negatives, 100 tokens). Since watermark
performance is essentially random, the cascades learn to ignore it and rely solely on non-watermark signal.
As a result, hit rates are near zero.
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WM || Det |WMOnly|DetOnly| 1S | 1S4+ | 25 | 25+ | LR | LR +
LLh 89.9 83.7 90.4 | 0.6+0s | 92.8 | 2.9+0.7 | 95.1 | 5.2+06

Aaronson LLR 89.9 78.5 89.8 | -0.1+0.s | 90.5 | 0.6+0s | 94.1 | 4.2+10.7
RoBERTa 89.9 96.0 97.4 | 1.5+03 | 97.6 | 1.7+03 | 97.9 | 1.940.4

LLh 59.5 84.7 85.1 | 0.4+0.1 | 85.1 | 0.4+01 | 85.7 | 1.0+o0.3

Kir. (0.5) LLR 59.5 78.5 78.7 | 0.2+01 | 78.7 | 0.2+01 | 78.9 | 0.4+0.3
RoBERTa 59.5 96.0 95.8 | -0.3+0.1 | 95.7 | -0.3+0.1 | 95.6 | -0.4+0.4

LLh 81.1 82.8 83.6 | 0.8+0.2 | 8.3 | 2.6+0.4 | 91.1 | 8.4+06

Kir. (2) LLR 81.1 75.8 81.3 | 0.1+1.0 | 83.5 | 2.3+1.0 | 87.9 | 6.7T+1.0
RoBERTa 81.1 95.5 96.0 | 0.440.2 | 96.0 | 0.440.2 | 96.1 | 0.6+0.4

LLh 90.3 77.9 88.6 | -1.7+0.8 | 92.2 | 1.9+0.7 | 94.6 | 4.3+0.6

Kir. (3) LLR 90.3 72.7 83.0 | -7.3+0.s | 91.1 | 0.8+0.s | 91.4 | 1.1+0.8
RoBERTa 90.3 94.2 97.1 | 3.0+04 | 97.2 | 3.1+04 | 97.6 | 3.4+05

LLh 89.6 83.9 89.0 | -0.6+0.s | 91.1 | 1.5+0.8 | 94.0 | 4.4+0.7

Bahri LLR 89.6 76.0 87.6 | -2.0x0.8 | 91.6 | 2.0x0.8 | 92.3 | 2.7+0.7
RoBERTa 89.6 95.6 96.9 | 1.3+03 | 97.5 | 1.8+03 | 98.2 | 2.6+0.4

LLh 58.8 83.7 85.0 | 1.3+0.2 | 85.1 | 1.3+02 | 86.0 | 2.2+0.3

Kuditipudi LLR 58.8 78.5 79.3 | 0.8+0.2 | 79.3 | 0.8+0.2 | 80.7 | 2.2+03
RoBERTa 58.8 96.3 96.0 | -0.2+0.2 | 96.0 | -0.2+0.2 | 96.4 | 0.2+0.3

Table 20: Main table of accuracies when GEMMA-7B-INSTRUCT is applied to databricks-dolly-15k and
MISTRAL-7B-INSTRUCT generations are used as negatives at a target length of 100 tokens. The trends here
are similar to those for human negatives.

WM | Det | 18y | 25y | MLP | MLP + | Tree | Tree +

LLh 29.4+0.7 | 44.2+00 | 94.3 4.5+07 | 91.2 | 1.3+0s
Aaronson LLR 33.1+0.7 | 49.2+1.0 | 94.6 4.8+t07 | 91.2 | 1.4+0s
RoBERTa | 25.5+0.7 | 35.7+0.0 | 98.2 22403 | 97.1 | 1.1+0.4

LLh 0.0%0.0 0.1+0.1 86.0 1.3+03 | 83.9 | -0.8+0.3
Kir. (0.5) LLR 0.0+0.0 0.1+0.1 78.7 0.2+04 | 77.0 | -1.5+0.3
RoBERTa | 0.0+o0.0 0.1+0.1 96.1 0.1+0.1 | 94.9 | -1.1x0.4

LLh 11.7+0.6 | 18.6+0.7 | 89.9 T.1x0s | 90.0 | 7.3x06
Kir. (2) LLR 18.7+0.7 | 26.7+0.0 | 87.6 | 6.5+1.0 | 84.7 | 3.6x1.0
RoBERTa | 11.7+06 | 11.8+0.6 | 96.6 1.1+03 | 96.8 | 1.2+0.3

LLh 36.2+0.7 | 59.7+1.0 | 94.7 44406 | 91.4 | 1.1x05
Kir. (3) LLR 34.7+0.7 | 63.5+0.0 | 92.7 2.4+07 | 91.6 | 1.3+0s
RoBERTa | 32.4+0.7 | 56.0+1.0 | 97.9 3.7+0.a | 97.3 | 3.1+04

LLh 29.6+0.7 | 40.9+0.0 | 94.9 5.3+t0.7 | 92.1 | 2.5+0.7
Bahri LLR 31.5+0.7 | 55.3+0.0 | 93.3 3.7+0.7 | 90.6 | 1.0+os
RoBERTa | 23.1+0.7 | 39.0+0.0 | 98.4 2.7+03 | 97.5 | 1.8+03

LLh 0.5+0.1 0.6+0.1 86.2 2.5+0.4 | 84.3 | 0.5+0.2
Kuditipudi LLR 1.540.2 1.5+02 | 80.1 1.6+03 | 82.9 | 4.5+05
RoBERTa | 0.5+0.1 0.6+0.1 96.1 | -0.1x0.2 | 96.2 | -0.0x0.0

Table 21: Cascade hit rates and accuracies of MLP and Tree methods when GEMMA-7B-INSTRUCT is applied
to databricks-dolly-15k and MISTRAL-TB-INSTRUCT generations are used as negatives at a target length of
100 tokens. The trends here are similar to those for human negatives.
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WM || Det |WMOnly|DetOnly| 1S | 1S4+ | 25 | 25+ | LR | LR +
LLh 90.9 90.8 95.7 | 4.8+0.6 | 96.1 | 5.2+05 | 97.8 | 6.9+0.5

Aaronson LLR 90.9 84.5 93.7 | 2.8+0s | 94.4 | 3.5+0s | 96.5 | 5.6+0.7
RoBERTa 90.9 97.9 98.8 | 0.8+0.2 | 98.8 | 0.8+0.3 | 98.9 | 0.9+0.3

LLh 56.9 90.4 89.9 | -0.5+0.1 | 89.9 | -0.5+0.1 | 90.7 | 0.3+0.3

Kir. (0.5) LLR 56.9 83.9 83.9 | -0.0+0.0 | 83.9 | -0.0+0.0 | 84.7 | 0.7+0.4
RoBERTa 56.9 97.8 97.8 | 0.0+0.0 | 97.8 | 0.0+0.0 | 97.0 | -0.8x0.2

LLh 81.6 88.7 91.0 | 2.3+06 | 92.4 | 3.7+06 | 94.8 | 6.2+06

Kir. (2) LLR 81.6 86.8 88.9 | 2.1+0.s | 88.5 | 1.7+0s | 91.6 | 4.8+0.7
RoBERTa 81.6 97.4 97.8 | 0.3x0.2 | 97.8 | 0.3+0.2 | 97.4 | 0.0%0.3

LLh 92.0 88.6 94.5 | 2.5+06 | 95.8 | 3.8+06 | 97.7 | 5.6+0.6

Kir. (3) LLR 92.0 79.9 93.3 | 1.2+0.7 | 94.6 | 2.6x0.7 | 96.4 | 4.3+0.7
RoBERTa 92.0 96.5 98.3 | 1.8+0.4 | 98.5 | 2.0+0.4 | 98.5 | 2.0+o0.4

LLh 90.2 90.8 95.4 | 4.6+06 | 96.8 | 6.0+0.5 | 96.6 | 5.8+0.5

Bahri LLR 90.2 84.2 92.9 | 2.6x0s | 94.6 | 4.4108 | 97.2 | 6.9+0.7
RoBERTa 90.2 97.4 98.0 | 0.6+0.3 | 98.4 | 1.0+03 | 98.7 | 1.3+0.3

LLh 59.2 91.2 91.5 | 0.3x0.1 | 91.6 | 0.410.1 | 88.2 | -3.0x0.4

Kuditipudi LLR 59.2 85.9 86.7 | 0.7+03 | 86.7 | 0.7+03 | 86.7 | 0.8+05
RoBERTa 59.2 98.2 98.2 | 0.0+0.0 | 98.2 | 0.0+0.0 | 97.9 | -0.3+0.2

Table 22: Main table of accuracies when GEMMA-7B-INSTRUCT is applied to the test set of eli5-category and
MISTRAL-7B-INSTRUCT generations are used as negatives at a target length of 100 tokens. The trends here
are similar to those for human negatives.

WM || Det | 1Sy | 2S5 |MLP | MLP + | Tree | Tree +

LLh 35.6+0.7 | 588+0.0 | 98.1 7.2+05 | 96.6 5.7+0.5
Aaronson LLR 40.540.6 | 58.8x1.0 | 96.6 5.7+0.7 | 92.3 1.4+0.s
RoBERTa | 31.1+0.7 | 54.2+1.0 | 99.0 1.1+03 | 99.0 1.0+o0.3

LLh 0.0+0.0 0.0+0.0 90.3 | -0.0+0.3 | 90.4 0.0+0.0
Kir. (0.5) LLR 0.0+0.0 0.0+0.0 85.4 1.5+04 | 75.3 | -8.6x0.6
RoBERTa | 0.0+0.0 0.0+0.0 97.8 | -0.0£0.1 | 97.8 0.0+0.0

LLh 19.8+0.7 | 31.6+0.9 | 93.2 4.5+0.6 | 94.5 5.8+0.5
Kir. (2) LLR 29.4+0.7 | 41.3+0.9 | 90.8 4.0+0.7 | 924 5.6+0.6
RoBERTa | 9.1+06 | 14.6+0.7 | 98.2 0.7+0.2 | 96.9 | -0.5+0.3

LLh 39.8+0.6 | 67.0x1.0 | 97.4 5.4+06 | 97.5 5.5+0.5
Kir. (3) LLR 42.8+0.6 | 71.1+00 | 97.3 5.3+06 | 96.4 4.3+0.7
RoBERTa | 33.2+0.7 | 57.8+1.0 | 98.7 22103 | 98.3 1.8+0.4

LLh 37.5+0.7 | 54.9+1.0 | 98.2 7.4+05 | 97.3 6.5+0.5
Bahri LLR 39.2+06 | 63.1+1.0 | 96.9 6.7+07 | 78.9 | -11.4+1.0
RoBERTa | 32.1+0.7 | 42.9+0.0 | 98.7 1.3+03 | 98.4 1.0+0.3

LLh 0.8+0.2 0.8+0.2 91.3 0.1+0.4 | 88.2 | -2.9105
Kuditipudi LLR 2.61+03 | 2.T+03 | 85.0 | -0.9+0.6 | 85.0 | -0.9+0.5
RoBERTa | 0.3+0.1 0.4+0.1 98.0 | -0.1+0.1 | 98.2 0.0+0.0

Table 23: Cascade hit rates and accuracies of MLP and Tree methods when GEMMA-7B-INSTRUCT is applied
to the test set of eli5-category and MISTRAL-7B-INSTRUCT generations are used as negatives at a target
length of 100 tokens. The trends here are similar to those for human negatives.
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