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Abstract
Most variance reduction methods require multiple
times of full gradient computation, which is time-
consuming and hence a bottleneck in application
to distributed optimization. We present a single-
loop variance-reduced gradient estimator named
SILVER (SIngle-Loop VariancE-Reduction) for
the finite-sum non-convex optimization, which
does not require multiple full gradients but never-
theless achieves the optimal gradient complexity.
Notably, unlike existing methods, SILVER prov-
ably reaches second-order optimality, with expo-
nential convergence in the Polyak-Łojasiewicz
(PL) region, and achieves further speedup depend-
ing on the data heterogeneity. Owing to these ad-
vantages, SILVER serves as a new base method to
design communication-efficient federated learn-
ing algorithms: we combine SILVER with lo-
cal updates, which gives the best communication
rounds and number of communicated gradients
across all range of Hessian heterogeneity, and, at
the same time, guarantees second-order optimality
and exponential convergence in the PL region.

1. INTRODUCTION
1.1. Variance Reduced Finite-sum Optimization

We consider the finite-sum minimization problem, which is
ubiquitous in ML optimization (Bottou et al., 2018):

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
. (1)

Here each fi is smooth and can be nonconvex. We aim to
efficiently find a solution x that is an ε-first-order station-
ary point (i.e., ∥∇f(x)∥ ≤ ε) and furthermore an (ε, δ)-

1The University of Tokyo 2Center for Advanced Intelligence
Project, RIKEN 3New York University 4Flatiron Institute 5NTT
DATA Mathematical Systems Inc. Correspondence to: Kazusato
Oko <oko-kazusato@g.ecc.u-tokyo.ac.jp>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

second-order stationary point (SOSP; i.e., ∥∇f(x)∥ ≤ ε
and λmin(∇2f(x)) ≥ −δ).

To efficiently solve the problem (1), variance reduction is
a technique in minibatch sampling to construct an estima-
tor of the full batch gradient with a smaller variance than
vanilla SGD by utilizing gradients at previous anchor points
(Gower et al., 2020). One of the difficulties in variance
reduction is that recursive updates of the gradient estimator
easily accumulate the error and eventually buries the correct
descent directions. Therefore, most variance reduction algo-
rithms need to periodically compute the full batch (or large
minibatch) gradient to refresh the estimator (Roux et al.,
2012; Johnson and Zhang, 2013; Nguyen et al., 2017b; Fang
et al., 2018; Zhou et al., 2020). However, such a gradient-
refreshing step is time-consuming, complicates algorithms,
and becomes a bottleneck in application to distributed opti-
mization since it leads to periodic synchronization between
the whole clients, which increases communication costs and
is sometimes impractical due to too many clients.

In this context, recent studies have attempted to develop
variance reduction algorithms that do not require multiple
full gradient computations (convex: Nguyen et al. (2021);
Beznosikov and Takáč (2021); non-convex: Cutkosky and
Orabona (2019); Liu et al. (2020); Li et al. (2021b); Tran-
Dinh et al. (2022)), which we refer to as single-loop.1

Among them, Li et al. (2021b) introduced ZeroSARAH
as a single-loop algorithm with optimal gradient complexity
for nonconvex optimization.

However, these single-loop methods are not as versatile as
to enjoy multiple advantages offered by popular variance
reduction methods that use full gradients. For example, as a
well-known full-gradient algorithm, SARAH (Nguyen et al.,
2017a; 2022; Li, 2019) requires full gradients to achieve (i)
the optimal gradient complexity in the nonconvex finite-sum
optimization, (ii) second-order optimality, and (iii) expo-
nential convergence under the strong convexity, each of
which holds significant practical importance: (i) efficiently
finding stationary points is the primary goal of nonconvex
optimization. (ii) escaping from saddle points is necessary
to guarantee the quality of the solution since first-order sta-

1This definition of single-loop excludes PAGE (Li et al., 2021a)
or Loopless SVRG / Loopless Katyusha (Kovalev et al., 2020),
which compute full gradient stochastically.
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tionary points can include a local maximum or a saddle
point. (iii) strong convexity is often observed around lo-
cal minima so that exploiting local strong convexity can
accelerate the convergence. Moreover, (iv) the gradient
complexity of SARAH can further be reduced when fi are
less heterogeneous (Beznosikov and Takáč, 2021; Murata
and Suzuki, 2021), a necessary property in application to
federated learning to yield efficient communication costs
with local updates.

Existing single-loop methods only met a limited subset of
the above desiderata (see Table 2 for details). For example,
ZeroSARAH (Li et al., 2021b) satisfies (i) optimal gradient
complexity the only single-loop algorithm, but not the oth-
ers. No single-loop algorithm can provably find (ii) SOSPs,
or (iii) achieves exponential convergence unless paying sub-
optimal gradient complexity for (i) such as SAGA (Defazio
et al., 2014; Reddi et al., 2016b). Beznosikov and Takáč
(2021) can yield (iv) speed-up with less heterogeneity but is
only valid in strongly convex optimization.

These discussions motivate the following research question:

Can we develop a versatile single-loop variance reduction
algorithm that met all the desiderata (i)-(iv)?

1.2. Federated Learning with Variance Reduction

Such a versatile algorithm will be especially useful as a base
to design more versatile FL methods. Federated learning
(FL) is a paradigm of distributed learning, where optimiza-
tion is performed by exchanging model parameters updated
by locally-stored data in clients, without sharing the data
itself (Konečnỳ et al., 2016; Shokri and Shmatikov, 2015).
We consider the finite P client setting:

min
x∈Rd

{
f(x) :=

1

P

P∑
i=1

Ej [fi,j(x)]

}
, (2)

where fi,j is smooth, and clients and data are indexed by
i and j. Because synchronization and communication be-
tween clients and the serve are bottlenecks, we aim to re-
duce communication rounds and, at the same time, the total
number of communicated gradients, which we call commu-
nication complexity.

In FL, variance reduction is closely tied to reducing com-
munication rounds. Variance reduction can correct the er-
rors from local updates, where the parameters are updated
locally between communications (McMahan et al., 2017;
Li et al., 2020b; Liang et al., 2019). Thus, local updates
combined with variance reduction can yield fewer com-
munication rounds than centralized ones if (and only if)
clients are less heterogeneous (Karimireddy et al., 2020;
Woodworth et al., 2020a;b). In this paper, less heterogeneity
specifically means that the Hessian of fi are similar, i.e.,

∥∇2fi(x)−∇2f(x)∥ ≤ ζ(≪ 1) for all x, which is essen-
tial to surpass the O(ε−2) communication rounds of central-
ized methods (Murata and Suzuki, 2021; Karimireddy et al.,
2021; Patel et al., 2024).

On the other hand, to reduce communication complexity,
client sampling, where only a subset of clients is used in
each communication, has been used (McMahan et al., 2017;
Karimireddy et al., 2020). This also reduces the risk of delay
or fail at some client affecting the whole training (Li et al.,
2020a). Client sampling error, due to this partial client
participation, has also been addressed with the variance
reduction technique.

However, existing FL algorithms still have limitations in
their effectiveness and expandability, due to client sampling
error. Look at Table 1, where p refers to client sample size
out of the total P clients at each communication, K is the lo-
cal update steps between communications, and ζ is the Hes-
sian heterogeneity. While BVR-L-SGD (Murata and Suzuki,
2021) yields the best communication rounds of O(ζε−2),
client sampling is not allowed. Similarly, while MimeMVR
(Karimireddy et al., 2021) can also achieve efficient commu-
nication by utilizing less Hessian heterogeneity, increasingly
larger sampling size is required to ignore the client sampling
error as heterogeneity gets smaller. Moreover, the only al-
gorithm with the second-order optimality guarantee also
require full client participation and cannot handle client
sampling error (BVR-L-PSGD (Murata and Suzuki, 2022)).
Further, client sampling error prevents the algorithm from
obtaining exponential convergence with local convexity, and
the dependency on µ cannot be improved even with less het-
erogeneity (MimeSGD (Karimireddy et al., 2021)).

These problems clearly show limitation in controlling client
sampling error. In other words, they are attributed to the
fact that existing variance reduction methods used as base
algorithms mostly requires multiple full gradient computa-
tions, while the lack of versatility prevents the use of single-
loop methods. Therefore, developing a versatile single-loop
method is expected to provide a fundamental solution to this
problem, and to extend versatility of FL algorithms.

1.3. Our Contributions

Single-loop variance reduction. For the finite-sum prob-
lem (1), we propose a novel, completely-single-loop
variance-reduction gradient estimator SILVER (SIngle-
Loop VariancE-Reduction), offering all of these desired
functionalities (i)-(iv).

(i) SILVER achieves the optimal gradient complexity for
the smooth finite-sum optimization (1). (Theorem 1)

(ii) Just adding small noise, SILVER efficiently escapes
from saddle points to provably find second-order sta-
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Table 1. Comparison of communication rounds and complexity for (2).2

Algorithms Communication rounds Client sampling

FedAvg (NC) (Karimireddy et al., 2020) σ2
c

pε4 + σc

ε3 + 1
ε2 ✓

SCAFFOLD (NC) (Karimireddy et al., 2020) σ2

pKε4 + 1
ε2 (

P
p )

2
3 ✓

SCAFFOLD (NC, quad) (Karimireddy et al., 2020) σ2

PKε4 + 1
Kε2 + ζ

ε2 ×
MimeMVR (NC) (Karimireddy et al., 2021) ζ′σc√

pε3 +
σ2
c

pε2 + 1
Kε2 + ζ′

ε2 ✓

BVR-L-SGD (NC) (Murata and Suzuki, 2021) 1
Kε2 + ζ

ε2 ×
DASHA-PP-PAGE (NC) (Tyurin and Richtárik, 2022a) 1

ε2 + ω
√
P

pε2 ✓

FL-SILVER (NC) (Theorem 4) 1
Kε2 + ζ

√
P

pε2 + ζ
ε2 ✓

BVR-L-PSGD (SOSP) (Murata and Suzuki, 2022) ( 1
K + ζ)( 1

ε2 + 1
δ4 ) ×

FL-SILVER (SOSP) (Theorem 4) ( 1
K + ζ)( 1

ε2 + 1
δ4 ) ✓ (p ≳

√
P + ζ2

δ2
)

MimeSGD (PL) (Karimireddy et al., 2021) σ2
c

µpε2 + L
µ log ε−1 ✓

FL-SILVER (PL) (Theorem 4) ( L
µK + ζ

√
P

µp + ζ
µ + P

p ) log ε
−1 ✓

※ NC: finding ε-first-order stationary points; SOSP: finding (ε, δ)-second-order stationary points; PL: finding ε-solutions under Polyak-
Łojasiewicz (PL) condition with µ; Quad: only valid for quadratics.
P : total number of clients, p: client sample size (if allowed), K: local update steps between communications, ζ, ζ′: Hessian heterogeneity
(ζ ≤ ζ′), σc: variance of ∇fi(x)−∇f(x), σ: variance of ∇fi,j(x)−∇fi(x), ω: compression rate of gradients.

tionary points. This is the first single-loop algorithm to
yield second order optimality, except for Noisy SGD
with a large minibatch (Jin et al., 2021). (Theorem 2)

(iii) When SILVER enters a locally convex region where
the Polyak-Łojasiewicz (PL) condition (see Assump-
tion 6) holds, it automatically switches to exponential
convergence. (Theorem 3)

(iv) For application to FL, we analyze SILVER under
Hessian-heterogeneity of ζ, and show the complex-
ity of O(n + ζ

√
n

ε2 ) (Theorem 1). We also show the
lower bound matching to this (Proposition 1).

Our algorithm is not merely a removal of the full-gradient
from existing methods, but is based on a sophisticated com-
bination of SARAH and SAGA. Please refer to Section 3.1
for the details of the construction.

Improved algorithm for FL. Furthermore, we demon-
strate the usefulness of SILVER as a base algorithm for
federated learning, leading to an efficient and versatile FL
method named FL-SILVER.

• FL-SILVER improves BVR-L-SGD to the partial client
participation setting. Specifically, by allowing client sam-
pling, it can simultaneously achieve the best communi-
cation rounds of BVR-L-SGD and an improved commu-

2After we uploaded the arXiv preprint, we noticed that a con-
current work (Patel et al., 2022) proposed an algorithm allowing for
client sampling, and the round for NC is O( 1

Kε2
+ ζ

ε2
+

σ2
c

pε2
+ ζσc

pε3
).

Thus they need to assume less heterogeneity of σc as well as ζ,
which contrasts to our algorithm.

nication complexity of O
(
P + ζ

√
P

ε2

)
. As the Hessian

heterogeneity ζ gets smaller, FL-SILVER becomes in-
creasingly more communication-efficient.

• Just adding small noise, FL-SILVER can find second-
order stationary points without hurting communication
rounds and complexity. In contrast to BVR-L-PSGD,
FL-SILVER allows client sampling for p ≳

√
P + ζ2

δ2 .

• Under the PL condition, FL-SILVER yields exponential
convergence. The exponential convergence rate gets faster
as ζ reduces, whereas other algorithms do not exhibit this
property even under strong convexity.

We remark that these arguments do not consider gradient
compression, which requires additional assumptions but pro-
vides another way to reduce communication (e.g., DASHA-
PP-PAGE (Tyurin and Richtárik, 2022a)). In Appendix A,
we provide additional literature review including this.

We also mention about the storage cost. SILVER allocates a
copy of x for each fi. This is a common feature for single-
loop algorithms (Defazio et al., 2014; Li et al., 2021b),
while it is avoided by multiple full gradient computation
(e.g., SARAH). Also, FL-SILVER requires for each client
to store an auxiliary variable. However, it becomes increas-
ingly common to hold local variables for variance reduction
in FL, even when the base algorithms are not single-loop
(Murata and Suzuki, 2021; Karimireddy et al., 2021), to
reduce communication costs. Given these background, we
believe that developing a versatile single-loop algorithm and
applying it to FL have significant importance even by using
storage cost, although some situations might prefer more
storage efficient algorithms.

3



Single-loop Variance Reduction for Federated Learning

2. PRELIMINARIES
Here we formally describe the problem settings. We first
introduce the gradient Lipschitzness. (a) the averaged Lips-
chitzness suffices to prove the first-order guarantee in expec-
tation, while (b) component-wise Lipschitzness is required
for the high-probability second-order guarantee.
Assumption 1.

(a) 1
n

∑n
i=1 ∥∇fi(x) − ∇fi(y)∥2 ≤ L2∥x − y∥2 and

Ej [∥∇fi,j(x) − ∇fi,j(y)∥2] ≤ L2∥x − y∥2 for all
x, y and i.

(b) ∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥ and ∥∇fi,j(x) −
∇fi,j(y)∥ ≤ L∥x− y∥ for all x, y and i, j.

We also assume existence of the global infimum.
Assumption 2. f has the global infimum: f∗ =
infx∈Rd f(x) > −∞ and ∆ := f(x0)− f∗.

Sometimes gradient boundedness is required. (a) Inter-client
gradient boundedness is for SILVER/FL-SILVER with Op-
tion I to completely remove full gradient, while Option II
computes full gradient once at the initialization. The same
assumption also appeared in ZeroSARAH (Li et al., 2021b).
(b) Intra-client gradient boundedness is for FL-SILVER.
Assumption 3.

(a) ∥∇fi(x0)−∇f(x0)∥2 ≤ σ2
c , ∀i.

(b) ∥∇fi,j(x)−∇fi(x)∥2 ≤ σ2, ∀x, y and i, j.

For the second-order optimality, Hessian-Lipshitzness is
commonly assumed (Ge et al., 2019; Li, 2019).
Assumption 4. Each fi is ρ-Hessian Lipschitz: ∥∇2fi(x)−
∇2fi(y)∥ ≤ ρ∥x− y∥, ∀x, y and i.

For FL, we assume inter-client Hessian-heterogeneity. (a)
is for the first-order guarantee, while (b) is for the second-
order guarantee.
Assumption 5.

(a) 1
n

∑n
i=1 ∥∇2fi(x)−∇2f(x)∥2 ≤ ζ2 for all x.

(b) ∥∇2fi(x)−∇2f(x)∥ ≤ ζ for all x and i.
Remark 1. Note that ζ ≤

√
2L always holds. This assump-

tion has been used in previous literature such as BVR-L-
SGD (Murata and Suzuki, 2021), and Mime (Karimireddy
et al., 2021). This is indeed necessary to show the superior-
ity to the centralized methods. Moreover, we emphasize that
changing ζ between (0,

√
2L] can interpolate the i.i.d. data

allocation and the completely heterogeneous case.

Finally, we introduce the Polyak-Łojasiewicz (PL) condition
(Polyak, 1963), a generalization of strong convexity. A µ-
strongly convex function satisfies this with µ.
Assumption 6. f satisfies the PL condition, i.e.,
∥∇f(x)∥2 ≥ 2µ (f(x)− f∗) for any x ∈ Rd.

3. FINITE-SUM OPTIMIZATION WITH
SILVER

Now we concretely describe the proposed algorithm SIL-
VER and provide its convergence guarantees. In the pseu-
docode, B(0, r) denotes the uniform distribution on the
Euclidean ball in Rd with radius r.

Algorithm 1 SILVER(x0, η, b, T, r)

1: Option I: y0i ← ∇fi(x0) (i = 1, · · · , n)
2: Option II: Randomly sample minibatch I0 with size b;

y0i ← 1
b

∑
j∈I0 ∇fj(x0) (i = 1, · · · , n)

3: for t = 1 to T do
4: Ramdomly sample minibatch It ⊆ [n] with size b

5: xt ← xt−1 − η

n

n∑
i=1

yt−1
i + ξt (ξt ∼ B(0, r))

6: yti ←


∇fi(xt) for i ∈ It

1
b

∑
j∈It(∇fj(xt)−∇fj(xt−1)) + yt−1

i

for i /∈ It

3.1. Algorithm Description

SILVER is carefully designed to combine SAGA (Defazio
et al., 2014; Reddi et al., 2016b) and SARAH (Nguyen
et al., 2017a;b), ensuring that it inherits the advantages of
both. SAGA operates without multiple full gradients but
offers suboptimal gradient complexity, while SARAH meets
optimality and versatility (i)-(iv) but requires periodic full
gradients. SILVER avoids the need for full gradients like
SAGA while it constructs an accurate and versatile estimator
like SARAH.

Recall that in SAGA’s update, the discrepancy of the gra-
dient estimator from true gradient at step t is decomposed
as

∑
i∈It

∇fi(xt)−∇fi(xT (t,i))

b
−

n∑
i=1

∇fi(xt)−∇fi(xT (t,i))

n︸ ︷︷ ︸
(⋆)

,

where It is the randomly chosen minibatch with size b at the
step t and T (t, i) is the step when fi is last sampled. SAGA
stores∇fi(xT (t,i)) for each i. Thus, the second term ⋆ is a
change from the referable gradient of 1

n

∑n
i=1∇fi(xT (t,i)),

and the first term is an approximation of the second term
⋆ using a minibatch with size b. Then, the variance of
the gradient estimator is roughly bounded by 1

bEi[∥xt −
xT (t,i)∥2] ≤ t−minT (t,i)

b

∑t
s=minT (t,i)+1 L

2∥xs−xs−1∥2.

On the other hand, SARAH uses periodic full gradient com-
putation, and recursively updates the reference gradient. The
difference between SARAH’s gradient estimator and the
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true gradient can be written as

t∑
s=T (t)+1

(
∇f(xs)−∇f(xs−1)−

∑
i∈Is

∇fi(xs)−∇fi(xs−1)

b

)
,

where T (t) is the time of the last full gradient evaluation and
Is is the randomly chosen minibatch with size b at the step
s. Then, the variance is bounded by 1

b

∑t
s=T (t)+1 L

2∥xs−
xs−1∥2, and SARAH’s estimator is better than that of
SAGA by the t−mini T (t, i) factor, which can be as large
as n

b . Here, the key is the decomposition of the discrep-
ancy into a sum of differences in gradients between adjacent
steps, allowing for the utilization of the independence of Is.

Based on the above discussion, we decompose SAGA’s
approximation target ⋆ into a sum of difference in gradients
between adjacent steps ∇fi(xs) − ∇fi(xs−1), to utilize
the independence of sampling at different time steps like
SARAH. Then the target is decomposed as

t∑
s=mini T (t,i)+1

1

n

n∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)).

Here Ĩts = [n] \
⋃t

τ=s I
t, so that Ĩts is the set of indexes not

sampled between s and t.

However, the implementation and analysis do not go
straightforward like SARAH, because Ĩts depends not only
on Is but also on Is+1, . . . , It. For the implementation,
we introduce an auxiliary variable yti , and moreover, we
explain how to efficiently compute the update in O(b) time
in the “efficient implementation” paragraph below. This
yields Algorithm 1.

On the other hand, to evaluate the error, we show that the
correlation between Ĩts, · · · , Ĩtt is not too strong. This step
makes the analysis more complicated, but in the end the
optimal complexity is obtained as SARAH.

Efficient Implementation Note that we can update
1
n

∑n
i=1 y

t
i in O(bd) time and using O(nd) memory, where

d is the parameter dimension. Indeed, first introduce
an auxiliary variable vt which is inductively defined by
vt = 1

b

∑
i∈It(∇fi(xt)−∇fi(xt−1)) + vt−1 with v0 = 0.

For each i, define vti with v0i = 0 and update it as vti = vt

iff i ∈ It. We also define wt
i with w0

i = y0i and update
it as wt

i = yti = ∇fi(xt) iff i ∈ It. Now we can see
that 1

n

∑n
i=1 y

t
i =

1
n

∑n
i=1 y

t−1
i + 1

b

∑
i∈It(n+b

n ∇fi(x
t)−

∇fi(xt−1)) − 1
n

∑
i∈It(w

t−1
i + vti − vt−1

i ). Therefore,
1
n

∑n
i=1 y

t
i can be updated by only O(bd) computation with

O(nd) memory.

3.2. Convergence Guarantees

Now we prove that SILVER satisfies the desired properties.

First-order Optimality
Theorem 1. Under Assumptions 1-(a), 2, 5-(a), 3-(a) (only
for Option II), if we choose η = Θ( 1

L ∧
b

ζ
√
n
) and r ≤ ηε

2 ,
Algorithm 1 finds ε-first-order stationary points in expecta-
tion, i.e., mint≤T E[∥∇f(xt)∥] ≤ ε, using

n+ Tb = O

(
n+

∆(ζ
√
n ∨ Lb)

ε2

)
(Option I),

(T + 1)b = O

(
∆(ζ
√
n ∨ Lb) + n

b σ
2
c

ε2

)
(Option II)

stochastic gradient queries.

SILVER with Option I removes the need of full gradient
computation except for the initialization. At the same time,
because ζ ≤ 2L, the gradient complexity matches to the
optimal rate (Li et al., 2021a) attained by existing algo-
rithms that use multiple full gradients such as SARAH and
SPIDER (Fang et al., 2018), proving (i). Option II com-
pletely removes full gradient, while dependency on σc is
unavoidable in this case.

Moreover, the algorithm achieves speed-up when the hetero-
geneity ζ is small, which confirms (iv). SILVER is the first
algorithm that achieves both (i) and (iv).

The proof in Appendix D.1 depends on the following lemma,
which illustrates that the error from a certain step exponen-
tially decays and never accumulates owing to our original
combination of SAGA and SARAH, without full gradient
computation.

Lemma 1. Let gt = 1
n

∑n
i=1 y

t
i be the gradient estimator

and choose Option I. Then,

E[
∥∥gt−∇f(xt)

∥∥2]≤ 30ζ2

b

t∑
s=1

(1− b

4n
)t−sE[∥xs−xs−1∥2].

Lower Bound under Different Heterogeneity We com-
plement the above result with the following lower bound,
extending Fang et al. (2018); Li et al. (2021a) to include the
ζ dependency.

Proposition 1. Under Assumptions 1-(a), 2, and 5, any
linear-span first-order algorithm requires

Ω

(
n+

∆(ζ
√
n+ L)

ε2

)
stochastic gradients to find ε-first-order stationary points of
the problem (1).

This matches to the upper bound in all parameters, so that
SILVER is the optimal across all range of ζ . See Appendix F
for the formal definition of the linear-span first-order algo-
rithm and more details.
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Second-order Optimality Here we state that SILVER can
find second-order stationary points, to guarantee the second
property. While it is usual to extend optimization methods
to ensure second-order optimality (Ge et al., 2015; Jin et al.,
2017; Vlatakis-Gkaragkounis et al., 2019), and variance
reduction methods also have been applied to this (Ge et al.,
2019; Fang et al., 2018; Li, 2019), all existing methods
require a sub-routine for negative curvature extraction (e.g.,
SPIDER-SFO++Neon2 (Fang et al., 2018; Allen-Zhu
and Li, 2018)) or periodic large minibatch as large as n or
O(

σ2
c

ε2 ) (e.g., SSRGD (Li, 2019); Stabilized SVRG (Ge
et al., 2019)). On the other hand, only adding small noise,
SILVER is the first completely-single-loop algorithm that
can find SOSPs.
Theorem 2. Under Assumptions 1-(b), 2, 4, and 5-(b),
choose Option I, and let b = Ω̃(

√
n + ζ2

δ2 ), η = Θ̃( 1
L ),

r = Õ
(

ε∧(δ2/ρ)
L

)
. Then, Algorithm 1 finds (ε, δ)-SOSPs

using

Õ

(
n+ L∆

(
1

ε2
+

ρ2

δ4

)
b

)
stochastic gradients, with high probability.

Since ζ ≤ 2L, the complexity is comparable to best existing
algorithms, such as SPIDER-SFO+ and SSRGD. In addi-
tion to the main

√
n

ε2 +
√
n

δ4 term, different algorithms have
different additional terms, coming from respective analy-
sis. Ours is ζ2

ε2δ2 + ζ2

δ6 , which becomes smaller than that
of SPIDER-SFO+ when n ≳ δ−4 and that of SSRGD
when n ≳ min{δ−3, δε−2}. Furthermore, Remark 2 in Ap-
pendix D.2 introduces a small trick to turn this to ζ2

ε2δ + ζ2

δ5

or nδ
ε2 + n

δ3 .

We briefly explain the proof outline. As in Jin et al. (2017);
Ge et al. (2019); Li (2019), we consider two sequences
of {xt} with slightly different initial points while keeping
all the other randomness the same. We show that, when
negative curvature exists, these two sequence separate each
other exponentially, and at least one of these sequences goes
further from the initial point. This in turn means that if we
perturb the algorithm a little around saddle points, then it
can escape saddle points with high probability.

Although this high-level idea is classical, we confront sev-
eral difficulties due to the single-loop structure. For exam-
ple, while other algorithms refresh their gradient estimators
around saddle points, our single-loop algorithm does not.
Thus, we have to address the accumulated error, and it is
not trivial whether our gradient estimator can find the right
direction of the negative eigenvalue despite the accumulated
error, which finally yields the ζ2

ε2δ2 + ζ2

δ6 term. For more
details and complete proof, see Appendix D.2.

Note that our bound requires minibatch size of b ≳
√
n+ ζ2

δ2 ,

and this minibatch size is common in many existing algo-
rithms. In fact, SSRGD assumes b ≥

√
n or b ≥ σc

ε

and Stabilized SVRG assumes b ≥ n
2
3 . Considering that

δ = O(
√
ρε) is often assumed, our minibatch size is as mod-

erate as those of existing algorithms. The necessity of this
assumption comes from that if b is too small, the sampling
error hides the right direction of negative curvature.

Exponential Convergence under PL Condition When
SILVER enters locally convex regions, it automatically
switches into exponential convergence phase.

Theorem 3. Under Assumptions 1-(a), 2, 3-(a) (only for
Option II), 5-(a), and 6, if we choose η as η = Θ( 1

L ∧
b

ζ
√
n
), and r ≤ η

√
εµ
6 ∧

√
ηεb
24n , Algorithm 1 finds an ε-

solution in expectation, i.e., E[f(xt)− f∗] ≤ ε, by using

O

((
Lb

µ
∨ ζ
√
n

µ
∨ n

)
log

∆ + nσc1[Option II]
bL

ε

)
stochastic gradients.

SILVER with Option II completely removes the requirement
of full gradient, even at the initial point, while obtaining
the same complexity as SARAH, PAGE, and their vari-
ants (up to the log σc factor). The proof can be found in
Appendix D.3.

It should be noted that the upper bound of r depends on µ,
but it is not necessary to know the exact value of µ; it is suf-
ficient to take r small enough. The disadvantage of taking r
small is that the bound in Theorem 2 depends polylogarith-
mically on r−1, but this polylogarithmic dependence would
not become a practical issue.

4. APPLICATION TO FEDERATED
LEARNING

The versatile single-loop method is useful as a base method
for federated learning, because it allows simpler structure
of the algorithm and brings various advantages. We demon-
strate that SILVER serves as such, by developing its FL
extension called FL-SILVER. The proposed algorithm com-
bines SILVER with local updates, see Algorithm 2.

Specifically, FL-SILVER uses SILVER to bound the client
sampling error by approximating the global gradient∇f(xt)
based on the approximations of ∇fi(xt). Moreover, to
bound the error from local updates, the approximations of
∇fi(xt) are constructed using a SARAH-type estimator
within each client.

In the pseudocode, ξt,k follows the uniform distribution on
the Euclidean ball in Rd with radius r. Due to the space
limitation, here we only present Option I. Although using
one full participation only at x0 is common as in MimeMVR

6
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Algorithm 2 FL-SILVER(x0, η, p, b, T,K, r)

1: for i ∈ I0 = [P ] in parallel do
2: Randomly select minibatch J0

i with size Kb
3: y0i ← 1

Kb

∑
j∈J0

i
∇fi,j(x0)

4: Send y0i from i ∈ I0 to the server
5: for t = 1 to T do
6: Randomly sample one client it
7: Send

∑P
i=1 y

t−1
i and xt−1 from the server to it

8: xt,0 ← xt−1, zt,0 ← 0
9: for k = 1 to K do

10: xt,k ← xt,k−1−η( 1
P

∑P
i=1 y

t−1
i +zt,k−1)+ξt,k

11: Randomly select minibatch J t,k
it

with size b

12: zt,k ← zt,k−1

+ 1
b

∑
j∈Jt,k

it

(∇fit,j(xt,k)−∇fit,j(xt,k−1))

13: Send xt,K from it to the server; xt ← xt,K

14: Randomly select p clients It; send xt from it to It

15: for i ∈ It in parallel do
16: Randomly select minibatch J t

i with size Kb
17: yti ← 1

Kb

∑
j∈Jt

i
∇fi,j(xt)

18: ∆yti ← 1
Kb

∑
j∈Jt

i
(∇fi,j(xt)−∇fi,j(xt−1))

19: Send {(yti ,∆yti)}i∈It from It to the server
20: yti ← yt−1

i + 1
p

∑
i∈It ∆yti for i /∈ It

Karimireddy et al. (2021), we can remove it with Option
II. For the pseudocode and theorems for Option II can be
found in Appendix D, as well as complete proofs.

4.1. Convergence Guarantees

Now, we present a summary of the various convergence
guarantees of FL-SILVER in the following theorem.
Theorem 4. Suppose Assumptions 1-(a), 2, 3-(b), and 5-(a)
hold.

• If η = Θ( 1
L ∧

p

ζ
√
P
∧ 1

ζK ∧
p

L
√
P
), r = O(ηε), b =

Ω( σ2

PKε2 ), and b ≥ K, Algorithm 2 finds ε-first-order
stationary points using

O

(
1 +

(
L

K
+ ζ

)(
1 ∨
√
P

p

)
∆

ε2

)
communication rounds, in expectation.

• If Assumption 4 and δ < ζ additionally hold and we
take p = Ω̃(

√
P + ζ2

δ2 +
L2

Kbδ2 ), η = Θ̃( 1
L ), r = Õ( ε

L ),
b = Ω̃( σ2

PKε2 ), and b ≥ K, Algorithm 2 finds (ε, δ)-
second-order stationary points using

Õ

(
1 + ∆

(
L

K
+ ζ

)(
1

ε2
+

ρ2

δ4

))
communication rounds, with high probability.

• If Assumption 6 additionally holds and we take η =

Θ
(
1
L ∧

p√
P
∧1

L∨(ζK)

)
and r = O(ηε), Algorithm 2 finds

ε-first-order stationary points using

O

 L

µK
∨ P

p
∨

ζ(
√
P
p ∨ 1)

µ
∨

L(
√
P
p ∨ 1)

µ
√
bK

 log
∆

ε


communication rounds, in expectation.

Before delving into specifics, let’s make a few remarks.

• Multiplying by p and adding P yields the communi-
cation complexity. For the first-order convergence, as
summarized in Table 1, FL-SILVER achieves the best
communication rounds and communication complexity
among the federated learning algorithm for the finite-
client setting.

• All guarantees hold without specific modifications to
each, and this versatility will be a significant benefit in
practice. Specifically, we set p = Θ̃(

√
P ), η = Θ̃( 1

L ),
and r = Õ( ε

L ), under a moderate local computational
budget of b ≥ Ω̃( σ

PKε2 ) and b ≥ K.

First-order Optimality First, we conduct a comparison
with existing algorithms (see also Table 1). For the required
communication rounds, FL-SILVER achieves the same best
communication rounds as that of BVR-L-SGD (Murata
and Suzuki, 2021), in the full client participation setting
(p = P ) or even allowing sampling of clients (

√
P ≤

p < P ). MimeMVR (Karimireddy et al., 2021) is another
method that can achive communication rounds better than
O(ε−2), but they additionally require intra-client Hessian
heterogeneity ∥∇2fi,j(x) − ∇2fi(x)∥ and variance σc to
be small, which contrasts to our assumptions.

For the communication complexity of Õ(P + ζ
√
P

ε2 ),
achieved with client sampling p ≤

√
P , is the best rate

and strictly smaller than that of BVR-L-SGD (Murata and
Suzuki, 2021). By recalling Proposition 1, the communica-
tion complexity is optimal in a sense that the server must
receive information of Ω(P + ζ

√
P

ε2 ) gradients to output
ε-first-order solutions. Therefore, FL-SILVER simultane-
ously offers the best communication rounds and improved
communication complexity as desired.

Both the number of communication rounds and commu-
nication complexity get smaller as as ζ get smaller. This
heterogeneity is the necessary assumption for FL algorithms
to become more communication efficient than centralized
methods (Karimireddy et al., 2020; Murata and Suzuki,
2021), and our algorithm has successfully utilized this struc-
tural assumption. We also remark the local computational
budget. Our requirement on b is moderate, because such an
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Figure 1. Accuracy of gradient esti-
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Figure 3. Gradient norm (FL)

assumption has also appeared in BVR-L-SGD (Murata and
Suzuki, 2021) (b = K), MimeMVR (Karimireddy et al.,
2021) (requiring the exact value of∇fi(x)), and Patel et al.
(2022) (b = K).

Second-order Optimality Furthermore, FL-SILVER can
even find SOSPs, guaranteeing quality of the output. As
the case of SILVER, all we need is just to add small noise.
The proposed algorithm is the first FL algorithm that can
find SOSPs while allowing sampling of the clients. It uses
the same number of communication rounds as that of BVR-
L-PSGD, but achieves the improved communication com-
plexity when ζ2

δ2 ≲ P . The assumption of δ < ζ can be
removed with a small modification of the algorithm, see
Appendix E.3.

Exponential Convergence under the PL Condition Also,
FL-SILVER inherits exponential convergence under the
PL condition, and gets more communication-efficient
under less heterogeneity. In addition to the exponential
convergence, the rate does not directly depend on the
condition number L

µ . Even if L
µ is large, less heterogeneity

of clients ζ can ease the difficulty by variance reduction and
local update, under a sufficiently large local computational
budget. On the other hand, MimeSGD (Karimireddy et al.,
2021) depends on condition number L

µ even if ζ is small,
and other algorithms do so even with strong convexity.
Therefore, in the strongly convex setting of FL, we are the
first to prove that distributed optimization can achieve faster
exponential convergence rate than centralized methods
utilizing less heterogeneity of clients with local updates.

5. NUMERICAL EXPERIMENTS
Finally, we verify our theories by numerical experiments.
Detailed explanation and additional experiments can be
found in Appendix B. In all figures, the red line corresponds
to our proposed method.

5.1. Accuracy of the Gradient Estimator of SILVER

We considered a classification of the capital letters using
EMNIST (Cohen et al., 2017) with a two-layer neural net-

work. We set n = 130, b = 12 ≒
√
130, and the inner-loop

length of SARAH to ⌊nb ⌋ = 10. We compared SAGA,
SARAH, and SILVER (Option I) using a common step size
η = 0.01, in terms of the squared error between true gradi-
ent∇f(xt) and the estimators. Remember that SAGA is a
single-loop but has suboptimal complexity, while SARAH
uses multiple full gradients to achieve optimal complexity.

According to Figure 1, the discrepancy of the SILVER es-
timator is clearly smaller than that of SAGA, and close to
that of SARAH. Therefore, this shows that SILVER actually
has as small variance yielding the optimal complexity as
SARAH, while removing periodic full gradient computa-
tion, as desired.

5.2. Escaping Saddle Points with SILVER

We also compared SILVER (Option I) with SARAH, SS-
RGD (=SARAH+noise), and ZeroSARAH, in terms of
the test accuracy. To increase the non-convexity, here a
four-layer neural network was used and other than this con-
struction of fi was the same as previously. For SSRGD and
SILVER, we added a small noise to see whether perturbation
practically helps avoiding bad local minima.

In Figure 2, SILVER is faster than SARAH owing to avoid-
ance of periodic full gradients. Moreover, perturbation
avoids getting stuck in local minima and helps stable con-
vergence; Contrary to noiseless SILVER, perturbed SIL-
VER makes the accuracy increase almost monotonically.
In summary, SILVER with small noise yielded the fastest
convergence.

5.3. (Local) Exponential Convergence of FL-SILVER

For FL, we considered a little less heterogeneous classifi-
cation of the capital letters, where each fi consists of 90%
data from one class and 10% from the rest, with a two-leyer
neural network. We compared FL-SILVER (Option I) with
FedAvg, SCAFFOLD, MimeMVR, and BVR-L-SGD, un-
der P = 104, client minibatch size p = 10 ≒

√
P (except

for BVR-L-SGD requiring P = p = 104), local minibatch
size b = 16 and local update times K = 10.

In Figure 3, FL-SILVER achieves the smallest gradient
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norm ∥∇f(xt)∥ and (locally) linear convergence. Moreover,
it performs similarly to BVR-L-SGD, which is almost a
special case of FL-SILVER with P = p. Thus, FL-SILVER
can appropriately correct the errors from sampling of the
clients and is about ten times more efficient than BVR-L-
SGD in terms of communication complexity by allowing
sampling of the clients.

6. CONCLUSION
This paper has developed a single-loop variance reduction
method, and showed its first- and second-order optimality
and linear convergence under the PL condition, with explicit
dependency on the Hessian-heterogeneity. We have demon-
strated that the proposed method serves as a useful base for
a FL algorithm that allows client sampling and inherits these
versatile benefits.

One of the interesting future research topics is the com-
bination of the proposed FL method with communication
compression (see also Appendix A.2). Since utilizing less
heterogeneity and compressing gradients operate in orthog-
onal directions, combining these strategies will lead to a
more communication-efficient FL algorithm.
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Appendix
The appendix is organized as follows. Appendix A provides additional literature review. Appendix B explains the
experimental settings presented in Section 5 and conducts additional experiments. Appendix C prepares concentration
inequalites and a linear algebraic tool. Appendix D gives the proofs for SILVER. Appendix E gives the complete statements
of the theoretical guarantees of FL-SILVER and their proofs. Finally, we prove the lower bound on the gradient complexity
for the finite-sum smooth optimization in Appendix F.

A. ADDITIONAL LITERATURE REVIEW
A.1. (Single-loop) Variance Reduction Methods

Optimal Complexity for Finite-sum Smooth Optimization There are many variance reduction algorithms that utilize
multiple full gradient computations during optimization (see Table 2). As we explained, SARAH (Nguyen et al., 2017a;
2022) is one of the most popular variance reduction algorithm, as well as its extension SSRGD (Li, 2019), and SARAH
satisfies (i) the optimal gradient complexity for finite-sum smooth optimization, (ii) second-order optimality, (iii) exponential
convergence with strong convexity, (iv) speed up with less heterogeneity. SARAH as appeared as the one of the three
algorithms that achieves the optimal gradient complexity of O(n+ L∆

√
n

ε2 ) for finite-sum smooth optimization, as well as
SPIDER-SFO+ (Fang et al., 2018) and SNVRG (Zhou et al., 2020), developed upon SVRG (Reddi et al., 2016a). See the
lower bound for Zhou and Gu (2019); Fang et al. (2018); Li et al. (2021a). We also mention PAGE (Li et al., 2021a). At
each step, then stochastically determine whether to compute the full gradient to update the gradient estimator or to update
the gradient estimator with minibatch gradient. Therefore, in expectation, then require Ω(ε−2) full gradients to obtain
ε-first-order stationary points. Tyurin et al. (2022) provided the analysis of PAGE under the less heterogeneity assumption,
but PAGE still requires multiple full gradients. Note that our definition of single-loop excludes any algorithm with multiple
full gradient computations, because our goal is to develop a versatile variance reduction algorithm that avoids multiple
full gradient computations of whatever form. Because regardless of whether it is deterministic or stochastic, full gradient
computation slows down practical computational speed, and especially becomes a bottleneck in the application to distributed
learning since this leads to periodic synchronization and communication between the whole client.

On the other hand, for single-loop variance reduction methods, SAGA (Reddi et al., 2016b) is a conventional single-loop

algorithm and requires O(n + Ln
2
3

ε2 ) gradient evaluations for solving (1), which is still sub-optimal from the optimal
complexity of O(n+ L

√
n

ε2 ). After SAGA, several single-loop algorithms have been proposed. Hybrid SARAH Tran-Dinh
et al. (2022) and iSARAH Nguyen et al. (2017a) considered single-loop variants of SARAH, but the complexity does not
matches to O(n+ L

√
n

ε2 ) when ε is smaller than 1/
√
n. STORM Cutkosky and Orabona (2019) achieves the complexity of

O(σc/ε
3), which is the optimal for stochastic optimization problem of minEi[fi(x)], but not for the problem (1) when ε

is small. Recently, ZeroSARAH achieved the optimal complexity for the problem (1) as the first single-loop algorithm.
SILVER also achieves the same complexity, as well as other benefits.

Second-order optimality It is usual to extend an optimization algorithm to ensure second-order optimality (Ge et al.,
2015; Jin et al., 2017; Vlatakis-Gkaragkounis et al., 2019; Allen-Zhu and Li, 2018), and variance reduction methods also
have been applied to this (Stabilized SVRG (Ge et al., 2019), SPIDER-SFO+ (Fang et al., 2018), and SSRGD (Li, 2019)).
Since first-order stationary points can include a local maximum or a saddle point in nonconvex optimization, escaping them
and finding SOSPs are necessary to guarantee the quality of the solution. However, no single-loop algorithm cannot find
SOSPs. SILVER is the first single-loop methods that guarantees second-order optimality.

Exponential Convergence with Strong Convexity Many algorithms that use multiple full gradients, such as SVRG and
SARAH, yield exponential convergence with strong convexity. For single-loop algorithms, SAGA (Reddi et al., 2016b)
achieves the exponential convergence, but remember that its complexity for the problem (2) is suboptimal. Random-
reshuffled SARAH (Beznosikov and Takáč, 2021) can yield the exponential convergence, but the guarantee was only
shown for the strongly-convex case. In this context, SILVER is the first algorithm that achieves both optimal complexity in
nonconvex settings and exponential convergence in strongly-convex settings.

Utilizing Less Heterogeneity The ability of utilizing less heterogeneity of {fi}ni=1 is essential for variance reduction
methods to serve as a base algorithm for communication-efficient federated learning. For example, SARAH has such an
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Table 2. Stochastic gradient complexity for a nonconvex finite-sum problem (1).
Algorithms Stochastic gradient complexity Removal of multiple full

Nonconvex SOSP PL condition gradients (single-loop?)

(Noisy) SGD (Ghadimi and Lan, 2013;
Ge et al., 2015; Karimi et al., 2016)

∆σ2
c

ε4
poly(ε−1, δ−1, d, σc,∆)

σ2
c

µ2ε
log ε−1 × (b ≳ σ2

cε
−2)

(Stabilized) SVRG (Reddi et al., 2016a;
Ge et al., 2019; Johnson and Zhang,
2013)

n + L∆n
2
3

ε2
n + ∆(n

2
3

ε2
+ n

2
3

δ4
+ n

δ3
) (n + L

µ ) log ε−1 (SC) ×

SPIDER-SFO+ (Fang et al., 2018) n + ζ∆
√

n

ε2
n + ∆(

√
n

ε2
+ 1

εδ3
+ 1

δ5
) None ×

SNVRG (Zhou et al., 2020) n + ζ∆
√

n

ε2
None (n +

√
n

µ ) log4 ε−1 ×
SARAH (Nguyen et al., 2017b; 2022)
and SSRGD (Li, 2019)

n + ζ∆
√

n

ε2
n + ∆(

√
n

ε2
+

√
n

δ4
+ n

δ3
) (n + ζ

√
n

µ ) log ε−1 ×

PAGE (Li et al., 2021a; Tyurin et al.,
2022)

n + ζ∆
√

n

ε2
None (n + ζ

√
n

µ ) log ε−1 ×

SAGA (Defazio et al., 2014; Reddi et al.,
2016b)

n + L∆n
2
3

ε2
None (n + L

µ ) log ε−1 (SC) ✓

STORM (Cutkosky and Orabona, 2019) ζσc
ε3

+
σ2
c

ε2
None None ✓

Hybrid SARAH (Tran-Dinh et al., 2022) ∆
3
2 σc
ε3

+
∆

1
2 σ3

c
ε None None ✓

iSARAH (Nguyen et al., 2021) n +
∆2+σ4

c
ε4

None None ✓

Random-reshuffled SARAH (Beznosikov
and Takáč, 2021)

None None (L
µ + ζn

µ ) log ε−1 (SC) ✓

ZeroSARAH (Li et al., 2021b) n + ∆
√

n

ε2
None None ✓ (only at x0)

(∆+σ2
c )

√
n

ε2
None None ✓

SILVER (Option I) (ours) n + ζ∆
√

n

ε2
n+∆(

√
n

ε2
+

√
n

δ4
+ ζ2

ε2δ2
+ ζ2

δ6
) (n + ζ

√
n

µ ) log ε−1 ✓ (only at x0)

SILVER (Option II) (ours) (ζ∆+σ2
c )

√
n

ε2
(∆+σ2

c)(
√
n+ ζ2

δ2
)( 1

ε2
+ 1

δ4
) (n + ζ

√
n

µ ) log ε−1 ✓

Note: Nonconvex: finding ε-first-order stationary points (polylogarithmic terms and the 1
ε2

term are omitted); SOSP: finding (ε, δ)-second-order stationary points

(polylogarithmic terms are omitted); SC: only for the µ-strongly convex case; PL condition: finding ε-solution under µ-PL condition (polylogarithmic terms except for log ε−1

are omitted).
Here ∆ = f(x0) − inf f(x), σc is the variance between fi(x), µ is the parameter for PL condition, and ζ is the Hessian-heterogeneity. Since ζ ≤ 2L, n + ζ∆

√
n

ε

(achieved by SILVER) is always better than or equal to n + ∆
√

n
ε (optimal complexity without less heterogeneity). Other parameters are assumed to be O(1).

For SARAH, SPIDER-SFO+, and STORM, although their original proofs did not consider the ζ dependency, the dependency on ζ is easily checked by following their proofs.
Especially, in federated learning literature, such an ability is show SARAH’s an ability of variance reduction methods to utilize less heterogeneity has widely been used. For
SARAH and STORM, this ability is shown in Murata and Suzuki (2021) and Cutkosky and Orabona (2019), respectively. Also, the convergence rate of SARAH under the PL
condition can be easily checked. SNVRG shows the condition when n ≥ σ2

µε (to find ε-solution f(x) − f∗ ≤ ε); otherwise, replace n by σ2

µε .

ability, and have actually been utilized in federated learning as BVR-L-SGD (Murata and Suzuki, 2021). For many variance
reduction algorithms that use multiple full gradients, including SARAH and SPIDER, we can easily check that they have
such an ability. However, we cannot directly make ZeroSARAH satisfy this property. Here we explain the reason, which we
think reveals the difficulty in simultaneously achieving the optimal complexity and speed-up with less heterogeneity.

Remember that SILVER (Option I) approximated

t∑
s=mini T (t,i)+1

1

n

n∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)).

with

t∑
s=mini T (t,i)+1

|Ĩts|
bn

n∑
i∈Is

(∇fi(xs)−∇fi(xs−1)).

Thus, the discrepancy between the true gradient and the gradient estimator is simply

n∑
s=mini T (t,i)+1

1

n

n∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

−
n∑

s=mini T (t,i)+1

|Ĩts|
bn

n∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1))).

13



Single-loop Variance Reduction for Federated Learning

Note that each term consists of ∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)), which is bounded by Õ(ζ∥xs − xs−1∥)
with high probability.

On the other hand, for ZeroSARAH, the discrepancy between the true gradient∇f(xt) and the gradient estimator is written
as

t∑
s=1

(1− λ)t−s

b
(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

+ λ

t−1∑
s=1

(1− λ)t−s

b

∑
i∈Is+1

[
∇fi(xs)−∇fi(xT (s,i))− 1

n

n∑
i′=1

(∇fi′(xs)−∇fi′(xT (s,i′)))

]
.

Thus, for the second term, each component
∥∥∥∇fi(xs)−∇fi(xT (s,i))− 1

n

∑n
i′=1(∇fi′(xs)−∇fi′(xT (s,i′)))

∥∥∥ cannot be

bounded by Õ(ζ∥xs − xT (s,i)∥) when ζ is small. This is understood as follows. There might exist i′ such that T (s, i′) <
T (s, i). If there are so many i′,

∥∥∥∇fi(xs)−∇fi(xT (s,i))− 1
n

∑n
i′=1(∇fi′(xs)−∇fi′(xT (s,i′)))

∥∥∥ ≳ L∥xT (s,i)+1 −
xT (s,i)∥ might hold.

This demonstrate that simultaneously achieving the optimal complexity for the finite-sum smooth optimization and speed-up
with less heterogeneity with a single-loop algorithm is far from trivial, and our construction of the estimator is the key to
enabling this.

A.2. Communication-efficient Federated Learning Utilizing Properties of the Problem

When fi are just L-smooth, we cannot obtain better communication rounds and communication complexity than those of
centralized methods. In order to show the superiority of local methods in terms of communication rounds and communication
complexity, we typically assume less inter-client heterogeneity on fi. Also, when x is a high (d≫ 1) dimensional vector,
compressability of the vectors is sometimes assumed and utilized.

Less Inter-client Heterogeneity with Local Updates When fi,j are L-smooth but fi are a little less heterogeneous, i.e.,
∥∇2fi(x)−∇2f(x)∥ ≤ ζ, it has been proven that local updates can achieve better communication rounds and complexity,
and therefore this less heterogeneity assumption has become popular in the analysis. SCAFFOLD (Karimireddy et al.,
2020) proved such a result for quadratic functions, without client sampling. BVR-L-SGD (Murata and Suzuki, 2021) and
MimeMVR (Karimireddy et al., 2021) can achieve O( ζ

ε2 ) communication rounds to find ε-first-order stationary points,
which is superior to the lower bound for centralized methods of O( L

ε2 ) when ζ ≤ L. However, p = P (Murata and Suzuki,
2021) or p = O(σ2

cε
−2) (Karimireddy et al., 2021) are required, and thus these methods do not deal with client sampling

error efficiently. Also, Murata and Suzuki (2022) proved that O( ζ
ε2 + ζ

δ4 ) communicatoun rounds are sufficient to find
(ε, δ)-second-order stationary points, but this also requires full client sample at each communication round. We resolved this
issue by using SILVER, a novel single-loop variance reduction method, to control the client sampling error efficiently, hence
improving communication complexity of them (by allowing client sampling) while maintaining the best communication
rounds of O( ζ

ε2 ) (for first-order optimality) and O( ζ
ε2 + ζ

δ4 ) (for second-order optimality).

We also mention federated learning under the PL condition or the strong convexity. Under the PL condition, MimeSGD
(Karimireddy et al., 2021) yields the communication rounds of O(

σ2
c

µpε2 +
L
µ log ε−1). FL-SILVER can achieve the communi-

cation rounds of O( L
µK +

ζ(
√

P
p ∧1)

µ + P
p ). Contrary to MimeSGD, FL-SILVER achieves the exponential convergence while

allowing client sampling, and notably, FL-SILVER can mitigate the dependency on µ when clients are less heterogeneous
(ζ ≤ L), which is the first such result to the best of our knowledge. For the strongly convex case, Mishchenko et al. (2022);

Grudzień et al. (2023) proved that O((Pp +
√

PL
pµ ) log ε−1) communication rounds, which is the accelerated rate. Note that

they do not show any benefit of local updates under less heterogeneity assumption. Thus when ζ ≤ √µ, our algorithm is
superior than theirs. Combining our algorithm and theirs would be an interesting future work.

Compression of Gradients In addition to less heterogeneity, compression of gradients is also proposed as a means to
reduce communication cost. Especially, in Gorbunov et al. (2021), the unbiased quantization operator Q is assumed to
satisfy E[∥Q(x) − x∥2] ≤ ω∥x∥2, and supx E[∥Q(x)∥] ≤ ζQ ≤ d. Gorbunov et al. (2021) achieved the communication
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rounds multiplied by 1/d (so that this matches to the usual definition of communication rounds when ζQ = d) of

O( 1
ε2 (

ζQ
d +

√
ζQw
dP )), but this requires full client participation at each communication. Based on this, Szlendak et al. (2021)

invented a new compressor and achieved the adjusted communication round of O( 1/P+ζ/
√
P

ε2 ), but again, this requires full
client participation. Moreover, they consider the problem (1) when fi are distributed, which is a bit different from (2). By
multiplying P to O( 1/P+ζ/

√
P

ε2 ) of Szlendak et al. (2021), we obtain O( 1+ζ
√
P

ε2 ), which is the same as the communication
complexity of SILVER, but the actual number of communication rounds of theirs is O( 1

ε2 ), while ours is O( ζ
ε2 ). Tyurin and

Richtárik (2022b;a) extended Gorbunov et al. (2021) to local updates. Especially, Tyurin and Richtárik (2022a) yielded
the communication complexity of O( 1

ε2 + ω
√
P

pε2 ) while allowing partial client participation. However, the benefit of local
updates was not shown.

For these reasons, analyses under less heterogeneity and compression-based methods are essentially from different spirits;
assumptions are different, and evaluation criteria are sometimes different as well. We leave it for future work to extend
Szlendak et al. (2021) to the problem (2) and show the benefit of local updates.

B. EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENT
B.1. Experimental Details

B.1.1. ACCURACY OF THE GRADIENT ESTIMATOR OF SILVER

We considered a classification of the capital letters using EMNIST By Class dataset (Cohen et al., 2017). The original
dataset consists of 814, 255 images of handwritten uppercase and lowercase letters and numbers 0-9. Because the number
of data points in each class is not balanced and the number of images of lowercase letters is relatively small, we only
used the images of uppercase letters for the experiment. To balance the number of data points between each class, we
took the following procedure. We repeatedly sampled 100 data points five times per each uppercase letter, which yields
26× 5 = 130 groups of sampled data. For each group i, we defined fi as the average of the cross-entropy loss between the
output of the model and the true class, over the 100 data points belonging to the group. As a model, we adopted a two-layer
fully-connected neural network. We added L2-regularizer with a regularization parameter of λ = 0.01 to the empirical risk.

We compared SILVER with SARAH (Nguyen et al., 2017a;b) and SAGA (Defazio et al., 2014; Reddi et al., 2016b). SAGA
is single-loop, while SARAH requires full gradient computation periodically. Also, the theoretical gradient complexity of

SAGA is O(n+ n
2
3

ε2 ) and that of SARAH is O(n+
√
n

ε2 ). Remind that SILVER was designed to have as small variance as
that of SARAH, while removing the need of periodic full gradient computation; SILVER is single-loop but achieves the
gradient complexity of O(n+

√
n

ε2 ).

We took the minibatch size as b = 12 ≒
√
n =
√
130 and the inner-loop length of SARAH to m = ⌊nb ⌋ = 10. (Note that

SARAH refreshes its gradient estimator at every m = 10 steps.) We set the learning rate to η = 0.01 for all algorithms,
since the larger step size tend to increase the discrepancy, meaning that it is not fair to compare algorithms with different
step sizes to discuss the discrepancy. We plotted the mean of the five trials with different random seeds and the sample
variance is also shown in the corresponding (lighter) color for each algorithm.

According to Figure 1, the discrepancy of the SILVER estimator was clearly smaller than that of SAGA, and close to that of
SARAH. Therefore, this result validated that our strategy actually worked well.

B.1.2. ESCAPING SADDLE POINTS WITH SILVER

We prepared fi with the same data as the above experiment and employing a four-layer fully-connected neural network.
We implemented SARAH (Nguyen et al., 2017a;b), SSRGD (Li, 2019), and ZeroSARAH (Li et al., 2021b). SARAH
is a popular variance reduction algorithm with periodic full gradient computations, SSRGD adds noise to SARAH, and
ZeroSARAH is a recent single-loop variance reduction method with no theoretical second-order optimality guarantee. We
set the minibatch size to b = 12 for all algorithms, the inner-loop length of SARAH and SSRGD to m = ⌊nb ⌋ = 10, and
λ = b

n ≒ 0.092 for ZeroSARAH. Note that (Li et al., 2021b) adopted λ = b
2n , but we found that λ = b

n was more stable in
this setting. The learning rate for each method was tuned individually, from η ∈ {1.0, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001}, so
that the test accuracy after 2000 iterations is the highest. For SSRGD and noisy SILVER, we added small noise of r = 0.15.
We plotted the mean of the ten trials with different random seeds and the sample variance is also shown in the corresponding
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(lighter) color for each algorithm.

B.1.3. FASTER AND (LOCALLY) EXPONENTIAL CONVERGENCE OF FL-SILVER

We verified the performance of FL-SILVER for nonconvex federated learning. For the federated learning problem (2), we
again considered the classification of the capital letters (Cohen et al., 2017). This time each fi consists of 100 × q% of
the data from one class and 100× (1− q)% of the data from the other classes, following Murata and Suzuki (2021; 2022).
Specifically, we prepared P = 104 clients, and for each class of alphabets, we distributed q × 100% of the images into four
clients, and the rest into the remaining 100 clients. We call this grouping as a dataset with the heterogeneity parameter
of q. This makes each fi a little less heterogeneous, and this time we chose q = 0.9. Then, we constructed fi,j with the
cross-entropy loss and a two-leyer neural network with width of the hidden layer 100, following Murata and Suzuki (2021).
L2-regularizer with a scale of λ = 0.01 is added to the empirical risk.

We compared FL-SILVER with FedAvg (McMahan et al., 2017), SCAFFOLD (Karimireddy et al., 2020), MimeMVR
(Karimireddy et al., 2021), and BVR-L-SGD (Murata and Suzuki, 2021). Especially BVR-L-SGD (Murata and Suzuki,
2021) can be seen as an almost special case of FL-SILVER when p = P (full client sampling at every communication
round). For each algorithm, we set p = 10 ≒

√
P =

√
104 as the number of the clients used at each communication

(except for BVR-L-SGD, which requires p = P = 104). Note that, according to Theorems 5 and 6, setting p ≃
√
P in

FL-SILVER theoretically guarantees that the required number of communication rounds of FL-SILVER are not affected
by the client sampling and is the same order as that of BVR-L-(P)SGD, which requires p = P to obtain the theoretical
guarantee. Then, we set the number of local update to K = 10 and the local minibatch size as b = 16. We tuned the
learning rate for each algorithm individually from {1.0, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001}, so that the test accuracy after
2000 outer-loop iterations is the highest. For a fair comparison, the global learning rate of SCAFFOLD was set to η = 1, as
is done in the original paper (Karimireddy et al., 2020), and MimeMVR adopted a momentum parameter of a = 0.1 as the
authors of the paper reported as the best. We plotted the mean of the five trials with different random seeds and the sample
variance is also shown in the corresponding (lighter) color for each algorithm.

In Figure 3, FL-SILVER achieved the smallest gradient norm ∥∇f(xt)∥ and the linear convergence at the neighborhood of
solutions. This can be seen as an empirical verification of the exponential convergence utilizing strong convexity around a
local minima, which contrasts FL-SILVER to FedAvg, SCAFFOLD, and MimeMVR. Figure 3 shows that FL-SILVER
achieved the higher test accuracy with fewer communication, compared to FedAvg, SCAFFOLD, and MimeMVR. In
addition, we observe that FL-SILVER performed similarly to BVR-L-SGD the best method in terms of communication
rounds (and again, BVR-L-SGD can be seen as a special case of FL-SILVER without client sampling). FL-SILVER
appropriately corrected the error from sampling of the clients while achieving the same performance as that of BVR-L-SGD,
and FL-SILVER was about ten times more efficient than BVR-L-SGD in terms of communication complexity by allowing
sampling of the clients.

B.2. Additional Experiments

B.2.1. PERFORMANCE UNDER CHANGING HETEROGENEITY

To exhibit how accurately FL-SILVER can control the variance between clients, we measured the performance
of FL-SILVER under changing heterogeneity. We changed heterogeneity parameter in the range of q ∈
{0.04 (i.i.d.), 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 (completely heterogeneous)}, and compared FL-SILVER with FedAvg, in terms
of both train and test accuracy. All other settings were the same as those of the experiment for Figure 3. Figure 4 shows the
average of five trials with different random seeds.

According to Figure 4, while FedAvg decreased the train and test accuracy as the heterogeneity increases, the performance
of FL-SILVER with q = 1.0 (totally heterogeneous) was only slightly worse than that with q = 0.04. The fact that
FL-SILVER, using sampling of clients, was little affected by the strong heterogeneity shows that the client sampling error
and the error from local update were successfully corrected.

B.3. Escaping Saddle Points with FL-SILVER

Theorem 4 guarantees second-order optimality of FL-SILVER. To validate this theoretical result, we compared noisy
FL-SILVER with FedAvg (McMahan et al., 2017), SCAFFOLD (Karimireddy et al., 2020), MimeMVR (Karimireddy et al.,
2021), BVR-L-SGD (Murata and Suzuki, 2021), BVR-L-PSGD (Murata and Suzuki, 2022), and noiseless FL-SILVER.
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Figure 4. Performance under changing heterogeneity

For noisy FL-SILVER and BVR-L-PSGD, we added small noise of r = 0.015. Note that FL-SILVER with small noise
and BVR-L-PSGD only have theoretical guarantee of the second-order optimality. Then, we constructed fi,j with the
cross-entropy loss with q = 0.7 (see Appendix B.1.3) and a three-layer fully-connedted neural network, following Murata
and Suzuki (2022). L2-regularizer with a scale of λ = 0.01 is added to the empirical risk. We plotted the mean of the
five trials with different random seeds. We set P = 104, p = 10, K = 10, and b = 16. This time we omitted the sample
variance for clearer presentation.
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Figure 5. Small perturbation helps faster convergence

The result is shown in Figure 5. We can clearly observe that FL-SILVER with small noise and BVR-L-PSGD achieved the
highest test accuracy. Also note that, while SILVER used client sampling, the performance of FL-SILVER was almost the
same as BVR-L-PSGD. This shows that FL-SILVER allows sampling of clients without hurting the required number of
communication rounds by setting p =

√
P , which is consistent with the theory; according to Theorem 4, setting p ≒

√
P

theoretically guarantees that the convergence rate of FL-SILVER is not affected by the client sampling and achieves the
same number of communication complexity as that of BVR-L-PSGD to find SOSPs. As a result, while achieving the most
stable and fastest training, FL-SILVER was as ten times efficient as BVR-L-PSGD, in terms of communication complexity
(the total number of gradients communicated between the clients and the server).

B.3.1. COMPARISON WITH SARAH BY CHANGING THE LEARNING RATE

Here we provide comparison of SILVER with SARAH (Nguyen et al., 2017a;b), which is one of the most prevailing variance
reduction algorithm with theoretical optimal gradient complexity of O

(
n+

√
n

ε2

)
, which is the same as SILVER, and which

uses periodic full gradients.

As is done in the experiment for Figure 1, we prepared fi in the following way. We repeatedly sampled 100 data points
five times per each uppercase letter, which yields 26 × 5 = 130 groups of sampled data. For each group i, we define
fi as the average of the cross-entropy loss between the output of the model and the true class over the 100 data points
belonging to the group. As a model, we adopted a two-layer fully-connected neural network. We set the minibatch
size to b = 12 ≒

√
n =

√
130 for both algorithms, and the inner-loop length of SARAH to m = ⌊nb ⌋ = 10. We
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added L2-regularizer to the empirical risk with a fixed regularization parameter of λ = 0.01. We compared SILVER
with SARAH in terms of the training loss, the norm of the gradient computed by the whole training data, the test loss,
and the test accuracy, under the same number of stochastic gradient accesses. We changed the learning rate η between
{0.1, 0.03, 0.01, 0.003, 0.001}. We plotted the mean of the five trials with different random seeds and the sample variance
is also shown in the corresponding (lighter) color for each algorithm.

Figure 6 shows the result. We clearly observe that the proposed algorithm SILVER slightly faster than SARAH in all range
of learning rate η, owing to the removal of multiple full gradient evaluations of SILVER. The trajectories of SILVER are as
stable as SARAH in all settings. This result shows that we can remove the requirement of periodic full gradient evaluation
without hurting the stability during optimization with SILVER.

B.4. Computing infrastructures

• OS: Ubuntu 16.04.5

• CPU: Intel(R) Xeon(R) CPU E5-2680 v4 2.40GHz

• CPU Memory: 512GB

• GPU: Nvidia Tesla V100 (32GB)

• Programming language: Python 3.6.13

• Deep learning framework: PyTorch 1.7.1

C. TOOLS
We prepare some concentration inequalities and linear algebraic tool for later use.

C.1. Concentration Inequalities

In the following, multiple times we use concentration inequalities that we introduce below. When we say
with high probability, it means that the event happens with a failure probability less than an inverse of a sufficient large
polynomial in all relevant parameters, i.e., n, d, ε, δ, P, L, ρ, σ, σc. High-probability bounds come together with logarithmic
constants on these parameters. To simplify the analysis, with a slight abuse of notation, we use the same notation C1 for
different polylogarithmic constants that come from concentraion inequalities, and C1 may vary from line to line.

Proposition 2 (Vector Bernstein inequality (Tropp, 2012)). Let x1, · · · , xk be a finite sequence of independent, random,
d-dimensional vectors and ν ∈ (0, 1). Assume that each vector satisfies

∥xi − E[xi]∥ ≤ R almost surely.

Define

σ2 =

k∑
i=1

E[∥xi − E[xi]∥2]

Then, with high probability, ∥∥∥∥∥
k∑

i=1

(xi − E[xi])

∥∥∥∥∥
2

≤ C1 · (σ2 +R2).

Proposition 3 (Vector Bernstein inequality without replacement). Let A = (a1, a2, · · · , ak) be d-dimensional fixed vectors,
X = (x1, · · · , xl) (l ≤ k) be a random sample without replacement from A. Assume that

∑k
i=1 ai = 0 and that each

vector satisfies

∥ai∥ ≤ R.
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Figure 6. Comparison with SARAH by changing the learning rate
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Define

σ2 =
1

k

k∑
i=1

∥ai∥2.

Then, for each l < k, with high probability, ∥∥∥∥∥
l∑

i=1

xi

∥∥∥∥∥
2

≤ C1 · (lσ2 +R2).

Because we are not aware of a rigorous proof of such a result, we attach its complete proof at the end of this subsection.

Proposition 4 (Azuma-Hoeffding inequality with high probability (Chung and Lu, 2006; Tao and Vu, 2015)). Let {xi}
be a d-dimensional vector sequence and martingale with respect to a filtration {Fi}. Assume that each xi satisfies
E[xi|Fi−1] = 0 and

∥xi∥ ≤ Ri with probability 1− νi

for νi ∈ (0, 1) (i = 1, . . . , k). Then, with high probability,∥∥∥∥∥
k∑

i=1

xi

∥∥∥∥∥
2

≤ C1

k∑
i=1

R2
i .

Proof of Proposition 3. First, we consider the case l ≤ k
2 . Let yi =

∑i
j=1 xj and consider a filtration Fi = σ(x1, · · · , xi).

Then, we have

E [yi+1 |Fi ] = yi +
1

k − i

 n∑
j=1

aj −
i∑

j=1

xj

 =
k − i− 1

k − i
yi.

This means that
{

1
k−iyi

}l

i=0
is martingale with respect to {Fi}. We have that this martingale satisfies the assumptions of

Proposition 5 (see below) with R′2 = R2

(k−l)2 and σ′2 = 2σ2

(k−l)2 . In fact, we have

∥∥∥∥ 1

k − i− 1
yi+1 − E

[
1

k − i− 1
yi+1

∣∣∣∣Fi

]∥∥∥∥2 =

∥∥∥∥ 1

k − i− 1
xi+1 − E

[
1

k − i− 1
xi+1

∣∣∣∣Fi

]∥∥∥∥2
≤
∥∥∥∥ 1

k − i− 1
xi+1

∥∥∥∥2 ≤ R2

(k − i− 1)2
≤ R2

(k − l)2
,

where the equality follows since x1 . . . , xi are Fi-measurable, and

E

[∥∥∥∥ 1

k − i− 1
yi+1 − E

[
1

k − i− 1
yi+1

∣∣∣∣Fi

]∥∥∥∥2
∣∣∣∣∣Fi

]
≤ E

[∥∥∥∥ 1

k − i− 1
xi+1

∥∥∥∥2
∣∣∣∣∣Fi

]

=
1

(k − i− 1)2
· 1

k − i

 k∑
j=1

∥aj∥2 −
i∑

j=1

∥xj∥2


≤ 1

(k − l)2
· 2
k

k∑
i=1

∥ai∥2
(
∵ k − i ≥ k

2

)
=

2σ2

(k − l)2
.
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Thus, we use Proposition 5 (see below) to obtain

P [∥yl∥ ≥ t] ≤ (d+ 1) · exp
(

−t2

2lσ2 +Rt/3

)
.

What remains is the case of l ≥ k
2 . Since

∑l
i=1 xi = −

∑k
i=l+1 xi holds, we can apply the above bound for

∑k
i=l+1 xi.

Thus, we have the first assertion for all l < k. The second assertion follows by setting t = C1 · (lσ2 +R).

Proposition 5 (Freedman’s inequality for matrix martingales). Consider a matrix martingale {Yi | i = 0, 1, · · · } with
respect to a filtration {Fi}, whose values are matrices with dimension d1×d2, and let {Xi | i = 1, 2, · · · } be the difference
sequence. Assume that each of the difference sequence is uniformly bounded:

∥Xi∥2 ≤ R′2 almost surely.

Also, assume that each i satisfies

max
{∥∥E[XiX

⊤
i | Fi−1]

∥∥ ,∥∥E[X⊤
i Xi| Fi−1]

∥∥} ≤ σ′2 almost surely.

Then, for all t ≥ 0 and for each l,

P [∥Yl∥ ≥ t] ≤ (d1 + d2) · exp
(

−t2/2
lσ′2 +R′t/3

)
.

C.2. Linear Algebraic Tool

The following lemma is due to Murata and Suzuki (2022). We provide its proof below for completeness.

Lemma 2 (Murata and Suzuki (2022)). Let A be a d × d symmetric matrix with the smallest and largest eigenvalues
λmin < 0 and λmax < 1, respectively. Then, for k = 0, 1, · · · , it holds that

∥A(I −A)k∥ ≤ −λmin(1− λmin)
k +

1

k + 1
.

Proof. Since A is diagonalizable, we write A =
∑d

i=1 λieie
⊤
i , where e1, . . . , ed are normalized eigenvectors and λmin =

λ1 ≤ · · · ≤ λd = λmax are the corresponding eigenvalues. Then, it holds that

A(I −A)k =

d∑
i=1

λi(1− λi)
keie

⊤
i .

Thus, the remaining is to evaluate maxi |λi(1− λi)
k|. After some algebra, we get

0 < λ(1− λ)k ≤

−λ(1− λ)k (if λ ≤ 0)

1
k+1

(
k

k+1

)k (
if λ > 0; the equality holds with λ = 1

1+k

)
≤ −λmin(1− λmin)

k +
1

k + 1
,

which concludes the proof.

D. MISSING PROOFS FOR SILVER

D.1. First-order Optimality (Proof of Theorem 1)

This section proves Theorem 1, the optimal gradient complexity for finding first-order stationary points. The proof crucially
depends on the following lemma, which shows that the error from previous steps exponentially decays and never accumulates
owing to our update SILVER, without full gradient computation.
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Lemma 1 (formal). Let Assumptions 5-(a) and 3-(a) (only for Option II) hold. Let gt = 1
n

∑n
i=1 y

t
i and all the other

variables be as stated in Algorithm 1. Then,

E∥gt −∇f(xt)∥2 ≤ 30ζ2

b

t∑
s=1

(1− b

4n
)t−s+1E

[
∥xs − xs−1∥2

]
+

9σ2
c1[Option II]

b
(1− b

n
)t.

Here 1[Option II] = 1 for Option II and 0 otherwise.

For the proof of this lemma, we decompose the error as follows:

∥gt −∇f(xt)∥2

=

∥∥∥∥∥∥ 1n
t∑

s=1

 |Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1))−
∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1))

+
1

n

∑
i∈Ĩt

1

(y0i −∇fi(x0))

∥∥∥∥∥∥
2

≤ 3

∥∥∥∥∥∥ 1n
t∑

s=1

∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(a)

+ 3

∥∥∥∥∥ 1n
t∑

s=1

|Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥
2

︸ ︷︷ ︸
(b)

+3

∥∥∥∥∥∥ 1n
∑
i∈Ĩt

1

(y0i −∇fi(x0))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(c)

.

(3)

For each of (a), (b), and (c), we apply one of the following lemmas, which yields the assertion.

Lemma 3. Under Assumption 5-(a), the term (a) is bounded as follows:

E


∥∥∥∥∥∥ 1n

t∑
s=1

∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2
 ≤ 4ζ2

b

t∑
s=1

(1− b

2n
)t−s+1E[∥xs − xs−1∥2].

Lemma 4. Under Assumption 5-(a), the term (b) is bounded as follows:

E

∥∥∥∥∥ 1n
t∑

s=1

|Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥
2
 ≤ 6ζ2

b

t∑
s=1

(1− b

4n
)t−s+1E

[
∥xs − xs−1∥2

]
.

Lemma 5. For Option I, (c) = 0. For Option II, under 3-(a), we have

E


∥∥∥∥∥∥ 1n

∑
i∈Ĩt

1

(y0i −∇fi(x0))

∥∥∥∥∥∥
2
 ≤ 3σ2

c

b
(1− b

n
)t.

We prove these auxiliary lemmas as follows.
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Proof of Lemma 3. First, we have that

(a) =

∥∥∥∥∥∥ 1n
t∑

s=1

∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

≤
∑t

s=1 E[|Ĩts|](1− b
2n )

−t+s−1

n2

t∑
s=1

(1− b
2n )

t−s+1

E[|Ĩts|]

∥∥∥∥∥∥
∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

≤
∑t

s=1 n(1−
b
4n )

−t+s−1

n2

t∑
s=1

(1− b
2n )

t−s+1

E[|Ĩts|]

∥∥∥∥∥∥
∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

, (4)

where we used the Cauthy-Schwarts inequality for the second line, and E[|Ĩts|] = n(1− b
n )

t−s+1 and (1− b
n )(1−

b
2n )

−1 ≤
1− b

4n (b ≤ n) for the third line. Note that Ĩts depends only on Is, · · · , It, while xs and xs−1 depend only on I0, · · · , Is−1.
Therefore, by conditioning on I0, · · · , Is−1 and |Ĩts|, each term of (4) is bounded by

E


∥∥∥∥∥∥
∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣ I0, · · · , Is−1, |Ĩts|

 = |Ĩts|ζ2∥xs − xs−1∥2.

We apply this to (4) and obtain that

E[(a)] ≤
∑t

s=1 n(1−
b
4n )

t−s+1

n2

t∑
s=1

(1− b
2n )

t−s+1

E[|Ĩts|]
E[|Ĩts|ζ2∥xs − xs−1∥2|I0, · · · , Is−1, |Ĩts|]

≤
∑t

s=1 n(1−
b
4n )

t−s+1ζ2

n2

t∑
s=1

(1− b

2n
)t−s+1E

[
∥xs − xs−1∥2E[Ĩ

t
s||I0, · · · , Is−1]

E[|Ĩts|]

]

≤ 4ζ2

b

t∑
s=1

(1− b

2n
)t−s+1E[∥xs − xs−1∥2],

which concludes the proof.

Proof of Lemma 4. We decompose the target as follows:

(b) =

∥∥∥∥∥ 1n
t∑

s=1

|Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1n
t∑

s=1

E[|Ĩts|]
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1n
t∑

s=1

|Ĩts| − E[|Ĩts|]
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥
2

. (5)

For the first term, because E[|Ĩts|] = n(1− b
n )

t−s+1 and independentness of I1, · · · , It, we have

E

∥∥∥∥∥ 1n
t∑

s=1

E[|Ĩts|]
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥
2


≤ ζ2

b

t∑
s=1

(1− b

n
)2(t−s+1)E[∥xs − xs−1∥2]. (6)
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On the other hand, for the second term, we further decompose it as

∥∥∥∥∥ 1n
t∑

s=1

|Ĩts| − E[|Ĩts|]
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥
2

≤
∑t

s=1(1− (1− b
n )

t−s+1)(1− b
2n )

t−s+1

n2b2

×
t∑

s=1

(|Ĩts| − E[|Ĩts|])2

(1− (1− b
n )

t−s+1)(1− b
2n )

t−s+1

∥∥∥∥∥∑
i∈Is

(∇fi(xs)−∇fi(xs−1)−(∇f(xs)+∇f(xs−1)))

∥∥∥∥∥
2

≤ 2

b3n

t∑
s=1

(|Ĩts| − E[|Ĩts|])2

(1− (1− b
n )

t−s+1)(1− b
2n )

t−s+1

∥∥∥∥∥∑
i∈Is

(∇fi(xs)−∇fi(xs−1)−(∇f(xs)+∇f(xs−1)))

∥∥∥∥∥
2

,

where we used the Cauthy-Schwartz for the first inequality. Taking the expectation of the last line yields

E

 2

b3n

t∑
s=1

(|Ĩts| − E[|Ĩts|])2

(1− (1− b
n )

t−s+1)(1− b
2n )

t−s+1

∥∥∥∥∥∑
i∈Is

(∇fi(xs)−∇fi(xs−1)−(∇f(xs)+∇f(xs−1)))

∥∥∥∥∥
2


=E

 2

b3n

t∑
s=1

E[(|Ĩts| − E[|Ĩts|])2|Is]
(1− (1− b

n )
t−s+1)(1− b

2n )
t−s+1

∥∥∥∥∥∑
i∈Is

(∇fi(xs)−∇fi(xs−1)−(∇f(xs)+∇f(xs−1)))

∥∥∥∥∥
2


= E

 2

b3n

t∑
s=1

n(1− (1− b
n )

t−s+1)(1− b
n )

t−s+1

(1− (1− b
n )

t−s+1)(1− b
2n )

t−s+1

∥∥∥∥∥∑
i∈Is

(∇fi(xs)−∇fi(xs−1)−(∇f(xs)+∇f(xs−1)))

∥∥∥∥∥
2


≤ E

[
1

b4

t∑
s=1

(1− b

4n
)t−s+1bζ2∥xs − xs−1∥2

]

=
2ζ2

b3

t∑
s=1

(1− b

4n
)t−s+1E

[
∥xs − xs−1∥2

]
, (7)

where we used E[(|Ĩts| − E[|Ĩts|])2|Is] = n(1− (1− b
n )

t−s+1)(1− b
n )

t−s+1 for the second equality.

Applying (6) and (7) to (5), we have

E[(b)] ≤ 6ζ2

b

t∑
s=1

(1− b

4n
)t−s+1E

[
∥xs − xs−1∥2

]
,

which concludes the proof.

Proof of Lemma 5. As for Option I, the assertion directly follows from the definition y0i = ∇fi(x0) (i = 1, · · · , n).
Henceforth, we prove the bound for the Option II. We first decompose

(c) =

∥∥∥∥∥∥ 1n
∑
i∈Ĩt

1

(y0i −∇fi(x0))

∥∥∥∥∥∥
2

≤

∥∥∥∥∥ |Ĩt1|nb

∑
i∈I0

(∇fi(x0)−∇f(x0))

∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1n
∑
i∈Ĩt

1

(∇fi(x0)−∇f(x0))

∥∥∥∥∥∥
2

.
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By taking expectation, we have

(c) = E

E[|Ĩt1|2|I0]
b2n2

∣∣∣∣∣∑
i∈I0

(∇fi(x0)−∇f(x0))

∣∣∣∣∣
2
+ E

[
|Ĩt1|
n2

σ2
c

]

≤ E

n(1− (1− b
n )

t)(1− b
n )

t + n2(1− b
n )

2t

b2n2
·

∣∣∣∣∣∑
i∈I0

(∇fi(x0)−∇f(x0))

∣∣∣∣∣
2
+

n(1− b
n )

t

n2
σ2
c

≤ 2σ2
c

b
(1− b

n
)t +

σ2
c

n
(1− b

n
)t ≤ 3σ2

c

b
(1− b

n
)t,

which concludes the proof.

Now we have Lemma 1, which bounds the variance of our gradient estimator. We combine this with the following descent
lemma, which ensures decrease of the function values. Note that Assumption 1-(a) implies L-gradient Lipschitzness of f .

Lemma 6. Let f be an L-gradient Lipschitz function and xt := xt−1 − ηgt−1 + ξt−1 with ∥ξt−1∥ ≤ r. Then,

f(xt) ≤ f(xt−1) + η∥∇f(xt−1)− gt−1∥2 − η

2
∥∇f(xt−1)∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η

holds.

Proof. Starting from the direct result from L-gradient Lipschitzness, we have

f(xt) ≤ f(xt−1) + ⟨∇f(xt−1), xt − xt−1⟩+ L

2
∥xt − xt−1∥2

= f(xt−1) +

〈
∇f(xt−1)− gt−1 +

ξt−1

η
, xt − xt−1

〉
+

〈
gt−1 − ξt−1

η
, xt − xt−1

〉
+

L

2
∥xt − xt−1∥2

= f(xt−1) +

〈
∇f(xt−1)− gt−1 +

ξt−1

η
, xt − xt−1

〉
−
(
1

η
− L

2

)
∥xt − xt−1∥2

= f(xt−1) +
η

2

∥∥∥∥∇f(xt−1)− gt−1 +
ξt−1

η

∥∥∥∥2 − η

2
∥∇f(xt−1)∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2 (8)

≤ f(xt−1) + η∥∇f(xt−1)− gt−1∥2 − η

2
∥∇f(xt−1)∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2 + η

∥∥∥∥ξt−1

η

∥∥∥∥2 (9)

≤ f(xt−1) + η∥∇f(xt−1)− gt−1∥2 − η

2
∥∇f(xt−1)∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η
, (10)

where we used xt−xt−1 = ηvt−1+ ξt−1 and ⟨a− b, b⟩ = 1
2 (∥a− b∥2−∥a∥2+ ∥b∥2) for (8), ∥a+ b∥2 ≤ 2(∥a∥2+ ∥b∥2)

for (9), and ∥ξt−1∥ ≤ r for (10).

By combining Lemmas 1 and 6, we obtain the desired first-order convergence guarantee.

Proof of Theorem 1. We sum up Lemma 6 over all t = 1, 2, · · · , T to get

T∑
t=1

∥∇f(xt−1)∥2 ≤ 2

η

[(
f(x0)− f(xt)

)
−

T∑
t=1

(
1

2η
− L

2

)
∥xt − xt−1∥2 + η

T∑
t=1

∥∇f(xt−1)− gt−1∥2
]
+

2Tr2

η2
,

∴

(
min

1≤t≤T−1
E[∥∇f(xt−1)∥]

)2

≤ 2∆

ηT
− 1

ηT

T∑
t=1

(
1

η
− L

)
E[∥xt − xt−1∥2]+ 2

T

T∑
t=1

E[∥∇f(xt−1)− gt−1∥2]+ ε2

2
,

(11)

where we used r ≤ ηε
2 .
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We let gt = 1
n

∑n
i=1 y

t
i . Applying Lemma 1 yields that

T∑
t=1

E[∥∇f(xt−1)− gt−1∥2] ≤
T∑

t=1

30ζ2

b

t−1∑
s=1

(1− b

4n
)t−sE

[
∥xs − xs−1∥2

]
+

T∑
t=1

9σ2
c1[Option II]

b
(1− b

n
)t−1

≤ 120nζ2

b2

T∑
t=1

E
[
∥xt − xt−1∥2

]
+

9nσ2
c1[Option II]

b2
. (12)

Applying (12) to (11), we have(
min

1≤t≤T−1
E[∥∇f(xt−1)∥]

)2

≤ 2∆

ηT
− 1

ηT

T∑
t=1

(
1

η
− L− 240ηnζ2

b2

)
E[∥xt − xt−1∥2]+ ε2

2
+

9nσ2
c1[Option II]

b2T
.

By taking η ≤ 1
2L ∧

b
ζ
√
480n

, we obtain that

(
min

1≤t≤T−1
E[∥∇f(xt−1)∥]

)2

≤ 2∆

ηT
+

ε2

2
+

9nσ2
c1[Option II]

b2T
.

By taking T ≥ 8∆
ηε2 +

36nσ2
c1[Option II]
b2ε2 , we obtain Theorem 1. Especially, when η ≤ 1

2L∧
b

ζ
√
240n

, T ≥ 8∆
ε2 (2L+ζ

√
480n/b)+

36nσ2
c1[Option II]
b2ε2 .

D.2. Second-order Optimality (Proof of Theorem 2)

The goal of this subsection is to prove that SILVER can find second-order stationary points, as the first single-loop algorithm.

Theorem 2 (full version). Under Assumptions 1-(b), 2, 3-(a) (only for Option II), 4, and 5-(b), and let b = Ω̃(
√
n+ ζ2

δ2 ),

η = Θ̃( 1
L ), r = Õ

(
ε∨(δ2/ρ)

L

)
. Then, Algorithm 1 finds (ε, δ)-SOSPs using

Õ

(
n+

(
L∆+

1[Option II]nσ2
c

b2

)(
1

ε2
+

ρ2

δ4

)
b

)
stochastic gradients, with high probability.

The proof follows that of (Jin et al., 2017; Ge et al., 2019; Li, 2019); Let xτ0 be a point such as λmin(∇f(xτ0)) ≤ −δ. Around
that point, we consider two points x1 and x2 such that ⟨x1, e⟩ ≈ ⟨x2, e⟩, where e is the eigenvector of λmin(∇f(xτ0)).
Then, two coupled sequences that SILVER generates from the two initial points (x1 and x2) will be separated exponentially,
as long as they are in a small region around the initial points. This means that if we add some noise to the sequence around a
saddle point, then with a certain probability, the algorithm can move away from the saddle point.

We again emphasize that, although this high-level proof outline is classical, we face the difficulties arising from the
single-loop structure of the algorithm.

First, we need to prove the high-probability bound on the gradient estimator. Our estimator is more correlated than existing
ones due to the |Ĩts| term, thus requiring more delicate analysis than those for StabilizedSVRG (Ge et al., 2019) and
SSRGD (Li, 2019).

Also, Many existing algorithms compute periodic full gradient and can refresh their gradient estimators around saddle points.
In contrast, our single-loop algorithm does not use full gradient, meaning that we have to deal with the error accumulated
before that point, and it is not trivial whether such errors can be sufficiently small so that the direction of the negative
eigenvalue can be found by the gradient estimator. Regarding this point, we found that taking minibatch size as large as
b ≳
√
n+ ζ2

δ2 is sufficient. We note that a classical choice of δ is δ = O(
√
ε) (Nesterov and Polyak, 2006; Jin et al., 2017;

Li, 2019), and in this case b should be taken as O(
√
n+ 1

ε ), which as moderate as existing literature (Ge et al., 2019; Li,
2019).

The exponential separation of two sequences is formalized in the following lemma.
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Lemma 7 (Small stuck region). Let Assumptions 1-(b), 4, 5-(b) hold. Let {xt} be a sequence generated by SILVER and
suppose that there exists a step τ0 such that −γ := λmin(∇2f(xτ0)) ≤ −δ holds. We denote the smallest eigenvector
direction of λmin(∇2f(xτ0)) by e. Moreover, we define a coupled sequence {x̃t} by running SILVER with x̃0 = x0

and share the same choice of randomness, i.e., minibatches and noises with {xt}, except for the noise at some step
τ(> τ0): ξ̃τ = ξτ − ree with re ≥ rν√

d
(ν < 1). Let wt = xt − x̃t, gt = 1

n

∑n
i=1 y

t
i , g̃

t = 1
n

∑n
i=1 ỹ

t
i , and ht =

gt −∇f(xt)− (g̃t −∇f(x̃t)). Here ỹti is the counterpart of yti and corresponds to {x̃t}.

Then, there exists a constant C2 = Θ̃(1) such that if we take b = Ω̃(
√
n + ζ2

δ2 ), η = Θ̃
(
1
L

)
, and T2 = O

(
log γ

C2ρre

ηδ

)
=

Õ
(
L
δ

)
, it holds that

max
τ0≤t<τ+T2

{∥xt − xτ∥, ∥x̃t − xτ∥} ≥ δ

C2ρ

with high probability.

In the following, we first prove the high probability bound on the error in gt (high-probability version of Lemma 1), and
then prove Lemma 7.

Lemma 1 (High probability bound). Let Assumptions 5-(b), and 3-(a) (only for Option II) hold. Let gt = 1
n

∑n
i=1 y

t
i and

all the other variables be as stated in Algorithm 1. Then, with high probability,

∥gt −∇f(xt)∥2 ≤ C1ζ
2

b

t∑
s=max{1,t−T1}

∥xs − xs−1∥2 + C1σ
2
c1[Option II]1[t ≤ T1]

b
,

where T1 = Θ̃(nb ) and C1 = Õ(1). Here 1[Option II] = 1 for Option II and 0 otherwise, and 1[t ≤ T1] = 1 when t ≤ T1

and 0 otherwise.

Proof. With high probability, Ĩts = ∅ if t − s = Ω̃(nb ). Thus we assume this event happens below. Thus, by taking
T1 = Θ̃(nb ) and following (3), we have

∥gt −∇f(xt)∥2

≤ 3

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1}

∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(a)

+ 3

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1}

|Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(b)

+3

∥∥∥∥∥∥1[t ≤ T1]

n

∑
i∈Ĩt

1

(y0i −∇fi(x0))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(c)

.

We bound (a), (b), and (c) separately by showing the high-probability bounds of Lemmas 3 to 5. For (a),

(a) ≤ T1 + 1

n2

t∑
s=max{1,t−T1}

∥∥∥∥∥∥
∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥∥
2

≤ T1 + 1

n2

t∑
s=max{1,t−T1}

C1|Ĩts|ζ2∥xs − xs−1∥2 ≤ C1ζ
2

b

t∑
s=max{1,t−T1}

∥xs − xs−1∥2,

where we used the vector Bernstein inequality without replacement (Proposition 3) for the second inequality, under the
condition that |Ĩts| is fixed.
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For (b),

(b) ≤2

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1}

E[|Ĩts|]
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥∥
2

(13)

+
2T1

n2

t∑
s=max{1,t−T1}

(
|Ĩts| − E[|Ĩts|]

)2 ∥∥∥∥∥1b ∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1))

∥∥∥∥∥
2

. (14)

For the first term (13),

∥∥∥∥∥∥ 1n
t∑

s=max{1,t−T1}

E[|Ĩts|]
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥∥
2

=

t∑
s=max{1,t−T1}

∥∥∥∥∥E[|Ĩts|]bn2

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥
2

≤
t∑

s=max{1,t−T1}

∥∥∥∥∥E[|Ĩts|]bn2

∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)))

∥∥∥∥∥
2

≤ C1E[|Ĩts|]2ζ2

bn2

t∑
s=max{1,t−T1}

∥xs − xs−1∥2 ≤ C1ζ
2

b

t∑
s=max{1,t−T1}

∥xs − xs−1∥2, (15)

where we used the independentness of Is in the first equality and the vector Bernstein inequality (Proposition 3) for the
second last inequality.

On the other hand, for the second term (14), we have
(
|Ĩts| − E[|Ĩts|]

)2
≤ C1n. This can be checked as follows. We prepare

a “reverse” filtration F̃ = {F̃ t
s}

max{1,t−T1}
s=t with F̃ t

s = σ(It, It−1, · · · , Is). Because we have Es

[
|Ĩts+1| − |Ĩts| | F̃ t

s+1

]
=

b
n |Ĩ

t
s+1|, the following relation holds: Es

[
|Ĩts|

∣∣∣F̃ t
s+1

]
=
(
1− b

n

)
|Ĩts+1|. Hence, the process {ut

s := |Ĩts|−
(
1− b

n

)
|Ĩts+1| |

t > s ≥ t−T1} is a martingale with respect to F̃ and satisfies Es

[
ut
s

∣∣∣F̃ t
s+1

]
= 0. In addition, let A = {1, · · · , 1︸ ︷︷ ︸

|Ĩt
s+1|

, 0, · · · , 0︸ ︷︷ ︸
n−|Ĩt

s+1|

}

and Ã = (ã1, · · · , ãb) be a random sample without replacement from A, Then, ut
s conditioned on F̃ t

s+1 follows the same

distribution as that of
∑b

l=1 ãi − E
[∑b

l=1 ãi

]
. This means that, using Proposition 3, we have ∥ut

s∥2 ≤ C1b with high

probability. Finally, we apply Proposition 4 to bound |Ĩts| =
∑s

τ=t

(
1− b

n

)(τ−s)
ut
τ + n

(
1− b

n

)(t−s+1)
, which yields that(

|Ĩts| − E[|Ĩts|]
)2
≤ C1

∑s
τ=t

(
1− b

n

)(τ−s)
b ≤ C1b · nb = C1n with high probability. Therefore,

T1

n2

t∑
s=max{1,t−T1}

(
|Ĩts| − E[|Ĩts|]

)2 ∥∥∥∥∥1b ∑
i∈Is

(∇fi(xs)−∇fi(xs−1)− (∇f(xs) +∇f(xs−1)))

∥∥∥∥∥
2

≤ C1ζ
2

b2

t∑
s=max{1,t−T1}

∥xs − xs−1∥2. (16)

Combining (15) and (16) yields (b) ≤ C1ζ
2

b

∑t
s=max{1,t−T1} ∥x

s − xs−1∥2 with high probability.

Finally, we consider (c). As for Option I, the assertion directly follows from the definition of y0i . We prove the bound for
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Option II. We have

(c) ≤ 2

∥∥∥∥∥ 1n |Ĩt1|b ∑
i∈I1

(∇fi(x0)−∇f(x0))

∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥ 1n
∑
i∈Ĩt

1

(∇fi(x0)−∇f(x0))

∥∥∥∥∥∥
2

,

≤ C1|Ĩt1|2

n2b
σ2
c +

C1|Ĩt1|
n2

σ2
c ≤

C1

b
σ2
c .

Putting everything all together, we obtain the assertion with high probability.

Now we prove Lemma 7. We need the following auxiliary lemma.

Lemma 8. Under Assumptions 4 and 5-(b), we take T1 = Θ̃(nb ), T2 = Θ(
log δ

C2ρre

ηγ ), and assume maxτ0≤t≤τ+T2{∥xt −
xτ∥, ∥x̃t − xτ∥} < δ

C2ρ
. Then, the following holds uniformly for all t ≤ τ + T2 with high probability:

∥∥ht
∥∥ ≤



0 (t < τ)
C1ζre√

b
(t = τ)

C1ζre√
b

+
C1ζ√

b

√√√√ t∑
s=max{τ+1,t−T1}

∥ws − ws−1∥2 + C1δ

C2

√
b

√√√√ t∑
s=max{τ,t−T1}

∥ws∥2 (otherwise).

Proof. As for the case t < τ , the assertion directly follows from the definition of {x̃t}. For the proof of the rest cases, we
use notations as follows:

H = ∇2f(xτ0),

Hi = ∇2fi(x
τ0),

dHt =

∫ 1

0

(∇2f(x̃t + θ(xt − x̃t))−H)dθ,

dHt
i =

∫ 1

0

(∇2fi(x̃
t + θ(xt − x̃t))−Hi)dθ.

Moreover, to simplify the notation, we denote

us
i := (∇fi(xs)−∇fi(x̃s))− (∇fi(xs−1)−∇fi(x̃s−1))− (∇f(xs)−∇f(x̃s)) + (∇f(xs−1)−∇f(x̃s−1)).

We have that Ei[u
s
i ] = 0, where the expectation is taken over the choice of i. Furthermore, for s ≥ τ + 1, by using the

Hessian-heterogenity (Assumption 5) and the Hessian Lipschitzness (Assumption 4), we have that

∥us
i∥ = ∥(∇fi(xs)−∇fi(x̃s))− (∇fi(xs−1)−∇fi(x̃s−1))− (∇f(xs)−∇f(x̃s)) + (∇f(xs−1)−∇f(x̃s−1))∥

=

∥∥∥∥∫ 1

0

∇2fi(x̃
s − θ(xs − x̃s))(xs − x̃s)dθ −

∫ 1

0

∇2fi(x̃
s−1 − θ(xs−1 − x̃s−1))(xs−1 − x̃s−1)dθ

−
∫ 1

0

∇2f(x̃s − θ(xs − x̃s))(xs − x̃s)dθ +

∫ 1

0

∇2f(x̃s−1 − θ(xs−1 − x̃s−1))(xs−1 − x̃s−1)dθ

∥∥∥∥
= ∥(Hi + dHs

i )w
s − (Hi + dHs−1

i )ws−1 − (H + dHs)ws + (H + dHs−1)ws−1∥
≤ ∥Hi −H∥∥ws − ws−1∥+ (∥dHs

i ∥+ ∥dHs∥)∥ws∥+ (∥dHs−1
i ∥+ ∥dHs−1∥)∥ws−1∥

≤ ζ∥ws−ws−1∥+2ρ max
0≤θ≤1

{∥x̃s−θ(xs−x̃s)−xτ∥}∥ws∥+2ρ max
0≤θ≤1

{∥x̃s−1−θ(xs−1−x̃s−1)−xτ∥}∥ws−1∥

= ζ∥ws − ws−1∥+ 2ρmax{∥xs − xτ∥, ∥x̃s − xτ∥}∥ws∥+ 2ρmax{∥xs−1 − xτ∥, ∥x̃s−1 − xτ∥}∥ws−1∥

< ζ∥ws − ws−1∥+ 2δ

C2
∥ws∥+ 2δ

C2
∥ws−1∥, (17)
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where we use maxτ0≤t≤τ+T2
{∥xt − xτ∥, ∥x̃t − xτ∥} < δ

C2ρ
for the last inequality. For s = τ , by Assumption 5, we have

∥uτ
i ∥ = ∥(∇fi(xτ )−∇fi(x̃τ ))− (∇f(xτ )−∇f(x̃τ ))∥ ≤ 2ζ∥xτ − x̃τ∥ = 2ζre.

Recall the discussion in Lemma 1, we have

ht = gt −∇f(xt)− g̃t +∇f(x̃t)

=
1

n

t∑
s=max{τ,t−T1}

 |Ĩts|
b

∑
i∈Is

(∇fi(xs)−∇fi(xs−1))−
∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1))


− 1

n

t∑
s=max{τ,t−T1}

 |Ĩts|
b

∑
i∈Is

(∇fi(x̃s)−∇fi(x̃s−1))−
∑
i∈Ĩt

s

(∇fi(x̃s)−∇fi(x̃s−1))


=

1

n

t∑
s=max{τ,t−T1}

 |Ĩts|
b

∑
i∈Is

us
i −

∑
i∈Ĩt

s

us
i



=



1

n

 |Ĩττ |
b

∑
i∈Iτ

uτ
i −

∑
i∈Ĩτ

τ

uτ
i

 (t = τ)

1

n

 |Ĩtτ |
b

∑
i∈Iτ

uτ
i −

∑
i∈Ĩt

τ

uτ
i

+
1

n

t∑
s=max{τ+1,t−T1}

(
|Ĩts|
b

∑
i∈Is

us
i

)
− 1

n

t∑
s=max{τ+1,t−T1}

∑
i∈Ĩt

s

us
i (t ≥ τ + 1).

As for the first term in both cases, we have∥∥∥∥∥∥ 1n
 |Ĩtτ |

b

∑
i∈Iτ

uτ
i −

∑
i∈Ĩt

τ

uτ
i

∥∥∥∥∥∥ ≤
∥∥∥∥∥ 1n |Ĩtτ |b ∑

i∈Iτ

uτ
i

∥∥∥∥∥+
∥∥∥∥∥∥ 1n

∑
i∈Ĩt

τ

uτ
i

∥∥∥∥∥∥ ≤ |Ĩ
t
τ |
n

2C1ζre√
b
≤ 2C1ζre√

b
, (18)

by using Proposition 3 and ∥uτ
i ∥ ≤ 2ζre, with high probability.

For the second term in the case t ≥ τ +1, we follow how we bounded (b) in the proof of Lemma 1 (High probability bound).
We just replace ∇fi(xs)−∇fi(xs−1)− (∇f(xs)−∇f(xs−1)) by us

i and use (17) to obtain that∥∥∥∥∥∥ 1n
t∑

s=max{τ+1,t−T1}

|Ĩts|
b

∑
i∈Is

us
i

∥∥∥∥∥∥ ≤ 2C1√
b

√√√√ t∑
s=max{1,t−T1}

(
ζ∥ws − ws−1∥+ 2δ

C2
∥ws∥+ 2δ

C2
∥ws−1∥

)2

≤ 2C1√
b

√√√√ t∑
s=max{1,t−T1}

(
ζ∥ws − ws−1∥+ 2δ

C2
∥ws∥+ 2δ

C2
∥ws−1∥

)2

. (19)

with high probability.

Finally, we bound the last term in the case t ≥ τ + 1. By using Proposition 3, we obtain∥∥∥∥∥∥ 1n
t∑

s=max{τ+1,t−T1}

∑
i∈Ĩt

s

us
i

∥∥∥∥∥∥ ≤
√
T1 + 1

n

√√√√√ t∑
s=max{τ+1,t−T1}

∥∥∥∥∥∥
∑
i∈Ĩt

s

us
i

∥∥∥∥∥∥
2

≤ C1√
nb

√√√√ t∑
s=max{τ+1,t−T1}

C2
1b

(
ζ∥ws − ws−1∥+ 2δ

C2
∥ws∥+ 2δ

C2
∥ws−1∥

)2

≤ C1√
b

√√√√ t∑
s=max{τ+1,t−T1}

(
ζ∥ws − ws−1∥+ 2δ

C2
∥ws∥+ 2δ

C2
∥ws−1∥

)2

(20)
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with high probability.

Combining (18), (19), and (20), we have

∥ht∥ ≤ 2C1ζre√
b

+
2C1 + C1√

b

√√√√ t∑
s=max{τ+1,t−T1}

(
ζ∥ws − ws−1∥+ 2δ

C2
∥ws∥+ 2δ

C2
∥ws−1∥

)2

≤ C1ζre√
b

+
C1ζ√

b

√√√√ t∑
s=max{τ+1,t−T1}

∥ws − ws−1∥2 + C1δ

C2

√
b

√√√√ t∑
s=max{τ,t−T1}

∥ws∥2

with high probability for all t > τ . For t = τ , (18) directly implies the desired bound.

Now, we are ready to prove Lemma 7.

Proof of Lemma 7. We assume the contrary, i.e., maxτ0≤t≤τ+T2{∥xt − xτ∥, ∥x̃t − xτ∥} < δ
C2ρ

, and show the following
by induction: for τ ≤ t ≤ τ + T2,

(a)
1

2
(1 + ηγ)t−τre ≤ ∥wt∥ ≤ 2(1 + ηγ)t−τre

(b) ∥wt − wt−1∥ ≤

{
re (for t = τ)

3ηγ(1 + ηγ)t−τre (for t ≥ τ + 1)

(c) ∥ht∥ ≤ C1γ

C2
(1 + ηγ)t−τre.

Then, (a) yields contradiction by taking t− τ = T2 = Θ

(
log δ

C2ρre

ηγ

)
since it holds that

max
τ0≤t<τ+T2

{∥xt − xτ∥, ∥x̃t − xτ∥} ≥ 1

2
∥xt − x̃t∥ = 1

2
∥wt∥ ≥ δ

C2ρ
.

It is easy to check (a) and (b) for t = τ . As for (c), by taking b ≥ ζ2C2
2

δ2 , ∥hτ∥ ≤ C1

C2
δre ≤ C1

C2
γre holds with high probability

by Lemma 8.

Now, we derive that (a), (b), and (c) are true for t + 1 if they are true for t = τ, τ + 1, · · · , t. For t ≥ τ + 1, we can
decompose wt as

wt = wt−1 − η
(
gt−1 − g̃t−1

)
= wt−1 − η

(
∇f(xt−1)−∇f(x̃t−1) + gt−1 −∇f(xt−1)− g̃t−1 +∇f(x̃t−1)

)
= wt−1 − η

(∫ 1

0

∇2f(x̃t−1 + θ(xt−1 − x̃t−1))(xt−1 − x̃t−1)dθ + gt−1 −∇f(xt−1)− g̃t−1 +∇f(x̃t−1)

)
= wt−1 − η

(
(dHt−1 +H)wt−1 + gt−1 −∇f(xt−1)− g̃t−1 +∇f(x̃t−1)

)
= (I − ηH)wt−1 − η(dHt−1wt−1 + ht−1)

= (I − ηH)t−τwτ − η

t−1∑
s=τ

(I − ηH)t−1−s(dHsws + hs)

= (1 + ηγ)t−τree− η

t−1∑
s=τ

(I − ηH)t−1−s(dHsws + hs). (21)

According to this decomposition, we verify (a), (b), and (c).
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Verifying (a) The first term of (21) satisfies

∥(1 + ηγ)t+1−τree∥ = (1 + ηγ)t+1−τre.

Thus, it suffices to bound the norm of η
∑t−1

s=τ (I − ηH)t−1−s(dHsws + hs) by 1
2 (1 + ηγ)t−τre. We have∥∥∥∥∥η

t∑
s=τ

(I − ηH)t−sdHsws

∥∥∥∥∥ ≤ η

t∑
s=τ

∥I − ηH∥t−s ∥dHs∥ ∥ws∥ (22)

≤ η(1 + ηγ)t−τre

t∑
s=τ

∥dHs∥ (23)

≤ η(1 + ηγ)t−τreT2
δ

C2
(24)

≤ 1

4
(1 + ηγ)t−τre. (25)

For (22), we used the facts that the maximum eigenvalue of ηH is at most ηL ≤ 1 when η ≤ 1
L and that the minimum

eigenvalue is −ηγ, which imply ∥I − ηH∥ ≤ 1 + ηγ. (23) follows from the assumptions on ∥ws∥. For (24), we used
t ≤ τ + T2 and

∥dHs∥ =
∥∥∥∥∫ 1

0

(∇2f(x̃s + θ(xs − x̃s))−H)dθ

∥∥∥∥
≤ max

0≤θ≤1
ρ∥x̃s + θ(xs − x̃s)− xτ0∥

= max
0≤θ≤1

ρmax{∥xs − xτ0∥, ∥x̃s − xτ0∥} < ρ
δ

C2ρ
=

δ

C2
,

where the first inequality follows from the hessian Lipschitzness (Assumption 4). The final inequality (25) holds when we
take C2 as C2 ≥ 4δηT2 = Θ̃(1).

In addition, we have ∥∥∥∥∥η
t∑

s=τ

(I − ηH)t−shs

∥∥∥∥∥ ≤ η

t∑
s=τ

∥I − ηH∥t−s ∥hs∥

≤ η

t−1∑
s=τ

(1 + ηγ)t−s 3C1γ

C2
(1 + ηγ)s−τre (26)

= ηT2
C1γ

C2
(1 + ηγ)t−τre

≤ 1

4
(1 + ηγ)t−τre. (27)

Note that (26) can be checked by the same argument as (22) and the inductive hypothesis. (27) holds when we take
C2 ≥ 4ηγT2C1 = Θ̃(1).

Combining (25) and (27), we can bound the second term of (21) as desired, which concludes (a) holds for t ≥ τ + 1.

Verifying (b) For t ≥ τ + 1, we have

wt+1 − wt

= (1 + ηγ)t−τ+1ree− η

t∑
s=τ

(I − ηH)t−s(dHsws + hs)−

(
(1 + ηγ)t−τree− η

t−1∑
s=τ

(I − ηH)t−1−s(dHsws + hs)

)

= ηγ(1 + ηγ)t−τree− η

t−1∑
s=τ

ηH(I − ηH)t−1−s(dHsws + hs)− η(dHtwt + ht).
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As for the first term, we can bound its norm as

∥ηγ(1 + ηγ)t−τree∥ ≤ ηγ(1 + ηγ)t−τre.

The norm of the second term can be bounded by using (a) and (b) for τ + 1, · · · , t− 1 and Lemma 2 as follows:∥∥∥∥∥η
t−1∑
s=τ

ηH(I − ηH)t−1−s(dHsws + hs)

∥∥∥∥∥
≤

t−1∑
s=τ

η
∥∥ηH(I − ηH)t−1−s

∥∥ (∥dHs∥∥ws∥+ ∥hs∥)

≤
t−1∑
s=τ

η
∥∥ηH(I − ηH)t−1−s

∥∥( δ

C2
(1 + ηγ)s−τre +

C1γ

C2
(1 + ηγ)s−τre

)

≤
t−1∑
s=τ

η
∥∥ηH(I − ηH)t−1−s

∥∥( δ

C2
+

C1γ

C2

)
(1 + ηγ)s−τre

≤
t−1∑
s=τ

η

(
ηγ(1 + ηγ)t−1−s +

1

t− s

)(
δ

C2
+

C1γ

C2

)
(1 + ηγ)s−τre

≤ η (ηγT2 + log T2)

(
δ

C2
+

C1γ

C2

)
(1 + ηγ)t−τre.

Since T2 = Θ̃
(

1
ηγ

)
and γ ≥ δ, setting C2 = Θ̃(1) and η = Θ̃

(
1
L

)
with sufficiently large hidden constants yields

(ηγT2 + log T2)
(

δ
C2

+ C1γ
C2

)
≤ γ. Thus, the second term is bounded by ηγ(1 + ηγ)t−τre.

Finally, we consider the third term. We have ∥dHtwt∥ ≤ δ
C2

re(1 + ηγ)t−τre and ∥ht∥ ≤ C1γ
C2

(1 + ηγ)t−τre by the
inductive hypothesis. Thus, taking C2 sufficiently large, the third term is bounded by ηγ(1 + ηγ)t−τre.

Combining these bounds, we get (b) for t+ 1.

Verifying (c) By using Lemma 8 and the inductive hypothesis, we have

∥ht+1∥ ≤ C1ζre√
b

+
C1ζ√

b

√√√√ t∑
s=max{τ,t−T1}

∥ws − ws−1∥2 + C1δ

C2

√
b

√√√√ t∑
s=max{τ,t−T1}

∥ws∥2

≤ C1ζ√
b
re +

C1ζ
√
nηγ

b
(1 + ηγ)t−τre +

C1
√
nδ

C2b
(1 + ηγ)t−τre

≤
(
C1ζ√

b
+

C1ζ
√
nηγ

b
+

C1δ
√
n

C2b

)
(1 + ηγ)t−τre

with high probability for all t. Taking b ≥ Θ(
C2

2ζ
2

δ2 ∧C
2
2

√
n), η = Θ̃

(
1
L

)
, and C2 = O(C1) = Õ(1) gives C1ζ√

b
+ C1ζ

√
nηγ

b +
C1δ

√
n

C2b
≤ C1

C2
γ. Thus, we obtain that (c) holds for t+ 1.

Thus, we complete the induction step, and hence, the assertion follows.

From Lemma 7, we can ensure that SILVER escapes saddle points with high probability.

Lemma 9. Let Assumptions 1-(b), 4, 5-(b) hold. Let {xt} be a sequence generated by SILVER and τ0(≥ 0) be a step
where −γ := λmin(∇2f(xτ0)) ≤ −δ holds. We denote the eigenvector with the eigenvalue λmin(∇2f(xτ0)) by e. We take
b = Ω̃(

√
n+ ζ2

δ2 ), η = Θ̃
(
1
L

)
, and T2 = Õ

(
L
δ

)
. Then, for arbitrary τ > τ0, it holds that

P
[

max
τ0≤t≤τ+T2

∥xt − xτ0∥ ≥ δ

C2ρ
| I0, · · · , Iτ , ξ1, · · · , ξτ

]
≥ 1− 2ν,
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Proof. Let A be a subset of B(0, r) such that each a ∈ A satisfies

P
[

max
τ0≤t≤τ+T2

∥xt − xτ0∥ > δ

C2ρ
| I0, · · · , Iτ , ξ1, · · · , ξτ , ξτ+1 = a

]
≤ 1− ν.

Then, no two elements, ξτ+1 and ξ̃τ+1 such that ξτ+1 − ξ̃τ+1 = ree with re ≥ νr√
d

, can be elements of A at the same time
since by Lemma 7, it holds that

max
τ0≤t≤τ+T2

{∥xt − xτ0∥, ∥x̃t − xτ0∥} ≥ δ

C2ρ

with high probability. Let Vd(r) be the volume of Euclidean ball with radius r in Rd. Then, we have

Vol(A)

Vd(r)
≤ reVd−1(r)

Vd(r)
=

reΓ(
d
2 + 1)

√
πrΓ(d2 + 1

2 )
≤ re

πr

(
d

2
+ 1

) 1
2

≤ re
√
d

r
≤ ν.

This means that A occupies at least 1− 1
T of the volumes of B(0, r). From this fact and the definition of A, we have

P
[

max
τ0≤t≤τ+T2

∥xt − xτ0∥ ≥ δ

C2ρ
| I0, · · · , Iτ , ξ1, · · · , ξτ

]
≥ 1− ν − ν = 1− 2ν,

which gives the conclusion.

We are now ready to prove the main theorem of this subsection, which guarantees that the algorithm finds (ε, δ)-second-order
stationary point with high probability.

Proof of Theorem 2. Since T2 =
C3 log δ

C2ρre

ηγ depends on xτ0 (since γ depends on ∇2f(xτ0)), we take T2 =
C3 log δ

C2ρre

ηδ
instead from now. Note that this replacement does not affect whether Lemma 9 holds.

We devide {t = 0, 1, · · · , T − 1} into ⌈ T
2T2
⌉ phases: P s = {2sT2 ≤ t < 2(s+ 1)T2}

(
s = 0, · · · , ⌈ T

2T2
⌉ − 1

)
. For each

phase, we define as as a random variable defined by

as =


1
(
if
∑

t∈P s 1[∥∇f(xt)∥ > ε] > T2

)
,

2
(
if there exists t such that 2sT2 ≤ t < (2s+ 1)T2, ∥∇f(xt)∥ ≤ ε and λmin(∇2f(xt)) ≤ −δ

)
,

3
(
if there exists t such that 2sT2 ≤ t < (2s+ 1)T2, ∥∇f(xt)∥ ≤ ε and λmin(∇2f(xt)) > −δ

)
.

Note that P[as ∈ {1, 2, 3}] = 1 for each τ . This is because if there does not exist t between 2sT2 ≤ t < (2s+1)T2 such that
∥∇f(xt)∥ ≤ ε (i.e., neither aτ = 2 nor 3), then we have

∑
t∈P s 1[∥∇f(xt)∥ > ε] ≥

∑(2s+1)T2−1
t=2sT2

1[∥∇f(xt)∥ > ε] = T2,

meaning as = 1. We denote N1 =
∑ T

2T2
−1

s=0 1[as = 1], N2 =
∑ T

2T2
−1

s=0 1[as = 2], and N3 =
∑ T

2T2
−1

s=0 1[as = 3].

According to Lemma 9, with probability 1 − 2ν (here ν can be arbitrary small), it holds that if as = 2 then that phase
successes escaping saddle points. Specifically, by taking τ = (2s+ 1)T2, we have

max
τ≤t′<τ+T2

∥xτ − xt′∥ > δ

C2ρ
(28)

holds. (28) further leads to

T2

2(τ+1)T2−1∑
t=2τT2

∥xt+1 − xt∥2 >

(
δ

C2ρ

)2
⇐⇒ 2(τ+1)T2−1∑

t=2τT2

∥xt+1 − xt∥2 >
δ2

T2C2
2ρ

2

 . (29)

On the other hand, by combining Lemma 1 (High probability bound) and Lemma 6, we have
T∑

t=1

∥∇f(xt−1)∥2

≤ 2

η

[(
f(x0)−f(xt)

)
−
(

1

2η
−L

2
−C1ηζ

2n

b2

) T∑
t=1

∥xt−xt−1∥2+ ηC1T1σ
2
c1[Option II]
b

]
+

2Tr2

η2
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with high probability. By taking η = Θ̃
(
1
L

)
, applying b ≥ ζ

√
n and f(x0)− f(xt) ≤ ∆, and rearranging terms, we obtain

T∑
t=1

∥∇f(xt−1)∥2 + 1

2η2

T∑
t=1

∥xt − xt−1∥2 ≤ 2∆

η
+

2C1T1σ
2
c1[Option II]
b

+
2Tr2

η2

From the definition of aτ = 1 and (29), that the left-hand side is bounded as

T∑
t=1

∥∇f(xt−1)∥2 + 1

2η2

T∑
t=1

∥xt − xt−1∥2 ≥ N1T2ε
2 +

δ2N2

2η2T2C2
2ρ

2
.

Thus, it holds that

max

{
N1T2ε

2, N2T2 ·
δ2

2η2T 2
2C

2
2ρ

2

}
≤ 2∆

η
+

2C1T1σ
2
c1[Option II]
b

+
2Tr2

η2
(30)

By the parameter settings, we have 2η2T 2
2 C

2
2ρ

2

δ2 = Õ
(

ρ2

δ4

)
. From this, (N1 + N2)T2 ≤

Õ
(

1
ε2 + ρ2

δ4

)
× (the right-hand side of (30)). Taking T ≥ Ω̃

((
1
ε2 + ρ2

δ4

)(
∆
η +

nσ2
c1[Option II]

b2

))
=

Ω̃
((

1
ε2 + ρ2

δ4

)(
L∆+

1[Option II]nσ2
c

b2

))
and r = Õ(η(ε ∨ δ2/ρ)) = Õ((ε ∨ δ2/ρ)/L), there exists s such that

as = 3, which concludes the proof.

Remark 2. Although our main interest in this paper is to develop a simple algorithm with convergence to second-order
stationary points, it can be easily shown that adaptive selection of minibatch size can reduce the gradient complexity.
In Lemma 7, if we carefully check the proof, we can see that the condition b = Θ̃(

√
n + ζ2

δ2 ) is needed only for the
step τ . On the other hand, for all τ0 ≤ t ≤ τ + T2 except for t = τ , b = Θ̃(

√
n) is sufficient. Because we consider

τ = (2τ + 1)T2

(
τ = 0, · · · , T

2T2
− 1
)

, if we take b = Θ̃(
√
n+ ζ2

δ2 ) only at t = (2τ + 1)T2

(
τ = 0, · · · , T

2T2
− 1
)

and

b = Θ̃(
√
n) at the other steps, the above argument still holds with a slight modification. Then, the gradient complexity is

reduced to

Õ

(
n+ L∆

(√
n

ε2
+

ρ2
√
n

δ4
+

ζ2

Lε2δ
+

ζ2ρ2

Lδ5

))
(Option I),

.Õ

((
L∆+ σ2

c

)(√n
ε2

+
ρ2
√
n

δ4
+

ζ2

Lε2δ
+

ζ2ρ2

Lδ5

))
(Option II).

In the classical setting δ = O(
√
ρε), This bound is better than SSRGD (Li, 2019) when n ≥ ε−1/2, than Stabilized when

n ≥ ε−1/3, and than SPIDER-SFO+(+Neon2) (Fang et al., 2018; Allen-Zhu and Li, 2018) no matter what n and δ are.
We also note that, by carefully looking the proof of SSRGD (Li, 2019), we find that they implicitly limits their analysis to the
case of L2

δ2 ≲ n.

D.3. Exponential Convergence under PL Condition (proof of Theorem 3)

In this subsection, we prove that SILVER automatically switches to the exponential convergence when the PL condition
(Assumption 6) holds.

Proof of Theorem 3. According to the descent lemma (Lemma 6) and PL condition (Assumption 6), we have that

f(xt) ≤ f(xt−1) + η∥∇f(xt−1)− gt−1∥2 − η

2
∥∇f(xt−1)∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η

≤ f(xt−1) + η∥∇f(xt−1)− gt−1∥2 − ηµ

2
(f(xt−1)− f(x∗))−

(
1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η
.

Rearranging the terms yields

f(xt)− f∗ ≤ (1− ηµ

2
)(f(xt−1)− f∗) + η∥∇f(xt−1)− gt−1∥2 −

(
1

2η
− L

2

)
∥xt − xt−1∥2 + r2

η
. (31)
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By applying Lemma 1 to this, we obtain that

E[f(xt)− f∗] ≤ (1− ηµ

2
)E[(f(xt−1)− f∗)]−

(
1

2η
− L

2

)
E[∥xt − xt−1∥2]

+
30ηζ2

b

t−1∑
s=1

(1− b

4n
)t−sE

[
∥xs − xs−1∥2

]
+

9ησ2
c1[Option II]

b
(1− b

4n
)t−1 +

r2

η
. (32)

Multiplying both sides of (32) by (1− α)T−t with some 0 < α < 1 and summing up over all t = 1, 2, · · · , T , we get

E[f(xT )− f∗] +

T−1∑
t=1

(1− α)T−tE[f(xt)− f∗]

≤ (1− ηµ

2
)(1− α)T−1(f(x0)− f∗)+

T−1∑
t=1

(1− ηµ

2
)(1− α)T−t−1E[f(xt)− f∗]

−
T∑

s=1

(1− α)T−s

(
1

2η
− L

2
− 30ηζ2

b

T∑
t=s+1

(1− b

4n
)t−s(1− α)s−t

)
E[∥xs − xs−1∥2] (33)

+

T∑
t=1

(1− α)T−t(1− b

4n
)t−1 9ησ

2
c1[Option II]

b
+

r2

η

T∑
t=1

(1− α)T−t.

We let η = 1
2L ∧

b
4ζ

√
30n

and α = µ
4L ∧

µb

8ζ
√
30n
∧ b

8n = µη
2 ∧

b
8n . The choice of η ensures that (33) ≤ 0. All of (1− ηµ

2 )

can be replaced by (1−α), and especially the underlined parts cancel out each other. Also,
∑T

t=1(1−α)T−t(1− b
4n )

t−1 ≤∑T
t=1(1− α)T−t(1− b

8n )
2(t−1) ≤ 2

∑T
t=1(1− α)T (1− b

8n )
t ≤ 16n

b (1− α)T . Now, we obtain that

E[f(xT )− f∗] ≤ (1− α)T (f(x0)− f∗) + (1− α)T
144nησ2

c1[Option II]
b2

+
r2

ηα
.

We take T ≥ 1
α log

3(∆+
144nησ2

c1[Option II]

b2
)

ε = Θ((Lµ ∨
ζ
√
n

µb ∨
n
b ) log

∆+
nσc1[Option II]

bL

ε ), so that the first and second terms are

bounded by ε
3 , respectively. Here Tb matches the desired gradient complexity. Also, by taking r ≤

√
ηα
3 = η

√
εµ
6 ∧

√
ηεb
24n ,

the last term is also bounded by ε
3 . Therefore, the assertion follows.

E. MISSING STATEMENTS AND PROOFS FOR FL-SILVER

This section applies SILVER to communication-efficient federated learning. The full version of the algorithm is provided
as Algorithm 3. Theorem 4 is divided into three subsections, each of which corresponds to the first-order optimality, the
second-order optimality, and exponential convergence under the PL condition.

E.1. First-order Optimality

We first consider the first-order optimality. We give the full statement of our theorem below.

Theorem 5. Let Assumptions 1-(a), 2, 3-(a) (Only for Option II), 3-(b), and 5-(a) hold. Let r ≤ ηε
2 and PKb ≥ 192σ2

ε2 . Set
η as

η = Θ

(
1

L
∨ p

ζK
√
P
∧ p

√
b

L
√
PK

∧
√
b

L
√
K
∧ 1

ζK

)
.

Then, Algorithm 2 finds an ε-first-order stationary points xt,k for problem (2) in expectation, in

T = O

([[
L

K
∨ζ

(√
P

p
∨1

)
∨ L√

bK

(√
P

p
∨1

)]
∆+1[Option II]

(
σP

p2Kb
+
σ2
cP

p2

)]
1

ε2

)
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Algorithm 3 FL-SILVER(x0, η, p, b, T,K, r) (full version)

1: Option I: I0 ← [P ]
2: Option II: Randomly select p clients I0

3: for i ∈ I0 in parallel do
4: Randomly select minibatch J0

i with size Kb
5: y0i ← 1

Kb

∑
j∈J0

i
∇fi,j(x0)

6: Send y0i from i ∈ I0 to the server
7: if Option II: y0i ← 1

p

∑
i∈I0 y0i (i = 1, · · · , P ) // Not send y0

i to clients; Store y0
i in server until i sampled.

8: for t = 1 to T do
9: Randomly sample one client it and send

∑P
i=1 y

t−1
i and xt−1 from the server to it

10: xt,0 ← xt−1, zt,0 ← 0
11: for k = 1 to K do
12: xt,k ← xt,k−1−η( 1

P

∑P
i=1 y

t−1
i + zt,k−1)+ξt,k (ξt,k ∼ B(0, r))

13: Randomly select minibatch J t,k
it

with size b

14: zt,k ← zt,k−1 + 1
b

∑
j∈Jt,k

it

(∇fit,j(xt,k)−∇fit,j(xt,k−1))

15: Send xt,K from it to the server; xt ← xt,K

16: Randomly select p clients It and send xt from it to It

17: for i ∈ It in parallel do
18: Randomly select minibatch J t

i with size Kb
19: yti ← 1

Kb

∑
j∈Jt

i
∇fi,j(xt)

20: ∆yti ← 1
Kb

∑
j∈Jt

i
(∇fi,j(xt)−∇fi,j(xt−1))

21: Send {(yti ,∆yti)}i∈It from It to the server
22: yti ← yt−1

i + 1
p

∑
i∈It ∆yti for i /∈ It

// Practically, we update
∑P

i=1 y
t
i in O(pd) time in the server with efficient update of SILVER.

communication rounds and

1[Option I]P+Tp=1[Option I]P+O

([[
Lp

K
∨ζ
(√

P∨p
)
∨ L√

bK

(√
P∨p

)]
∆+1[Option II]

(
σP

pKb
+
σ2
cP

p

)]
1

ε2

)
communication complexity (total number of communicated gradients).

Remark 3. By letting b = K achieves the optimal communication rounds (and communication complexity) under the fixed
local computational budget bK:

T = O

([[
L

K
∨ζ

(√
P

p
∨1

)]
∆+1[Option II]

(
σP

p2K2
+
σ2
cP

p2

)]
1

ε2

)
.

One can see that our local minibatch size is a moderate choice compared to the literature; Murata and Suzuki (2021) uses
b ≥ K at every round and local full batch gradient periodically, and Karimireddy et al. (2021) uses local full batch gradient
every round. Also, we remark that bKP ≥ 192σ2

ε2 is satisfied when P is large even under the local budget bK is small.

From now, we prove Theorem 5. For convenience, define ỹ0i as

ỹ0i :=

{
∇fi(x0) (Option I),
1
p

∑
i∈I0 ∇fi(x0) (Option II).

For each t ≥ 1 and i, define T (t, i) as the last step t is sampled:

T (t, i) :=

{
max{s| 1 ≤ s ≤ t, i ∈ Is} (if {s| 1 ≤ s ≤ t, i ∈ Is} ≠ ∅),
0 (otherwise).
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In the following, a slight abuse of notation, we identify (t, k) = (t′, k′) if t+Kk = t′ +Kk′. We say (t, k) ≤ (t′, k′) if
t+Kk < t′ +Kk′.

Similarly to Lemma 1, we bound the difference between 1
P

∑P
i=1 y

t−1
i + zt,k and ∇f(xt,k).

Lemma 10. Suppose that Assumptions 1-(a), 3-(a) (Only for Option II), 3-(b), and 5-(a) hold. Then, regarding Algorithm 2,
we have

E[∥ 1
P

P∑
i=1

yt−1
i + zt,k −∇f(xt,k)∥2]

≤
[
180ζ2

p
+

12L2

pKb

] t∑
s=1

(1− p

4P
)t−s+1E

[
∥xs − xs−1∥2

]
+

[
6L2

b
+ 6ζ2K

] k∑
l=1

E[∥xt,l − xt,l−1∥2]

+
54σ2

c1[Option II]
p

(1− p

P
)t +

12σ2

PKb
+

6(1− p
P )tσ2

1[Option II]
pKb

.

Proof. We decompose the error into several parts. First, we observe that

1

P

P∑
i=1

yt−1
i + zt,k −∇f(xt,k) =

1

P

P∑
i=1

yt−1
i −∇f(xt−1) + zt,k − (∇f(xt,k)−∇f(xt,0)). (34)

Similarly to the proof of Lemma 1 (formal), we can expand 1
P

∑P
i=1 y

t
i −∇f(xt) as

1

P

P∑
i=1

yti −∇f(xt)

=
1

P

t∑
s=1

 |Ĩts|
p

∑
i∈Is

(∇fi(xs)−∇fi(xs−1))−
∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1))

+
1

P

∑
i∈Ĩt

1

(ỹ0i −∇fi(x0))

︸ ︷︷ ︸
(a)

+

t∑
s=1

|Ĩts|
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))

︸ ︷︷ ︸
(b)

+
1

PKb

P∑
i=1

1[T (t, i) ≥ 1]
∑

j∈J
T (t,i)
i

(∇fi,j(xT (t,i))−∇fi(xT (t,i)))

︸ ︷︷ ︸
(c)

+
1

P

P∑
i=1

1[T (t, i) = 0](y0i − ỹ0i )︸ ︷︷ ︸
(d)

. (35)

Also, we have

zt,k − (∇f(xt,k)−∇f(xt,0)) =

k∑
l=1

1

b

∑
j∈Jt,l

(∇fit,j(xt,l)−∇fit,j(xt,l−1))− (∇f(xt,k)−∇f(xt,0))

=

k∑
l=1

1

b

∑
j∈Jt,l

((∇fit,j(xt,l)−∇fit,j(xt,l−1))− (∇fit(xt,l)−∇fit(xt,l−1)))


︸ ︷︷ ︸

(e)

+∇fit(xt,k)−∇fit(xt,0)− (∇f(xt,k)−∇f(xt,0))︸ ︷︷ ︸
(f)

. (36)

Therefore, by (34), (35), and (36), we have∥∥∥∥∥ 1P
P∑
i=1

yt−1
i + zt,k −∇f(xt,k)

∥∥∥∥∥
2

≤ 6∥(a)∥2 + 6∥(b)∥2 + 6∥(c)∥2 + 6∥(d)∥2 + 6∥(e)∥2 + 6∥(f)∥2.
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For each term, we apply one of the following auxiliary lemmas, which directly yields the assertion.

Lemma 11. Under Assumptions 5-(a) and 3-(a) (only for Option II), the term (a) is bounded as follows:

E


∥∥∥∥∥∥ 1P

t∑
s=1

 |Ĩts|
p

∑
i∈Is

(∇fi(xs)−∇fi(xs−1))−
∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1))

+
1

P

∑
i∈Ĩt

1

(ỹ0i −∇fi(x0))

∥∥∥∥∥∥
2


≤ 30ζ2

p

t∑
s=1

(1− p

4P
)t−s+1E

[
∥xs − xs−1∥2

]
+

9σ2
c1[Option II]

p
(1− p

P
)t.

Lemma 12. Under Assumptions 1-(a), the term (b) is bounded as follows:

E



∥∥∥∥∥∥∥∥∥∥∥
t∑

s=1

|Ĩts|
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))

︸ ︷︷ ︸
(∗)

∥∥∥∥∥∥∥∥∥∥∥

2
≤

2L2(1− p
P )t−s+1

pKb

t∑
s=1

E
[
∥xs − xs−1∥2

]
.

Lemma 13. Under Assumption 3-(b), the term (c) is bounded as follows:

E


∥∥∥∥∥∥∥

1

PKb

P∑
i=1

1[T (t, i) ≥ 1]
∑

j∈J
T (t,i)
i

(∇fi,j(xT (t,i))−∇fi(xT (t,i)))

∥∥∥∥∥∥∥
2 ≤ σ2

PKb
.

Lemma 14. Under Assumption 3-(b), the term (d) is bounded as follows:

E

∥∥∥∥∥ 1P
P∑
i=1

1[T (t, i) = 0](y0i − ỹ0i )

∥∥∥∥∥
2
 ≤


(1− p

P )tσ2

PKb
(Option I),

(1− p
P )tσ2

pKb
(Option II).

Lemma 15. Under Assumption 1-(a), the term (e) is bounded as follows:

E


∥∥∥∥∥∥

k∑
l=1

1

b

∑
j∈Jt,l

((∇fit,j(xt,l)−∇fit,j(xt,l−1))−(∇fit(xt,l)−∇fit(xt,l−1)))

∥∥∥∥∥∥
2
≤ L2

b

k∑
l=1

E[∥xt,l − xt,l−1∥2].

Lemma 16. Under Assumption 5-(a), the term (f) is bounded as follows:

E
[∥∥∇fit(xt,k)−∇fit(xt,0)− (∇f(xt,k)−∇f(xt,0))

∥∥2]≤ ζ2K

k∑
l=1

E[∥xt,l − xt,l−1∥2].

Proof of Lemma 11. By replacing p and P by b and n, the term (a) is exactly the same as (3) in the proof of Lemma 1
(formal). Thus we simply follow the proof of Lemma 1 (formal) to obtain the assertion.

Proof of Lemma 12. Consider the conditional expectation on |Ĩts| for all s. each cross term of (∗) is still mean-zero on this
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conditioning, and therefore

E[(b)] = E

E

∥∥∥∥∥∥

t∑
s=1

|Ĩts|
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣ |Ĩt1|, · · · , |Ĩtt |




≤
t∑

s=1

E

E

∥∥∥∥∥∥ |Ĩ

t
s|

PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣ |Ĩt1|, · · · , |Ĩtt |




≤
t∑

s=1

E

[
E

[
|Ĩts|2L2

PpK2b
∥xs − xs−1∥2

∣∣∣∣∣ |Ĩt1|, · · · , |Ĩtt |
]]

.

=
L2

P 2pKb

t∑
s=1

E
[
E
[
|Ĩts|2|Is, · · · , It

]
∥xs − xs−1∥2

]
≤ L2

P 2pKb

t∑
s=1

E
[
[P (1− (1− p

P
)t−s+1)(1− p

P
)t−s+1 + P 2(1− p

P
)2(t−s+1)]∥xs − xs−1∥2

]
≤

2L2(1− p
P )t−s+1

pKb

t∑
s=1

E
[
∥xs − xs−1∥2

]
,

which concludes the proof.

Proof of Lemma 13. By conditioning (c) on T (t, i), the cross terms of
∑

j∈J
T (t,i)
i

(∇fi,j(xT (t,i))−∇fi(xT (t,i))) for two
different i are mean-zero. Thus,

E[(c)] = E

E

∥∥∥∥∥∥∥

1

PKb

P∑
i=1

1[T (t, i) ≥ 1]
∑

j∈J
T (t,i)
i

(∇fi,j(xT (t,i))−∇fi(xT (t,i)))

∥∥∥∥∥∥∥
2∣∣∣∣∣∣∣T (t, i)




=
1

P 2K2b2

P∑
i=1

E

E

∥∥∥∥∥∥∥1[T (t, i) ≥ 1]

∑
j∈J

T (t,i)
i

(∇fi,j(xT (t,i))−∇fi(xT (t,i)))

∥∥∥∥∥∥∥
2∣∣∣∣∣∣∣T (t, i)




≤ 1

P 2K2b2

P∑
i=1

E


∥∥∥∥∥∥∥
∑

j∈J
T (t,i)
i

(∇fi,j(xT (t,i))−∇fi(xT (t,i)))

∥∥∥∥∥∥∥
2 ≤ σ2

PKb
,

which concludes the proof.

Proof of Lemma 14. We first consider Option I:

E[(d)] = E


∥∥∥∥∥∥ 1P

P∑
i=1

1[T (t, i) = 0]

 1

Kb

∑
j∈J0

i

∇fi(x0)−∇fi,j(x0)

∥∥∥∥∥∥
2


≤ 1

P 2

P∑
i=1

E

1[T (t, i) = 0]

∥∥∥∥∥∥ 1

Kb

∑
j∈J0

i

∇fi,j(x0)−∇fi(x0)

∥∥∥∥∥∥
2
 .. (37)

For the second equality, we considered conditional expectation on T (t, i) similarly to the proof of Lemma 13. Because

T (t, i) and
∥∥∥ 1
Kb

∑
j∈J0

i
∇fi,j(x0)−∇fi,j(x0)

∥∥∥2 are independent and E[1[T (t, i) = 0]] = (1− p
P )t, we have

(37) ≤
(1− p

P )tσ2

PKb
,

40



Single-loop Variance Reduction for Federated Learning

which proves the claim for Option I.

For Option II, in the same way as we obtained (37), we have

E[(d)] = E


∥∥∥∥∥∥ 1P

P∑
i=1

1[T (t, i) = 0]

1

p

∑
i∈I0

1

Kb

∑
j∈J0

i

∇fi,j(x0)−∇fi(x0)

∥∥∥∥∥∥
2


≤ 1

P 2

P∑
i=1

E


∥∥∥∥∥∥1[T (t, i) = 0]

1

p

∑
i∈I0

1

Kb

∑
j∈J0

i

∇fi,j(x0)−∇fi(x0)

∥∥∥∥∥∥
2
 , (38)

which is further bounded, because T (t, i) is independent of I0 and J0
i and E[1[T (t, i) = 0]] = (1− p

P )t, as

(38) ≤ 1

P
E


∥∥∥∥∥∥1[T (t, i) = 0]

1

p

∑
i∈I0

1

Kb

∑
j∈J0

i

∇fi,j(x0)−∇fi(x0)

∥∥∥∥∥∥
2
 ≤ (1− p

P )tσ2

pKb
,

which gives the assertion for Option II.

Proof of Lemma 15. Because ∇fit,j(xt,l) −∇fit,j(xt,l−1)) −∇fit(xt,l) +∇fit(xt,l−1) is mean-zero and independent
from J t,1, · · · , J t,l−1, we have

E


∥∥∥∥∥∥

k∑
l=1

1

b

∑
j∈Jt,l

(∇fit,j(xt,l)−∇fit,j(xt,l−1))− (∇fit(xt,l)−∇fit(xt,l−1)))

∥∥∥∥∥∥
2
 ≤ L2

b

k∑
l=1

E[∥xt,l − xt,l−1∥2]

Proof of Lemma 16. Because of Assumption 5, we have

E
[∥∥∇fit(xt,k)−∇fit(xt,0)− (∇f(xt,k)−∇f(xt,0))

∥∥2]
≤ ζ2E[∥xt,k − xt,0∥2] ≤ ζ2K

k∑
l=1

E[∥xt,l − xt,k−1∥2].

Proof of Theorem 5. According to Lemma 6, for all t ≥ 1 and 1 ≤ k ≤ K, we have

f(xt,k)≤f(xt,k−1)+η∥∇f(xt,k−1)−( 1
P

P∑
i=1

yt−1
i +zt,k−1)∥2− η

2
∥∇f(xt,k−1)∥2−

(
1

2η
−L

2

)
∥xt,k − xt,k−1∥2+ r2

η
.

We sum up this over all (t′, k′) ≤ (T,K) to get

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2

≤2
η

[(
f(x0)−f(xT )

)
−

T∑
t=1

K∑
k=1

(
1

2η
−L

2

)
∥xt,k−xt,k−1∥2+η

T∑
t=1

∥∇f(xt,k−1)−( 1
P

P∑
i=1

yt−1
i +zt,k−1)∥2

]
+
2TKr2

η2
,

∴

 min
1≤t≤T
1≤k≤K

E[∥∇f(xt,k−1)∥]

2

≤ 2∆

ηTK
− 1

ηTK

T∑
t=1

K∑
k=1

(
1

η
− L

)
E[∥xt,k − xt,k−1∥2]

+
2

TK

T∑
t=1

T∑
k=1

E[∥∇f(xt,k−1)−( 1
P

P∑
i=1

yt−1
i +zt,k−1)∥2]+ ε2

2
. (39)
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Here we used f(x0)− f(xT ) ≤ ∆ and r ≤ ηε
2 .

According to Lemma 10, we have

2

TK

T∑
t=1

K∑
k=1

E[∥ 1
P

P∑
i=1

yt−1
i + zt,k −∇f(xt,k)∥2]

≤
[
360PK2ζ2

p2
+

24L2PK

p2b
+

12L2K

b
+ 12ζ2K2

] T∑
t=1

K∑
k=1

E[∥xt,k − xt,k−1∥2]

+
108σ2

cP1[Option II]
p2T

+
24σ2

PKb
+

12σ2P1[Option II]
p2bKT

. (40)

We take η as

η ≤ 1

2L
∨ p

ζK
√
2880P

∧ p
√
b

L
√
192PK

∧
√
b

L
√
96K

∧ 1√
96ζK

(41)

so that 360PKζ2

p2 + 24L2P
p2b + 12L2K2

b + 12ζ2K ≤ 1
2η2 and L ≤ 1

2η hold. Moreover, we apply the assumption 24σ2

PKb ≤
ε2

8 (or
just compute the local full gradient instead of sampling J t

i ), and let

T ≥
[
16∆

Kη
+ 1[Option II](

96σP

p2Kb
+

864σ2
cP

p2
)

]
1

ε2
.

so that 2∆
ηTK ,

108σ2
cP1[Option II]

p2T , 12σ2P1[Option II]
p2bKT ≤ ε2

8 hold. Especially, when we take η that satisfy the equality in (41), T
should satisfy

T ≥

[[
32L

K
∨ ζ

(
384
√
5P

p
∨ 64
√
6

)
∨ L√

bK

(
128
√
3P

p
∨ 64
√
6

)]
∆+ 1[Option II]

(
96σP

p2Kb
+

864σ2
cP

p2

)]
1

ε2
.

Finally, applying (40) to (39) yields that min
1≤t≤T
1≤k≤K

E[∥∇f(xt,k−1)∥]

2

≤ 2∆

ηTK
− 1

ηTK

T∑
t=1

K∑
k=1

(
1

η
− L

)
E[∥xt,k − xt,k−1∥2]

+
1

2η2TK

T∑
t=1

K∑
k=1

E[∥xt,k − xt,k−1∥2] + 3ε2

8︸ ︷︷ ︸
(40)

+
ε2

2
≤ ε2,

which concludes the proof.

E.2. Second-order Optimality

We show that FL-SILVER can efficiently find second-order stationary points. The full theorem is provided as follows.

Theorem 6. We assume Assumptions 1-(b), 2, 3-(b), 4, and 5-(b). For Option II, we additionally assume 3-(a). Set δ < ζ,
p = Θ̃(

√
P + ζ2

δ2 + L2

Kbδ2 ), b ≥ K, b = Ω̃( σ2

PKε2 ), η = Θ̃( 1
L ), r = Õ( ε

L ), and ν ∈ (0, 1). Then, Algorithm 2 finds
(ε, δ)-second-order stationary points using

Õ

(
1 +

[
∆

(
L

K
+ ζ

)
+ 1[Option II]

(
σP

p2Kb
+
σ2
cP

p2

)](
1

ε2
+

ρ2

δ4

))
communication rounds and

Õ

(
P +

(√
P +

ζ2

δ2
+

L2

Kbδ2

)[
∆

(
L

K
+ ζ

)
+ 1[Option II]

(
σP

p2Kb
+
σ2
cP

p2

)](
1

ε2
+

ρ2

δ4

))
communication complexity, with probability at least 1− ν.
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We first prepare a high-probability version of Theorem 5.
Lemma 17. Let Assumptions 1-(b), 2, 3-(a) (Only for Option II), 3-(b), and 5-(b) hold. Set η as

η = Θ̃

(
1

L
∨ p

ζK
√
P
∧ p

√
b

L
√
PK

∧
√
b

L
√
K
∧ 1

ζK

)
.

Then Algorithm 2 satisfies

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2 + 1

2η2

T∑
t=1

K∑
k=1

∥xt,k − xt,k−1∥2 ≤ 2∆

η
+

C1σ
2T

Pb
+ C11[Option II]K

[
σ2
cP

p2
+

σ2P

p2Kb

]
+

2r2

η2

with high probability.

Proof. Similarly to Lemma 1 (high probability bound), Ĩts = ∅ with high probability if t− s = Ω̃(Pp ). We set T3 = Θ̃(Pp )
so that with high probability, by following the proof of Lemma 10, we have

1

P

P∑
i=1

yt−1
i + zt,k −∇f(xt,k)

=
1

P

t∑
s=max{1,t−T3}

 |Ĩts|
p

∑
i∈Is

(∇fi(xs)−∇fi(xs−1))−
∑
i∈Ĩt

s

(∇fi(xs)−∇fi(xs−1))

+
1

P

∑
i∈Ĩt

1

(ỹ0i −∇fi(x0))

︸ ︷︷ ︸
(a)′

+

t∑
s=max{1,t−T3}

|Ĩts|
PpKb

∑
i∈Is

∑
j∈Js

i

(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))

︸ ︷︷ ︸
(b)′

+
1

PKb

P∑
i=1

1[T (t, i) ≥ 1]
∑

j∈J
T (t,i)
i

(∇fi,j(xT (t,i))−∇fi(xT (t,i)))

︸ ︷︷ ︸
(c)′

+
1

P

P∑
i=1

1[T (t, i) = 0](y0i − ỹ0i )︸ ︷︷ ︸
(d)′

.

+

k∑
l=1

1

b

∑
j∈Jt,l

((∇fit,j(xt,l)−∇fit,j(xt,l−1))− (∇fit(xt,l)−∇fit(xt,l−1)))


︸ ︷︷ ︸

(e)′

−∇fit(xt,k)−∇fit(xt,0)− (∇f(xt,k)−∇f(xt,0))︸ ︷︷ ︸
(f)′

.

Because
∥∥∥ 1
P

∑P
i=1 y

t−1
i + zt,k −∇f(xt,k)

∥∥∥2 ≤ 6∥(a)′∥2 + 6∥(b)′∥2 + 6∥(c)′∥2 + 6∥(d)′∥2 + 6∥(e)′∥2 + 6∥(f)′∥2, we
bound each by referring to Lemmas 11 to 16.

For (a)’, just following Lemma 1 (High probablity bound) gives

∥(a)′∥2 ≤ C1ζ
2

b

t∑
s=max{1,t−T3}

∥xs − xs−1∥2 + C1σ
2
c1[Option II]1[t ≤ T3]

b
.

For (b)’, we first bound
∣∣∣∑i∈Is

∑
j∈Js

i
(∇fi,j(xs)−∇fi,j(xs−1)− (∇fi(xs)−∇fi(xs−1)))

∣∣∣2 by C1L
2pKb∥xs −

xs−1∥2 using Proposition 2 and fixing Is, and then apply Proposition 4 by conditioning on |Ĩts| to obtain

∥(b)′∥2 ≤
t∑

s=max{1,t−T3}

|Ĩts|2C1L
2

P 2pKb
∥xs − xs−1∥2 ≤ C1L

2

pKb

t∑
s=max{1,t−T3}

∥xs − xs−1∥2.
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For (c)’, by conditioning on T (t, i), Proposition 2 yields

∥(c)′∥2 ≤ 1

P 2K2b2
C1

(
P∑
i=1

1[T (t, i) ≥ 1]

)
σ2 ≤ C1σ

2

PKb
.

For (d)’, if t > T3, it is equal to zero with high probability because 1[T (t, i) = 0] for all i. If t < T3, for Option I, by
conditioning on I0, · · · , IT , Proposition 2 yields

∥(d)′∥2 =

∥∥∥∥∥∥ 1P
P∑
i=1

1[T (t, i) = 0]

 1

Kb

∑
j∈J0

i

∇fi,j(x0)−∇fi(x0)

∥∥∥∥∥∥
2

≤ C1
1

P 2

(
P∑
i=1

1[T (t, i) = 0]

)
C1σ

2

Kb
≤ C1σ

2

PKb

and for Option II, Proposition 2 yields

∥(d)′∥2 =

∥∥∥∥∥∥ 1P
P∑
i=1

1[T (t, i) = 0]

1

p

∑
i′∈I0

1

Kb

∑
j∈J0

i′

∇fi′,j(x0)−∇fi′(x0)

∥∥∥∥∥∥
2

≤ 1

P 2

(
P∑
i=1

1[T (t, i) = 0]

)2

C1σ
2

pKb
≤ C1σ

2

pKb
.

For (e)’, first apply Proposition 2 1
b

∑
j∈Jt,l((∇fit,j(xt,l)−∇fit,j(xt,l−1))− (∇fit(xt,l)−∇fit(xt,l−1))) and then apply

Proposition 4 to obtain

∥(e)′∥2 ≤ C1L
2

b

k∑
l=1

∥xt,l − xt,l−1∥2.

Finally, for (f)’, just consider high probability bound with respect to the randomness of it yields

∥(e)′∥2 ≤ C1ζ
2K

k∑
l=1

∥xt,l − xt,l−1∥2.

Putting everything all together, we obtain the bound on the gradient estimator:

∥ 1
P

P∑
i=1

yt−1
i + zt,k −∇f(xt,k)∥2 ≤ C1

[
ζ2

p
+

L2

pKb

] t∑
s=max{1,t−T3}

E
[
∥xs − xs−1∥2

]
+ C1

[
L2

b
+ ζ2K

] k∑
l=1

E[∥xt,l − xt,l−1∥2] + C1σ
2

PKb
+ C11[Option II]1[t ≤ T3]

[
σ2
c

p
+

σ2

pKb

]
,

which implies

2

TK

T∑
t=1

K∑
k=1

∥ 1
P

P∑
i=1

yt−1
i + zt,k −∇f(xt,k)∥2 ≤ C1

[
PK2ζ2

p2
+

L2PK

p2b
+

L2K

b
+ ζ2K2

] T∑
t=1

K∑
k=1

∥xt,k − xt,k−1∥2

+
C1σ

2

PKb
+

C11[Option II]
T

[
σ2
cP

p2
+

σ2P

p2Kb

]
, (42)

where we used T3 = Õ( p
P ).
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Similarly to (39), when r ≤ ηε
2 , we have

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2 + 1

2η2

T∑
t=1

K∑
k=1

∥xt,k − xt,k−1∥2≤ 2∆

η
− 1

η

T∑
t=1

K∑
k=1

(
1

2η
− L

)
∥xt,k − xt,k−1∥2

+ 2

T∑
t=1

T∑
k=1

E[∥∇f(xt,k−1)−( 1
P

P∑
i=1

yt−1
i +zt,k−1)∥2]+ 2r2

η2
.

(43)

We take η as

η = Θ̃

(
1

2L
∨ p

ζK
√
P
∧ p

√
b

L
√
PK

∧
√
b

L
√
K
∧ 1

ζK

)
so that ∥xt,k − xt,k−1∥2 terms cancel out in (42) and RHS of (43). Then we obtain that

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2 + 1

2η2

T∑
t=1

K∑
k=1

∥xt,k − xt,k−1∥2 ≤ 2∆

η
+

C1σ
2T

Pb
+ C11[Option II]K

[
σ2
cP

p2
+

σ2P

p2Kb

]
+

2r2

η2

with high probability.

Similarly to the proof of SILVER, the key argument is the exponential separation of two coupled trajectories with different
initial values.
Lemma 18 (Small Stuck Region). Let Assumptions 1-(b), 4, and 5-(b) hold. Assume δ < 1

ζ . Let {xt,k} be a sequence
generated by FL-SILVER and (τ0, κ0) (0 ≤ κ0 < K) be a step where −γ := λmin(∇2f(xτ0,κ0)) ≤ −δ holds. We denote
the eigenvector with the eigenvalue λmin(∇2f(xτ0,κ0)) by e. Moreover, let {x̃t,k} by a coupled sequence that is generated
by FL-SILVER with x̃0 = x0 and shares the same choice of randomness with {xt} i.e., client samplings, minibatches
and noises, except for the noise at a step (τ0,K) > (τ0, κ0): ξ̃τ0,K = ξτ0,K − ree with re ≥ rν√

d
(0 < ν < 1). Let

wt,k = xt,k − x̃t,k, wt = xt− x̃t, gt,k = 1
P

∑P
i=1 y

t−1
i + zt,k, g̃t,k = 1

P

∑P
i=1 ỹ

t−1
i + zt,k, ht = 1

P

∑P
i=1 y

t
i −∇f(xt)−(

1
P

∑P
i=1 ỹ

t
i −∇f(x̃t)

)
, and ht,k = (zt,k − (∇f(xt,k) − ∇f(xt,0))) − (z̃t,k − (∇f(x̃t,k) − ∇f(x̃t,0))). Using these

notations, gt,k −∇f(xt,k)− (g̃t,k −∇f(x̃t,k)) = ht−1 + ht,k holds.

Then, there exists a sufficiently large constants C3 = Õ(1) with which the following holds: If we take p = Ω̃(
√
P + ζ2

δ2 +

L2

Kbδ2 ), b ≥ K,K = O(Lζ ), η = Θ̃
(
1
L

)
, and T4 = O(

C4 log δ
ρre

ηγ ) = Õ
(
L
δ

)
, with high probability, we have

max
(τ0,κ0)≤(t,k)<(τ0+1,T4)

{∥xτ,k − xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} ≥ δ

C3ρ
.

In order to show Lemma 18, we prepare the two following lemmas, which bound the difference between gradient estimation
errors of the two sequences.
Lemma 19. Under the same assumption as that of Lemma 18, we assume max(τ0,κ0)≤(t,k)<(τ0+1,T5){∥xτ,k −
xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} < δ

C3ρ
. Then, the following holds uniformly for all (τ0, κ0) ≤ (t, k) ≤ (τ0 + 1, T4) with

high probability:

∥∥ht
∥∥ ≤



0 (t < τ0),(
ζ
√
p
+

L√
pKb

)
C1re (t = τ0),(

ζ
√
p
+

L√
pKb

)
C1re +

(
ζ
√
K
√
p

+
L√
pb

)
C1

√√√√ t∑
s=max{τ0+1,t−T3}

K∑
k=1

∥ws,k − ws,k−1∥2

+
C1δ

C3
√
p

√√√√ t∑
s=max{τ0,t−T3}

∥ws∥2 (t ≥ τ0 + 1),

where T3 = Θ̃(Pp ), and C1 = Õ(1) is a sufficiently large constant.
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Lemma 20. Under the same assumption as that of Lemma 18, the following holds uniformly for all t ≥ τ0 + 1 and k ≥ 0
with high probability:

∥∥ht,k
∥∥≤ζ

k∑
l=1

∥wt,l−wt,l−1∥+ 2δ

C3
∥wt,k∥+ 2δ

C3
∥wt,0∥+ C1√

b

√√√√ k∑
l=1

(
L∥wt,l−wt,l−1∥+ 2δ

C3
∥wt,l∥+ 2δ

C3
∥wt,l−1∥

)2

.

For t ≤ τ0, we have
∥∥ht,k

∥∥ = 0.

Proof of Lemma 19. As for the case t < τ0, the assertion directly follows from the definition of {x̃t,k}. For the proof of the
rest cases, we use notations as follows:

H = ∇2f(xτ0,κ0),

Hi = ∇2fi(x
τ0,κ0)

Hi,j = ∇2fi,j(x
τ0,κ0),

dHt,k =

∫ 1

0

(∇2f(x̃t,k + θ(xt,k − x̃t,k))−H)dθ,

dHt,k
i =

∫ 1

0

(∇2fi(x̃
t,k + θ(xt,k − x̃t,k))−Hi)dθ,

dHt,k
i,j =

∫ 1

0

(∇2fi,j(x̃
t,k + θ(xt,k − x̃t,k))−Hi,j)dθ.

Moreover, we denote

us
i := (∇fi(xs)−∇fi(x̃s))− (∇fi(xs−1)−∇fi(x̃s−1))− (∇f(xs)−∇f(x̃s)) + (∇f(xs−1)−∇f(x̃s−1))

and

us
i,j := (∇fi,j(xs)−∇fi,j(x̃s))− (∇fi,j(xs−1)−∇fi,j(x̃s−1))− (∇fi(xs)−∇fi(x̃s)) + (∇fi(xs−1)−∇fi(x̃s−1)).

Note that Ei[u
s
i ] = 0 (expectation with respect to the choice of i) and Ej [u

s
i,j ] = 0 (expectation with respect to the choice of

j) hold. Using 1-(b), 4, 5 and max(τ0,κ0)≤(t,k)<(τ0+1,T5){∥xτ,k − xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} < δ
C3ρ

, we can derive that

∥us
i∥ ≤ ζ∥ws − ws−1∥+ 2δ

C3
∥ws∥+ 2δ

C2
∥ws−1∥ and ∥us

i,j∥ ≤ L∥ws − ws−1∥+ 2δ

C3
∥ws∥+ 2δ

C2
∥ws−1∥

for s ≥ τ0 + 1, by similar argument to the proof of Lemma 8. For t = τ0, we have ∥uτ0
i ∥ = ∥(∇fi(xτ0)−∇fi(x̃τ0))−

(∇f(xτ0) −∇f(x̃τ0))∥ ≤ ζ∥xτ0 − x̃τ0∥ = ζre and ∥uτ0
i,j∥ = ∥(∇fi,j(xτ0) −∇fi,j(x̃τ0)) − (∇f(xτ0) −∇f(x̃τ0))∥ ≤

L∥xτ0 − x̃τ0∥ = Lre.

As we did in Lemma 8, for t ≥ τ0 + 1, we have

ht =
1

P

 |Ĩtτ0 |
p

∑
i∈Iτ0

uτ0
i −

∑
i∈Ĩt

τ0

uτ0
i


︸ ︷︷ ︸

(a)

+
1

PKb

 |Ĩτ0τ0 |
p

∑
i∈Iτ0

∑
j∈J

τ0
i

uτ0
i,j −

∑
i∈Ĩ

τ0
τ0

∑
j∈J

τ0
i

uτ0
i,j


︸ ︷︷ ︸

(b)

+
1

P

t∑
s=max{τ0+1,t−T3}

(
|Ĩts|
p

∑
i∈Is

us
i

)
− 1

P

t∑
s=max{τ0+1,t−T3}

∑
i∈Ĩt

s

us
i︸ ︷︷ ︸

(c)

+
1

PKb

t∑
s=max{τ0+1,t−T3}

 |Ĩts|
p

∑
i∈Is

∑
j∈Js

i

us
i,j

− 1

PKb

t∑
s=max{τ0+1,t−T3}

∑
i∈Ĩt

s

∑
j∈Js

i

us
i,j︸ ︷︷ ︸

(d)
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with high probability uniformly for all t. For t = τ0, hτ0 = (a) + (b) holds.

Recall the argument in Lemma 8. We have that

∥(a)∥ ≤ C1ζre√
p

and ∥(c)∥ ≤ C1√
p

√√√√ ∑
s=max{τ0+1,t−T3}

(
ζ∥ws − ws−1∥+ 2δ

C3
∥ws∥+ 2δ

C3
∥ws−1∥

)2

hold with high probability.

Moreover, by conditioning on Iτ0 , Proposition 2 yields that

∥(b)∥ ≤

∥∥∥∥∥∥ 1P |Ĩ
t
τ0 |
p

∑
i∈Iτ0

∑
j∈J

τ0
i

uτ0
i,j

∥∥∥∥∥∥+
∥∥∥∥∥∥∥
1

P

∑
i∈Ĩt

τ0

∑
j∈J

τ0
i

uτ0
i,j

∥∥∥∥∥∥∥ ≤
|Ĩtτ0 |
P

C1Lre√
pKb

+

√
|Ĩtτ0 |C1Lre

P
√
Kb

≤ C1Lre√
pKb

,

with high probability.

For (d), we first bound∥∥∥∥∥∥ |Ĩ
t
s|
p

∑
i∈Is

∑
j∈Js

i

us
i,j

∥∥∥∥∥∥ ≤ C1|Ĩts|
√
Kb

√
p

(
L∥ws − ws−1∥+ 2δ

C3
∥ws∥+ 2δ

C3
∥ws−1∥

)
,

∥∥∥∥∥∥
∑
i∈Ĩt

s

∑
j∈Js

i

us
i,j

∥∥∥∥∥∥ ≤ C1

√
|Ĩts|Kb

(
L∥ws − ws−1∥+ 2δ

C3
∥ws∥+ 2δ

C3
∥ws−1∥

)

with high probability, using Proposition 2. Then, by Proposition 4, we have

∥(d)∥ ≤ C1√
pKb

√√√√ t∑
s=max{τ0+1,t−T3}

(
L∥ws − ws−1∥+ 2δ

C3
∥ws∥+ 2δ

C3
∥ws−1∥

)2

.

By combining all these, we have

∥gt∥ ≤
(

ζ
√
p
+

L√
pKb

)
C1ζre +

(
ζ
√
p
+

L√
pKb

)
C1

√√√√ t∑
s=max{τ0+1,t−T3}

∥ws − ws−1∥2

+
C1δ

C3

√√√√ t∑
s=max{τ0,t−T3}

∥ws∥2

≤
(

ζ
√
p
+

L√
pKb

)
C1ζre +

(
ζ
√
K
√
p

+
L√
pb

)
C1

√√√√ t∑
s=max{τ0+1,t−T3}

K∑
k=1

∥ws,k − ws,k−1∥2

+
C1δ

C3
√
p

√√√√ t∑
s=max{τ0,t−T3}

∥ws∥2

with high probability. Thus, we get the assertion for t ≥ τ0 + 1. For t = τ0, the bounds on (a) and (b) imply the desired
bound.

Proof of Lemma 20. Let

ut,l
i := (∇fi(xt,l)−∇fi(x̃t,l))− (∇fi(xt,0)−∇fi(x̃t,0))− (∇f(xt,l)−∇f(x̃t,l)) + (∇f(xt,0)−∇f(x̃t,0))
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and

ut,l
i,j :=(∇fi,j(xt,l)−∇fi,j(x̃t,l))− (∇fi,j(xt,l−1)−∇fi,j(x̃t,l−1))

− (∇fi(xt,l)−∇fi(x̃t,l)) + (∇fu(xt,l−1)−∇fi(x̃t,l−1))

By their definitions, ht,k = ut,l
it

+ 1
b

∑k
l=1

∑
j∈Jt,l

it

ut,l
it,j

holds. We can bound the norm of them as

∥ut,k
it
∥ ≤ ζ∥wt,k − wt,0∥+ 2δ

C3
∥wt,k∥+ 2δ

C3
∥wt,0∥ ≤ ζ

k∑
l=1

∥wt,l − wt,l−1∥+ 2δ

C3
∥wt,k∥+ 2δ

C3
∥wt,0∥ (44)

and

∥ut,l
it,j
∥ ≤ L∥wt,l − wt,l∥+ 2δ

C3
∥wt,l∥+ 2δ

C3
∥wt,l−1∥.

Thus, applying Proposition 2 and Proposition 4 to 1
b

∑k
l=1

∑
j∈Jt,l

it

ut,l
it,j

, we get

∥∥∥∥∥∥∥
1

b

k∑
l=1

∑
j∈Jt,l

it

ut,l
it,j

∥∥∥∥∥∥∥ ≤
C2

1√
b

√√√√ k∑
l=1

(
L∥wt,l − wt,l−1∥+ 2δ

C3
∥wt,l∥+ 2δ

C3
∥wt,l−1∥

)2

(45)

with high probability for all t and K.

Substituting (44) and (45) to ht,k = ut,l
it

+ 1
b

∑k
l=1

∑
j∈Jt,l

it

ut,l
it,j

, we get the desired bound.

Now, we are ready to prove Lemma 18.

Proof of Lemma 18. We assume the contrary and show the following by induction, for (τ0 + 1, 0) ≤ (t, k) ≤ (τ0 + 1, T4):

(a)
1

2
(1 + ηγ)(t−τ0−1)K+kre ≤ ∥wt,k∥ ≤ 2(1 + ηγ)(t−τ0−1)K+kre

(b) ∥wt,k − wt,k−1∥ ≤

{
re (for (t, k) = (τ0 + 1, 0))

3ηγ(1 + ηγ)(t−τ0−1)K+kre (for (t, k) > (τ0 + 1, 0))

(c) ∥ht−1 + ht,k∥ ≤ C1γ

C3
(1 + ηγ)(t−τ0−1)K+kre.

Then, (a) yields contradiction by taking (t, k)− (τ0 + 1, 0) = T4 = Θ

(
1 +

log δ
C2ρre

ηγK

)
to break the assumption.

It is easy to check (a) and (b) for and t = τ0 + 1 and k = 0. As for (c), checking the initial condition at (t, k) = (τ0 + 1, 0)

requires assumption on the size of p. According to Lemma 19, taking p ≥ C1C
2
3 (

ζ2

δ2 + L2

δ2Kb ), ∥g
τ0∥ ≤ C1

C3
δre ≤ C1γre

holds.

Now, we derive that (a), (b) and (c) are true for (t, k + 1), assuming that they are true for all (τ0 + 1, 0), · · · , (t, k). To this
end, we consider the decomposition of wt,k as follows:

wt,k+1 = wt,k − η
(
gt,k − g̃t,k

)
= (1 + ηγ)(t−τ0−1)K+k+1ree− η

(t,k)∑
(s,l)=(τ0+1,0)

(I − ηH)(t−s)K+(k−l)(dHs,lws,l + hs−1 + hs,l), (46)

for (t, k + 1) ≥ (τ0 + 1, 1).
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Verifying (a) The first term (1 + ηγ)(t−τ0−1)K+k+1ree of (46) satisfies

∥(1 + ηγ)(t−τ0−1)K+k+1ree∥ = (1 + ηγ)(t−τ0−1)K+k+1re.

Then, focus on bounding η
∑t,k

(s,l)=(τ0+1,0)(I−ηH)(t−s)K+(k−l)(dHs,lws,l+hs−1+hs,l) by 1
2 (1+ηγ)(t−τ0−1)K+k+1re.

We have∥∥∥∥∥∥η
(t,k)∑

(s,l)=(τ0+1,0)

(I − ηH)(t−s)K+(k−l)dHs,lws,l

∥∥∥∥∥∥ ≤ η

(t,k)∑
(s,l)=(τ0+1,0)

∥I − ηH∥(t−s)K+(k−l)
∥∥dHs,l

∥∥ ∥∥ws,l
∥∥

≤ 2η(1 + ηγ)(t−s)K+(k−l)+(s−τ0−1)K+lre

t,k∑
(s,l)=(τ0+1,0)

∥∥dHs,l
∥∥

≤ 2η(1 + ηγ)(t−τ0−1)K+kreT4K
δ

C3

≤ 2ηδT4

C3
(1 + ηγ)(t−τ0−1)K+kre

≤ 1

4
(1 + ηγ)(t−τ0−1)K+kre. (47)

The last inequality follows from the definition of T4 = Θ(
log δ

C3ρre

ηγ ) ≤ C3

8ηδ . when we take C3 sufficiently large.

In addition, we have∥∥∥∥∥∥η
(t,k)∑

(s,l)=(τ0+1,0)

(I − ηH)(t−s)K+(k−l)(hs−1 + hs,l)

∥∥∥∥∥∥ ≤ η

(t,k)∑
(s,l)=(τ0+1,0)

∥I − ηH∥(t−s)K+(k−l)
∥∥gs−1 + hs,l

∥∥
≤ η

(t,k)∑
(s,l)=(τ0+1,0)

(1 + ηγ)(t−s)K+(k−l)C1γ

C3
(1 + ηγ)(s−τ0−1)K+l

≤ ηγT4

C3
(1 + ηγ)(t−τ0−1)K+k

≤ 1

4
(1 + ηγ)(t−τ0−1)K+kre. (48)

For the final inequality, we again use T4 = Θ(
log δ

C3ρre

ηγ ) ≤ C3

4ηδ with sufficiently large C3.

Combining (47) and (48), we get (a) for (t, k + 1) as desired.

Verifying (b) For (t, k) ≥ (τ0 + 1, 0), we have

wt,k+1 − wt,k

= (1 + ηγ)(t−τ0−1)K+k+1ree− η

(t,k)∑
(s,l)=(τ0+1,0)

(I − ηH)(t−s)K+(k−l)(dHs,lws,l + hs−1 + hs,l)

− (1 + ηγ)(t−τ0−1)K+kree− η

(t,k−1)∑
(s,l)=(τ0+1,0)

(I − ηH)(t−s)K+(k−l)(dHs,lws,l + hs−1 + hs,l)

= ηγ(1 + ηγ)(t−τ0−1)K+kree

− η

(t,k−1)∑
(s,l)=(τ0+1,0)

ηH(I − ηH)(t−s)K+(k−l)(dHs,lws,l + hs−1 + hs,l)− η(dHtwt + ht−1 + ht,k).

As for the first term, we can bound it as

∥ηγ(1 + ηγ)(t−τ0−1)K+kree∥ ≤ ηγ(1 + ηγ)(t−τ0−1)K+kre.
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Evaluating the second term requires (a) and (b) for (τ0 + 1, 0), · · · , (t, k − 1) and Lemma 2:∥∥∥∥∥∥η
(t,k−1)∑

(s,l)=(τ0+1,0)

ηH(I − ηH)(t−s)K+(k−l)(dHs,lws,l + hs−1 + hs,l)

∥∥∥∥∥∥
≤

(t,k−1)∑
(s,l)=(τ0+1,0)

η
∥∥∥ηH(I − ηH)(t−s)K+(k−l)

∥∥∥ (∥dHs,l∥∥ws,l∥+ ∥hs−1 + hs,l∥
)

≤
(t,k−1)∑

(s,l)=(τ0+1,0)

η
∥∥∥ηH(I − ηH)(t−s)K+(k−l)

∥∥∥( δ

C3
(1 + ηγ)(s−τ0−1)K+lre +

C1γ

C3
(1 + ηγ)(s−τ0−1)K+lre

)

≤
(t,k−1)∑

(s,l)=(τ0+1,0)

η

(
ηγ(1 + ηγ)(t−s)K+(k−l) +

1

(t− s)K + (k − l)

)(
δ

C3
+

C1γ

C3

)
(1 + ηγ)(s−τ0−1)K+lre

≤ η (ηγT5 + log T5)

(
δ

C3
+

C1γ

C3

)
(1 + ηγ)(t−τ0−1)K+kre.

Since T4 = Õ
(

1
ηγ

)
and γ ≥ δ, setting C3 = Õ(1) with sufficiently large C3 yields (ηγT5 + log T5)

(
δ
C3

+ C1γ
C3

)
≤ γ.

Thus, the second term is bounded by ηγ(1 + ηγ)(t−τ0−1)K+kre.

Finally, we consider the third term. We have ∥dHt,kwt,k∥ ≤ δ
C3

re(1 + ηγ)(t−τ0−1)K+kre and ∥gt−1 + ht,k∥ ≤ 2C1γ
C3

(1 +

ηγ)(t−τ0−1)K+kre. Thus, by taking C3 sufficiently large, the third term is bounded by ηγ(1 + ηγ)(t−τ0−1)K+kre.

By combining these bounds, we get (b) for (t, k + 1).

Verifying (c) Using Lemma 19 and assumptions, we have

∥ht+1∥

≤
(

ζ
√
p
+

L√
pKb

)
C1re +

(
ζ
√
K
√
p

+
L√
pb

)
C1

√√√√ t∑
s=max{τ0+1,t−T3}

K∑
k=1

∥ws,k − ws,k−1∥2

+
C1δ

C3
√
p

√√√√ t∑
s=max{τ0,t−T3}

∥ws∥2

≤

[
ζC1√

p
+

LC1√
pKb

+

(
C1ζKT

1
2
3√

p
+

C1LK
1
2T

1
2
3√

pb

)
3ηγ(1 + ηγ)(t−τ0−1)K+K +

C1T
1
2
3 δ

C3

√
pK

(1 + ηγ)(t−τ0−1)K+K

]
re

=

[
ζC1√

p
+

LC1√
pKb

+

(
C1ζP

1
2K

p
+
C1L
√
PK

p
√
b

)
3ηγ(1 + ηγ)(t−τ0−1)K+K+

C1

√
Pδ

C3p
(1 + ηγ)(t−τ0−1)K+K

]
re.

Taking p ≥ C1C
2
3 (
√
P +

C2
3ζ

2

δ2 +
C2

3L
2

δ2Kb ), b ≥ K, and K = O
(

L
ζ

)
, we have ∥ht+1∥ ≤ C1γ

C3
(1 + ηγ)(t−τ0)K .

Moreover, Lemma 20 states that, for k < K,∥∥ht,k+1
∥∥

≤ ζ

k+1∑
l=1

∥wt,l − wt,l−1∥+ 2δ

C3
∥wt,k+1∥+ 2δ

C3
∥wt,0∥+ C1√

b

√√√√k+1∑
l=1

(
L∥wt,l − wt,l−1∥+ 2δ

C3
∥wl,k∥+ 2δ

C3
∥wt,l−1∥

)2

holds with high probability. If (a) and (b) hold for all (s, l) ≤ (t, k + 1), then we have∥∥ht,k+1
∥∥ ≤ 3ζKηγ(1 + ηγ)(t−τ0−1)K+k+1 +

8δ

C3
(1 + ηγ)(t−τ0−1)K+k+1

+
C1

√
K√
b

Lηγ(1 + ηγ)(t−τ0−1)K+k+1 +
C1

√
Kδ√
b

(1 + ηγ)(t−τ0−1)K+k+1.
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Taking b ≥ K, η = Θ̃( 1
L ), and K = O

(
L
ζ

)
, we have ∥ht,k+1∥ ≤ C1γ

C3
(1 + ηγ)(t−τ0−1)K+k+1. Thus, we obtain that (c)

holds for (t, k + 1).

Therefore, we have completed the induction step and have 1
2 (1 + ηγ)(t−τ0−1)K+kre ≤ ∥wt∥ for all (τ0 + 1, 0) ≤ (t, k) <

(τ0 + 1, T5) with T4 = Θ(
log δ

C3ρre

ηγ ). Taking C3 sufficiently large, we have 1
2 (1 + ηγ)(τ0+1−τ0−1)K+T5re ≥ δ

C3ρ
. This

yields contradiction against the assumption and the desired assertion follows.

From Lemma 18, we can show that FL-SILVER escapes saddle points with high probability. We have the following lemma,
and the proof is the same as that of Lemma 9.
Lemma 21. Let {xt,k} be a sequence generated by FL-SILVER and (τ0, κ0) (0 ≤ κ0 < K) be a step where −γ :=

λmin(∇2f(xτ0,κ0)) ≤ −δ holds. We take ν ∈ (0, 1), p ≥ Ω̃(
√
P + ζ2

δ2 + L2

Kbδ2 ), b ≥
√
K and, η = Θ̃

(
1
L

)
, and

T4 = Θ(
log δ

C3ρre

ηγ ) = Θ̃
(
L
δ

)
, with sufficiently large C3 = Õ(1). Then,

P
[

max
(τ0,κ0)≤(t,k)<(τ0+1,T5)

∥xt,k − xτ0,κ0+1∥ ≥ δ

C3ρ
| I0, · · · , Iτ , i0, · · · , iτ0 , ξ0,0, · · · , ξτ0,κ0

]
≥ 1− ν.

Finally, we show the main theorem of this subsection, which guarantees that the algorithm finds (ε, δ)-second-order
stationary point with high probability.

Proof of Theorem 2. Since T4 = Θ(
log δ

C3ρre

ηγ ) depends on xτ0,κ0 , we take T4 = Θ(
log δ

C3ρre

ηδ ) from now instead. This
change does not affect whether Lemma 21 holds. Also, we let T5 = ⌈1 + T4

K ⌉.

We divide {t = 0, 1, · · · , T−1} into the following ⌊ T
2T5
⌋ phases: P s = {2sT5 ≤ t < 2(s+1)T5}

(
τ = 0, · · · , ⌊ T

2T5
⌋ − 1

)
.

For each phase, we define as as a random variable taking values

as =
1
(

if
∑

t∈P s

∑K
k=0 1[∥∇f(xt,k)∥ > ε] > KT5

)
2
(
if there exists t such that (2sT5, 0)≤(t, k) < ((2s+ 1)T5, 0), ∥∇f(xt,k)∥ ≤ ε and λmin(∇2f(xt,k))≤−δ

)
3
(
if there exists t such that (2sT5, 0)≤(t, k) < ((2s+ 1)T5, 0), ∥∇f(xt,k)∥ ≤ ε and λmin(∇2f(xt,k))>−δ

)
.

Note that P[as = 1, 2, 3] = 1 for each s. This is because if there does not exist t between (2τT5, 0) ≤ (t, k) <

((2s + 1)T5, 0) such that ∥∇f(xt,k)∥ ≤ ε (i.e., neither as = 2 nor 3), then we have
∑

t∈P s

∑K
k=0 1[∥∇f(xt,k)∥ >

ε] ≥
∑(2τ+1)T5−1

t=2sT5

∑K
k=0 1[∥∇f(xt,k)∥ > ε] = T5K, meaning as = 1. We denote N1 =

∑⌊ T
2T5

⌋
s=0 1[as = 1], N2 =∑⌊ T

2T5
⌋

s=0 1[as = 2], and N3 =
∑⌊ T

2T5
⌋

s=0 1[as = 3].

According to Lemma 21, with high probability over all s, it holds that if as = 2 then that phase successes escaping saddle
points; i.e., there exists (2τT5, 0) ≤ (t, k) < ((2τ + 1)T5, 0) and

max
(t,k)≤(t′,k′)<((2s+2)T5,0)

∥xt′,k′
− xt,k∥ > δ

C3ρ
(49)

holds. Eq. (49) further leads to

T5K

2(s+1)T5−1∑
t=2sT5

K∑
k=1

∥xt,k − xt,k−1∥2 >

(
δ

C3ρ

)2

⇔
2(s+1)T5−1∑

t=2sT5

K∑
k=1

∥xt,k − xt,k−1∥2 >
δ2

T5KC2
3ρ

2
. (50)

On the other hand, in Lemma 17 (high probability bound), we derived that
T∑

t=1

K∑
k=1

∥∇f(xt,k−1)∥2 + 1

2η2

T∑
t=1

K∑
k=1

∥xt,k − xt,k−1∥2 (51)

≤ 2∆

η
+

C1σ
2T

Pb
+ C11[Option II]K

[
σ2
cP

p2
+

σ2P

p2Kb

]
+

2r2

η2
, (52)
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when η = Θ̃
(

1
L ∨

p

ζK
√
P
∧ p

√
b

L
√
PK
∧

√
b

L
√
K
∧ 1

ζK

)
.

From the definition of as = 1 and (50), We know that (51) is bounded as

T∑
t=1

K∑
k=1

∥∇f(xt,k−1)∥2 + 1

2η2

T∑
t=1

K∑
k=1

∥xt,k − xt,k−1∥2 ≥ N1T5Kε2 +
δ2N2

2η2T5KC2
3ρ

2
.

Thus, N1T5K ≤ 1
ε2 × (the right-hand side of (52)) and N2T5K ≤ 2η2C2

3ρ
2K2T 2

5

δ2 × (the right-hand side of (52)) holds.

Here, 2η2T 2
5 K

2C2
3ρ

2

δ2 = Õ
(

ρ2

δ4 + η2K2

δ2

)
= Õ

(
ρ2

δ4

)
, when K = O

(
L
ζ

)
≤ O

(
L
δ

)
. From this, (N1 + N2)T5 ≤

Õ
(

1
Kε2 + ρ2

Kδ4

)
× (the right-hand side of (52)). Taking T ≥ Õ

(
1

Kε2 + ρ2

Kδ4

)
× (the right-hand side of (52)) ≥ 2(N1 +

N2 + 1)T5, there exists s such that as = 3, which concludes the proof.

E.3. Finding Second-Order Stationary Points When Clients are Homogeneous (ζ ≪ 1
δ )

In the previous subsection, we assumed that ζ ≥ 1
δ . Here, we introduce a simple trick to remove this assumption and give its

convergence analysis.

Let T6 = Θ̃
(
L
δ

)
with a sufficiently large hidden constant. In line 15-16 of FL-SILVER, when k ≡ T6, we randomly select

sample J t,k
it

of size C1C
2
3L

2

δ2 +b > b, and update zt,k as zt,k ← zt,k−1+ 1

|Jt,k
it

|

∑
j∈Jt,k

it

(∇fit,j(xt,k)−∇fit,j(xt,k−1)). This

increases the number of gradient evaluations in each inner-loop by Õ(K/(L/δ))× Õ(L2/δ2) = Õ(KL/δ) ≲ Õ(K2) ≲
Õ(Kb). Hence, this does not affect the inner-loop complexity more than by constant factors.

Then, the following lemma holds, which stands as generalization of Lemma 18.

Lemma 22 (Small stuck region). Let {xt,k} be a sequence generated by FL-SILVER and (τ0, κ0) be a step where
−γ := λmin(∇2f(xτ0,κ0)) ≤ −δ holds. We denote the smallest eigenvector direction of λmin(∇2f(xτ0,κ0)) as e. Moreover,
we define a coupled sequence {x̃t,k} by running FL-SILVER with x̃0 = x0 and the same choice of all randomness i.e., client
samplings, minibatches and noises, but the noise at some step (τ, κ) > (τ0, κ0), satisfying κ ≡ T6; We let ξ̃τ,κ = ξτ,κ− ree

with re ≥ rν√
d

. Let wt,k = xt,k − x̃t,k, wt = xt − x̃t, gt,k = 1
P

∑P
i=1 y

t−1
i + zt,k, g̃t = 1

P

∑P
i=1 ỹ

t−1
i + zt,k,

ht = 1
P

∑P
i=1 y

t
i−∇f(xt)−

(
1
P

∑P
i=1 ỹ

t
i −∇f(x̃t)

)
, and ht,k = (zt,k− (∇f(xt,k)−∇f(xt,0)))− (z̃t,k− (∇f(x̃t,k)−

∇f(x̃t,0))). Then, gt,k −∇f(xt,k)− (g̃t,k −∇f(x̃t,k)) = ht−1 + ht,k.

There exists a sufficiently large constants C3 = Õ(1),, with which the following holds: If we take p ≥ C1

√
P +

C1C
2
3ζ

2

δ2 +
C1C

2
3L

2

Kbδ2 , b ≥
√
K and, η = Θ̃

(
1
L

)
, with high probability, we have

max
(τ0,κ0)≤(t,k)<(τ0,κ0+3T6)

{∥xτ,k − xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} ≥ δ

C3ρ
.

Proof of Lemma 22. We assume K is at least as large as 3T6. When K − 2T6 ≤ κ0 < K − 1, taking T6 ≥ T4 yields the
assertion, considering the two coupled sequence initialized at (κ0,K), according to a slight modification of Lemma 18.

Otherwise, we let (τ, κ) as the first step after (τ0, κ0) with κ ≡ T6. Then, it suffice to show that, with high probability,

max
(τ,κ)≤(t,k)<(τ,κ+T6)

{∥xτ,k − xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} ≥ δ

C3ρ
. (53)

Since K ≥ 3T6 and κ0 < K − 2T6 imply ht−1 = 0 for all (τ, κ) ≤ (t, k) < (τ, κ+ T6), ht−1 + ht,k = ht,k holds. Then,
∥hτ,κ∥ =

∥∥∥uτ,κ
it

+ 1
|Jτ,κ

it
|
∑

j∈Jτ,κ
it

uτ,κ
it,j

∥∥∥ ≤ ζre +
L√
|Jτ,κ

it
|
re ≤ 2δre, using Proposition 2. Moreover, for (τ, k) > (τ, κ),
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when we assume max(τ,κ)≤(t,k)<(τ,κ+T6){∥xτ,k − xτ0,κ0∥, ∥x̃τ,κ − xτ0,κ0∥} < δ
C3ρ

,

∥hτ,k∥

=

∥∥∥∥∥∥uτ,k
iτ

+

k∑
l=κ

1

|Jτ,l
it
|

∑
j∈Jτ,κ

it

uτ,l
it,j

∥∥∥∥∥∥
≤ ζ

k∑
l=τ

∥wτ,l−wτ,l−1∥+ 2δ

C3
∥wτ,k∥+ 2δ

C3
∥wτ,0∥+δre+

C2
1√
b

√√√√ k∑
l=1

(
L∥wτ,k−wτ,k−1∥+ 2δ

C3
∥wτ,k∥+ 2δ

C3
∥wτ,k−1∥

)2

.

Assuming that (a) 1
2 (1 + ηγ)k−κre ≤ ∥wt,k∥ ≤ 2(1 + ηγ)k−κre and (b) ∥wt,k − wt,k−1∥ ≤ 3ηγ(1 + ηγ)k−κre for

(τ, κ) < (t, k) < (τ, κ+ T6), we get ∥ht,k∥ ≤ 2C1γ
C3

(1 + ηγ)k−κ. Thus, following the discussion in Lemma 18 and taking
T6 as large as T5, we have (53).

Previously, we only focused on the noise at the last local step (κ0,K). Thus, if the number of steps required to escape saddle
points T5 = Õ(Lδ ) is smaller than the local steps K = Õ(Lζ ), the algorithm sometimes have to wait more than T4 steps for
the last local step. Therefore, taking K ≥ T4 was useless to reduce the number of communication rounds (at least for the
theoretical proof). On the other hand, based on Lemma 22, when FL-SILVER approaches a saddle point, FL-SILVER does
not need to wait next communication, and can escape the stack region within 2T6 local steps, even if T6 ≪ K. This allows
to us to take K larger than O(Lδ ), and leads to removal of the assumption δ < 1

ζ from Theorem 6.

E.4. Convergence under PL condition

The full statement is as follows:

Theorem 7. Suppose that Assumptions 1-(a), 2, 3-(a) (only for Option II), 3-(b), 5-(a), and 6 hold. Choose

η = Θ

(
1

L
∧

( p√
P
∧ 1)

ζK
∧

( p√
P
∧ 1)
√
b

L
√
K

)
,

and assume that r ≤ η
√

µε
8 ∧

√
ηεp

64PK and PKb ≥ 96σ2

µε ∨
2304σ4

225L2ε2 for finding ε-solutions in expectation and that r ≤ ηε
4 ,

PKb ≥ 192σ2

ε2 for finding ε-first-order stationary points in expectation. Then, Algorithm 2 requires

T = Ω

 L

µK
∨ P

p
∨

ζ(
√
P
p ∨ 1)

µ
∨

L(
√
P
p ∨ 1)

µ
√
bK

 log
∆ + 1[Option II]PK2

[
σ2
c

p2 + σ2

p2Kb

]
ε

 .

communication rounds and

1[Option I]P + Tp = Ω

[P ∨ Lp

µK
∨ ζ(
√
P ∨ p)

µ
∨ L(

√
P ∨ p)

µ
√
bK

]
log

∆ + 1[Option II]PK2
[
σ2
c

p2 + σ2

p2Kb

]
ε


communication complexity to find ε-solutions in expectation. Moreover, Algorithm 2 requires

T = Ω

 L

µK
∨ P

p
∨

ζ(
√
P
p ∨ 1)

µ
∨

L(
√
P
p ∨ 1)

µ
√
bK

 log
∆ + 1[Option II]PK2

[
σ2
c

p2 + σ2

p2Kb

]
ε

 .

communication rounds and

1[Option I]P + Tp = Ω

[P ∨ Lp

µK
∨ ζ(
√
P ∨ p)

µ
∨ L(

√
P ∨ p)

µ
√
bK

]
log

∆ + 1[Option II]PK2
[
σ2
c

p2 + σ2

p2Kb

]
ε


communication complexity to find ε-first-order stationary points in expectation.
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Proof. Similarly to the proof of Theorem 3 (31), we have

f(xt,k)− f∗ +
η

2
∥∇f(xt,k−1)∥2

≤ (1− ηµ

2
)(f(xt,k−1)− f∗) + η∥∇f(xt,k−1)−( 1

P

P∑
i=1

yt−1
i +zt,k−1)∥2 −

(
1

2η
− L

2

)
∥xt,k − xt,k−1∥2 + r2

η
.

By multiplying this by (1−α)TK−(t−1)K−k for some 0 < α ≤ ηµ
2 and summing up this over (t, k) = (1, 1) to (T,K), we

get

f(xT,K)− f∗ +
η

2

T∑
t=1

K∑
k=1

(1− α)TK−((t−1)K+k)∥∇f(xt,k−1)∥2

≤ (1− ηµ

2
)(1− α)TK−1(f(x0)− f∗)−

T∑
t=1

K∑
k=1

(1− α)TK−((t−1)K+k)

(
1

2η
− L

2

)
E
[
∥xt,k − xt,k−1∥2

]
+ η

T∑
t=1

K∑
k=1

(1− α)TK−((t−1)K+k)E

[
∥∇f(xt,k−1)−( 1

P

P∑
i=1

yt−1
i +zt,k−1)∥2

]
+

r2

η

T∑
t=1

K∑
k=1

(1− α)TK−((t−1)K+k).

Note that r2

η

∑T
t=1

∑K
k=1(1− α)TK−((t−1)K+k) ≤ r2

ηα . Applying Lemma 10 yields

E

[
f(xt,k)− f∗ +

η

2

T∑
t=1

K∑
k=1

(1− α)TK−((t−1)K+k)∥∇f(xt,k−1)∥2
]

≤ (1− ηµ

2
)(1− α)TK−1(f(x0)− f∗)

−
T∑

t=1

K∑
k=1

(1− α)TK−((t−1)K+k)

(
1

2η
− L

2
− η

[(
T∑

s=t+1

(1− p

4P
)s−t−1(1− α)−(s−t)KK

)(
180ζ2K

p
+

12L2

pb

)

+(1− α)−KK

(
6L2

b
+ 6ζ2K

)])
E
[
∥xt,k − xt,k−1∥2

]
+ η

T∑
t=1

K∑
k=1

(1− α)TK−((t−1)K+k) 12σ
2

PKb

+ η1[Option II]
T∑

t=1

K∑
k=1

(1− α)TK−((t−1)K+k)K(1− p

P
)t−1

[
54σ2

c

p
+

6σ2

pKb

]
+

r2

ηα
. (54)

We let

η ≤ 1

5L
∧ p

ζK
√
14400P

∧ p
√
b

L
√
960KP

∧
√
b

L
√
60K

∧ 1√
60ζK

(55)

and

α =
µη

2
∧ p

16PK
.

Then, we have (1− p
4P )s−t−1(1− α)−(s−t)KK ≤ 2(1− p

8P )s−t−1K and (1− α)−K ≤ 2. Therefore, the coefficient of
E[∥xt,k − xt,k−1∥2] in (54) is bounded by

− 1

2η
+

L

2
+ η

[(
T∑

s=t+1

(1− p

4P
)s−t−1(1− α)−(s−t)KK

)(
180ζ2K

p
+

12L2

pb

)
+ (1− α)−KK

(
6L2

b
+ 6ζ2K

)]

≤ − 1

2η
+

L

2
+

16ηPK

p

(
180ζ2K

p
+

12L2

pb

)
+ 2ηK

(
6L2

b
+ 6ζ2K

)
≤ 0.
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Now (54) is written as

E

[
f(xt,k)− f∗ +

η

2

T∑
t=1

K∑
k=1

(1− α)TK−((t−1)K+k)∥∇f(xt,k−1)∥2
]

≤ (1− ηµ

2
)(1− α)TK−1(f(x0)− f∗) + η

T∑
t=1

K∑
k=1

(1− α)TK−((t−1)K+k) 12σ
2

PKb

+ η1[Option II]
T∑

t=1

K∑
k=1

(1− α)TK−((t−1)K+k)K(1− p

P
)t−1

[
54σ2

c

p
+

6σ2

pKb

]
+

r2

ηα

≤ (1− α)TK∆+
η

α

12σ2

PKb
+ η1[Option II](1− α)TK 2PK2

p

[
54σ2

c

p
+

6σ2

pKb

]
+

r2

ηα
, (56)

For the final inequality, we used (1− α)TK−((t−1)K+k)K(1− p
P )t−1 ≤ 2K(1− α)TK(1− p

2P )t−1 when α ≤ p
16P .

In order to find an ε-solution (i.e., f(xt,k)−f∗ ≤ ε) in expectation, we take r ≤
√

αηε
4 = η

√
µε
8 ∧

√
ηεp

64PK , PKb ≥ 48ησ2

αε

(, which holds when PKb ≥ 96σ2

µε ∨
2304σ4

225L2ε2 with η ≤ p
√
b

L
√
960KP

), and

T ≥ 1

Kα
log

4∆

ε
+
1[Option II]

Kα
log

8PK2
[
54σ2

c

p2 + 6σ2

p2Kb

]
ε

.

Especially, when the equality in (55) hold, i.e.,

η = Θ

(
1

L
∧

( p√
P
∧ 1)

ζK
∧

( p√
P
∧ 1)
√
b

L
√
K

)
, (57)

T should be taken as

T = Ω

 L

µK
∨ P

p
∨

ζ(
√
P
p ∨ 1)

µ
∨

L(
√
P
p ∨ 1)

µ
√
bK

 log
∆ + 1[Option II]PK2

[
σ2
c

p2 + σ2

p2Kb

]
ε

 .

Moreover, to find ε-first-order stationary points, we transform (56) as

E

 min
1≤t≤T
1≤k≤K

∥∇f(xt,k−1)∥2


≤ 4η−1α(1− α)TK∆+
48σ2

PKb
+ 4α1[Option II](1− α)TK 2PK2

p

[
54σ2

c

p
+

6σ2

pKb

]
+

4r2

η2
.

Note that we used
∑T

t=1

∑K
k=1(1 − α)TK−((t−1)K+k)∥∇f(xt,k−1)∥2 ≥ 1

2α min1≤t≤T,1≤k≤K ∥∇f(xt,k−1)∥2 when
TK ≥ α and α ≤ µ

10L ≤
1
10 (we have already let η satisfy η ≤ 1

5L and will later let T to satisfy this below). We let r ≤ ηε
4 ,

PKb ≥ 192σ2

ε2 , and

T ≥ 1

αK
log

32α∆

εη
+
1[Option II]

αK
log

32αPK2
[
54σ2

c

p2 + 6σ2

p2Kb

]
ε

.

(Note that this implies TK ≥ α.) When we take η as (57), T becomes

T = Ω

 L

µK
∨ P

p
∨

ζ(
√
P
p ∨ 1)

µ
∨

L(
√
P
p ∨ 1)

µ
√
bK

 log
∆ + 1[Option II]PK2

[
σ2
c

p2 + σ2

p2Kb

]
ε

 .
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F. Lower bound
Proposition 1 can be derived by using the bounds of Zhou and Gu (2019); Fang et al. (2018); Li et al. (2021a). First, we give
a definition of a linear-span first-order algorithm.

Definition 1 (Linear-span first-order algorithm). Fix some x0. Let A be a (randomized) algorithm with the initial point x0,
and xt be the point at the t-th iteration. We assume A select one individual function it at each iteration t and computes
∇fit(xt). Then A is called a linear-span first-order algorithm if

xt ∈ span{x0, x1, · · · , xt−1,∇fi0(x0),∇fi1(x1), · · · ,∇fit−1
(xt)}

holds for all t with probability one.

Note that this definition includes minibatch updade, by letting xsb = xsb+1 =, · · · ,= x(s+1)b−1 with the minibatch size b.

We also define problem classes FL
n,∆ and FL,ζ

n,∆ for (1), as follows.

Definition 2 (A class of finite-sum optimization problems). Fix some x0. For an integer n, L > 0, we define a problem
class FL

n as

FL
n,∆ =

{
f =

1

n

∑
i=1

fi : Rd → R

∣∣∣∣∣ d ∈ N. Each fi : Rd → R is L-gradient Lipschitz (Assumption 1-(b)),
and f(x0)− infx f(x) = ∆.

}

Moreover, for an integer n, L > 0, and ζ > 0, a problem class FL,ζ
n is defined as

FL,ζ
n =

f =
1

n

n∑
i=1

fi : Rd → R

∣∣∣∣∣∣
d ∈ N. Each fi : Rd → R is L-gradient Lipschitz (Assumption 1-(b))
and Hessian-heterogeneous with ζ (Assumption 4-(b)),
and f(x0)− infx f(x) = ∆.

 .

Note that function-wise gradient Lipschitzness (Assumption 1-(b)) and Hessian Heterogeneity (Assumption 4-(b)) are
stronger than averaged gradient Lipschitzness (Assumption 1-(a)) and Hessian Heterogeneity (Assumption 4-(a)).

Carmon et al. (2020) proved the following lower bound.

Proposition 6 (Carmon et al. (2020)). Fix x0. For any L > 0, ∆ > 0, and ε > 0, there exists a function f ∈ FL
1,∆ such that

any linear-span first-order algorithm requires Ω
(
∆L
ε2

)
stochastic gradient accesses in order to find ε-first-order stationary

points.

Zhou and Gu (2019); Fang et al. (2018); Li et al. (2021a) extended this to the lower bound on the finite-sum optimization
problem.

Proposition 7 (Zhou and Gu (2019); Fang et al. (2018); Li et al. (2021a)). Fix x0. For n > 0, L > 0, ∆ > 0, and
ε > 0, there exists a function f ∈ FL

n,∆ such that any linear-span first-order algorithm requires Ω
(
n+ ∆L

√
n

ε2

)
stochastic

gradient accesses in order to find ε-first-order stationary points.

Based on these, we give the lower bound under the additional assumption of ζ-Hessian-heterogeneity.

Proposition 1. Suppose that 1-(b), 2, 5-(b) hold. For any L > 0, ∆ > 0, and ε > 0, there exists a function f ∈ FL,ζ
n,∆ such

that any linear-span first-order algorithm requires

Ω

(
n+

∆(ζ
√
n+ L)

ε2

)
stochastic gradient accesses in order to find ε-first-order stationary points.

Proof. It is easy to see that the lower bound of Proposition 6 also applies to FL
n,∆, by letting f1 = f2 = · · · = fn = f∗

where f∗ is the function that gives the bound of Proposition 6. On the other hand, we haveF
ζ
2

n,∆ ⊆ F
L,ζ
n,∆. Thus, Proposition 7

yields that there exists a function f ∈ F
ζ
2

n,∆ ⊆ F
L,ζ
n,∆ that requires Ω

(
n+ ∆ζ

√
n

ε2

)
stochastic gradients to find ε-first-order

stationary points. Therefore, by combining these two bounds, we have the desired lower bound.
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Checklist
1. For all models and algorithms presented, check if you

include:

(a) A clear description of the mathematical setting,
assumptions, algorithm, and/or model. [Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm. [Yes]

(c) (Optional) Anonymized source code, with spec-
ification of all dependencies, including external
libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes]

(b) Complete proofs of all theoretical results. [Yes]
(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results,
check if you include:

(a) The code, data, and instructions needed to repro-
duce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperpa-
rameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or statis-
tics and error bars (e.g., with respect to the ran-
dom seed after running experiments multiple
times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data, mod-
els) or curating/releasing new assets, check if you in-
clude:

(a) Citations of the creator If your work uses existing
assets. [Yes]

(b) The license information of the assets, if applicable.
[Not Applicable]

(c) New assets either in the supplemental material or
as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Not Applicable]

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:

(a) The full text of instructions given to participants
and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant compen-
sation. [Not Applicable]
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